_id
stringlengths
4
9
text
stringlengths
260
10k
5511240
Kupffer cells, the phagocytes of fetal origin that line the liver sinusoids, are key contributors of host defense against enteroinvasive bacteria. Here, we found that infection by Listeria monocytogenes induced the early necroptotic death of Kupffer cells, which was followed by monocyte recruitment and an anti-bacterial type 1 inflammatory response. Kupffer cell death also triggered a type 2 response that involved the hepatocyte-derived alarmin interleukin-33 (IL-33) and basophil-derived interleukin-4 (IL-4). This led to the alternative activation of the monocyte-derived macrophages recruited to the liver, which thereby replaced ablated Kupffer cells and restored liver homeostasis. Kupffer cell death is therefore a key signal orchestrating type 1 microbicidal inflammation and type-2-mediated liver repair upon infection. This indicates that beyond the classical dichotomy of type 1 and type 2 responses, these responses can develop sequentially in the context of a bacterial infection and act interdependently, orchestrating liver immune responses and return to homeostasis, respectively.
5519177
Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression in the immune system. Studies have shown that lncRNAs are expressed in a highly lineage-specific manner and control the differentiation and function of innate and adaptive cell types. In this Review, we focus on mechanisms used by lncRNAs to regulate genes encoding products involved in the immune response, including direct interactions with chromatin, RNA and proteins. In addition, we address new areas of lncRNA biology, such as the functions of enhancer RNAs, circular RNAs and chemical modifications to RNA in cellular processes. We emphasize critical gaps in knowledge and future prospects for the roles of lncRNAs in the immune system and autoimmune disease.
5531479
Neutrophils rapidly undergo polarization and directional movement to infiltrate the sites of infection and inflammation. Here, we show that an inhibitory MHC I receptor, Ly49Q, was crucial for the swift polarization of and tissue infiltration by neutrophils. During the steady state, Ly49Q inhibited neutrophil adhesion by preventing focal-complex formation, likely by inhibiting Src and PI3 kinases. However, in the presence of inflammatory stimuli, Ly49Q mediated rapid neutrophil polarization and tissue infiltration in an ITIM-domain-dependent manner. These opposite functions appeared to be mediated by distinct use of effector phosphatase SHP-1 and SHP-2. Ly49Q-dependent polarization and migration were affected by Ly49Q regulation of membrane raft functions. We propose that Ly49Q is pivotal in switching neutrophils to their polarized morphology and rapid migration upon inflammation, through its spatiotemporal regulation of membrane rafts and raft-associated signaling molecules.
5551138
This article reviews the efficacy of nortriptyline for smoking cessation based on a meta-analysis of the Cochrane Library. Six placebo-controlled trials have shown nortriptyline (75-100 mg) doubles quit rates (OR = 2.1). Between 4% and 12% of smokers dropped out because of adverse events, but no serious adverse events occurred. The efficacy of nortriptyline did not appear to be related to its antidepressant actions. Nortriptyline is an efficacious aid to smoking cessation with a magnitude of effect similar to that for bupropion and nicotine replacement therapies. Whether nortriptyline produces serious side effects at these doses in healthy, nondepressed smokers remains unclear because it has been tested in only 500 smokers. The finding that nortriptyline and bupropion are effective for smoking cessation but that selective serotonin-reuptake inhibitors are not suggests that dopaminergic or adrenergic, but not serotonergic, activity is important for cessation efficacy. Until further studies can verify a low incidence of significant adverse events, nortriptyline should be a second-line treatment for smoking cessation.
5556809
Although it has long been recognized that many individuals with attention deficit hyperactivity disorder (ADHD) also have difficulties with emotion regulation, no consensus has been reached on how to conceptualize this clinically challenging domain. The authors examine the current literature using both quantitative and qualitative methods. Three key findings emerge. First, emotion dysregulation is prevalent in ADHD throughout the lifespan and is a major contributor to impairment. Second, emotion dysregulation in ADHD may arise from deficits in orienting toward, recognizing, and/or allocating attention to emotional stimuli; these deficits implicate dysfunction within a striato-amygdalo-medial prefrontal cortical network. Third, while current treatments for ADHD often also ameliorate emotion dysregulation, a focus on this combination of symptoms reframes clinical questions and could stimulate novel therapeutic approaches. The authors then consider three models to explain the overlap between emotion dysregulation and ADHD: emotion dysregulation and ADHD are correlated but distinct dimensions; emotion dysregulation is a core diagnostic feature of ADHD; and the combination constitutes a nosological entity distinct from both ADHD and emotion dysregulation alone. The differing predictions from each model can guide research on the much-neglected population of patients with ADHD and emotion dysregulation.
5560962
Broadly neutralizing antibodies (bNAbs) to HIV-1 can prevent infection and are therefore of great importance for HIV-1 vaccine design. Notably, bNAbs are highly somatically mutated and generated by a fraction of HIV-1-infected individuals several years after infection. Antibodies typically accumulate mutations in the complementarity determining region (CDR) loops, which usually contact the antigen. The CDR loops are scaffolded by canonical framework regions (FWRs) that are both resistant to and less tolerant of mutations. Here, we report that in contrast to most antibodies, including those with limited HIV-1 neutralizing activity, most bNAbs require somatic mutations in their FWRs. Structural and functional analyses reveal that somatic mutations in FWR residues enhance breadth and potency by providing increased flexibility and/or direct antigen contact. Thus, in bNAbs, FWRs play an essential role beyond scaffolding the CDR loops and their unusual contribution to potency and breadth should be considered in HIV-1 vaccine design.
5567005
Recent genetic mapping and gene-phenotype studies have revealed the genetic architecture of type 1 diabetes. At least ten genes so far can be singled out as strong causal candidates. The known functions of these genes indicate the primary etiological pathways of this disease, including HLA class II and I molecules binding to preproinsulin peptides and T cell receptors, T and B cell activation, innate pathogen-viral responses, chemokine and cytokine signaling, and T regulatory and antigen-presenting cell functions. This review considers research in the field of type 1 diabetes toward identifying disease mechanisms using genetic approaches. The expression and functions of these pathways, and, therefore, disease susceptibility, will be influenced by epigenetic and environmental factors. Certain inherited immune phenotypes will be early precursors of type 1 diabetes and could be useful in future clinical trials.
5567223
Tissues rely upon stem cells for homeostasis and repair. Recent studies show that the fate and multilineage potential of epithelial stem cells can change depending on whether a stem cell exists within its resident niche and responds to normal tissue homeostasis, whether it is mobilized to repair a wound, or whether it is taken from its niche and challenged to de novo tissue morphogenesis after transplantation. In this Review, we discuss how different populations of naturally lineage-restricted stem cells and committed progenitors can display remarkable plasticity and reversibility and reacquire long-term self-renewing capacities and multilineage differentiation potential during physiological and regenerative conditions. We also discuss the implications of cellular plasticity for regenerative medicine and for cancer.
5572127
The role of ataxia telangiectasia mutated (ATM), a DNA double-strand break recognition and response protein, in inflammation and inflammatory diseases is unclear. We have previously shown that high levels of systemic DNA damage are induced by intestinal inflammation in wild-type mice. To determine the effect of Atm deficiency in inflammation, we induced experimental colitis in Atm(-/-), Atm(+/-), and wild-type mice via dextran sulfate sodium (DSS) administration. Atm(-/-) mice had higher disease activity indices and rates of mortality compared with heterozygous and wild-type mice. Systemic DNA damage and immune response were characterized in peripheral blood throughout and after three cycles of treatment. Atm(-/-) mice showed increased sensitivity to levels of DNA strand breaks in peripheral leukocytes, as well as micronucleus formation in erythroblasts, compared with heterozygous and wild-type mice, especially during remission periods and after the end of treatment. Markers of reactive oxygen and nitrogen species-mediated damage, including 8-oxoguanine and nitrotyrosine, were present both in the distal colon and in peripheral leukocytes, with Atm(-/-) mice manifesting more 8-oxoguanine formation than wild-type mice. Atm(-/-) mice showed greater upregulation of inflammatory cytokines and significantly higher percentages of activated CD69+ and CD44+ T cells in the peripheral blood throughout treatment. ATM, therefore, may be a critical immunoregulatory factor dampening the deleterious effects of chronic DSS-induced inflammation, necessary for systemic genomic stability and homeostasis of the gut epithelial barrier.
5586392
BACKGROUND Patients with neuropathic pain present with various pain-related sensory abnormalities. These sensory features form different patterns or mosaics-the sensory profile-in individual patients. One hypothesis for the development of sensory profiles is that distinct pathophysiological mechanisms of pain generation produce specific sensory abnormalities. Several controlled trials of promising new drugs have produced negative results, but these findings could have been a result of heterogeneity in the patient population. Subgrouping patients on the basis of individual sensory profiles could reduce this heterogeneity and improve trial design. RECENT DEVELOPMENTS A statistical categorisation of patients with neuropathic pain showed that subgroups of patients with distinct sensory profiles who perceive their pain differently do exist across a range of neuropathic disorders, although some distinct disorder-specific profiles were also detected. Results of the first clinical trials to use the subgroup approach at baseline could show a superior effect of the study drugs in specific subgroups, rather than in the entire cohort of patients. WHERE NEXT?: A new classification of neuropathic pain should take into account subgroups of patients with different sensory profiles. Sensory phenotyping has the potential to improve clinical trial design by enriching the study population with potential treatment responders, and might lead to a stratified treatment approach and ultimately to personalised treatment.
5596332
IMPORTANCE Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. OBJECTIVE To evaluate and, as needed, update definitions for sepsis and septic shock. PROCESS A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). KEY FINDINGS FROM EVIDENCE SYNTHESIS Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. RECOMMENDATIONS Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. CONCLUSIONS AND RELEVANCE These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.
5633957
Cytomegaloviruses express large amounts of viral miRNAs during lytic infection, yet, they only modestly alter the cellular miRNA profile. The most prominent alteration upon lytic murine cytomegalovirus (MCMV) infection is the rapid degradation of the cellular miR-27a and miR-27b. Here, we report that this regulation is mediated by the ∼1.7 kb spliced and highly abundant MCMV m169 transcript. Specificity to miR-27a/b is mediated by a single, apparently optimized, miRNA binding site located in its 3'-UTR. This site is easily and efficiently retargeted to other cellular and viral miRNAs by target site replacement. Expression of the 3'-UTR of m169 by an adenoviral vector was sufficient to mediate its function, indicating that no other viral factors are essential in this process. Degradation of miR-27a/b was found to be accompanied by 3'-tailing and -trimming. Despite its dramatic effect on miRNA stability, we found this interaction to be mutual, indicating potential regulation of m169 by miR-27a/b. Most interestingly, three mutant viruses no longer able to target miR-27a/b, either due to miRNA target site disruption or target site replacement, showed significant attenuation in multiple organs as early as 4 days post infection, indicating that degradation of miR-27a/b is important for efficient MCMV replication in vivo.
5641851
OBJECTIVE Cancer outcomes vary between and within countries with patients from deprived backgrounds known to have inferior survival. The authors set out to explore the effect of deprivation in relation to the accessibility of hospitals offering diagnostic and therapeutic services on stage at presentation and receipt of treatment. DESIGN Analysis of a Cancer Registry Database. Data included stage and treatment details from the first 6 months. The socioeconomic status of the immediate area of residence and the travel time from home to hospital was derived from the postcode. SETTING Population-based study of patients resident in a large area in the north of England. PARTICIPANTS 39 619 patients with colorectal cancer diagnosed between 1994 and 2002. OUTCOMES MEASURED Stage of diagnosis and receipt of treatment in relation to deprivation and distance from hospital. RESULTS Patients in the most deprived quartile were significantly more likely to be diagnosed at stage 4 for rectal cancer (OR 1.516, p<0.05) but less so for colonic cancer. There was a trend for both sites for patients in the most deprived quartile to be less likely to receive chemotherapy for stage 4 disease. Patients with colonic cancer were very significantly less likely to receive any treatment if they came from any but the most affluent area (ORs 0.639, 0.603 and 0.544 in increasingly deprived quartiles), this may have been exacerbated if the hospital was distant from their residence (OR for forth quartile for both travel and deprivation 0.731, not significant). The effect was less for rectal cancer and no effect of distance was seen. CONCLUSIONS Residing in a deprived area is associated with tendencies to higher stage at diagnosis and especially in the case of colonic cancer to reduced receipt of treatment. These observations are consistent with other findings and indicate that access to diagnosis requires further investigation.
5691302
OBJECTIVES To investigate the association between antidepressant treatment and risk of several potential adverse outcomes in older people with depression and to examine risks by class of antidepressant, duration of use, and dose. DESIGN Cohort study of people aged 65 and over diagnosed as having depression. SETTING 570 general practices in the United Kingdom supplying data to the QResearch primary care database. PARTICIPANTS 60,746 patients diagnosed as having a new episode of depression between the ages of 65 and 100 years from 1 January 1996 to 31 December 2007 and followed up until 31 December 2008. MAIN OUTCOME MEASURES Hazard ratios associated with antidepressant use for all cause mortality, attempted suicide/self harm, myocardial infarction, stroke/transient ischaemic attack, falls, fractures, upper gastrointestinal bleeding, epilepsy/seizures, road traffic accidents, adverse drug reactions, and hyponatraemia, adjusted for a range of potential confounding variables. Hazard ratios were calculated for antidepressant class (tricyclic and related antidepressants, selective serotonin reuptake inhibitors, other antidepressants), dose, and duration of use and for commonly prescribed individual drugs. RESULTS 54,038 (89.0%) patients received at least one prescription for an antidepressant during follow-up. A total of 1,398,359 antidepressant prescriptions were issued: 764,659 (54.7%) for selective serotonin reuptake inhibitors, 442,192 (31.6%) for tricyclic antidepressants, 2203 (0.2%) for monoamine oxidase inhibitors, and 189,305 (13.5%) for the group of other antidepressants. The associations with the adverse outcomes differed significantly between the antidepressant classes for seven outcomes. Selective serotonin reuptake inhibitors were associated with the highest adjusted hazard ratios for falls (1.66, 95% confidence interval 1.58 to 1.73) and hyponatraemia (1.52, 1.33 to 1.75) compared with when antidepressants were not being used. The group of other antidepressants was associated with the highest adjusted hazard ratios for all cause mortality (1.66, 1.56 to 1.77), attempted suicide/self harm (5.16, 3.90 to 6.83), stroke/transient ischaemic attack (1.37, 1.22 to 1.55), fracture (1.64, 1.46 to 1.84), and epilepsy/seizures (2.24, 1.60 to 3.15), compared with when antidepressants were not being used. Tricyclic antidepressants did not have the highest hazard ratio for any of the outcomes. Significantly different associations also existed between the individual drugs for the same seven outcomes; trazodone (tricyclic antidepressant), mirtazapine, and venlafaxine (both in the group of other antidepressants) were associated with the highest rates for some of these outcomes. Absolute risks over 1 year for all cause mortality were 7.04% for patients while not taking antidepressants, 8.12% for those taking tricyclic antidepressants, 10.61% for selective serotonin reuptake inhibitors, and 11.43% for other antidepressants. CONCLUSIONS Selective serotonin reuptake inhibitors and drugs in the group of other antidepressants were associated with an increased risk of several adverse outcomes compared with tricyclic antidepressants. Among individual drugs, trazodone, mirtazapine, and venlafaxine were associated with the highest risks for some outcomes. As this is an observational study, it is susceptible to confounding by indication, channelling bias, and residual confounding, so differences in characteristics between patients prescribed different antidepressant drugs that could account for some of the associations between the drugs and the adverse outcomes may remain. Further research is needed to confirm these findings, but the risks and benefits of different antidepressants should be carefully evaluated when these drugs are prescribed to older people.
