from pandas import read_csv from datasets import GeneratorBasedBuilder, Value, Version, BuilderConfig, Features, DatasetInfo, SplitGenerator, Split _DESCRIPTION = ''' This dataset contains anekdotes parsed from a few vk social network communities. The data can be useful for fine-tuning language generation models as well for tasks of automatic humour analysis. ''' _HOMEPAGE = 'https://huggingface.co/datasets/zeio/baneks' _LICENSE = 'Apache License Version 2.0' _URLS = { 'censored': 'https://huggingface.co/datasets/zeio/baneks/resolve/main/censored.tsv', 'default': 'https://huggingface.co/datasets/zeio/baneks/resolve/main/default.tsv', 'inflated': 'https://huggingface.co/datasets/zeio/baneks/resolve/main/inflated.tsv' } class Baneks(GeneratorBasedBuilder): VERSION = Version('10.10.2023') BUILDER_CONFIGS = [ BuilderConfig(name = 'censored', version = VERSION, description = 'No duplicates - entries with the same text are grouped and aggregated'), BuilderConfig(name = 'default', version = VERSION, description = 'Same as "censored", but censored words are replaced with inferred values for their initial form'), BuilderConfig(name = 'inflated', version = VERSION, description = 'Each entry corresponds to a post, minimal changes to the source data') ] DEFAULT_CONFIG_NAME = 'default' def _info(self): return DatasetInfo( description=_DESCRIPTION, features = Features({ 'text': Value('string'), 'published': Value('string'), 'id': Value('int32'), 'n-likes': Value('int32'), 'n-views': Value('int32'), 'accessed': Value('string'), 'source': Value('string') }), homepage=_HOMEPAGE, license=_LICENSE ) def _split_generators(self, dl_manager): name = self.config.name url = _URLS[name] # path = os.path.join(dl_manager.download_and_extract(url), f'{name}.tsv') return [ SplitGenerator( name = Split.TRAIN, gen_kwargs = { "path": dl_manager.download_and_extract(url) } ) ] def _generate_examples(self, path: str): for _, row in read_csv(path, sep = '\t').iterrows(): yield f'{row["id"]:08d}-{row["source"]}', dict(row)