deopoler's picture
End of training
3e1eb60 verified
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- mechanicalkeystrokes
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-mechanicalkeystrokes
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: MechanicalKeystrokes
type: mechanicalkeystrokes
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9666666666666667
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-mechanicalkeystrokes
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the MechanicalKeystrokes dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1155
- Accuracy: 0.9667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2923 | 1.0 | 30 | 2.3063 | 0.0333 |
| 2.2788 | 2.0 | 60 | 2.2863 | 0.1333 |
| 2.1377 | 3.0 | 90 | 2.1583 | 0.35 |
| 1.8769 | 4.0 | 120 | 1.8170 | 0.6167 |
| 1.5083 | 5.0 | 150 | 1.4282 | 0.7833 |
| 1.0911 | 6.0 | 180 | 1.0241 | 0.9333 |
| 0.7235 | 7.0 | 210 | 0.7131 | 0.9667 |
| 0.4517 | 8.0 | 240 | 0.4509 | 0.9667 |
| 0.2529 | 9.0 | 270 | 0.2682 | 0.9833 |
| 0.14 | 10.0 | 300 | 0.1799 | 0.9833 |
| 0.0791 | 11.0 | 330 | 0.1155 | 0.9667 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1
- Datasets 2.19.0
- Tokenizers 0.19.1