5698494
OBJECTIVES To investigate whether statins reduce all cause mortality and major coronary and cerebrovascular events in people without established cardiovascular disease but with cardiovascular risk factors, and whether these effects are similar in men and women, in young and older (>65 years) people, and in people with diabetes mellitus. DESIGN Meta-analysis of randomised trials. DATA SOURCES Cochrane controlled trials register, Embase, and Medline. Data abstraction Two independent investigators identified studies on the clinical effects of statins compared with a placebo or control group and with follow-up of at least one year, at least 80% or more participants without established cardiovascular disease, and outcome data on mortality and major cardiovascular disease events. Heterogeneity was assessed using the Q and I(2) statistics. Publication bias was assessed by visual examination of funnel plots and the Egger regression test. RESULTS 10 trials enrolled a total of 70 388 people, of whom 23 681 (34%) were women and 16 078 (23%) had diabetes mellitus. Mean follow-up was 4.1 years. Treatment with statins significantly reduced the risk of all cause mortality (odds ratio 0.88, 95% confidence interval 0.81 to 0.96), major coronary events (0.70, 0.61 to 0.81), and major cerebrovascular events (0.81, 0.71 to 0.93). No evidence of an increased risk of cancer was observed. There was no significant heterogeneity of the treatment effect in clinical subgroups. CONCLUSION In patients without established cardiovascular disease but with cardiovascular risk factors, statin use was associated with significantly improved survival and large reductions in the risk of major cardiovascular events.
5700349
The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin-coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain.
5704562
The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs' primary targets--glycogen synthase kinase-3 for lithium and histone deacetylases for VPA--induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA's beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders.
5735492
BACKGROUND HIV disproportionately affects African-Caribbean women in Canada but the frequency and distribution of sexually transmitted infections in this community have not been previously studied. METHODS We recruited women based on HIV status through a Toronto community health centre. Participants completed a socio-behavioural questionnaire using Audio Computer Assisted Self-Interview (ACASI) and provided blood for syphilis, HIV, hepatitis B and C, herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), and human cytomegalovirus (CMV) serology, urine for chlamydia and gonorrhea molecular testing and vaginal secretions for bacterial vaginosis (BV) and human papillomavirus (HPV). Differences in prevalence were assessed for statistical significance using chi-square. RESULTS We recruited 126 HIV-positive and 291 HIV-negative women, with a median age of 40 and 31 years, respectively (p < 0.001). Active HBV infection and lifetime exposure to HBV infection were more common in HIV-positive women (4.8% vs. 0.34%, p = 0.004; and 47.6% vs. 21.2%, p < 0.0001), as was a self-reported history of HBV vaccination (66.1% vs. 44.0%, p = 0.0001). Classical STIs were rare in both groups; BV prevalence was low and did not vary by HIV status. HSV-2 infection was markedly more frequent in HIV-positive (86.3%) than HIV-negative (46.6%) women (p < 0.0001). Vaginal HPV infection was also more common in HIV-positive than in HIV-negative women (50.8% vs. 22.6%, p < 0.0001) as was infection with high-risk oncogenic HPV types (48.4% vs. 17.3%, p < 0.0001). CONCLUSIONS Classical STIs were infrequent in this clinic-based population of African-Caribbean women in Toronto. However, HSV-2 prevalence was higher than that reported in previous studies in the general Canadian population and was strongly associated with HIV infection, as was infection with hepatitis B and HPV.
5752492
Chronic immune activation that persists despite anti-retroviral therapy (ART) is the strongest predictor of disease progression in HIV infection. Monocyte/macrophages in HIV-infected individuals are known to spontaneously secrete cytokines, although neither the mechanism nor the molecules involved are known. Here we show that overexpression of the newly described co-stimulatory molecule, PD1 homologue (PD-1H) in human monocyte/macrophages is sufficient to induce spontaneous secretion of multiple cytokines. The process requires signaling via PD-1H as cytokine secretion could be abrogated by deletion of the cytoplasmic domain. Such overexpression of PD-1H, associated with spontaneous cytokine expression is seen in monocytes from chronically HIV-infected individuals and this correlates with immune activation and CD4 depletion, but not viral load. Moreover, antigen presentation by PD-1H-overexpressing monocytes results in enhanced cytokine secretion by HIV-specific T cells. These results suggest that PD-1H might play a crucial role in modulating immune activation and immune response in HIV infection.
5764562
The visualization of biologically relevant molecules and activities inside living cells continues to transform cell biology into a truly quantitative science. However, despite the spectacular achievements in some areas of cell biology, the majority of cellular processes still operate invisibly, not illuminated by even our brightest laser beams. Further progress therefore will depend not only on improvements in instrumentation but also increasingly on the development of new fluorophores and fluorescent sensors to target these activities. In the following, we review some of the recent approaches to generating such sensors, the methods to attach them to selected biomolecules, and their applications to various biological problems.
5765455
Myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop acute myelogenous leukemia (AML). The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is loss of chromosomal material (genomic instability). Using our two-step mouse model for myeloid leukemic disease progression involving overexpression of human mutant NRAS and BCL2 genes, we show that there is a stepwise increase in the frequency of DNA damage leading to an increased frequency of error-prone repair of double-strand breaks (DSB) by nonhomologous end-joining. There is a concomitant increase in reactive oxygen species (ROS) in these transgenic mice with disease progression. Importantly, RAC1, an essential component of the ROS-producing NADPH oxidase, is downstream of RAS, and we show that ROS production in NRAS/BCL2 mice is in part dependent on RAC1 activity. DNA damage and error-prone repair can be decreased or reversed in vivo by N-acetyl cysteine antioxidant treatment. Our data link gene abnormalities to constitutive DNA damage and increased DSB repair errors in vivo and provide a mechanism for an increase in the error rate of DNA repair with MDS disease progression. These data suggest treatment strategies that target RAS/RAC pathways and ROS production in human MDS/AML.
5774746
S100A4 is implicated in metastasis and chronic inflammation, but its function remains uncertain. Here we establish an S100A4-dependent link between inflammation and metastatic tumor progression. We found that the acute-phase response proteins serum amyloid A (SAA) 1 and SAA3 are transcriptional targets of S100A4 via Toll-like receptor 4 (TLR4)/nuclear factor-κB signaling. SAA proteins stimulated the transcription of RANTES (regulated upon activation normal T-cell expressed and presumably secreted), G-CSF (granulocyte-colony-stimulating factor) and MMP2 (matrix metalloproteinase 2), MMP3, MMP9 and MMP13. We have also shown for the first time that SAA stimulate their own transcription as well as that of proinflammatory S100A8 and S100A9 proteins. Moreover, they strongly enhanced tumor cell adhesion to fibronectin, and stimulated migration and invasion of human and mouse tumor cells. Intravenously injected S100A4 protein induced expression of SAA proteins and cytokines in an organ-specific manner. In a breast cancer animal model, ectopic expression of SAA1 or SAA3 in tumor cells potently promoted widespread metastasis formation accompanied by a massive infiltration of immune cells. Furthermore, coordinate expression of S100A4 and SAA in tumor samples from colorectal carcinoma patients significantly correlated with reduced overall survival. These data show that SAA proteins are effectors for the metastasis-promoting functions of S100A4, and serve as a link between inflammation and tumor progression.
5775033
Pyruvate dehydrogenase activity (PDHa) and acetyl group accumulation were examined in human skeletal muscle at rest and during exercise after different diets. Five males cycled at 75% of maximal O2 uptake (VO2 max) to exhaustion after consuming a low-carbohydrate diet (LCD) for 3 days and again 1-2 wk later for the same duration after consuming a high-carbohydrate diet (HCD) for 3 days. Resting PDHa was lower after a LCD (0.20 +/- 0.04 vs. 0.69 +/- 0.05 mmol.min-1.kg wet wt-1; P < 0.05) and coincided with a greater intramuscular acetyl-CoA-to-CoASH ratio, acetyl-CoA content, and acetylcarnitine content. PDHa increased during exercise in both conditions but at a lower rate in the LCD condition compared with the HCD condition (1.46 +/- 0.25 vs. 2.65 +/- 0.23 mmol.min-1.kg wet wt-1 at 16 min and 1.88 +/- 0.20 vs. 3.11 +/- 0.14 at the end of exercise; P < 0.05). During exercise muscle acetyl-CoA and acetylcarnitine content and the acetyl-CoA-to-CoASH ratio decreased in the LCD condition but increased in the HCD condition. Under resting conditions PDHa was influenced by the availability of fat or carbohydrate fuels acting through changes in the acetyl-CoA-to-CoASH ratio. However, during exercise the activation of PDHa occurred independent of changes in the acetyl-CoA-to-CoASH ratio, suggesting that other factors are more important.
5782614
Recent genetic analyses of large populations have revealed that somatic mutations in hematopoietic cells leading to clonal expansion are commonly acquired during human aging. Clonally restricted hematopoiesis is associated with an increased risk of subsequent diagnosis of myeloid or lymphoid neoplasia and increased all-cause mortality. Although myelodysplastic syndromes (MDS) are defined by cytopenias, dysplastic morphology of blood and marrow cells, and clonal hematopoiesis, most individuals who acquire clonal hematopoiesis during aging will never develop MDS. Therefore, acquisition of somatic mutations that drive clonal expansion in the absence of cytopenias and dysplastic hematopoiesis can be considered clonal hematopoiesis of indeterminate potential (CHIP), analogous to monoclonal gammopathy of undetermined significance and monoclonal B-cell lymphocytosis, which are precursor states for hematologic neoplasms but are usually benign and do not progress. Because mutations are frequently observed in healthy older persons, detection of an MDS-associated somatic mutation in a cytopenic patient without other evidence of MDS may cause diagnostic uncertainty. Here we discuss the nature and prevalence of CHIP, distinction of this state from MDS, and current areas of uncertainty regarding diagnostic criteria for myeloid malignancies.
5785219
Nitric oxide (NO) is a product of L-arginine metabolism that suppresses cellular oxidative metabolism through the inhibition of tricarboxylic acid cycle and electron transport chain enzymes. The impact of NO synthase (NOS) activity on specific pathways of glucose metabolism in freshly harvested and overnight-cultured rat resident peritoneal macrophages, at rest and after stimulation with zymosan, was investigated using radiolabeled glucose. NOS activity was modulated through the L-arginine concentration in culture media and the use of its specific inhibitor, NG-monomethyl-L-arginine, and quantitated using radiolabeled L-arginine. Results demonstrated that NOS activity was associated with increased glucose disappearance, glycolysis, and hexose monophosphate shunt activity and, in line with the known inhibition of oxidative metabolism associated with the production of NO, with a decrease in the flux of glucose and butyrate carbon through the tricarboxylic acid cycle. In addition, the relative increase in glucose utilization that follows zymosan stimulation was enhanced by treatments that suppressed NOS activity. These results demonstrate that the characteristics of glucose metabolism by macrophages are, to a significant extent, determined by products of NOS.
5800138
We have previously demonstrated that interleukin (IL)-10–deficient (IL-10 knockout [KO]) but not wild-type (WT) mice develop colitis after infection with Helicobacter hepaticus . Here, we show that infected recombination activating gene (RAG) KO mice develop intestinal inflammation after reconstitution with CD4+ T cells from IL-10 KO animals and that the cotransfer of CD4+ T cells from H. hepaticus –infected but not uninfected WT mice prevents this colitis. The disease-protective WT CD4+ cells are contained within the CD45RBlow fraction and unexpectedly were found in both the CD25+ and the CD25− subpopulations of these cells, their frequency being higher in the latter. The mechanism by which CD25+ and CD25− CD45RBlow CD4+ cells block colitis involves IL-10 and not transforming growth factor (TGF)-β, as treatment with anti–IL-10R but not anti–TGF-β monoclonal antibody abrogated their protective effect. In vitro, CD45RBlow CD4+ cells from infected WT mice were shown to produce IL-10 and suppress interferon-γ production by IL-10 KO CD4+ cells in an H. hepaticus antigen–specific manner. Together, our data support the concept that H. hepaticus infection results in the induction in WT mice of regulatory T cells that prevent bacteria-induced colitis. The induction of such cells in response to gut flora may be a mechanism protecting normal individuals against inflammatory bowel disease.
5811042
Missense mutations in the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing family of gene 12 (Nlrp12) are associated with periodic fever syndromes and atopic dermatitis in humans. Here, we have demonstrated a crucial role for NLRP12 in negatively regulating pathogenic T cell responses. Nlrp12(-/-) mice responded to antigen immunization with hyperinflammatory T cell responses. Furthermore, transfer of CD4(+)CD45RB(hi)Nlrp12(-/-) T cells into immunodeficient mice led to more severe colitis and atopic dermatitis. NLRP12 deficiency did not, however, cause exacerbated ascending paralysis during experimental autoimmune encephalomyelitis (EAE); instead, Nlrp12(-/-) mice developed atypical neuroinflammatory symptoms that were characterized by ataxia and loss of balance. Enhanced T-cell-mediated interleukin-4 (IL-4) production promotes the development of atypical EAE disease in Nlrp12(-/-) mice. These results define an unexpected role for NLRP12 as an intrinsic negative regulator of T-cell-mediated immunity and identify altered NF-κB regulation and IL-4 production as key mediators of NLRP12-associated disease.
5821617
Atherosclerotic plaques develop in regions of the vasculature associated with chronic inflammation due to disturbed flow patterns. Endothelial phenotype modulation by flow requires the integration of numerous mechanotransduction pathways, but how this is achieved is not well understood. We show here that, in response to flow, the adaptor protein Shc is activated and associates with cell-cell and cell-matrix adhesions. Shc activation requires the tyrosine kinases vascular endothelial growth factor receptor 2 and Src. Shc activation and its vascular endothelial cadherin (VE-cadherin) association are matrix independent. In contrast, Shc binding to integrins requires VE-cadherin but occurs only on specific matrices. Silencing Shc results in reduction in both matrix-independent and matrix-dependent signals. Furthermore, Shc regulates flow-induced inflammatory signaling by activating nuclear factor kappaB-dependent signals that lead to atherogenesis. In vivo, Shc is activated in atherosclerosis-prone regions of arteries, and its activation correlates with areas of atherosclerosis. Our results support a model in which Shc orchestrates signals from cell-cell and cell-matrix adhesions to elicit flow-induced inflammatory signaling.
