content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from django.urls import path from . import views urlpatterns = [ path('', views.index, name="home"), path('all', views.index), path('create', views.create, name="create"), path('delete/<int:contact_id>', views.delete, name="delete"), path('edit/<int:contact_id>', views.edit, name="edit"), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 764, 1330, 5009, 198, 198, 6371, 33279, 82, 796, 685, 198, 197, 6978, 10786, 3256, 5009, 13, 9630, 11, 1438, 2625, 11195, 12340, 198, 197, 6978, 10786, 439, 3256, 5009, 13, 9630, 828, 198, 197, 6978, 10786, 17953, 3256, 5009, 13, 17953, 11, 1438, 2625, 17953, 12340, 198, 197, 6978, 10786, 33678, 14, 27, 600, 25, 32057, 62, 312, 29, 3256, 5009, 13, 33678, 11, 1438, 2625, 33678, 12340, 198, 197, 6978, 10786, 19312, 14, 27, 600, 25, 32057, 62, 312, 29, 3256, 5009, 13, 19312, 11, 1438, 2625, 19312, 12340, 198, 60 ]
2.883495
103
import numpy as np from scipy.optimize import fmin import math from scipy.optimize import minimize
[ 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 13, 40085, 1096, 1330, 277, 1084, 198, 11748, 10688, 198, 6738, 629, 541, 88, 13, 40085, 1096, 1330, 17775, 628, 628, 628, 628 ]
3.212121
33
""" Dummy source code to initialize repo""" from typing import Literal def dummy() -> Literal[True]: """Dummy function""" return True
[ 37811, 360, 13513, 2723, 2438, 284, 41216, 29924, 37811, 198, 198, 6738, 19720, 1330, 25659, 1691, 628, 198, 4299, 31548, 3419, 4613, 25659, 1691, 58, 17821, 5974, 198, 220, 220, 220, 37227, 35, 13513, 2163, 37811, 628, 220, 220, 220, 1441, 6407, 198 ]
3.395349
43
#!/usr/bin/env python3 # -*- coding: utf-8 -*-
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 201, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 201, 198, 201, 198 ]
1.766667
30
from launch import LaunchDescription from launch_ros.actions import Node
[ 6738, 4219, 1330, 21225, 11828, 198, 6738, 4219, 62, 4951, 13, 4658, 1330, 19081 ]
5.142857
14
""" Exports a no-op 'cython' namespace similar to https://github.com/cython/cython/blob/master/Cython/Shadow.py This allows to optionally compile @cython decorated functions (when cython is available at built time), or run the same code as pure-python, without runtime dependency on cython module. We only define the symbols that we use. E.g. see fontTools.cu2qu """ from types import SimpleNamespace compiled = False for name in ("double", "complex", "int"): globals()[name] = None for name in ("cfunc", "inline"): globals()[name] = _empty_decorator locals = lambda **_: _empty_decorator returns = lambda _: _empty_decorator
[ 37811, 1475, 3742, 257, 645, 12, 404, 705, 948, 400, 261, 6, 25745, 2092, 284, 198, 5450, 1378, 12567, 13, 785, 14, 948, 400, 261, 14, 948, 400, 261, 14, 2436, 672, 14, 9866, 14, 34, 7535, 14, 27447, 13, 9078, 198, 198, 1212, 3578, 284, 42976, 17632, 2488, 948, 400, 261, 24789, 5499, 198, 7, 12518, 3075, 400, 261, 318, 1695, 379, 3170, 640, 828, 393, 1057, 262, 976, 2438, 198, 292, 5899, 12, 29412, 11, 1231, 19124, 20203, 319, 3075, 400, 261, 8265, 13, 198, 198, 1135, 691, 8160, 262, 14354, 326, 356, 779, 13, 412, 13, 70, 13, 766, 10369, 33637, 13, 27399, 17, 421, 198, 37811, 198, 198, 6738, 3858, 1330, 17427, 36690, 10223, 198, 198, 5589, 3902, 796, 10352, 198, 198, 1640, 1438, 287, 5855, 23352, 1600, 366, 41887, 1600, 366, 600, 1, 2599, 198, 220, 220, 220, 15095, 874, 3419, 58, 3672, 60, 796, 6045, 198, 198, 1640, 1438, 287, 5855, 66, 20786, 1600, 366, 45145, 1, 2599, 198, 220, 220, 220, 15095, 874, 3419, 58, 3672, 60, 796, 4808, 28920, 62, 12501, 273, 1352, 198, 198, 17946, 874, 796, 37456, 12429, 62, 25, 4808, 28920, 62, 12501, 273, 1352, 198, 7783, 82, 796, 37456, 4808, 25, 4808, 28920, 62, 12501, 273, 1352, 198 ]
3.052381
210
# Copyright 2014 The Swarming Authors. All rights reserved. # Use of this source code is governed by the Apache v2.0 license that can be # found in the LICENSE file. """Defines access groups.""" from components import auth from components import utils # Names of groups. # See https://code.google.com/p/swarming/wiki/SwarmingAccessGroups for each # level. ADMINS_GROUP = 'swarming-admins' BOTS_GROUP = 'swarming-bots' PRIVILEGED_USERS_GROUP = 'swarming-privileged-users' USERS_GROUP = 'swarming-users' def is_bot_or_admin(): """Returns True if current user can execute user-side and bot-side calls.""" return is_bot() or is_admin() def get_user_type(): """Returns a string describing the current access control for the user.""" if is_admin(): return 'admin' if is_privileged_user(): return 'privileged user' if is_user(): return 'user' if is_bot(): return 'bot' return 'unknown user' def bootstrap_dev_server_acls(): """Adds localhost to IP whitelist and Swarming groups.""" assert utils.is_local_dev_server() if auth.is_replica(): return bots = auth.bootstrap_loopback_ips() auth.bootstrap_group(BOTS_GROUP, bots, 'Swarming bots') auth.bootstrap_group(USERS_GROUP, bots, 'Swarming users') # Add a swarming admin. [email protected] is used in # server_smoke_test.py admin = auth.Identity(auth.IDENTITY_USER, '[email protected]') auth.bootstrap_group(ADMINS_GROUP, [admin], 'Swarming administrators') # Add an instance admin (for easier manual testing when running dev server). auth.bootstrap_group( auth.ADMIN_GROUP, [auth.Identity(auth.IDENTITY_USER, '[email protected]')], 'Users that can manage groups')
[ 2, 15069, 1946, 383, 2451, 18052, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 262, 24843, 410, 17, 13, 15, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 37811, 7469, 1127, 1895, 2628, 526, 15931, 198, 198, 6738, 6805, 1330, 6284, 198, 6738, 6805, 1330, 3384, 4487, 628, 198, 2, 28531, 286, 2628, 13, 198, 2, 4091, 3740, 1378, 8189, 13, 13297, 13, 785, 14, 79, 14, 2032, 18052, 14, 15466, 14, 10462, 18052, 15457, 38, 14459, 329, 1123, 198, 2, 1241, 13, 198, 2885, 44, 20913, 62, 46846, 796, 705, 2032, 18052, 12, 324, 42951, 6, 198, 33, 33472, 62, 46846, 796, 705, 2032, 18052, 12, 42478, 6, 198, 4805, 3824, 41119, 38, 1961, 62, 2937, 4877, 62, 46846, 796, 705, 2032, 18052, 12, 13776, 48446, 12, 18417, 6, 198, 2937, 4877, 62, 46846, 796, 705, 2032, 18052, 12, 18417, 6, 628, 628, 628, 628, 198, 4299, 318, 62, 13645, 62, 273, 62, 28482, 33529, 198, 220, 37227, 35561, 6407, 611, 1459, 2836, 460, 12260, 2836, 12, 1589, 290, 10214, 12, 1589, 3848, 526, 15931, 198, 220, 1441, 318, 62, 13645, 3419, 393, 318, 62, 28482, 3419, 628, 198, 4299, 651, 62, 7220, 62, 4906, 33529, 198, 220, 37227, 35561, 257, 4731, 12059, 262, 1459, 1895, 1630, 329, 262, 2836, 526, 15931, 198, 220, 611, 318, 62, 28482, 33529, 198, 220, 220, 220, 1441, 705, 28482, 6, 198, 220, 611, 318, 62, 13776, 48446, 62, 7220, 33529, 198, 220, 220, 220, 1441, 705, 13776, 48446, 2836, 6, 198, 220, 611, 318, 62, 7220, 33529, 198, 220, 220, 220, 1441, 705, 7220, 6, 198, 220, 611, 318, 62, 13645, 33529, 198, 220, 220, 220, 1441, 705, 13645, 6, 198, 220, 1441, 705, 34680, 2836, 6, 628, 198, 4299, 6297, 26418, 62, 7959, 62, 15388, 62, 330, 7278, 33529, 198, 220, 37227, 46245, 1957, 4774, 284, 6101, 20542, 46331, 290, 2451, 18052, 2628, 526, 15931, 198, 220, 6818, 3384, 4487, 13, 271, 62, 12001, 62, 7959, 62, 15388, 3419, 198, 220, 611, 6284, 13, 271, 62, 35666, 3970, 33529, 198, 220, 220, 220, 1441, 628, 220, 29641, 796, 6284, 13, 18769, 26418, 62, 26268, 1891, 62, 2419, 3419, 198, 220, 6284, 13, 18769, 26418, 62, 8094, 7, 33, 33472, 62, 46846, 11, 29641, 11, 705, 10462, 18052, 29641, 11537, 198, 220, 6284, 13, 18769, 26418, 62, 8094, 7, 2937, 4877, 62, 46846, 11, 29641, 11, 705, 10462, 18052, 2985, 11537, 628, 220, 1303, 3060, 257, 1509, 18052, 13169, 13, 7523, 12, 9288, 31, 20688, 13, 785, 318, 973, 287, 198, 220, 1303, 4382, 62, 5796, 2088, 62, 9288, 13, 9078, 198, 220, 13169, 796, 6284, 13, 7390, 26858, 7, 18439, 13, 25256, 9050, 62, 29904, 11, 705, 5796, 2088, 12, 9288, 31, 20688, 13, 785, 11537, 198, 220, 6284, 13, 18769, 26418, 62, 8094, 7, 2885, 44, 20913, 62, 46846, 11, 685, 28482, 4357, 705, 10462, 18052, 18618, 11537, 628, 220, 1303, 3060, 281, 4554, 13169, 357, 1640, 4577, 10107, 4856, 618, 2491, 1614, 4382, 737, 198, 220, 6284, 13, 18769, 26418, 62, 8094, 7, 198, 220, 220, 220, 220, 220, 6284, 13, 2885, 23678, 62, 46846, 11, 198, 220, 220, 220, 220, 220, 685, 18439, 13, 7390, 26858, 7, 18439, 13, 25256, 9050, 62, 29904, 11, 705, 9288, 31, 20688, 13, 785, 11537, 4357, 198, 220, 220, 220, 220, 220, 705, 14490, 326, 460, 6687, 2628, 11537, 198 ]
2.989529
573
# Copyright (C) 2017 Open Information Security Foundation # # You can copy, redistribute or modify this Program under the terms of # the GNU General Public License version 2 as published by the Free # Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # version 2 along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301, USA. from __future__ import print_function import os import logging from suricata.update import config from suricata.update import sources logger = logging.getLogger()
[ 2, 15069, 357, 34, 8, 2177, 4946, 6188, 4765, 5693, 198, 2, 198, 2, 921, 460, 4866, 11, 17678, 4163, 393, 13096, 428, 6118, 739, 262, 2846, 286, 198, 2, 262, 22961, 3611, 5094, 13789, 2196, 362, 355, 3199, 416, 262, 3232, 198, 2, 10442, 5693, 13, 198, 2, 198, 2, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 2196, 362, 1863, 351, 428, 1430, 26, 611, 407, 11, 3551, 284, 262, 3232, 10442, 198, 2, 5693, 11, 3457, 1539, 6885, 14021, 3530, 11, 19383, 22343, 11, 6182, 11, 8779, 198, 2, 657, 2481, 940, 12, 1485, 486, 11, 4916, 13, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 18931, 198, 198, 6738, 969, 291, 1045, 13, 19119, 1330, 4566, 198, 6738, 969, 291, 1045, 13, 19119, 1330, 4237, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 3419, 198 ]
3.953917
217
from django.contrib import admin from .models import Blog, Category, Tag, Comment # Register your models here. @admin.register(Blog) @admin.register(Category) @admin.register(Tag) @admin.register(Comment)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 764, 27530, 1330, 14001, 11, 21743, 11, 17467, 11, 18957, 198, 198, 2, 17296, 534, 4981, 994, 13, 198, 31, 28482, 13, 30238, 7, 42383, 8, 198, 198, 31, 28482, 13, 30238, 7, 27313, 8, 628, 198, 31, 28482, 13, 30238, 7, 24835, 8, 628, 198, 31, 28482, 13, 30238, 7, 21357, 8, 628 ]
3.3125
64
"""Test methods for `inout_core.py`. Can be run with: $ nosetests zcode/inout/tests/test_inout_core.py """ from __future__ import absolute_import, division, print_function, unicode_literals import os import warnings import shutil from numpy.testing import run_module_suite import numpy as np from nose.tools import assert_true, assert_false, assert_equal # Run all methods as if with `nosetests ...` if __name__ == "__main__": run_module_suite()
[ 37811, 14402, 5050, 329, 4600, 259, 448, 62, 7295, 13, 9078, 44646, 198, 198, 6090, 307, 1057, 351, 25, 198, 220, 220, 220, 720, 43630, 316, 3558, 1976, 8189, 14, 259, 448, 14, 41989, 14, 9288, 62, 259, 448, 62, 7295, 13, 9078, 198, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 28686, 198, 11748, 14601, 198, 11748, 4423, 346, 198, 6738, 299, 32152, 13, 33407, 1330, 1057, 62, 21412, 62, 2385, 578, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 9686, 13, 31391, 1330, 6818, 62, 7942, 11, 6818, 62, 9562, 11, 6818, 62, 40496, 628, 198, 198, 2, 5660, 477, 5050, 355, 611, 351, 4600, 39369, 316, 3558, 2644, 63, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1057, 62, 21412, 62, 2385, 578, 3419, 198 ]
3.006536
153
name = input("Mame: ") print(f"Hello, {name}")
[ 3672, 796, 5128, 7203, 44, 480, 25, 366, 8, 198, 4798, 7, 69, 1, 15496, 11, 1391, 3672, 92, 4943 ]
2.3
20
"""Contains validators for task models.""" def task_instance_args_are_valid(instance, fill_missing_args=False): """Determines whether a task instance's arguments are valid. The arguments are valid if the instance's argument includes all of its task type's required arguments (but not necessarily the arguments for which a default value exists). Arg: instance: A task instance instance. (Yikes!) fill_missing_args: A boolean determining whether to fill in any missing arguments in the instance with default values. Returns: A tuple containing a boolean and a string, where the boolean signals whether the arguments are valid and the string explains why, in the case that the boolean is False (otherwise it's an empty string). """ # Validate an instance's args against its required args. task_type_required_args = instance.task_type.required_arguments task_type_default_vals = ( instance.task_type.required_arguments_default_values ) instance_arg_keys = instance.arguments.keys() for required_arg in task_type_required_args: # Check if the required argument is provided if required_arg not in instance_arg_keys: # Required argument not provided. Check if default argument # value exists. if required_arg not in task_type_default_vals: # No default exists return ( False, "required argument '%s' not provided!" % required_arg, ) # Fill in the default value if we're told to if fill_missing_args: instance.arguments[required_arg] = task_type_default_vals[ required_arg ] # Valid return (True, "") def task_type_args_are_valid(instance): """Determines whether a task type's argument fields are valid. The argument fields are valid if the argument keys in the required_arguments_default_values field are a subset of its required arguments. Arg: instance: A task type instance. Returns: A tuple containing a boolean and a string, where the boolean signals whether the arguments are valid and the string explains why, in the case that the boolean is False (otherwise it's an empty string). """ # Ensure that the default arguments form a subset of the required # arguments if not set(instance.required_arguments_default_values.keys()).issubset( set(instance.required_arguments) ): return (False, "default arguments not a subset of required arguments") # Valid return (True, "")
[ 37811, 4264, 1299, 4938, 2024, 329, 4876, 4981, 526, 15931, 628, 198, 4299, 4876, 62, 39098, 62, 22046, 62, 533, 62, 12102, 7, 39098, 11, 6070, 62, 45688, 62, 22046, 28, 25101, 2599, 198, 220, 220, 220, 37227, 35, 13221, 274, 1771, 257, 4876, 4554, 338, 7159, 389, 4938, 13, 628, 220, 220, 220, 383, 7159, 389, 4938, 611, 262, 4554, 338, 4578, 3407, 477, 286, 198, 220, 220, 220, 663, 4876, 2099, 338, 2672, 7159, 357, 4360, 407, 6646, 262, 198, 220, 220, 220, 7159, 329, 543, 257, 4277, 1988, 7160, 737, 628, 220, 220, 220, 20559, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4554, 25, 317, 4876, 4554, 4554, 13, 357, 56, 7938, 8133, 198, 220, 220, 220, 220, 220, 220, 220, 6070, 62, 45688, 62, 22046, 25, 317, 25131, 13213, 1771, 284, 6070, 287, 597, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4814, 7159, 287, 262, 4554, 351, 4277, 3815, 13, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 46545, 7268, 257, 25131, 290, 257, 4731, 11, 810, 262, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 10425, 1771, 262, 7159, 389, 4938, 290, 262, 4731, 6688, 198, 220, 220, 220, 220, 220, 220, 220, 1521, 11, 287, 262, 1339, 326, 262, 25131, 318, 10352, 357, 847, 3083, 340, 338, 281, 198, 220, 220, 220, 220, 220, 220, 220, 6565, 4731, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 3254, 20540, 281, 4554, 338, 26498, 1028, 663, 2672, 26498, 13, 198, 220, 220, 220, 4876, 62, 4906, 62, 35827, 62, 22046, 796, 4554, 13, 35943, 62, 4906, 13, 35827, 62, 853, 2886, 198, 220, 220, 220, 4876, 62, 4906, 62, 12286, 62, 12786, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 4554, 13, 35943, 62, 4906, 13, 35827, 62, 853, 2886, 62, 12286, 62, 27160, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4554, 62, 853, 62, 13083, 796, 4554, 13, 853, 2886, 13, 13083, 3419, 628, 220, 220, 220, 329, 2672, 62, 853, 287, 4876, 62, 4906, 62, 35827, 62, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 262, 2672, 4578, 318, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2672, 62, 853, 407, 287, 4554, 62, 853, 62, 13083, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20906, 4578, 407, 2810, 13, 6822, 611, 4277, 4578, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1988, 7160, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2672, 62, 853, 407, 287, 4876, 62, 4906, 62, 12286, 62, 12786, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1400, 4277, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 4578, 705, 4, 82, 6, 407, 2810, 2474, 4064, 2672, 62, 853, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27845, 287, 262, 4277, 1988, 611, 356, 821, 1297, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6070, 62, 45688, 62, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4554, 13, 853, 2886, 58, 35827, 62, 853, 60, 796, 4876, 62, 4906, 62, 12286, 62, 12786, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 62, 853, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 1303, 48951, 198, 220, 220, 220, 1441, 357, 17821, 11, 366, 4943, 628, 198, 4299, 4876, 62, 4906, 62, 22046, 62, 533, 62, 12102, 7, 39098, 2599, 198, 220, 220, 220, 37227, 35, 13221, 274, 1771, 257, 4876, 2099, 338, 4578, 7032, 389, 4938, 13, 628, 220, 220, 220, 383, 4578, 7032, 389, 4938, 611, 262, 4578, 8251, 287, 262, 198, 220, 220, 220, 2672, 62, 853, 2886, 62, 12286, 62, 27160, 2214, 389, 257, 24637, 286, 663, 2672, 198, 220, 220, 220, 7159, 13, 628, 220, 220, 220, 20559, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4554, 25, 317, 4876, 2099, 4554, 13, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 46545, 7268, 257, 25131, 290, 257, 4731, 11, 810, 262, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 10425, 1771, 262, 7159, 389, 4938, 290, 262, 4731, 6688, 198, 220, 220, 220, 220, 220, 220, 220, 1521, 11, 287, 262, 1339, 326, 262, 25131, 318, 10352, 357, 847, 3083, 340, 338, 281, 198, 220, 220, 220, 220, 220, 220, 220, 6565, 4731, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 48987, 326, 262, 4277, 7159, 1296, 257, 24637, 286, 262, 2672, 198, 220, 220, 220, 1303, 7159, 198, 220, 220, 220, 611, 407, 900, 7, 39098, 13, 35827, 62, 853, 2886, 62, 12286, 62, 27160, 13, 13083, 3419, 737, 747, 549, 2617, 7, 198, 220, 220, 220, 220, 220, 220, 220, 900, 7, 39098, 13, 35827, 62, 853, 2886, 8, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 25101, 11, 366, 12286, 7159, 407, 257, 24637, 286, 2672, 7159, 4943, 628, 220, 220, 220, 1303, 48951, 198, 220, 220, 220, 1441, 357, 17821, 11, 366, 4943, 198 ]
2.766194
988
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (С) ABBYY (BIT Software), 1993 - 2019. All rights reserved. """ Различные метрики для keras подсчитываемые при обучении """ import functools import keras.backend as K import tensorflow as tf from semantic_segmentation.losses import get_losses @_metric_wrapper def confusion_matrix(true, pred, weights): """ Confusion matrix для бинарной классификации :param true: :param pred: :param weights: :return: tp, tn, fp, fn - confusion matrix """ equal = K.equal(true, pred) tp = tf.logical_and(equal, K.equal(true, 1)) tn = tf.logical_and(equal, K.equal(true, 0)) fp = tf.logical_and(tf.logical_not(equal), K.equal(pred, 1)) fn = tf.logical_and(tf.logical_not(equal), K.equal(pred, 0)) tp = calculate_sum(tp) tn = calculate_sum(tn) fp = calculate_sum(fp) fn = calculate_sum(fn) return tp, tn, fp, fn @_metric_wrapper def precision(true, pred, weights): """ Вычисляет precision c учетом весов :param true: :param pred: :param weights: :return: """ tp, tn, fp, fn = confusion_matrix(true, pred, weights) return tp / K.maximum(1., tp + fp) @_metric_wrapper def recall(true, pred, weights): """ Вычисляет recall с учетом весов :param true: :param pred: :param weights: :return: """ tp, tn, fp, fn = confusion_matrix(true, pred, weights) return tp / K.maximum(1., tp + fn) @_metric_wrapper def f1(true, pred, weights): """ Вычисляет f1-меру с учетом весов :param true: :param pred: :param weights: :return: """ tp, tn, fp, fn = confusion_matrix(true, pred, weights) precision = tp / K.maximum(1., tp + fp) recall = tp / K.maximum(1., tp + fn) return tf.cond(K.not_equal(precision + recall, 0.), lambda: 2. * precision * recall / (precision + recall), lambda: 0.) def detection_pixel_acc(y_true, y_pred): """ Вычисляет попиксельную accuracy детекции :param y_true: :param y_pred: :return: """ detection_true, detection_pred = _get_detection_labels(y_true, y_pred) return _acc(detection_true, detection_pred) def detection_pixel_precision(y_true, y_pred): """ Вычисляет попиксельню точность (precision) детекции :param y_true: :param y_pred: :return: """ detection_true, detection_pred = _get_detection_labels(y_true, y_pred) return precision(detection_true, detection_pred) def detection_pixel_recall(y_true, y_pred): """ Вычисляет попиксельню полноту (recall) детекции :param y_true: :param y_pred: :return: """ detection_true, detection_pred = _get_detection_labels(y_true, y_pred) return recall(detection_true, detection_pred) def detection_pixel_f1(y_true, y_pred): """ Вычисляет попиксельню f1-меру детекции :param y_true: :param y_pred: :return: """ detection_true, detection_pred = _get_detection_labels(y_true, y_pred) return f1(detection_true, detection_pred) def classification_pixel_acc(y_true, y_pred): """ Вычисляет попиксельную accuracy классификации считается только по y_true > 0 т.е. там где есть какой-то объект :param y_true: :param y_pred: :return: """ mask = K.cast(y_true > 0, tf.float32) labels = K.cast((y_true - 1) * mask, tf.int64) class_p = tf.nn.softmax(y_pred[..., 1:], axis=-1) predictions = tf.argmax(class_p, axis=-1) return _acc(labels, predictions, weights=mask) def get_all_metrics(classification_mode=False): """ Возвращает список всех метрик :param classification_mode: :return: """ all_metrics = [ detection_pixel_acc, detection_pixel_precision, detection_pixel_recall, detection_pixel_f1 ] if classification_mode: all_metrics.append(classification_pixel_acc) all_metrics += get_losses(classification_mode) return all_metrics
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 15069, 357, 140, 94, 8, 9564, 17513, 56, 357, 26094, 10442, 828, 9656, 532, 13130, 13, 1439, 2489, 10395, 13, 198, 37811, 198, 140, 254, 16142, 140, 115, 30143, 18849, 141, 229, 22177, 45035, 16843, 12466, 120, 16843, 20375, 21169, 18849, 31583, 18849, 12466, 112, 30143, 40623, 41927, 292, 12466, 123, 25443, 112, 21727, 141, 229, 18849, 20375, 45035, 38857, 16142, 16843, 43108, 45035, 16843, 12466, 123, 21169, 18849, 12466, 122, 140, 109, 35072, 141, 229, 16843, 22177, 18849, 18849, 198, 37811, 198, 198, 11748, 1257, 310, 10141, 198, 198, 11748, 41927, 292, 13, 1891, 437, 355, 509, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 6738, 37865, 62, 325, 5154, 341, 13, 22462, 274, 1330, 651, 62, 22462, 274, 628, 628, 198, 31, 62, 4164, 1173, 62, 48553, 628, 198, 4299, 10802, 62, 6759, 8609, 7, 7942, 11, 2747, 11, 19590, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7326, 4241, 17593, 12466, 112, 30143, 40623, 12466, 109, 18849, 22177, 16142, 21169, 22177, 25443, 117, 12466, 118, 30143, 16142, 21727, 21727, 18849, 141, 226, 18849, 31583, 16142, 141, 228, 18849, 18849, 198, 220, 220, 220, 1058, 17143, 2081, 25, 198, 220, 220, 220, 1058, 17143, 2747, 25, 198, 220, 220, 220, 1058, 17143, 19590, 25, 198, 220, 220, 220, 1058, 7783, 25, 256, 79, 11, 256, 77, 11, 277, 79, 11, 24714, 532, 10802, 17593, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4961, 796, 509, 13, 40496, 7, 7942, 11, 2747, 8, 628, 220, 220, 220, 256, 79, 796, 48700, 13, 6404, 605, 62, 392, 7, 40496, 11, 509, 13, 40496, 7, 7942, 11, 352, 4008, 198, 220, 220, 220, 256, 77, 796, 48700, 13, 6404, 605, 62, 392, 7, 40496, 11, 509, 13, 40496, 7, 7942, 11, 657, 4008, 198, 220, 220, 220, 277, 79, 796, 48700, 13, 6404, 605, 62, 392, 7, 27110, 13, 6404, 605, 62, 1662, 7, 40496, 828, 509, 13, 40496, 7, 28764, 11, 352, 4008, 198, 220, 220, 220, 24714, 796, 48700, 13, 6404, 605, 62, 392, 7, 27110, 13, 6404, 605, 62, 1662, 7, 40496, 828, 509, 13, 40496, 7, 28764, 11, 657, 4008, 628, 220, 220, 220, 256, 79, 796, 15284, 62, 16345, 7, 34788, 8, 198, 220, 220, 220, 256, 77, 796, 15284, 62, 16345, 7, 34106, 8, 198, 220, 220, 220, 277, 79, 796, 15284, 62, 16345, 7, 46428, 8, 198, 220, 220, 220, 24714, 796, 15284, 62, 16345, 7, 22184, 8, 628, 220, 220, 220, 1441, 256, 79, 11, 256, 77, 11, 277, 79, 11, 24714, 628, 198, 31, 62, 4164, 1173, 62, 48553, 198, 4299, 15440, 7, 7942, 11, 2747, 11, 19590, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12466, 240, 45035, 141, 229, 18849, 21727, 30143, 40623, 16843, 20375, 15440, 269, 220, 35072, 141, 229, 16843, 20375, 25443, 120, 12466, 110, 16843, 21727, 25443, 110, 198, 220, 220, 220, 1058, 17143, 2081, 25, 198, 220, 220, 220, 1058, 17143, 2747, 25, 198, 220, 220, 220, 1058, 17143, 19590, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 256, 79, 11, 256, 77, 11, 277, 79, 11, 24714, 796, 10802, 62, 6759, 8609, 7, 7942, 11, 2747, 11, 19590, 8, 198, 220, 220, 220, 1441, 256, 79, 1220, 509, 13, 47033, 7, 16, 1539, 256, 79, 1343, 277, 79, 8, 628, 198, 31, 62, 4164, 1173, 62, 48553, 198, 4299, 10014, 7, 7942, 11, 2747, 11, 19590, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12466, 240, 45035, 141, 229, 18849, 21727, 30143, 40623, 16843, 20375, 10014, 220, 21727, 220, 35072, 141, 229, 16843, 20375, 25443, 120, 12466, 110, 16843, 21727, 25443, 110, 198, 220, 220, 220, 1058, 17143, 2081, 25, 198, 220, 220, 220, 1058, 17143, 2747, 25, 198, 220, 220, 220, 1058, 17143, 19590, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 256, 79, 11, 256, 77, 11, 277, 79, 11, 24714, 796, 10802, 62, 6759, 8609, 7, 7942, 11, 2747, 11, 19590, 8, 198, 220, 220, 220, 1441, 256, 79, 1220, 509, 13, 47033, 7, 16, 1539, 256, 79, 1343, 24714, 8, 628, 198, 31, 62, 4164, 1173, 62, 48553, 198, 4299, 277, 16, 7, 7942, 11, 2747, 11, 19590, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12466, 240, 45035, 141, 229, 18849, 21727, 30143, 40623, 16843, 20375, 277, 16, 12, 43108, 16843, 21169, 35072, 220, 21727, 220, 35072, 141, 229, 16843, 20375, 25443, 120, 12466, 110, 16843, 21727, 25443, 110, 198, 220, 220, 220, 1058, 17143, 2081, 25, 198, 220, 220, 220, 1058, 17143, 2747, 25, 198, 220, 220, 220, 1058, 17143, 19590, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 256, 79, 11, 256, 77, 11, 277, 79, 11, 24714, 796, 10802, 62, 6759, 8609, 7, 7942, 11, 2747, 11, 19590, 8, 198, 220, 220, 220, 15440, 796, 256, 79, 1220, 509, 13, 47033, 7, 16, 1539, 256, 79, 1343, 277, 79, 8, 198, 220, 220, 220, 10014, 796, 256, 79, 1220, 509, 13, 47033, 7, 16, 1539, 256, 79, 1343, 24714, 8, 198, 220, 220, 220, 1441, 48700, 13, 17561, 7, 42, 13, 1662, 62, 40496, 7, 3866, 16005, 1343, 10014, 11, 657, 12179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 362, 13, 1635, 15440, 1635, 10014, 1220, 357, 3866, 16005, 1343, 10014, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 657, 2014, 628, 198, 198, 4299, 13326, 62, 32515, 62, 4134, 7, 88, 62, 7942, 11, 331, 62, 28764, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12466, 240, 45035, 141, 229, 18849, 21727, 30143, 40623, 16843, 20375, 12466, 123, 25443, 123, 18849, 31583, 21727, 16843, 30143, 45367, 22177, 35072, 141, 236, 9922, 12466, 112, 16843, 20375, 16843, 31583, 141, 228, 18849, 18849, 198, 220, 220, 220, 1058, 17143, 331, 62, 7942, 25, 198, 220, 220, 220, 1058, 17143, 331, 62, 28764, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13326, 62, 7942, 11, 13326, 62, 28764, 796, 4808, 1136, 62, 15255, 3213, 62, 23912, 1424, 7, 88, 62, 7942, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 1441, 4808, 4134, 7, 15255, 3213, 62, 7942, 11, 13326, 62, 28764, 8, 628, 198, 4299, 13326, 62, 32515, 62, 3866, 16005, 7, 88, 62, 7942, 11, 331, 62, 28764, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12466, 240, 45035, 141, 229, 18849, 21727, 30143, 40623, 16843, 20375, 12466, 123, 25443, 123, 18849, 31583, 21727, 16843, 30143, 45367, 22177, 141, 236, 220, 20375, 15166, 141, 229, 22177, 15166, 21727, 20375, 45367, 357, 3866, 16005, 8, 12466, 112, 16843, 20375, 16843, 31583, 141, 228, 18849, 18849, 198, 220, 220, 220, 1058, 17143, 331, 62, 7942, 25, 198, 220, 220, 220, 1058, 17143, 331, 62, 28764, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13326, 62, 7942, 11, 13326, 62, 28764, 796, 4808, 1136, 62, 15255, 3213, 62, 23912, 1424, 7, 88, 62, 7942, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 1441, 15440, 7, 15255, 3213, 62, 7942, 11, 13326, 62, 28764, 8, 628, 198, 4299, 13326, 62, 32515, 62, 8344, 439, 7, 88, 62, 7942, 11, 331, 62, 28764, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12466, 240, 45035, 141, 229, 18849, 21727, 30143, 40623, 16843, 20375, 12466, 123, 25443, 123, 18849, 31583, 21727, 16843, 30143, 45367, 22177, 141, 236, 12466, 123, 25443, 119, 22177, 15166, 20375, 35072, 357, 8344, 439, 8, 12466, 112, 16843, 20375, 16843, 31583, 141, 228, 18849, 18849, 198, 220, 220, 220, 1058, 17143, 331, 62, 7942, 25, 198, 220, 220, 220, 1058, 17143, 331, 62, 28764, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13326, 62, 7942, 11, 13326, 62, 28764, 796, 4808, 1136, 62, 15255, 3213, 62, 23912, 1424, 7, 88, 62, 7942, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 1441, 10014, 7, 15255, 3213, 62, 7942, 11, 13326, 62, 28764, 8, 628, 198, 4299, 13326, 62, 32515, 62, 69, 16, 7, 88, 62, 7942, 11, 331, 62, 28764, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12466, 240, 45035, 141, 229, 18849, 21727, 30143, 40623, 16843, 20375, 12466, 123, 25443, 123, 18849, 31583, 21727, 16843, 30143, 45367, 22177, 141, 236, 277, 16, 12, 43108, 16843, 21169, 35072, 12466, 112, 16843, 20375, 16843, 31583, 141, 228, 18849, 18849, 198, 220, 220, 220, 1058, 17143, 331, 62, 7942, 25, 198, 220, 220, 220, 1058, 17143, 331, 62, 28764, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13326, 62, 7942, 11, 13326, 62, 28764, 796, 4808, 1136, 62, 15255, 3213, 62, 23912, 1424, 7, 88, 62, 7942, 11, 331, 62, 28764, 8, 198, 220, 220, 220, 1441, 277, 16, 7, 15255, 3213, 62, 7942, 11, 13326, 62, 28764, 8, 628, 198, 4299, 17923, 62, 32515, 62, 4134, 7, 88, 62, 7942, 11, 331, 62, 28764, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12466, 240, 45035, 141, 229, 18849, 21727, 30143, 40623, 16843, 20375, 12466, 123, 25443, 123, 18849, 31583, 21727, 16843, 30143, 45367, 22177, 35072, 141, 236, 9922, 12466, 118, 30143, 16142, 21727, 21727, 18849, 141, 226, 18849, 31583, 16142, 141, 228, 18849, 18849, 198, 220, 220, 220, 220, 21727, 141, 229, 18849, 20375, 16142, 16843, 20375, 21727, 40623, 220, 20375, 25443, 119, 45367, 31583, 15166, 12466, 123, 15166, 331, 62, 7942, 1875, 657, 220, 20375, 13, 16843, 13, 220, 20375, 16142, 43108, 12466, 111, 43666, 16843, 12466, 113, 21727, 20375, 45367, 12466, 118, 16142, 31583, 25443, 117, 12, 20375, 15166, 12466, 122, 140, 109, 141, 232, 16843, 31583, 20375, 198, 220, 220, 220, 1058, 17143, 331, 62, 7942, 25, 198, 220, 220, 220, 1058, 17143, 331, 62, 28764, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9335, 796, 509, 13, 2701, 7, 88, 62, 7942, 1875, 657, 11, 48700, 13, 22468, 2624, 8, 198, 220, 220, 220, 14722, 796, 509, 13, 2701, 19510, 88, 62, 7942, 532, 352, 8, 1635, 9335, 11, 48700, 13, 600, 2414, 8, 198, 220, 220, 220, 1398, 62, 79, 796, 48700, 13, 20471, 13, 4215, 9806, 7, 88, 62, 28764, 58, 986, 11, 352, 25, 4357, 16488, 10779, 16, 8, 198, 220, 220, 220, 16277, 796, 48700, 13, 853, 9806, 7, 4871, 62, 79, 11, 16488, 10779, 16, 8, 198, 220, 220, 220, 1441, 4808, 4134, 7, 23912, 1424, 11, 16277, 11, 19590, 28, 27932, 8, 628, 198, 4299, 651, 62, 439, 62, 4164, 10466, 7, 4871, 2649, 62, 14171, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12466, 240, 25443, 115, 38857, 21169, 16142, 141, 231, 16142, 16843, 20375, 220, 21727, 140, 123, 18849, 21727, 25443, 118, 12466, 110, 21727, 16843, 141, 227, 12466, 120, 16843, 20375, 21169, 18849, 31583, 198, 220, 220, 220, 1058, 17143, 17923, 62, 14171, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 477, 62, 4164, 10466, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 13326, 62, 32515, 62, 4134, 11, 198, 220, 220, 220, 220, 220, 220, 220, 13326, 62, 32515, 62, 3866, 16005, 11, 198, 220, 220, 220, 220, 220, 220, 220, 13326, 62, 32515, 62, 8344, 439, 11, 198, 220, 220, 220, 220, 220, 220, 220, 13326, 62, 32515, 62, 69, 16, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 611, 17923, 62, 14171, 25, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 4164, 10466, 13, 33295, 7, 4871, 2649, 62, 32515, 62, 4134, 8, 628, 220, 220, 220, 477, 62, 4164, 10466, 15853, 651, 62, 22462, 274, 7, 4871, 2649, 62, 14171, 8, 198, 220, 220, 220, 1441, 477, 62, 4164, 10466, 198 ]
1.968627
2,040
# -*- coding: utf-8 -*- """ Created on %(date)s @author: %(username)s """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn import linear_model import statsmodels.api as sm from statsmodels.sandbox.regression.predstd import wls_prediction_std model_sm = 'sm' if __name__ == '__main__': x = np.linspace(0, 10, 21) y = 3*x + 2 y += np.random.randn(x.size) lm = LinearModel(y, x) lm.fit() lm.summary() print(lm.predict()) lm.plot()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 4064, 7, 4475, 8, 82, 198, 198, 31, 9800, 25, 4064, 7, 29460, 8, 82, 198, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 198, 6738, 1341, 35720, 1330, 14174, 62, 19849, 198, 11748, 9756, 27530, 13, 15042, 355, 895, 198, 6738, 9756, 27530, 13, 38142, 3524, 13, 2301, 2234, 13, 28764, 19282, 1330, 266, 7278, 62, 28764, 2867, 62, 19282, 628, 198, 19849, 62, 5796, 796, 705, 5796, 6, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2124, 796, 45941, 13, 21602, 10223, 7, 15, 11, 838, 11, 2310, 8, 198, 220, 220, 220, 331, 796, 513, 9, 87, 1343, 362, 198, 220, 220, 220, 331, 15853, 45941, 13, 25120, 13, 25192, 77, 7, 87, 13, 7857, 8, 198, 220, 220, 220, 300, 76, 796, 44800, 17633, 7, 88, 11, 2124, 8, 198, 220, 220, 220, 300, 76, 13, 11147, 3419, 198, 220, 220, 220, 300, 76, 13, 49736, 3419, 198, 220, 220, 220, 3601, 7, 75, 76, 13, 79, 17407, 28955, 198, 220, 220, 220, 300, 76, 13, 29487, 3419, 198 ]
2.317181
227
#!/usr/bin/env python3.6 """Refactored utility functions.""" __author__ = "Richard Cosgrove" from collections import defaultdict import gzip from itertools import combinations from datetime import datetime, timedelta import json import os def export_compressed_json(dict_item, file_name): """Export gzip compressed JSON. (For Uni dataset compressed size is ~10% of uncompressed.) :param dict_item: Dictionary to dump as JSON. :param file_name: Name of file to be written e.g. dict.json.gz """ # Use lowest level of compression for fast speed. os.makedirs(os.path.dirname(file_name), exist_ok=True) with gzip.open(file_name, mode="wt", compresslevel=1) as f: json.dump(dict_item, f, separators=(',', ':')) def import_compressed_json(file_name): """Import gzip compressed JSON. :param file_name: Name of file to be read e.g. dict.json.gz :returns: JSON as a dictionary. """ with gzip.open(file_name, mode="rt") as f: return json.load(f) def match_tokens_with_same_ssid_set(token_to_probes): """Split into clusters that share the SAME set of SSIDs probed for. :param token_to_probes: Dictionary with token keys and probe values :returns: Dictionary with SSID set keys and token values """ ssid_set_to_tokens = defaultdict(set) token_to_ssid_set = {} for token, probes in token_to_probes.items(): ssid_set = set() for probe in probes: if probe["ssid"] == 0: # Ignore broadcast probes. continue ssid_set.add(probe["ssid"]) if len(ssid_set) < 2: # Ignore sets with cardinality less than X # due to high rate of false positives. continue # Cluster token with any tokens that share the same SSID set. ssid_set_to_tokens[frozenset(ssid_set)].add(token) token_to_ssid_set[token] = frozenset(ssid_set) # Sanity check: Assert that no token has been matched more than once. tokens = [t for tokens in list(ssid_set_to_tokens.values()) for t in tokens] assert(len(tokens) == len(set(tokens))) return (ssid_set_to_tokens, token_to_ssid_set) def validate_clusters(clusters, token_to_probes): """Validate the correctness of a clustering. :param clusters: An iterable of clusters, where each cluster is a list of tokens. :returns: Dictionary of binary classifier results """ token_to_mac = import_compressed_json("int/token_to_mac.json.gz") # Use a binary Classification true_positives, false_positives = 0, 0 num_of_clusters = 0 mac_to_timestamps = defaultdict(list) for cluster in clusters: num_of_clusters += 1 for pair in combinations(cluster, r=2): if token_to_mac[pair[0]] == token_to_mac[pair[1]]: true_positives += 1 mac = token_to_mac[pair[0]] t1_timestamps = [float(p["timestamp"]) for p in token_to_probes[pair[0]]] t2_timestamps = [float(p["timestamp"]) for p in token_to_probes[pair[1]]] mac_to_timestamps[mac] += t1_timestamps mac_to_timestamps[mac] += t2_timestamps else: false_positives += 1 greater_than = 0 lengths = [] for mac, timestamps in mac_to_timestamps.items(): length = timedelta(seconds=max(timestamps)) - timedelta(seconds=min(timestamps)) if length > timedelta(hours=12): greater_than += 1 lengths.append(length) import statistics mid = statistics.median(lengths) # Total number of valid pairs and invalid pairs have been # pre-computed in randomiseTokens.py ... # So we can easily calculate the negatives by subtracting the positives. actual_combos = import_compressed_json("int/valid_combinations.json.gz") true_negatives = actual_combos["invalid_pairs"] - false_positives false_negatives = actual_combos["valid_pairs"] - true_positives # Sanity checks assert(true_positives + false_positives + true_negatives + false_negatives == actual_combos["total_pairs"]) assert(true_positives + false_negatives == actual_combos["valid_pairs"]) assert(false_positives + true_negatives == actual_combos["invalid_pairs"]) true_positive_rate = (true_positives / (float(true_positives + false_negatives))) false_positive_rate = (false_positives / (float(false_positives + true_negatives))) accuracy = (true_positives + true_negatives) / float(actual_combos["total_pairs"]) return { "tp": true_positives, "fp": false_positives, "tn": true_negatives, "fn": false_negatives, "tpr": true_positive_rate, "fpr": false_positive_rate, "accuracy": accuracy, "clusters": num_of_clusters, "macs": greater_than, "median": mid }
