diana9m's picture
End of training
31788f5 verified
metadata
language:
  - dk
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small dk
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: da
          split: test
          args: 'config: dk, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 29.494396801178514

Whisper Small dk

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6207
  • Wer: 29.4944

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4214 1.37 200 0.5155 32.5933
0.1758 2.75 400 0.4674 29.5260
0.0591 4.12 600 0.5032 30.5361
0.0258 5.5 800 0.5336 30.0573
0.017 6.87 1000 0.5676 29.2419
0.0067 8.25 1200 0.5738 29.1209
0.0046 9.62 1400 0.5981 29.2839
0.0027 11.0 1600 0.6114 29.4418
0.0021 12.37 1800 0.6184 29.4155
0.002 13.75 2000 0.6207 29.4944

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2