5824985
BACKGROUND Bariatric surgery is becoming a more widespread treatment for obesity. Comprehensive evidence of the long-term effects of contemporary surgery on a broad range of clinical outcomes in large populations treated in routine clinical practice is lacking. The objective of this study was to measure the association between bariatric surgery, weight, body mass index, and obesity-related co-morbidities. METHODS AND FINDINGS This was an observational retrospective cohort study using data from the United Kingdom Clinical Practice Research Datalink. All 3,882 patients registered in the database and with bariatric surgery on or before 31 December 2014 were included and matched by propensity score to 3,882 obese patients without surgery. The main outcome measures were change in weight and body mass index over 4 y; incident diagnoses of type 2 diabetes mellitus (T2DM), hypertension, angina, myocardial infarction (MI), stroke, fractures, obstructive sleep apnoea, and cancer; mortality; and resolution of hypertension and T2DM. Weight measures were available for 3,847 patients between 1 and 4 mo, 2,884 patients between 5 and 12 mo, and 2,258 patients between 13 and 48 mo post-procedure. Bariatric surgery patients exhibited rapid weight loss for the first four postoperative months, at a rate of 4.98 kg/mo (95% CI 4.88-5.08). Slower weight loss was sustained to the end of 4 y. Gastric bypass (6.56 kg/mo) and sleeve gastrectomy (6.29 kg/mo) were associated with greater initial weight reduction than gastric banding (2.77 kg/mo). Protective hazard ratios (HRs) were detected for bariatric surgery for incident T2DM, 0.68 (95% CI 0.55-0.83); hypertension, 0.35 (95% CI 0.27-0.45); angina, 0.59 (95% CI 0.40-0.87);MI, 0.28 (95% CI 0.10-0.74); and obstructive sleep apnoea, 0.55 (95% CI 0.40-0.87). Strong associations were found between bariatric surgery and the resolution of T2DM, with a HR of 9.29 (95% CI 6.84-12.62), and between bariatric surgery and the resolution of hypertension, with a HR of 5.64 (95% CI 2.65-11.99). No association was detected between bariatric surgery and fractures, cancer, or stroke. Effect estimates for mortality found no protective association with bariatric surgery overall, with a HR of 0.97 (95% CI 0.66-1.43). The data used were recorded for the management of patients in primary care and may be subject to inaccuracy, which would tend to lead to underestimates of true relative effect sizes. CONCLUSIONS Bariatric surgery as delivered in the UK healthcare system is associated with dramatic weight loss, sustained at least 4 y after surgery. This weight loss is accompanied by substantial improvements in pre-existing T2DM and hypertension, as well as a reduced risk of incident T2DM, hypertension, angina, MI, and obstructive sleep apnoea. Widening the availability of bariatric surgery could lead to substantial health benefits for many people who are morbidly obese.
5835149
OBJECTIVE To determine the prevalence and risk factors for hepatitis C virus (HCV) infection in a cohort of homosexually active men, with particular reference to assessing sexual transmission. DESIGN Prevalence based on cross-sectional testing for HCV (c100 protein) antibody in a cohort using sera stored between 1984 and 1989, and assessment of risk factors using a case-control analysis based on questionnaire data from HCV positive and negative subjects. SUBJECTS/SETTING 1038 homosexually active men who were participating in a prospective study established to identify risk factors for AIDS. They had been recruited through private and public primary care and sexually transmissible disease (STD) services in central Sydney. MAIN OUTCOME MEASURES Prevalence of HCV antibody and its association with human immunodeficiency virus type 1 (HIV-1) infection and other STDs, number of sexual partners, sexual practices and recreational drug use. RESULTS Overall, 7.6% of subjects tested were seropositive for HCV antibody. In univariate analysis, HCV infection was significantly associated with injecting drug use (IDU) (OR = 8.18, p < 0.0001) and HIV infection (OR = 3.14, p < 0.0001) and with self reported history of syphilis (OR = 1.88, p = 0.016), anogenital herpes (OR = 1.93, p = 0.017), gonorrhoea (OR = 2.43, p = 0.009) and hepatitis B (OR = 1.92, p = 0.010). In case control analysis, similar sexual behaviours (partner numbers and practices) were reported by HCV positive and HCV negative subjects except that HCV negative subjects more frequently reported engaging than HCV positive subject in unprotected receptive anal intercourse without ejaculation (OR = 0.61, p = 0.034), unprotected insertive (OR = 0.59, p = 0.039) and receptive (OR = 0.56, p = 0.016) oro-anal intercourse (rimming) and insertive fisting (OR = 0.48, p = 0.034). In multiple logistic regression analyses, only HIV-1 infection (OR = 3.18, p < 0.0001) and IDU in the previous six months (OR = 7.24, p < 0.0001) remained significantly associated with the presence of HCV antibody. CONCLUSIONS IDU was the major behavioural risk factor for HCV infection. If sexual or another from of transmission did occur, it may have been facilitated by concurrent HIV-1 infection.
5838067
MicroRNAs (miRNAs) are expressed in a wide variety of organisms, ranging from plants to animals, and are key posttranscriptional regulators of gene expression. Virally encoded miRNAs are unique in that they could potentially target both viral and host genes. Indeed, we have previously demonstrated that a human cytomegalovirus (HCMV)-encoded miRNA, miR-UL112, downregulates the expression of a host immune gene, MICB. Remarkably, it was shown that the same miRNA also downregulates immediate-early viral genes and that its ectopic expression resulted in reduced viral replication and viral titers. The targets for most of the viral miRNAs, and hence their functions, are still unknown. Here we demonstrate that miR-UL112 also targets the UL114 gene, and we present evidence that the reduction of UL114 by miR-UL112 reduces its activity as uracil DNA glycosylase but only minimally affects virus growth. In addition, we show that two additional HCMV-encoded miRNAs, miR-US25-1 and miR-US25-2, reduce the viral replication and DNA synthesis not only of HCMV but also of other viruses, suggesting that these two miRNAs target cellular genes that are essential for virus growth. Thus, we suggest that in addition to miR-UL112, two additional HCMV miRNAs control the life cycle of the virus.
5839365
The ideal anti-obesity drug would produce sustained weight loss with minimal side effects. The mechanisms that regulate energy balance have substantial built-in redundancy, overlap considerably with other physiological functions, and are influenced by social, hedonic and psychological factors that limit the effectiveness of pharmacological interventions. It is therefore unsurprising that anti-obesity drug discovery programmes have been littered with false starts, failures in clinical development, and withdrawals due to adverse effects that were not fully appreciated at the time of launch. Drugs that target pathways in metabolic tissues, such as adipocytes, liver and skeletal muscle, have shown potential in preclinical studies but none has yet reached clinical development. Recent improvements in the understanding of peptidergic signalling of hunger and satiety from the gastrointestinal tract mediated by ghrelin, cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), and of homeostatic mechanisms related to leptin and its upstream pathways in the hypothalamus, have opened up new possibilities. Although some have now reached clinical development, it is uncertain whether they will meet the strict regulatory hurdles required for licensing of an anti-obesity drug. However, GLP-1 receptor agonists have already succeeded in diabetes treatment and, owing to their attractive body-weight-lowering effects in humans, will perhaps also pave the way for other anti-obesity agents. To succeed in developing drugs that control body weight to the extent seen following surgical intervention, it seems obvious that a new paradigm is needed. In other therapeutic arenas, such as diabetes and hypertension, lower doses of multiple agents targeting different pathways often yield better results than strategies that modify one pathway alone. Some combination approaches using peptides and small molecules have now reached clinical trials, although recent regulatory experience suggests that large challenges lie ahead. In future, this polytherapeutic strategy could possibly rival surgery in terms of efficacy, safety and sustainability of weight loss.
5849439
Microsporogenesis has been examined in wild-type Arabidopsis thaliana and the nuclear male-sterile mutant BM3 by cytochemical staining. The mutant lacks adenine phosphoribosyltransferase, an enzyme of the purine salvage pathway that converts adenine to AMP. Pollen development in the mutant began to diverge from wild type just after meiosis, as the tetrads of microspores were released from their callose walls. The first indication of abnormal pollen development in the mutant was a darker staining of the microspore wall due to an incomplete synthesis of the intine. Vacuole formation was delayed and irregular in the mutant, and the majority of the mutant microspores failed to undergo mitotic divisions. Enzyme activities of alcohol dehydrogenase and esterases decreased in the mutant soon after meiosis and were undetectable in mature pollen grains of the mutant. RNA accumulation was also diminished. These results are discussed in relation to the possible role(s) of adenine salvage in pollen development.
5850219
BACKGROUND Population-based estimates of prevalence, risk distribution, and intervention uptake inform delivery of control programmes for sexually transmitted infections (STIs). We undertook the third National Survey of Sexual Attitudes and Lifestyles (Natsal-3) after implementation of national sexual health strategies, and describe the epidemiology of four STIs in Britain (England, Scotland, and Wales) and the uptake of interventions. METHODS Between Sept 6, 2010 and Aug 31, 2012 , we did a probability sample survey of 15,162 women and men aged 16-74 years in Britain. Participants were interviewed with computer-assisted face-to-face and self-completion questionnaires. Urine from a sample of participants aged 16-44 years who reported at least one sexual partner over the lifetime was tested for the presence of Chlamydia trachomatis, type-specific human papillomavirus (HPV), Neisseria gonorrhoeae, and HIV antibody. We describe age-specific and sex-specific prevalences of infection and intervention uptake, in relation to demographic and behavioural factors, and explore changes since Natsal-1 (1990-91) and Natsal-2 (1999-2001). FINDINGS Of 8047 eligible participants invited to provide a urine sample, 4828 (60%) agreed. We excluded 278 samples, leaving 4550 (94%) participants with STI test results. Chlamydia prevalence was 1·5% (95% CI 1·1-2·0) in women and 1·1% (0·7-1·6) in men. Prevalences in individuals aged 16-24 years were 3·1% (2·2-4·3) in women and 2·3% (1·5-3·4) in men. Area-level deprivation and higher numbers of partners, especially without use of condoms, were risk factors. However, 60·4% (45·5-73·7) of chlamydia in women and 43·3% (25·9-62·5) in men was in individuals who had had one partner in the past year. Among sexually active 16-24-year-olds, 54·2% (51·4-56·9) of women and 34·6% (31·8-37·4) of men reported testing for chlamydia in the past year, with testing higher in those with more partners. High-risk HPV was detected in 15·9% (14·4-17·5) of women, similar to in Natsal-2. Coverage of HPV catch-up vaccination was 61·5% (58·2-64·7). Prevalence of HPV types 16 and 18 in women aged 18-20 years was lower in Natsal-3 than Natsal-2 (5·8% [3·9-8·6] vs 11·3% [6·8-18·2]; age-adjusted odds ratio 0·44 [0·21-0·94]). Gonorrhoea (<0·1% prevalence in women and men) and HIV (0·1% prevalence in women and 0·2% in men) were uncommon and restricted to participants with recognised high-risk factors. Since Natsal-2, substantial increases were noted in attendance at sexual health clinics (from 6·7% to 21·4% in women and from 7·7% to 19·6% in men) and HIV testing (from 8·7% to 27·6% in women and from 9·2% to 16·9% in men) in the past 5 years. INTERPRETATION STIs were distributed heterogeneously, requiring general and infection-specific interventions. Increases in testing and attendance at sexual health clinics, especially in people at highest risk, are encouraging. However, STIs persist both in individuals accessing and those not accessing services. Our findings provide empirical evidence to inform future sexual health interventions and services. FUNDING Grants from the UK Medical Research Council and the Wellcome Trust, with support from the Economic and Social Research Council and the Department of Health.
5855168
Recent advances in genomic research have demonstrated a substantial role for genomic factors in predicting response to cancer therapies. Researchers in the fields of cancer pharmacogenomics and pharmacoepidemiology seek to understand why individuals respond differently to drug therapy, in terms of both adverse effects and treatment efficacy. To identify research priorities as well as the resources and infrastructure needed to advance these fields, the National Cancer Institute (NCI) sponsored a workshop titled "Cancer Pharmacogenomics: Setting a Research Agenda to Accelerate Translation" on July 21, 2009, in Bethesda, MD. In this commentary, we summarize and discuss five science-based recommendations and four infrastructure-based recommendations that were identified as a result of discussions held during this workshop. Key recommendations include 1) supporting the routine collection of germline and tumor biospecimens in NCI-sponsored clinical trials and in some observational and population-based studies; 2) incorporating pharmacogenomic markers into clinical trials; 3) addressing the ethical, legal, social, and biospecimen- and data-sharing implications of pharmacogenomic and pharmacoepidemiologic research; and 4) establishing partnerships across NCI, with other federal agencies, and with industry. Together, these recommendations will facilitate the discovery and validation of clinical, sociodemographic, lifestyle, and genomic markers related to cancer treatment response and adverse events, and they will improve both the speed and efficiency by which new pharmacogenomic and pharmacoepidemiologic information is translated into clinical practice.
5860364
An important model system for studying the process leading to productive transcription is provided by the superfamily of nuclear receptors, which are for the most part ligand-controlled transcription factors. Over the past years several 'orphan' nuclear receptors have been isolated for which no ligand has yet been identified. Very little is known about how these 'orphan' receptors regulate transcription. In this study we have analysed the biochemical and transcriptional properties of the neuronally expressed orphan nuclear receptor RORbeta (NR1F2) and compared them with the retinoic acid receptor heterodimer RXRalpha-RARalpha (NR2B1-NR1B1) and Gal-VP16 in vitro. Although RORbeta binds to its DNA-binding sites with comparatively low affinity, it efficiently directs transcription in nuclear extracts derived from a neuronal cell line, Neuro2A, but not in nuclear extracts from non-neuronal HeLa cells. In contrast, RXRalpha-RARalpha and the acidic transcription factor Gal-VP16 support transcription in Neuro2A and HeLa nuclear extracts equally efficiently. These observations point to a different (co)factor requirement for transactivation by members of the NR1 subfamily of nuclear receptors.
5864770
Epidemiologic studies suggest that ovarian hormones contribute to the development of breast cancer at all stages. Early menopause and premenopausal obesity reduces the risk while postmenopausal obesity and menopausal estrogen replacement therapy increases the risk. Combined oral contraceptives and Depo-Provera do not reduce the risk. It appears that estrogens and progestogens act through and with proto-oncogenes and growth factors to affect breast cell proliferation and breast cancer etiology. Animal studies suggest that estrogen causes interlobular ductal cell division and progesterone causes increased terminal duct lobular unit cell division in the luteal phase. Most breast carcinomas originate from terminal duct lobular unit cells. During pregnancy, these cells fully multiply. Their reproduction is also increased during the luteal phase. Yet, there is considerable interpersonal variation. No studies examining breast cell division have compared cell division rates with serum hormone concentrations, however. The peak of mitosis occurs about 3 days before breast cell death in the late luteal and very early follicular phases. Other research suggests that breast stem cell proliferation is linked to breast cancer development. Endocrine therapy reduces mitotic activity, indicating the estrogen and progesterone receptor content of breast cancers. Hormone-dependent breast cancer cell lines are all estrogen-dependent. Progesterone can block the estrogen-dependent cell lines which act like endometrial cells. The results of the various breast cell proliferation studies in relation to breast cancer are unclear and research identifying a molecular explanation would help in understanding the different findings.