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 13, 21, 198, 198, 37811, 8134, 529, 1850, 10361, 5499, 526, 15931, 198, 198, 834, 9800, 834, 796, 366, 22245, 10437, 27333, 303, 1, 198, 198, 6738, 17268, 1330, 4277, 11600, 198, 11748, 308, 13344, 198, 6738, 340, 861, 10141, 1330, 17790, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 11748, 33918, 198, 11748, 28686, 198, 198, 4299, 10784, 62, 5589, 2790, 62, 17752, 7, 11600, 62, 9186, 11, 2393, 62, 3672, 2599, 198, 220, 220, 220, 37227, 43834, 308, 13344, 25388, 19449, 13, 198, 220, 220, 220, 357, 1890, 43376, 27039, 25388, 2546, 318, 5299, 940, 4, 286, 34318, 2790, 2014, 198, 220, 220, 220, 1058, 17143, 8633, 62, 9186, 25, 28261, 284, 10285, 355, 19449, 13, 198, 220, 220, 220, 1058, 17143, 2393, 62, 3672, 25, 6530, 286, 2393, 284, 307, 3194, 304, 13, 70, 13, 8633, 13, 17752, 13, 34586, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 5765, 9016, 1241, 286, 19794, 329, 3049, 2866, 13, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 418, 13, 6978, 13, 15908, 3672, 7, 7753, 62, 3672, 828, 2152, 62, 482, 28, 17821, 8, 198, 220, 220, 220, 351, 308, 13344, 13, 9654, 7, 7753, 62, 3672, 11, 4235, 2625, 46569, 1600, 27413, 5715, 28, 16, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 11600, 62, 9186, 11, 277, 11, 2880, 2024, 16193, 3256, 3256, 705, 32105, 4008, 198, 198, 4299, 1330, 62, 5589, 2790, 62, 17752, 7, 7753, 62, 3672, 2599, 198, 220, 220, 220, 37227, 20939, 308, 13344, 25388, 19449, 13, 198, 220, 220, 220, 1058, 17143, 2393, 62, 3672, 25, 6530, 286, 2393, 284, 307, 1100, 304, 13, 70, 13, 8633, 13, 17752, 13, 34586, 198, 220, 220, 220, 1058, 7783, 82, 25, 19449, 355, 257, 22155, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 308, 13344, 13, 9654, 7, 7753, 62, 3672, 11, 4235, 2625, 17034, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 13, 2220, 7, 69, 8, 198, 198, 4299, 2872, 62, 83, 482, 641, 62, 4480, 62, 31642, 62, 824, 312, 62, 2617, 7, 30001, 62, 1462, 62, 1676, 12636, 2599, 198, 220, 220, 220, 37227, 41205, 656, 23163, 326, 2648, 262, 311, 10067, 900, 286, 6723, 47954, 1861, 276, 329, 13, 198, 220, 220, 220, 1058, 17143, 11241, 62, 1462, 62, 1676, 12636, 25, 28261, 351, 11241, 8251, 290, 12774, 3815, 198, 220, 220, 220, 1058, 7783, 82, 25, 28261, 351, 6723, 2389, 900, 8251, 290, 11241, 3815, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 264, 30255, 62, 2617, 62, 1462, 62, 83, 482, 641, 796, 4277, 11600, 7, 2617, 8, 198, 220, 220, 220, 11241, 62, 1462, 62, 824, 312, 62, 2617, 796, 23884, 198, 220, 220, 220, 329, 11241, 11, 33124, 287, 11241, 62, 1462, 62, 1676, 12636, 13, 23814, 33529, 628, 220, 220, 220, 220, 220, 220, 220, 264, 30255, 62, 2617, 796, 900, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 12774, 287, 33124, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 12774, 14692, 824, 312, 8973, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41032, 7025, 33124, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 30255, 62, 2617, 13, 2860, 7, 1676, 1350, 14692, 824, 312, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 824, 312, 62, 2617, 8, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41032, 5621, 351, 38691, 414, 1342, 621, 1395, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2233, 284, 1029, 2494, 286, 3991, 38548, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 38279, 11241, 351, 597, 16326, 326, 2648, 262, 976, 6723, 2389, 900, 13, 198, 220, 220, 220, 220, 220, 220, 220, 264, 30255, 62, 2617, 62, 1462, 62, 83, 482, 641, 58, 69, 305, 8247, 316, 7, 824, 312, 62, 2617, 25295, 2860, 7, 30001, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 1462, 62, 824, 312, 62, 2617, 58, 30001, 60, 796, 8400, 8247, 316, 7, 824, 312, 62, 2617, 8, 628, 220, 220, 220, 1303, 2986, 414, 2198, 25, 2195, 861, 326, 645, 11241, 468, 587, 14451, 517, 621, 1752, 13, 198, 220, 220, 220, 16326, 796, 685, 83, 329, 16326, 287, 1351, 7, 824, 312, 62, 2617, 62, 1462, 62, 83, 482, 641, 13, 27160, 28955, 329, 256, 287, 16326, 60, 198, 220, 220, 220, 6818, 7, 11925, 7, 83, 482, 641, 8, 6624, 18896, 7, 2617, 7, 83, 482, 641, 22305, 628, 220, 220, 220, 1441, 357, 824, 312, 62, 2617, 62, 1462, 62, 83, 482, 641, 11, 11241, 62, 1462, 62, 824, 312, 62, 2617, 8, 198, 198, 4299, 26571, 62, 565, 13654, 7, 565, 13654, 11, 11241, 62, 1462, 62, 1676, 12636, 2599, 198, 220, 220, 220, 37227, 7762, 20540, 262, 29409, 286, 257, 32966, 1586, 13, 198, 220, 220, 220, 1058, 17143, 23163, 25, 1052, 11629, 540, 286, 23163, 11, 810, 1123, 13946, 318, 257, 1351, 286, 16326, 13, 198, 220, 220, 220, 1058, 7783, 82, 25, 28261, 286, 13934, 1398, 7483, 2482, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11241, 62, 1462, 62, 20285, 796, 1330, 62, 5589, 2790, 62, 17752, 7203, 600, 14, 30001, 62, 1462, 62, 20285, 13, 17752, 13, 34586, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 5765, 257, 13934, 40984, 198, 220, 220, 220, 2081, 62, 1930, 20288, 11, 3991, 62, 1930, 20288, 796, 657, 11, 657, 198, 220, 220, 220, 997, 62, 1659, 62, 565, 13654, 796, 657, 628, 220, 220, 220, 8352, 62, 1462, 62, 16514, 395, 9430, 796, 4277, 11600, 7, 4868, 8, 628, 220, 220, 220, 329, 13946, 287, 23163, 25, 628, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1659, 62, 565, 13654, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5166, 287, 17790, 7, 565, 5819, 11, 374, 28, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11241, 62, 1462, 62, 20285, 58, 24874, 58, 15, 11907, 6624, 11241, 62, 1462, 62, 20285, 58, 24874, 58, 16, 60, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 1930, 20288, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8352, 796, 11241, 62, 1462, 62, 20285, 58, 24874, 58, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 16, 62, 16514, 395, 9430, 796, 685, 22468, 7, 79, 14692, 16514, 27823, 8973, 8, 329, 279, 287, 11241, 62, 1462, 62, 1676, 12636, 58, 24874, 58, 15, 11907, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 17, 62, 16514, 395, 9430, 796, 685, 22468, 7, 79, 14692, 16514, 27823, 8973, 8, 329, 279, 287, 11241, 62, 1462, 62, 1676, 12636, 58, 24874, 58, 16, 11907, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8352, 62, 1462, 62, 16514, 395, 9430, 58, 20285, 60, 15853, 256, 16, 62, 16514, 395, 9430, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8352, 62, 1462, 62, 16514, 395, 9430, 58, 20285, 60, 15853, 256, 17, 62, 16514, 395, 9430, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3991, 62, 1930, 20288, 15853, 352, 628, 220, 220, 220, 3744, 62, 14813, 796, 657, 198, 220, 220, 220, 20428, 796, 17635, 198, 220, 220, 220, 329, 8352, 11, 4628, 395, 9430, 287, 8352, 62, 1462, 62, 16514, 395, 9430, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 796, 28805, 12514, 7, 43012, 28, 9806, 7, 16514, 395, 9430, 4008, 532, 28805, 12514, 7, 43012, 28, 1084, 7, 16514, 395, 9430, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4129, 1875, 28805, 12514, 7, 24425, 28, 1065, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3744, 62, 14813, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20428, 13, 33295, 7, 13664, 8, 628, 220, 220, 220, 1330, 7869, 198, 220, 220, 220, 3095, 796, 7869, 13, 1150, 666, 7, 13664, 82, 8, 628, 220, 220, 220, 1303, 7472, 1271, 286, 4938, 14729, 290, 12515, 14729, 423, 587, 198, 220, 220, 220, 1303, 662, 12, 785, 17128, 287, 4738, 786, 22906, 13, 9078, 2644, 198, 220, 220, 220, 1303, 1406, 356, 460, 3538, 15284, 262, 42510, 416, 34128, 278, 262, 38548, 13, 198, 220, 220, 220, 4036, 62, 24011, 418, 796, 1330, 62, 5589, 2790, 62, 17752, 7203, 600, 14, 12102, 62, 24011, 7352, 13, 17752, 13, 34586, 4943, 198, 220, 220, 220, 2081, 62, 12480, 2929, 796, 4036, 62, 24011, 418, 14692, 259, 12102, 62, 79, 3468, 8973, 532, 3991, 62, 1930, 20288, 198, 220, 220, 220, 3991, 62, 12480, 2929, 796, 4036, 62, 24011, 418, 14692, 12102, 62, 79, 3468, 8973, 532, 2081, 62, 1930, 20288, 628, 220, 220, 220, 1303, 2986, 414, 8794, 198, 220, 220, 220, 6818, 7, 7942, 62, 1930, 20288, 1343, 3991, 62, 1930, 20288, 1343, 220, 2081, 62, 12480, 2929, 1343, 3991, 62, 12480, 2929, 6624, 4036, 62, 24011, 418, 14692, 23350, 62, 79, 3468, 8973, 8, 198, 220, 220, 220, 6818, 7, 7942, 62, 1930, 20288, 1343, 3991, 62, 12480, 2929, 6624, 4036, 62, 24011, 418, 14692, 12102, 62, 79, 3468, 8973, 8, 198, 220, 220, 220, 6818, 7, 9562, 62, 1930, 20288, 1343, 2081, 62, 12480, 2929, 6624, 4036, 62, 24011, 418, 14692, 259, 12102, 62, 79, 3468, 8973, 8, 628, 220, 220, 220, 2081, 62, 24561, 62, 4873, 796, 357, 7942, 62, 1930, 20288, 1220, 357, 22468, 7, 7942, 62, 1930, 20288, 1343, 3991, 62, 12480, 2929, 22305, 198, 220, 220, 220, 3991, 62, 24561, 62, 4873, 796, 357, 9562, 62, 1930, 20288, 1220, 357, 22468, 7, 9562, 62, 1930, 20288, 1343, 2081, 62, 12480, 2929, 22305, 198, 220, 220, 220, 9922, 796, 357, 7942, 62, 1930, 20288, 1343, 2081, 62, 12480, 2929, 8, 1220, 12178, 7, 50039, 62, 24011, 418, 14692, 23350, 62, 79, 3468, 8973, 8, 628, 220, 220, 220, 1441, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34788, 1298, 2081, 62, 1930, 20288, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 46428, 1298, 3991, 62, 1930, 20288, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34106, 1298, 2081, 62, 12480, 2929, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22184, 1298, 3991, 62, 12480, 2929, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 83, 1050, 1298, 2081, 62, 24561, 62, 4873, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 69, 1050, 1298, 3991, 62, 24561, 62, 4873, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4134, 23843, 1298, 9922, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 565, 13654, 1298, 997, 62, 1659, 62, 565, 13654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 76, 16436, 1298, 3744, 62, 14813, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1150, 666, 1298, 3095, 198, 220, 220, 220, 1782, 198 ]
2.458753
1,988
from django.contrib.auth import get_user_model from django.test import TestCase # Use the proper swappable User model User = get_user_model()
[ 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 651, 62, 7220, 62, 19849, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 628, 198, 2, 5765, 262, 1774, 1509, 1324, 540, 11787, 2746, 198, 12982, 796, 651, 62, 7220, 62, 19849, 3419, 628 ]
3.295455
44
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common utility functions for sql instances.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from apitools.base.py import list_pager from googlecloudsdk.api_lib.sql import api_util from googlecloudsdk.core import properties from googlecloudsdk.core.console import console_io _POSTGRES_DATABASE_VERSION_PREFIX = 'POSTGRES' class _BaseInstances(object): """Common utility functions for sql instances.""" @staticmethod def GetDatabaseInstances(limit=None, batch_size=None): """Gets SQL instances in a given project. Modifies current state of an individual instance to 'STOPPED' if activationPolicy is 'NEVER'. Args: limit: int, The maximum number of records to yield. None if all available records should be yielded. batch_size: int, The number of items to retrieve per request. Returns: List of yielded sql_messages.DatabaseInstance instances. """ client = api_util.SqlClient(api_util.API_VERSION_DEFAULT) sql_client = client.sql_client sql_messages = client.sql_messages project_id = properties.VALUES.core.project.Get(required=True) params = {} if limit is not None: params['limit'] = limit if batch_size is not None: params['batch_size'] = batch_size yielded = list_pager.YieldFromList( sql_client.instances, sql_messages.SqlInstancesListRequest(project=project_id), **params) return YieldInstancesWithAModifiedState() @staticmethod @staticmethod def IsPostgresDatabaseVersion(database_version): """Returns a boolean indicating if the database version is Postgres.""" return _POSTGRES_DATABASE_VERSION_PREFIX in database_version class InstancesV1Beta3(_BaseInstances): """Common utility functions for sql instances V1Beta3.""" @staticmethod @staticmethod class InstancesV1Beta4(_BaseInstances): """Common utility functions for sql instances V1Beta4.""" @staticmethod @staticmethod
[ 2, 15069, 1584, 3012, 3457, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 17227, 10361, 5499, 329, 44161, 10245, 526, 15931, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 6738, 2471, 270, 10141, 13, 8692, 13, 9078, 1330, 1351, 62, 79, 3536, 198, 6738, 23645, 17721, 21282, 74, 13, 15042, 62, 8019, 13, 25410, 1330, 40391, 62, 22602, 198, 6738, 23645, 17721, 21282, 74, 13, 7295, 1330, 6608, 198, 6738, 23645, 17721, 21282, 74, 13, 7295, 13, 41947, 1330, 8624, 62, 952, 628, 198, 62, 32782, 10761, 1546, 62, 35, 1404, 6242, 11159, 62, 43717, 62, 47, 31688, 10426, 796, 705, 32782, 10761, 1546, 6, 628, 198, 4871, 4808, 14881, 6310, 1817, 7, 15252, 2599, 198, 220, 37227, 17227, 10361, 5499, 329, 44161, 10245, 526, 15931, 628, 220, 2488, 12708, 24396, 198, 220, 825, 3497, 38105, 6310, 1817, 7, 32374, 28, 14202, 11, 15458, 62, 7857, 28, 14202, 2599, 198, 220, 220, 220, 37227, 38, 1039, 16363, 10245, 287, 257, 1813, 1628, 13, 628, 220, 220, 220, 3401, 6945, 1459, 1181, 286, 281, 1981, 4554, 284, 705, 2257, 3185, 47, 1961, 6, 611, 198, 220, 220, 220, 14916, 36727, 318, 705, 12161, 5959, 4458, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 4179, 25, 493, 11, 383, 5415, 1271, 286, 4406, 284, 7800, 13, 6045, 611, 477, 1695, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4406, 815, 307, 26403, 13, 198, 220, 220, 220, 220, 220, 15458, 62, 7857, 25, 493, 11, 383, 1271, 286, 3709, 284, 19818, 583, 2581, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 7343, 286, 26403, 44161, 62, 37348, 1095, 13, 38105, 33384, 10245, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 5456, 796, 40391, 62, 22602, 13, 50, 13976, 11792, 7, 15042, 62, 22602, 13, 17614, 62, 43717, 62, 7206, 38865, 8, 198, 220, 220, 220, 44161, 62, 16366, 796, 5456, 13, 25410, 62, 16366, 198, 220, 220, 220, 44161, 62, 37348, 1095, 796, 5456, 13, 25410, 62, 37348, 1095, 198, 220, 220, 220, 1628, 62, 312, 796, 6608, 13, 23428, 35409, 13, 7295, 13, 16302, 13, 3855, 7, 35827, 28, 17821, 8, 628, 220, 220, 220, 42287, 796, 23884, 198, 220, 220, 220, 611, 4179, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 42287, 17816, 32374, 20520, 796, 4179, 198, 220, 220, 220, 611, 15458, 62, 7857, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 42287, 17816, 43501, 62, 7857, 20520, 796, 15458, 62, 7857, 628, 220, 220, 220, 26403, 796, 1351, 62, 79, 3536, 13, 56, 1164, 4863, 8053, 7, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 16366, 13, 8625, 1817, 11, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 37348, 1095, 13, 50, 13976, 6310, 1817, 8053, 18453, 7, 16302, 28, 16302, 62, 312, 828, 12429, 37266, 8, 628, 220, 220, 220, 1441, 575, 1164, 6310, 1817, 3152, 2390, 375, 1431, 9012, 3419, 628, 220, 2488, 12708, 24396, 628, 220, 2488, 12708, 24396, 198, 220, 825, 1148, 6307, 34239, 38105, 14815, 7, 48806, 62, 9641, 2599, 198, 220, 220, 220, 37227, 35561, 257, 25131, 12739, 611, 262, 6831, 2196, 318, 2947, 34239, 526, 15931, 198, 220, 220, 220, 1441, 4808, 32782, 10761, 1546, 62, 35, 1404, 6242, 11159, 62, 43717, 62, 47, 31688, 10426, 287, 6831, 62, 9641, 628, 198, 4871, 2262, 1817, 53, 16, 43303, 18, 28264, 14881, 6310, 1817, 2599, 198, 220, 37227, 17227, 10361, 5499, 329, 44161, 10245, 569, 16, 43303, 18, 526, 15931, 628, 220, 2488, 12708, 24396, 628, 220, 2488, 12708, 24396, 628, 198, 4871, 2262, 1817, 53, 16, 43303, 19, 28264, 14881, 6310, 1817, 2599, 198, 220, 37227, 17227, 10361, 5499, 329, 44161, 10245, 569, 16, 43303, 19, 526, 15931, 628, 220, 2488, 12708, 24396, 628, 220, 2488, 12708, 24396, 198 ]
3.271589
799
#-*- coding: utf-8 -*- """ EOSS catalog system Custom logger Default configuration file within this directory is used to control logging behaviour; can be overwritten with LOGGING_CONF which points to local logging configuration """ __author__ = "Thilo Wehrmann, Steffen Gebhardt" __copyright__ = "Copyright 2016, EOSS GmbH" __credits__ = ["Thilo Wehrmann", "Steffen Gebhardt"] __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "Thilo Wehrmann" __email__ = "[email protected]" __status__ = "Production" import logging from logging.config import fileConfig import os from utilities import read_OS_var try: # Python 2.7+ from logging import NullHandler except ImportError: if read_OS_var('LOGGING_CONF', mandatory=False) == None: path = os.path.dirname(__file__) log_config_file = os.path.join(path, 'logging.ini') else: log_config_file = read_OS_var('LOGGING_CONF', mandatory=False) fileConfig(log_config_file) logger = logging.getLogger() logger.addHandler(NullHandler()) logging.getLogger(__name__).addHandler(NullHandler()) # Configure default logger to do nothing notificator = logging.getLogger('EOSS:notification') heartbeat_log = logging.getLogger('EOSS:heartbeat') tracer_log = logging.getLogger('EOSS:tracer') CALL = 41 START = 42 BEATING = 43 STOP = 44 STROKE = 45 HEALTH = 46 logging.addLevelName(CALL, 'CALL') logging.addLevelName(BEATING, 'BEATING') logging.addLevelName(BEATING, 'BEATING') logging.addLevelName(STROKE, 'STROKE') logging.addLevelName(HEALTH, 'HEALTH') logging.addLevelName(START, 'START BEAT') logging.addLevelName(STOP, 'STOP BEAT') # 3rd party logger configuration logging.getLogger('boto3.resources.action').setLevel(logging.WARNING) logging.getLogger('botocore.vendored.requests.packages.urllib3.connectionpool').setLevel(logging.WARNING)
[ 2, 12, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 412, 18420, 18388, 1080, 198, 8562, 49706, 198, 15161, 8398, 2393, 1626, 428, 8619, 318, 973, 284, 1630, 18931, 9172, 26, 460, 307, 6993, 9108, 351, 41605, 38, 2751, 62, 10943, 37, 543, 2173, 284, 198, 1957, 18931, 8398, 198, 37811, 198, 198, 834, 9800, 834, 796, 366, 817, 18526, 775, 11840, 9038, 11, 2441, 46985, 402, 1765, 28375, 1, 198, 834, 22163, 4766, 834, 796, 366, 15269, 1584, 11, 412, 18420, 402, 2022, 39, 1, 198, 834, 66, 20696, 834, 796, 14631, 817, 18526, 775, 11840, 9038, 1600, 366, 7447, 46985, 402, 1765, 28375, 8973, 198, 834, 43085, 834, 796, 366, 38, 6489, 1, 198, 834, 9641, 834, 796, 366, 16, 13, 15, 13, 15, 1, 198, 834, 76, 2913, 10613, 834, 796, 366, 817, 18526, 775, 11840, 9038, 1, 198, 834, 12888, 834, 796, 366, 83, 732, 11840, 9038, 31, 68, 793, 13, 17721, 1, 198, 834, 13376, 834, 796, 366, 35027, 1, 198, 198, 11748, 18931, 198, 6738, 18931, 13, 11250, 1330, 2393, 16934, 198, 11748, 28686, 198, 6738, 20081, 1330, 1100, 62, 2640, 62, 7785, 628, 198, 28311, 25, 220, 1303, 11361, 362, 13, 22, 10, 198, 220, 220, 220, 422, 18931, 1330, 35886, 25060, 198, 16341, 17267, 12331, 25, 628, 198, 361, 1100, 62, 2640, 62, 7785, 10786, 25294, 38, 2751, 62, 10943, 37, 3256, 13677, 28, 25101, 8, 6624, 6045, 25, 198, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 220, 220, 220, 2604, 62, 11250, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 705, 6404, 2667, 13, 5362, 11537, 198, 17772, 25, 198, 220, 220, 220, 2604, 62, 11250, 62, 7753, 796, 1100, 62, 2640, 62, 7785, 10786, 25294, 38, 2751, 62, 10943, 37, 3256, 13677, 28, 25101, 8, 198, 198, 7753, 16934, 7, 6404, 62, 11250, 62, 7753, 8, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 3419, 198, 6404, 1362, 13, 2860, 25060, 7, 35067, 25060, 28955, 198, 6404, 2667, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 737, 2860, 25060, 7, 35067, 25060, 28955, 198, 198, 2, 17056, 495, 4277, 49706, 284, 466, 2147, 198, 1662, 811, 1352, 796, 18931, 13, 1136, 11187, 1362, 10786, 36, 18420, 25, 1662, 2649, 11537, 198, 11499, 12945, 62, 6404, 796, 18931, 13, 1136, 11187, 1362, 10786, 36, 18420, 25, 11499, 12945, 11537, 198, 2213, 11736, 62, 6404, 796, 18931, 13, 1136, 11187, 1362, 10786, 36, 18420, 25, 2213, 11736, 11537, 198, 198, 34, 7036, 796, 6073, 198, 2257, 7227, 796, 5433, 198, 12473, 33881, 796, 5946, 198, 2257, 3185, 796, 5846, 198, 2257, 13252, 7336, 796, 4153, 198, 13909, 40818, 796, 6337, 198, 198, 6404, 2667, 13, 2860, 4971, 5376, 7, 34, 7036, 11, 705, 34, 7036, 11537, 198, 6404, 2667, 13, 2860, 4971, 5376, 7, 12473, 33881, 11, 705, 12473, 33881, 11537, 198, 6404, 2667, 13, 2860, 4971, 5376, 7, 12473, 33881, 11, 705, 12473, 33881, 11537, 198, 6404, 2667, 13, 2860, 4971, 5376, 7, 2257, 13252, 7336, 11, 705, 2257, 13252, 7336, 11537, 198, 6404, 2667, 13, 2860, 4971, 5376, 7, 13909, 40818, 11, 705, 13909, 40818, 11537, 198, 198, 6404, 2667, 13, 2860, 4971, 5376, 7, 2257, 7227, 11, 705, 2257, 7227, 9348, 1404, 11537, 198, 6404, 2667, 13, 2860, 4971, 5376, 7, 2257, 3185, 11, 705, 2257, 3185, 9348, 1404, 11537, 628, 628, 198, 2, 513, 4372, 2151, 49706, 8398, 198, 6404, 2667, 13, 1136, 11187, 1362, 10786, 65, 2069, 18, 13, 37540, 13, 2673, 27691, 2617, 4971, 7, 6404, 2667, 13, 31502, 8, 198, 6404, 2667, 13, 1136, 11187, 1362, 10786, 13645, 420, 382, 13, 85, 437, 1850, 13, 8897, 3558, 13, 43789, 13, 333, 297, 571, 18, 13, 38659, 7742, 27691, 2617, 4971, 7, 6404, 2667, 13, 31502, 8, 628, 628 ]
2.835148
643
# Copyright 2019 the ProGraML authors. # # Contact Chris Cummins <[email protected]>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This file contains TODO: one line summary. TODO: Detailed explanation of the file. """ from typing import Any from typing import Iterable from typing import List from typing import NamedTuple from typing import Optional import numpy as np import sklearn.metrics from labm8.py import app FLAGS = app.FLAGS app.DEFINE_string( "batch_scores_averaging_method", "weighted", "Selects the averaging method to use when computing recall/precision/F1 " "scores. See <https://scikit-learn.org/stable/modules/generated/sklearn" ".metrics.f1_score.html>", ) class Data(NamedTuple): """The model data for a batch.""" graph_ids: List[int] data: Any # A flag used to mark that this batch is the end of an iterable sequences of # batches. end_of_batches: bool = False @property def EmptyBatch() -> Data: """Construct an empty batch.""" return Data(graph_ids=[], data=None) def EndOfBatches() -> Data: """Construct a 'end of batches' marker.""" return Data(graph_ids=[], data=None, end_of_batches=True) class BatchIterator(NamedTuple): """A batch iterator""" batches: Iterable[Data] # The total number of graphs in all of the batches. graph_count: int class Results(NamedTuple): """The results of running a batch through a model. Don't instantiate this tuple directly, use Results.Create(). """ targets: np.array predictions: np.array # The number of model iterations to compute the final results. This is used # by iterative models such as message passing networks. iteration_count: int # For iterative models, this indicates whether the state of the model at # iteration_count had converged on a solution. model_converged: bool # The learning rate and loss of models, if applicable. learning_rate: Optional[float] loss: Optional[float] # Batch-level average performance metrics. accuracy: float precision: float recall: float f1: float @property @property @property def target_count(self) -> int: """Get the number of targets in the batch. For graph-level classifiers, this will be equal to Data.graph_count, else it's equal to the batch node count. """ return self.targets.shape[1] def __eq__(self, rhs: "Results"): """Compare batch results.""" return self.accuracy == rhs.accuracy def __gt__(self, rhs: "Results"): """Compare batch results.""" return self.accuracy > rhs.accuracy @classmethod def Create( cls, targets: np.array, predictions: np.array, iteration_count: int = 1, model_converged: bool = True, learning_rate: Optional[float] = None, loss: Optional[float] = None, ): """Construct a results instance from 1-hot targets and predictions. This is the preferred means of construct a Results instance, which takes care of evaluating all of the metrics for you. The behavior of metrics calculation is dependent on the --batch_scores_averaging_method flag. Args: targets: An array of 1-hot target vectors with shape (y_count, y_dimensionality), dtype int32. predictions: An array of 1-hot prediction vectors with shape (y_count, y_dimensionality), dtype int32. iteration_count: For iterative models, the number of model iterations to compute the final result. model_converged: For iterative models, whether model converged. learning_rate: The model learning rate, if applicable. loss: The model loss, if applicable. Returns: A Results instance. """ if targets.shape != predictions.shape: raise TypeError( f"Expected model to produce targets with shape {targets.shape} but " f"instead received predictions with shape {predictions.shape}" ) y_dimensionality = targets.shape[1] if y_dimensionality < 2: raise TypeError( f"Expected label dimensionality > 1, received {y_dimensionality}" ) # Create dense arrays of shape (target_count). true_y = np.argmax(targets, axis=1) pred_y = np.argmax(predictions, axis=1) # NOTE(github.com/ChrisCummins/ProGraML/issues/22): This assumes that # labels use the values [0,...n). labels = np.arange(y_dimensionality, dtype=np.int64) return cls( targets=targets, predictions=predictions, iteration_count=iteration_count, model_converged=model_converged, learning_rate=learning_rate, loss=loss, accuracy=sklearn.metrics.accuracy_score(true_y, pred_y), precision=sklearn.metrics.precision_score( true_y, pred_y, labels=labels, average=FLAGS.batch_scores_averaging_method, ), recall=sklearn.metrics.recall_score( true_y, pred_y, labels=labels, average=FLAGS.batch_scores_averaging_method, ), f1=sklearn.metrics.f1_score( true_y, pred_y, labels=labels, average=FLAGS.batch_scores_averaging_method, ), ) class RollingResults: """Maintain weighted rolling averages across batches.""" def Update( self, data: Data, results: Results, weight: Optional[float] = None ) -> None: """Update the rolling results with a new batch. Args: data: The batch data used to produce the results. results: The batch results to update the current state with. weight: A weight to assign to weighted sums. E.g. to weight results across all targets, use weight=results.target_count. To weight across targets, use weight=batch.target_count. To weight across graphs, use weight=batch.graph_count. By default, weight by target count. """ if weight is None: weight = results.target_count self.weight_sum += weight self.batch_count += 1 self.graph_count += data.graph_count self.target_count += results.target_count self.weighted_iteration_count_sum += results.iteration_count * weight self.weighted_model_converged_sum += ( weight if results.model_converged else 0 ) if results.has_learning_rate: self.has_learning_rate = True self.weighted_learning_rate_sum += results.learning_rate * weight if results.has_loss: self.has_loss = True self.weighted_loss_sum += results.loss * weight self.weighted_accuracy_sum += results.accuracy * weight self.weighted_precision_sum += results.precision * weight self.weighted_recall_sum += results.recall * weight self.weighted_f1_sum += results.f1 * weight @property @property @property @property @property @property @property @property
[ 2, 15069, 13130, 262, 1041, 46971, 5805, 7035, 13, 198, 2, 198, 2, 14039, 5180, 30316, 1040, 1279, 354, 81, 2304, 13, 8784, 31, 14816, 13, 785, 28401, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 1212, 2393, 4909, 16926, 46, 25, 530, 1627, 10638, 13, 198, 198, 51, 3727, 46, 25, 4614, 6255, 7468, 286, 262, 2393, 13, 198, 37811, 198, 6738, 19720, 1330, 4377, 198, 6738, 19720, 1330, 40806, 540, 198, 6738, 19720, 1330, 7343, 198, 6738, 19720, 1330, 34441, 51, 29291, 198, 6738, 19720, 1330, 32233, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 1341, 35720, 13, 4164, 10466, 198, 198, 6738, 2248, 76, 23, 13, 9078, 1330, 598, 628, 198, 38948, 50, 796, 598, 13, 38948, 50, 198, 198, 1324, 13, 7206, 29940, 62, 8841, 7, 198, 220, 366, 43501, 62, 1416, 2850, 62, 8770, 3039, 62, 24396, 1600, 198, 220, 366, 6551, 276, 1600, 198, 220, 366, 17563, 82, 262, 20430, 2446, 284, 779, 618, 14492, 10014, 14, 3866, 16005, 14, 37, 16, 366, 198, 220, 366, 1416, 2850, 13, 4091, 1279, 5450, 1378, 36216, 15813, 12, 35720, 13, 2398, 14, 31284, 14, 18170, 14, 27568, 14, 8135, 35720, 1, 198, 220, 27071, 4164, 10466, 13, 69, 16, 62, 26675, 13, 6494, 29, 1600, 198, 8, 628, 198, 4871, 6060, 7, 45, 2434, 51, 29291, 2599, 198, 220, 37227, 464, 2746, 1366, 329, 257, 15458, 526, 15931, 628, 220, 4823, 62, 2340, 25, 7343, 58, 600, 60, 198, 220, 1366, 25, 4377, 198, 220, 1303, 317, 6056, 973, 284, 1317, 326, 428, 15458, 318, 262, 886, 286, 281, 11629, 540, 16311, 286, 198, 220, 1303, 37830, 13, 198, 220, 886, 62, 1659, 62, 8664, 2052, 25, 20512, 796, 10352, 628, 220, 2488, 26745, 628, 198, 4299, 33523, 33, 963, 3419, 4613, 6060, 25, 198, 220, 37227, 42316, 281, 6565, 15458, 526, 15931, 198, 220, 1441, 6060, 7, 34960, 62, 2340, 41888, 4357, 1366, 28, 14202, 8, 628, 198, 4299, 5268, 5189, 33, 20981, 3419, 4613, 6060, 25, 198, 220, 37227, 42316, 257, 705, 437, 286, 37830, 6, 18364, 526, 15931, 198, 220, 1441, 6060, 7, 34960, 62, 2340, 41888, 4357, 1366, 28, 14202, 11, 886, 62, 1659, 62, 8664, 2052, 28, 17821, 8, 628, 198, 4871, 347, 963, 37787, 7, 45, 2434, 51, 29291, 2599, 198, 220, 37227, 32, 15458, 41313, 37811, 628, 220, 37830, 25, 40806, 540, 58, 6601, 60, 198, 220, 1303, 383, 2472, 1271, 286, 28770, 287, 477, 286, 262, 37830, 13, 198, 220, 4823, 62, 9127, 25, 493, 628, 198, 4871, 15691, 7, 45, 2434, 51, 29291, 2599, 198, 220, 37227, 464, 2482, 286, 2491, 257, 15458, 832, 257, 2746, 13, 628, 220, 2094, 470, 9113, 9386, 428, 46545, 3264, 11, 779, 15691, 13, 16447, 22446, 198, 220, 37227, 628, 220, 6670, 25, 45941, 13, 18747, 198, 220, 16277, 25, 45941, 13, 18747, 198, 220, 1303, 383, 1271, 286, 2746, 34820, 284, 24061, 262, 2457, 2482, 13, 770, 318, 973, 198, 220, 1303, 416, 11629, 876, 4981, 884, 355, 3275, 6427, 7686, 13, 198, 220, 24415, 62, 9127, 25, 493, 198, 220, 1303, 1114, 11629, 876, 4981, 11, 428, 9217, 1771, 262, 1181, 286, 262, 2746, 379, 198, 220, 1303, 24415, 62, 9127, 550, 6718, 2004, 319, 257, 4610, 13, 198, 220, 2746, 62, 1102, 332, 2004, 25, 20512, 198, 220, 1303, 383, 4673, 2494, 290, 2994, 286, 4981, 11, 611, 9723, 13, 198, 220, 4673, 62, 4873, 25, 32233, 58, 22468, 60, 198, 220, 2994, 25, 32233, 58, 22468, 60, 198, 220, 1303, 347, 963, 12, 5715, 2811, 2854, 20731, 13, 198, 220, 9922, 25, 12178, 198, 220, 15440, 25, 12178, 198, 220, 10014, 25, 12178, 198, 220, 277, 16, 25, 12178, 628, 220, 2488, 26745, 628, 220, 2488, 26745, 628, 220, 2488, 26745, 198, 220, 825, 2496, 62, 9127, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 37227, 3855, 262, 1271, 286, 6670, 287, 262, 15458, 13, 628, 220, 220, 220, 1114, 4823, 12, 5715, 1398, 13350, 11, 428, 481, 307, 4961, 284, 6060, 13, 34960, 62, 9127, 11, 2073, 198, 220, 220, 220, 340, 338, 4961, 284, 262, 15458, 10139, 954, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 2116, 13, 83, 853, 1039, 13, 43358, 58, 16, 60, 628, 220, 825, 11593, 27363, 834, 7, 944, 11, 9529, 82, 25, 366, 25468, 1, 2599, 198, 220, 220, 220, 37227, 41488, 15458, 2482, 526, 15931, 198, 220, 220, 220, 1441, 2116, 13, 4134, 23843, 6624, 9529, 82, 13, 4134, 23843, 628, 220, 825, 11593, 13655, 834, 7, 944, 11, 9529, 82, 25, 366, 25468, 1, 2599, 198, 220, 220, 220, 37227, 41488, 15458, 2482, 526, 15931, 198, 220, 220, 220, 1441, 2116, 13, 4134, 23843, 1875, 9529, 82, 13, 4134, 23843, 628, 220, 2488, 4871, 24396, 198, 220, 825, 13610, 7, 198, 220, 220, 220, 537, 82, 11, 198, 220, 220, 220, 6670, 25, 45941, 13, 18747, 11, 198, 220, 220, 220, 16277, 25, 45941, 13, 18747, 11, 198, 220, 220, 220, 24415, 62, 9127, 25, 493, 796, 352, 11, 198, 220, 220, 220, 2746, 62, 1102, 332, 2004, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 4673, 62, 4873, 25, 32233, 58, 22468, 60, 796, 6045, 11, 198, 220, 220, 220, 2994, 25, 32233, 58, 22468, 60, 796, 6045, 11, 198, 220, 15179, 198, 220, 220, 220, 37227, 42316, 257, 2482, 4554, 422, 352, 12, 8940, 6670, 290, 16277, 13, 628, 220, 220, 220, 770, 318, 262, 9871, 1724, 286, 5678, 257, 15691, 4554, 11, 543, 2753, 198, 220, 220, 220, 1337, 286, 22232, 477, 286, 262, 20731, 329, 345, 13, 383, 4069, 286, 20731, 198, 220, 220, 220, 17952, 318, 10795, 319, 262, 1377, 43501, 62, 1416, 2850, 62, 8770, 3039, 62, 24396, 6056, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 6670, 25, 1052, 7177, 286, 352, 12, 8940, 2496, 30104, 351, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 357, 88, 62, 9127, 11, 331, 62, 46156, 1483, 828, 288, 4906, 493, 2624, 13, 198, 220, 220, 220, 220, 220, 16277, 25, 1052, 7177, 286, 352, 12, 8940, 17724, 30104, 351, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 357, 88, 62, 9127, 11, 331, 62, 46156, 1483, 828, 288, 4906, 493, 2624, 13, 198, 220, 220, 220, 220, 220, 24415, 62, 9127, 25, 1114, 11629, 876, 4981, 11, 262, 1271, 286, 2746, 34820, 284, 198, 220, 220, 220, 220, 220, 220, 220, 24061, 262, 2457, 1255, 13, 198, 220, 220, 220, 220, 220, 2746, 62, 1102, 332, 2004, 25, 1114, 11629, 876, 4981, 11, 1771, 2746, 6718, 2004, 13, 198, 220, 220, 220, 220, 220, 4673, 62, 4873, 25, 383, 2746, 4673, 2494, 11, 611, 9723, 13, 198, 220, 220, 220, 220, 220, 2994, 25, 383, 2746, 2994, 11, 611, 9723, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 317, 15691, 4554, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 6670, 13, 43358, 14512, 16277, 13, 43358, 25, 198, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 3109, 7254, 2746, 284, 4439, 6670, 351, 5485, 1391, 83, 853, 1039, 13, 43358, 92, 475, 366, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 38070, 2722, 16277, 351, 5485, 1391, 28764, 9278, 13, 43358, 36786, 198, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 331, 62, 46156, 1483, 796, 6670, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 611, 331, 62, 46156, 1483, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 3109, 7254, 6167, 15793, 1483, 1875, 352, 11, 2722, 1391, 88, 62, 46156, 1483, 36786, 198, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 13610, 15715, 26515, 286, 5485, 357, 16793, 62, 9127, 737, 198, 220, 220, 220, 2081, 62, 88, 796, 45941, 13, 853, 9806, 7, 83, 853, 1039, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 2747, 62, 88, 796, 45941, 13, 853, 9806, 7, 28764, 9278, 11, 16488, 28, 16, 8, 628, 220, 220, 220, 1303, 24550, 7, 12567, 13, 785, 14, 15645, 34, 13929, 1040, 14, 2964, 46971, 5805, 14, 37165, 14, 1828, 2599, 770, 18533, 326, 198, 220, 220, 220, 1303, 14722, 779, 262, 3815, 685, 15, 42303, 77, 737, 198, 220, 220, 220, 14722, 796, 45941, 13, 283, 858, 7, 88, 62, 46156, 1483, 11, 288, 4906, 28, 37659, 13, 600, 2414, 8, 628, 220, 220, 220, 1441, 537, 82, 7, 198, 220, 220, 220, 220, 220, 6670, 28, 83, 853, 1039, 11, 198, 220, 220, 220, 220, 220, 16277, 28, 28764, 9278, 11, 198, 220, 220, 220, 220, 220, 24415, 62, 9127, 28, 2676, 341, 62, 9127, 11, 198, 220, 220, 220, 220, 220, 2746, 62, 1102, 332, 2004, 28, 19849, 62, 1102, 332, 2004, 11, 198, 220, 220, 220, 220, 220, 4673, 62, 4873, 28, 40684, 62, 4873, 11, 198, 220, 220, 220, 220, 220, 2994, 28, 22462, 11, 198, 220, 220, 220, 220, 220, 9922, 28, 8135, 35720, 13, 4164, 10466, 13, 4134, 23843, 62, 26675, 7, 7942, 62, 88, 11, 2747, 62, 88, 828, 198, 220, 220, 220, 220, 220, 15440, 28, 8135, 35720, 13, 4164, 10466, 13, 3866, 16005, 62, 26675, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 28, 23912, 1424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2811, 28, 38948, 50, 13, 43501, 62, 1416, 2850, 62, 8770, 3039, 62, 24396, 11, 198, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 10014, 28, 8135, 35720, 13, 4164, 10466, 13, 8344, 439, 62, 26675, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 28, 23912, 1424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2811, 28, 38948, 50, 13, 43501, 62, 1416, 2850, 62, 8770, 3039, 62, 24396, 11, 198, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 277, 16, 28, 8135, 35720, 13, 4164, 10466, 13, 69, 16, 62, 26675, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 28, 23912, 1424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2811, 28, 38948, 50, 13, 43501, 62, 1416, 2850, 62, 8770, 3039, 62, 24396, 11, 198, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 1267, 628, 198, 4871, 21567, 25468, 25, 198, 220, 37227, 44, 32725, 26356, 10708, 25694, 1973, 37830, 526, 15931, 628, 220, 825, 10133, 7, 198, 220, 220, 220, 2116, 11, 1366, 25, 6060, 11, 2482, 25, 15691, 11, 3463, 25, 32233, 58, 22468, 60, 796, 6045, 198, 220, 1267, 4613, 6045, 25, 198, 220, 220, 220, 37227, 10260, 262, 10708, 2482, 351, 257, 649, 15458, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 1366, 25, 383, 15458, 1366, 973, 284, 4439, 262, 2482, 13, 198, 220, 220, 220, 220, 220, 2482, 25, 383, 15458, 2482, 284, 4296, 262, 1459, 1181, 351, 13, 198, 220, 220, 220, 220, 220, 3463, 25, 317, 3463, 284, 8333, 284, 26356, 21784, 13, 412, 13, 70, 13, 284, 3463, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 1973, 477, 6670, 11, 779, 3463, 28, 43420, 13, 16793, 62, 9127, 13, 1675, 3463, 1973, 198, 220, 220, 220, 220, 220, 220, 220, 6670, 11, 779, 3463, 28, 43501, 13, 16793, 62, 9127, 13, 1675, 3463, 1973, 198, 220, 220, 220, 220, 220, 220, 220, 28770, 11, 779, 3463, 28, 43501, 13, 34960, 62, 9127, 13, 2750, 4277, 11, 3463, 416, 2496, 198, 220, 220, 220, 220, 220, 220, 220, 954, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 3463, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 3463, 796, 2482, 13, 16793, 62, 9127, 628, 220, 220, 220, 2116, 13, 6551, 62, 16345, 15853, 3463, 198, 220, 220, 220, 2116, 13, 43501, 62, 9127, 15853, 352, 198, 220, 220, 220, 2116, 13, 34960, 62, 9127, 15853, 1366, 13, 34960, 62, 9127, 198, 220, 220, 220, 2116, 13, 16793, 62, 9127, 15853, 2482, 13, 16793, 62, 9127, 198, 220, 220, 220, 2116, 13, 6551, 276, 62, 2676, 341, 62, 9127, 62, 16345, 15853, 2482, 13, 2676, 341, 62, 9127, 1635, 3463, 198, 220, 220, 220, 2116, 13, 6551, 276, 62, 19849, 62, 1102, 332, 2004, 62, 16345, 15853, 357, 198, 220, 220, 220, 220, 220, 3463, 611, 2482, 13, 19849, 62, 1102, 332, 2004, 2073, 657, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 2482, 13, 10134, 62, 40684, 62, 4873, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 10134, 62, 40684, 62, 4873, 796, 6407, 198, 220, 220, 220, 220, 220, 2116, 13, 6551, 276, 62, 40684, 62, 4873, 62, 16345, 15853, 2482, 13, 40684, 62, 4873, 1635, 3463, 198, 220, 220, 220, 611, 2482, 13, 10134, 62, 22462, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 10134, 62, 22462, 796, 6407, 198, 220, 220, 220, 220, 220, 2116, 13, 6551, 276, 62, 22462, 62, 16345, 15853, 2482, 13, 22462, 1635, 3463, 198, 220, 220, 220, 2116, 13, 6551, 276, 62, 4134, 23843, 62, 16345, 15853, 2482, 13, 4134, 23843, 1635, 3463, 198, 220, 220, 220, 2116, 13, 6551, 276, 62, 3866, 16005, 62, 16345, 15853, 2482, 13, 3866, 16005, 1635, 3463, 198, 220, 220, 220, 2116, 13, 6551, 276, 62, 8344, 439, 62, 16345, 15853, 2482, 13, 8344, 439, 1635, 3463, 198, 220, 220, 220, 2116, 13, 6551, 276, 62, 69, 16, 62, 16345, 15853, 2482, 13, 69, 16, 1635, 3463, 628, 220, 2488, 26745, 628, 220, 2488, 26745, 628, 220, 2488, 26745, 628, 220, 2488, 26745, 628, 220, 2488, 26745, 628, 220, 2488, 26745, 628, 220, 2488, 26745, 628, 220, 2488, 26745, 198 ]
2.8988
2,500
# A module inside the package print("Module: ", __name__)
[ 2, 317, 8265, 2641, 262, 5301, 198, 198, 4798, 7203, 26796, 25, 33172, 11593, 3672, 834, 8, 628 ]
3.333333
18
""" https://leetcode.com/problems/divisor-game/ Alice and Bob take turns playing a game, with Alice starting first. Initially, there is a number N on the chalkboard. On each player's turn, that player makes a move consisting of: Choosing any x with 0 < x < N and N % x == 0. Replacing the number N on the chalkboard with N - x. Also, if a player cannot make a move, they lose the game. Return True if and only if Alice wins the game, assuming both players play optimally. Example 1: Input: 2 Output: true Explanation: Alice chooses 1, and Bob has no more moves. Example 2: Input: 3 Output: false Explanation: Alice chooses 1, Bob chooses 1, and Alice has no more moves. Note: 1 <= N <= 1000 """ # time complexity: O(nlogn), space complexity: O(n)
