See axolotl config
axolotl version: 0.3.0
base_model: rishiraj/CatPPT-base
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
model_config:
output_router_logits: true
datasets:
- path: teknium/openhermes
type: alpaca
prompt_style: chatml
- path: garage-bAInd/Open-Platypus
type: alpaca
prompt_style: chatml
- path: LDJnr/Capybara
type: sharegpt
conversation: chatml
- path: datasets/samantha-1.1.json
type: sharegpt
conversation: chatml
- path: datasets/grammarly-coedit-alpaca.jsonl
type: alpaca
prompt_style: chatml
- path: datasets/dolphin-coder-codegen.jsonl
type: alpaca_w_system.load_open_orca_chatml
- path: datasets/dolphin-coder-translate.jsonl
type: alpaca_w_system.load_open_orca_chatml
- path: datasets/data-evol_instruct-decontaminated-alpaca.jsonl
type: alpaca
prompt_style: chatml
- path: datasets/data-oss_instruct-decontaminated-alpaca.jsonl
type: alpaca
prompt_style: chatml
- path: jondurbin/airoboros-3.2
type: sharegpt
conversations: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./qlora-out-2
seed: 420
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 3
num_epochs: 1.5
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 0
evals_per_epoch: 20
eval_table_size:
saves_per_epoch: 20
debug:
deepspeed:
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
eos_token: "<|im_end|>"
tokens:
- "<|im_start|>"
trust_remote_code: true
qlora-out-2
This model is a fine-tuned version of rishiraj/CatPPT-base on multiple datasets. It achieves the following results on the evaluation set:
- Loss: 0.4258
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 3
- seed: 420
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 18
- total_eval_batch_size: 9
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1.5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7691 | 0.0 | 1 | 0.7027 |
0.5556 | 0.05 | 135 | 0.5808 |
0.597 | 0.1 | 270 | 0.5488 |
0.5979 | 0.15 | 405 | 0.5277 |
0.4693 | 0.2 | 540 | 0.5108 |
0.5123 | 0.25 | 675 | 0.4978 |
0.4394 | 0.3 | 810 | 0.4883 |
0.46 | 0.35 | 945 | 0.4802 |
0.4472 | 0.4 | 1080 | 0.4748 |
0.47 | 0.45 | 1215 | 0.4687 |
0.4249 | 0.5 | 1350 | 0.4637 |
0.4823 | 0.55 | 1485 | 0.4599 |
0.4209 | 0.6 | 1620 | 0.4555 |
0.4909 | 0.65 | 1755 | 0.4517 |
0.4663 | 0.7 | 1890 | 0.4470 |
0.4215 | 0.75 | 2025 | 0.4437 |
0.4267 | 0.8 | 2160 | 0.4398 |
0.4109 | 0.85 | 2295 | 0.4364 |
0.4099 | 0.9 | 2430 | 0.4331 |
0.447 | 0.95 | 2565 | 0.4298 |
0.4412 | 1.0 | 2700 | 0.4272 |
0.3838 | 1.03 | 2835 | 0.4287 |
0.4262 | 1.08 | 2970 | 0.4274 |
0.3889 | 1.13 | 3105 | 0.4263 |
0.3114 | 1.18 | 3240 | 0.4255 |
0.3685 | 1.23 | 3375 | 0.4256 |
0.392 | 1.28 | 3510 | 0.4253 |
0.3751 | 1.33 | 3645 | 0.4255 |
0.3756 | 1.39 | 3780 | 0.4256 |
0.3108 | 1.44 | 3915 | 0.4258 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Framework versions
- PEFT 0.6.0
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for decapoda-research/Adrastea-7b-v1.0-dpo
Base model
rishiraj/CatPPT-base