5867846
The question of whether retroviruses, including human immunodeficiency virus type 1 (HIV-1), interact with the cellular RNA interference machinery has been controversial. Here, we present data showing that neither HIV-1 nor human T-cell leukemia virus type 1 (HTLV-1) expresses significant levels of either small interfering RNAs or microRNAs in persistently infected T cells. We also demonstrate that the retroviral nuclear transcription factors HIV-1 Tat and HTLV-1 Tax, as well as the Tas transactivator encoded by primate foamy virus, fail to inhibit RNA interference in human cells. Moreover, the stable expression of physiological levels of HIV-1 Tat did not globally inhibit microRNA production or expression in infected human cells. Together, these data argue that HIV-1 and HTLV-1 neither induce the production of viral small interfering RNAs or microRNAs nor repress the cellular RNA interference machinery in infected cells.
5884524
BACKGROUND Although unstable coronary artery disease is the most common reason for admission to a coronary care unit, the long-term prognosis of patients with this diagnosis is unknown. This is particularly true for patients with diabetes mellitus, who are known to have a high morbidity and mortality after an acute myocardial infarction. METHODS AND RESULTS Prospectively collected data from 6 different countries in the Organization to Assess Strategies for Ischemic Syndromes (OASIS) registry were analyzed to determine the 2-year prognosis of diabetic and nondiabetic patients who were hospitalized with unstable angina or non-Q-wave myocardial infarction. Overall, 1718 of 8013 registry patients (21%) had diabetes. Diabetic patients had a higher rate of coronary bypass surgery than nondiabetic patients (23% versus 20%, P:<0.001) but had similar rates of catheterization and angioplasty. Diabetes independently predicted mortality (relative risk [RR], 1.57; 95% CI, 1.38 to 1.81; P:<0.001), as well as cardiovascular death, new myocardial infarction, stroke, and new congestive heart failure. Moreover, compared with their nondiabetic counterparts, women had a significantly higher risk than men (RR, 1.98; 95% CI, 1.60 to 2.44; and RR, 1.28; 95% CI, 1.06 to 1.56, respectively). Interestingly, diabetic patients without prior cardiovascular disease had the same event rates for all outcomes as nondiabetic patients with previous vascular disease. CONCLUSIONS Hospitalization for unstable angina or non-Q-wave myocardial infarction predicts a high 2-year morbidity and mortality; this is especially evident for patients with diabetes. Diabetic patients with no previous cardiovascular disease have the same long-term morbidity and mortality as nondiabetic patients with established cardiovascular disease after hospitalization for unstable coronary artery disease.
5912283
CONTEXT Insomnia is a common condition in older adults and is associated with a number of adverse medical, social, and psychological consequences. Previous research has suggested beneficial outcomes of both psychological and pharmacological treatments, but blinded placebo-controlled trials comparing the effects of these treatments are lacking. OBJECTIVE To examine short- and long-term clinical efficacy of cognitive behavioral therapy (CBT) and pharmacological treatment in older adults experiencing chronic primary insomnia. DESIGN, SETTING, AND PARTICIPANTS A randomized, double-blinded, placebo-controlled trial of 46 adults (mean age, 60.8 y; 22 women) with chronic primary insomnia conducted between January 2004 and December 2005 in a single Norwegian university-based outpatient clinic for adults and elderly patients. INTERVENTION CBT (sleep hygiene, sleep restriction, stimulus control, cognitive therapy, and relaxation; n = 18), sleep medication (7.5-mg zopiclone each night; n = 16), or placebo medication (n = 12). All treatment duration was 6 weeks, and the 2 active treatments were followed up at 6 months. MAIN OUTCOME MEASURES Ambulant clinical polysomnographic data and sleep diaries were used to determine total wake time, total sleep time, sleep efficiency, and slow-wave sleep (only assessed using polysomnography) on all 3 assessment points. RESULTS CBT resulted in improved short- and long-term outcomes compared with zopiclone on 3 out of 4 outcome measures. For most outcomes, zopiclone did not differ from placebo. Participants receiving CBT improved their sleep efficiency from 81.4% at pretreatment to 90.1% at 6-month follow-up compared with a decrease from 82.3% to 81.9% in the zopiclone group. Participants in the CBT group spent much more time in slow-wave sleep (stages 3 and 4) compared with those in other groups, and spent less time awake during the night. Total sleep time was similar in all 3 groups; at 6 months, patients receiving CBT had better sleep efficiency using polysomnography than those taking zopiclone. CONCLUSION These results suggest that interventions based on CBT are superior to zopiclone treatment both in short- and long-term management of insomnia in older adults. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00295386.
5914739
The CD3ε and ζ cytoplasmic domains of the T cell receptor bind to the inner leaflet of the plasma membrane (PM), and a previous nuclear magnetic resonance structure showed that both tyrosines of the CD3ε immunoreceptor tyrosine-based activation motif partition into the bilayer. Electrostatic interactions between acidic phospholipids and clusters of basic CD3ε residues were previously shown to be essential for CD3ε and ζ membrane binding. Phosphatidylserine (PS) is the most abundant negatively charged lipid on the inner leaflet of the PM and makes a major contribution to membrane binding by the CD3ε cytoplasmic domain. Here, we show that TCR triggering by peptide--MHC complexes induces dissociation of the CD3ε cytoplasmic domain from the plasma membrane. Release of the CD3ε cytoplasmic domain from the membrane is accompanied by a substantial focal reduction in negative charge and available PS in TCR microclusters. These changes in the lipid composition of TCR microclusters even occur when TCR signaling is blocked with a Src kinase inhibitor. Local changes in the lipid composition of TCR microclusters thus render the CD3ε cytoplasmic domain accessible during early stages of T cell activation.
5935987
When it comes to the epigenome, there is a fine line between clarity and confusion-walk that line and you will discover another fascinating level of transcription control. With the genetic code representing the cornerstone of rules for information that is encoded to proteins somewhere above the genome level there is a set of rules by which chemical information is also read. These epigenetic modifications show a different side of the genetic code that is diverse and regulated, hence modifying genetic transcription transiently, ranging from short- to long-term alterations. While this complexity brings exquisite control it also poses a formidable challenge to efforts to decode mechanisms underlying complex disease. Recent technological and computational advances have improved unbiased acquisition of epigenomic patterns to improve our understanding of the complex chromatin landscape. Key to resolving distinct chromatin signatures of diabetic complications is the identification of the true physiological targets of regulatory proteins, such as reader proteins that recognise, writer proteins that deposit and eraser proteins that remove specific chemical moieties. But how might a diverse group of proteins regulate the diabetic landscape from an epigenomic perspective? Drawing from an ever-expanding compendium of experimental and clinical studies, this review details the current state-of-play and provides a perspective of chromatin-dependent mechanisms implicated in diabetic complications, with a special focus on diabetic nephropathy. We hypothesise a codified signature of the diabetic epigenome and provide examples of prime candidates for chemical modification. As for the pharmacological control of epigenetic marks, we explore future strategies to expedite and refine the search for clinically relevant discoveries. We also consider the challenges associated with therapeutic strategies targeting epigenetic pathways.
5939172
PURPOSE To analyze the relationship between an aspect of drinking pattern (i.e., drinking with or without meals) and risk of all-cause and specific-cause mortality. METHODS The Risk Factors and Life Expectancy Study, is a pooling of a series of epidemiological studies conducted in Italy. Eight-thousand six-hundred and forty-seven men and 6521 women, age 30-59 at baseline, and free of cardiovascular disease, were followed for mortality from all causes, cardiovascular and noncardiovascular, during an average follow-up of 7 years. RESULTS Drinkers of wine outside meals exhibited higher death rates from all causes, noncardiovascular diseases, and cancer, as compared to drinkers of wine with meals. This association was independent from the cardiovascular disease (CVD) risk factors measured at baseline and the amount of alcohol consumed and seemed to be stronger in women as compared to men. CONCLUSIONS The present results indicate that drinking patterns may have important health implications, and attention should be given to this aspect of alcohol use and its relationship to health outcomes. The relationship between alcohol consumption and disease has been the focus of intensive scientific investigation (1-9). Most studies to date, however, have limitations. A major drawback is that limited information has been collected regarding the complex issue of alcohol consumption. In many studies, ascertainment of alcohol consumption frequently focused only on quantity of alcohol consumed without considering the many different components of alcohol consumption, particularly drinking pattern (10-12). It has been hypothesized, and preliminary data support the notion, that drinking pattern could have important influences on determining the health effects of alcohol (13,14). The present study examines the relationship between one aspect of drinking pattern (drinking wine outside meals) and mortality in a large cohort of men and women.
5944514
Planar cell polarity (PCP) is observed in an array of developmental processes that involve collective cell movement and tissue organization, and its disruption can lead to severe developmental defects. Recent studies in flies and vertebrates have identified new functions for PCP as well as new signalling components, and have proposed new mechanistic models. However, despite this progress, the search to simplify principles of understanding continues and important mechanistic uncertainties still pose formidable challenges.
5953485
Adenosine deaminases acting on RNA (ADARs) are involved in RNA editing that converts adenosine residues to inosine specifically in double-stranded RNAs. In this study, we investigated the interaction of the RNA editing mechanism with the RNA interference (RNAi) machinery and found that ADAR1 forms a complex with Dicer through direct protein-protein interaction. Most importantly, ADAR1 increases the maximum rate (Vmax) of pre-microRNA (miRNA) cleavage by Dicer and facilitates loading of miRNA onto RNA-induced silencing complexes, identifying a new role of ADAR1 in miRNA processing and RNAi mechanisms. ADAR1 differentiates its functions in RNA editing and RNAi by the formation of either ADAR1/ADAR1 homodimer or Dicer/ADAR1 heterodimer complexes, respectively. As expected, the expression of miRNAs is globally inhibited in ADAR1(-/-) mouse embryos, which, in turn, alters the expression of their target genes and might contribute to their embryonic lethal phenotype.
5979056
Dendritic cells (DCs) have been implicated as important regulators of innate and adaptive inflammation in many diseases, including atherosclerosis. However, the molecular mechanisms by which DCs mitigate or promote inflammatory pathogenesis are only partially understood. Previous studies have shown an important anti-inflammatory role for the transcription factor Krüppel-like factor 2 (KLF2) in regulating activation of various cell types that participate in atherosclerotic lesion development, including endothelial cells, macrophages, and T cells. We used a pan-DC, CD11c-specific cre-lox gene knockout mouse model to assess the role of KLF2 in DC activation, function, and control of inflammation in the context of hypercholesterolemia and atherosclerosis. We found that KLF2 deficiency enhanced surface expression of costimulatory molecules CD40 and CD86 in DCs and promoted increased T cell proliferation and apoptosis. Transplant of bone marrow from mice with KLF2-deficient DCs into Ldlr-/- mice aggravated atherosclerosis compared with control mice, most likely due to heightened vascular inflammation evidenced by increased DC presence within lesions, enhanced T cell activation and cytokine production, and increased cell death in atherosclerotic lesions. Taken together, these data indicate that KLF2 governs the degree of DC activation and hence the intensity of proatherogenic T cell responses.
5991309
With the success of ipilimumab and promise of programmed death-1 pathway-targeted agents, the field of tumor immunotherapy is expanding rapidly. Newer targets for clinical development include select members of the tumor necrosis factor receptor (TNFR) family. Agonist antibodies to these co-stimulatory molecules target both T and B cells, modulating T-cell activation and enhancing immune responses. In vitro and in vivo preclinical data have provided the basis for continued development of 4-1BB, OX40, glucocorticoid-induced TNFR-related gene, herpes virus entry mediator, and CD27 as potential therapies for patients with cancer. In this review, we summarize the immune response to tumors, consider preclinical and early clinical data on select TNFR family members, discuss potential translational challenges and suggest possible combination therapies with the aim of inducing durable antitumor responses.
6000423
Despite genetic heterogeneity, myelodysplastic syndromes (MDSs) share features of cytological dysplasia and ineffective hematopoiesis. We report that a hallmark of MDSs is activation of the NLRP3 inflammasome, which drives clonal expansion and pyroptotic cell death. Independent of genotype, MDS hematopoietic stem and progenitor cells (HSPCs) overexpress inflammasome proteins and manifest activated NLRP3 complexes that direct activation of caspase-1, generation of interleukin-1β (IL-1β) and IL-18, and pyroptotic cell death. Mechanistically, pyroptosis is triggered by the alarmin S100A9 that is found in excess in MDS HSPCs and bone marrow plasma. Further, like somatic gene mutations, S100A9-induced signaling activates NADPH oxidase (NOX), increasing levels of reactive oxygen species (ROS) that initiate cation influx, cell swelling, and β-catenin activation. Notably, knockdown of NLRP3 or caspase-1, neutralization of S100A9, and pharmacologic inhibition of NLRP3 or NOX suppress pyroptosis, ROS generation, and nuclear β-catenin in MDSs and are sufficient to restore effective hematopoiesis. Thus, alarmins and founder gene mutations in MDSs license a common redox-sensitive inflammasome circuit, which suggests new avenues for therapeutic intervention.
6040392
The role of epigenetics in aging and age-related diseases is a key issue in molecular physiology and medicine because certain epigenetic factors are thought to mediate, at least in part, the relationship between the genome and the environment. An active role for epigenetics in aging must meet two prior conditions: there must be specific epigenetic changes during aging and they must be functionally associated with the aged phenotype. Assuming that specific epigenetic modifications can have a direct functional outcome in aging, it is also essential to establish whether they depend on genetic, environmental or stochastic factors, and if they can be transmitted from one generation to the next. Here we discuss current knowledge about these matters and future directions in the field.
6042706
The links between obesity in parents and their offspring and the role of genes and a shared environment are not completely understood. Adipocytokines such as leptin and adiponectin play important roles in glucose and lipid metabolism. Therefore, we examined whether the offspring from dams exposed to a high-fat diet during pregnancy (OH mice) exhibited hypertension, insulin resistance, and hyperlipidemia along with epigenetic changes in the expression of adipocytokine genes. OH mice were significantly heavier than the offspring of dams exposed to a control diet during pregnancy (OC mice) from 14 wk of age after an increased caloric intake from 8 wk. OH mice exhibited higher blood pressure and worse glucose tolerance than the OC mice at 24 wk. Total triglyceride and leptin levels were significantly higher and the adiponectin level was significantly lower in OH compared with OC mice at 12 wk of age. This was associated with changes in leptin and adiponectin expression in white adipose tissue. There were lower acetylation and higher methylation levels of histone H3 at lysine 9 of the promoter of adiponectin in adipose tissues of OH mice at 2 wk of age as well as at 12 and 24 wk of age compared with OC mice. In contrast, methylation of histone 4 at lysine 20 in the leptin promoter was significantly higher in OH compared with OC mice. Thus, exposure to a high-fat diet in utero might cause a metabolic syndrome-like phenomenon through epigenetic modifications of adipocytokine, adiponectin, and leptin gene expression.