[ 37811, 198, 5450, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 7146, 271, 273, 12, 6057, 14, 198, 44484, 290, 5811, 1011, 4962, 2712, 257, 983, 11, 351, 14862, 3599, 717, 13, 198, 198, 40443, 11, 612, 318, 257, 1271, 399, 319, 262, 30860, 3526, 13, 220, 1550, 1123, 2137, 338, 1210, 11, 326, 2137, 1838, 257, 1445, 17747, 286, 25, 198, 198, 22164, 2752, 597, 2124, 351, 657, 1279, 2124, 1279, 399, 290, 399, 4064, 2124, 6624, 657, 13, 198, 39232, 4092, 262, 1271, 399, 319, 262, 30860, 3526, 351, 399, 532, 2124, 13, 198, 7583, 11, 611, 257, 2137, 2314, 787, 257, 1445, 11, 484, 4425, 262, 983, 13, 198, 198, 13615, 6407, 611, 290, 691, 611, 14862, 7864, 262, 983, 11, 13148, 1111, 1938, 711, 6436, 453, 13, 628, 198, 198, 16281, 352, 25, 198, 198, 20560, 25, 362, 198, 26410, 25, 2081, 198, 3109, 11578, 341, 25, 14862, 19769, 352, 11, 290, 5811, 468, 645, 517, 6100, 13, 198, 16281, 362, 25, 198, 198, 20560, 25, 513, 198, 26410, 25, 3991, 198, 3109, 11578, 341, 25, 14862, 19769, 352, 11, 5811, 19769, 352, 11, 290, 14862, 468, 645, 517, 6100, 13, 628, 198, 6425, 25, 198, 198, 16, 19841, 399, 19841, 8576, 198, 37811, 198, 198, 2, 640, 13357, 25, 440, 7, 21283, 2360, 828, 2272, 13357, 25, 440, 7, 77, 8 ]
3.328947
228
import sys import traceback import numpy as np from evalml.automl.engine import EngineBase from evalml.exceptions import PipelineScoreError from evalml.model_family import ModelFamily from evalml.objectives.utils import get_objective from evalml.utils import get_logger logger = get_logger(__file__) class SequentialEngine(EngineBase): """The default engine for the AutoML search. Trains and scores pipelines locally, one after another.""" def evaluate_batch(self, pipelines): """Evaluate a batch of pipelines using the current dataset and AutoML state. Arguments: pipelines (list(PipelineBase)): A batch of pipelines to be fitted and evaluated. Returns: list (int): a list of the new pipeline IDs which were created by the AutoML search. """ if self.X_train is None or self.y_train is None: raise ValueError("Dataset has not been loaded into the engine.") new_pipeline_ids = [] index = 0 while self._should_continue_callback() and index < len(pipelines): pipeline = pipelines[index] self._pre_evaluation_callback(pipeline) X, y = self.X_train, self.y_train if pipeline.model_family == ModelFamily.ENSEMBLE: X, y = self.X_train.iloc[self.ensembling_indices], self.y_train.iloc[self.ensembling_indices] elif self.ensembling_indices is not None: training_indices = [i for i in range(len(self.X_train)) if i not in self.ensembling_indices] X = self.X_train.iloc[training_indices] y = self.y_train.iloc[training_indices] evaluation_result = EngineBase.train_and_score_pipeline(pipeline, self.automl, X, y) new_pipeline_ids.append(self._post_evaluation_callback(pipeline, evaluation_result)) index += 1 return new_pipeline_ids def train_batch(self, pipelines): """Train a batch of pipelines using the current dataset. Arguments: pipelines (list(PipelineBase)): A batch of pipelines to fit. Returns: dict[str, PipelineBase]: Dict of fitted pipelines keyed by pipeline name. """ super().train_batch(pipelines) fitted_pipelines = {} for pipeline in pipelines: try: fitted_pipeline = EngineBase.train_pipeline( pipeline, self.X_train, self.y_train, self.automl.optimize_thresholds, self.automl.objective ) fitted_pipelines[fitted_pipeline.name] = fitted_pipeline except Exception as e: logger.error(f'Train error for {pipeline.name}: {str(e)}') tb = traceback.format_tb(sys.exc_info()[2]) logger.error("Traceback:") logger.error("\n".join(tb)) return fitted_pipelines def score_batch(self, pipelines, X, y, objectives): """Score a batch of pipelines. Arguments: pipelines (list(PipelineBase)): A batch of fitted pipelines to score. X (ww.DataTable, pd.DataFrame): Features to score on. y (ww.DataTable, pd.DataFrame): Data to score on. objectives (list(ObjectiveBase), list(str)): Objectives to score on. Returns: dict: Dict containing scores for all objectives for all pipelines. Keyed by pipeline name. """ super().score_batch(pipelines, X, y, objectives) scores = {} objectives = [get_objective(o, return_instance=True) for o in objectives] for pipeline in pipelines: try: scores[pipeline.name] = pipeline.score(X, y, objectives) except Exception as e: logger.error(f"Score error for {pipeline.name}: {str(e)}") if isinstance(e, PipelineScoreError): nan_scores = {objective: np.nan for objective in e.exceptions} scores[pipeline.name] = {**nan_scores, **e.scored_successfully} else: # Traceback already included in the PipelineScoreError so we only # need to include it for all other errors tb = traceback.format_tb(sys.exc_info()[2]) logger.error("Traceback:") logger.error("\n".join(tb)) scores[pipeline.name] = {objective.name: np.nan for objective in objectives} return scores
[ 11748, 25064, 198, 11748, 12854, 1891, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 5418, 4029, 13, 2306, 296, 75, 13, 18392, 1330, 7117, 14881, 198, 6738, 5418, 4029, 13, 1069, 11755, 1330, 37709, 26595, 12331, 198, 6738, 5418, 4029, 13, 19849, 62, 17989, 1330, 9104, 24094, 198, 6738, 5418, 4029, 13, 15252, 1083, 13, 26791, 1330, 651, 62, 15252, 425, 198, 6738, 5418, 4029, 13, 26791, 1330, 651, 62, 6404, 1362, 198, 198, 6404, 1362, 796, 651, 62, 6404, 1362, 7, 834, 7753, 834, 8, 628, 198, 4871, 24604, 1843, 13798, 7, 13798, 14881, 2599, 198, 220, 220, 220, 37227, 464, 4277, 3113, 329, 262, 11160, 5805, 2989, 13, 833, 1299, 290, 8198, 31108, 15726, 11, 530, 706, 1194, 526, 15931, 628, 220, 220, 220, 825, 13446, 62, 43501, 7, 944, 11, 31108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 36, 2100, 4985, 257, 15458, 286, 31108, 1262, 262, 1459, 27039, 290, 11160, 5805, 1181, 13, 628, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31108, 357, 4868, 7, 47, 541, 4470, 14881, 8, 2599, 317, 15458, 286, 31108, 284, 307, 18235, 290, 16726, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 357, 600, 2599, 257, 1351, 286, 262, 649, 11523, 32373, 543, 547, 2727, 416, 262, 11160, 5805, 2989, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 55, 62, 27432, 318, 6045, 393, 2116, 13, 88, 62, 27432, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 27354, 292, 316, 468, 407, 587, 9639, 656, 262, 3113, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 79, 541, 4470, 62, 2340, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 981, 2116, 13557, 21754, 62, 43043, 62, 47423, 3419, 290, 6376, 1279, 18896, 7, 79, 541, 20655, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11523, 796, 31108, 58, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3866, 62, 18206, 2288, 62, 47423, 7, 79, 541, 4470, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 331, 796, 2116, 13, 55, 62, 27432, 11, 2116, 13, 88, 62, 27432, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11523, 13, 19849, 62, 17989, 6624, 9104, 24094, 13, 16938, 3620, 19146, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 331, 796, 2116, 13, 55, 62, 27432, 13, 346, 420, 58, 944, 13, 1072, 2022, 1359, 62, 521, 1063, 4357, 2116, 13, 88, 62, 27432, 13, 346, 420, 58, 944, 13, 1072, 2022, 1359, 62, 521, 1063, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 1072, 2022, 1359, 62, 521, 1063, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 521, 1063, 796, 685, 72, 329, 1312, 287, 2837, 7, 11925, 7, 944, 13, 55, 62, 27432, 4008, 611, 1312, 407, 287, 2116, 13, 1072, 2022, 1359, 62, 521, 1063, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 796, 2116, 13, 55, 62, 27432, 13, 346, 420, 58, 34409, 62, 521, 1063, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 796, 2116, 13, 88, 62, 27432, 13, 346, 420, 58, 34409, 62, 521, 1063, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 20274, 796, 7117, 14881, 13, 27432, 62, 392, 62, 26675, 62, 79, 541, 4470, 7, 79, 541, 4470, 11, 2116, 13, 2306, 296, 75, 11, 1395, 11, 331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 79, 541, 4470, 62, 2340, 13, 33295, 7, 944, 13557, 7353, 62, 18206, 2288, 62, 47423, 7, 79, 541, 4470, 11, 12660, 62, 20274, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 79, 541, 4470, 62, 2340, 628, 220, 220, 220, 825, 4512, 62, 43501, 7, 944, 11, 31108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44077, 257, 15458, 286, 31108, 1262, 262, 1459, 27039, 13, 628, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31108, 357, 4868, 7, 47, 541, 4470, 14881, 8, 2599, 317, 15458, 286, 31108, 284, 4197, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 58, 2536, 11, 37709, 14881, 5974, 360, 713, 286, 18235, 31108, 1994, 276, 416, 11523, 1438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 27432, 62, 43501, 7, 79, 541, 20655, 8, 628, 220, 220, 220, 220, 220, 220, 220, 18235, 62, 79, 541, 20655, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 11523, 287, 31108, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18235, 62, 79, 541, 4470, 796, 7117, 14881, 13, 27432, 62, 79, 541, 4470, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11523, 11, 2116, 13, 55, 62, 27432, 11, 2116, 13, 88, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2306, 296, 75, 13, 40085, 1096, 62, 400, 10126, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2306, 296, 75, 13, 15252, 425, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18235, 62, 79, 541, 20655, 58, 38631, 62, 79, 541, 4470, 13, 3672, 60, 796, 18235, 62, 79, 541, 4470, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 6, 44077, 4049, 329, 1391, 79, 541, 4470, 13, 3672, 38362, 1391, 2536, 7, 68, 38165, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 65, 796, 12854, 1891, 13, 18982, 62, 83, 65, 7, 17597, 13, 41194, 62, 10951, 3419, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 2898, 558, 1891, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 59, 77, 1911, 22179, 7, 83, 65, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 18235, 62, 79, 541, 20655, 628, 220, 220, 220, 825, 4776, 62, 43501, 7, 944, 11, 31108, 11, 1395, 11, 331, 11, 15221, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26595, 257, 15458, 286, 31108, 13, 628, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31108, 357, 4868, 7, 47, 541, 4470, 14881, 8, 2599, 317, 15458, 286, 18235, 31108, 284, 4776, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 357, 1383, 13, 6601, 10962, 11, 279, 67, 13, 6601, 19778, 2599, 17571, 284, 4776, 319, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 357, 1383, 13, 6601, 10962, 11, 279, 67, 13, 6601, 19778, 2599, 6060, 284, 4776, 319, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15221, 357, 4868, 7, 10267, 425, 14881, 828, 1351, 7, 2536, 8, 2599, 9515, 1083, 284, 4776, 319, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 25, 360, 713, 7268, 8198, 329, 477, 15221, 329, 477, 31108, 13, 7383, 276, 416, 11523, 1438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 26675, 62, 43501, 7, 79, 541, 20655, 11, 1395, 11, 331, 11, 15221, 8, 628, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 15221, 796, 685, 1136, 62, 15252, 425, 7, 78, 11, 1441, 62, 39098, 28, 17821, 8, 329, 267, 287, 15221, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 11523, 287, 31108, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 58, 79, 541, 4470, 13, 3672, 60, 796, 11523, 13, 26675, 7, 55, 11, 331, 11, 15221, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 26595, 4049, 329, 1391, 79, 541, 4470, 13, 3672, 38362, 1391, 2536, 7, 68, 38165, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 68, 11, 37709, 26595, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15709, 62, 1416, 2850, 796, 1391, 15252, 425, 25, 45941, 13, 12647, 329, 9432, 287, 304, 13, 1069, 11755, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 58, 79, 541, 4470, 13, 3672, 60, 796, 1391, 1174, 12647, 62, 1416, 2850, 11, 12429, 68, 13, 1416, 1850, 62, 37351, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 34912, 1891, 1541, 3017, 287, 262, 37709, 26595, 12331, 523, 356, 691, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 761, 284, 2291, 340, 329, 477, 584, 8563, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 65, 796, 12854, 1891, 13, 18982, 62, 83, 65, 7, 17597, 13, 41194, 62, 10951, 3419, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 2898, 558, 1891, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 59, 77, 1911, 22179, 7, 83, 65, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 58, 79, 541, 4470, 13, 3672, 60, 796, 1391, 15252, 425, 13, 3672, 25, 45941, 13, 12647, 329, 9432, 287, 15221, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 8198, 198 ]
2.240869
2,026
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 import csv import s3fs import os s3 = s3fs.S3FileSystem(anon=False) header = [ 'uuid', 'country', 'itemType', 'salesChannel', 'orderPriority', 'orderDate', 'region', 'shipDate' ]
[ 2, 15069, 6186, 13, 785, 11, 3457, 13, 393, 663, 29116, 13, 1439, 6923, 33876, 13, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 17168, 12, 15, 198, 11748, 269, 21370, 198, 11748, 264, 18, 9501, 198, 11748, 28686, 198, 198, 82, 18, 796, 264, 18, 9501, 13, 50, 18, 8979, 11964, 7, 36902, 28, 25101, 8, 198, 198, 25677, 796, 685, 198, 220, 220, 220, 705, 12303, 312, 3256, 198, 220, 220, 220, 705, 19315, 3256, 198, 220, 220, 220, 705, 9186, 6030, 3256, 198, 220, 220, 220, 705, 82, 2040, 29239, 3256, 198, 220, 220, 220, 705, 2875, 22442, 414, 3256, 198, 220, 220, 220, 705, 2875, 10430, 3256, 198, 220, 220, 220, 705, 36996, 3256, 198, 220, 220, 220, 705, 6720, 10430, 6, 198, 60, 628, 628, 198 ]
2.398496
133
# -*- coding: utf-8 -*- from numpy import pi from numpy import zeros from numpy import sin from numpy import cos from numpy import sqrt from numpy.random import random from numpy import float32 as npfloat from numpy import int32 as npint TWOPI = pi*2 PI = pi
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 628, 628, 198, 198, 6738, 299, 32152, 1330, 31028, 198, 6738, 299, 32152, 1330, 1976, 27498, 198, 6738, 299, 32152, 1330, 7813, 198, 6738, 299, 32152, 1330, 8615, 198, 6738, 299, 32152, 1330, 19862, 17034, 198, 6738, 299, 32152, 13, 25120, 1330, 4738, 198, 198, 6738, 299, 32152, 1330, 12178, 2624, 355, 45941, 22468, 198, 6738, 299, 32152, 1330, 493, 2624, 355, 45941, 600, 628, 198, 34551, 3185, 40, 796, 31028, 9, 17, 198, 11901, 796, 31028, 628, 628 ]
2.934783
92
from logging import debug, exception from flask import Flask, request import os import asyncio import threading import ssl import aiohttp import nest_asyncio import json from openleadr.client import OpenADRClient from openleadr.utils import report_callback from openleadr.enums import MEASUREMENTS nest_asyncio.apply() client = OpenADRClient(ven_name='myven', vtn_url=os.environ.get('VTN_URL')) client.add_report(report_callback, client.ven_id, report_name = 'TELEMETRY_STATUS') client.add_report(report_callback, client.ven_id, report_name = 'TELEMETRY_USAGE', measurement= MEASUREMENTS.POWER_REAL) app = Flask(__name__) @app.route('/create_party_registration', methods=['POST', 'GET']) @app.route('/create_party_registration_while_registered', methods=['POST', 'GET']) @app.route('/query_registration', methods=['POST']) @app.route('/cancel_party_registration', methods=['POST']) @app.route('/register_reports') @app.route('/request_event', methods=['POST']) @app.route('/create_opt', methods =['POST']) @app.route('/cancel_opt', methods = ['POST']) if __name__ == "__main__": t1 = threading.Thread(target=app.run, kwargs={'host': '0.0.0.0', 'port': os.environ.get('PORT') }) t2 = threading.Thread(target=client_run) t1.start() t2.start() t2.join()
[ 6738, 18931, 1330, 14257, 11, 6631, 198, 6738, 42903, 1330, 46947, 11, 2581, 198, 11748, 28686, 198, 11748, 30351, 952, 198, 11748, 4704, 278, 198, 11748, 264, 6649, 198, 11748, 257, 952, 4023, 198, 11748, 16343, 62, 292, 13361, 952, 198, 11748, 33918, 198, 6738, 1280, 28230, 81, 13, 16366, 1330, 4946, 2885, 49, 11792, 198, 6738, 1280, 28230, 81, 13, 26791, 1330, 989, 62, 47423, 198, 6738, 1280, 28230, 81, 13, 268, 5700, 1330, 11948, 1921, 11335, 28957, 198, 198, 77, 395, 62, 292, 13361, 952, 13, 39014, 3419, 198, 16366, 796, 4946, 2885, 49, 11792, 7, 574, 62, 3672, 11639, 1820, 574, 3256, 410, 34106, 62, 6371, 28, 418, 13, 268, 2268, 13, 1136, 10786, 36392, 45, 62, 21886, 6, 4008, 198, 16366, 13, 2860, 62, 13116, 7, 13116, 62, 47423, 11, 5456, 13, 574, 62, 312, 11, 989, 62, 3672, 796, 705, 9328, 2538, 47123, 18276, 62, 35744, 2937, 11537, 198, 16366, 13, 2860, 62, 13116, 7, 13116, 62, 47423, 11, 5456, 13, 574, 62, 312, 11, 989, 62, 3672, 796, 705, 9328, 2538, 47123, 18276, 62, 2937, 11879, 3256, 15558, 28, 11948, 1921, 11335, 28957, 13, 47, 36048, 62, 2200, 1847, 8, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 198, 31, 1324, 13, 38629, 10786, 14, 17953, 62, 10608, 62, 2301, 33397, 3256, 5050, 28, 17816, 32782, 3256, 705, 18851, 6, 12962, 198, 198, 31, 1324, 13, 38629, 10786, 14, 17953, 62, 10608, 62, 2301, 33397, 62, 4514, 62, 33736, 3256, 5050, 28, 17816, 32782, 3256, 705, 18851, 6, 12962, 198, 198, 31, 1324, 13, 38629, 10786, 14, 22766, 62, 2301, 33397, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 198, 31, 1324, 13, 38629, 10786, 14, 66, 21130, 62, 10608, 62, 2301, 33397, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 198, 31, 1324, 13, 38629, 10786, 14, 30238, 62, 48922, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 25927, 62, 15596, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 198, 31, 1324, 13, 38629, 10786, 14, 17953, 62, 8738, 3256, 5050, 796, 17816, 32782, 6, 12962, 198, 198, 31, 1324, 13, 38629, 10786, 14, 66, 21130, 62, 8738, 3256, 5050, 796, 37250, 32782, 6, 12962, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 256, 16, 796, 4704, 278, 13, 16818, 7, 16793, 28, 1324, 13, 5143, 11, 479, 86, 22046, 34758, 6, 4774, 10354, 705, 15, 13, 15, 13, 15, 13, 15, 3256, 705, 634, 10354, 28686, 13, 268, 2268, 13, 1136, 10786, 15490, 11537, 32092, 198, 220, 220, 220, 256, 17, 796, 4704, 278, 13, 16818, 7, 16793, 28, 16366, 62, 5143, 8, 198, 220, 220, 220, 256, 16, 13, 9688, 3419, 198, 220, 220, 220, 256, 17, 13, 9688, 3419, 198, 220, 220, 220, 256, 17, 13, 22179, 3419 ]
2.729211
469
from __future__ import absolute_import # Copyright(c) Max Kolosov 2009 [email protected] # http://vosolok2008.narod.ru # BSD license __version__ = '0.1' __versionTime__ = '2009-11-15' __author__ = 'Max Kolosov <[email protected]>' __doc__ = ''' pybass_aac.py - is ctypes python module for BASS_AAC - extension to the BASS audio library that enables the playback of Advanced Audio Coding and MPEG-4 streams (http://www.maresweb.de). ''' import os, sys, ctypes from . import pybass from .paths import x86_path, x64_path import libloader bass_aac_module = libloader.load_library('bass_aac', x86_path=x86_path, x64_path=x64_path) func_type = libloader.get_functype() #Register the plugin with the Bass plugin system. pybass.BASS_PluginLoad(libloader.find_library_path('bass_aac', x86_path=x86_path, x64_path=x64_path), 0) QWORD = pybass.QWORD HSTREAM = pybass.HSTREAM DOWNLOADPROC = pybass.DOWNLOADPROC BASS_FILEPROCS = pybass.BASS_FILEPROCS # Additional BASS_SetConfig options BASS_CONFIG_MP4_VIDEO = 0x10700 # play the audio from MP4 videos # Additional tags available from BASS_StreamGetTags (for MP4 files) BASS_TAG_MP4 = 7 # MP4/iTunes metadata BASS_AAC_STEREO = 0x400000 # downmatrix to stereo # BASS_CHANNELINFO type BASS_CTYPE_STREAM_AAC = 0x10b00 # AAC BASS_CTYPE_STREAM_MP4 = 0x10b01 # MP4 #HSTREAM BASSAACDEF(BASS_AAC_StreamCreateFile)(BOOL mem, const void *file, QWORD offset, QWORD length, DWORD flags); BASS_AAC_StreamCreateFile = func_type(HSTREAM, ctypes.c_byte, ctypes.c_void_p, QWORD, QWORD, ctypes.c_ulong)(('BASS_AAC_StreamCreateFile', bass_aac_module)) #HSTREAM BASSAACDEF(BASS_AAC_StreamCreateURL)(const char *url, DWORD offset, DWORD flags, DOWNLOADPROC *proc, void *user); BASS_AAC_StreamCreateURL = func_type(HSTREAM, ctypes.c_char_p, ctypes.c_ulong, ctypes.c_ulong, DOWNLOADPROC, ctypes.c_void_p)(('BASS_AAC_StreamCreateURL', bass_aac_module)) #HSTREAM BASSAACDEF(BASS_AAC_StreamCreateFileUser)(DWORD system, DWORD flags, const BASS_FILEPROCS *procs, void *user); BASS_AAC_StreamCreateFileUser = func_type(HSTREAM, ctypes.c_ulong, ctypes.c_ulong, ctypes.POINTER(BASS_FILEPROCS), ctypes.c_void_p)(('BASS_AAC_StreamCreateFileUser', bass_aac_module)) #HSTREAM BASSAACDEF(BASS_MP4_StreamCreateFile)(BOOL mem, const void *file, QWORD offset, QWORD length, DWORD flags); BASS_MP4_StreamCreateFile = func_type(HSTREAM, ctypes.c_byte, ctypes.c_void_p, QWORD, QWORD, ctypes.c_ulong)(('BASS_MP4_StreamCreateFile', bass_aac_module)) #HSTREAM BASSAACDEF(BASS_MP4_StreamCreateFileUser)(DWORD system, DWORD flags, const BASS_FILEPROCS *procs, void *user); BASS_MP4_StreamCreateFileUser = func_type(HSTREAM, ctypes.c_ulong, ctypes.c_ulong, ctypes.POINTER(BASS_FILEPROCS), ctypes.c_void_p)(('BASS_MP4_StreamCreateFileUser', bass_aac_module))
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 201, 198, 2, 15069, 7, 66, 8, 5436, 25910, 418, 709, 3717, 3509, 74, 349, 418, 709, 31, 259, 3524, 13, 622, 201, 198, 2, 2638, 1378, 85, 418, 349, 482, 11528, 13, 23955, 375, 13, 622, 201, 198, 2, 347, 10305, 5964, 201, 198, 201, 198, 834, 9641, 834, 796, 705, 15, 13, 16, 6, 201, 198, 834, 9641, 7575, 834, 796, 705, 10531, 12, 1157, 12, 1314, 6, 201, 198, 834, 9800, 834, 796, 705, 11518, 25910, 418, 709, 1279, 9806, 74, 349, 418, 709, 31, 259, 3524, 13, 622, 29, 6, 201, 198, 834, 15390, 834, 796, 705, 7061, 201, 198, 9078, 42933, 62, 64, 330, 13, 9078, 532, 318, 269, 19199, 21015, 8265, 329, 201, 198, 33, 10705, 62, 32, 2246, 532, 7552, 284, 262, 347, 10705, 6597, 5888, 326, 13536, 262, 16388, 201, 198, 1659, 13435, 13491, 327, 7656, 290, 41203, 12, 19, 15190, 357, 4023, 1378, 2503, 13, 23745, 12384, 13, 2934, 737, 201, 198, 7061, 6, 201, 198, 201, 198, 11748, 28686, 11, 25064, 11, 269, 19199, 201, 198, 6738, 764, 1330, 12972, 42933, 201, 198, 6738, 764, 6978, 82, 1330, 2124, 4521, 62, 6978, 11, 2124, 2414, 62, 6978, 201, 198, 11748, 9195, 29356, 201, 198, 201, 198, 42933, 62, 64, 330, 62, 21412, 796, 9195, 29356, 13, 2220, 62, 32016, 10786, 42933, 62, 64, 330, 3256, 2124, 4521, 62, 6978, 28, 87, 4521, 62, 6978, 11, 2124, 2414, 62, 6978, 28, 87, 2414, 62, 6978, 8, 201, 198, 20786, 62, 4906, 796, 9195, 29356, 13, 1136, 62, 12543, 310, 2981, 3419, 201, 198, 2, 38804, 262, 13877, 351, 262, 19829, 13877, 1080, 13, 201, 198, 9078, 42933, 13, 33, 10705, 62, 37233, 8912, 7, 8019, 29356, 13, 19796, 62, 32016, 62, 6978, 10786, 42933, 62, 64, 330, 3256, 2124, 4521, 62, 6978, 28, 87, 4521, 62, 6978, 11, 2124, 2414, 62, 6978, 28, 87, 2414, 62, 6978, 828, 657, 8, 201, 198, 201, 198, 48, 54, 12532, 796, 12972, 42933, 13, 48, 54, 12532, 201, 198, 39, 2257, 32235, 796, 12972, 42933, 13, 39, 2257, 32235, 201, 198, 41925, 35613, 4805, 4503, 796, 12972, 42933, 13, 41925, 35613, 4805, 4503, 201, 198, 33, 10705, 62, 25664, 4805, 4503, 50, 796, 12972, 42933, 13, 33, 10705, 62, 25664, 4805, 4503, 50, 201, 198, 201, 198, 201, 198, 2, 15891, 347, 10705, 62, 7248, 16934, 3689, 201, 198, 33, 10705, 62, 10943, 16254, 62, 7378, 19, 62, 42937, 796, 657, 87, 940, 9879, 1303, 711, 262, 6597, 422, 4904, 19, 5861, 201, 198, 201, 198, 2, 15891, 15940, 1695, 422, 347, 10705, 62, 12124, 3855, 36142, 357, 1640, 4904, 19, 3696, 8, 201, 198, 33, 10705, 62, 42197, 62, 7378, 19, 796, 767, 1303, 4904, 19, 14, 72, 51, 4015, 20150, 201, 198, 201, 198, 33, 10705, 62, 32, 2246, 62, 41809, 4720, 796, 657, 87, 7029, 830, 1303, 866, 6759, 8609, 284, 24820, 201, 198, 201, 198, 2, 347, 10705, 62, 3398, 22846, 3698, 10778, 2099, 201, 198, 33, 10705, 62, 4177, 56, 11401, 62, 2257, 32235, 62, 32, 2246, 796, 657, 87, 940, 65, 405, 1303, 47943, 201, 198, 33, 10705, 62, 4177, 56, 11401, 62, 2257, 32235, 62, 7378, 19, 796, 657, 87, 940, 65, 486, 1303, 4904, 19, 201, 198, 201, 198, 201, 198, 2, 39, 2257, 32235, 29809, 4090, 2246, 32988, 7, 33, 10705, 62, 32, 2246, 62, 12124, 16447, 8979, 5769, 8202, 3535, 1066, 11, 1500, 7951, 1635, 7753, 11, 1195, 54, 12532, 11677, 11, 1195, 54, 12532, 4129, 11, 29652, 12532, 9701, 1776, 201, 198, 33, 10705, 62, 32, 2246, 62, 12124, 16447, 8979, 796, 25439, 62, 4906, 7, 39, 2257, 32235, 11, 269, 19199, 13, 66, 62, 26327, 11, 269, 19199, 13, 66, 62, 19382, 62, 79, 11, 1195, 54, 12532, 11, 1195, 54, 12532, 11, 269, 19199, 13, 66, 62, 377, 506, 5769, 10786, 33, 10705, 62, 32, 2246, 62, 12124, 16447, 8979, 3256, 12702, 62, 64, 330, 62, 21412, 4008, 201, 198, 2, 39, 2257, 32235, 29809, 4090, 2246, 32988, 7, 33, 10705, 62, 32, 2246, 62, 12124, 16447, 21886, 5769, 9979, 1149, 1635, 6371, 11, 29652, 12532, 11677, 11, 29652, 12532, 9701, 11, 30320, 35613, 4805, 4503, 1635, 36942, 11, 7951, 1635, 7220, 1776, 201, 198, 33, 10705, 62, 32, 2246, 62, 12124, 16447, 21886, 796, 25439, 62, 4906, 7, 39, 2257, 32235, 11, 269, 19199, 13, 66, 62, 10641, 62, 79, 11, 269, 19199, 13, 66, 62, 377, 506, 11, 269, 19199, 13, 66, 62, 377, 506, 11, 30320, 35613, 4805, 4503, 11, 269, 19199, 13, 66, 62, 19382, 62, 79, 5769, 10786, 33, 10705, 62, 32, 2246, 62, 12124, 16447, 21886, 3256, 12702, 62, 64, 330, 62, 21412, 4008, 201, 198, 2, 39, 2257, 32235, 29809, 4090, 2246, 32988, 7, 33, 10705, 62, 32, 2246, 62, 12124, 16447, 8979, 12982, 5769, 42955, 12532, 1080, 11, 29652, 12532, 9701, 11, 1500, 347, 10705, 62, 25664, 4805, 4503, 50, 1635, 1676, 6359, 11, 7951, 1635, 7220, 1776, 201, 198, 33, 10705, 62, 32, 2246, 62, 12124, 16447, 8979, 12982, 796, 25439, 62, 4906, 7, 39, 2257, 32235, 11, 269, 19199, 13, 66, 62, 377, 506, 11, 269, 19199, 13, 66, 62, 377, 506, 11, 269, 19199, 13, 16402, 41358, 7, 33, 10705, 62, 25664, 4805, 4503, 50, 828, 269, 19199, 13, 66, 62, 19382, 62, 79, 5769, 10786, 33, 10705, 62, 32, 2246, 62, 12124, 16447, 8979, 12982, 3256, 12702, 62, 64, 330, 62, 21412, 4008, 201, 198, 2, 39, 2257, 32235, 29809, 4090, 2246, 32988, 7, 33, 10705, 62, 7378, 19, 62, 12124, 16447, 8979, 5769, 8202, 3535, 1066, 11, 1500, 7951, 1635, 7753, 11, 1195, 54, 12532, 11677, 11, 1195, 54, 12532, 4129, 11, 29652, 12532, 9701, 1776, 201, 198, 33, 10705, 62, 7378, 19, 62, 12124, 16447, 8979, 796, 25439, 62, 4906, 7, 39, 2257, 32235, 11, 269, 19199, 13, 66, 62, 26327, 11, 269, 19199, 13, 66, 62, 19382, 62, 79, 11, 1195, 54, 12532, 11, 1195, 54, 12532, 11, 269, 19199, 13, 66, 62, 377, 506, 5769, 10786, 33, 10705, 62, 7378, 19, 62, 12124, 16447, 8979, 3256, 12702, 62, 64, 330, 62, 21412, 4008, 201, 198, 2, 39, 2257, 32235, 29809, 4090, 2246, 32988, 7, 33, 10705, 62, 7378, 19, 62, 12124, 16447, 8979, 12982, 5769, 42955, 12532, 1080, 11, 29652, 12532, 9701, 11, 1500, 347, 10705, 62, 25664, 4805, 4503, 50, 1635, 1676, 6359, 11, 7951, 1635, 7220, 1776, 201, 198, 33, 10705, 62, 7378, 19, 62, 12124, 16447, 8979, 12982, 796, 25439, 62, 4906, 7, 39, 2257, 32235, 11, 269, 19199, 13, 66, 62, 377, 506, 11, 269, 19199, 13, 66, 62, 377, 506, 11, 269, 19199, 13, 16402, 41358, 7, 33, 10705, 62, 25664, 4805, 4503, 50, 828, 269, 19199, 13, 66, 62, 19382, 62, 79, 5769, 10786, 33, 10705, 62, 7378, 19, 62, 12124, 16447, 8979, 12982, 3256, 12702, 62, 64, 330, 62, 21412, 4008, 201, 198 ]
2.442324
1,153
from collections import OrderedDict from django import http from django.db.models import Prefetch from django.db.transaction import non_atomic_requests from django.shortcuts import redirect from django.utils.cache import patch_cache_control from django.utils.decorators import method_decorator from django.views.decorators.cache import cache_page from elasticsearch_dsl import Q, query, Search from rest_framework import exceptions, serializers from rest_framework.decorators import action from rest_framework.generics import GenericAPIView, ListAPIView from rest_framework.mixins import ListModelMixin, RetrieveModelMixin from rest_framework.response import Response from rest_framework.settings import api_settings from rest_framework.viewsets import GenericViewSet import olympia.core.logger from olympia import amo from olympia.access import acl from olympia.amo.models import manual_order from olympia.amo.urlresolvers import get_outgoing_url from olympia.api.pagination import ESPageNumberPagination from olympia.api.permissions import ( AllowAddonAuthor, AllowReadOnlyIfPublic, AllowRelatedObjectPermissions, AllowReviewer, AllowReviewerUnlisted, AnyOf, GroupPermission) from olympia.constants.categories import CATEGORIES_BY_ID from olympia.search.filters import ( AddonAppQueryParam, AddonAppVersionQueryParam, AddonAuthorQueryParam, AddonCategoryQueryParam, AddonGuidQueryParam, AddonTypeQueryParam, AutoCompleteSortFilter, ReviewedContentFilter, SearchParameterFilter, SearchQueryFilter, SortingFilter) from olympia.translations.query import order_by_translation from olympia.versions.models import Version from .decorators import addon_view_factory from .indexers import AddonIndexer from .models import Addon, CompatOverride, ReplacementAddon from .serializers import ( AddonEulaPolicySerializer, AddonSerializer, AddonSerializerWithUnlistedData, CompatOverrideSerializer, ESAddonAutoCompleteSerializer, ESAddonSerializer, LanguageToolsSerializer, ReplacementAddonSerializer, StaticCategorySerializer, VersionSerializer) from .utils import ( get_addon_recommendations, get_addon_recommendations_invalid, get_creatured_ids, get_featured_ids, is_outcome_recommended) log = olympia.core.logger.getLogger('z.addons') addon_view = addon_view_factory(qs=Addon.objects.valid) addon_valid_disabled_pending_view = addon_view_factory( qs=Addon.objects.valid_and_disabled_and_pending) class BaseFilter(object): """ Filters help generate querysets for add-on listings. You have to define ``opts`` on the subclass as a sequence of (key, title) pairs. The key is used in GET parameters and the title can be used in the view. The chosen filter field is combined with the ``base`` queryset using the ``key`` found in request.GET. ``default`` should be a key in ``opts`` that's used if nothing good is found in request.GET. """ def options(self, request, key, default): """Get the (option, title) pair we want according to the request.""" if key in request.GET and (request.GET[key] in self.opts_dict or request.GET[key] in self.extras_dict): opt = request.GET[key] else: opt = default if opt in self.opts_dict: title = self.opts_dict[opt] else: title = self.extras_dict[opt] return opt, title def all(self): """Get a full mapping of {option: queryset}.""" return dict((field, self.filter(field)) for field in dict(self.opts)) def filter(self, field): """Get the queryset for the given field.""" return getattr(self, 'filter_{0}'.format(field))() DEFAULT_FIND_REPLACEMENT_PATH = '/collections/mozilla/featured-add-ons/' FIND_REPLACEMENT_SRC = 'find-replacement' class AddonChildMixin(object): """Mixin containing method to retrieve the parent add-on object.""" def get_addon_object(self, permission_classes=None, lookup='addon_pk'): """Return the parent Addon object using the URL parameter passed to the view. `permission_classes` can be use passed to change which permission classes the parent viewset will be used when loading the Addon object, otherwise AddonViewSet.permission_classes will be used.""" if hasattr(self, 'addon_object'): return self.addon_object if permission_classes is None: permission_classes = AddonViewSet.permission_classes self.addon_object = AddonViewSet( request=self.request, permission_classes=permission_classes, kwargs={'pk': self.kwargs[lookup]}).get_object() return self.addon_object class CompatOverrideView(ListAPIView): """This view is used by Firefox so it's performance-critical. Every firefox client requests the list of overrides approx. once per day. Firefox requests the overrides via a list of GUIDs which makes caching hard because the variation of possible GUID combinations prevent us to simply add some dumb-caching and requires us to resolve cache-misses. """ queryset = CompatOverride.objects.all() serializer_class = CompatOverrideSerializer @classmethod def as_view(cls, **initkwargs): """The API is read-only so we can turn off atomic requests.""" return non_atomic_requests( super(CompatOverrideView, cls).as_view(**initkwargs))
[ 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 198, 6738, 42625, 14208, 1330, 2638, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 42195, 7569, 198, 6738, 42625, 14208, 13, 9945, 13, 7645, 2673, 1330, 1729, 62, 47116, 62, 8897, 3558, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 18941, 198, 6738, 42625, 14208, 13, 26791, 13, 23870, 1330, 8529, 62, 23870, 62, 13716, 198, 6738, 42625, 14208, 13, 26791, 13, 12501, 273, 2024, 1330, 2446, 62, 12501, 273, 1352, 198, 6738, 42625, 14208, 13, 33571, 13, 12501, 273, 2024, 13, 23870, 1330, 12940, 62, 7700, 198, 198, 6738, 27468, 12947, 62, 67, 6649, 1330, 1195, 11, 12405, 11, 11140, 198, 6738, 1334, 62, 30604, 1330, 13269, 11, 11389, 11341, 198, 6738, 1334, 62, 30604, 13, 12501, 273, 2024, 1330, 2223, 198, 6738, 1334, 62, 30604, 13, 8612, 873, 1330, 42044, 2969, 3824, 769, 11, 7343, 2969, 3824, 769, 198, 6738, 1334, 62, 30604, 13, 19816, 1040, 1330, 7343, 17633, 35608, 259, 11, 4990, 30227, 17633, 35608, 259, 198, 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 198, 6738, 1334, 62, 30604, 13, 33692, 1330, 40391, 62, 33692, 198, 6738, 1334, 62, 30604, 13, 1177, 28709, 1330, 42044, 7680, 7248, 198, 198, 11748, 267, 6760, 544, 13, 7295, 13, 6404, 1362, 198, 198, 6738, 267, 6760, 544, 1330, 716, 78, 198, 6738, 267, 6760, 544, 13, 15526, 1330, 257, 565, 198, 6738, 267, 6760, 544, 13, 18811, 13, 27530, 1330, 10107, 62, 2875, 198, 6738, 267, 6760, 544, 13, 18811, 13, 6371, 411, 349, 690, 1330, 651, 62, 448, 5146, 62, 6371, 198, 6738, 267, 6760, 544, 13, 15042, 13, 79, 363, 1883, 1330, 9428, 496, 15057, 47, 363, 1883, 198, 6738, 267, 6760, 544, 13, 15042, 13, 525, 8481, 1330, 357, 198, 220, 220, 220, 22507, 4550, 261, 13838, 11, 22507, 5569, 10049, 1532, 15202, 11, 22507, 9819, 10267, 5990, 8481, 11, 198, 220, 220, 220, 22507, 35407, 11, 22507, 35407, 3118, 17935, 11, 4377, 5189, 11, 4912, 5990, 3411, 8, 198, 6738, 267, 6760, 544, 13, 9979, 1187, 13, 66, 26129, 1330, 327, 6158, 38, 1581, 11015, 62, 17513, 62, 2389, 198, 6738, 267, 6760, 544, 13, 12947, 13, 10379, 1010, 1330, 357, 198, 220, 220, 220, 3060, 261, 4677, 20746, 22973, 11, 3060, 261, 4677, 14815, 20746, 22973, 11, 3060, 261, 13838, 20746, 22973, 11, 198, 220, 220, 220, 3060, 261, 27313, 20746, 22973, 11, 3060, 261, 8205, 312, 20746, 22973, 11, 3060, 261, 6030, 20746, 22973, 11, 198, 220, 220, 220, 11160, 20988, 42758, 22417, 11, 198, 220, 220, 220, 6602, 276, 19746, 22417, 11, 11140, 36301, 22417, 11, 11140, 20746, 22417, 11, 198, 220, 220, 220, 311, 24707, 22417, 8, 198, 6738, 267, 6760, 544, 13, 7645, 49905, 13, 22766, 1330, 1502, 62, 1525, 62, 41519, 198, 6738, 267, 6760, 544, 13, 47178, 13, 27530, 1330, 10628, 198, 198, 6738, 764, 12501, 273, 2024, 1330, 48557, 62, 1177, 62, 69, 9548, 198, 6738, 764, 9630, 364, 1330, 3060, 261, 15732, 263, 198, 6738, 764, 27530, 1330, 3060, 261, 11, 3082, 265, 37961, 11, 43986, 4550, 261, 198, 6738, 764, 46911, 11341, 1330, 357, 198, 220, 220, 220, 3060, 261, 36, 4712, 36727, 32634, 7509, 11, 198, 220, 220, 220, 3060, 261, 32634, 7509, 11, 3060, 261, 32634, 7509, 3152, 3118, 17935, 6601, 11, 3082, 265, 37961, 32634, 7509, 11, 198, 220, 220, 220, 42212, 1860, 261, 27722, 20988, 32634, 7509, 11, 42212, 1860, 261, 32634, 7509, 11, 15417, 33637, 32634, 7509, 11, 198, 220, 220, 220, 43986, 4550, 261, 32634, 7509, 11, 36125, 27313, 32634, 7509, 11, 10628, 32634, 7509, 8, 198, 6738, 764, 26791, 1330, 357, 198, 220, 220, 220, 651, 62, 48078, 62, 47335, 437, 602, 11, 651, 62, 48078, 62, 47335, 437, 602, 62, 259, 12102, 11, 198, 220, 220, 220, 651, 62, 20123, 1522, 62, 2340, 11, 651, 62, 69, 20980, 62, 2340, 11, 318, 62, 448, 2958, 62, 47335, 1631, 8, 628, 198, 6404, 796, 267, 6760, 544, 13, 7295, 13, 6404, 1362, 13, 1136, 11187, 1362, 10786, 89, 13, 39996, 11537, 198, 48078, 62, 1177, 796, 48557, 62, 1177, 62, 69, 9548, 7, 48382, 28, 4550, 261, 13, 48205, 13, 12102, 8, 198, 48078, 62, 12102, 62, 47730, 62, 79, 1571, 62, 1177, 796, 48557, 62, 1177, 62, 69, 9548, 7, 198, 220, 220, 220, 10662, 82, 28, 4550, 261, 13, 48205, 13, 12102, 62, 392, 62, 47730, 62, 392, 62, 79, 1571, 8, 628, 198, 4871, 7308, 22417, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7066, 1010, 1037, 7716, 42517, 893, 1039, 329, 751, 12, 261, 26890, 13, 628, 220, 220, 220, 921, 423, 284, 8160, 7559, 404, 912, 15506, 319, 262, 47611, 355, 257, 8379, 286, 357, 2539, 11, 3670, 8, 198, 220, 220, 220, 14729, 13, 220, 383, 1994, 318, 973, 287, 17151, 10007, 290, 262, 3670, 460, 307, 973, 287, 262, 198, 220, 220, 220, 1570, 13, 628, 220, 220, 220, 383, 7147, 8106, 2214, 318, 5929, 351, 262, 7559, 8692, 15506, 42517, 893, 316, 1262, 198, 220, 220, 220, 262, 7559, 2539, 15506, 1043, 287, 2581, 13, 18851, 13, 220, 7559, 12286, 15506, 815, 307, 257, 1994, 287, 7559, 404, 912, 15506, 198, 220, 220, 220, 326, 338, 973, 611, 2147, 922, 318, 1043, 287, 2581, 13, 18851, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 3689, 7, 944, 11, 2581, 11, 1994, 11, 4277, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 357, 18076, 11, 3670, 8, 5166, 356, 765, 1864, 284, 262, 2581, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 287, 2581, 13, 18851, 290, 357, 25927, 13, 18851, 58, 2539, 60, 287, 2116, 13, 404, 912, 62, 11600, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 13, 18851, 58, 2539, 60, 287, 2116, 13, 2302, 8847, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2172, 796, 2581, 13, 18851, 58, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2172, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2172, 287, 2116, 13, 404, 912, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 2116, 13, 404, 912, 62, 11600, 58, 8738, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 2116, 13, 2302, 8847, 62, 11600, 58, 8738, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2172, 11, 3670, 628, 220, 220, 220, 825, 477, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 257, 1336, 16855, 286, 1391, 18076, 25, 42517, 893, 316, 92, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8633, 19510, 3245, 11, 2116, 13, 24455, 7, 3245, 4008, 329, 2214, 287, 8633, 7, 944, 13, 404, 912, 4008, 628, 220, 220, 220, 825, 8106, 7, 944, 11, 2214, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 42517, 893, 316, 329, 262, 1813, 2214, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 651, 35226, 7, 944, 11, 705, 24455, 23330, 15, 92, 4458, 18982, 7, 3245, 4008, 3419, 628, 198, 7206, 38865, 62, 37, 12115, 62, 2200, 6489, 2246, 12529, 62, 34219, 796, 31051, 4033, 26448, 14, 5908, 16496, 14, 69, 20980, 12, 2860, 12, 684, 14, 6, 198, 37, 12115, 62, 2200, 6489, 2246, 12529, 62, 50, 7397, 796, 705, 19796, 12, 35666, 5592, 6, 628, 628, 198, 4871, 3060, 261, 16424, 35608, 259, 7, 15252, 2599, 198, 220, 220, 220, 37227, 35608, 259, 7268, 2446, 284, 19818, 262, 2560, 751, 12, 261, 2134, 526, 15931, 628, 220, 220, 220, 825, 651, 62, 48078, 62, 15252, 7, 944, 11, 7170, 62, 37724, 28, 14202, 11, 35847, 11639, 48078, 62, 79, 74, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 2560, 3060, 261, 2134, 1262, 262, 10289, 11507, 3804, 198, 220, 220, 220, 220, 220, 220, 220, 284, 262, 1570, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4600, 525, 3411, 62, 37724, 63, 460, 307, 779, 3804, 284, 1487, 543, 7170, 198, 220, 220, 220, 220, 220, 220, 220, 6097, 262, 2560, 1570, 2617, 481, 307, 973, 618, 11046, 262, 3060, 261, 2134, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4306, 3060, 261, 7680, 7248, 13, 525, 3411, 62, 37724, 481, 307, 973, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 944, 11, 705, 48078, 62, 15252, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 48078, 62, 15252, 628, 220, 220, 220, 220, 220, 220, 220, 611, 7170, 62, 37724, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7170, 62, 37724, 796, 3060, 261, 7680, 7248, 13, 525, 3411, 62, 37724, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48078, 62, 15252, 796, 3060, 261, 7680, 7248, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 28, 944, 13, 25927, 11, 7170, 62, 37724, 28, 525, 3411, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 34758, 6, 79, 74, 10354, 2116, 13, 46265, 22046, 58, 5460, 929, 48999, 737, 1136, 62, 15252, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 48078, 62, 15252, 628, 628, 628, 628, 198, 198, 4871, 3082, 265, 37961, 7680, 7, 8053, 2969, 3824, 769, 2599, 198, 220, 220, 220, 37227, 1212, 1570, 318, 973, 416, 16802, 523, 340, 338, 2854, 12, 34666, 13, 628, 220, 220, 220, 3887, 2046, 12792, 5456, 7007, 262, 1351, 286, 23170, 1460, 5561, 13, 1752, 583, 1110, 13, 198, 220, 220, 220, 16802, 7007, 262, 23170, 1460, 2884, 257, 1351, 286, 19348, 47954, 543, 1838, 40918, 198, 220, 220, 220, 1327, 780, 262, 12291, 286, 1744, 19348, 2389, 17790, 2948, 514, 284, 198, 220, 220, 220, 2391, 751, 617, 13526, 12, 66, 8103, 290, 4433, 514, 284, 10568, 12940, 12, 3927, 274, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 42517, 893, 316, 796, 3082, 265, 37961, 13, 48205, 13, 439, 3419, 198, 220, 220, 220, 11389, 7509, 62, 4871, 796, 3082, 265, 37961, 32634, 7509, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 355, 62, 1177, 7, 565, 82, 11, 12429, 15003, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 7824, 318, 1100, 12, 8807, 523, 356, 460, 1210, 572, 17226, 7007, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1729, 62, 47116, 62, 8897, 3558, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 40073, 37961, 7680, 11, 537, 82, 737, 292, 62, 1177, 7, 1174, 15003, 46265, 22046, 4008, 628 ]
