Edit model card

wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the timit_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5720
  • Wer: 0.3380

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.466 1.0040 500 1.4947 0.9858
0.8266 2.0080 1000 0.5298 0.5179
0.438 3.0120 1500 0.4565 0.4564
0.2918 4.0161 2000 0.4528 0.4382
0.2282 5.0201 2500 0.4541 0.4095
0.184 6.0241 3000 0.5109 0.4053
0.1513 7.0281 3500 0.5116 0.3923
0.1378 8.0321 4000 0.5137 0.3876
0.1194 9.0361 4500 0.5208 0.3961
0.1072 10.0402 5000 0.5417 0.3845
0.0982 11.0442 5500 0.5653 0.3847
0.0868 12.0482 6000 0.4593 0.3722
0.0774 13.0522 6500 0.4822 0.3723
0.0723 14.0562 7000 0.5303 0.3702
0.0635 15.0602 7500 0.4888 0.3742
0.0597 16.0643 8000 0.5254 0.3638
0.0571 17.0683 8500 0.5107 0.3632
0.0491 18.0723 9000 0.5649 0.3575
0.0511 19.0763 9500 0.5430 0.3627
0.0425 20.0803 10000 0.5726 0.3633
0.0386 21.0843 10500 0.5977 0.3657
0.0388 22.0884 11000 0.5430 0.3570
0.0338 23.0924 11500 0.5612 0.3535
0.0301 24.0964 12000 0.5841 0.3514
0.0272 25.1004 12500 0.5682 0.3457
0.0255 26.1044 13000 0.5657 0.3494
0.0234 27.1084 13500 0.5611 0.3450
0.0248 28.1124 14000 0.5721 0.3399
0.0203 29.1165 14500 0.5720 0.3380

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for datdo/wav2vec2-base-timit-demo-google-colab-clone

Finetuned
(652)
this model

Dataset used to train datdo/wav2vec2-base-timit-demo-google-colab-clone

Evaluation results