6070278
OBJECTIVE The purpose of the present study was to investigate the relationship between the Total Atherosclerotic Score (TAS), a measurement of the overall atherosclerotic burden of the arterial tree by whole body magnetic resonance angiography (WBMRA), and the risk of major adverse cardiovascular events (MACE), defined as cardiac death, myocardial infarction, stroke and/or coronary revascularization, assuming that TAS predicts MACE. METHODS AND RESULTS 305 randomly selected 70 year-old subjects (47% women) underwent WBMRA. Their atherosclerotic burden was evaluated and TAS > 0, that is atherosclerotic changes, were found in 68% of subjects. During follow-up (mean 4.8 years), MACE occurred in 25 subjects (8.2%). Adjusting for multiple risk factors, TAS was associated with MACE (OR 8.86 for any degree of vessel lumen abnormality, 95%CI 1.14-69.11, p = 0.037). In addition, TAS improved discrimination and reclassification when added to the Framingham risk score (FRS), and ROC (Receiver Operator Curve) increased from 0.681 to 0.750 (p = 0.0421). CONCLUSION In a population-based sample of 70 year old men and women WBMRA, with TAS, predicted MACE independently of major cardiovascular risk factors.
6076903
Embryos have the ability to self-regulate and regenerate normal structures after being sectioned in half. How is such a morphogenetic field established? We discovered that quadruple knockdown of ADMP and BMP2/4/7 in Xenopus embryos eliminates self-regulation, causing ubiquitous neural induction throughout the ectoderm. ADMP transcription in the Spemann organizer is activated at low BMP levels. When ventral BMP2/4/7 signals are depleted, Admp expression increases, allowing for self-regulation. ADMP has BMP-like activity and signals via the ALK-2 receptor. It is unable to signal dorsally because of inhibition by Chordin. The ventral BMP antagonists Sizzled and Bambi further refine the pattern. By transplanting dorsal or ventral wild-type grafts into ADMP/BMP2/4/7-depleted hosts, we demonstrate that both poles serve as signaling centers that can induce histotypic differentiation over considerable distances. We conclude that dorsal and ventral BMP signals and their extracellular antagonists expressed under opposing transcriptional regulation provide a molecular mechanism for embryonic self-regulation.
6078882
It has been demonstrated for some cancers that the frequency of somatic oncogenic mutations may vary in ancestral populations. To determine whether key driver alterations might occur at different frequencies in colorectal cancer, we applied a high-throughput genotyping platform (OncoMap) to query 385 mutations across 33 known cancer genes in colorectal cancer DNA from 83 Asian, 149 Black and 195 White patients. We found that Asian patients had fewer canonical oncogenic mutations in the genes tested (60% vs Black 79% (P = 0.011) and White 77% (P = 0.015)), and that BRAF mutations occurred at a higher frequency in White patients (17% vs Asian 4% (P = 0.004) and Black 7% (P = 0.014)). These results suggest that the use of genomic approaches to elucidate the different ancestral determinants harbored by patient populations may help to more precisely and effectively treat colorectal cancer.
6079486
The key signalling pathways and transcriptional programmes that instruct neuronal diversity during development have largely been identified. In this Review, we discuss how this knowledge has been used to successfully reprogramme various cell types into an amazing array of distinct types of functional neurons. We further discuss the extent to which direct neuronal reprogramming recapitulates embryonic development, and examine the particular barriers to reprogramming that may exist given a cell's unique developmental history. We conclude with a recently proposed model for cell specification called the 'Cook Islands' model, and consider whether it is a fitting model for cell specification based on recent results from the direct reprogramming field.
6085365
BACKGROUND Few studies have examined whether physician knowledge, attitudes, or practice patterns might contribute to gender disparities in the primary prevention of coronary heart disease (CHD), including among physicians caring for the largest number of reproductive-age women, obstetricians and gynecologists (OB/GYNs). We sought to identify barriers affecting the provision of recommended coronary risk factor therapies in women. METHODS We surveyed internists and OB/GYNs who attended Grand Rounds presentations developed for the New York State Women and Heart Disease Physician Education Initiative. This program was designed to improve screening and management of coronary risk factors in women. Attendees were asked to complete a 7-minute questionnaire. RESULTS The mean age of the 529 respondents was 40.3 years (standard deviation = 12.3), 75.1% were internists (n=378), and 42.7% (n=226) were women. Physicians correctly responded to 71.5% of the 13 questions assessing knowledge of coronary risk prevention (range, 4-13). Almost one third of internists and half of the OB/GYNs did not know that tobacco use was the leading cause of myocardial infarction in young women. For patients who smoked tobacco, only two thirds of internists and 55.4% of OB/GYNs reported suggesting a quit date (p=.007). After controlling for covariates, physicians who did not perceive time as a barrier were more likely to discuss smoking cessation (odds ratio=1.7 [1.1-2.7]). CONCLUSIONS Among the internists and OB/GYNs surveyed, time was perceived as a barrier to implementing risk prevention. These physicians also underestimated the impact of tobacco use as a risk factor for CHD in young women. To lessen gender disparities in CHD prevention, both specialties need time-efficient educational programs that reflect specialty differences.
6106004
Publisher Summary The budding yeast Saccharomyces cerevisiae ( S. cerevisiae ) divides asymmetrically. In vegetative growth, yeast cells reproduce by budding, and the position where the bud forms ultimately determines the plane of cell division. This chapter describes the detailed procedures for the separation and isolation of mothers and daughters. These protocols have been used by investigators studying aging, bud site selection, and other aspects of asymmetric cell division. The chapter describes the procedures for performing life span analysis by micromanipulation and the steps for the large-scale collection of old cells. At the beginning and the end of a life span, it can be difficult to distinguish mothers from daughters. At most points in the life span, daughter cells are smaller than the mothers that produced them. In addition, mother cells will generally bud a second time before their daughter cells form their first bud. One method for effective isolation of virgin daughter cells from mother cells, but not for recovery of old mothers, is called a “baby machine. ” Mother cells are attached to a membrane and allowed to divide. Daughter cells from these attached cells are eluted continuously by washing the membrane.
6108481
It has been shown by several investigators that adipocyte number is stable in mature human beings and several species of rodents. Although the number of new cells appearing in the adipose depot can be measured histometrically and by Coulter counting of osmium-fixed cells, such methods do not distinguish between "lipid filling" of preexistent adipocytes and synthesis of new adipocytes. The experiments reported here using in vivo injection of [(3)H]thymidine show that synthesis of new adipocytes in the Sprague-Dawley rat continues after birth and ceases before sexual maturity. Furthermore, during the second and third postnatal weeks, a "bed" of preadipocytes is synthesized. Preadipocytes may take as long as 30 days to appear as mature adipocytes.
6123521
The brain interprets experiences and translates them into behavioral and physiological responses. Stressful events are those which are threatening or, at the very least, unexpected and surprising, and the physiological and behavioral responses are intended to promote adaptation via a process called "allostasis. " Chemical mediators of allostasis include cortisol and adrenalin from the adrenal glands, other hormones, and neurotransmitters, the parasympathetic and sympathetic nervous systems, and cytokines and chemokines from the immune system. Two brain structures, the amygdala and hippocampus, play key roles in interpreting what is stressful and determining appropriate responses. The hippocampus, a key structure for memories of events and contexts, expresses receptors that enable it to respond to glucocorticoid hormones in the blood, it undergoes atrophy in a number of psychiatric disorders; it also responds to stressors with changes in excitability, decreased dendritic branching, and reduction in number of neurons in the dentate gyrus. The amygdala, which is important for "emotional memories, " becomes hyperactive in posttraumatic stress disorder and depressive illness, in animal models of stress, there is evidence for growth and hypertrophy of nerve cells in the amygdala. Changes in the brain after acute and chronic stressors mirror the pattern seen in the metabolic, cardiovascular, and immune systems, that is, short-term adaptation (allostasis) followed by long-term damage (allostatic load), eg, atherosclerosis, fat deposition obesity, bone demineralization, and impaired immune function. Allostatic load of this kind is seen in major depressive illness and may also be expressed in other chronic anxiety and mood disorders.
6123924
Immune tolerance and activation depend on precise control over the number and function of immunosuppressive Foxp3(+) regulatory T (T reg) cells, and the importance of IL-2 in maintaining tolerance and preventing autoimmunity is clear. However, the homeostatic requirement for IL-2 among specific populations of peripheral T reg cells remains poorly understood. We show that IL-2 selectively maintains a population of quiescent CD44(lo)CD62L(hi) T reg cells that gain access to paracrine IL-2 produced in the T cell zones of secondary lymphoid tissues due to their expression of the chemokine receptor CCR7. In contrast, CD44(hi)CD62L(lo)CCR7(lo) T reg cells that populate nonlymphoid tissues do not access IL-2-prevalent regions in vivo and are insensitive to IL-2 blockade; instead, their maintenance depends on continued signaling through the co-stimulatory receptor ICOS (inducible co-stimulator). Thus, we define a fundamental homeostatic subdivision in T reg cell populations based on their localization and provide an integrated framework for understanding how T reg cell abundance and function are controlled by unique signals in different tissue environments.
6137330
OBJECTIVES The objective of this article is to update previous evidence-based recommendations for evaluation and management of individuals with solid pulmonary nodules and to generate new recommendations for those with nonsolid nodules. METHODS We updated prior literature reviews, synthesized evidence, and formulated recommendations by using the methods described in the "Methodology for Development of Guidelines for Lung Cancer" in the American College of Chest Physicians Lung Cancer Guidelines, 3rd ed. RESULTS We formulated recommendations for evaluating solid pulmonary nodules that measure > 8 mm in diameter, solid nodules that measure ≤ 8 mm in diameter, and subsolid nodules. The recommendations stress the value of assessing the probability of malignancy, the utility of imaging tests, the need to weigh the benefits and harms of different management strategies (nonsurgical biopsy, surgical resection, and surveillance with chest CT imaging), and the importance of eliciting patient preferences. CONCLUSIONS Individuals with pulmonary nodules should be evaluated and managed by estimating the probability of malignancy, performing imaging tests to better characterize the lesions, evaluating the risks associated with various management alternatives, and eliciting their preferences for management.
6144337
Activation of the insect innate immune system is dependent on a limited number of pattern recognition receptors (PRRs) capable of interacting with pathogen-associated molecular pattern. Here we report a novel role of an alternatively spliced hypervariable immunoglobulin domain-encoding gene, Dscam, in generating a broad range of PRRs implicated in immune defense in the malaria vector Anopheles gambiae. The mosquito Down syndrome cell adhesion molecule gene, AgDscam, has a complex genome organization with 101 exons that can produce over 31,000 potential alternative splice forms with different combinations of adhesive domains and interaction specificities. AgDscam responds to infection by producing pathogen challenge-specific splice form repertoires. Transient silencing of AgDscam compromises the mosquito's resistance to infections with bacteria and the malaria parasite Plasmodium. AgDscam is mediating phagocytosis of bacteria with which it can associate and defend against in a splice form–specific manner. AgDscam is a hypervariable PRR of the A. gambiae innate immune system.
6148876
RATIONALE Islet1 (Isl1) has been proposed as a marker of cardiac progenitor cells derived from the second heart field and is utilized to identify and purify cardiac progenitors from murine and human specimens for ex vivo expansion. The use of Isl1 as a specific second heart field marker is dependent on its exclusion from other cardiac lineages such as neural crest. OBJECTIVE Determine whether Isl1 is expressed by cardiac neural crest. METHODS AND RESULTS We used an intersectional fate-mapping system using the RC::FrePe allele, which reports dual Flpe and Cre recombination. Combining Isl1(Cre/+), a SHF driver, and Wnt1::Flpe, a neural crest driver, with Rc::FrePe reveals that some Isl1 derivatives in the cardiac outflow tract derive from Wnt1-expressing neural crest progenitors. In contrast, no overlap was observed between Wnt1-derived neural crest and an alternative second heart field driver, Mef2c-AHF-Cre. CONCLUSIONS Isl1 is not restricted to second heart field progenitors in the developing heart but also labels cardiac neural crest. The intersection of Isl1 and Wnt1 lineages within the heart provides a caveat to using Isl1 as an exclusive second heart field cardiac progenitor marker and suggests that some Isl1-expressing progenitor cells derived from embryos, embryonic stem cultures, or induced pluripotent stem cultures may be of neural crest lineage.
6153754
In patients with spinal cord injury, the primary or mechanical trauma seldom causes total transection, even though the functional loss may be complete. In addition, biochemical and pathological changes in the cord may worsen after injury. To explain these phenomena, the concept of the secondary injury has evolved for which numerous pathophysiological mechanisms have been postulated. This paper reviews the concept of secondary injury with special emphasis on vascular mechanisms. Evidence is presented to support the theory of secondary injury and the hypothesis that a key mechanism is posttraumatic ischemia with resultant infarction of the spinal cord. Evidence for the role of vascular mechanisms has been obtained from a variety of models of acute spinal cord injury in several species. Many different angiographic methods have been used for assessing microcirculation of the cord and for measuring spinal cord blood flow after trauma. With these techniques, the major systemic and local vascular effects of acute spinal cord injury have been identified and implicated in the etiology of secondary injury. The systemic effects of acute spinal cord injury include hypotension and reduced cardiac output. The local effects include loss of autoregulation in the injured segment of the spinal cord and a marked reduction of the microcirculation in both gray and white matter, especially in hemorrhagic regions and in adjacent zones. The microcirculatory loss extends for a considerable distance proximal and distal to the site of injury. Many studies have shown a dose-dependent reduction of spinal cord blood flow varying with the severity of injury, and a reduction of spinal cord blood flow which worsens with time after injury. The functional deficits due to acute spinal cord injury have been measured electrophysiologically with techniques such as motor and somatosensory evoked potentials and have been found proportional to the degree of posttraumatic ischemia. The histological effects include early hemorrhagic necrosis leading to major infarction at the injury site. These posttraumatic vascular effects can be treated. Systemic normotension can be restored with volume expansion or vasopressors, and spinal cord blood flow can be improved with dopamine, steroids, nimodipine, or volume expansion. The combination of nimodipine and volume expansion improves posttraumatic spinal cord blood flow and spinal cord function measured by evoked potentials. These results provide strong evidence that posttraumatic ischemia is an important secondary mechanism of injury, and that it can be counteracted.