2.933119
1,869
""" Created by Rohan Paleja on September 23, 2019 Nikolaidis et. al. benchmark """ import torch import torch.nn.functional as F # sys.path.insert(0, '/home/Anonymous/PycharmProjects/bayesian_prolo') import numpy as np import pickle from torch.autograd import Variable from utils.naive_utils import load_in_naive_data, find_which_schedule_this_belongs_to from utils.hri_utils import save_performance_results from sklearn.cluster import KMeans from scheduling.methods.train_autoencoder import Autoencoder, AutoEncoderTrain # sys.path.insert(0, '../') import itertools torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.manual_seed(0) np.random.seed(0) from scheduling.methods.NN_naive import NNSmall # noinspection PyTypeChecker,PyArgumentList class NNTrain: """ class structure to train the NN for a certain amount of schedules. This class handles training the NN, evaluating the NN, and saving the results """ @staticmethod def cluster_matrices(matrices, num_schedules): """ clusters the matrix schedules :param matrices: :param num_schedules: :return: """ # vectorize each matrix vectorized_set = [] for i in matrices: vectorized = i.reshape(20 * 2048, 1) vectorized_set.append(vectorized) kmeans = KMeans(n_clusters=3, random_state=0) # random state makes it deterministic # Fitting the input data new_set = np.hstack(tuple(vectorized_set)).reshape(num_schedules, 20 * 2048) kmeans_model = kmeans.fit(np.asarray(new_set)) labels = kmeans_model.predict(np.asarray(new_set)) return kmeans_model, labels def train(self): """ Trains NN. Randomly samples a schedule and timestep within that schedule, and passes in the corresponding data in an attempt to classify which task was scheduled :return: """ epochs = 200000 * 3 for epoch in range(epochs): # sample a timestep before the cutoff for cross_validation rand_timestep_within_sched = np.random.randint(len(self.X_train_naive)) input_nn = self.X_train_naive[rand_timestep_within_sched] truth_nn = self.Y_train_naive[rand_timestep_within_sched] which_schedule = find_which_schedule_this_belongs_to(self.schedule_array_train_naive, rand_timestep_within_sched+self.sample_min) cluster_num = self.label[which_schedule] # iterate over pairwise comparisons if torch.cuda.is_available(): input_nn = Variable(torch.Tensor(np.asarray(input_nn).reshape(1, 242)).cuda()) # change to 5 to increase batch size truth = Variable(torch.Tensor(np.asarray(truth_nn).reshape(1)).cuda().long()) else: input_nn = Variable(torch.Tensor(np.asarray(input_nn).reshape(1, 242))) truth = Variable(torch.Tensor(np.asarray(truth_nn).reshape(1)).long()) self.optimizers[cluster_num].zero_grad() output = self.models[cluster_num].forward(input_nn) loss = F.cross_entropy(output, truth) loss.backward() # torch.nn.utils.clip_grad_norm_(self.model.parameters(), 0.5) self.optimizers[cluster_num].step() self.total_loss_array.append(loss.item()) if epoch % 500 == 499: print('loss at', epoch, ', total loss (average for each 100, averaged)', np.mean(self.total_loss_array[-100:])) # self.save_trained_nets(str(epoch)) @staticmethod def create_iterables(): """ adds all possible state combinations :return: """ iterables = [[0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]] states = [] for t in itertools.product(*iterables): states.append(t) return states def pass_in_embedding_out_state_ID(self, states, binary): """ pass in a binary embedding, and itll return the state id :param states :param binary: :return: """ binary_as_tuple = tuple(binary) index = states.index(binary_as_tuple) return index def evaluate_on_test_data(self): """ Evaluate performance of a trained network. This is tested on 20% of the data and will be stored in a text file. :return: """ # confusion_matrix = np.zeros((20,20)) autoencoder_class = AutoEncoderTrain(self.num_schedules) checkpoint = torch.load('/home/Anonymous/PycharmProjects/bayesian_prolo/scheduling_env/models/Autoencoder150.tar') autoencoder_class.model.load_state_dict(checkpoint['nn_state_dict']) states = self.create_iterables() prediction_accuracy = [0, 0] percentage_accuracy_top1 = [] percentage_accuracy_top3 = [] mean_input = [1.3277743, 0.32837677, 1.4974482, -1.3519306, -0.64621973, 0.10534518, -2.338118, -2.7345326, 1.7558736, -3.0746384, -3.485554] for i, schedule in enumerate(self.schedule_array_test_naive): current_schedule_matrix = np.zeros((2048, 20)) for count in range(schedule[0]-self.sample_test_min, schedule[1]-self.sample_test_min + 1): if current_schedule_matrix.sum() == 0: cluster_num = self.kmeans_model.predict(current_schedule_matrix.reshape(1, -1)) else: matrix = np.divide(current_schedule_matrix, current_schedule_matrix.sum()) cluster_num = self.kmeans_model.predict(matrix.reshape(1, -1)) net_input = self.X_test_naive[count] truth = self.Y_test_naive[count] if torch.cuda.is_available(): input_nn = Variable(torch.Tensor(np.asarray(net_input).reshape(1, 242)).cuda()) truth = Variable(torch.Tensor(np.asarray(truth).reshape(1)).cuda().long()) else: input_nn = Variable(torch.Tensor(np.asarray(net_input).reshape(1, 242))) truth = Variable(torch.Tensor(np.asarray(truth).reshape(1))) # forward output = self.models[int(cluster_num)].forward(input_nn) index = torch.argmax(output).item() # confusion_matrix[truth][index] += 1 # top 3 _, top_three = torch.topk(output, 3) if index == truth.item(): prediction_accuracy[0] += 1 if truth.item() in top_three.detach().cpu().tolist()[0]: prediction_accuracy[1] += 1 # update matrix embedding_copy = np.zeros((1, 11)) input_element = autoencoder_class.model.forward_only_encoding(input_nn) for z, each_element in enumerate(mean_input): if each_element > input_element[0][z].item(): embedding_copy[0][z] = 0 else: embedding_copy[0][z] = 1 index = self.pass_in_embedding_out_state_ID(states, embedding_copy[0]) action = truth.item() current_schedule_matrix[index][int(action)] += 1 print('Prediction Accuracy: top1: ', prediction_accuracy[0] / 20, ' top3: ', prediction_accuracy[1] / 20) print('schedule num:', i) percentage_accuracy_top1.append(prediction_accuracy[0] / 20) percentage_accuracy_top3.append(prediction_accuracy[1] / 20) prediction_accuracy = [0, 0] print(np.mean(percentage_accuracy_top1)) # save_performance_results(percentage_accuracy_top1, percentage_accuracy_top3, 'kmeans_to_NN_naive') return np.mean(percentage_accuracy_top1) def save_trained_nets(self, name): """ saves the model :return: """ torch.save({'nn1_state_dict': self.models[0].state_dict(), 'nn2_state_dict': self.models[1].state_dict(), 'nn3_state_dict': self.models[2].state_dict()}, '/home/Anonymous/PycharmProjects/bayesian_prolo/scheduling_env/models/k_means_NN_' + name + '.tar') def main(): """ entry point for file :return: """ res = [] for i in range(3): trainer = NNTrain() trainer.train() out = trainer.evaluate_on_test_data() res.append(out) print(np.mean(res)) print(np.std(res)) if __name__ == '__main__': main()
[ 37811, 198, 41972, 416, 371, 22436, 21706, 6592, 319, 2693, 2242, 11, 13130, 198, 40979, 349, 1698, 271, 2123, 13, 435, 13, 18335, 198, 37811, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 198, 2, 25064, 13, 6978, 13, 28463, 7, 15, 11, 31051, 11195, 14, 20660, 14, 20519, 354, 1670, 16775, 82, 14, 24406, 35610, 62, 1676, 5439, 11537, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2298, 293, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 198, 6738, 3384, 4487, 13, 2616, 425, 62, 26791, 1330, 3440, 62, 259, 62, 2616, 425, 62, 7890, 11, 1064, 62, 4758, 62, 15952, 5950, 62, 5661, 62, 6667, 28079, 62, 1462, 198, 6738, 3384, 4487, 13, 71, 380, 62, 26791, 1330, 3613, 62, 26585, 62, 43420, 198, 6738, 1341, 35720, 13, 565, 5819, 1330, 509, 5308, 504, 198, 6738, 26925, 13, 24396, 82, 13, 27432, 62, 2306, 6571, 66, 12342, 1330, 5231, 6571, 66, 12342, 11, 11160, 27195, 12342, 44077, 198, 2, 25064, 13, 6978, 13, 28463, 7, 15, 11, 705, 40720, 11537, 198, 11748, 340, 861, 10141, 198, 198, 13165, 354, 13, 1891, 2412, 13, 66, 463, 20471, 13, 67, 2357, 49228, 796, 6407, 198, 13165, 354, 13, 1891, 2412, 13, 66, 463, 20471, 13, 26968, 4102, 796, 10352, 198, 13165, 354, 13, 805, 723, 62, 28826, 7, 15, 8, 198, 37659, 13, 25120, 13, 28826, 7, 15, 8, 198, 6738, 26925, 13, 24396, 82, 13, 6144, 62, 2616, 425, 1330, 399, 45, 18712, 628, 198, 2, 645, 1040, 14978, 9485, 6030, 9787, 263, 11, 20519, 28100, 1713, 8053, 198, 4871, 399, 45, 44077, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1398, 4645, 284, 4512, 262, 399, 45, 329, 257, 1728, 2033, 286, 24025, 13, 198, 220, 220, 220, 770, 1398, 17105, 3047, 262, 399, 45, 11, 22232, 262, 399, 45, 11, 290, 8914, 262, 2482, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 13946, 62, 6759, 45977, 7, 6759, 45977, 11, 997, 62, 1416, 704, 5028, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23163, 262, 17593, 24025, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2603, 45977, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 997, 62, 1416, 704, 5028, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15879, 1096, 1123, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 15879, 1143, 62, 2617, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2603, 45977, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15879, 1143, 796, 1312, 13, 3447, 1758, 7, 1238, 1635, 36117, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15879, 1143, 62, 2617, 13, 33295, 7, 31364, 1143, 8, 198, 220, 220, 220, 220, 220, 220, 220, 479, 1326, 504, 796, 509, 5308, 504, 7, 77, 62, 565, 13654, 28, 18, 11, 4738, 62, 5219, 28, 15, 8, 220, 1303, 4738, 1181, 1838, 340, 2206, 49228, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 376, 2535, 262, 5128, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 2617, 796, 45941, 13, 71, 25558, 7, 83, 29291, 7, 31364, 1143, 62, 2617, 29720, 3447, 1758, 7, 22510, 62, 1416, 704, 5028, 11, 1160, 1635, 36117, 8, 198, 220, 220, 220, 220, 220, 220, 220, 479, 1326, 504, 62, 19849, 796, 479, 1326, 504, 13, 11147, 7, 37659, 13, 292, 18747, 7, 3605, 62, 2617, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 479, 1326, 504, 62, 19849, 13, 79, 17407, 7, 37659, 13, 292, 18747, 7, 3605, 62, 2617, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 479, 1326, 504, 62, 19849, 11, 14722, 628, 220, 220, 220, 825, 4512, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 833, 1299, 399, 45, 13, 198, 220, 220, 220, 220, 220, 220, 220, 14534, 306, 8405, 257, 7269, 290, 4628, 395, 538, 1626, 326, 7269, 11, 290, 8318, 287, 262, 11188, 1366, 287, 281, 2230, 284, 36509, 543, 4876, 373, 7530, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 796, 939, 830, 1635, 513, 628, 220, 220, 220, 220, 220, 220, 220, 329, 36835, 287, 2837, 7, 538, 5374, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6291, 257, 4628, 395, 538, 878, 262, 45616, 329, 3272, 62, 12102, 341, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43720, 62, 16514, 395, 538, 62, 33479, 62, 1416, 704, 796, 45941, 13, 25120, 13, 25192, 600, 7, 11925, 7, 944, 13, 55, 62, 27432, 62, 2616, 425, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 20471, 796, 2116, 13, 55, 62, 27432, 62, 2616, 425, 58, 25192, 62, 16514, 395, 538, 62, 33479, 62, 1416, 704, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3872, 62, 20471, 796, 2116, 13, 56, 62, 27432, 62, 2616, 425, 58, 25192, 62, 16514, 395, 538, 62, 33479, 62, 1416, 704, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 543, 62, 15952, 5950, 796, 1064, 62, 4758, 62, 15952, 5950, 62, 5661, 62, 6667, 28079, 62, 1462, 7, 944, 13, 15952, 5950, 62, 18747, 62, 27432, 62, 2616, 425, 11, 43720, 62, 16514, 395, 538, 62, 33479, 62, 1416, 704, 10, 944, 13, 39873, 62, 1084, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13946, 62, 22510, 796, 2116, 13, 18242, 58, 4758, 62, 15952, 5950, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11629, 378, 625, 5166, 3083, 17909, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 20471, 796, 35748, 7, 13165, 354, 13, 51, 22854, 7, 37659, 13, 292, 18747, 7, 15414, 62, 20471, 737, 3447, 1758, 7, 16, 11, 34353, 29720, 66, 15339, 28955, 220, 1303, 1487, 284, 642, 284, 2620, 15458, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3872, 796, 35748, 7, 13165, 354, 13, 51, 22854, 7, 37659, 13, 292, 18747, 7, 35310, 62, 20471, 737, 3447, 1758, 7, 16, 29720, 66, 15339, 22446, 6511, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 20471, 796, 35748, 7, 13165, 354, 13, 51, 22854, 7, 37659, 13, 292, 18747, 7, 15414, 62, 20471, 737, 3447, 1758, 7, 16, 11, 34353, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3872, 796, 35748, 7, 13165, 354, 13, 51, 22854, 7, 37659, 13, 292, 18747, 7, 35310, 62, 20471, 737, 3447, 1758, 7, 16, 29720, 6511, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40085, 11341, 58, 565, 5819, 62, 22510, 4083, 22570, 62, 9744, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2116, 13, 27530, 58, 565, 5819, 62, 22510, 4083, 11813, 7, 15414, 62, 20471, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 376, 13, 19692, 62, 298, 28338, 7, 22915, 11, 3872, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 13, 1891, 904, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28034, 13, 20471, 13, 26791, 13, 15036, 62, 9744, 62, 27237, 41052, 944, 13, 19849, 13, 17143, 7307, 22784, 657, 13, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40085, 11341, 58, 565, 5819, 62, 22510, 4083, 9662, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 22462, 62, 18747, 13, 33295, 7, 22462, 13, 9186, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36835, 4064, 5323, 6624, 48391, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 22462, 379, 3256, 36835, 11, 46083, 2472, 2994, 357, 23913, 329, 1123, 1802, 11, 16449, 8, 3256, 45941, 13, 32604, 7, 944, 13, 23350, 62, 22462, 62, 18747, 58, 12, 3064, 47715, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 21928, 62, 35311, 62, 45938, 7, 2536, 7, 538, 5374, 4008, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 2251, 62, 2676, 2977, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6673, 477, 1744, 1181, 17790, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11629, 2977, 796, 16410, 15, 11, 352, 4357, 685, 15, 11, 352, 4357, 685, 15, 11, 352, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 352, 4357, 685, 15, 11, 352, 4357, 685, 15, 11, 352, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 352, 4357, 685, 15, 11, 352, 4357, 685, 15, 11, 352, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 352, 4357, 685, 15, 11, 352, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 2585, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 340, 861, 10141, 13, 11167, 46491, 2676, 2977, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2585, 13, 33295, 7, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2585, 628, 220, 220, 220, 825, 1208, 62, 259, 62, 20521, 12083, 62, 448, 62, 5219, 62, 2389, 7, 944, 11, 2585, 11, 13934, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 287, 257, 13934, 11525, 12083, 11, 290, 340, 297, 1441, 262, 1181, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2585, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 13934, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13934, 62, 292, 62, 83, 29291, 796, 46545, 7, 39491, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 2585, 13, 9630, 7, 39491, 62, 292, 62, 83, 29291, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6376, 628, 220, 220, 220, 825, 13446, 62, 261, 62, 9288, 62, 7890, 7, 944, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 26439, 4985, 2854, 286, 257, 8776, 3127, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 6789, 319, 1160, 4, 286, 262, 1366, 290, 481, 307, 8574, 287, 257, 2420, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10802, 62, 6759, 8609, 796, 45941, 13, 9107, 418, 19510, 1238, 11, 1238, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1960, 6571, 66, 12342, 62, 4871, 796, 11160, 27195, 12342, 44077, 7, 944, 13, 22510, 62, 1416, 704, 5028, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 796, 28034, 13, 2220, 10786, 14, 11195, 14, 20660, 14, 20519, 354, 1670, 16775, 82, 14, 24406, 35610, 62, 1676, 5439, 14, 1416, 704, 16619, 62, 24330, 14, 27530, 14, 16541, 6571, 66, 12342, 8628, 13, 18870, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1960, 6571, 66, 12342, 62, 4871, 13, 19849, 13, 2220, 62, 5219, 62, 11600, 7, 9122, 4122, 17816, 20471, 62, 5219, 62, 11600, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2585, 796, 2116, 13, 17953, 62, 2676, 2977, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 17724, 62, 4134, 23843, 796, 685, 15, 11, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5873, 62, 4134, 23843, 62, 4852, 16, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 5873, 62, 4134, 23843, 62, 4852, 18, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 15414, 796, 685, 16, 13, 34159, 3324, 3559, 11, 657, 13, 34256, 2718, 40179, 11, 352, 13, 38073, 2598, 6469, 11, 532, 16, 13, 2327, 1129, 20548, 11, 532, 15, 13, 2414, 5237, 40220, 11, 657, 13, 940, 4310, 2231, 1507, 11, 532, 17, 13, 28460, 16817, 11, 532, 17, 13, 4790, 36625, 2075, 11, 352, 13, 2425, 44617, 2623, 11, 532, 18, 13, 2998, 3510, 22842, 11, 532, 18, 13, 2780, 2816, 4051, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 7269, 287, 27056, 378, 7, 944, 13, 15952, 5950, 62, 18747, 62, 9288, 62, 2616, 425, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 15952, 5950, 62, 6759, 8609, 796, 45941, 13, 9107, 418, 19510, 1238, 2780, 11, 1160, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 954, 287, 2837, 7, 15952, 5950, 58, 15, 45297, 944, 13, 39873, 62, 9288, 62, 1084, 11, 7269, 58, 16, 45297, 944, 13, 39873, 62, 9288, 62, 1084, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 62, 15952, 5950, 62, 6759, 8609, 13, 16345, 3419, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13946, 62, 22510, 796, 2116, 13, 74, 1326, 504, 62, 19849, 13, 79, 17407, 7, 14421, 62, 15952, 5950, 62, 6759, 8609, 13, 3447, 1758, 7, 16, 11, 532, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17593, 796, 45941, 13, 7146, 485, 7, 14421, 62, 15952, 5950, 62, 6759, 8609, 11, 1459, 62, 15952, 5950, 62, 6759, 8609, 13, 16345, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13946, 62, 22510, 796, 2116, 13, 74, 1326, 504, 62, 19849, 13, 79, 17407, 7, 6759, 8609, 13, 3447, 1758, 7, 16, 11, 532, 16, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 62, 15414, 796, 2116, 13, 55, 62, 9288, 62, 2616, 425, 58, 9127, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3872, 796, 2116, 13, 56, 62, 9288, 62, 2616, 425, 58, 9127, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 20471, 796, 35748, 7, 13165, 354, 13, 51, 22854, 7, 37659, 13, 292, 18747, 7, 3262, 62, 15414, 737, 3447, 1758, 7, 16, 11, 34353, 29720, 66, 15339, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3872, 796, 35748, 7, 13165, 354, 13, 51, 22854, 7, 37659, 13, 292, 18747, 7, 35310, 737, 3447, 1758, 7, 16, 29720, 66, 15339, 22446, 6511, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 20471, 796, 35748, 7, 13165, 354, 13, 51, 22854, 7, 37659, 13, 292, 18747, 7, 3262, 62, 15414, 737, 3447, 1758, 7, 16, 11, 34353, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3872, 796, 35748, 7, 13165, 354, 13, 51, 22854, 7, 37659, 13, 292, 18747, 7, 35310, 737, 3447, 1758, 7, 16, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2651, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2116, 13, 27530, 58, 600, 7, 565, 5819, 62, 22510, 25295, 11813, 7, 15414, 62, 20471, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 28034, 13, 853, 9806, 7, 22915, 737, 9186, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10802, 62, 6759, 8609, 58, 35310, 7131, 9630, 60, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1353, 513, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 1353, 62, 15542, 796, 28034, 13, 4852, 74, 7, 22915, 11, 513, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6376, 6624, 3872, 13, 9186, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17724, 62, 4134, 23843, 58, 15, 60, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3872, 13, 9186, 3419, 287, 1353, 62, 15542, 13, 15255, 620, 22446, 36166, 22446, 83, 349, 396, 3419, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17724, 62, 4134, 23843, 58, 16, 60, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 17593, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 30073, 796, 45941, 13, 9107, 418, 19510, 16, 11, 1367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 30854, 796, 1960, 6571, 66, 12342, 62, 4871, 13, 19849, 13, 11813, 62, 8807, 62, 12685, 7656, 7, 15414, 62, 20471, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1976, 11, 1123, 62, 30854, 287, 27056, 378, 7, 32604, 62, 15414, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1123, 62, 30854, 1875, 5128, 62, 30854, 58, 15, 7131, 89, 4083, 9186, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 30073, 58, 15, 7131, 89, 60, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 30073, 58, 15, 7131, 89, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 2116, 13, 6603, 62, 259, 62, 20521, 12083, 62, 448, 62, 5219, 62, 2389, 7, 27219, 11, 11525, 12083, 62, 30073, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 796, 3872, 13, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 15952, 5950, 62, 6759, 8609, 58, 9630, 7131, 600, 7, 2673, 15437, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 39156, 2867, 33222, 25, 1353, 16, 25, 46083, 17724, 62, 4134, 23843, 58, 15, 60, 1220, 1160, 11, 705, 1353, 18, 25, 46083, 17724, 62, 4134, 23843, 58, 16, 60, 1220, 1160, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 15952, 5950, 997, 25, 3256, 1312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5873, 62, 4134, 23843, 62, 4852, 16, 13, 33295, 7, 28764, 2867, 62, 4134, 23843, 58, 15, 60, 1220, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5873, 62, 4134, 23843, 62, 4852, 18, 13, 33295, 7, 28764, 2867, 62, 4134, 23843, 58, 16, 60, 1220, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17724, 62, 4134, 23843, 796, 685, 15, 11, 657, 60, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 37659, 13, 32604, 7, 25067, 496, 62, 4134, 23843, 62, 4852, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 62, 26585, 62, 43420, 7, 25067, 496, 62, 4134, 23843, 62, 4852, 16, 11, 5873, 62, 4134, 23843, 62, 4852, 18, 11, 705, 74, 1326, 504, 62, 1462, 62, 6144, 62, 2616, 425, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 32604, 7, 25067, 496, 62, 4134, 23843, 62, 4852, 16, 8, 628, 220, 220, 220, 825, 3613, 62, 35311, 62, 45938, 7, 944, 11, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16031, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 21928, 15090, 6, 20471, 16, 62, 5219, 62, 11600, 10354, 2116, 13, 27530, 58, 15, 4083, 5219, 62, 11600, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20471, 17, 62, 5219, 62, 11600, 10354, 2116, 13, 27530, 58, 16, 4083, 5219, 62, 11600, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20471, 18, 62, 5219, 62, 11600, 10354, 2116, 13, 27530, 58, 17, 4083, 5219, 62, 11600, 3419, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 11195, 14, 20660, 14, 20519, 354, 1670, 16775, 82, 14, 24406, 35610, 62, 1676, 5439, 14, 1416, 704, 16619, 62, 24330, 14, 27530, 14, 74, 62, 1326, 504, 62, 6144, 62, 6, 1343, 1438, 1343, 45302, 18870, 11537, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5726, 966, 329, 2393, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 581, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21997, 796, 399, 45, 44077, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 21997, 13, 27432, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 21997, 13, 49786, 62, 261, 62, 9288, 62, 7890, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 581, 13, 33295, 7, 448, 8, 198, 220, 220, 220, 3601, 7, 37659, 13, 32604, 7, 411, 4008, 198, 220, 220, 220, 3601, 7, 37659, 13, 19282, 7, 411, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.114611
4,127
#!/usr/bin/env python3 import argparse import serial import time from time import sleep import datetime parser = argparse.ArgumentParser() parser.add_argument('port') args = parser.parse_args() sleep_time = 50 ser = serial.Serial(args.port, 9600) sleep(3) send('Button LCLICK', 0.1) try: while 1: candyCorrect() except KeyboardInterrupt: send('RELEASE') ser.close()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 201, 198, 11748, 1822, 29572, 201, 198, 11748, 11389, 201, 198, 11748, 640, 201, 198, 6738, 640, 1330, 3993, 201, 198, 11748, 4818, 8079, 201, 198, 201, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 201, 198, 48610, 13, 2860, 62, 49140, 10786, 634, 11537, 201, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 201, 198, 201, 198, 42832, 62, 2435, 796, 2026, 201, 198, 201, 198, 2655, 796, 11389, 13, 32634, 7, 22046, 13, 634, 11, 860, 8054, 8, 201, 198, 201, 198, 201, 198, 201, 198, 42832, 7, 18, 8, 201, 198, 21280, 10786, 21864, 406, 5097, 11860, 3256, 657, 13, 16, 8, 201, 198, 201, 198, 28311, 25, 201, 198, 220, 220, 220, 981, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 18550, 42779, 3419, 201, 198, 201, 198, 16341, 31973, 9492, 3622, 25, 201, 198, 220, 220, 220, 3758, 10786, 2200, 22781, 11537, 201, 198, 220, 220, 220, 1055, 13, 19836, 3419, 201, 198 ]
2.433526
173
import json import torch from torchvision import datasets, transforms from PIL import Image # Define function to read cat names # Define function to read data # Define processing testing image function def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' # TODO: Process a PIL image for use in a PyTorch model # Resize and crop image im = Image.open(image) preprocess = transforms.Compose([transforms.Resize(255), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) im_tensor = preprocess(im) im_tensor.unsqueeze_(0) return im_tensor # Define prediction function def predict(image_path, model, topk, device, cat_to_name): ''' Predict the class (or classes) of an image using a trained deep learning model. ''' model.to(device) model.eval() # TODO: Implement the code to predict the class from an image file img = process_image(image_path) img = img.to(device) output = model.forward(img) ps = torch.exp(output) probs, idxs = ps.topk(topk) idx_to_class = dict((v,k) for k, v in model.classifier.class_to_idx.items()) classes = [v for k, v in idx_to_class.items() if k in idxs.to('cpu').numpy()] if cat_to_name: classes = [cat_to_name[str(i + 1)] for c, i in \ model.classifier.class_to_idx.items() if c in classes] print('Probabilities:', probs.data.cpu().numpy()[0].tolist()) print('Classes:', classes)
[ 11748, 33918, 198, 11748, 28034, 198, 6738, 28034, 10178, 1330, 40522, 11, 31408, 198, 6738, 350, 4146, 1330, 7412, 198, 198, 2, 2896, 500, 2163, 284, 1100, 3797, 3891, 198, 198, 2, 2896, 500, 2163, 284, 1100, 1366, 198, 198, 2, 2896, 500, 7587, 4856, 2939, 2163, 198, 4299, 1429, 62, 9060, 7, 9060, 2599, 198, 220, 220, 220, 705, 7061, 1446, 2040, 11, 14450, 11, 290, 3487, 4340, 257, 350, 4146, 2939, 329, 257, 9485, 15884, 354, 2746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5860, 281, 399, 32152, 7177, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 16926, 46, 25, 10854, 257, 350, 4146, 2939, 329, 779, 287, 257, 9485, 15884, 354, 2746, 198, 220, 220, 220, 1303, 1874, 1096, 290, 13833, 2939, 198, 220, 220, 220, 545, 796, 7412, 13, 9654, 7, 9060, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 662, 14681, 796, 31408, 13, 7293, 577, 26933, 7645, 23914, 13, 4965, 1096, 7, 13381, 828, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 23656, 34, 1773, 7, 24137, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 2514, 51, 22854, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 26447, 1096, 26933, 15, 13, 32642, 11, 657, 13, 29228, 11, 657, 13, 29703, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 23539, 11, 657, 13, 24137, 11, 657, 13, 18182, 12962, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 545, 62, 83, 22854, 796, 662, 14681, 7, 320, 8, 198, 220, 220, 220, 545, 62, 83, 22854, 13, 13271, 421, 1453, 2736, 41052, 15, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 545, 62, 83, 22854, 198, 198, 2, 2896, 500, 17724, 2163, 220, 198, 4299, 4331, 7, 9060, 62, 6978, 11, 2746, 11, 1353, 74, 11, 3335, 11, 3797, 62, 1462, 62, 3672, 2599, 198, 220, 220, 220, 705, 7061, 49461, 262, 1398, 357, 273, 6097, 8, 286, 281, 2939, 1262, 257, 8776, 2769, 4673, 2746, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2746, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 2746, 13, 18206, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 16926, 46, 25, 48282, 262, 2438, 284, 4331, 262, 1398, 422, 281, 2939, 2393, 198, 220, 220, 220, 33705, 796, 1429, 62, 9060, 7, 9060, 62, 6978, 8, 198, 220, 220, 220, 33705, 796, 33705, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 5072, 796, 2746, 13, 11813, 7, 9600, 8, 198, 220, 220, 220, 26692, 796, 28034, 13, 11201, 7, 22915, 8, 220, 220, 220, 220, 198, 220, 220, 220, 386, 1443, 11, 4686, 34223, 796, 26692, 13, 4852, 74, 7, 4852, 74, 8, 628, 220, 220, 220, 4686, 87, 62, 1462, 62, 4871, 796, 8633, 19510, 85, 11, 74, 8, 329, 479, 11, 410, 287, 2746, 13, 4871, 7483, 13, 4871, 62, 1462, 62, 312, 87, 13, 23814, 28955, 198, 220, 220, 220, 6097, 796, 685, 85, 329, 479, 11, 410, 287, 4686, 87, 62, 1462, 62, 4871, 13, 23814, 3419, 611, 479, 287, 4686, 34223, 13, 1462, 10786, 36166, 27691, 77, 32152, 3419, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 3797, 62, 1462, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6097, 796, 685, 9246, 62, 1462, 62, 3672, 58, 2536, 7, 72, 1343, 352, 15437, 329, 269, 11, 1312, 287, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 4871, 7483, 13, 4871, 62, 1462, 62, 312, 87, 13, 23814, 3419, 611, 269, 287, 6097, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 10786, 2964, 65, 5738, 25, 3256, 386, 1443, 13, 7890, 13, 36166, 22446, 77, 32152, 3419, 58, 15, 4083, 83, 349, 396, 28955, 198, 220, 220, 220, 3601, 10786, 9487, 274, 25, 3256, 6097, 8 ]
2.197789
814
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests the graph freezing tool.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import re from absl.testing import parameterized from tensorflow.core.example import example_pb2 from tensorflow.core.framework import graph_pb2 from tensorflow.core.protobuf import saver_pb2 from tensorflow.python.client import session from tensorflow.python.framework import dtypes from tensorflow.python.framework import graph_io from tensorflow.python.framework import importer from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import signature_def_utils from tensorflow.python.saved_model import tag_constants from tensorflow.python.tools import freeze_graph from tensorflow.python.training import saver as saver_lib if __name__ == "__main__": test.main()
[ 2, 15069, 1853, 383, 309, 22854, 37535, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 28, 198, 37811, 51, 3558, 262, 4823, 20884, 2891, 526, 15931, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 302, 198, 198, 6738, 2352, 75, 13, 33407, 1330, 11507, 1143, 198, 198, 6738, 11192, 273, 11125, 13, 7295, 13, 20688, 1330, 1672, 62, 40842, 17, 198, 6738, 11192, 273, 11125, 13, 7295, 13, 30604, 1330, 4823, 62, 40842, 17, 198, 6738, 11192, 273, 11125, 13, 7295, 13, 11235, 672, 3046, 1330, 473, 332, 62, 40842, 17, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 16366, 1330, 6246, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 288, 19199, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 4823, 62, 952, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 848, 4337, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 39628, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 1332, 62, 22602, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 7177, 62, 2840, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 10688, 62, 2840, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 299, 77, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 32096, 62, 2840, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 18398, 276, 62, 25641, 2977, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 7885, 62, 29982, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 9633, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 24254, 1330, 1332, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 82, 9586, 62, 19849, 1330, 27098, 355, 7448, 62, 19849, 62, 38272, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 82, 9586, 62, 19849, 1330, 9877, 62, 9979, 1187, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 82, 9586, 62, 19849, 1330, 9877, 62, 4299, 62, 26791, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 82, 9586, 62, 19849, 1330, 7621, 62, 9979, 1187, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 31391, 1330, 16611, 62, 34960, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 34409, 1330, 473, 332, 355, 473, 332, 62, 8019, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 1332, 13, 12417, 3419, 198 ]
3.776173
554
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import numpy as np from gmprocess.core.streamcollection import StreamCollection from gmprocess.io.read import read_data from gmprocess.utils.test_utils import read_data_dir from gmprocess.waveform_processing.adjust_highpass_ridder import ridder_fchp from gmprocess.utils.config import get_config if __name__ == "__main__": os.environ["CALLED_FROM_PYTEST"] = "True" test_auto_fchp()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 308, 76, 14681, 13, 7295, 13, 5532, 43681, 1330, 13860, 36307, 198, 6738, 308, 76, 14681, 13, 952, 13, 961, 1330, 1100, 62, 7890, 198, 6738, 308, 76, 14681, 13, 26791, 13, 9288, 62, 26791, 1330, 1100, 62, 7890, 62, 15908, 198, 6738, 308, 76, 14681, 13, 19204, 687, 62, 36948, 13, 23032, 62, 8929, 6603, 62, 6058, 1082, 1330, 5755, 1082, 62, 69, 354, 79, 198, 6738, 308, 76, 14681, 13, 26791, 13, 11250, 1330, 651, 62, 11250, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 28686, 13, 268, 2268, 14692, 34, 7036, 1961, 62, 10913, 2662, 62, 47, 56, 51, 6465, 8973, 796, 366, 17821, 1, 198, 220, 220, 220, 1332, 62, 23736, 62, 69, 354, 79, 3419, 198 ]
2.743902
164
""" Import recipes from URLs to our database """ import re import json from txpx import background, EchoProcess from txpx.process import LineGlueProtocol from supperfeed.build import Recipe LineGlueProtocol.MAX_LENGTH=10000 class ImportProcess(EchoProcess): """ Import a recipe by loading the json data dumped by the downloader process """
[ 37811, 198, 20939, 14296, 422, 32336, 284, 674, 6831, 198, 37811, 198, 11748, 302, 198, 11748, 33918, 198, 198, 6738, 27765, 8416, 1330, 4469, 11, 21455, 18709, 198, 6738, 27765, 8416, 13, 14681, 1330, 6910, 9861, 518, 19703, 4668, 198, 198, 6738, 43743, 12363, 13, 11249, 1330, 26694, 628, 198, 13949, 9861, 518, 19703, 4668, 13, 22921, 62, 43, 49494, 28, 49388, 198, 198, 4871, 17267, 18709, 7, 36, 6679, 18709, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17267, 257, 8364, 416, 11046, 262, 33918, 1366, 24105, 416, 262, 4321, 263, 1429, 198, 220, 220, 220, 37227, 628 ]
3.544554
101
from typing import List solution = Solution() print(solution.groupThePeople(groupSizes = [3,3,3,3,3,1,3]))
[ 6738, 19720, 1330, 7343, 628, 198, 82, 2122, 796, 28186, 3419, 198, 4798, 7, 82, 2122, 13, 8094, 464, 8061, 7, 8094, 50, 4340, 796, 685, 18, 11, 18, 11, 18, 11, 18, 11, 18, 11, 16, 11, 18, 60, 4008, 628 ]
2.619048
42
#! /usr/bin/python3 import sys import os sys.path.append('../') import numpy as np import matplotlib.pyplot as plt import imageio import matplotlib.cm as cm import time from netCDF4 import MFDataset import mesonh_probe as cdf """ test file for periodiccontainer and netcdfinterface types - arguments : mesonh (netcdf) files to open """ mesonhfiles = sys.argv[slice(1,len(sys.argv))] atm = MFDataset(mesonhfiles) lut = cdf.BiDirectionalLUT(atm.variables['VLEV'][:,0,0]) lin = cdf.BiDirectionalLinear(atm.variables['S_N_direction'][:]) plot1, axes1 = plt.subplots(1,2) x = np.linspace(0,160,1000) axes1[0].plot(x, lut.to_output_space(np.linspace(0,160,1000))) x = np.linspace(0.005,3.95,1000) axes1[1].plot(x, lut.to_input_space(np.linspace(0.005,3.95,1000))) plot1, axes1 = plt.subplots(1,2) x = np.linspace(0,160,1000) axes1[0].plot(x, lin.to_output_space(np.linspace(0,700,1000))) x = np.linspace(0.005,3.95,1000) axes1[1].plot(x, lin.to_input_space(np.linspace(-1,5,1000))) plt.show(block=False)
