|
from pandas import read_csv |
|
|
|
from datasets import GeneratorBasedBuilder, Value, Version, BuilderConfig, Features, DatasetInfo, SplitGenerator, Split |
|
|
|
_DESCRIPTION = ''' |
|
This dataset contains anekdotes parsed from a few vk social network communities. The data can be useful for fine-tuning language generation models as well for tasks of automatic humour analysis. |
|
''' |
|
|
|
_HOMEPAGE = 'https://huggingface.co/datasets/zeio/baneks' |
|
|
|
_LICENSE = 'Apache License Version 2.0' |
|
|
|
_URLS = { |
|
'censored': 'https://huggingface.co/datasets/zeio/baneks/resolve/main/censored.tsv', |
|
'default': 'https://huggingface.co/datasets/zeio/baneks/resolve/main/default.tsv', |
|
'inflated': 'https://huggingface.co/datasets/zeio/baneks/resolve/main/inflated.tsv' |
|
} |
|
|
|
|
|
class Baneks(GeneratorBasedBuilder): |
|
|
|
VERSION = Version('10.10.2023') |
|
|
|
BUILDER_CONFIGS = [ |
|
BuilderConfig(name = 'censored', version = VERSION, description = 'No duplicates - entries with the same text are grouped and aggregated'), |
|
BuilderConfig(name = 'default', version = VERSION, description = 'Same as "censored", but censored words are replaced with inferred values for their initial form'), |
|
BuilderConfig(name = 'inflated', version = VERSION, description = 'Each entry corresponds to a post, minimal changes to the source data') |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = 'default' |
|
|
|
def _info(self): |
|
return DatasetInfo( |
|
description=_DESCRIPTION, |
|
features = Features({ |
|
'text': Value('string'), |
|
'published': Value('string'), |
|
'id': Value('int32'), |
|
'n-likes': Value('int32'), |
|
'n-views': Value('int32'), |
|
'accessed': Value('string'), |
|
'source': Value('string') |
|
}), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
name = self.config.name |
|
|
|
url = _URLS[name] |
|
|
|
|
|
return [ |
|
SplitGenerator( |
|
name = Split.TRAIN, |
|
gen_kwargs = { |
|
"path": dl_manager.download_and_extract(url) |
|
} |
|
) |
|
] |
|
|
|
def _generate_examples(self, path: str): |
|
for _, row in read_csv(path, sep = '\t').iterrows(): |
|
yield f'{row["id"]:08d}-{row["source"]}', dict(row) |
|
|