6157371
Actin and its key regulatory component, cofilin, are found together in large rod-shaped assemblies in neurons subjected to energy stress. Such inclusions are also enriched in Alzheimer's disease brain, and appear in transgenic models of neurodegeneration. Neuronal insults, such as energy loss and/or oxidative stress, result in rapid dephosphorylation of the cellular cofilin pool prior to its assembly into rod-shaped inclusions. Although these events implicate a role for phosphatases in cofilin rod formation, a mechanism linking energy stress, phosphocofilin turnover, and subsequent rod assembly has been elusive. We demonstrate the ATP-sensitive interaction of the cofilin phosphatase chronophin (CIN) with the chaperone hsp90 to form a biosensor that mediates cofilin/actin rod formation. Our results suggest a model whereby attenuated interactions between CIN and hsp90 during ATP depletion enhance CIN-dependent cofilin dephosphorylation and consequent rod assembly, thereby providing a mechanism for the formation of pathological actin/cofilin aggregates during neurodegenerative energy flux.
6157837
Angiotensin converting enzyme (ACE) inhibitors are now one of the most frequently used classes of antihypertensive drugs. Beyond their utility in the management of hypertension, their use has been extended to the long-term management of patients with congestive heart failure (CHF), as well as diabetic and nondiabetic nephropathies. Although ACE inhibitor therapy usually improves renal blood flow (RBF) and sodium excretion rates in CHF and reduces the rate of progressive renal injury in chronic renal disease, its use can also be associated with a syndrome of “functional renal insufficiency” and/or hyperkalemia. This form of acute renal failure (ARF) most commonly develops shortly after initiation of ACE inhibitor therapy but can be observed after months or years of therapy, even in the absence of prior ill effects. ARF is most likely to occur when renal perfusion pressure cannot be sustained because of substantial decreases in mean arterial pressure (MAP) or when glomerular filtration rate (GFR) is highly angiotensin II (Ang II) dependent. Conditions that predict an adverse hemodynamic effect of ACE inhibitors in patients with CHF are preexisting hypotension and low cardiac filling pressures. The GFR is especially dependent on Ang II during extracellular fluid (ECF) volume depletion, high-grade bilateral renal artery stenosis, or stenosis of a dominant or single kidney, as in a renal transplant recipient. Understanding the pathophysiological mechanisms and the common risk factors for ACE inhibitor–induced functional ARF is critical, because preventive strategies for ARF exist, and if effectively used, they may permit use of these compounds in a less restricted fashion. Under normal physiological conditions, renal autoregulation adjusts renal vascular resistance, so that RBF and GFR remain constant over a wide range of MAPs.1 The intrinsic renal autoregulation mechanism is adjusted by Ang II and the sympathetic nervous system. When renal perfusion pressure falls (as in …
6158879
BACKGROUND Patients with diabetes mellitus (DM) are at high risk for recurrent cardiovascular events after acute coronary syndromes, in part because of increased platelet reactivity. The Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition With Prasugrel-Thrombolysis in Myocardial Infarction 38 (TRITON-TIMI 38) showed an overall reduction in ischemic events with more intensive antiplatelet therapy with prasugrel than with clopidogrel but with more bleeding. We compared prasugrel with clopidogrel among subjects with DM in TRITON-TIMI 38. METHODS AND RESULTS We classified 13 608 subjects on the basis of preexisting history of DM and further according to insulin use. Prespecified analyses of the primary (cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke) and key secondary end points, including net clinical benefit (death, nonfatal myocardial infarction, nonfatal stroke, and nonfatal TIMI major bleeding) were compared by use of the log-rank test. We found that 3146 subjects had a preexisting history of DM, including 776 receiving insulin. The primary end point was reduced significantly with prasugrel among subjects without DM (9.2% versus 10.6%; hazard ratio [HR], 0.86; P=0.02) and with DM (12.2% versus 17.0%; HR, 0.70; P<0.001, P(interaction)=0.09). A benefit for prasugrel was observed among DM subjects on insulin (14.3% versus 22.2%; HR, 0.63; P=0.009) and those not on insulin (11.5% versus 15.3%; HR, 0.74; P=0.009). Myocardial infarction was reduced with prasugrel by 18% among subjects without DM (7.2% versus 8.7%; HR, 0.82; P=0.006) and by 40% among subjects with DM (8.2% versus 13.2%; HR, 0.60; P<0.001, P(interaction)=0.02). Although TIMI major hemorrhage was increased among subjects without DM on prasugrel (1.6% versus 2.4%; HR, 1.43; P=0.02), the rates were similar among subjects with DM for clopidogrel and prasugrel (2.6% versus 2.5%; HR, 1.06; P=0.81, P(interaction)=0.29). Net clinical benefit with prasugrel was greater for subjects with DM (14.6% versus 19.2%; HR, 0.74; P=0.001) than for subjects without DM (11.5% versus 12.3%; HR, 0.92; P=0.16, P(interaction)=0.05). CONCLUSIONS Subjects with DM tended to have a greater reduction in ischemic events without an observed increase in TIMI major bleeding and therefore a greater net treatment benefit with prasugrel compared with clopidogrel. These data demonstrate that the more intensive oral antiplatelet therapy provided with prasugrel is of particular benefit to patients with DM.
6163801
Cytolytic granules mediate killing of virus-infected cells by cytotoxic T lymphocytes. We show here that the granules can take long or short paths to the secretory domain. Both paths utilized the same intracellular molecular events, which have different spatial and temporal arrangements and are regulated by the kinetics of Ca(2+)-mediated signaling. Rapid signaling caused swift granule concentration near the microtubule-organizing center (MTOC) and subsequent delivery by the polarized MTOC directly to the secretory domain-the shortest path. Indolent signaling led to late recruitment of granules that moved along microtubules to the periphery of the synapse and then moved tangentially to fuse at the outer edge of the secretory domain-a longer path. The short pathway is associated with faster granule release and more efficient killing than the long pathway. Thus, the kinetics of early signaling regulates the quality of the T cell cytolytic response.
6171953
Inflammation accompanies obesity and its comorbidities-type 2 diabetes, non-alcoholic fatty liver disease and atherosclerosis, among others-and may contribute to their pathogenesis. Yet the cellular machinery that links nutrient sensing to inflammation remains incompletely characterized. The protein deacetylase sirtuin-1 (SirT1) is activated by energy depletion and plays a critical role in the mammalian response to fasting. More recently it has been implicated in the repression of inflammation. SirT1 mRNA and protein expression are suppressed in obese rodent and human white adipose tissue, while experimental reduction of SirT1 in adipocytes and macrophages causes low-grade inflammation that mimics that observed in obesity. Thus suppression of SirT1 during overnutrition may be critical to the development of obesity-associated inflammation. This effect is attributable to multiple actions of SirT1, including direct deacetylation of NFκB and chromatin remodeling at inflammatory gene promoters. In this work, we report that SirT1 is also suppressed by diet-induced obesity in macrophages, which are key contributors to the ontogeny of metabolic inflammation. Thus, SirT1 may be a common mechanism by which cells sense nutrient status and modulate inflammatory signaling networks in accordance with organismal energy availability.
6176498
CONTEXT Endothelial dysfunction occurs in diagnosed type 2 diabetes mellitus but may also precede development of diabetes. OBJECTIVE To determine whether elevated plasma levels of biomarkers reflecting endothelial dysfunction (E-selectin; intercellular adhesion molecule 1 [ICAM-1]; and vascular cell adhesion molecule 1 [VCAM-1]) predict development of type 2 diabetes in initially nondiabetic women. DESIGN AND SETTING Prospective, nested case-control study within the Nurses' Health Study, an ongoing US study initiated in 1976. PARTICIPANTS Of 121 700 women initially enrolled, 32 826 provided blood samples in 1989-1990; of those free of diabetes, cardiovascular disease, or cancer at baseline, 737 developed incident diabetes by 2000. Controls (n = 785) were selected according to matched age, fasting status, and race. MAIN OUTCOME MEASURE Risk of confirmed clinically diagnosed type 2 diabetes by baseline levels of E-selectin, ICAM-1, and VCAM-1. RESULTS Baseline median levels of the biomarkers were significantly higher among cases than among controls (E-selectin, 61.2 vs 45.4 ng/mL; ICAM-1, 264.9 vs 247.0 ng/mL; VCAM-1, 545.4 vs 526.0 ng/mL [all P values < or =.004]). Elevated E-selectin and ICAM-1 levels predicted incident diabetes in logistic regression models conditioned on matching criteria and adjusted for body mass index (BMI), family history of diabetes, smoking, diet score, alcohol intake, activity index, and postmenopausal hormone use. The adjusted relative risks for incident diabetes in the top quintile vs the bottom quintiles were 5.43 for E-selectin (95% confidence interval [CI], 3.47-8.50), 3.56 for ICAM-1 (95% CI, 2.28-5.58), and 1.12 for VCAM-1 (95% CI, 0.76-1.66). Adjustment for waist circumference instead of BMI or further adjustment for baseline levels of C-reactive protein, fasting insulin, and hemoglobin A(1c) or exclusion of cases diagnosed during the first 4 years of follow-up did not alter these associations. CONCLUSION Endothelial dysfunction predicts type 2 diabetes in women independent of other known risk factors, including obesity and subclinical inflammation.
6182947
BACKGROUND Influenza A virus (IAV) infection primarily targets respiratory epithelial cells and produces clinical outcomes ranging from mild upper respiratory infection to severe pneumonia. Recent studies have shown the importance of lung antioxidant defense systems against injury by IAV. Nuclear factor-erythroid 2 related factor 2 (Nrf2) activates the majority of antioxidant genes. METHODS Alveolar type II (ATII) cells and alveolar macrophages (AM) were isolated from human lungs not suitable for transplantation and donated for medical research. In some studies ATII cells were transdifferentiated to alveolar type I-like (ATI-like) cells. Alveolar epithelial cells were infected with A/PR/8/34 (PR8) virus. We analyzed PR8 virus production, influenza A nucleoprotein levels, ROS generation and expression of antiviral genes. Immunocytofluorescence was used to determine Nrf2 translocation and western blotting to detect Nrf2, HO-1 and caspase 1 and 3 cleavage. We also analyzed ingestion of PR8 virus infected apoptotic ATII cells by AM, cytokine levels by ELISA, glutathione levels, necrosis and apoptosis by TUNEL assay. Moreover, we determined the critical importance of Nrf2 using adenovirus Nrf2 (AdNrf2) or Nrf2 siRNA to overexpress or knockdown Nrf2, respectively. RESULTS We found that IAV induced oxidative stress, cytotoxicity and apoptosis in ATI-like and ATII cells. We also found that AM can ingest PR8 virus-induced apoptotic ATII cells (efferocytosis) but not viable cells, whereas ATII cells did not ingest these apoptotic cells. PR8 virus increased ROS production, Nrf2, HO-1, Mx1 and OAS1 expression and Nrf2 translocation to the nucleus. Nrf2 knockdown with siRNA sensitized ATI-like cells and ATII cells to injury induced by IAV and overexpression of Nrf2 with AdNrf2 protected these cells. Furthermore, Nrf2 overexpression followed by infection with PR8 virus decreased virus replication, influenza A nucleoprotein expression, antiviral response and oxidative stress. However, AdNrf2 did not increase IFN-λ1 (IL-29) levels. CONCLUSIONS Our results indicate that IAV induces alveolar epithelial injury and that Nrf2 protects these cells from the cytopathic effects of IAV likely by increasing the expression of antioxidant genes. Identifying the pathways involved in protecting cells from injury during influenza infection may be particularly important for developing new therapeutic strategies.
6207111
OBJECTIVES We estimated the relationship between soft drink consumption and obesity and diabetes worldwide. METHODS We used multivariate linear regression to estimate the association between soft drink consumption and overweight, obesity, and diabetes prevalence in 75 countries, controlling for other foods (cereals, meats, fruits and vegetables, oils, and total calories), income, urbanization, and aging. Data were obtained from the Euromonitor Global Market Information Database, the World Health Organization, and the International Diabetes Federation. Bottled water consumption, which increased with per-capita income in parallel to soft drink consumption, served as a natural control group. RESULTS Soft drink consumption increased globally from 9.5 gallons per person per year in 1997 to 11.4 gallons in 2010. A 1% rise in soft drink consumption was associated with an additional 4.8 overweight adults per 100 (adjusted B; 95% confidence interval [CI] = 3.1, 6.5), 2.3 obese adults per 100 (95% CI = 1.1, 3.5), and 0.3 adults with diabetes per 100 (95% CI = 0.1, 0.8). These findings remained robust in low- and middle-income countries. CONCLUSIONS Soft drink consumption is significantly linked to overweight, obesity, and diabetes worldwide, including in low- and middle-income countries.
6209599
Extensive pre-mRNA back-splicing generates numerous circular RNAs (circRNAs) in human transcriptome. However, the biological functions of these circRNAs remain largely unclear. Here we report that N6-methyladenosine (m6A), the most abundant base modification of RNA, promotes efficient initiation of protein translation from circRNAs in human cells. We discover that consensus m6A motifs are enriched in circRNAs and a single m6A site is sufficient to drive translation initiation. This m6A-driven translation requires initiation factor eIF4G2 and m6A reader YTHDF3, and is enhanced by methyltransferase METTL3/14, inhibited by demethylase FTO, and upregulated upon heat shock. Further analyses through polysome profiling, computational prediction and mass spectrometry reveal that m6A-driven translation of circRNAs is widespread, with hundreds of endogenous circRNAs having translation potential. Our study expands the coding landscape of human transcriptome, and suggests a role of circRNA-derived proteins in cellular responses to environmental stress.
6212802
BACKGROUND Saphenous vein graft (VG) failure occurs more frequently compared with arterial grafts, and graft thrombosis represents the main cause of early occlusion. Because CD40-CD40L pathway CD40 represents a culprit link between local inflammation and coagulation cascade, we investigate the role of CD40 and its soluble ligand (sCD40L) in the immediate in vitro response of VG to arterial pressures, and the potential effects of Simvastatin (Merck Sharp&Dohme, White-house Station, NJ) supplementation. METHODS Samples of saphenous vein and of internal mammary artery (IMA) were obtained from sixteen patients without history of statin therapy. Segments underwent pulsatile pressure distension and culture with or without supplementation of Simvastatin. CD40 and sCD40L were assessed in tissue lysate and in culture supernatant, respectively. sCD40L serum concentrations were also measured. RESULTS During the course of the experiment, the CD40 expression was significantly lower in IMA samples compared with both distended and not distended VG. Pressure distension up-regulated the production of CD40 in VG segments after 24 and 48 h. Statin supplementation significantly reduced the expression of CD40 in both venous (P < 0.001) and arterial samples (P < 0.001). This effect of Simvastatin was not affected by the treatment with L-NAME, but it was reversed by the addition of mevalonic acid. Mean sCD40L content in culture supernatants increased over time, suggesting that not only platelets but also the vessel wall is a source of CD40 and sCD40L. CONCLUSIONS Simvastatin treatment modulates endothelial CD40-sCD40L in both venous and arterial grafts, and therefore may represent a useful tool in the pharmacological prevention of graft failure.