[ 2, 0, 1220, 14629, 14, 8800, 14, 29412, 18, 198, 198, 11748, 25064, 198, 11748, 28686, 198, 17597, 13, 6978, 13, 33295, 10786, 40720, 11537, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 2939, 952, 198, 11748, 2603, 29487, 8019, 13, 11215, 355, 12067, 198, 11748, 640, 198, 198, 6738, 2010, 34, 8068, 19, 1330, 337, 26009, 265, 292, 316, 198, 11748, 18842, 261, 71, 62, 1676, 1350, 355, 269, 7568, 198, 198, 37811, 198, 9288, 2393, 329, 27458, 34924, 290, 2010, 66, 7568, 39994, 3858, 198, 220, 220, 220, 532, 7159, 1058, 18842, 261, 71, 357, 3262, 66, 7568, 8, 3696, 284, 1280, 198, 37811, 198, 198, 6880, 261, 71, 16624, 796, 25064, 13, 853, 85, 58, 48369, 7, 16, 11, 11925, 7, 17597, 13, 853, 85, 4008, 60, 198, 265, 76, 796, 337, 26009, 265, 292, 316, 7, 6880, 261, 71, 16624, 8, 198, 198, 75, 315, 220, 796, 269, 7568, 13, 23286, 35, 4154, 282, 43, 3843, 7, 265, 76, 13, 25641, 2977, 17816, 53, 2538, 53, 6, 7131, 45299, 15, 11, 15, 12962, 198, 2815, 796, 269, 7568, 13, 23286, 35, 4154, 282, 14993, 451, 7, 265, 76, 13, 25641, 2977, 17816, 50, 62, 45, 62, 37295, 6, 7131, 25, 12962, 198, 198, 29487, 16, 11, 34197, 16, 796, 458, 83, 13, 7266, 489, 1747, 7, 16, 11, 17, 8, 198, 87, 796, 45941, 13, 21602, 10223, 7, 15, 11, 14198, 11, 12825, 8, 198, 897, 274, 16, 58, 15, 4083, 29487, 7, 87, 11, 300, 315, 13, 1462, 62, 22915, 62, 13200, 7, 37659, 13, 21602, 10223, 7, 15, 11, 14198, 11, 12825, 22305, 198, 87, 796, 45941, 13, 21602, 10223, 7, 15, 13, 22544, 11, 18, 13, 3865, 11, 12825, 8, 198, 897, 274, 16, 58, 16, 4083, 29487, 7, 87, 11, 300, 315, 13, 1462, 62, 15414, 62, 13200, 7, 37659, 13, 21602, 10223, 7, 15, 13, 22544, 11, 18, 13, 3865, 11, 12825, 22305, 198, 198, 29487, 16, 11, 34197, 16, 796, 458, 83, 13, 7266, 489, 1747, 7, 16, 11, 17, 8, 198, 87, 796, 45941, 13, 21602, 10223, 7, 15, 11, 14198, 11, 12825, 8, 198, 897, 274, 16, 58, 15, 4083, 29487, 7, 87, 11, 9493, 13, 1462, 62, 22915, 62, 13200, 7, 37659, 13, 21602, 10223, 7, 15, 11, 9879, 11, 12825, 22305, 198, 87, 796, 45941, 13, 21602, 10223, 7, 15, 13, 22544, 11, 18, 13, 3865, 11, 12825, 8, 198, 897, 274, 16, 58, 16, 4083, 29487, 7, 87, 11, 9493, 13, 1462, 62, 15414, 62, 13200, 7, 37659, 13, 21602, 10223, 32590, 16, 11, 20, 11, 12825, 22305, 198, 198, 489, 83, 13, 12860, 7, 9967, 28, 25101, 8, 198 ]
2.217105
456
import responses @responses.activate
[ 11748, 9109, 628, 198, 31, 16733, 274, 13, 39022, 198 ]
3.9
10
# 请求成功 RESPONSE_OK = 200 # 请求所需的URL地址 URLS = { # 主机地址 "hostUrl": "https://m.r.umiaohealth.com/", # 获取疫苗接种列表地址;POST "vaccinationAddress": "/InstitutionMedicineStock/GetBykeyword_InstitutionMedicineStock", # 获取某个社区医院的某一天可预约的时间段 "hospitalTimeRange": "/Reservation/GetByWorkDate_Rsv_TimeRange", # 执行疫苗预约请求 url;GET "secVaccination": "/Reservation/Reservation_Create", # 获取 childId "childId": "/Adult/Index", # 获取用户信息 "userMsg": "/Home/My" } # 区域名称 AREAS = [ "天河区", "白云区", "黄埔区", "荔湾区", "越秀区", "海珠区", "番禺区", "花都区", "南沙区", "增城区", "从化区" ] # 所有疫苗类型 VACCINE_TYPES = { "veroCell": 5601, # 新冠疫苗(Vero细胞) "adenovirusVector": 5602 # 新冠疫苗(腺病毒载体) # etc... } # 需要预约的疫苗类型 SEC_TYPE = VACCINE_TYPES["veroCell"]
[ 2, 5525, 107, 115, 162, 109, 224, 22755, 238, 27950, 253, 198, 19535, 47, 1340, 5188, 62, 11380, 796, 939, 198, 198, 2, 5525, 107, 115, 162, 109, 224, 33699, 222, 165, 250, 222, 21410, 21886, 28839, 108, 161, 251, 222, 198, 4261, 6561, 796, 1391, 198, 220, 220, 220, 1303, 220, 10310, 119, 17312, 118, 28839, 108, 161, 251, 222, 198, 220, 220, 220, 366, 4774, 28165, 1298, 366, 5450, 1378, 76, 13, 81, 13, 388, 13481, 13948, 13, 785, 14, 1600, 198, 220, 220, 220, 1303, 5525, 236, 115, 20998, 244, 163, 244, 104, 164, 233, 245, 162, 236, 98, 163, 100, 235, 26344, 245, 26193, 101, 28839, 108, 161, 251, 222, 171, 120, 249, 32782, 198, 220, 220, 220, 366, 37839, 1883, 20231, 1298, 12813, 6310, 2738, 39112, 500, 26207, 14, 3855, 3886, 2539, 4775, 62, 6310, 2738, 39112, 500, 26207, 1600, 198, 220, 220, 220, 1303, 5525, 236, 115, 20998, 244, 162, 253, 238, 10310, 103, 163, 97, 122, 44293, 118, 44293, 119, 165, 247, 95, 21410, 162, 253, 238, 31660, 25465, 20998, 107, 165, 95, 226, 163, 118, 99, 21410, 33768, 114, 29785, 112, 162, 106, 113, 198, 220, 220, 220, 366, 49257, 7575, 17257, 1298, 12813, 4965, 13208, 14, 3855, 3886, 12468, 10430, 62, 49, 21370, 62, 7575, 17257, 1600, 198, 220, 220, 220, 1303, 10545, 231, 100, 26193, 234, 163, 244, 104, 164, 233, 245, 165, 95, 226, 163, 118, 99, 46237, 115, 162, 109, 224, 19016, 171, 120, 249, 18851, 198, 220, 220, 220, 366, 2363, 53, 4134, 1883, 1298, 12813, 4965, 13208, 14, 4965, 13208, 62, 16447, 1600, 198, 220, 220, 220, 1303, 5525, 236, 115, 20998, 244, 1200, 7390, 198, 220, 220, 220, 366, 9410, 7390, 1298, 12813, 42995, 14, 15732, 1600, 198, 220, 220, 220, 1303, 5525, 236, 115, 20998, 244, 18796, 101, 22755, 115, 46479, 94, 162, 223, 107, 198, 220, 220, 220, 366, 7220, 50108, 1298, 12813, 16060, 14, 3666, 1, 198, 92, 198, 198, 2, 10263, 234, 118, 161, 253, 253, 28938, 235, 163, 100, 108, 198, 12203, 1921, 796, 685, 198, 220, 220, 220, 366, 25465, 162, 110, 111, 44293, 118, 1600, 198, 220, 220, 220, 366, 163, 50159, 12859, 239, 44293, 118, 1600, 198, 220, 220, 220, 366, 165, 119, 226, 161, 253, 242, 44293, 118, 1600, 198, 220, 220, 220, 366, 164, 235, 242, 162, 117, 122, 44293, 118, 1600, 198, 220, 220, 220, 366, 164, 114, 232, 163, 100, 222, 44293, 118, 1600, 198, 220, 220, 220, 366, 38184, 115, 163, 237, 254, 44293, 118, 1600, 198, 220, 220, 220, 366, 45911, 103, 163, 99, 118, 44293, 118, 1600, 198, 220, 220, 220, 366, 164, 46788, 32849, 121, 44293, 118, 1600, 198, 220, 220, 220, 366, 39355, 245, 162, 110, 247, 44293, 118, 1600, 198, 220, 220, 220, 366, 161, 95, 252, 161, 253, 236, 44293, 118, 1600, 198, 220, 220, 220, 366, 20015, 236, 44293, 244, 44293, 118, 1, 198, 60, 198, 198, 2, 10545, 231, 222, 17312, 231, 163, 244, 104, 164, 233, 245, 163, 109, 119, 161, 252, 233, 198, 53, 26861, 8881, 62, 9936, 47, 1546, 796, 1391, 198, 220, 220, 220, 366, 332, 78, 28780, 1298, 7265, 486, 11, 220, 1303, 10545, 244, 108, 37863, 254, 163, 244, 104, 164, 233, 245, 171, 120, 230, 53, 3529, 163, 119, 228, 47797, 252, 171, 120, 231, 198, 220, 220, 220, 366, 40780, 709, 19397, 38469, 1298, 642, 31418, 220, 1303, 10545, 244, 108, 37863, 254, 163, 244, 104, 164, 233, 245, 171, 120, 230, 164, 227, 118, 163, 245, 227, 162, 107, 240, 164, 121, 121, 19526, 241, 171, 120, 231, 198, 220, 220, 220, 1303, 3503, 986, 198, 92, 198, 198, 2, 16268, 250, 222, 17358, 223, 165, 95, 226, 163, 118, 99, 21410, 163, 244, 104, 164, 233, 245, 163, 109, 119, 161, 252, 233, 198, 23683, 62, 25216, 796, 569, 26861, 8881, 62, 9936, 47, 1546, 14692, 332, 78, 28780, 8973, 198 ]
1.217656
657
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2011 Radim Rehurek <[email protected]> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """Scikit learn interface for :class:`~gensim.models.hdpmodel.HdpModel`. Follows scikit-learn API conventions to facilitate using gensim along with scikit-learn. Examples -------- .. sourcecode:: pycon >>> from gensim.test.utils import common_dictionary, common_corpus >>> from gensim.sklearn_api import HdpTransformer >>> >>> # Lets extract the distribution of each document in topics >>> model = HdpTransformer(id2word=common_dictionary) >>> distr = model.fit_transform(common_corpus) """ import numpy as np from gensim import matutils # type: ignore from gensim import models # type: ignore from scipy import sparse # type: ignore from sklearn.base import BaseEstimator, TransformerMixin # type: ignore from sklearn.exceptions import NotFittedError # type: ignore class HdpTransformer(TransformerMixin, BaseEstimator): """Base HDP module, wraps :class:`~gensim.models.hdpmodel.HdpModel`. The inner workings of this class heavily depends on `Wang, Paisley, Blei: "Online Variational Inference for the Hierarchical Dirichlet Process, JMLR (2011)" <http://jmlr.csail.mit.edu/proceedings/papers/v15/wang11a/wang11a.pdf>`_. """ def __init__( self, id2word, max_chunks=None, max_time=None, chunksize=256, kappa=1.0, tau=64.0, K=15, T=150, alpha=1, gamma=1, eta=0.01, scale=1.0, var_converge=0.0001, outputdir=None, random_state=None, ): """ Parameters ---------- id2word : :class:`~gensim.corpora.dictionary.Dictionary`, optional Mapping between a words ID and the word itself in the vocabulary. max_chunks : int, optional Upper bound on how many chunks to process.It wraps around corpus beginning in another corpus pass, if there are not enough chunks in the corpus. max_time : int, optional Upper bound on time in seconds for which model will be trained. chunksize : int, optional Number of documents to be processed by the model in each mini-batch. kappa : float, optional Learning rate, see `Wang, Paisley, Blei: "Online Variational Inference for the Hierarchical Dirichlet Process, JMLR (2011)" <http://jmlr.csail.mit.edu/proceedings/papers/v15/wang11a/wang11a.pdf>`_. tau : float, optional Slow down parameter, see `Wang, Paisley, Blei: "Online Variational Inference for the Hierarchical Dirichlet Process, JMLR (2011)" <http://jmlr.csail.mit.edu/proceedings/papers/v15/wang11a/wang11a.pdf>`_. K : int, optional Second level truncation level, see `Wang, Paisley, Blei: "Online Variational Inference for the Hierarchical Dirichlet Process, JMLR (2011)" <http://jmlr.csail.mit.edu/proceedings/papers/v15/wang11a/wang11a.pdf>`_. T : int, optional Top level truncation level, see `Wang, Paisley, Blei: "Online Variational Inference for the Hierarchical Dirichlet Process, JMLR (2011)" <http://jmlr.csail.mit.edu/proceedings/papers/v15/wang11a/wang11a.pdf>`_. alpha : int, optional Second level concentration, see `Wang, Paisley, Blei: "Online Variational Inference for the Hierarchical Dirichlet Process, JMLR (2011)" <http://jmlr.csail.mit.edu/proceedings/papers/v15/wang11a/wang11a.pdf>`_. gamma : int, optional First level concentration, see `Wang, Paisley, Blei: "Online Variational Inference for the Hierarchical Dirichlet Process, JMLR (2011)" <http://jmlr.csail.mit.edu/proceedings/papers/v15/wang11a/wang11a.pdf>`_. eta : float, optional The topic Dirichlet, see `Wang, Paisley, Blei: "Online Variational Inference for the Hierarchical Dirichlet Process, JMLR (2011)" <http://jmlr.csail.mit.edu/proceedings/papers/v15/wang11a/wang11a.pdf>`_. scale : float, optional Weights information from the mini-chunk of corpus to calculate rhot. var_converge : float, optional Lower bound on the right side of convergence. Used when updating variational parameters for a single document. outputdir : str, optional Path to a directory where topic and options information will be stored. random_state : int, optional Seed used to create a :class:`~np.random.RandomState`. Useful for obtaining reproducible results. """ self.gensim_model = None self.id2word = id2word self.max_chunks = max_chunks self.max_time = max_time self.chunksize = chunksize self.kappa = kappa self.tau = tau self.K = K self.T = T self.alpha = alpha self.gamma = gamma self.eta = eta self.scale = scale self.var_converge = var_converge self.outputdir = outputdir self.random_state = random_state def fit(self, X, y=None): """Fit the model according to the given training data. Parameters ---------- X : {iterable of list of (int, number), scipy.sparse matrix} A collection of documents in BOW format used for training the model. Returns ------- :class:`~gensim.sklearn_api.hdp.HdpTransformer` The trained model. """ if sparse.issparse(X): corpus = matutils.Sparse2Corpus(sparse=X, documents_columns=False) else: corpus = X self.gensim_model = models.HdpModel( corpus=corpus, id2word=self.id2word, max_chunks=self.max_chunks, max_time=self.max_time, chunksize=self.chunksize, kappa=self.kappa, tau=self.tau, K=self.K, T=self.T, alpha=self.alpha, gamma=self.gamma, eta=self.eta, scale=self.scale, var_converge=self.var_converge, outputdir=self.outputdir, random_state=self.random_state, ) return self def transform(self, docs): """Infer a matrix of topic distribution for the given document bow, where a_ij indicates (topic_i, topic_probability_j). Parameters ---------- docs : {iterable of list of (int, number), list of (int, number)} Document or sequence of documents in BOW format. Returns ------- numpy.ndarray of shape [`len(docs), num_topics`] Topic distribution for `docs`. """ if self.gensim_model is None: raise NotFittedError( "This model has not been fitted yet. Call 'fit' with appropriate arguments before using this method." ) # The input as array of array if isinstance(docs[0], tuple): docs = [docs] distribution, max_num_topics = [], 0 for doc in docs: topicd = self.gensim_model[doc] distribution.append(topicd) max_num_topics = max(max_num_topics, max(topic[0] for topic in topicd) + 1) # returning dense representation for compatibility with sklearn # but we should go back to sparse representation in the future distribution = [matutils.sparse2full(t, max_num_topics) for t in distribution] return np.reshape(np.array(distribution), (len(docs), max_num_topics)) def partial_fit(self, X): """Train model over a potentially incomplete set of documents. Uses the parameters set in the constructor. This method can be used in two ways: * On an unfitted model in which case the model is initialized and trained on `X`. * On an already fitted model in which case the model is **updated** by `X`. Parameters ---------- X : {iterable of list of (int, number), scipy.sparse matrix} A collection of documents in BOW format used for training the model. Returns ------- :class:`~gensim.sklearn_api.hdp.HdpTransformer` The trained model. """ if sparse.issparse(X): X = matutils.Sparse2Corpus(sparse=X, documents_columns=False) if self.gensim_model is None: self.gensim_model = models.HdpModel( id2word=self.id2word, max_chunks=self.max_chunks, max_time=self.max_time, chunksize=self.chunksize, kappa=self.kappa, tau=self.tau, K=self.K, T=self.T, alpha=self.alpha, gamma=self.gamma, eta=self.eta, scale=self.scale, var_converge=self.var_converge, outputdir=self.outputdir, random_state=self.random_state, ) self.gensim_model.update(corpus=X) return self
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 34, 8, 2813, 5325, 320, 797, 71, 495, 74, 1279, 6335, 320, 260, 71, 495, 74, 31, 325, 89, 7402, 13, 26691, 29, 198, 2, 49962, 739, 262, 22961, 17370, 6489, 410, 17, 13, 16, 532, 2638, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 14, 75, 70, 489, 13, 6494, 198, 198, 37811, 50, 979, 15813, 2193, 7071, 329, 1058, 4871, 25, 63, 93, 70, 641, 320, 13, 27530, 13, 31298, 4426, 375, 417, 13, 39, 26059, 17633, 44646, 198, 7155, 82, 629, 1134, 270, 12, 35720, 7824, 21396, 284, 15570, 1262, 308, 641, 320, 1863, 351, 629, 1134, 270, 12, 35720, 13, 198, 27730, 198, 982, 198, 492, 2723, 8189, 3712, 12972, 1102, 198, 220, 220, 220, 13163, 422, 308, 641, 320, 13, 9288, 13, 26791, 1330, 2219, 62, 67, 14188, 11, 2219, 62, 10215, 79, 385, 198, 220, 220, 220, 13163, 422, 308, 641, 320, 13, 8135, 35720, 62, 15042, 1330, 367, 26059, 8291, 16354, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 1303, 38257, 7925, 262, 6082, 286, 1123, 3188, 287, 10233, 198, 220, 220, 220, 13163, 2746, 796, 367, 26059, 8291, 16354, 7, 312, 17, 4775, 28, 11321, 62, 67, 14188, 8, 198, 220, 220, 220, 13163, 1233, 81, 796, 2746, 13, 11147, 62, 35636, 7, 11321, 62, 10215, 79, 385, 8, 198, 37811, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 308, 641, 320, 1330, 2603, 26791, 220, 1303, 2099, 25, 8856, 198, 6738, 308, 641, 320, 1330, 4981, 220, 1303, 2099, 25, 8856, 198, 6738, 629, 541, 88, 1330, 29877, 220, 1303, 2099, 25, 8856, 198, 6738, 1341, 35720, 13, 8692, 1330, 7308, 22362, 320, 1352, 11, 3602, 16354, 35608, 259, 220, 1303, 2099, 25, 8856, 198, 6738, 1341, 35720, 13, 1069, 11755, 1330, 1892, 37, 2175, 12331, 220, 1303, 2099, 25, 8856, 628, 198, 4871, 367, 26059, 8291, 16354, 7, 8291, 16354, 35608, 259, 11, 7308, 22362, 320, 1352, 2599, 198, 220, 220, 220, 37227, 14881, 5572, 47, 8265, 11, 27521, 1058, 4871, 25, 63, 93, 70, 641, 320, 13, 27530, 13, 31298, 4426, 375, 417, 13, 39, 26059, 17633, 44646, 198, 220, 220, 220, 383, 8434, 35084, 286, 428, 1398, 7272, 8338, 319, 4600, 54, 648, 11, 11243, 271, 1636, 11, 17175, 72, 25, 366, 14439, 15965, 864, 198, 220, 220, 220, 554, 4288, 329, 262, 36496, 998, 605, 36202, 488, 1616, 10854, 11, 449, 5805, 49, 357, 9804, 16725, 198, 220, 220, 220, 1279, 4023, 1378, 73, 4029, 81, 13, 6359, 603, 13, 2781, 13, 15532, 14, 1676, 2707, 654, 14, 40491, 14, 85, 1314, 14, 47562, 1157, 64, 14, 47562, 1157, 64, 13, 12315, 29, 63, 44807, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 17, 4775, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 354, 14125, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2435, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 22716, 1096, 28, 11645, 11, 198, 220, 220, 220, 220, 220, 220, 220, 479, 20975, 28, 16, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 256, 559, 28, 2414, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 509, 28, 1314, 11, 198, 220, 220, 220, 220, 220, 220, 220, 309, 28, 8628, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 34236, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2123, 64, 28, 15, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5046, 28, 16, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 1102, 332, 469, 28, 15, 13, 18005, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 15908, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 14202, 11, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 17, 4775, 1058, 1058, 4871, 25, 63, 93, 70, 641, 320, 13, 10215, 38851, 13, 67, 14188, 13, 35, 14188, 47671, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 337, 5912, 1022, 257, 2456, 4522, 290, 262, 1573, 2346, 287, 262, 25818, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 354, 14125, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20390, 5421, 319, 703, 867, 22716, 284, 1429, 13, 1026, 27521, 1088, 35789, 3726, 287, 1194, 35789, 1208, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 612, 389, 407, 1576, 22716, 287, 262, 35789, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2435, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20390, 5421, 319, 640, 287, 4201, 329, 543, 2746, 481, 307, 8776, 13, 198, 220, 220, 220, 220, 220, 220, 220, 22716, 1096, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 4963, 284, 307, 13686, 416, 262, 2746, 287, 1123, 9927, 12, 43501, 13, 198, 220, 220, 220, 220, 220, 220, 220, 479, 20975, 1058, 12178, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18252, 2494, 11, 766, 4600, 54, 648, 11, 11243, 271, 1636, 11, 17175, 72, 25, 366, 14439, 15965, 864, 554, 4288, 329, 262, 36496, 998, 605, 36202, 488, 1616, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10854, 11, 449, 5805, 49, 357, 9804, 16725, 1279, 4023, 1378, 73, 4029, 81, 13, 6359, 603, 13, 2781, 13, 15532, 14, 1676, 2707, 654, 14, 40491, 14, 85, 1314, 14, 47562, 1157, 64, 14, 47562, 1157, 64, 13, 12315, 29, 63, 44807, 198, 220, 220, 220, 220, 220, 220, 220, 256, 559, 1058, 12178, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19054, 866, 11507, 11, 766, 4600, 54, 648, 11, 11243, 271, 1636, 11, 17175, 72, 25, 366, 14439, 15965, 864, 554, 4288, 329, 262, 36496, 998, 605, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36202, 488, 1616, 10854, 11, 449, 5805, 49, 357, 9804, 16725, 1279, 4023, 1378, 73, 4029, 81, 13, 6359, 603, 13, 2781, 13, 15532, 14, 1676, 2707, 654, 14, 40491, 14, 85, 1314, 14, 47562, 1157, 64, 14, 47562, 1157, 64, 13, 12315, 29, 63, 44807, 198, 220, 220, 220, 220, 220, 220, 220, 509, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5498, 1241, 40122, 341, 1241, 11, 766, 4600, 54, 648, 11, 11243, 271, 1636, 11, 17175, 72, 25, 366, 14439, 15965, 864, 554, 4288, 329, 262, 36496, 998, 605, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36202, 488, 1616, 10854, 11, 449, 5805, 49, 357, 9804, 16725, 1279, 4023, 1378, 73, 4029, 81, 13, 6359, 603, 13, 2781, 13, 15532, 14, 1676, 2707, 654, 14, 40491, 14, 85, 1314, 14, 47562, 1157, 64, 14, 47562, 1157, 64, 13, 12315, 29, 63, 44807, 198, 220, 220, 220, 220, 220, 220, 220, 309, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5849, 1241, 40122, 341, 1241, 11, 766, 4600, 54, 648, 11, 11243, 271, 1636, 11, 17175, 72, 25, 366, 14439, 15965, 864, 554, 4288, 329, 262, 36496, 998, 605, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36202, 488, 1616, 220, 10854, 11, 449, 5805, 49, 357, 9804, 16725, 1279, 4023, 1378, 73, 4029, 81, 13, 6359, 603, 13, 2781, 13, 15532, 14, 1676, 2707, 654, 14, 40491, 14, 85, 1314, 14, 47562, 1157, 64, 14, 47562, 1157, 64, 13, 12315, 29, 63, 44807, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5498, 1241, 10368, 11, 766, 4600, 54, 648, 11, 11243, 271, 1636, 11, 17175, 72, 25, 366, 14439, 15965, 864, 554, 4288, 329, 262, 36496, 998, 605, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36202, 488, 1616, 220, 10854, 11, 449, 5805, 49, 357, 9804, 16725, 1279, 4023, 1378, 73, 4029, 81, 13, 6359, 603, 13, 2781, 13, 15532, 14, 1676, 2707, 654, 14, 40491, 14, 85, 1314, 14, 47562, 1157, 64, 14, 47562, 1157, 64, 13, 12315, 29, 63, 44807, 198, 220, 220, 220, 220, 220, 220, 220, 34236, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3274, 1241, 10368, 11, 766, 4600, 54, 648, 11, 11243, 271, 1636, 11, 17175, 72, 25, 366, 14439, 15965, 864, 554, 4288, 329, 262, 36496, 998, 605, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36202, 488, 1616, 220, 10854, 11, 449, 5805, 49, 357, 9804, 16725, 1279, 4023, 1378, 73, 4029, 81, 13, 6359, 603, 13, 2781, 13, 15532, 14, 1676, 2707, 654, 14, 40491, 14, 85, 1314, 14, 47562, 1157, 64, 14, 47562, 1157, 64, 13, 12315, 29, 63, 44807, 198, 220, 220, 220, 220, 220, 220, 220, 2123, 64, 1058, 12178, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 7243, 36202, 488, 1616, 11, 766, 4600, 54, 648, 11, 11243, 271, 1636, 11, 17175, 72, 25, 366, 14439, 15965, 864, 554, 4288, 329, 262, 36496, 998, 605, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36202, 488, 1616, 220, 10854, 11, 449, 5805, 49, 357, 9804, 16725, 1279, 4023, 1378, 73, 4029, 81, 13, 6359, 603, 13, 2781, 13, 15532, 14, 1676, 2707, 654, 14, 40491, 14, 85, 1314, 14, 47562, 1157, 64, 14, 47562, 1157, 64, 13, 12315, 29, 63, 44807, 198, 220, 220, 220, 220, 220, 220, 220, 5046, 1058, 12178, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 775, 2337, 1321, 422, 262, 9927, 12, 354, 2954, 286, 35789, 284, 15284, 374, 8940, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 1102, 332, 469, 1058, 12178, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16048, 5421, 319, 262, 826, 1735, 286, 40826, 13, 16718, 618, 19698, 5553, 864, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 257, 2060, 3188, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 15908, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 257, 8619, 810, 7243, 290, 3689, 1321, 481, 307, 8574, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23262, 973, 284, 2251, 257, 1058, 4871, 25, 63, 93, 37659, 13, 25120, 13, 29531, 9012, 44646, 49511, 329, 16727, 8186, 37369, 2482, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 70, 641, 320, 62, 19849, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 17, 4775, 796, 4686, 17, 4775, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 354, 14125, 796, 3509, 62, 354, 14125, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 2435, 796, 3509, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 354, 14125, 1096, 796, 22716, 1096, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 74, 20975, 796, 479, 20975, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 559, 796, 256, 559, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42, 796, 509, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 51, 796, 309, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26591, 796, 17130, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28483, 2611, 796, 34236, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17167, 796, 2123, 64, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9888, 796, 5046, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1102, 332, 469, 796, 1401, 62, 1102, 332, 469, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22915, 15908, 796, 5072, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25120, 62, 5219, 796, 4738, 62, 5219, 628, 220, 220, 220, 825, 4197, 7, 944, 11, 1395, 11, 331, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 31805, 262, 2746, 1864, 284, 262, 1813, 3047, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 1058, 1391, 2676, 540, 286, 1351, 286, 357, 600, 11, 1271, 828, 629, 541, 88, 13, 82, 29572, 17593, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 4947, 286, 4963, 287, 347, 3913, 5794, 973, 329, 3047, 262, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 93, 70, 641, 320, 13, 8135, 35720, 62, 15042, 13, 71, 26059, 13, 39, 26059, 8291, 16354, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 8776, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29877, 13, 747, 29572, 7, 55, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35789, 796, 2603, 26791, 13, 50, 29572, 17, 45680, 385, 7, 82, 29572, 28, 55, 11, 4963, 62, 28665, 82, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35789, 796, 1395, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 70, 641, 320, 62, 19849, 796, 4981, 13, 39, 26059, 17633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35789, 28, 10215, 79, 385, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 17, 4775, 28, 944, 13, 312, 17, 4775, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 354, 14125, 28, 944, 13, 9806, 62, 354, 14125, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2435, 28, 944, 13, 9806, 62, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22716, 1096, 28, 944, 13, 354, 14125, 1096, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 20975, 28, 944, 13, 74, 20975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 559, 28, 944, 13, 83, 559, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 509, 28, 944, 13, 42, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 28, 944, 13, 51, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 944, 13, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34236, 28, 944, 13, 28483, 2611, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2123, 64, 28, 944, 13, 17167, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 28, 944, 13, 9888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 1102, 332, 469, 28, 944, 13, 7785, 62, 1102, 332, 469, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 15908, 28, 944, 13, 22915, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 944, 13, 25120, 62, 5219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 6121, 7, 944, 11, 34165, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 818, 2232, 257, 17593, 286, 7243, 6082, 329, 262, 1813, 3188, 9563, 11, 810, 257, 62, 2926, 198, 220, 220, 220, 220, 220, 220, 220, 9217, 357, 26652, 62, 72, 11, 7243, 62, 1676, 65, 1799, 62, 73, 737, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 34165, 1058, 1391, 2676, 540, 286, 1351, 286, 357, 600, 11, 1271, 828, 1351, 286, 357, 600, 11, 1271, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16854, 393, 8379, 286, 4963, 287, 347, 3913, 5794, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 13, 358, 18747, 286, 5485, 685, 63, 11925, 7, 31628, 828, 997, 62, 4852, 873, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47373, 6082, 329, 4600, 31628, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 70, 641, 320, 62, 19849, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 37, 2175, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1212, 2746, 468, 407, 587, 18235, 1865, 13, 4889, 705, 11147, 6, 351, 5035, 7159, 878, 1262, 428, 2446, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 5128, 355, 7177, 286, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 31628, 58, 15, 4357, 46545, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34165, 796, 685, 31628, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6082, 11, 3509, 62, 22510, 62, 4852, 873, 796, 685, 4357, 657, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2205, 287, 34165, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7243, 67, 796, 2116, 13, 70, 641, 320, 62, 19849, 58, 15390, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6082, 13, 33295, 7, 26652, 67, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 22510, 62, 4852, 873, 796, 3509, 7, 9806, 62, 22510, 62, 4852, 873, 11, 3509, 7, 26652, 58, 15, 60, 329, 7243, 287, 7243, 67, 8, 1343, 352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8024, 15715, 10552, 329, 17764, 351, 1341, 35720, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 475, 356, 815, 467, 736, 284, 29877, 10552, 287, 262, 2003, 198, 220, 220, 220, 220, 220, 220, 220, 6082, 796, 685, 6759, 26791, 13, 82, 29572, 17, 12853, 7, 83, 11, 3509, 62, 22510, 62, 4852, 873, 8, 329, 256, 287, 6082, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 3447, 1758, 7, 37659, 13, 18747, 7, 17080, 3890, 828, 357, 11925, 7, 31628, 828, 3509, 62, 22510, 62, 4852, 873, 4008, 628, 220, 220, 220, 825, 13027, 62, 11147, 7, 944, 11, 1395, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44077, 2746, 625, 257, 6196, 17503, 900, 286, 4963, 13, 198, 220, 220, 220, 220, 220, 220, 220, 36965, 262, 10007, 900, 287, 262, 23772, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 460, 307, 973, 287, 734, 2842, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 1550, 281, 3684, 2175, 2746, 287, 543, 1339, 262, 2746, 318, 23224, 290, 8776, 319, 4600, 55, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 1550, 281, 1541, 18235, 2746, 287, 543, 1339, 262, 2746, 318, 12429, 43162, 1174, 416, 4600, 55, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 1058, 1391, 2676, 540, 286, 1351, 286, 357, 600, 11, 1271, 828, 629, 541, 88, 13, 82, 29572, 17593, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 4947, 286, 4963, 287, 347, 3913, 5794, 973, 329, 3047, 262, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 93, 70, 641, 320, 13, 8135, 35720, 62, 15042, 13, 71, 26059, 13, 39, 26059, 8291, 16354, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 8776, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29877, 13, 747, 29572, 7, 55, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 796, 2603, 26791, 13, 50, 29572, 17, 45680, 385, 7, 82, 29572, 28, 55, 11, 4963, 62, 28665, 82, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 70, 641, 320, 62, 19849, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 70, 641, 320, 62, 19849, 796, 4981, 13, 39, 26059, 17633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 17, 4775, 28, 944, 13, 312, 17, 4775, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 354, 14125, 28, 944, 13, 9806, 62, 354, 14125, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2435, 28, 944, 13, 9806, 62, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22716, 1096, 28, 944, 13, 354, 14125, 1096, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 20975, 28, 944, 13, 74, 20975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 559, 28, 944, 13, 83, 559, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 509, 28, 944, 13, 42, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 28, 944, 13, 51, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 944, 13, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34236, 28, 944, 13, 28483, 2611, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2123, 64, 28, 944, 13, 17167, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 28, 944, 13, 9888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 1102, 332, 469, 28, 944, 13, 7785, 62, 1102, 332, 469, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 15908, 28, 944, 13, 22915, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 944, 13, 25120, 62, 5219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 70, 641, 320, 62, 19849, 13, 19119, 7, 10215, 79, 385, 28, 55, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 198 ]
2.231905
4,131
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_policy import policy from zaqar.common.policies import base CLAIMS = 'claims:%s' rules = [ policy.DocumentedRuleDefault( name=CLAIMS % 'create', check_str=base.UNPROTECTED, description='Claims a set of messages from the specified queue.', operations=[ { 'path': '/v2/queues/{queue_name}/claims', 'method': 'POST' } ] ), policy.DocumentedRuleDefault( name=CLAIMS % 'get', check_str=base.UNPROTECTED, description='Queries the specified claim for the specified queue.', operations=[ { 'path': '/v2/queues/{queue_name}/claims/{claim_id}', 'method': 'GET' } ] ), policy.DocumentedRuleDefault( name=CLAIMS % 'delete', check_str=base.UNPROTECTED, description='Releases the specified claim for the specified queue.', operations=[ { 'path': '/v2/queues/{queue_name}/claims/{claim_id}', 'method': 'DELETE' } ] ), policy.DocumentedRuleDefault( name=CLAIMS % 'update', check_str=base.UNPROTECTED, description='Updates the specified claim for the specified queue.', operations=[ { 'path': '/v2/queues/{queue_name}/claims/{claim_id}', 'method': 'PATCH' } ] ) ]
[ 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 198, 6738, 28686, 5439, 62, 30586, 1330, 2450, 198, 198, 6738, 1976, 30188, 283, 13, 11321, 13, 79, 4160, 444, 1330, 2779, 198, 198, 48778, 50, 796, 705, 6604, 82, 25, 4, 82, 6, 628, 198, 38785, 796, 685, 198, 220, 220, 220, 2450, 13, 35, 17664, 31929, 19463, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 48778, 50, 4064, 705, 17953, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 2536, 28, 8692, 13, 4944, 4805, 2394, 9782, 1961, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 44819, 82, 257, 900, 286, 6218, 422, 262, 7368, 16834, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4560, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6978, 10354, 31051, 85, 17, 14, 4188, 947, 14, 90, 36560, 62, 3672, 92, 14, 6604, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24396, 10354, 705, 32782, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 2450, 13, 35, 17664, 31929, 19463, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 48778, 50, 4064, 705, 1136, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 2536, 28, 8692, 13, 4944, 4805, 2394, 9782, 1961, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 4507, 10640, 262, 7368, 1624, 329, 262, 7368, 16834, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4560, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6978, 10354, 31051, 85, 17, 14, 4188, 947, 14, 90, 36560, 62, 3672, 92, 14, 6604, 82, 14, 90, 6604, 62, 312, 92, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24396, 10354, 705, 18851, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 2450, 13, 35, 17664, 31929, 19463, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 48778, 50, 4064, 705, 33678, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 2536, 28, 8692, 13, 4944, 4805, 2394, 9782, 1961, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 3041, 29329, 262, 7368, 1624, 329, 262, 7368, 16834, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4560, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6978, 10354, 31051, 85, 17, 14, 4188, 947, 14, 90, 36560, 62, 3672, 92, 14, 6604, 82, 14, 90, 6604, 62, 312, 92, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24396, 10354, 705, 7206, 2538, 9328, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 2450, 13, 35, 17664, 31929, 19463, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 48778, 50, 4064, 705, 19119, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 2536, 28, 8692, 13, 4944, 4805, 2394, 9782, 1961, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 4933, 19581, 262, 7368, 1624, 329, 262, 7368, 16834, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4560, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6978, 10354, 31051, 85, 17, 14, 4188, 947, 14, 90, 36560, 62, 3672, 92, 14, 6604, 82, 14, 90, 6604, 62, 312, 92, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24396, 10354, 705, 47, 11417, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 1267, 198, 60, 628 ]
2.236464
905
import discord import discord.utils from discord.ext import commands import requests import random client = discord.Client() SECRET_KEY="secretkey" BASE_URL="http://0.0.0.0:1234" @client.event @client.event client.run("")
[ 11748, 36446, 198, 11748, 36446, 13, 26791, 198, 6738, 36446, 13, 2302, 1330, 9729, 198, 11748, 7007, 198, 11748, 4738, 198, 198, 16366, 796, 36446, 13, 11792, 3419, 198, 198, 23683, 26087, 62, 20373, 2625, 21078, 2539, 1, 198, 33, 11159, 62, 21886, 2625, 4023, 1378, 15, 13, 15, 13, 15, 13, 15, 25, 1065, 2682, 1, 198, 198, 31, 16366, 13, 15596, 198, 198, 31, 16366, 13, 15596, 628, 198, 16366, 13, 5143, 7203, 4943 ]
2.986842
76
from django.contrib.staticfiles.urls import staticfiles_urlpatterns from django.conf import settings from django.contrib import admin from django.urls import path, re_path from . import views # SSO urlpatterns = [ path('reports/', views.list_reports, name="django-pathfinder-statcrunch-list-reports"), path('reports/<int:pk>/', views.view_report, name="django-pathfinder-statcrunch-view-report"), path('reports/<int:pk>/refresh/', views.refresh_report, name="django-pathfinder-statcrunch-view-report-refresh"), ]
[ 6738, 42625, 14208, 13, 3642, 822, 13, 12708, 16624, 13, 6371, 82, 1330, 9037, 16624, 62, 6371, 33279, 82, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 11, 302, 62, 6978, 198, 6738, 764, 1330, 5009, 220, 198, 198, 2, 6723, 46, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 48922, 14, 3256, 5009, 13, 4868, 62, 48922, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 28241, 14208, 12, 6978, 22805, 12, 14269, 6098, 3316, 12, 4868, 12, 48922, 12340, 198, 220, 220, 220, 3108, 10786, 48922, 14, 27, 600, 25, 79, 74, 29, 14, 3256, 5009, 13, 1177, 62, 13116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 28241, 14208, 12, 6978, 22805, 12, 14269, 6098, 3316, 12, 1177, 12, 13116, 12340, 198, 220, 220, 220, 3108, 10786, 48922, 14, 27, 600, 25, 79, 74, 29, 14, 5420, 3447, 14, 3256, 5009, 13, 5420, 3447, 62, 13116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 28241, 14208, 12, 6978, 22805, 12, 14269, 6098, 3316, 12, 1177, 12, 13116, 12, 5420, 3447, 12340, 198, 60, 198 ]
2.645933
209
import fileinput nums = list(map(int, fileinput.input())) print(sum(inc for inc in gen()))
[ 11748, 2393, 15414, 198, 198, 77, 5700, 796, 1351, 7, 8899, 7, 600, 11, 2393, 15414, 13, 15414, 3419, 4008, 628, 198, 198, 4798, 7, 16345, 7, 1939, 329, 753, 287, 2429, 3419, 4008, 198 ]
2.714286
35
import connexion import six from openapi_server.models.runtime_error import RuntimeError # noqa: E501 from openapi_server.models.v1_health_check_service_health_check_response import V1HealthCheckServiceHealthCheckResponse # noqa: E501 from openapi_server import util def health_check_service_health_check(): # noqa: E501 """health_check_service_health_check # noqa: E501 :rtype: V1HealthCheckServiceHealthCheckResponse """ return 'do some magic!'