6227220
Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.
6259170
Nuclear factor erythroid-derived 2-related factor 2 (Nrf2) was originally identified as a positive regulator of drug detoxifying enzyme gene expression during exposure to environmental electrophiles. Currently, Nrf2 is known to regulate the expression of hundreds of cytoprotective genes to counteract endogenously or exogenously generated oxidative stress. Furthermore, when activated in human tumors by somatic mutations, Nrf2 confers growth advantages and chemoresistance by regulating genes involved in various processes such as the pentose phosphate pathway and nucleotide synthesis in addition to antioxidant proteins. Interestingly, increasing evidence shows that Nrf2 is associated with mitochondrial biogenesis during environmental stresses in certain tissues such as the heart. Furthermore, SKN-1, a functional homolog of Nrf2 in C. elegans, is activated by mitochondrial reactive oxygen species and extends life span by promoting mitochondrial homeostasis (i.e., mitohormesis). Similarly, Nrf2 activation was recently observed in the heart of surfeit locus protein 1 (Surf1) -/- mice in which cellular respiration was decreased due to cytochrome c oxidase defects. In this review, we critically examine the relationship between Nrf2 and mitochondria and argue that the Nrf2 stress pathway intimately communicates with mitochondria to maintain cellular homeostasis during oxidative stress.
6264468
Establishment, maintenance, and exit from pluripotency require precise coordination of a cell's molecular machinery. Substantial headway has been made in deciphering many aspects of this elaborate system, particularly with respect to epigenetics, transcription, and noncoding RNAs. Less attention has been paid to posttranscriptional regulatory processes such as alternative splicing, RNA processing and modification, nuclear export, regulation of transcript stability, and translation. Here, we introduce the RNA binding proteins that enable the posttranscriptional regulation of gene expression, summarizing current and ongoing research on their roles at different regulatory points and discussing how they help script the fate of pluripotent stem cells.
6270720
RATIONALE The myeloid differentiation factor (MyD)88/interleukin (IL)-1 axis activates self-antigen-presenting cells and promotes autoreactive CD4(+) T-cell expansion in experimental autoimmune myocarditis, a mouse model of inflammatory heart disease. OBJECTIVE The aim of this study was to determine the role of MyD88 and IL-1 in the progression of acute myocarditis to an end-stage heart failure. METHODS AND RESULTS Using alpha-myosin heavy chain peptide (MyHC-alpha)-loaded, activated dendritic cells, we induced myocarditis in wild-type and MyD88(-/-) mice with similar distributions of heart-infiltrating cell subsets and comparable CD4(+) T-cell responses. Injection of complete Freund's adjuvant (CFA) or MyHC-alpha/CFA into diseased mice promoted cardiac fibrosis, induced ventricular dilation, and impaired heart function in wild-type but not in MyD88(-/-) mice. Experiments with chimeric mice confirmed the bone marrow origin of the fibroblasts replacing inflammatory infiltrates and showed that MyD88 and IL-1 receptor type I signaling on bone marrow-derived cells was critical for development of cardiac fibrosis during progression to heart failure. CONCLUSIONS Our findings indicate a critical role of MyD88/IL-1 signaling in the bone marrow compartment in postinflammatory cardiac fibrosis and heart failure and point to novel therapeutic strategies against inflammatory cardiomyopathy.
6277638
The target of rapamycin (TOR) pathway is a major nutrient-sensing pathway that, when genetically downregulated, increases life span in evolutionarily diverse organisms including mammals. The central component of this pathway, TOR kinase, is the target of the inhibitory drug rapamycin, a highly specific and well-described drug approved for human use. We show here that feeding rapamycin to adult Drosophila produces the life span extension seen in some TOR mutants. Increase in life span by rapamycin was associated with increased resistance to both starvation and paraquat. Analysis of the underlying mechanisms revealed that rapamycin increased longevity specifically through the TORC1 branch of the TOR pathway, through alterations to both autophagy and translation. Rapamycin could increase life span of weak insulin/Igf signaling (IIS) pathway mutants and of flies with life span maximized by dietary restriction, indicating additional mechanisms.
6290112
Common multi-allelic copy number variants (CNVs) appear enriched for phenotypic associations compared to their biallelic counterparts. Here we investigated the influence of gene dosage effects on adiposity through a CNV association study of gene expression levels in adipose tissue. We identified significant association of a multi-allelic CNV encompassing the salivary amylase gene (AMY1) with body mass index (BMI) and obesity, and we replicated this finding in 6,200 subjects. Increased AMY1 copy number was positively associated with both amylase gene expression (P = 2.31 × 10(-14)) and serum enzyme levels (P < 2.20 × 10(-16)), whereas reduced AMY1 copy number was associated with increased BMI (change in BMI per estimated copy = -0.15 (0.02) kg/m(2); P = 6.93 × 10(-10)) and obesity risk (odds ratio (OR) per estimated copy = 1.19, 95% confidence interval (CI) = 1.13-1.26; P = 1.46 × 10(-10)). The OR value of 1.19 per copy of AMY1 translates into about an eightfold difference in risk of obesity between subjects in the top (copy number > 9) and bottom (copy number < 4) 10% of the copy number distribution. Our study provides a first genetic link between carbohydrate metabolism and BMI and demonstrates the power of integrated genomic approaches beyond genome-wide association studies.
6308416
Coordinated cell movements in epithelial layers are essential for proper tissue morphogenesis and homeostasis, but our understanding of the mechanisms that coordinate the behavior of multiple cells in these processes is far from complete. Recent experiments with Madin-Darby canine kidney epithelial monolayers revealed a wave-like pattern of injury-induced MAPK activation and showed that it is essential for collective cell migration after wounding. To investigate the effects of the different aspects of wounding on cell sheet migration, we engineered a system that allowed us to dissect the classic wound healing assay. We studied Madin-Darby canine kidney sheet migration under three different conditions: 1) the classic wound healing assay, 2) empty space induction, where a confluent monolayer is grown adjacent to a slab of polydimethylsiloxane and the monolayer is not injured but allowed to migrate upon removal of the slab, and 3) injury via polydimethylsiloxane membrane peel-off, where an injured monolayer migrates onto plain tissue culture surface, as in the case of empty space induction allowing for direct comparison. By tracking the motion of individual cells within the sheet under these three conditions, we show how the dynamics of the individual cells' motion is responsible for the coordinated migration of the sheet and is coordinated with the activation of ERK1/2 MAPK. In addition, we demonstrate that the propagation of the waves of MAPK activation depends on the generation of reactive oxygen species at the wound edge.
6309659
CONTEXT Exogenous estrogen use may lower risk of dementia in postmenopausal women. A relationship between long-term exposure to endogenous estrogens and incident dementia has been hypothesized but not studied. OBJECTIVE To determine whether a longer reproductive period, as an indicator of longer exposure to endogenous estrogens, is associated with lower risk of dementia and Alzheimer disease (AD) in women who have natural menopause. DESIGN AND SETTING The Rotterdam Study, a population-based prospective cohort study conducted in the Netherlands. PARTICIPANTS A total of 3601 women aged 55 years or older who did not have dementia at baseline (1990-1993) and had information on age at menarche, age at menopause, and type of menopause. Participants were reexamined in 1993-1994 and 1997-1999 and were continuously monitored for development of dementia. MAIN OUTCOME MEASURES Incidence of dementia, based on Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition criteria, and AD, based on National Institute of Neurological Disorders and Stroke/Alzheimer's Disease and Related Disorders Association criteria, compared by quartiles of reproductive period among women with natural menopause. RESULTS During 21 046 person-years of follow-up (median follow-up, 6.3 years), 199 women developed dementia, including 159 who developed AD. After adjusting for age, dementia was not clearly associated with length of reproductive period. However, after adjusting for multiple covariates, women with natural menopause and more reproductive years had an increased risk of dementia (adjusted rate ratio [RR] for women with >39 reproductive years [highest quartile] compared with <34 reproductive years [lowest quartile], 1.78; 95% confidence interval [CI], 1.12-2.84). The adjusted RR per year of increase was 1.04 (95% CI, 1.01-1.08). For risk of AD, the adjusted RRs were 1.51 (95% CI, 0.91-2.50) and 1.03 (95% CI, 1.00-1.07), respectively. Risk of dementia associated with a longer reproductive period was most pronounced in APOE epsilon4 carriers (adjusted RR for >39 reproductive years compared with <34 reproductive years, 4.20 [95% CI, 1.97-8.92] for dementia and 3.42 [95% CI, 1.51-7.75] for AD), whereas in noncarriers, no clear association with dementia or AD was observed. CONCLUSION Our findings do not support the hypothesis that a longer reproductive period reduces risk of dementia in women who have natural menopause.
6313547
Present knowledge on the effects of growth hormone (GH)/insulin-like growth hormone (IGF)1 deficiency on ageing and lifespan are reviewed. Evidence is presented that isolated GH deficiency (IGHD), multiple pituitary hormone deficiencies (MPHD) including GH, as well as primary IGE1 deficiency (GH resistance, Laron syndrome) present signs of early ageing such as thin and wrinkled skin, obesity, hyperglycemia and osteoporosis. These changes do not seem to affect the lifespan, as patients reach old age. Animal models of genetic MPHD (Ames and Snell mice) and GH receptor knockout mice (primary IGF1 deficiency) also have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting large amounts of GH have premature death. In conclusion longstanding GH/IGF1 deficiency affects several parameters of the ageing process without impairing lifespan, and as shown in animal models prolongs longevity. In contrast high GH/IGF1 levels accelerate death.
6315132
We describe a case of severe neonatal anemia with kernicterus caused by compound heterozygosity for null mutations in KLF1, each inherited from asymptomatic parents. One of the mutations is novel. This is the first described case of a KLF1-null human. The phenotype of severe nonspherocytic hemolytic anemia, jaundice, hepatosplenomegaly, and marked erythroblastosis is more severe than that present in congenital dyserythropoietic anemia type IV as a result of dominant mutations in the second zinc-finger of KLF1. There was a very high level of HbF expression into childhood (>70%), consistent with a key role for KLF1 in human hemoglobin switching. We performed RNA-seq on circulating erythroblasts and found that human KLF1 acts like mouse Klf1 to coordinate expression of many genes required to build a red cell including those encoding globins, cytoskeletal components, AHSP, heme synthesis enzymes, cell-cycle regulators, and blood group antigens. We identify novel KLF1 target genes including KIF23 and KIF11 which are required for proper cytokinesis. We also identify new roles for KLF1 in autophagy, global transcriptional control, and RNA splicing. We suggest loss of KLF1 should be considered in otherwise unexplained cases of severe neonatal NSHA or hydrops fetalis.
6319826
The extent of heterogeneity in a meta-analysis partly determines the difficulty in drawing overall conclusions. This extent may be measured by estimating a between-study variance, but interpretation is then specific to a particular treatment effect metric. A test for the existence of heterogeneity exists, but depends on the number of studies in the meta-analysis. We develop measures of the impact of heterogeneity on a meta-analysis, from mathematical criteria, that are independent of the number of studies and the treatment effect metric. We derive and propose three suitable statistics: H is the square root of the chi2 heterogeneity statistic divided by its degrees of freedom; R is the ratio of the standard error of the underlying mean from a random effects meta-analysis to the standard error of a fixed effect meta-analytic estimate, and I2 is a transformation of (H) that describes the proportion of total variation in study estimates that is due to heterogeneity. We discuss interpretation, interval estimates and other properties of these measures and examine them in five example data sets showing different amounts of heterogeneity. We conclude that H and I2, which can usually be calculated for published meta-analyses, are particularly useful summaries of the impact of heterogeneity. One or both should be presented in published meta-analyses in preference to the test for heterogeneity.
6325527
Although blood–brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt–β-catenin signaling. Constitutive activation of Wnt–β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption.
6327940
Amino acids modulate the secretion of both insulin and glucagon; the composition of dietary protein therefore has the potential to influence the balance of glucagon and insulin activity. Soy protein, as well as many other vegan proteins, are higher in non-essential amino acids than most animal-derived food proteins, and as a result should preferentially favor glucagon production. Acting on hepatocytes, glucagon promotes (and insulin inhibits) cAMP-dependent mechanisms that down-regulate lipogenic enzymes and cholesterol synthesis, while up-regulating hepatic LDL receptors and production of the IGF-I antagonist IGFBP-1. The insulin-sensitizing properties of many vegan diets--high in fiber, low in saturated fat--should amplify these effects by down-regulating insulin secretion. Additionally, the relatively low essential amino acid content of some vegan diets may decrease hepatic IGF-I synthesis. Thus, diets featuring vegan proteins can be expected to lower elevated serum lipid levels, promote weight loss, and decrease circulating IGF-I activity. The latter effect should impede cancer induction (as is seen in animal studies with soy protein), lessen neutrophil-mediated inflammatory damage, and slow growth and maturation in children. In fact, vegans tend to have low serum lipids, lean physiques, shorter stature, later puberty, and decreased risk for certain prominent 'Western' cancers; a vegan diet has documented clinical efficacy in rheumatoid arthritis. Low-fat vegan diets may be especially protective in regard to cancers linked to insulin resistance--namely, breast and colon cancer--as well as prostate cancer; conversely, the high IGF-I activity associated with heavy ingestion of animal products may be largely responsible for the epidemic of 'Western' cancers in wealthy societies. Increased phytochemical intake is also likely to contribute to the reduction of cancer risk in vegans. Regression of coronary stenoses has been documented during low-fat vegan diets coupled with exercise training; such regimens also tend to markedly improve diabetic control and lower elevated blood pressure. Risk of many other degenerative disorders may be decreased in vegans, although reduced growth factor activity may be responsible for an increased risk of hemorrhagic stroke. By altering the glucagon/insulin balance, it is conceivable that supplemental intakes of key non-essential amino acids could enable omnivores to enjoy some of the health advantages of a vegan diet. An unnecessarily high intake of essential amino acids--either in the absolute sense or relative to total dietary protein--may prove to be as grave a risk factor for 'Western' degenerative diseases as is excessive fat intake.