[ 11748, 369, 12413, 295, 198, 11748, 2237, 198, 198, 6738, 1280, 15042, 62, 15388, 13, 27530, 13, 43282, 62, 18224, 1330, 43160, 12331, 220, 1303, 645, 20402, 25, 412, 33548, 198, 6738, 1280, 15042, 62, 15388, 13, 27530, 13, 85, 16, 62, 13948, 62, 9122, 62, 15271, 62, 13948, 62, 9122, 62, 26209, 1330, 569, 16, 18081, 9787, 16177, 18081, 9787, 31077, 220, 1303, 645, 20402, 25, 412, 33548, 198, 6738, 1280, 15042, 62, 15388, 1330, 7736, 628, 198, 4299, 1535, 62, 9122, 62, 15271, 62, 13948, 62, 9122, 33529, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 37227, 13948, 62, 9122, 62, 15271, 62, 13948, 62, 9122, 628, 220, 220, 220, 220, 1303, 645, 20402, 25, 412, 33548, 628, 198, 220, 220, 220, 1058, 81, 4906, 25, 569, 16, 18081, 9787, 16177, 18081, 9787, 31077, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 705, 4598, 617, 5536, 13679, 198 ]
3.077419
155
class Model182: """Class to create Model 182 files""" declarant = None declared_registers = {}
[ 4871, 9104, 24294, 25, 198, 220, 220, 220, 37227, 9487, 284, 2251, 9104, 28581, 3696, 37811, 628, 220, 220, 220, 2377, 4741, 796, 6045, 198, 220, 220, 220, 6875, 62, 2301, 6223, 796, 23884, 198 ]
3.085714
35
""" Created on 12:39, June. 4th, 2021 Author: fassial Filename: VoltageJump.py """ import brainpy as bp __all__ = [ "VoltageJump", ]
[ 37811, 198, 41972, 319, 1105, 25, 2670, 11, 2795, 13, 604, 400, 11, 33448, 198, 13838, 25, 277, 562, 498, 198, 35063, 25, 45444, 36046, 13, 9078, 198, 37811, 198, 11748, 3632, 9078, 355, 275, 79, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 53, 5978, 496, 36046, 1600, 198, 60, 628 ]
2.482143
56
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun May 10 10:31:44 2020 @author: alex """ import argparse from clodsa.utils.conf import Conf
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 3825, 1737, 838, 838, 25, 3132, 25, 2598, 12131, 198, 198, 31, 9800, 25, 257, 2588, 198, 37811, 198, 11748, 1822, 29572, 198, 6738, 537, 375, 11400, 13, 26791, 13, 10414, 1330, 7326 ]
2.557377
61
#################################################################################### # BLACKMAMBA BY: LOSEYS (https://github.com/loseys) # # QT GUI INTERFACE BY: WANDERSON M.PIMENTA (https://github.com/Wanderson-Magalhaes) # ORIGINAL QT GUI: https://github.com/Wanderson-Magalhaes/Simple_PySide_Base #################################################################################### """ Video streaming server. """ import sys import socket from os import environ environ['PYGAME_HIDE_SUPPORT_PROMPT'] = '1' import pygame from zlib import decompress from cryptography.fernet import Fernet try: SERVER_IP = sys.argv[1] PORT_VIDEO = sys.argv[2] except: SERVER_IP = 0 PORT_VIDEO = 0 if __name__ == "__main__": start_stream()
[ 29113, 29113, 14468, 4242, 198, 2, 31963, 44, 2390, 4339, 11050, 25, 406, 14058, 16309, 357, 5450, 1378, 12567, 13, 785, 14, 75, 577, 893, 8, 198, 2, 198, 2, 1195, 51, 25757, 23255, 49836, 11050, 25, 370, 6981, 29086, 337, 13, 47, 3955, 3525, 32, 357, 5450, 1378, 12567, 13, 785, 14, 54, 392, 882, 12, 13436, 282, 3099, 274, 8, 198, 2, 43901, 17961, 1195, 51, 25757, 25, 3740, 1378, 12567, 13, 785, 14, 54, 392, 882, 12, 13436, 282, 3099, 274, 14, 26437, 62, 20519, 24819, 62, 14881, 198, 29113, 29113, 14468, 4242, 198, 198, 37811, 198, 10798, 11305, 4382, 13, 198, 37811, 198, 198, 11748, 25064, 198, 11748, 17802, 198, 6738, 28686, 1330, 551, 2268, 198, 268, 2268, 17816, 47, 56, 47109, 62, 39, 14114, 62, 40331, 15490, 62, 4805, 2662, 11571, 20520, 796, 705, 16, 6, 198, 198, 11748, 12972, 6057, 198, 6738, 1976, 8019, 1330, 38237, 601, 198, 6738, 45898, 13, 69, 1142, 316, 1330, 38982, 316, 198, 198, 28311, 25, 198, 220, 220, 220, 18871, 5959, 62, 4061, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 350, 9863, 62, 42937, 796, 25064, 13, 853, 85, 58, 17, 60, 198, 16341, 25, 198, 220, 220, 220, 18871, 5959, 62, 4061, 796, 657, 198, 220, 220, 220, 350, 9863, 62, 42937, 796, 657, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 923, 62, 5532, 3419, 198 ]
3.069388
245
from datetime import datetime from infrastructure.cqrs.decorators.requestclass import requestclass @requestclass
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 6884, 13, 66, 80, 3808, 13, 12501, 273, 2024, 13, 25927, 4871, 1330, 2581, 4871, 628, 198, 31, 25927, 4871, 198 ]
3.866667
30
import sqlite3 # Connect to the sqlite3 file connection = sqlite3.connect("northwind_small.sqlite3") cursor = connection.cursor() # Queries # `expensive_items`: What are the ten most expensive items (per unit price) in the database? price_query = f""" SELECT UnitPrice, ProductName FROM product ORDER BY UnitPrice DESC LIMIT 10;""" expensive_items = cursor.execute(price_query).fetchall() print("Expensive items:", expensive_items) # Expensive items: [(263.5, 'Côte de Blaye'), (123.79, 'Thüringer Rostbratwurst'), # (97, 'Mishi Kobe Niku'), (81, "Sir Rodney's Marmalade"), (62.5, 'Carnarvon Tigers'), # (55, 'Raclette Courdavault'), (53, 'Manjimup Dried Apples'), (49.3, 'Tarte au sucre'), # (46, 'Ipoh Coffee'), (45.6, 'Rössle Sauerkraut')] # `avg_hire_age`: What is the average age of an employee at the time of their hiring? # ONLY RAN THIS THE FIRST TIME, then commented it out # add_age_column = f""" # ALTER TABLE Employee # ADD age INT AS (hiredate - birthdate) # """ # cursor.execute(add_age_column) avghire_query = f"""SELECT AVG(age) from employee""" avg_hire_age = cursor.execute(avghire_query).fetchone()[0] print("Average hire age:", avg_hire_age) # Average hire age: 37.22222222222222 # (*Stretch*) `avg_age_by_city`: How does the average age of employee at hire vary by city? avg_by_city_query = f"""SELECT AVG(age), city FROM employee GROUP BY city """ avg_age_by_city = cursor.execute(avg_by_city_query).fetchall() print("Average age by city:", avg_age_by_city) # Average age by city: [(29.0, 'Kirkland'), (32.5, 'London'), # (56.0, 'Redmond'), (40.0, 'Seattle'), (40.0, 'Tacoma')] # - `ten_most_expensive`: What are the ten most expensive items (per unit price) in the database # *and* their suppliers? # COMMENTING OUT AFTER RUNNING ONCE # suppliers_prices_table = f"""CREATE TABLE suppliers_prices AS # SELECT Product.ProductName, Product.UnitPrice, Supplier.CompanyName # FROM Product # LEFT JOIN Supplier ON Product.SupplierId = Supplier.Id # """ # cursor.execute(suppliers_prices_table) # insertion_query = f"""SELECT Product.ProductName, Product.UnitPrice, Supplier.CompanyName # FROM Product # LEFT JOIN Supplier ON Product.SupplierId = Supplier.Id""" # cursor.execute(insertion_query) price_supplier_query = f"""SELECT unitprice, companyname FROM suppliers_prices ORDER BY unitprice DESC LIMIT 10; """ price_supplier_topten = cursor.execute(price_supplier_query).fetchall() print("Top most expensive items and their suppliers:", price_supplier_topten) # Top most expensive items and their suppliers: [(263.5, 'Aux # joyeux ecclésiastiques'), (123.79, 'Plutzer Lebensmittelgroßmärkte AG'), # (97, 'Tokyo Traders'), (81, 'Specialty Biscuits, Ltd.'), # (62.5, 'Pavlova, Ltd.'), (55, 'Gai pâturage'), (53, "G'day, Mate"), # (49.3, "Forêts d'érables"), (46, 'Leka Trading'), (45.6, 'Plutzer Lebensmittelgroßmärkte AG')] # - `largest_category`: What is the largest category (by number of unique products in it)? largest_category_query = f"""SELECT CategoryId, COUNT(DISTINCT ProductName) FROM Product GROUP BY CategoryId ORDER BY COUNT(DISTINCT ProductName) DESC""" largest_category = cursor.execute(largest_category_query).fetchone()[0] print("Largest category:", largest_category) # Largest category: 3 # - (*Stretch*) `most_territories`: Who's the employee with the most territories? # Use `TerritoryId` (not name, region, or other fields) as the unique # identifier for territories. # COMMENT OUT AFTER RUNNING ONCE # employee_territory_table = f"""CREATE TABLE employee_territory AS # SELECT Employee.FirstName, Employee.LastName, # EmployeeTerritory.EmployeeId, EmployeeTerritory.TerritoryId # FROM Employee # JOIN EmployeeTerritory ON Employee.Id = EmployeeTerritory.EmployeeId;""" # cursor.execute(employee_territory_table) territory_query = f"""SELECT COUNT(DISTINCT TerritoryId), FirstName, LastName, EmployeeId from employee_territory GROUP BY EmployeeId ORDER BY COUNT(DISTINCT TerritoryId) DESC""" employee_territory = cursor.execute(territory_query).fetchone() print("Which employee has the most territory?", employee_territory) # Which employee has the most territory? (10, 'Robert', 'King', 7) connection.commit() connection.close()
[ 11748, 44161, 578, 18, 628, 198, 2, 8113, 284, 262, 44161, 578, 18, 2393, 198, 198, 38659, 796, 44161, 578, 18, 13, 8443, 7203, 43588, 7972, 62, 17470, 13, 25410, 578, 18, 4943, 198, 198, 66, 21471, 796, 4637, 13, 66, 21471, 3419, 198, 198, 2, 2264, 10640, 198, 2, 4600, 22031, 62, 23814, 63, 25, 1867, 389, 262, 3478, 749, 5789, 3709, 357, 525, 4326, 2756, 8, 287, 262, 6831, 30, 198, 20888, 62, 22766, 796, 277, 37811, 33493, 11801, 18124, 11, 8721, 5376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16034, 1720, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38678, 11050, 11801, 18124, 22196, 34, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27564, 2043, 838, 26, 37811, 198, 22031, 62, 23814, 796, 23493, 13, 41049, 7, 20888, 62, 22766, 737, 69, 7569, 439, 3419, 198, 4798, 7203, 16870, 2021, 3709, 25, 1600, 5789, 62, 23814, 8, 198, 2, 5518, 2021, 3709, 25, 47527, 29558, 13, 20, 11, 705, 34, 27083, 660, 390, 1086, 48822, 33809, 357, 10163, 13, 3720, 11, 705, 817, 9116, 1806, 263, 48306, 1671, 265, 86, 24962, 33809, 198, 2, 357, 5607, 11, 705, 44, 21644, 29493, 11271, 84, 33809, 357, 6659, 11, 366, 22788, 34895, 338, 1526, 7617, 671, 12340, 357, 5237, 13, 20, 11, 705, 34, 1501, 283, 26982, 17662, 33809, 198, 2, 357, 2816, 11, 705, 49, 330, 21348, 2734, 67, 615, 1721, 33809, 357, 4310, 11, 705, 5124, 73, 320, 929, 360, 2228, 2034, 829, 33809, 357, 2920, 13, 18, 11, 705, 51, 32074, 35851, 6522, 260, 33809, 198, 2, 357, 3510, 11, 705, 40, 79, 1219, 19443, 33809, 357, 2231, 13, 21, 11, 705, 49, 9101, 824, 293, 23167, 9587, 430, 315, 11537, 60, 198, 198, 2, 4600, 615, 70, 62, 10695, 62, 496, 63, 25, 1867, 318, 262, 2811, 2479, 286, 281, 6538, 379, 262, 640, 286, 511, 12965, 30, 198, 198, 2, 22224, 371, 1565, 12680, 3336, 31328, 20460, 11, 788, 16476, 340, 503, 198, 2, 751, 62, 496, 62, 28665, 796, 277, 37811, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8355, 5781, 43679, 36824, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27841, 2479, 17828, 7054, 357, 71, 1202, 378, 532, 4082, 4475, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 2, 23493, 13, 41049, 7, 2860, 62, 496, 62, 28665, 8, 198, 198, 615, 456, 557, 62, 22766, 796, 277, 37811, 46506, 35224, 7, 496, 8, 422, 6538, 37811, 198, 615, 70, 62, 10695, 62, 496, 796, 23493, 13, 41049, 7, 615, 456, 557, 62, 22766, 737, 69, 7569, 505, 3419, 58, 15, 60, 198, 4798, 7203, 26287, 11078, 2479, 25, 1600, 42781, 62, 10695, 62, 496, 8, 198, 2, 13475, 11078, 2479, 25, 5214, 13, 1828, 1828, 1828, 1828, 1828, 1828, 1828, 198, 198, 2, 20789, 39181, 28104, 4600, 615, 70, 62, 496, 62, 1525, 62, 19205, 63, 25, 1374, 857, 262, 2811, 2479, 286, 6538, 379, 11078, 7565, 416, 1748, 30, 198, 615, 70, 62, 1525, 62, 19205, 62, 22766, 796, 277, 37811, 46506, 35224, 7, 496, 828, 1748, 16034, 6538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44441, 11050, 1748, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 615, 70, 62, 496, 62, 1525, 62, 19205, 796, 23493, 13, 41049, 7, 615, 70, 62, 1525, 62, 19205, 62, 22766, 737, 69, 7569, 439, 3419, 198, 4798, 7203, 26287, 2479, 416, 1748, 25, 1600, 42781, 62, 496, 62, 1525, 62, 19205, 8, 198, 2, 13475, 2479, 416, 1748, 25, 47527, 1959, 13, 15, 11, 705, 42, 14232, 1044, 33809, 357, 2624, 13, 20, 11, 705, 23421, 33809, 198, 2, 357, 3980, 13, 15, 11, 705, 7738, 6327, 33809, 357, 1821, 13, 15, 11, 705, 34007, 33809, 357, 1821, 13, 15, 11, 705, 51, 330, 6086, 11537, 60, 198, 198, 2, 532, 4600, 1452, 62, 1712, 62, 22031, 63, 25, 1867, 389, 262, 3478, 749, 5789, 3709, 357, 525, 4326, 2756, 8, 287, 262, 6831, 198, 2, 1635, 392, 9, 511, 20499, 30, 198, 198, 2, 9440, 10979, 2751, 16289, 36050, 32494, 15871, 6177, 5222, 198, 2, 20499, 62, 1050, 1063, 62, 11487, 796, 277, 37811, 43387, 6158, 43679, 20499, 62, 1050, 1063, 7054, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33493, 8721, 13, 15667, 5376, 11, 8721, 13, 26453, 18124, 11, 8105, 2505, 13, 39154, 5376, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16034, 8721, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12509, 9792, 32357, 1268, 8105, 2505, 6177, 8721, 13, 15979, 2505, 7390, 796, 8105, 2505, 13, 7390, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 2, 23493, 13, 41049, 7, 18608, 75, 3183, 62, 1050, 1063, 62, 11487, 8, 198, 198, 2, 36075, 62, 22766, 796, 277, 37811, 46506, 8721, 13, 15667, 5376, 11, 8721, 13, 26453, 18124, 11, 8105, 2505, 13, 39154, 5376, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16034, 8721, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12509, 9792, 32357, 1268, 8105, 2505, 6177, 8721, 13, 15979, 2505, 7390, 796, 8105, 2505, 13, 7390, 37811, 198, 2, 23493, 13, 41049, 7, 28463, 295, 62, 22766, 8, 198, 198, 20888, 62, 18608, 2505, 62, 22766, 796, 277, 37811, 46506, 4326, 20888, 11, 1664, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16034, 20499, 62, 1050, 1063, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38678, 11050, 4326, 20888, 22196, 34, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27564, 2043, 838, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 20888, 62, 18608, 2505, 62, 4852, 1452, 796, 23493, 13, 41049, 7, 20888, 62, 18608, 2505, 62, 22766, 737, 69, 7569, 439, 3419, 198, 4798, 7203, 9126, 749, 5789, 3709, 290, 511, 20499, 25, 1600, 2756, 62, 18608, 2505, 62, 4852, 1452, 8, 198, 2, 5849, 749, 5789, 3709, 290, 511, 20499, 25, 47527, 29558, 13, 20, 11, 705, 32, 2821, 198, 2, 8716, 68, 2821, 21399, 45031, 13396, 459, 6368, 33809, 357, 10163, 13, 3720, 11, 705, 3646, 315, 9107, 1004, 65, 641, 20124, 417, 27333, 39683, 76, 11033, 81, 74, 660, 13077, 33809, 198, 2, 357, 5607, 11, 705, 19042, 8226, 8397, 364, 33809, 357, 6659, 11, 705, 13409, 774, 347, 2304, 15379, 11, 12052, 2637, 828, 198, 2, 357, 5237, 13, 20, 11, 705, 47, 615, 75, 10071, 11, 12052, 2637, 828, 357, 2816, 11, 705, 38, 1872, 279, 22940, 36590, 496, 33809, 357, 4310, 11, 366, 38, 1549, 323, 11, 24787, 12340, 198, 2, 357, 2920, 13, 18, 11, 366, 1890, 25792, 912, 288, 6, 42445, 2977, 12340, 357, 3510, 11, 705, 43, 38001, 25469, 33809, 357, 2231, 13, 21, 11, 705, 3646, 315, 9107, 1004, 65, 641, 20124, 417, 27333, 39683, 76, 11033, 81, 74, 660, 13077, 11537, 60, 198, 198, 2, 532, 4600, 28209, 62, 22872, 63, 25, 1867, 318, 262, 4387, 6536, 357, 1525, 1271, 286, 3748, 3186, 287, 340, 19427, 198, 28209, 62, 22872, 62, 22766, 796, 277, 37811, 46506, 21743, 7390, 11, 327, 28270, 7, 35, 8808, 1268, 4177, 8721, 5376, 8, 16034, 8721, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44441, 11050, 21743, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38678, 11050, 327, 28270, 7, 35, 8808, 1268, 4177, 8721, 5376, 8, 22196, 34, 37811, 198, 28209, 62, 22872, 796, 23493, 13, 41049, 7, 28209, 62, 22872, 62, 22766, 737, 69, 7569, 505, 3419, 58, 15, 60, 198, 4798, 7203, 43, 853, 395, 6536, 25, 1600, 4387, 62, 22872, 8, 198, 2, 406, 853, 395, 6536, 25, 513, 198, 198, 2, 532, 20789, 39181, 28104, 4600, 1712, 62, 353, 799, 1749, 63, 25, 5338, 338, 262, 6538, 351, 262, 749, 16771, 30, 198, 2, 5765, 4600, 15156, 799, 652, 7390, 63, 357, 1662, 1438, 11, 3814, 11, 393, 584, 7032, 8, 355, 262, 3748, 198, 2, 27421, 329, 16771, 13, 198, 198, 2, 9440, 10979, 16289, 36050, 32494, 15871, 6177, 5222, 198, 2, 6538, 62, 353, 799, 652, 62, 11487, 796, 277, 37811, 43387, 6158, 43679, 6538, 62, 353, 799, 652, 7054, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33493, 36824, 13, 5962, 5376, 11, 36824, 13, 5956, 5376, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36824, 15156, 799, 652, 13, 29733, 1453, 7390, 11, 36824, 15156, 799, 652, 13, 15156, 799, 652, 7390, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16034, 36824, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32357, 1268, 36824, 15156, 799, 652, 6177, 36824, 13, 7390, 796, 36824, 15156, 799, 652, 13, 29733, 1453, 7390, 26, 37811, 198, 2, 23493, 13, 41049, 7, 7033, 1453, 62, 353, 799, 652, 62, 11487, 8, 198, 198, 353, 799, 652, 62, 22766, 796, 277, 37811, 46506, 327, 28270, 7, 35, 8808, 1268, 4177, 25219, 7390, 828, 3274, 5376, 11, 4586, 5376, 11, 36824, 7390, 422, 6538, 62, 353, 799, 652, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44441, 11050, 36824, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38678, 11050, 327, 28270, 7, 35, 8808, 1268, 4177, 25219, 7390, 8, 22196, 34, 37811, 198, 7033, 1453, 62, 353, 799, 652, 796, 23493, 13, 41049, 7, 353, 799, 652, 62, 22766, 737, 69, 7569, 505, 3419, 198, 4798, 7203, 13828, 6538, 468, 262, 749, 7674, 35379, 6538, 62, 353, 799, 652, 8, 198, 2, 9022, 6538, 468, 262, 749, 7674, 30, 357, 940, 11, 705, 19156, 3256, 705, 15708, 3256, 767, 8, 198, 198, 38659, 13, 41509, 3419, 198, 198, 38659, 13, 19836, 3419, 198 ]
2.412835
1,979
import torch import torch.nn as nn import torch.nn.functional as F import functools from .SurfaceClassifier import conv1_1, period_loss # from .DepthNormalizer import DepthNormalizer from ..net_util import * # from iPERCore.models.networks.criterions import VGGLoss from lib.model.Models import NestedUNet import numpy as np class ResnetBlock(nn.Module): """Define a Resnet block""" def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias, last=False): """Initialize the Resnet block A resnet block is a conv block with skip connections We construct a conv block with build_conv_block function, and implement skip connections in <forward> function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf """ super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias, last) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias, last=False): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) if last: conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias)] else: conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): """Forward function (with skip connections)""" out = x + self.conv_block(x) # add skip connections return out class ResnetFilter(nn.Module): """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) """ def __init__(self, opt, input_nc=3, output_nc=256, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'): """Construct a Resnet-based generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert (n_blocks >= 0) super(ResnetFilter, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks if i == n_blocks - 1: model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias, last=True)] else: model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] if opt.use_tanh: model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input): """Standard forward""" return self.model(input)
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 1257, 310, 10141, 198, 6738, 764, 14214, 2550, 9487, 7483, 1330, 3063, 16, 62, 16, 11, 2278, 62, 22462, 198, 2, 422, 764, 48791, 26447, 7509, 1330, 36350, 26447, 7509, 198, 6738, 11485, 3262, 62, 22602, 1330, 1635, 198, 2, 422, 9736, 1137, 14055, 13, 27530, 13, 3262, 5225, 13, 22213, 263, 507, 1330, 34627, 8763, 793, 198, 6738, 9195, 13, 19849, 13, 5841, 1424, 1330, 399, 7287, 4944, 316, 198, 11748, 299, 32152, 355, 45941, 628, 198, 4871, 1874, 3262, 12235, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 7469, 500, 257, 1874, 3262, 2512, 37811, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 5391, 11, 24511, 62, 4906, 11, 2593, 62, 29289, 11, 779, 62, 14781, 448, 11, 779, 62, 65, 4448, 11, 938, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 262, 1874, 3262, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 317, 581, 3262, 2512, 318, 257, 3063, 2512, 351, 14267, 8787, 198, 220, 220, 220, 220, 220, 220, 220, 775, 5678, 257, 3063, 2512, 351, 1382, 62, 42946, 62, 9967, 2163, 11, 198, 220, 220, 220, 220, 220, 220, 220, 290, 3494, 14267, 8787, 287, 1279, 11813, 29, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 13745, 1874, 3262, 3348, 25, 3740, 1378, 283, 87, 452, 13, 2398, 14, 12315, 14, 1314, 1065, 13, 44427, 5332, 13, 12315, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 4965, 3262, 12235, 11, 2116, 737, 834, 15003, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42946, 62, 9967, 796, 2116, 13, 11249, 62, 42946, 62, 9967, 7, 27740, 11, 24511, 62, 4906, 11, 2593, 62, 29289, 11, 779, 62, 14781, 448, 11, 779, 62, 65, 4448, 11, 938, 8, 628, 220, 220, 220, 825, 1382, 62, 42946, 62, 9967, 7, 944, 11, 5391, 11, 24511, 62, 4906, 11, 2593, 62, 29289, 11, 779, 62, 14781, 448, 11, 779, 62, 65, 4448, 11, 938, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 257, 3063, 2122, 282, 2512, 13, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5391, 357, 600, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 262, 1271, 286, 9619, 287, 262, 3063, 7679, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 62, 4906, 357, 2536, 8, 220, 1377, 262, 1438, 286, 24511, 7679, 25, 4079, 930, 24340, 930, 6632, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 29289, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 3487, 1634, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 14781, 448, 357, 30388, 8, 220, 1377, 611, 779, 4268, 448, 11685, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 65, 4448, 357, 30388, 8, 220, 220, 220, 220, 1377, 611, 262, 3063, 7679, 3544, 10690, 393, 407, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 257, 3063, 2512, 357, 4480, 257, 3063, 7679, 11, 257, 3487, 1634, 7679, 11, 290, 257, 1729, 12, 29127, 414, 7679, 357, 3041, 41596, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 9967, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 611, 24511, 62, 4906, 6624, 705, 35051, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 9967, 15853, 685, 20471, 13, 8134, 1564, 26114, 17, 67, 7, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 24511, 62, 4906, 6624, 705, 35666, 5344, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 9967, 15853, 685, 20471, 13, 39232, 3299, 26114, 17, 67, 7, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 24511, 62, 4906, 6624, 705, 22570, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 10786, 39231, 685, 4, 82, 60, 318, 407, 9177, 6, 4064, 24511, 62, 4906, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 9967, 15853, 685, 20471, 13, 3103, 85, 17, 67, 7, 27740, 11, 5391, 11, 9720, 62, 7857, 28, 18, 11, 24511, 28, 79, 11, 10690, 28, 1904, 62, 65, 4448, 828, 2593, 62, 29289, 7, 27740, 828, 299, 77, 13, 3041, 41596, 7, 17821, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 611, 779, 62, 14781, 448, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 9967, 15853, 685, 20471, 13, 26932, 448, 7, 15, 13, 20, 15437, 628, 220, 220, 220, 220, 220, 220, 220, 279, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 611, 24511, 62, 4906, 6624, 705, 35051, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 9967, 15853, 685, 20471, 13, 8134, 1564, 26114, 17, 67, 7, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 24511, 62, 4906, 6624, 705, 35666, 5344, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 9967, 15853, 685, 20471, 13, 39232, 3299, 26114, 17, 67, 7, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 24511, 62, 4906, 6624, 705, 22570, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 10786, 39231, 685, 4, 82, 60, 318, 407, 9177, 6, 4064, 24511, 62, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 938, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 9967, 15853, 685, 20471, 13, 3103, 85, 17, 67, 7, 27740, 11, 5391, 11, 9720, 62, 7857, 28, 18, 11, 24511, 28, 79, 11, 10690, 28, 1904, 62, 65, 4448, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 9967, 15853, 685, 20471, 13, 3103, 85, 17, 67, 7, 27740, 11, 5391, 11, 9720, 62, 7857, 28, 18, 11, 24511, 28, 79, 11, 10690, 28, 1904, 62, 65, 4448, 828, 2593, 62, 29289, 7, 27740, 15437, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 299, 77, 13, 44015, 1843, 46491, 42946, 62, 9967, 8, 628, 220, 220, 220, 825, 2651, 7, 944, 11, 2124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 39746, 2163, 357, 4480, 14267, 8787, 8, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 2124, 1343, 2116, 13, 42946, 62, 9967, 7, 87, 8, 220, 1303, 751, 14267, 8787, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 503, 198, 198, 4871, 1874, 3262, 22417, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 4965, 3262, 12, 3106, 17301, 326, 10874, 286, 1874, 3262, 7021, 1022, 257, 1178, 21838, 321, 11347, 14, 4739, 321, 11347, 4560, 13, 198, 220, 220, 220, 775, 6068, 34868, 2438, 290, 2126, 422, 10799, 5030, 338, 17019, 3918, 4351, 1628, 7, 5450, 1378, 12567, 13, 785, 14, 48055, 30686, 1559, 14, 7217, 12, 710, 1523, 12, 7635, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2172, 11, 5128, 62, 10782, 28, 18, 11, 5072, 62, 10782, 28, 11645, 11, 23370, 69, 28, 2414, 11, 2593, 62, 29289, 28, 20471, 13, 33, 963, 35393, 17, 67, 11, 779, 62, 14781, 448, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 27372, 28, 21, 11, 24511, 62, 4906, 11639, 35051, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 257, 1874, 3262, 12, 3106, 17301, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 10782, 357, 600, 8, 220, 220, 220, 220, 220, 1377, 262, 1271, 286, 9619, 287, 5128, 4263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 10782, 357, 600, 8, 220, 220, 220, 220, 1377, 262, 1271, 286, 9619, 287, 5072, 4263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23370, 69, 357, 600, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 262, 1271, 286, 16628, 287, 262, 938, 3063, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 29289, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 3487, 1634, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 14781, 448, 357, 30388, 8, 220, 1377, 611, 779, 4268, 448, 11685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 27372, 357, 600, 8, 220, 220, 220, 220, 220, 1377, 262, 1271, 286, 1874, 7934, 7021, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 62, 4906, 357, 2536, 8, 220, 1377, 262, 1438, 286, 24511, 7679, 287, 3063, 11685, 25, 4079, 930, 24340, 930, 6632, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 77, 62, 27372, 18189, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 4965, 3262, 22417, 11, 2116, 737, 834, 15003, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 27237, 62, 29289, 8, 6624, 1257, 310, 10141, 13, 47172, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 65, 4448, 796, 2593, 62, 29289, 13, 20786, 6624, 299, 77, 13, 33384, 35393, 17, 67, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 65, 4448, 796, 2593, 62, 29289, 6624, 299, 77, 13, 33384, 35393, 17, 67, 628, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 685, 20471, 13, 8134, 1564, 26114, 17, 67, 7, 18, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 3103, 85, 17, 67, 7, 15414, 62, 10782, 11, 23370, 69, 11, 9720, 62, 7857, 28, 22, 11, 24511, 28, 15, 11, 10690, 28, 1904, 62, 65, 4448, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 29289, 7, 782, 69, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 3041, 41596, 7, 17821, 15437, 628, 220, 220, 220, 220, 220, 220, 220, 299, 62, 30371, 321, 11347, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 62, 30371, 321, 11347, 2599, 220, 1303, 751, 21838, 321, 11347, 11685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1963, 796, 362, 12429, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 15853, 685, 20471, 13, 3103, 85, 17, 67, 7, 782, 69, 1635, 1963, 11, 23370, 69, 1635, 1963, 1635, 362, 11, 9720, 62, 7857, 28, 18, 11, 33769, 28, 17, 11, 24511, 28, 16, 11, 10690, 28, 1904, 62, 65, 4448, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 29289, 7, 782, 69, 1635, 1963, 1635, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 3041, 41596, 7, 17821, 15437, 628, 220, 220, 220, 220, 220, 220, 220, 1963, 796, 362, 12429, 299, 62, 30371, 321, 11347, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 62, 27372, 2599, 220, 1303, 751, 1874, 7934, 7021, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 299, 62, 27372, 532, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 15853, 685, 4965, 3262, 12235, 7, 782, 69, 1635, 1963, 11, 24511, 62, 4906, 28, 39231, 62, 4906, 11, 2593, 62, 29289, 28, 27237, 62, 29289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 14781, 448, 28, 1904, 62, 14781, 448, 11, 779, 62, 65, 4448, 28, 1904, 62, 65, 4448, 11, 938, 28, 17821, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 15853, 685, 4965, 3262, 12235, 7, 782, 69, 1635, 1963, 11, 24511, 62, 4906, 28, 39231, 62, 4906, 11, 2593, 62, 29289, 28, 27237, 62, 29289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 14781, 448, 28, 1904, 62, 14781, 448, 11, 779, 62, 65, 4448, 28, 1904, 62, 65, 4448, 15437, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2172, 13, 1904, 62, 38006, 71, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 15853, 685, 20471, 13, 45557, 71, 3419, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 796, 299, 77, 13, 44015, 1843, 46491, 19849, 8, 628, 220, 220, 220, 825, 2651, 7, 944, 11, 5128, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 23615, 2651, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 19849, 7, 15414, 8, 198 ]
2.209671
2,461
#!/usr/lib/python-exec/python2.7/python import os import sys os.chdir('C:/Users/Leleo/Documents/Active Cell Real Morphology/') from neuron import h from neuron import gui #%% import numpy as np import time import math import cPickle as pickle #%% sk = False if sk==True: from sklearn import decomposition from sklearn import cluster from sklearn import linear_model from sklearn import ensemble from sklearn import cross_validation #%% h.load_file('nrngui.hoc') h.load_file("import3d.hoc") cvode = h.CVode() cvode.active(0) morphologyFilename = "morphologies/cell1.asc" #morphologyFilename = "morphologies/cell2.asc" #morphologyFilename = "morphologies/cell3.asc" #biophysicalModelFilename = "L5PCbiophys1.hoc" #biophysicalModelFilename = "L5PCbiophys2.hoc" #biophysicalModelFilename = "L5PCbiophys3.hoc" #biophysicalModelFilename = "L5PCbiophys4.hoc" #biophysicalModelFilename = "L5PCbiophys5.hoc" biophysicalModelFilename = "L5PCbiophys5b.hoc" #biophysicalModelTemplateFilename = "L5PCtemplate.hoc" biophysicalModelTemplateFilename = "L5PCtemplate_2.hoc" #%% h.load_file(biophysicalModelFilename) h.load_file(biophysicalModelTemplateFilename) L5PC = h.L5PCtemplate(morphologyFilename) h.celsius = 34 #%% set dendritic VDCC g=0 #secs = h.allsec VDCC_g = 1 if VDCC_g==0: for sec in h.allsec(): if hasattr(sec, 'gCa_HVAbar_Ca_HVA'): sec.gCa_HVAbar_Ca_HVA = 0 #%% helper functions #%% create length-weighted random section list #%% add some random NMDA synapses and plot a somatic trace just to see all things are alive and kicking #%% run simulation on some parameter pair, plot the space L5PC = h.L5PCtemplate(morphologyFilename) name = 'inh_secdt_meds62_exc60dt0sd0num15' #saveDir = '/ems/elsc-labs/segev-i/eilam.goldenberg/Documents/coincidence/wgh1/'+name+'/' saveDir = 'C:/Users/Leleo/Documents/coincidence/wgh1/'+name+'/' if not os.path.exists(saveDir): os.makedirs(saveDir) try: randomSeed = int(sys.argv[1]) print 'random seed selected by user - %d' %(randomSeed) except: randomSeed = np.random.randint(100000) print 'randomly chose seed - %d' %(randomSeed) np.random.seed(randomSeed) #ind = 1 #a = np.linspace(-50,-25,num=6),np.linspace(-20,20,num=21),np.linspace(25,100,num=16) ApicalBasalInterval = [0]#np.linspace(-10,10,num=11) #[x for xs in a for x in xs] numBasal = 50 #35 #np.linspace(0,200,num=81) numApical = 30 #np.linspace(0,20,num=11)#50,num=21)# numInh = 20 #0 #numOblique = 40-numApical #totalSyn = [20,50,100,200,400,600,800]#[80,120,150,180]#np.linspace(0,200,num=5)#41) partApical = 2 #[5,10,20,50,100,200,500]#[i for i in np.linspace(10,100,num=10)]+[200,300,400,500]#np.logspace(0,7,num=29,base=2) medSegment = [0,36,60,63]#[36]+[i for i in np.linspace(60,65,num=6)]#37,44,num=8)] ##40#60 # #secInh = [60[0.5],60[1],61[0],62[0],63[0],64[0],67[0]] #optimal planned inh at prox junc #secInh = [60[1],61[0],63[1]] #encapsulating inh for partApi=20 #random.choice(secInh) treeTime = 0 #0.1*np.logspace(3,10,num=22,base=2) numExperiments = 20 spks = [[0 for i in range(len(ApicalBasalInterval))] for j in range(len(medSegment))]#*4)] frqs = [[0 for i in range(len(ApicalBasalInterval))] for j in range(len(medSegment))]#*4)] #trc = [[[] for i in range(len(ApicalBasalInterval))] for j in range(len(medSegment))]#*4)] i = 0 j = 0 start = time.time() for ApiBasInd in ApicalBasalInterval:#treeT in treeTime:# print "Running for interval: %s [ms]" % (int(ApiBasInd))#treeTime: %.2f [ms]" % (treeT)# #for numB in numBasal:#totalS in totalSyn:# # print "Running for %s basal synapses" % (int(numB)) # for partApi in partApical: for medS in medSegment: # for numA in numApical:#np.linspace(0,totalS,num=41):# print "Running for inhibition in sec: %s" % (int(medS)) #partApi=%s" % (float(partApi)) # # numA = int(totalS*0.4) spks[j][i],frqs[j][i] = runSim(L5PC,ApiBasInd,treeTime,numBasal,numInh,numApical,medS,partApical,numExperiments) j = j+1 j = 0 i = i+1 pickle.dump(spks,open(saveDir+name+'_spks'+str(randomSeed)+".npy","wb"),protocol=2) pickle.dump(frqs,open(saveDir+name+'_frqs'+str(randomSeed)+".npy","wb"),protocol=2) print "Saved as ", saveDir+name+'_spks'+str(randomSeed)+".npy" print "Total running time was: ", (time.time()-start)/3600, "hours" #saveDir = '/ems/elsc-labs/segev-i/eilam.goldenberg/Documents/concidence/' #pickle.dump(spks1,open(saveDir+'dt_treet_30tot_hires_spks',"wb"),protocol=2) #pickle.dump(frqs1,open(saveDir+'dt_treet_30tot_hires_frqs',"wb"),protocol=2)
[ 2, 48443, 14629, 14, 8019, 14, 29412, 12, 18558, 14, 29412, 17, 13, 22, 14, 29412, 198, 11748, 28686, 198, 11748, 25064, 198, 418, 13, 354, 15908, 10786, 34, 14079, 14490, 14, 3123, 293, 78, 14, 38354, 14, 13739, 12440, 6416, 41170, 1435, 14, 11537, 198, 198, 6738, 43164, 1330, 289, 198, 6738, 43164, 1330, 11774, 198, 198, 2, 16626, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 11748, 10688, 198, 11748, 269, 31686, 293, 355, 2298, 293, 198, 198, 2, 16626, 198, 198, 8135, 796, 10352, 198, 198, 361, 1341, 855, 17821, 25, 198, 220, 220, 220, 422, 1341, 35720, 1330, 26969, 9150, 198, 220, 220, 220, 422, 1341, 35720, 1330, 13946, 198, 220, 220, 220, 422, 1341, 35720, 1330, 14174, 62, 19849, 198, 220, 220, 220, 422, 1341, 35720, 1330, 34549, 198, 220, 220, 220, 422, 1341, 35720, 1330, 3272, 62, 12102, 341, 198, 198, 2, 16626, 198, 198, 71, 13, 2220, 62, 7753, 10786, 48624, 782, 9019, 13, 71, 420, 11537, 198, 71, 13, 2220, 62, 7753, 7203, 11748, 18, 67, 13, 71, 420, 4943, 198, 198, 33967, 1098, 796, 289, 13, 33538, 1098, 3419, 198, 33967, 1098, 13, 5275, 7, 15, 8, 198, 198, 24503, 1435, 35063, 796, 366, 24503, 5823, 14, 3846, 16, 13, 3372, 1, 198, 2, 24503, 1435, 35063, 796, 366, 24503, 5823, 14, 3846, 17, 13, 3372, 1, 198, 2, 24503, 1435, 35063, 796, 366, 24503, 5823, 14, 3846, 18, 13, 3372, 1, 198, 198, 2, 8482, 41789, 17633, 35063, 796, 366, 43, 20, 5662, 8482, 39665, 16, 13, 71, 420, 1, 198, 2, 8482, 41789, 17633, 35063, 796, 366, 43, 20, 5662, 8482, 39665, 17, 13, 71, 420, 1, 198, 2, 8482, 41789, 17633, 35063, 796, 366, 43, 20, 5662, 8482, 39665, 18, 13, 71, 420, 1, 198, 2, 8482, 41789, 17633, 35063, 796, 366, 43, 20, 5662, 8482, 39665, 19, 13, 71, 420, 1, 198, 2, 8482, 41789, 17633, 35063, 796, 366, 43, 20, 5662, 8482, 39665, 20, 13, 71, 420, 1, 198, 8482, 41789, 17633, 35063, 796, 366, 43, 20, 5662, 8482, 39665, 20, 65, 13, 71, 420, 1, 198, 198, 2, 8482, 41789, 17633, 30800, 35063, 796, 366, 43, 20, 5662, 28243, 13, 71, 420, 1, 198, 8482, 41789, 17633, 30800, 35063, 796, 366, 43, 20, 5662, 28243, 62, 17, 13, 71, 420, 1, 628, 198, 2, 16626, 198, 198, 71, 13, 2220, 62, 7753, 7, 8482, 41789, 17633, 35063, 8, 198, 71, 13, 2220, 62, 7753, 7, 8482, 41789, 17633, 30800, 35063, 8, 198, 43, 20, 5662, 796, 289, 13, 43, 20, 5662, 28243, 7, 24503, 1435, 35063, 8, 198, 71, 13, 5276, 82, 3754, 796, 4974, 198, 198, 2, 16626, 900, 288, 437, 46015, 569, 35, 4093, 308, 28, 15, 198, 2, 2363, 82, 796, 289, 13, 439, 2363, 198, 198, 8898, 4093, 62, 70, 796, 352, 198, 198, 361, 569, 35, 4093, 62, 70, 855, 15, 25, 198, 220, 220, 220, 329, 792, 287, 289, 13, 439, 2363, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 2363, 11, 705, 70, 24334, 62, 39, 53, 4826, 283, 62, 24334, 62, 39, 11731, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 792, 13, 70, 24334, 62, 39, 53, 4826, 283, 62, 24334, 62, 39, 11731, 796, 657, 198, 220, 220, 220, 220, 198, 198, 2, 16626, 31904, 5499, 220, 198, 198, 2, 16626, 2251, 4129, 12, 6551, 276, 4738, 2665, 1351, 198, 198, 2, 16626, 751, 617, 4738, 28692, 5631, 6171, 45903, 290, 7110, 257, 3870, 1512, 12854, 655, 284, 766, 477, 1243, 389, 6776, 290, 17997, 198, 198, 2, 16626, 1057, 18640, 319, 617, 11507, 5166, 11, 7110, 262, 2272, 198, 43, 20, 5662, 796, 289, 13, 43, 20, 5662, 28243, 7, 24503, 1435, 35063, 8, 198, 3672, 796, 705, 259, 71, 62, 2363, 28664, 62, 1150, 82, 5237, 62, 41194, 1899, 28664, 15, 21282, 15, 22510, 1314, 6, 198, 2, 21928, 35277, 796, 31051, 5232, 14, 417, 1416, 12, 75, 8937, 14, 325, 469, 85, 12, 72, 14, 68, 346, 321, 13, 24267, 23140, 14, 38354, 14, 1073, 1939, 1704, 14, 86, 456, 16, 14, 6, 10, 3672, 10, 26488, 6, 198, 21928, 35277, 796, 705, 34, 14079, 14490, 14, 3123, 293, 78, 14, 38354, 14, 1073, 1939, 1704, 14, 86, 456, 16, 14, 6, 10, 3672, 10, 26488, 6, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 21928, 35277, 2599, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 21928, 35277, 8, 198, 198, 28311, 25, 198, 220, 220, 220, 4738, 50, 2308, 796, 493, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 3601, 705, 25120, 9403, 6163, 416, 2836, 532, 4064, 67, 6, 4064, 7, 25120, 50, 2308, 8, 198, 16341, 25, 198, 220, 220, 220, 4738, 50, 2308, 796, 45941, 13, 25120, 13, 25192, 600, 7, 3064, 830, 8, 198, 220, 220, 220, 3601, 705, 25120, 306, 7690, 9403, 532, 4064, 67, 6, 4064, 7, 25120, 50, 2308, 8, 198, 198, 37659, 13, 25120, 13, 28826, 7, 25120, 50, 2308, 8, 198, 198, 2, 521, 796, 352, 198, 2, 64, 796, 45941, 13, 21602, 10223, 32590, 1120, 12095, 1495, 11, 22510, 28, 21, 828, 37659, 13, 21602, 10223, 32590, 1238, 11, 1238, 11, 22510, 28, 2481, 828, 37659, 13, 21602, 10223, 7, 1495, 11, 3064, 11, 22510, 28, 1433, 8, 198, 25189, 605, 15522, 282, 9492, 2100, 796, 685, 15, 60, 2, 37659, 13, 21602, 10223, 32590, 940, 11, 940, 11, 22510, 28, 1157, 8, 1303, 58, 87, 329, 2124, 82, 287, 257, 329, 2124, 287, 2124, 82, 60, 198, 22510, 15522, 282, 796, 2026, 1303, 2327, 1303, 37659, 13, 21602, 10223, 7, 15, 11, 2167, 11, 22510, 28, 6659, 8, 198, 22510, 25189, 605, 796, 1542, 1303, 37659, 13, 21602, 10223, 7, 15, 11, 1238, 11, 22510, 28, 1157, 8, 2, 1120, 11, 22510, 28, 2481, 8, 2, 198, 22510, 818, 71, 796, 1160, 1303, 15, 198, 2, 22510, 46, 2436, 2350, 796, 2319, 12, 22510, 25189, 605, 198, 2, 23350, 29934, 796, 685, 1238, 11, 1120, 11, 3064, 11, 2167, 11, 7029, 11, 8054, 11, 7410, 60, 2, 58, 1795, 11, 10232, 11, 8628, 11, 15259, 60, 2, 37659, 13, 21602, 10223, 7, 15, 11, 2167, 11, 22510, 28, 20, 8, 2, 3901, 8, 198, 3911, 25189, 605, 796, 362, 1303, 58, 20, 11, 940, 11, 1238, 11, 1120, 11, 3064, 11, 2167, 11, 4059, 60, 2, 58, 72, 329, 1312, 287, 45941, 13, 21602, 10223, 7, 940, 11, 3064, 11, 22510, 28, 940, 15437, 10, 58, 2167, 11, 6200, 11, 7029, 11, 4059, 60, 2, 37659, 13, 6404, 13200, 7, 15, 11, 22, 11, 22510, 28, 1959, 11, 8692, 28, 17, 8, 198, 1150, 41030, 434, 796, 685, 15, 11, 2623, 11, 1899, 11, 5066, 60, 2, 58, 2623, 48688, 58, 72, 329, 1312, 287, 45941, 13, 21602, 10223, 7, 1899, 11, 2996, 11, 22510, 28, 21, 15437, 2, 2718, 11, 2598, 11, 22510, 28, 23, 15437, 22492, 1821, 2, 1899, 1303, 198, 2, 2363, 818, 71, 796, 685, 1899, 58, 15, 13, 20, 4357, 1899, 58, 16, 4357, 5333, 58, 15, 4357, 5237, 58, 15, 4357, 5066, 58, 15, 4357, 2414, 58, 15, 4357, 3134, 58, 15, 11907, 1303, 8738, 4402, 6027, 25783, 379, 14793, 10891, 66, 198, 2, 2363, 818, 71, 796, 685, 1899, 58, 16, 4357, 5333, 58, 15, 4357, 5066, 58, 16, 11907, 1303, 12685, 1686, 8306, 25783, 329, 636, 32, 14415, 28, 1238, 198, 2, 25120, 13, 25541, 7, 2363, 818, 71, 8, 198, 21048, 7575, 796, 657, 1303, 15, 13, 16, 9, 37659, 13, 6404, 13200, 7, 18, 11, 940, 11, 22510, 28, 1828, 11, 8692, 28, 17, 8, 198, 22510, 20468, 6800, 796, 1160, 198, 198, 2777, 591, 796, 16410, 15, 329, 1312, 287, 2837, 7, 11925, 7, 25189, 605, 15522, 282, 9492, 2100, 4008, 60, 329, 474, 287, 2837, 7, 11925, 7, 1150, 41030, 434, 4008, 60, 2, 9, 19, 15437, 220, 198, 8310, 48382, 796, 16410, 15, 329, 1312, 287, 2837, 7, 11925, 7, 25189, 605, 15522, 282, 9492, 2100, 4008, 60, 329, 474, 287, 2837, 7, 11925, 7, 1150, 41030, 434, 4008, 60, 2, 9, 19, 15437, 198, 2, 2213, 66, 796, 16410, 21737, 329, 1312, 287, 2837, 7, 11925, 7, 25189, 605, 15522, 282, 9492, 2100, 4008, 60, 329, 474, 287, 2837, 7, 11925, 7, 1150, 41030, 434, 4008, 60, 2, 9, 19, 15437, 198, 198, 72, 796, 657, 198, 73, 796, 657, 198, 198, 9688, 796, 640, 13, 2435, 3419, 198, 198, 1640, 5949, 72, 15522, 5497, 287, 5949, 605, 15522, 282, 9492, 2100, 43922, 21048, 51, 287, 5509, 7575, 43922, 198, 220, 220, 220, 3601, 366, 28768, 329, 16654, 25, 4064, 82, 685, 907, 30866, 4064, 357, 600, 7, 32, 14415, 15522, 5497, 4008, 2, 21048, 7575, 25, 4064, 13, 17, 69, 685, 907, 30866, 4064, 357, 21048, 51, 8, 2, 198, 2, 1640, 997, 33, 287, 997, 15522, 282, 43922, 23350, 50, 287, 2472, 29934, 43922, 198, 2, 220, 220, 220, 3601, 366, 28768, 329, 4064, 82, 41202, 6171, 45903, 1, 4064, 357, 600, 7, 22510, 33, 4008, 198, 2, 220, 220, 220, 329, 636, 32, 14415, 287, 636, 25189, 605, 25, 198, 220, 220, 220, 329, 1117, 50, 287, 1117, 41030, 434, 25, 198, 2, 220, 220, 220, 329, 997, 32, 287, 997, 25189, 605, 43922, 37659, 13, 21602, 10223, 7, 15, 11, 23350, 50, 11, 22510, 28, 3901, 2599, 2, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 28768, 329, 30725, 287, 792, 25, 4064, 82, 1, 4064, 357, 600, 7, 1150, 50, 4008, 1303, 3911, 32, 14415, 28, 4, 82, 1, 4064, 357, 22468, 7, 3911, 32, 14415, 4008, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 220, 997, 32, 796, 493, 7, 23350, 50, 9, 15, 13, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 599, 591, 58, 73, 7131, 72, 4357, 8310, 48382, 58, 73, 7131, 72, 60, 796, 1057, 8890, 7, 43, 20, 5662, 11, 32, 14415, 15522, 5497, 11, 21048, 7575, 11, 22510, 15522, 282, 11, 22510, 818, 71, 11, 22510, 25189, 605, 11, 1150, 50, 11, 3911, 25189, 605, 11, 22510, 20468, 6800, 8, 198, 220, 220, 220, 220, 220, 220, 220, 474, 796, 474, 10, 16, 198, 220, 220, 220, 474, 796, 657, 198, 220, 220, 220, 1312, 796, 1312, 10, 16, 198, 220, 220, 220, 220, 198, 27729, 293, 13, 39455, 7, 2777, 591, 11, 9654, 7, 21928, 35277, 10, 3672, 10, 6, 62, 2777, 591, 6, 10, 2536, 7, 25120, 50, 2308, 47762, 1911, 77, 9078, 2430, 39346, 12340, 11235, 4668, 28, 17, 8, 198, 27729, 293, 13, 39455, 7, 8310, 48382, 11, 9654, 7, 21928, 35277, 10, 3672, 10, 6, 62, 8310, 48382, 6, 10, 2536, 7, 25120, 50, 2308, 47762, 1911, 77, 9078, 2430, 39346, 12340, 11235, 4668, 28, 17, 8, 198, 198, 4798, 366, 50, 9586, 355, 33172, 3613, 35277, 10, 3672, 10, 6, 62, 2777, 591, 6, 10, 2536, 7, 25120, 50, 2308, 47762, 1911, 77, 9078, 1, 198, 4798, 366, 14957, 2491, 640, 373, 25, 33172, 357, 2435, 13, 2435, 3419, 12, 9688, 20679, 2623, 405, 11, 366, 24425, 1, 198, 198, 2, 21928, 35277, 796, 31051, 5232, 14, 417, 1416, 12, 75, 8937, 14, 325, 469, 85, 12, 72, 14, 68, 346, 321, 13, 24267, 23140, 14, 38354, 14, 1102, 66, 1704, 14, 6, 198, 2, 27729, 293, 13, 39455, 7, 2777, 591, 16, 11, 9654, 7, 21928, 35277, 10, 6, 28664, 62, 83, 2871, 62, 1270, 83, 313, 62, 71, 2387, 62, 2777, 591, 40264, 39346, 12340, 11235, 4668, 28, 17, 8, 198, 2, 27729, 293, 13, 39455, 7, 8310, 48382, 16, 11, 9654, 7, 21928, 35277, 10, 6, 28664, 62, 83, 2871, 62, 1270, 83, 313, 62, 71, 2387, 62, 8310, 48382, 40264, 39346, 12340, 11235, 4668, 28, 17, 8, 198 ]