6334188
BACKGROUND Chemotherapy-induced febrile neutropenia (FN) is a clinically important complication that affects patient outcome by delaying chemotherapy doses or reducing dose intensity. Risk of FN depends on chemotherapy- and patient-level factors. We sought to determine the effects of chronic comorbidities on risk of FN. DESIGN We conducted a cohort study to examine the association between a variety of chronic comorbidities and risk of FN in patients diagnosed with six types of cancer (non-Hodgkin lymphoma and breast, colorectal, lung, ovary, and gastric cancer) from 2000 to 2009 who were treated with chemotherapy at Kaiser Permanente Southern California, a large managed care organization. We excluded those patients who received primary prophylactic granulocyte colony-stimulating factor. History of comorbidities and FN events were identified using electronic medical records. Cox models adjusting for propensity score, stratified by cancer type, were used to determine the association between comorbid conditions and FN. Models that additionally adjusted for cancer stage, baseline neutrophil count, chemotherapy regimen, and dose reduction were also evaluated. RESULTS A total of 19 160 patients with mean age of 60 years were included; 963 (5.0%) developed FN in the first chemotherapy cycle. Chronic obstructive pulmonary disease [hazard ratio (HR) = 1.30 (1.07-1.57)], congestive heart failure [HR = 1.43 (1.00-1.98)], HIV infection [HR = 3.40 (1.90-5.63)], autoimmune disease [HR = 2.01 (1.10-3.33)], peptic ulcer disease [HR = 1.57 (1.05-2.26)], renal disease [HR = 1.60 (1.21-2.09)], and thyroid disorder [HR = 1.32 (1.06-1.64)] were all associated with a significantly increased FN risk. CONCLUSIONS These results provide evidence that history of several chronic comorbidities increases risk of FN, which should be considered when managing patients during chemotherapy.
6363093
BACKGROUND Glioblastoma multiforme (GBM) is an umbrella designation that includes a heterogeneous group of primary brain tumors. Several classification strategies of GBM have been reported, some by clinical course and others by resemblance to cell types either in the adult or during development. From a practical and therapeutic standpoint, classifying GBMs by signal transduction pathway activation and by mutation in pathway member genes may be particularly valuable for the development of targeted therapies. METHODOLOGY/PRINCIPAL FINDINGS We performed targeted proteomic analysis of 27 surgical glioma samples to identify patterns of coordinate activation among glioma-relevant signal transduction pathways, then compared these results with integrated analysis of genomic and expression data of 243 GBM samples from The Cancer Genome Atlas (TCGA). In the pattern of signaling, three subclasses of GBM emerge which appear to be associated with predominance of EGFR activation, PDGFR activation, or loss of the RAS regulator NF1. The EGFR signaling class has prominent Notch pathway activation measured by elevated expression of Notch ligands, cleaved Notch receptor, and downstream target Hes1. The PDGF class showed high levels of PDGFB ligand and phosphorylation of PDGFRbeta and NFKB. NF1-loss was associated with lower overall MAPK and PI3K activation and relative overexpression of the mesenchymal marker YKL40. These three signaling classes appear to correspond with distinct transcriptomal subclasses of primary GBM samples from TCGA for which copy number aberration and mutation of EGFR, PDGFRA, and NF1 are signature events. CONCLUSIONS/SIGNIFICANCE Proteomic analysis of GBM samples revealed three patterns of expression and activation of proteins in glioma-relevant signaling pathways. These three classes are comprised of roughly equal numbers showing either EGFR activation associated with amplification and mutation of the receptor, PDGF-pathway activation that is primarily ligand-driven, or loss of NF1 expression. The associated signaling activities correlating with these sentinel alterations provide insight into glioma biology and therapeutic strategies.
6368017
The mouse vomeronasal organ (VNO) is thought to mediate social behaviors and neuroendocrine changes elicited by pheromonal cues. The molecular mechanisms underlying the sensory response to pheromones and the behavioral repertoire induced through the VNO are not fully characterized. Using the tools of mouse genetics and multielectrode recording, we demonstrate that the sensory activation of VNO neurons requires TRP2, a putative ion channel of the transient receptor potential family that is expressed exclusively in these neurons. Moreover, we show that male mice deficient in TRP2 expression fail to display male-male aggression, and they initiate sexual and courtship behaviors toward both males and females. Our study suggests that, in the mouse, sensory activation of the VNO is essential for sex discrimination of conspecifics and thus ensures gender-specific behavior.
6397191
Endothelin-1 (ET-1) is the predominant endothelin isopeptide generated by the vascular wall and therefore appears to be the most important peptide involved in regulation of cardiovascular events. Many pathologic conditions are associated with elevations of ET-1 in the blood vessel wall. Because these conditions are often cytokine driven, we examined the effects of a mixture of cytokines on ET-1 production in human vascular smooth muscle cells (VSMCs) derived from internal mammary artery and saphenous vein (SV). Incubation of IMA and SV VSMCs with tumor necrosis factor-alpha (10 ng/ml) and interferon-gamma (1000 U/ml) in combination for up to 48 h markedly elevated the expression of mRNA for prepro-ET-1 and the release of ET-1 into the culture medium. This cytokine-stimulated release of ET-1 was inhibited by a series of dual endothelin-converting enzyme (ECE)/neutral endopeptidase inhibitors, phosphoramidon, CGS 26303, and CGS 26393, with an accompanying increase in big ET-1 release but with no effect on expression of mRNA for prepro-ET-1. These same compounds were 10 times more potent at inhibiting the conversion of exogenously applied big ET-1 to ET-1. ECE-1b/c mRNA is present in SV VSMCs, however no ECE-1a is present in these cells. Thus VSMCs most probably contain, like endothelial cells, an intracellular ECE responsible for the endogenous synthesis of ET-1. Under the influence of pro-inflammatory mediators the vascular smooth muscle can therefore become an important site of ET-1 production, as has already been established for the dilator mediators nitric oxide, prostaglandin I2, and prostaglandin E2.
6401675
Detection of new genomic control elements is critical in understanding transcriptional regulatory networks in their entirety. We studied the genome-wide binding locations of three key regulatory proteins (POU5F1, also known as OCT4; NANOG; and CTCF) in human and mouse embryonic stem cells. In contrast to CTCF, we found that the binding profiles of OCT4 and NANOG are markedly different, with only ∼5% of the regions being homologously occupied. We show that transposable elements contributed up to 25% of the bound sites in humans and mice and have wired new genes into the core regulatory network of embryonic stem cells. These data indicate that species-specific transposable elements have substantially altered the transcriptional circuitry of pluripotent stem cells.
6407356
Coxibs, including celecoxib, and other nonsteroidal anti-inflammatory drugs (NSAID), including aspirin, are among the most promising cancer chemopreventive agents in development today. This article examines the data on the efficacy of these agents in animal model studies of cancer prevention carried out by the authors. The studies evaluated here are restricted to our rodent models of colon/intestinal, bladder, and nonmelanoma skin cancer, in which celecoxib and other NSAIDs were administered as either cancer preventive or therapeutic agents. These studies may shed light on several questions. Is celecoxib unique compared with other NSAIDs, and if so, what implications would this have for human use? Are standard NSAIDs (which inhibit both COX-1 and COX-2) as effective as celecoxib in animal studies? Is the efficacy of celecoxib in particular or NSAIDs in general due to their off-target effects or to their effects on COX-1 and COX-2? What is the likely efficacy of low-dose aspirin? Some questions raised by human trials and epidemiology are discussed and related to our observations in animal model studies. We also discuss the problem of cardiovascular (CV) events associated with coxibs and certain other NSAIDs and whether results in animal models are predictive of efficacy in humans. On the basis of epidemiologic studies and its CV profile, aspirin seems to be the most promising NSAID for preventing human colorectal, bladder, and skin cancer, although the animal data for aspirin are less clear. A comprehensive understanding of the results of coxibs and other NSAIDs in animal studies may help inform and shape human trials of these commonly employed, relatively inexpensive, and highly effective compounds.
6415816
The inborn errors of heme biosynthesis, the porphyrias, are 8 genetically distinct metabolic disorders that can be classified as "acute hepatic," "hepatic cutaneous," and "erythropoietic cutaneous" diseases. Recent advances in understanding their pathogenesis and molecular genetic heterogeneity have led to improved diagnosis and treatment. These advances include DNA-based diagnoses for all the porphyrias, new understanding of the pathogenesis of the acute hepatic porphyrias, identification of the iron overload-induced inhibitor of hepatic uroporphyrin decarboxylase activity that causes the most common porphyria, porphyria cutanea tarda, the identification of an X-linked form of erythropoietic protoporphyria due to gain-of-function mutations in erythroid-specific 5-aminolevulinate synthase (ALAS2), and new and experimental treatments for the erythropoietic porphyrias. Knowledge of these advances is relevant for hematologists because they administer the hematin infusions to treat the acute attacks in patients with the acute hepatic porphyrias, perform the chronic phlebotomies to reduce the iron overload and clear the dermatologic lesions in porphyria cutanea tarda, and diagnose and treat the erythropoietic porphyrias, including chronic erythrocyte transfusions, bone marrow or hematopoietic stem cell transplants, and experimental pharmacologic chaperone and stem cell gene therapies for congenital erythropoietic protoporphyria. These developments are reviewed to update hematologists on the latest advances in these diverse disorders.
6417632
BACKGROUND COPD is an inflammatory disorder characterised by chronic airflow limitation, but the extent to which airway inflammation is related to functional abnormalities is still uncertain. The interaction between inflammatory cells and airway smooth muscle may have a crucial role. METHODS To investigate the microlocalisation of inflammatory cells within the airway smooth muscle in COPD, surgical specimens obtained from 26 subjects undergoing thoracotomy (eight smokers with COPD, 10 smokers with normal lung function, and eight non-smoking controls) were examined. Immunohistochemical analysis was used to quantify the number of neutrophils, macrophages, mast cells, CD4+ and CD8+ cells localised within the smooth muscle of peripheral airways. RESULTS Smokers with COPD had an increased number of neutrophils and CD8+ cells in the airway smooth muscle compared with non-smokers. Smokers with normal lung function also had a neutrophilic infiltration in the airway smooth muscle, but to a lesser extent. When all the subjects were analysed as one group, neutrophilic infiltration was inversely related to forced expiratory volume in 1 second (% predicted). CONCLUSIONS Microlocalisation of neutrophils and CD8+ cells in the airway smooth muscle in smokers with COPD suggests a possible role for these cells in the pathogenesis of smoking induced airflow limitation.
6421734
OBJECTIVE To investigate the experience of users of out of hours general practitioner services in England, UK. DESIGN Population based cross sectional postal questionnaire survey. SETTING General Practice Patient Survey 2012-13. MAIN OUTCOME MEASURES Potential associations between sociodemographic factors (including ethnicity and ability to take time away from work during working hours to attend a healthcare consultation) and provider organisation type (not for profit, NHS, or commercial) and service users' experience of out of hours care (timeliness, confidence and trust in the out of hours clinician, and overall experience of the service), rated on a scale of 0-100. Which sociodemographic/provider characteristics were associated with service users' experience, the extent to which any observed differences could be because of clustering of service users of a particular sociodemographic group within poorer scoring providers, and the extent to which observed differences in experience varied across types of provider. RESULTS The overall response rate was 35%; 971,232/2,750,000 patients returned surveys. Data from 902,170 individual service users were mapped through their registered practice to one of 86 providers of out of hours GP care with known organisation type. Commercial providers of out of hours GP care were associated with poorer reports of overall experience of care, with a mean difference of -3.13 (95% confidence interval -4.96 to -1.30) compared with not for profit providers. Asian service users reported lower scores for all three experience outcomes than white service users (mean difference for overall experience of care -3.62, -4.36 to -2.89), as did service users who were unable to take time away from work compared with service users who did not work (mean difference for overall experience of care -4.73, -5.29 to -4.17). CONCLUSIONS Commercial providers of out of hours GP care were associated with poorer experience of care. Targeted interventions aimed at improving experience for patients from ethnic minorities and patients who are unable to take time away from work might be warranted.
6421792
Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.
6422576
A growing number of cellular regulatory mechanisms are being linked to protein modification by the polypeptide ubiquitin. These include key transitions in the cell cycle, class I antigen processing, signal transduction pathways, and receptor-mediated endocytosis. In most, but not all, of these examples, ubiquitination of a protein leads to its degradation by the 26S proteasome. Following attachment of ubiquitin to a substrate and binding of the ubiquitinated protein to the proteasome, the bound substrate must be unfolded (and eventually deubiquitinated) and translocated through a narrow set of channels that leads to the proteasome interior, where the polypeptide is cleaved into short peptides. Protein ubiquitination and deubiquitination are both mediated by large enzyme families, and the proteasome itself comprises a family of related but functionally distinct particles. This diversity underlies both the high substrate specificity of the ubiquitin system and the variety of regulatory mechanisms that it serves.
6426919
Recently, mutations in the connection subdomain (CN) and RNase H domain of HIV-1 reverse transcriptase (RT) were observed to exhibit dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs). To elucidate the mechanism by which CN and RH mutations confer resistance to NNRTIs, we hypothesized that these mutations reduce RNase H cleavage and provide more time for the NNRTI to dissociate from the RT, resulting in the resumption of DNA synthesis and enhanced NNRTI resistance. We observed that the effect of the reduction in RNase H cleavage on NNRTI resistance is dependent upon the affinity of each NNRTI to the RT and further influenced by the presence of NNRTI-binding pocket (BP) mutants. D549N, Q475A, and Y501A mutants, which reduce RNase H cleavage, enhance resistance to nevirapine (NVP) and delavirdine (DLV), but not to efavirenz (EFV) and etravirine (ETR), consistent with their increase in affinity for RT. Combining the D549N mutant with NNRTI BP mutants further increases NNRTI resistance from 3- to 30-fold, supporting the role of NNRTI-RT affinity in our NNRTI resistance model. We also demonstrated that CNs from treatment-experienced patients, previously reported to enhance NRTI resistance, also reduce RNase H cleavage and enhance NNRTI resistance in the context of the patient RT pol domain or a wild-type pol domain. Together, these results confirm key predictions of our NNRTI resistance model and provide support for a unifying mechanism by which CN and RH mutations can exhibit dual NRTI and NNRTI resistance.
6446747
In metazoan organisms, terminal differentiation is generally tightly linked to cell cycle exit, whereas the undifferentiated state of pluripotent stem cells is associated with unlimited self-renewal. Here, we report that combined deficiency for the transcription factors MafB and c-Maf enables extended expansion of mature monocytes and macrophages in culture without loss of differentiated phenotype and function. Upon transplantation, the expanded cells are nontumorigenic and contribute to functional macrophage populations in vivo. Small hairpin RNA inactivation shows that continuous proliferation of MafB/c-Maf deficient macrophages requires concomitant up-regulation of two pluripotent stem cell-inducing factors, KLF4 and c-Myc. Our results indicate that MafB/c-MafB deficiency renders self-renewal compatible with terminal differentiation. It thus appears possible to amplify functional differentiated cells without malignant transformation or stem cell intermediates.
6454371
Macropinocytosis is a regulated form of endocytosis that mediates the non-selective uptake of solute molecules, nutrients and antigens. It is an actin-dependent process initiated from surface membrane ruffles that give rise to large endocytic vacuoles called macropinosomes. Macropinocytosis is important in a range of physiological processes; it is highly active in macrophages and dendritic cells where it is a major pathway for the capture of antigens, it is relevant to cell migration and tumour metastasis and it represents a portal of cell entry exploited by a range of pathogens. The molecular basis for the formation and maturation of macropinosomes has only recently begun to be defined. Here, we review the general characteristics of macropinocytosis, describe some of the regulators of this pathway, which have been identified to date and highlight strategies to explore the relevance of this endocytosis pathway in vivo.