2.305906
1,981
from selenium import webdriver import time from datetime import date from selenium.webdriver.common.keys import Keys from scrape_table_all import scrape_table from return_dates import return_dates # Open the link PATH = "/Users/prajwalshrestha/Desktop/PythonApp/thesis/web-scrapers/sharesansar/chromedriver" browser = webdriver.Chrome(PATH) browser.maximize_window() browser.get("https://www.sharesansar.com/today-share-price") # Select the type of data to scrape searchBar = browser.find_element_by_id('sector') browser.implicitly_wait(20) # Select Commercial Bank searchBar.send_keys('Commercial Bank') sdate = date(2020, 3, 23) edate = date(2021, 5, 13) dates = return_dates(sdate, edate) for day in dates: # Enter the date date_box = browser.find_elements_by_id('fromdate') date_box[0].clear() date_box[0].send_keys(day) # Click Search searchBar = browser.find_element_by_id('btn_todayshareprice_submit') searchBar.click() time.sleep(3) # Needed for this sites searchBar.send_keys(Keys.ENTER) # Wait for data to show up longer wait time ensures data has loaded before scraping begins time.sleep(8) # Scrape the table html = browser.page_source scrape_table(data=html, date=day) browser.close()
[ 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 11748, 640, 198, 6738, 4818, 8079, 1330, 3128, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 13083, 1330, 26363, 198, 6738, 42778, 62, 11487, 62, 439, 1330, 42778, 62, 11487, 198, 6738, 1441, 62, 19581, 1330, 1441, 62, 19581, 198, 198, 2, 4946, 262, 2792, 198, 34219, 796, 12813, 14490, 14, 79, 430, 73, 86, 22114, 2118, 3099, 14, 36881, 14, 37906, 4677, 14, 83, 8497, 14, 12384, 12, 1416, 2416, 364, 14, 1477, 3565, 504, 283, 14, 28663, 276, 38291, 1, 198, 40259, 796, 3992, 26230, 13, 1925, 5998, 7, 34219, 8, 198, 40259, 13, 9806, 48439, 62, 17497, 3419, 198, 40259, 13, 1136, 7203, 5450, 1378, 2503, 13, 1477, 3565, 504, 283, 13, 785, 14, 40838, 12, 20077, 12, 20888, 4943, 198, 2, 9683, 262, 2099, 286, 1366, 284, 42778, 198, 12947, 10374, 796, 6444, 13, 19796, 62, 30854, 62, 1525, 62, 312, 10786, 34914, 11537, 198, 40259, 13, 23928, 3628, 306, 62, 17077, 7, 1238, 8, 198, 2, 9683, 22724, 5018, 198, 12947, 10374, 13, 21280, 62, 13083, 10786, 48401, 5018, 11537, 198, 198, 82, 4475, 796, 3128, 7, 42334, 11, 513, 11, 2242, 8, 198, 276, 378, 796, 3128, 7, 1238, 2481, 11, 642, 11, 1511, 8, 198, 19581, 796, 1441, 62, 19581, 7, 82, 4475, 11, 1225, 378, 8, 628, 198, 1640, 1110, 287, 9667, 25, 198, 220, 220, 220, 1303, 6062, 262, 3128, 198, 220, 220, 220, 3128, 62, 3524, 796, 6444, 13, 19796, 62, 68, 3639, 62, 1525, 62, 312, 10786, 6738, 4475, 11537, 198, 220, 220, 220, 3128, 62, 3524, 58, 15, 4083, 20063, 3419, 198, 220, 220, 220, 3128, 62, 3524, 58, 15, 4083, 21280, 62, 13083, 7, 820, 8, 198, 220, 220, 220, 1303, 6914, 11140, 198, 220, 220, 220, 2989, 10374, 796, 6444, 13, 19796, 62, 30854, 62, 1525, 62, 312, 10786, 46118, 62, 83, 375, 592, 43466, 20888, 62, 46002, 11537, 198, 220, 220, 220, 2989, 10374, 13, 12976, 3419, 198, 220, 220, 220, 640, 13, 42832, 7, 18, 8, 198, 220, 220, 220, 1303, 10664, 276, 329, 428, 5043, 198, 220, 220, 220, 2989, 10374, 13, 21280, 62, 13083, 7, 40729, 13, 3525, 1137, 8, 198, 220, 220, 220, 1303, 16314, 329, 1366, 284, 905, 510, 2392, 4043, 640, 19047, 1366, 468, 9639, 878, 46743, 6140, 198, 220, 220, 220, 640, 13, 42832, 7, 23, 8, 198, 220, 220, 220, 1303, 1446, 13484, 262, 3084, 198, 220, 220, 220, 27711, 796, 6444, 13, 7700, 62, 10459, 198, 220, 220, 220, 42778, 62, 11487, 7, 7890, 28, 6494, 11, 3128, 28, 820, 8, 198, 198, 40259, 13, 19836, 3419, 198 ]
2.851016
443
import pytest import subprocess from io import BytesIO import json from werkzeug.wrappers import Response from elephant_vending_machine import elephant_vending_machine from subprocess import CompletedProcess, CalledProcessError @pytest.fixture
[ 11748, 12972, 9288, 198, 11748, 850, 14681, 198, 6738, 33245, 1330, 2750, 4879, 9399, 198, 11748, 33918, 198, 198, 6738, 266, 9587, 2736, 1018, 13, 29988, 11799, 1330, 18261, 198, 198, 6738, 20950, 62, 85, 1571, 62, 30243, 1330, 20950, 62, 85, 1571, 62, 30243, 198, 6738, 850, 14681, 1330, 32983, 18709, 11, 34099, 18709, 12331, 198, 198, 31, 9078, 9288, 13, 69, 9602, 628, 628 ]
3.787879
66
from django.conf.urls import url from django.urls import path from . import views app_name = 'articles' urlpatterns = [ url(r'^$', views.homepage, name="list"), url(r'^about/$', views.about, name="about"), url(r'^contact/$', views.contact, name="contact"), url(r'^bolaka/$', views.bolaka, name="bolaka"), url(r'^offers_page/$', views.offers, name="offers_page"), url(r'^bolakareview/$', views.bolakareview, name="bolakareview"), url(r'^ticket/$', views.ticket, name="ticket"), path('deletebalaka/<str:pk>/$', views.deletebalaka, name="deletebalaka"), url(r'^ticket_page/$', views.ticket_page, name="ticket_page"), # Air url(r'^Air_Biman_Bangladesh/$', views.Air_Biman_Bangladesh, name="Air_Biman_Bangladesh"), url(r'^Air_Novoair/$', views.Air_Novoair, name="Air_Novoair"), url(r'^Air_US_Bangla/$', views.Air_US_Bangla, name="Air_US_Bangla"), # Bus url(r'^Bus_Akash/$', views.Bus_Akash, name="Bus_Akash"), url(r'^Bus_Alif/$', views.Bus_Alif, name="Bus_Alif"), url(r'^Bus_Anabil/$', views.Bus_Anabil, name="Bus_Anabil"), url(r'^Bus_BRTC/$', views.Bus_BRTC, name="Bus_BRTC"), url(r'^Bus_Green_Dhaka/$', views.Bus_Green_Dhaka, name="Bus_Green_Dhaka"), url(r'^Bus_Raida/$', views.Bus_Raida, name="Bus_Raida"), url(r'^Bus_Skyline/$', views.Bus_Skyline, name="Bus_Skyline"), url(r'^Bus_Supravat/$', views.Bus_Supravat, name="Bus_Supravat"), url(r'^Bus_VIP/$', views.Bus_VIP, name="Bus_VIP"), # Train url(r'^Train_Chitra_Express/$', views.Train_Chitra_Express, name="Train_Chitra_Express"), url(r'^Train_Ekota_Express/$', views.Train_Ekota_Express, name="Train_Ekota_Express"), url(r'^Train_Mahanagar_Godhuli/$', views.Train_Mahanagar_Godhuli, name="Train_Mahanagar_Godhuli"), url(r'^Train_Suborno_Express/$', views.Train_Suborno_Express, name="Train_Suborno_Express"), url(r'^Train_Tista_Express/$', views.Train_Tista_Express, name="Train_Tista_Express"), url(r'^(?P<slug>[\w-]+)/$', views.homepage, name="list"), ]
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 198, 6738, 764, 1330, 5009, 198, 198, 1324, 62, 3672, 796, 705, 26845, 6, 628, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3, 3256, 5009, 13, 11195, 7700, 11, 1438, 2625, 4868, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 10755, 32624, 3256, 5009, 13, 10755, 11, 1438, 2625, 10755, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 32057, 32624, 3256, 5009, 13, 32057, 11, 1438, 2625, 32057, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 28984, 8130, 32624, 3256, 5009, 13, 28984, 8130, 11, 1438, 2625, 28984, 8130, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 2364, 364, 62, 7700, 32624, 3256, 5009, 13, 2364, 364, 11, 1438, 2625, 2364, 364, 62, 7700, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 28984, 461, 533, 1177, 32624, 3256, 5009, 13, 28984, 461, 533, 1177, 11, 1438, 2625, 28984, 461, 533, 1177, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 43350, 32624, 3256, 5009, 13, 43350, 11, 1438, 2625, 43350, 12340, 198, 220, 220, 220, 3108, 10786, 33678, 6893, 8130, 14, 27, 2536, 25, 79, 74, 29, 32624, 3256, 5009, 13, 33678, 6893, 8130, 11, 1438, 2625, 33678, 6893, 8130, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 43350, 62, 7700, 32624, 3256, 5009, 13, 43350, 62, 7700, 11, 1438, 2625, 43350, 62, 7700, 12340, 628, 198, 220, 220, 220, 1303, 3701, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16170, 62, 33, 24086, 62, 43984, 75, 13410, 32624, 3256, 5009, 13, 16170, 62, 33, 24086, 62, 43984, 75, 13410, 11, 1438, 2625, 16170, 62, 33, 24086, 62, 43984, 75, 13410, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16170, 62, 45, 18768, 958, 32624, 3256, 5009, 13, 16170, 62, 45, 18768, 958, 11, 1438, 2625, 16170, 62, 45, 18768, 958, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16170, 62, 2937, 62, 43984, 5031, 32624, 3256, 5009, 13, 16170, 62, 2937, 62, 43984, 5031, 11, 1438, 2625, 16170, 62, 2937, 62, 43984, 5031, 12340, 628, 220, 220, 220, 1303, 5869, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16286, 62, 33901, 1077, 32624, 3256, 5009, 13, 16286, 62, 33901, 1077, 11, 1438, 2625, 16286, 62, 33901, 1077, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16286, 62, 2348, 361, 32624, 3256, 5009, 13, 16286, 62, 2348, 361, 11, 1438, 2625, 16286, 62, 2348, 361, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16286, 62, 2025, 14991, 32624, 3256, 5009, 13, 16286, 62, 2025, 14991, 11, 1438, 2625, 16286, 62, 2025, 14991, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16286, 62, 11473, 4825, 32624, 3256, 5009, 13, 16286, 62, 11473, 4825, 11, 1438, 2625, 16286, 62, 11473, 4825, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16286, 62, 13719, 62, 35, 71, 8130, 32624, 3256, 5009, 13, 16286, 62, 13719, 62, 35, 71, 8130, 11, 1438, 2625, 16286, 62, 13719, 62, 35, 71, 8130, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16286, 62, 49, 30546, 32624, 3256, 5009, 13, 16286, 62, 49, 30546, 11, 1438, 2625, 16286, 62, 49, 30546, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16286, 62, 22308, 1370, 32624, 3256, 5009, 13, 16286, 62, 22308, 1370, 11, 1438, 2625, 16286, 62, 22308, 1370, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16286, 62, 40784, 4108, 265, 32624, 3256, 5009, 13, 16286, 62, 40784, 4108, 265, 11, 1438, 2625, 16286, 62, 40784, 4108, 265, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16286, 62, 53, 4061, 32624, 3256, 5009, 13, 16286, 62, 53, 4061, 11, 1438, 2625, 16286, 62, 53, 4061, 12340, 628, 220, 220, 220, 1303, 16835, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 44077, 62, 1925, 270, 430, 62, 38839, 32624, 3256, 5009, 13, 44077, 62, 1925, 270, 430, 62, 38839, 11, 1438, 2625, 44077, 62, 1925, 270, 430, 62, 38839, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 44077, 62, 36, 74, 4265, 62, 38839, 32624, 3256, 5009, 13, 44077, 62, 36, 74, 4265, 62, 38839, 11, 1438, 2625, 44077, 62, 36, 74, 4265, 62, 38839, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 44077, 62, 44, 19210, 32452, 62, 13482, 71, 32176, 32624, 3256, 5009, 13, 44077, 62, 44, 19210, 32452, 62, 13482, 71, 32176, 11, 1438, 2625, 44077, 62, 44, 19210, 32452, 62, 13482, 71, 32176, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 44077, 62, 7004, 46447, 62, 38839, 32624, 3256, 5009, 13, 44077, 62, 7004, 46447, 62, 38839, 11, 1438, 2625, 44077, 62, 7004, 46447, 62, 38839, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 44077, 62, 51, 12523, 62, 38839, 32624, 3256, 5009, 13, 44077, 62, 51, 12523, 62, 38839, 11, 1438, 2625, 44077, 62, 51, 12523, 62, 38839, 12340, 628, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 47, 27, 6649, 1018, 36937, 59, 86, 12, 48688, 20679, 3, 3256, 5009, 13, 11195, 7700, 11, 1438, 2625, 4868, 12340, 198, 60, 198 ]
2.31328
881
"""Extensions for the ``maya.OpenMayaFX`` module."""
[ 37811, 11627, 5736, 329, 262, 7559, 11261, 64, 13, 11505, 6747, 64, 17213, 15506, 8265, 526, 15931, 198 ]
2.944444
18
# -*- coding: utf-8 -*- from __future__ import unicode_literals import uuid from django.db import models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 334, 27112, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 628 ]
2.769231
39
from running_modes.configurations import GeneralConfigurationEnvelope from running_modes.constructors.base_running_mode import BaseRunningMode from running_modes.constructors.create_model_mode_constructor import CreateModelModeConstructor from running_modes.constructors.curriculum_learning_mode_constructor import CurriculumLearningModeConstructor from running_modes.constructors.reinforcement_learning_mode_constructor import ReinforcementLearningModeConstructor from running_modes.constructors.sampling_mode_constructor import SamplingModeConstructor from running_modes.constructors.scoring_mode_constructor import ScoringModeConstructor from running_modes.constructors.transfer_learning_mode_constructor import TransferLearningModeConstructor from running_modes.constructors.validation_mode_constructor import ValidationModeConstructor from running_modes.enums.running_mode_enum import RunningModeEnum
[ 6738, 2491, 62, 76, 4147, 13, 11250, 20074, 1330, 3611, 38149, 4834, 1091, 68, 198, 6738, 2491, 62, 76, 4147, 13, 41571, 669, 13, 8692, 62, 20270, 62, 14171, 1330, 7308, 28768, 19076, 198, 6738, 2491, 62, 76, 4147, 13, 41571, 669, 13, 17953, 62, 19849, 62, 14171, 62, 41571, 273, 1330, 13610, 17633, 19076, 42316, 273, 198, 6738, 2491, 62, 76, 4147, 13, 41571, 669, 13, 22019, 1173, 14452, 62, 40684, 62, 14171, 62, 41571, 273, 1330, 4424, 1173, 14452, 41730, 19076, 42316, 273, 198, 6738, 2491, 62, 76, 4147, 13, 41571, 669, 13, 260, 259, 13442, 62, 40684, 62, 14171, 62, 41571, 273, 1330, 22299, 13442, 41730, 19076, 42316, 273, 198, 6738, 2491, 62, 76, 4147, 13, 41571, 669, 13, 37687, 11347, 62, 14171, 62, 41571, 273, 1330, 3409, 11347, 19076, 42316, 273, 198, 6738, 2491, 62, 76, 4147, 13, 41571, 669, 13, 46536, 62, 14171, 62, 41571, 273, 1330, 1446, 3255, 19076, 42316, 273, 198, 6738, 2491, 62, 76, 4147, 13, 41571, 669, 13, 39437, 62, 40684, 62, 14171, 62, 41571, 273, 1330, 20558, 41730, 19076, 42316, 273, 198, 6738, 2491, 62, 76, 4147, 13, 41571, 669, 13, 12102, 341, 62, 14171, 62, 41571, 273, 1330, 3254, 24765, 19076, 42316, 273, 198, 6738, 2491, 62, 76, 4147, 13, 268, 5700, 13, 20270, 62, 14171, 62, 44709, 1330, 18162, 19076, 4834, 388, 198 ]
4.026667
225
from ansible_collections.nhsd.apigee.plugins.module_utils import constants def org_from_env(environment) -> str: """Get nhsd apigee organization name from environment name.""" for org, envs in constants.APIGEE_ORG_TO_ENV.items(): if environment in envs: return org valid_envs = [] for v in constants.APIGEE_ORG_TO_ENV.values(): valid_envs = valid_envs + v raise ValueError(f"Unknown environment {environment}, valid environments are {valid_envs}")
[ 6738, 9093, 856, 62, 4033, 26448, 13, 77, 11994, 67, 13, 499, 328, 1453, 13, 37390, 13, 21412, 62, 26791, 1330, 38491, 628, 198, 4299, 8745, 62, 6738, 62, 24330, 7, 38986, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 3855, 299, 11994, 67, 2471, 328, 1453, 4009, 1438, 422, 2858, 1438, 526, 15931, 198, 220, 220, 220, 329, 8745, 11, 551, 14259, 287, 38491, 13, 2969, 3528, 6500, 62, 1581, 38, 62, 10468, 62, 1677, 53, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2858, 287, 551, 14259, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 8745, 198, 220, 220, 220, 4938, 62, 268, 14259, 796, 17635, 198, 220, 220, 220, 329, 410, 287, 38491, 13, 2969, 3528, 6500, 62, 1581, 38, 62, 10468, 62, 1677, 53, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 268, 14259, 796, 4938, 62, 268, 14259, 1343, 410, 198, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 20035, 2858, 1391, 38986, 5512, 4938, 12493, 389, 1391, 12102, 62, 268, 14259, 92, 4943, 628 ]
2.668449
187
""" ``astyle`` provides classes for adding style (foreground and background color; bold; blink; etc.) to terminal and curses output. """ import sys, os try: import curses except ImportError: curses = None COLOR_BLACK = 0 COLOR_RED = 1 COLOR_GREEN = 2 COLOR_YELLOW = 3 COLOR_BLUE = 4 COLOR_MAGENTA = 5 COLOR_CYAN = 6 COLOR_WHITE = 7 A_BLINK = 1<<0 # Blinking text A_BOLD = 1<<1 # Extra bright or bold text A_DIM = 1<<2 # Half bright text A_REVERSE = 1<<3 # Reverse-video text A_STANDOUT = 1<<4 # The best highlighting mode available A_UNDERLINE = 1<<5 # Underlined text class Style(object): """ Store foreground color, background color and attribute (bold, underlined etc.). """ __slots__ = ("fg", "bg", "attrs") COLORNAMES = { "black": COLOR_BLACK, "red": COLOR_RED, "green": COLOR_GREEN, "yellow": COLOR_YELLOW, "blue": COLOR_BLUE, "magenta": COLOR_MAGENTA, "cyan": COLOR_CYAN, "white": COLOR_WHITE, } ATTRNAMES = { "blink": A_BLINK, "bold": A_BOLD, "dim": A_DIM, "reverse": A_REVERSE, "standout": A_STANDOUT, "underline": A_UNDERLINE, } def __init__(self, fg, bg, attrs=0): """ Create a ``Style`` object with ``fg`` as the foreground color, ``bg`` as the background color and ``attrs`` as the attributes. Examples: >>> Style(COLOR_RED, COLOR_BLACK) <Style fg=red bg=black attrs=0> >>> Style(COLOR_YELLOW, COLOR_BLUE, A_BOLD|A_UNDERLINE) <Style fg=yellow bg=blue attrs=bold|underline> """ self.fg = fg self.bg = bg self.attrs = attrs def fromstr(cls, value): """ Create a ``Style`` object from a string. The format looks like this: ``"red:black:bold|blink"``. """ # defaults fg = COLOR_WHITE bg = COLOR_BLACK attrs = 0 parts = value.split(":") if len(parts) > 0: fg = cls.COLORNAMES[parts[0].lower()] if len(parts) > 1: bg = cls.COLORNAMES[parts[1].lower()] if len(parts) > 2: for strattr in parts[2].split("|"): attrs |= cls.ATTRNAMES[strattr.lower()] return cls(fg, bg, attrs) fromstr = classmethod(fromstr) def fromenv(cls, name, default): """ Create a ``Style`` from an environment variable named ``name`` (using ``default`` if the environment variable doesn't exist). """ return cls.fromstr(os.environ.get(name, default)) fromenv = classmethod(fromenv) def switchstyle(s1, s2): """ Return the ANSI escape sequence needed to switch from style ``s1`` to style ``s2``. """ attrmask = (A_BLINK|A_BOLD|A_UNDERLINE|A_REVERSE) a1 = s1.attrs & attrmask a2 = s2.attrs & attrmask args = [] if s1 != s2: # do we have to get rid of the bold/underline/blink bit? # (can only be done by a reset) # use reset when our target color is the default color # (this is shorter than 37;40) if (a1 & ~a2 or s2==style_default): args.append("0") s1 = style_default a1 = 0 # now we know that old and new color have the same boldness, # or the new color is bold and the old isn't, # i.e. we only might have to switch bold on, not off if not (a1 & A_BOLD) and (a2 & A_BOLD): args.append("1") # Fix underline if not (a1 & A_UNDERLINE) and (a2 & A_UNDERLINE): args.append("4") # Fix blink if not (a1 & A_BLINK) and (a2 & A_BLINK): args.append("5") # Fix reverse if not (a1 & A_REVERSE) and (a2 & A_REVERSE): args.append("7") # Fix foreground color if s1.fg != s2.fg: args.append("3%d" % s2.fg) # Finally fix the background color if s1.bg != s2.bg: args.append("4%d" % s2.bg) if args: return "\033[%sm" % ";".join(args) return "" class Text(list): """ A colored string. A ``Text`` object is a sequence, the sequence items will be ``(style, string)`` tuples. """ def format(self, styled=True): """ This generator yields the strings that will make up the final colorized string. """ if styled: oldstyle = style_default for (style, string) in self: if not isinstance(style, (int, long)): switch = switchstyle(oldstyle, style) if switch: yield switch if string: yield string oldstyle = style switch = switchstyle(oldstyle, style_default) if switch: yield switch else: for (style, string) in self: if not isinstance(style, (int, long)): yield string def string(self, styled=True): """ Return the resulting string (with escape sequences, if ``styled`` is true). """ return "".join(self.format(styled)) def __str__(self): """ Return ``self`` as a string (without ANSI escape sequences). """ return self.string(False) def write(self, stream, styled=True): """ Write ``self`` to the output stream ``stream`` (with escape sequences, if ``styled`` is true). """ for part in self.format(styled): stream.write(part) try: import ipipe except ImportError: pass else: ipipe.xrepr.when_type(Text)(xrepr_astyle_text) def streamstyle(stream, styled=None): """ If ``styled`` is ``None``, return whether ``stream`` refers to a terminal. If this can't be determined (either because ``stream`` doesn't refer to a real OS file, or because you're on Windows) return ``False``. If ``styled`` is not ``None`` ``styled`` will be returned unchanged. """ if styled is None: try: styled = os.isatty(stream.fileno()) except (KeyboardInterrupt, SystemExit): raise except Exception: styled = False return styled def write(stream, styled, *texts): """ Write ``texts`` to ``stream``. """ text = Text(*texts) text.write(stream, streamstyle(stream, styled)) def writeln(stream, styled, *texts): """ Write ``texts`` to ``stream`` and finish with a line feed. """ write(stream, styled, *texts) stream.write("\n") class Stream(object): """ Stream wrapper that adds color output. """ class stdout(object): """ Stream wrapper for ``sys.stdout`` that adds color output. """ stdout = stdout() class stderr(object): """ Stream wrapper for ``sys.stderr`` that adds color output. """ stderr = stderr() if curses is not None: # This is probably just range(8) COLOR2CURSES = [ COLOR_BLACK, COLOR_RED, COLOR_GREEN, COLOR_YELLOW, COLOR_BLUE, COLOR_MAGENTA, COLOR_CYAN, COLOR_WHITE, ] A2CURSES = { A_BLINK: curses.A_BLINK, A_BOLD: curses.A_BOLD, A_DIM: curses.A_DIM, A_REVERSE: curses.A_REVERSE, A_STANDOUT: curses.A_STANDOUT, A_UNDERLINE: curses.A_UNDERLINE, } # default style style_default = Style.fromstr("white:black") # Styles for datatypes style_type_none = Style.fromstr("magenta:black") style_type_bool = Style.fromstr("magenta:black") style_type_number = Style.fromstr("yellow:black") style_type_datetime = Style.fromstr("magenta:black") style_type_type = Style.fromstr("cyan:black") # Style for URLs and file/directory names style_url = Style.fromstr("green:black") style_dir = Style.fromstr("cyan:black") style_file = Style.fromstr("green:black") # Style for ellipsis (when an output has been shortened style_ellisis = Style.fromstr("red:black") # Style for displaying exceptions style_error = Style.fromstr("red:black") # Style for displaying non-existing attributes style_nodata = Style.fromstr("red:black")
[ 37811, 198, 15506, 459, 2349, 15506, 3769, 6097, 329, 4375, 3918, 357, 754, 2833, 290, 4469, 3124, 26, 198, 36575, 26, 21019, 26, 3503, 2014, 284, 12094, 290, 43878, 5072, 13, 198, 37811, 628, 198, 11748, 25064, 11, 28686, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 43878, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 43878, 796, 6045, 628, 198, 46786, 62, 9148, 8120, 220, 220, 796, 657, 198, 46786, 62, 22083, 220, 220, 220, 220, 796, 352, 198, 46786, 62, 43016, 220, 220, 796, 362, 198, 46786, 62, 56, 23304, 3913, 220, 796, 513, 198, 46786, 62, 9148, 8924, 220, 220, 220, 796, 604, 198, 46786, 62, 45820, 3525, 32, 796, 642, 198, 46786, 62, 34, 56, 1565, 220, 220, 220, 796, 718, 198, 46786, 62, 12418, 12709, 220, 220, 796, 767, 198, 198, 32, 62, 9148, 17248, 220, 220, 220, 220, 796, 352, 16791, 15, 1303, 1086, 8040, 2420, 198, 32, 62, 33, 15173, 220, 220, 220, 220, 220, 796, 352, 16791, 16, 1303, 17221, 6016, 393, 10758, 2420, 198, 32, 62, 35, 3955, 220, 220, 220, 220, 220, 220, 796, 352, 16791, 17, 1303, 13139, 6016, 2420, 198, 32, 62, 2200, 28884, 36, 220, 220, 796, 352, 16791, 18, 1303, 31849, 12, 15588, 2420, 198, 32, 62, 2257, 6981, 12425, 220, 796, 352, 16791, 19, 1303, 383, 1266, 21292, 4235, 1695, 198, 32, 62, 4944, 14418, 24027, 796, 352, 16791, 20, 1303, 4698, 10837, 2420, 628, 198, 4871, 17738, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9363, 36282, 3124, 11, 4469, 3124, 290, 11688, 357, 36575, 11, 739, 10837, 198, 220, 220, 220, 3503, 15729, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 6649, 1747, 834, 796, 5855, 40616, 1600, 366, 35904, 1600, 366, 1078, 3808, 4943, 628, 220, 220, 220, 20444, 30649, 29559, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13424, 1298, 20444, 1581, 62, 9148, 8120, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 445, 1298, 20444, 1581, 62, 22083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 14809, 1298, 20444, 1581, 62, 43016, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 36022, 1298, 20444, 1581, 62, 56, 23304, 3913, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17585, 1298, 20444, 1581, 62, 9148, 8924, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19726, 29188, 1298, 20444, 1581, 62, 45820, 3525, 32, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 948, 272, 1298, 20444, 1581, 62, 34, 56, 1565, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11186, 1298, 20444, 1581, 62, 12418, 12709, 11, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 5161, 5446, 45, 29559, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2436, 676, 1298, 317, 62, 9148, 17248, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 36575, 1298, 317, 62, 33, 15173, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 27740, 1298, 317, 62, 35, 3955, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 50188, 1298, 317, 62, 2200, 28884, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1481, 448, 1298, 317, 62, 2257, 6981, 12425, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4625, 1370, 1298, 317, 62, 4944, 14418, 24027, 11, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 277, 70, 11, 275, 70, 11, 708, 3808, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 7559, 21466, 15506, 2134, 351, 7559, 40616, 15506, 355, 262, 36282, 3124, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 35904, 15506, 355, 262, 4469, 3124, 290, 7559, 1078, 3808, 15506, 355, 262, 12608, 13, 628, 220, 220, 220, 220, 220, 220, 220, 21066, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 17738, 7, 46786, 62, 22083, 11, 20444, 1581, 62, 9148, 8120, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 21466, 277, 70, 28, 445, 275, 70, 28, 13424, 708, 3808, 28, 15, 29, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 17738, 7, 46786, 62, 56, 23304, 3913, 11, 20444, 1581, 62, 9148, 8924, 11, 317, 62, 33, 15173, 91, 32, 62, 4944, 14418, 24027, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 21466, 277, 70, 28, 36022, 275, 70, 28, 17585, 708, 3808, 28, 36575, 91, 4625, 1370, 29, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40616, 796, 277, 70, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35904, 796, 275, 70, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1078, 3808, 796, 708, 3808, 628, 220, 220, 220, 825, 422, 2536, 7, 565, 82, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 7559, 21466, 15506, 2134, 422, 257, 4731, 13, 383, 5794, 3073, 588, 428, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 1, 445, 25, 13424, 25, 36575, 91, 2436, 676, 1, 15506, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 26235, 198, 220, 220, 220, 220, 220, 220, 220, 277, 70, 796, 20444, 1581, 62, 12418, 12709, 198, 220, 220, 220, 220, 220, 220, 220, 275, 70, 796, 20444, 1581, 62, 9148, 8120, 198, 220, 220, 220, 220, 220, 220, 220, 708, 3808, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 3354, 796, 1988, 13, 35312, 7, 2404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 42632, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 796, 537, 82, 13, 25154, 30649, 29559, 58, 42632, 58, 15, 4083, 21037, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 42632, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 70, 796, 537, 82, 13, 25154, 30649, 29559, 58, 42632, 58, 16, 4083, 21037, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 42632, 8, 1875, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 965, 35226, 287, 3354, 58, 17, 4083, 35312, 7203, 91, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 708, 3808, 930, 28, 537, 82, 13, 1404, 5446, 45, 29559, 58, 2536, 35226, 13, 21037, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 7, 40616, 11, 275, 70, 11, 708, 3808, 8, 198, 220, 220, 220, 422, 2536, 796, 1398, 24396, 7, 6738, 2536, 8, 628, 220, 220, 220, 825, 422, 24330, 7, 565, 82, 11, 1438, 11, 4277, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 7559, 21466, 15506, 422, 281, 2858, 7885, 3706, 7559, 3672, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 357, 3500, 7559, 12286, 15506, 611, 262, 2858, 7885, 1595, 470, 2152, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 13, 6738, 2536, 7, 418, 13, 268, 2268, 13, 1136, 7, 3672, 11, 4277, 4008, 198, 220, 220, 220, 422, 24330, 796, 1398, 24396, 7, 6738, 24330, 8, 628, 198, 4299, 5078, 7635, 7, 82, 16, 11, 264, 17, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 3537, 11584, 6654, 8379, 2622, 284, 5078, 422, 3918, 7559, 82, 16, 15506, 284, 198, 220, 220, 220, 3918, 7559, 82, 17, 15506, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 708, 26224, 2093, 796, 357, 32, 62, 9148, 17248, 91, 32, 62, 33, 15173, 91, 32, 62, 4944, 14418, 24027, 91, 32, 62, 2200, 28884, 36, 8, 198, 220, 220, 220, 257, 16, 796, 264, 16, 13, 1078, 3808, 1222, 708, 26224, 2093, 198, 220, 220, 220, 257, 17, 796, 264, 17, 13, 1078, 3808, 1222, 708, 26224, 2093, 628, 220, 220, 220, 26498, 796, 17635, 198, 220, 220, 220, 611, 264, 16, 14512, 264, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 466, 356, 423, 284, 651, 5755, 286, 262, 10758, 14, 4625, 1370, 14, 2436, 676, 1643, 30, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 5171, 691, 307, 1760, 416, 257, 13259, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 779, 13259, 618, 674, 2496, 3124, 318, 262, 4277, 3124, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 5661, 318, 12238, 621, 5214, 26, 1821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 64, 16, 1222, 5299, 64, 17, 393, 264, 17, 855, 7635, 62, 12286, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 33295, 7203, 15, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 16, 796, 3918, 62, 12286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 16, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 783, 356, 760, 326, 1468, 290, 649, 3124, 423, 262, 976, 10758, 1108, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 393, 262, 649, 3124, 318, 10758, 290, 262, 1468, 2125, 470, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1312, 13, 68, 13, 356, 691, 1244, 423, 284, 5078, 10758, 319, 11, 407, 572, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 64, 16, 1222, 317, 62, 33, 15173, 8, 290, 357, 64, 17, 1222, 317, 62, 33, 15173, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 33295, 7203, 16, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13268, 739, 1370, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 64, 16, 1222, 317, 62, 4944, 14418, 24027, 8, 290, 357, 64, 17, 1222, 317, 62, 4944, 14418, 24027, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 33295, 7203, 19, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13268, 21019, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 64, 16, 1222, 317, 62, 9148, 17248, 8, 290, 357, 64, 17, 1222, 317, 62, 9148, 17248, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 33295, 7203, 20, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13268, 9575, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 64, 16, 1222, 317, 62, 2200, 28884, 36, 8, 290, 357, 64, 17, 1222, 317, 62, 2200, 28884, 36, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 33295, 7203, 22, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13268, 36282, 3124, 198, 220, 220, 220, 220, 220, 220, 220, 611, 264, 16, 13, 40616, 14512, 264, 17, 13, 40616, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 33295, 7203, 18, 4, 67, 1, 4064, 264, 17, 13, 40616, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9461, 4259, 262, 4469, 3124, 198, 220, 220, 220, 220, 220, 220, 220, 611, 264, 16, 13, 35904, 14512, 264, 17, 13, 35904, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 33295, 7203, 19, 4, 67, 1, 4064, 264, 17, 13, 35904, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 37082, 44427, 58, 4, 5796, 1, 4064, 366, 26, 1911, 22179, 7, 22046, 8, 198, 220, 220, 220, 1441, 13538, 628, 198, 4871, 8255, 7, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 16396, 4731, 13, 317, 7559, 8206, 15506, 2134, 318, 257, 8379, 11, 262, 8379, 198, 220, 220, 220, 3709, 481, 307, 11592, 7635, 11, 4731, 8, 15506, 12777, 2374, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 5794, 7, 944, 11, 45552, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 17301, 19299, 262, 13042, 326, 481, 787, 510, 262, 2457, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 1143, 4731, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45552, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 7635, 796, 3918, 62, 12286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 357, 7635, 11, 4731, 8, 287, 2116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 7635, 11, 357, 600, 11, 890, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5078, 796, 5078, 7635, 7, 727, 7635, 11, 3918, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5078, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 5078, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4731, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 7635, 796, 3918, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5078, 796, 5078, 7635, 7, 727, 7635, 11, 3918, 62, 12286, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5078, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 5078, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 357, 7635, 11, 4731, 8, 287, 2116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 7635, 11, 357, 600, 11, 890, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 4731, 628, 220, 220, 220, 825, 4731, 7, 944, 11, 45552, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 7186, 4731, 357, 4480, 6654, 16311, 11, 611, 7559, 34365, 992, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 318, 2081, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 1911, 22179, 7, 944, 13, 18982, 7, 34365, 992, 4008, 628, 220, 220, 220, 825, 11593, 2536, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 7559, 944, 15506, 355, 257, 4731, 357, 19419, 3537, 11584, 6654, 16311, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 8841, 7, 25101, 8, 628, 220, 220, 220, 825, 3551, 7, 944, 11, 4269, 11, 45552, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19430, 7559, 944, 15506, 284, 262, 5072, 4269, 7559, 5532, 15506, 357, 4480, 6654, 16311, 11, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7559, 34365, 992, 15506, 318, 2081, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 636, 287, 2116, 13, 18982, 7, 34365, 992, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4269, 13, 13564, 7, 3911, 8, 628, 198, 28311, 25, 198, 220, 220, 220, 1330, 20966, 3757, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198, 17772, 25, 198, 220, 220, 220, 20966, 3757, 13, 87, 260, 1050, 13, 12518, 62, 4906, 7, 8206, 5769, 87, 260, 1050, 62, 459, 2349, 62, 5239, 8, 628, 198, 4299, 4269, 7635, 7, 5532, 11, 45552, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1002, 7559, 34365, 992, 15506, 318, 7559, 14202, 15506, 11, 1441, 1771, 7559, 5532, 15506, 10229, 284, 257, 12094, 13, 198, 220, 220, 220, 1002, 428, 460, 470, 307, 5295, 357, 31336, 780, 7559, 5532, 15506, 1595, 470, 3522, 284, 257, 198, 220, 220, 220, 1103, 7294, 2393, 11, 393, 780, 345, 821, 319, 3964, 8, 1441, 7559, 25101, 15506, 13, 1002, 7559, 34365, 992, 15506, 198, 220, 220, 220, 318, 407, 7559, 14202, 15506, 7559, 34365, 992, 15506, 481, 307, 4504, 21588, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 45552, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45552, 796, 28686, 13, 271, 265, 774, 7, 5532, 13, 10379, 23397, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 9218, 3526, 9492, 3622, 11, 4482, 30337, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45552, 796, 10352, 198, 220, 220, 220, 1441, 45552, 628, 198, 4299, 3551, 7, 5532, 11, 45552, 11, 1635, 5239, 82, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19430, 7559, 5239, 82, 15506, 284, 7559, 5532, 15506, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2420, 796, 8255, 46491, 5239, 82, 8, 198, 220, 220, 220, 2420, 13, 13564, 7, 5532, 11, 4269, 7635, 7, 5532, 11, 45552, 4008, 628, 198, 4299, 1991, 45542, 7, 5532, 11, 45552, 11, 1635, 5239, 82, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19430, 7559, 5239, 82, 15506, 284, 7559, 5532, 15506, 290, 5461, 351, 257, 1627, 3745, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3551, 7, 5532, 11, 45552, 11, 1635, 5239, 82, 8, 198, 220, 220, 220, 4269, 13, 13564, 7203, 59, 77, 4943, 628, 198, 4871, 13860, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13860, 29908, 326, 6673, 3124, 5072, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 14367, 448, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13860, 29908, 329, 7559, 17597, 13, 19282, 448, 15506, 326, 6673, 3124, 5072, 13, 198, 220, 220, 220, 37227, 198, 19282, 448, 796, 14367, 448, 3419, 628, 198, 4871, 336, 1082, 81, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13860, 29908, 329, 7559, 17597, 13, 301, 1082, 81, 15506, 326, 6673, 3124, 5072, 13, 198, 220, 220, 220, 37227, 198, 301, 1082, 81, 796, 336, 1082, 81, 3419, 628, 198, 361, 43878, 318, 407, 6045, 25, 198, 220, 220, 220, 1303, 770, 318, 2192, 655, 2837, 7, 23, 8, 198, 220, 220, 220, 20444, 1581, 17, 34, 4261, 50, 1546, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 20444, 1581, 62, 9148, 8120, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20444, 1581, 62, 22083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20444, 1581, 62, 43016, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20444, 1581, 62, 56, 23304, 3913, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20444, 1581, 62, 9148, 8924, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20444, 1581, 62, 45820, 3525, 32, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20444, 1581, 62, 34, 56, 1565, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20444, 1581, 62, 12418, 12709, 11, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 317, 17, 34, 4261, 50, 1546, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 9148, 17248, 25, 43878, 13, 32, 62, 9148, 17248, 11, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 33, 15173, 25, 43878, 13, 32, 62, 33, 15173, 11, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 35, 3955, 25, 43878, 13, 32, 62, 35, 3955, 11, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 2200, 28884, 36, 25, 43878, 13, 32, 62, 2200, 28884, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 2257, 6981, 12425, 25, 43878, 13, 32, 62, 2257, 6981, 12425, 11, 198, 220, 220, 220, 220, 220, 220, 220, 317, 62, 4944, 14418, 24027, 25, 43878, 13, 32, 62, 4944, 14418, 24027, 11, 198, 220, 220, 220, 1782, 628, 198, 2, 4277, 3918, 198, 7635, 62, 12286, 796, 17738, 13, 6738, 2536, 7203, 11186, 25, 13424, 4943, 198, 198, 2, 44963, 329, 4818, 265, 9497, 198, 7635, 62, 4906, 62, 23108, 796, 17738, 13, 6738, 2536, 7203, 19726, 29188, 25, 13424, 4943, 198, 7635, 62, 4906, 62, 30388, 796, 17738, 13, 6738, 2536, 7203, 19726, 29188, 25, 13424, 4943, 198, 7635, 62, 4906, 62, 17618, 796, 17738, 13, 6738, 2536, 7203, 36022, 25, 13424, 4943, 198, 7635, 62, 4906, 62, 19608, 8079, 796, 17738, 13, 6738, 2536, 7203, 19726, 29188, 25, 13424, 4943, 198, 7635, 62, 4906, 62, 4906, 796, 17738, 13, 6738, 2536, 7203, 948, 272, 25, 13424, 4943, 198, 198, 2, 17738, 329, 32336, 290, 2393, 14, 34945, 3891, 198, 7635, 62, 6371, 796, 17738, 13, 6738, 2536, 7203, 14809, 25, 13424, 4943, 198, 7635, 62, 15908, 796, 17738, 13, 6738, 2536, 7203, 948, 272, 25, 13424, 4943, 198, 7635, 62, 7753, 796, 17738, 13, 6738, 2536, 7203, 14809, 25, 13424, 4943, 198, 198, 2, 17738, 329, 30004, 2419, 271, 357, 12518, 281, 5072, 468, 587, 34464, 198, 7635, 62, 695, 271, 271, 796, 17738, 13, 6738, 2536, 7203, 445, 25, 13424, 4943, 198, 198, 2, 17738, 329, 19407, 13269, 198, 7635, 62, 18224, 796, 17738, 13, 6738, 2536, 7203, 445, 25, 13424, 4943, 198, 198, 2, 17738, 329, 19407, 1729, 12, 25687, 12608, 198, 7635, 62, 77, 375, 1045, 796, 17738, 13, 6738, 2536, 7203, 445, 25, 13424, 4943, 198 ]
2.162338
3,850
import pickle import robot_sim.robots.ur3_dual.ur3_dual as ur3d import rbt_con.force_control as ur3dx # import robot_con.ur.ur3_dual_x as ur3dx import visualization.panda.world as wd import modeling.geometric_model as gm import motion.optimization_based.incremental_nik as inik import numpy as np import modeling.collision_model as cm import cv2 import img_to_depth as itd import time import motion.probabilistic.rrt_connect as rrtc ur_dual_x = ur3dx.UR3DualX(lft_robot_ip='10.2.0.50', rgt_robot_ip='10.2.0.51', pc_ip='10.2.0.100') base = wd.World(cam_pos=[2,1,3], lookat_pos=[0,0,1.1]) gm.gen_frame().attach_to(base) robot_s = ur3d.UR3Dual() jnt = ur_dual_x.get_jnt_values("lft_arm") robot_s.fk(component_name="lft_arm",jnt_values= np.array(jnt)) robot_meshmodel = robot_s.gen_meshmodel(toggle_tcpcs=True) robot_meshmodel.attach_to(base) base.run()
[ 11748, 2298, 293, 198, 11748, 9379, 62, 14323, 13, 22609, 1747, 13, 333, 18, 62, 646, 282, 13, 333, 18, 62, 646, 282, 355, 2956, 18, 67, 198, 11748, 374, 18347, 62, 1102, 13, 3174, 62, 13716, 355, 2956, 18, 34350, 198, 2, 1330, 9379, 62, 1102, 13, 333, 13, 333, 18, 62, 646, 282, 62, 87, 355, 2956, 18, 34350, 198, 11748, 32704, 13, 79, 5282, 13, 6894, 355, 266, 67, 198, 11748, 21128, 13, 469, 16996, 62, 19849, 355, 308, 76, 198, 11748, 6268, 13, 40085, 1634, 62, 3106, 13, 24988, 37098, 62, 17187, 355, 287, 1134, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 21128, 13, 26000, 1166, 62, 19849, 355, 12067, 198, 11748, 269, 85, 17, 198, 11748, 33705, 62, 1462, 62, 18053, 355, 340, 67, 198, 11748, 640, 198, 11748, 6268, 13, 1676, 65, 14991, 2569, 13, 81, 17034, 62, 8443, 355, 374, 17034, 66, 198, 198, 333, 62, 646, 282, 62, 87, 796, 2956, 18, 34350, 13, 4261, 18, 36248, 55, 7, 75, 701, 62, 305, 13645, 62, 541, 11639, 940, 13, 17, 13, 15, 13, 1120, 3256, 374, 13655, 62, 305, 13645, 62, 541, 11639, 940, 13, 17, 13, 15, 13, 4349, 3256, 40653, 62, 541, 11639, 940, 13, 17, 13, 15, 13, 3064, 11537, 198, 198, 8692, 796, 266, 67, 13, 10603, 7, 20991, 62, 1930, 41888, 17, 11, 16, 11, 18, 4357, 804, 265, 62, 1930, 41888, 15, 11, 15, 11, 16, 13, 16, 12962, 198, 39870, 13, 5235, 62, 14535, 22446, 47348, 62, 1462, 7, 8692, 8, 198, 305, 13645, 62, 82, 796, 2956, 18, 67, 13, 4261, 18, 36248, 3419, 198, 198, 73, 429, 796, 2956, 62, 646, 282, 62, 87, 13, 1136, 62, 73, 429, 62, 27160, 7203, 75, 701, 62, 1670, 4943, 198, 305, 13645, 62, 82, 13, 69, 74, 7, 42895, 62, 3672, 2625, 75, 701, 62, 1670, 1600, 73, 429, 62, 27160, 28, 45941, 13, 18747, 7, 73, 429, 4008, 198, 198, 305, 13645, 62, 76, 5069, 19849, 796, 9379, 62, 82, 13, 5235, 62, 76, 5069, 19849, 7, 44256, 62, 83, 13155, 6359, 28, 17821, 8, 198, 305, 13645, 62, 76, 5069, 19849, 13, 47348, 62, 1462, 7, 8692, 8, 198, 8692, 13, 5143, 3419 ]
2.299191
371
""" This module use SpiralArm superclass, with some modifications, to create 3-kpc arm. """ from shapely.geometry.polygon import Polygon from descartes import PolygonPatch from .spiral_parameters import Three_Kpc from . import spiral_property as spiral_eq from .spiral_arm_superclass import SpiralArm
[ 37811, 198, 1212, 8265, 779, 46727, 26560, 2208, 4871, 11, 351, 617, 19008, 11, 198, 284, 2251, 513, 12, 74, 14751, 3211, 13, 198, 37811, 198, 198, 6738, 5485, 306, 13, 469, 15748, 13, 35428, 14520, 1330, 12280, 14520, 198, 6738, 1715, 433, 274, 1330, 12280, 14520, 33952, 198, 198, 6738, 764, 2777, 21093, 62, 17143, 7307, 1330, 7683, 62, 42, 14751, 198, 6738, 764, 1330, 23642, 62, 26745, 355, 23642, 62, 27363, 198, 6738, 764, 2777, 21093, 62, 1670, 62, 16668, 4871, 1330, 46727, 26560, 628 ]
3.505747
87
'Code for scrapping RBI Data' from datetime import date from lxml import etree import logging from logging.config import fileConfig from scrappers.scrapping_utils import ScrappingUtils fileConfig('scrappers/logging_config.ini') logger = logging.getLogger() OUT_FOLDER = "rbi" if __name__ == '__main__': obj = RBIBudgetScraper() for year in range(2002,2015): year = str(year) url1 = "https://www.rbi.org.in/scripts/AnnualPublications.aspx?head=Handbook%20of%20Statistics%20on%20Indian%20Economy" url2 = "https://rbi.org.in/Scripts/AnnualPublications.aspx?head=State+Finances+%3a+A+Study+of+Budgets" obj.fetch_docs_for_year(url1, year) obj.fetch_docs_for_year(url2, year)
[ 6, 10669, 329, 19320, 2105, 20948, 6060, 6, 198, 198, 6738, 4818, 8079, 1330, 3128, 198, 6738, 300, 19875, 1330, 2123, 631, 198, 11748, 18931, 198, 6738, 18931, 13, 11250, 1330, 2393, 16934, 198, 6738, 19320, 11799, 13, 1416, 430, 2105, 62, 26791, 1330, 1446, 430, 2105, 18274, 4487, 198, 198, 7753, 16934, 10786, 1416, 430, 11799, 14, 6404, 2667, 62, 11250, 13, 5362, 11537, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 3419, 198, 12425, 62, 37, 3535, 14418, 796, 366, 81, 8482, 1, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 26181, 796, 20948, 33, 29427, 3351, 38545, 3419, 198, 220, 220, 220, 329, 614, 287, 2837, 7, 16942, 11, 4626, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 614, 796, 965, 7, 1941, 8, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 16, 796, 366, 5450, 1378, 2503, 13, 81, 8482, 13, 2398, 13, 259, 14, 46521, 14, 18858, 723, 15202, 602, 13, 31740, 30, 2256, 28, 12885, 2070, 4, 1238, 1659, 4, 1238, 48346, 4, 1238, 261, 4, 1238, 30821, 4, 1238, 28489, 88, 1, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 17, 796, 366, 5450, 1378, 81, 8482, 13, 2398, 13, 259, 14, 7391, 82, 14, 18858, 723, 15202, 602, 13, 31740, 30, 2256, 28, 9012, 10, 18467, 1817, 10, 4, 18, 64, 10, 32, 10, 39841, 10, 1659, 10, 33, 463, 11407, 1, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 69, 7569, 62, 31628, 62, 1640, 62, 1941, 7, 6371, 16, 11, 614, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 69, 7569, 62, 31628, 62, 1640, 62, 1941, 7, 6371, 17, 11, 614, 8, 198 ]
2.477663
291
#!/usr/bin/python3 """ post email """ import urllib.request import urllib.parse import sys if __name__ == "__main__": value = {'email': sys.argv[2]} data = urllib.parse.urlencode(value) data = data.encode('utf-8') req = urllib.request.Request(sys.argv[1], data) with urllib.request.urlopen(req) as response: res = response.read().decode(encoding='UTF-8') print(res)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 37811, 1281, 3053, 37227, 198, 11748, 2956, 297, 571, 13, 25927, 198, 11748, 2956, 297, 571, 13, 29572, 198, 11748, 25064, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1988, 796, 1391, 6, 12888, 10354, 25064, 13, 853, 85, 58, 17, 48999, 198, 220, 220, 220, 1366, 796, 2956, 297, 571, 13, 29572, 13, 6371, 268, 8189, 7, 8367, 8, 198, 220, 220, 220, 1366, 796, 1366, 13, 268, 8189, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 43089, 796, 2956, 297, 571, 13, 25927, 13, 18453, 7, 17597, 13, 853, 85, 58, 16, 4357, 1366, 8, 198, 220, 220, 220, 351, 2956, 297, 571, 13, 25927, 13, 6371, 9654, 7, 42180, 8, 355, 2882, 25, 198, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2882, 13, 961, 22446, 12501, 1098, 7, 12685, 7656, 11639, 48504, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 411, 8, 198 ]
2.362573
171
# selection.py # since: 10/2018 # Developed by: Shehu Lab """Module for selecting next generation from current generation. This module provides methods to select next generation from current generation. Available Functions: - truncation: Selects next generation via elitism truncation selection. """ def truncation(parent_population, child_population, parents_scores, children_scores, elitism_rate): """Selects next generation using elitism truncation selection. This function implements truncation selection while ensuring elitism to select a specific number of members for the next generation. Args: parent_population: A list containing members of parent population. child_population: A list containing members of offspring population. parents_scores: A list containing scores of each member of the parent population. The format is: [member 1 score, member 2 score, ....] The order of members has to be consistent with parent_population argument. children_scores: A list containing scores of each member of the offspring population. The format is: [member 1 score, member 2 score, ....] The order of members has to be consistent with child_population argument. elitism_rate: A float indicating the elitism percentage. Returns: A list of members for the next generation of population. """ population_size = len(parent_population) population_indices = list(range(population_size)) sorted_parents_indices = [x for _, x in sorted(zip( parents_scores, population_indices ))] sorted_parents_scores = sorted(parents_scores) # Slice parent population using elitism rate slice_index = int(population_size * elitism_rate) selected_parents_indices = sorted_parents_indices[:slice_index] selected_parents = [parent_population[i] for i in selected_parents_indices] combined_population = selected_parents + child_population combined_scores = sorted_parents_scores[:slice_index] + children_scores combined_population_indices = list(range(len(combined_population))) sorted_population_indices = [x for _, x in sorted(zip( combined_scores, combined_population_indices ))] selected_population_indices = sorted_population_indices[:population_size] # Truncate and return return [combined_population[i] for i in selected_population_indices]
[ 2, 6356, 13, 9078, 198, 2, 1201, 25, 838, 14, 7908, 198, 2, 6013, 276, 416, 25, 1375, 13415, 3498, 198, 198, 37811, 26796, 329, 17246, 1306, 5270, 422, 1459, 5270, 13, 198, 198, 1212, 8265, 3769, 5050, 284, 2922, 1306, 5270, 422, 198, 14421, 5270, 13, 198, 198, 10493, 40480, 25, 198, 12, 40122, 341, 25, 9683, 82, 1306, 5270, 2884, 1288, 18937, 40122, 341, 6356, 13, 198, 37811, 628, 198, 4299, 40122, 341, 7, 8000, 62, 39748, 11, 1200, 62, 39748, 11, 3397, 62, 1416, 2850, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1751, 62, 1416, 2850, 11, 1288, 18937, 62, 4873, 2599, 198, 220, 220, 220, 37227, 17563, 82, 1306, 5270, 1262, 1288, 18937, 40122, 341, 6356, 13, 628, 220, 220, 220, 770, 2163, 23986, 40122, 341, 6356, 981, 13359, 1288, 18937, 198, 220, 220, 220, 284, 2922, 257, 2176, 1271, 286, 1866, 329, 262, 1306, 5270, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 39748, 25, 317, 1351, 7268, 1866, 286, 2560, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3265, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1200, 62, 39748, 25, 317, 1351, 7268, 1866, 286, 20791, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3265, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3397, 62, 1416, 2850, 25, 317, 1351, 7268, 8198, 286, 1123, 2888, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 3265, 13, 383, 5794, 318, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19522, 352, 4776, 11, 2888, 362, 4776, 11, 19424, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1502, 286, 1866, 468, 284, 307, 6414, 351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 39748, 4578, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1751, 62, 1416, 2850, 25, 317, 1351, 7268, 8198, 286, 1123, 2888, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20791, 3265, 13, 383, 5794, 318, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19522, 352, 4776, 11, 2888, 362, 4776, 11, 19424, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1502, 286, 1866, 468, 284, 307, 6414, 351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1200, 62, 39748, 4578, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 18937, 62, 4873, 25, 317, 12178, 12739, 262, 1288, 18937, 5873, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 1866, 329, 262, 1306, 5270, 286, 3265, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3265, 62, 7857, 796, 18896, 7, 8000, 62, 39748, 8, 198, 220, 220, 220, 3265, 62, 521, 1063, 796, 1351, 7, 9521, 7, 39748, 62, 7857, 4008, 628, 220, 220, 220, 23243, 62, 23743, 62, 521, 1063, 796, 685, 87, 329, 4808, 11, 2124, 287, 23243, 7, 13344, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3397, 62, 1416, 2850, 11, 3265, 62, 521, 1063, 198, 220, 220, 220, 15306, 60, 198, 220, 220, 220, 23243, 62, 23743, 62, 1416, 2850, 796, 23243, 7, 23743, 62, 1416, 2850, 8, 628, 220, 220, 220, 1303, 3454, 501, 2560, 3265, 1262, 1288, 18937, 2494, 198, 220, 220, 220, 16416, 62, 9630, 796, 493, 7, 39748, 62, 7857, 1635, 1288, 18937, 62, 4873, 8, 198, 220, 220, 220, 6163, 62, 23743, 62, 521, 1063, 796, 23243, 62, 23743, 62, 521, 1063, 58, 25, 48369, 62, 9630, 60, 198, 220, 220, 220, 6163, 62, 23743, 796, 685, 8000, 62, 39748, 58, 72, 60, 329, 1312, 287, 6163, 62, 23743, 62, 521, 1063, 60, 628, 220, 220, 220, 5929, 62, 39748, 796, 6163, 62, 23743, 1343, 1200, 62, 39748, 198, 220, 220, 220, 5929, 62, 1416, 2850, 796, 23243, 62, 23743, 62, 1416, 2850, 58, 25, 48369, 62, 9630, 60, 1343, 1751, 62, 1416, 2850, 198, 220, 220, 220, 5929, 62, 39748, 62, 521, 1063, 796, 1351, 7, 9521, 7, 11925, 7, 24011, 1389, 62, 39748, 22305, 628, 220, 220, 220, 23243, 62, 39748, 62, 521, 1063, 796, 685, 87, 329, 4808, 11, 2124, 287, 23243, 7, 13344, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5929, 62, 1416, 2850, 11, 5929, 62, 39748, 62, 521, 1063, 198, 220, 220, 220, 15306, 60, 628, 220, 220, 220, 6163, 62, 39748, 62, 521, 1063, 796, 23243, 62, 39748, 62, 521, 1063, 58, 25, 39748, 62, 7857, 60, 628, 220, 220, 220, 1303, 833, 19524, 378, 290, 1441, 198, 220, 220, 220, 1441, 685, 24011, 1389, 62, 39748, 58, 72, 60, 329, 1312, 287, 6163, 62, 39748, 62, 521, 1063, 60, 198 ]
3.034731
835
n = int(input('Digite um número: ')) if n % 2 == 0: print(f'O número {n} é par.') else: print(f'O número {n} é ímpar.')
[ 77, 796, 493, 7, 15414, 10786, 19511, 578, 23781, 299, 21356, 647, 78, 25, 705, 4008, 198, 361, 299, 4064, 362, 6624, 657, 25, 198, 220, 220, 220, 3601, 7, 69, 6, 46, 299, 21356, 647, 78, 1391, 77, 92, 38251, 1582, 2637, 8, 198, 17772, 25, 198, 220, 220, 220, 3601, 7, 69, 6, 46, 299, 21356, 647, 78, 1391, 77, 92, 38251, 6184, 255, 76, 1845, 2637, 8, 628 ]
1.816901
71
import math def find_index(sorted_list, target): """Finds the index where the target value is expected in a sorted list.""" def binary_search(low_index, hi_index): """Searches for a value in a list, throwing away half each call""" # locate the middle index mid_index = math.ceil((low_index + hi_index) / 2) # obtain values from all three indices low_val, mid_val, high_val = ( sorted_list[low_index], sorted_list[mid_index], sorted_list[hi_index], ) # Base case: the target value is found if mid_val == target: return mid_index # target value not found: elif mid_val > target: # if target lies "before" the array if low_index == hi_index: # return the 0 index return mid_index # otherwise search the lower half of the array return binary_search(low_index, mid_index - 1) elif mid_val < target: # if target lies "after" the last value if low_index == hi_index: return mid_index + 1 # otherwise search the larger half of the array return binary_search(mid_index + 1, hi_index) # store the array length ARRAY_LENGTH = len(sorted_list) # execute binary search on the array return binary_search(0, ARRAY_LENGTH - 1) if __name__ == "__main__": print(find_index([1, 3, 5, 6], 5))
[ 11748, 10688, 628, 198, 4299, 1064, 62, 9630, 7, 82, 9741, 62, 4868, 11, 2496, 2599, 198, 220, 220, 220, 37227, 16742, 82, 262, 6376, 810, 262, 2496, 1988, 318, 2938, 287, 257, 23243, 1351, 526, 15931, 628, 220, 220, 220, 825, 13934, 62, 12947, 7, 9319, 62, 9630, 11, 23105, 62, 9630, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 451, 2052, 329, 257, 1988, 287, 257, 1351, 11, 9644, 1497, 2063, 1123, 869, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17276, 262, 3504, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 3095, 62, 9630, 796, 10688, 13, 344, 346, 19510, 9319, 62, 9630, 1343, 23105, 62, 9630, 8, 1220, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7330, 3815, 422, 477, 1115, 36525, 198, 220, 220, 220, 220, 220, 220, 220, 1877, 62, 2100, 11, 3095, 62, 2100, 11, 1029, 62, 2100, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23243, 62, 4868, 58, 9319, 62, 9630, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23243, 62, 4868, 58, 13602, 62, 9630, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23243, 62, 4868, 58, 5303, 62, 9630, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7308, 1339, 25, 262, 2496, 1988, 318, 1043, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3095, 62, 2100, 6624, 2496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 3095, 62, 9630, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2496, 1988, 407, 1043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3095, 62, 2100, 1875, 2496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 2496, 7363, 366, 19052, 1, 262, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1877, 62, 9630, 6624, 23105, 62, 9630, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1441, 262, 657, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 3095, 62, 9630, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4306, 2989, 262, 2793, 2063, 286, 262, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 13934, 62, 12947, 7, 9319, 62, 9630, 11, 3095, 62, 9630, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3095, 62, 2100, 1279, 2496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 2496, 7363, 366, 8499, 1, 262, 938, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1877, 62, 9630, 6624, 23105, 62, 9630, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 3095, 62, 9630, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4306, 2989, 262, 4025, 2063, 286, 262, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 13934, 62, 12947, 7, 13602, 62, 9630, 1343, 352, 11, 23105, 62, 9630, 8, 628, 220, 220, 220, 1303, 3650, 262, 7177, 4129, 198, 220, 220, 220, 5923, 30631, 62, 43, 49494, 796, 18896, 7, 82, 9741, 62, 4868, 8, 198, 220, 220, 220, 1303, 12260, 13934, 2989, 319, 262, 7177, 198, 220, 220, 220, 1441, 13934, 62, 12947, 7, 15, 11, 5923, 30631, 62, 43, 49494, 532, 352, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 7, 19796, 62, 9630, 26933, 16, 11, 513, 11, 642, 11, 718, 4357, 642, 4008, 198 ]
2.280675
652
with open('input.txt') as file: total = 0 for line in file: inputs, outputs = parse_line(line) for code in outputs: if len(code) == 2 or len(code) == 3 or len(code) == 4 or len(code) == 7: total += 1 print(total)
[ 198, 4480, 1280, 10786, 15414, 13, 14116, 11537, 355, 2393, 25, 198, 220, 220, 220, 2472, 796, 657, 198, 220, 220, 220, 329, 1627, 287, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 11, 23862, 796, 21136, 62, 1370, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2438, 287, 23862, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 8189, 8, 6624, 362, 393, 18896, 7, 8189, 8, 6624, 513, 393, 18896, 7, 8189, 8, 6624, 604, 393, 18896, 7, 8189, 8, 6624, 767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 15853, 352, 198, 220, 220, 220, 3601, 7, 23350, 8 ]
2.134921
126
import vcf import argparse from pyfaidx import Fasta from Bio import SeqIO from Bio.SeqRecord import SeqRecord from Bio.Seq import MutableSeq parser = argparse.ArgumentParser(description='Make fasta for each variant to align/augment.') parser.add_argument('-v', help='the input VCF file.', required=True) parser.add_argument('-r', help='the reference FASTA file.', required=True) parser.add_argument('-s', help='the output FASTA file with SV sequence to align/augment', required=True) parser.add_argument('-f', default=50000, type=int, help='the flank size. Default 50000.') args = parser.parse_args() # get chromosome length ref = Fasta(args.r) # read vcf vcfi = open(args.v, 'r') vcf_reader = vcf.Reader(vcfi) fa_outf = open(args.s, 'w') tail_buff = 1000 # tail buffer: no sequence extracted from a buffer at the chunk tails to ensure they stay untouched for record in vcf_reader: chr_len = len(ref[record.CHROM]) # retrieve alt allele with flanks # left flank sequence fl1_e = record.POS - 1 if fl1_e < tail_buff: l1_s = tail_buff / 2 else: fl1_s = fl1_e - args.f fl1_s = max(0, fl1_s) + tail_buff fl1_seq = ref[record.CHROM][fl1_s:fl1_e] fl1_seq = fl1_seq.seq # Get flank 2 sequence fl2_s = record.POS + len(record.REF) - 1 if fl2_s > chr_len - tail_buff: fl2_e = (chr_len + fl2_s)/2 else: fl2_e = fl2_s + args.f fl2_e = min(fl2_e, len(ref[record.CHROM])) - tail_buff fl2_seq = ref[record.CHROM][int(fl2_s):int(fl2_e)] fl2_seq = fl2_seq.seq # Fasta record oseq = fl1_seq + str(record.ALT[0]) + fl2_seq svid = '{}_{}_{}_{}'.format(record.CHROM, int(fl1_s), int(fl2_e), record.ID) orec = SeqRecord(MutableSeq(oseq.upper()), id=svid, description='') SeqIO.write(orec, fa_outf, "fasta") fa_outf.close() vcfi.close()
[ 11748, 410, 12993, 198, 11748, 1822, 29572, 198, 6738, 12972, 69, 1698, 87, 1330, 12549, 64, 198, 6738, 16024, 1330, 1001, 80, 9399, 198, 6738, 16024, 13, 4653, 80, 23739, 1330, 1001, 80, 23739, 198, 6738, 16024, 13, 4653, 80, 1330, 13859, 540, 4653, 80, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 12050, 3049, 64, 329, 1123, 15304, 284, 10548, 14, 559, 5154, 2637, 8, 198, 48610, 13, 2860, 62, 49140, 10786, 12, 85, 3256, 1037, 11639, 1169, 5128, 569, 22495, 2393, 2637, 11, 2672, 28, 17821, 8, 198, 48610, 13, 2860, 62, 49140, 10786, 12, 81, 3256, 1037, 11639, 1169, 4941, 376, 1921, 5603, 2393, 2637, 11, 2672, 28, 17821, 8, 198, 48610, 13, 2860, 62, 49140, 10786, 12, 82, 3256, 1037, 11639, 1169, 5072, 376, 1921, 5603, 2393, 351, 20546, 8379, 284, 10548, 14, 559, 5154, 3256, 2672, 28, 17821, 8, 198, 48610, 13, 2860, 62, 49140, 10786, 12, 69, 3256, 4277, 28, 20, 2388, 11, 2099, 28, 600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 1169, 30172, 2546, 13, 15161, 642, 2388, 2637, 8, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 2, 651, 34348, 4129, 198, 5420, 796, 12549, 64, 7, 22046, 13, 81, 8, 198, 198, 2, 1100, 410, 12993, 198, 28435, 12463, 796, 1280, 7, 22046, 13, 85, 11, 705, 81, 11537, 198, 85, 12993, 62, 46862, 796, 410, 12993, 13, 33634, 7, 28435, 12463, 8, 198, 13331, 62, 448, 69, 796, 1280, 7, 22046, 13, 82, 11, 705, 86, 11537, 198, 13199, 62, 36873, 796, 8576, 1303, 7894, 11876, 25, 645, 8379, 21242, 422, 257, 11876, 379, 262, 16058, 30514, 284, 4155, 484, 2652, 36519, 198, 1640, 1700, 287, 410, 12993, 62, 46862, 25, 198, 220, 220, 220, 442, 81, 62, 11925, 796, 18896, 7, 5420, 58, 22105, 13, 3398, 33676, 12962, 198, 220, 220, 220, 1303, 19818, 5988, 45907, 351, 781, 2283, 198, 220, 220, 220, 1303, 1364, 30172, 8379, 198, 220, 220, 220, 781, 16, 62, 68, 796, 1700, 13, 37997, 532, 352, 198, 220, 220, 220, 611, 781, 16, 62, 68, 1279, 7894, 62, 36873, 25, 198, 220, 220, 220, 220, 220, 220, 220, 300, 16, 62, 82, 796, 7894, 62, 36873, 1220, 362, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 781, 16, 62, 82, 796, 781, 16, 62, 68, 532, 26498, 13, 69, 198, 220, 220, 220, 220, 220, 220, 220, 781, 16, 62, 82, 796, 3509, 7, 15, 11, 781, 16, 62, 82, 8, 220, 1343, 7894, 62, 36873, 198, 220, 220, 220, 781, 16, 62, 41068, 796, 1006, 58, 22105, 13, 3398, 33676, 7131, 2704, 16, 62, 82, 25, 2704, 16, 62, 68, 60, 198, 220, 220, 220, 781, 16, 62, 41068, 796, 781, 16, 62, 41068, 13, 41068, 198, 220, 220, 220, 1303, 3497, 30172, 362, 8379, 198, 220, 220, 220, 781, 17, 62, 82, 796, 1700, 13, 37997, 1343, 18896, 7, 22105, 13, 31688, 8, 532, 352, 198, 220, 220, 220, 611, 781, 17, 62, 82, 1875, 442, 81, 62, 11925, 532, 7894, 62, 36873, 25, 198, 220, 220, 220, 220, 220, 220, 220, 781, 17, 62, 68, 796, 357, 354, 81, 62, 11925, 1343, 781, 17, 62, 82, 20679, 17, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 781, 17, 62, 68, 796, 781, 17, 62, 82, 1343, 26498, 13, 69, 198, 220, 220, 220, 220, 220, 220, 220, 781, 17, 62, 68, 796, 949, 7, 2704, 17, 62, 68, 11, 18896, 7, 5420, 58, 22105, 13, 3398, 33676, 60, 4008, 532, 7894, 62, 36873, 198, 220, 220, 220, 781, 17, 62, 41068, 796, 1006, 58, 22105, 13, 3398, 33676, 7131, 600, 7, 2704, 17, 62, 82, 2599, 600, 7, 2704, 17, 62, 68, 15437, 198, 220, 220, 220, 781, 17, 62, 41068, 796, 781, 17, 62, 41068, 13, 41068, 198, 220, 220, 220, 1303, 12549, 64, 1700, 198, 220, 220, 220, 267, 41068, 796, 781, 16, 62, 41068, 1343, 965, 7, 22105, 13, 31429, 58, 15, 12962, 1343, 781, 17, 62, 41068, 198, 220, 220, 220, 264, 16921, 796, 705, 90, 92, 23330, 92, 23330, 92, 23330, 92, 4458, 18982, 7, 22105, 13, 3398, 33676, 11, 493, 7, 2704, 16, 62, 82, 828, 493, 7, 2704, 17, 62, 68, 828, 1700, 13, 2389, 8, 198, 220, 220, 220, 267, 8344, 796, 1001, 80, 23739, 7, 44, 18187, 4653, 80, 7, 577, 80, 13, 45828, 3419, 828, 4686, 28, 82, 16921, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 28, 7061, 8, 198, 220, 220, 220, 1001, 80, 9399, 13, 13564, 7, 382, 66, 11, 24685, 62, 448, 69, 11, 366, 7217, 64, 4943, 198, 13331, 62, 448, 69, 13, 19836, 3419, 198, 28435, 12463, 13, 19836, 3419, 198 ]
2.27657
828
""" Ethernet RMII Interface Copyright 2018-2019 Adam Greig Released under the MIT license; see LICENSE for details. """ from nmigen import Elaboratable, Module, Signal, Cat from .crc import CRC32 from .mac_address_match import MACAddressMatch class RMIIRx(Elaboratable): """ RMII receive module Receives incoming packets and saves them to a memory. Validates incoming frame check sequence and only asserts `rx_valid` when an entire valid packet has been saved to the port. This module must be run in the RMII ref_clk domain, and the memory port and inputs and outputs must also be in that clock domain. Parameters: * `mac_addr`: 6-byte MAC address (list of ints) Ports: * `write_port`: a write-capable memory port, 8 bits wide by 2048, running in the RMII ref_clk domain Pins: * `crs_dv`: RMII carrier sense/data valid * `rxd0`: RMII receive data 0 * `rxd1`: RMII receive data 1 Outputs: * `rx_valid`: pulsed when a valid packet is in memory * `rx_offset`: n-bit start address of received packet * `rx_len`: 11-bit length of received packet """ class RMIIRxByte(Elaboratable): """ RMII Receive Byte De-muxer Handles receiving a byte dibit-by-dibit. This submodule must be in the RMII ref_clk clock domain, and its outputs are likewise in that domain. Pins: * `crs_dv`: Data valid, input * `rxd0`: RX data 0, input * `rxd1`: RX data 1, input Outputs: * `data`: 8-bit wide output data * `data_valid`: Asserted for one cycle when `data` is valid * `dv`: RMII Data valid recovered signal * `crs`: RMII Carrier sense recovered signal """ class RMIITx(Elaboratable): """ RMII transmit module Transmits outgoing packets from a memory. Adds preamble, start of frame delimiter, and frame check sequence (CRC32) automatically. This module must be run in the RMII ref_clk domain, and the memory port and inputs and outputs must also be in that clock domain. Ports: * `read_port`: a read memory port, 8 bits wide by 2048, running in the RMII ref_clk domain Pins: * `txen`: RMII transmit enable * `txd0`: RMII transmit data 0 * `txd1`: RMII transmit data 1 Inputs: * `tx_start`: Pulse high to begin transmission of a packet * `tx_offset`: n-bit address offset of packet to transmit * `tx_len`: 11-bit length of packet to transmit Outputs: * `tx_ready`: Asserted while ready to transmit a new packet """ class RMIITxByte(Elaboratable): """ RMII Transmit Byte Muxer Handles transmitting a byte dibit-by-dibit. This submodule must be in the RMII ref_clk clock domain, and its inputs and outputs are likewise in that domain. Pins: * `txen`: RMII Transmit enable * `txd0`: TMII Transmit data 0 * `txd1`: TMII Transmit data 1 Inputs: * `data`: 8-bit wide data to transmit. Latched internally so you may update it to the next word after asserting `data_valid`. * `data_valid`: Assert while valid data is present at `data`. Outputs: * `ready`: Asserted when ready to receive new data. This is asserted while the final dibit is being transmitted so that new data can be produced on the next clock cycle. """
[ 37811, 198, 36, 490, 3262, 29820, 3978, 26491, 198, 198, 15269, 2864, 12, 23344, 7244, 11955, 328, 198, 45037, 739, 262, 17168, 5964, 26, 766, 38559, 24290, 329, 3307, 13, 198, 37811, 198, 198, 6738, 28642, 9324, 1330, 2574, 4820, 21156, 11, 19937, 11, 26484, 11, 5181, 198, 6738, 764, 66, 6015, 1330, 45623, 2624, 198, 6738, 764, 20285, 62, 21975, 62, 15699, 1330, 20582, 20231, 23850, 628, 198, 4871, 29820, 3978, 49, 87, 7, 9527, 4820, 21156, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29820, 3978, 3328, 8265, 628, 220, 220, 220, 19520, 1083, 15619, 24624, 290, 16031, 606, 284, 257, 4088, 13, 3254, 37051, 15619, 198, 220, 220, 220, 5739, 2198, 8379, 290, 691, 29348, 4600, 40914, 62, 12102, 63, 618, 281, 2104, 4938, 198, 220, 220, 220, 19638, 468, 587, 7448, 284, 262, 2493, 13, 628, 220, 220, 220, 770, 8265, 1276, 307, 1057, 287, 262, 29820, 3978, 1006, 62, 565, 74, 7386, 11, 290, 262, 4088, 2493, 198, 220, 220, 220, 290, 17311, 290, 23862, 1276, 635, 307, 287, 326, 8801, 7386, 13, 628, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 20285, 62, 29851, 63, 25, 718, 12, 26327, 20582, 2209, 357, 4868, 286, 493, 82, 8, 628, 220, 220, 220, 30824, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 13564, 62, 634, 63, 25, 257, 3551, 12, 11128, 540, 4088, 2493, 11, 807, 10340, 3094, 416, 36117, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2491, 287, 262, 29820, 3978, 1006, 62, 565, 74, 7386, 628, 220, 220, 220, 350, 1040, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 66, 3808, 62, 67, 85, 63, 25, 29820, 3978, 11920, 2565, 14, 7890, 4938, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 81, 24954, 15, 63, 25, 29820, 3978, 3328, 1366, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 81, 24954, 16, 63, 25, 29820, 3978, 3328, 1366, 352, 628, 220, 220, 220, 25235, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 40914, 62, 12102, 63, 25, 22271, 276, 618, 257, 4938, 19638, 318, 287, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 40914, 62, 28968, 63, 25, 299, 12, 2545, 923, 2209, 286, 2722, 19638, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 40914, 62, 11925, 63, 25, 1367, 12, 2545, 4129, 286, 2722, 19638, 198, 220, 220, 220, 37227, 628, 198, 4871, 29820, 3978, 49, 87, 40778, 7, 9527, 4820, 21156, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29820, 3978, 797, 15164, 30589, 1024, 12, 76, 2821, 263, 628, 220, 220, 220, 7157, 829, 6464, 257, 18022, 288, 571, 270, 12, 1525, 12, 67, 571, 270, 13, 628, 220, 220, 220, 770, 850, 21412, 1276, 307, 287, 262, 29820, 3978, 1006, 62, 565, 74, 8801, 7386, 11, 198, 220, 220, 220, 290, 663, 23862, 389, 20467, 287, 326, 7386, 13, 628, 220, 220, 220, 350, 1040, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 66, 3808, 62, 67, 85, 63, 25, 6060, 4938, 11, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 81, 24954, 15, 63, 25, 24202, 1366, 657, 11, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 81, 24954, 16, 63, 25, 24202, 1366, 352, 11, 5128, 628, 220, 220, 220, 25235, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 7890, 63, 25, 807, 12, 2545, 3094, 5072, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 7890, 62, 12102, 63, 25, 2195, 861, 276, 329, 530, 6772, 618, 4600, 7890, 63, 318, 4938, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 67, 85, 63, 25, 29820, 3978, 6060, 4938, 11911, 6737, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 66, 3808, 63, 25, 29820, 3978, 30252, 2565, 11911, 6737, 198, 220, 220, 220, 37227, 628, 198, 4871, 371, 8895, 2043, 87, 7, 9527, 4820, 21156, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29820, 3978, 21937, 8265, 628, 220, 220, 220, 3602, 24883, 28181, 24624, 422, 257, 4088, 13, 34333, 662, 321, 903, 11, 923, 286, 5739, 198, 220, 220, 220, 46728, 2676, 11, 290, 5739, 2198, 8379, 357, 34, 7397, 2624, 8, 6338, 13, 628, 220, 220, 220, 770, 8265, 1276, 307, 1057, 287, 262, 29820, 3978, 1006, 62, 565, 74, 7386, 11, 290, 262, 4088, 2493, 198, 220, 220, 220, 290, 17311, 290, 23862, 1276, 635, 307, 287, 326, 8801, 7386, 13, 628, 220, 220, 220, 30824, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 961, 62, 634, 63, 25, 257, 1100, 4088, 2493, 11, 807, 10340, 3094, 416, 36117, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2491, 287, 262, 29820, 3978, 1006, 62, 565, 74, 7386, 628, 220, 220, 220, 350, 1040, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 17602, 268, 63, 25, 29820, 3978, 21937, 7139, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 17602, 67, 15, 63, 25, 29820, 3978, 21937, 1366, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 17602, 67, 16, 63, 25, 29820, 3978, 21937, 1366, 352, 628, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 17602, 62, 9688, 63, 25, 25062, 1029, 284, 2221, 11478, 286, 257, 19638, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 17602, 62, 28968, 63, 25, 299, 12, 2545, 2209, 11677, 286, 19638, 284, 21937, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 17602, 62, 11925, 63, 25, 1367, 12, 2545, 4129, 286, 19638, 284, 21937, 628, 220, 220, 220, 25235, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 17602, 62, 1493, 63, 25, 2195, 861, 276, 981, 3492, 284, 21937, 257, 649, 19638, 198, 220, 220, 220, 37227, 628, 198, 4871, 371, 8895, 2043, 87, 40778, 7, 9527, 4820, 21156, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29820, 3978, 3602, 2781, 30589, 337, 2821, 263, 628, 220, 220, 220, 7157, 829, 39573, 257, 18022, 288, 571, 270, 12, 1525, 12, 67, 571, 270, 13, 628, 220, 220, 220, 770, 850, 21412, 1276, 307, 287, 262, 29820, 3978, 1006, 62, 565, 74, 8801, 7386, 11, 198, 220, 220, 220, 290, 663, 17311, 290, 23862, 389, 20467, 287, 326, 7386, 13, 628, 220, 220, 220, 350, 1040, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 17602, 268, 63, 25, 29820, 3978, 3602, 2781, 7139, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 17602, 67, 15, 63, 25, 21232, 3978, 3602, 2781, 1366, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 17602, 67, 16, 63, 25, 21232, 3978, 3602, 2781, 1366, 352, 628, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 7890, 63, 25, 807, 12, 2545, 3094, 1366, 284, 21937, 13, 5476, 1740, 20947, 523, 345, 743, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 340, 284, 262, 1306, 1573, 706, 33183, 4600, 7890, 62, 12102, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 7890, 62, 12102, 63, 25, 2195, 861, 981, 4938, 1366, 318, 1944, 379, 4600, 7890, 44646, 628, 220, 220, 220, 25235, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4600, 1493, 63, 25, 2195, 861, 276, 618, 3492, 284, 3328, 649, 1366, 13, 770, 318, 21635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 262, 2457, 288, 571, 270, 318, 852, 18307, 523, 326, 649, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 307, 4635, 319, 262, 1306, 8801, 6772, 13, 198, 220, 220, 220, 37227, 628, 628, 198 ]
2.585059
1,352
import discord from discord.ext import commands import random import sys sys.path.insert(1, '../functions') from functions.cmd_print import cmd_print
[ 11748, 36446, 198, 6738, 36446, 13, 2302, 1330, 9729, 198, 11748, 4738, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 28463, 7, 16, 11, 705, 40720, 12543, 2733, 11537, 198, 6738, 5499, 13, 28758, 62, 4798, 1330, 23991, 62, 4798, 628, 198 ]
3.619048
42
sentences = [['a', 'b', 'c'], ['a', 'd','e']] default_val = '' entity_embeddings_dict = {} entity_embeddings_dict = {sentence[0]: doThis(sentence) + entity_embeddings_dict.get(sentence[0], default_val) \ for sentence in sentences } print(entity_embeddings_dict)
[ 34086, 3007, 796, 16410, 6, 64, 3256, 705, 65, 3256, 705, 66, 6, 4357, 37250, 64, 3256, 705, 67, 41707, 68, 6, 11907, 198, 198, 12286, 62, 2100, 796, 10148, 198, 26858, 62, 20521, 67, 654, 62, 11600, 796, 23884, 198, 26858, 62, 20521, 67, 654, 62, 11600, 796, 1391, 34086, 594, 58, 15, 5974, 466, 1212, 7, 34086, 594, 8, 1343, 9312, 62, 20521, 67, 654, 62, 11600, 13, 1136, 7, 34086, 594, 58, 15, 4357, 4277, 62, 2100, 8, 3467, 198, 1640, 6827, 287, 13439, 1782, 198, 4798, 7, 26858, 62, 20521, 67, 654, 62, 11600, 8 ]
2.646465
99
import dill as pickle import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import grav_util_3 as gu import bead_util as bu import configuration as config import warnings warnings.filterwarnings("ignore") theory_data_dir = '/data/grav_sim_data/2um_spacing_data/' data_dirs = [#'/data/20180625/bead1/grav_data/shield/X50-75um_Z15-25um_17Hz', \ #'/data/20180625/bead1/grav_data/shield/X50-75um_Z15-25um_17Hz_elec-term', \ #\ #'/data/20180704/bead1/grav_data/shield', \ #'/data/20180704/bead1/grav_data/shield_1s_1h', \ #'/data/20180704/bead1/grav_data/shield2', \ #'/data/20180704/bead1/grav_data/shield3', \ #'/data/20180704/bead1/grav_data/shield4', \ '/data/20180704/no_bead/grav_data/shield', \ #\ #'/data/20180808/bead4/grav_data/shield1' ] fit_type = 'Gaussian' #fit_type = 'Planar' p0_bead_dict = {'20180625': [19.0,40.0,20.0], \ '20180704': [18.7,40.0,20.0], \ '20180808': [18,40.0,23.0] \ } load_agg = True harms = [1,2,3,4,5,6] #opt_ext = 'TEST' opt_ext = '_6harm-full' if fit_type == 'Gaussian': data_ind = 2 err_ind = 4 if fit_type == 'Planar': data_ind = 0 err_ind = 1 for ddir in data_dirs: print() parts = ddir.split('/') date = parts[2] p0_bead = p0_bead_dict[date] nobead = ('no_bead' in parts) or ('nobead' in parts) or ('no-bead' in parts) if nobead: opt_ext += '_NO-BEAD' agg_path = '/processed_data/aggdat/' + date + '_' + parts[-1] + opt_ext + '.agg' alpha_arr_path = '/processed_data/alpha_arrs/' + date + '_' + parts[-1] + opt_ext + '.arr' lambda_path = alpha_arr_path[:-4] + '_lambdas.arr' if load_agg: print(agg_path) agg_dat = gu.AggregateData([], p0_bead=p0_bead, harms=harms) agg_dat.load(agg_path) agg_dat.reload_grav_funcs() #agg_dat.fit_alpha_xyz_vs_alldim(weight_planar=False, plot=False, plot_hists=True) alpha_arr = agg_dat.alpha_xyz_best_fit lambdas = agg_dat.lambdas np.save(open(alpha_arr_path, 'wb'), alpha_arr) np.save(open(lambda_path, 'wb'), agg_dat.lambdas) else: alpha_arr = np.load(open(alpha_arr_path, 'rb')) lambdas = np.load(open(lambda_path, 'rb')) Ncomp = alpha_arr.shape[-2] comp_colors = bu.get_color_map(Ncomp, cmap='viridis') alpha_w = np.sum(alpha_arr[:,0:2,:,data_ind]*alpha_arr[:,0:2,:,err_ind]**(-2), axis=1) / \ np.sum(alpha_arr[:,0:2,:,err_ind]**(-2), axis=1) #alpha_w = np.sum(alpha_arr[:,0:2,:,2], axis=1) * 0.5 errs_x = np.zeros_like(alpha_arr[:,0,0,0]) N = 0 for ind in range(Ncomp - 1): errs_x += alpha_w[:,ind+1]**2 N += 1 errs_x = np.sqrt(errs_x / N) sigma_alpha_w = 1.0 / np.sqrt( np.sum(alpha_arr[:,:2,:,3]**(-2), axis=1) ) N_w = np.sum(alpha_arr[:,:2,:,7], axis=1) plt.figure(1) if nobead: plt.title(date + '_' + 'no-bead' + ': Result of %s Fitting' % fit_type, fontsize=16) else: plt.title(date + '_' + parts[-1] + ': Result of %s Fitting' % fit_type, fontsize=16) plt.loglog(lambdas, np.abs(alpha_w[:,0]), lw=4, \ label='Template basis vector') plt.loglog(lambdas, errs_x, '--', lw=2, \ label='Quadrature sum of other vectors') plt.loglog(gu.limitdata[:,0], gu.limitdata[:,1], '--', label=gu.limitlab, \ linewidth=3, color='r') plt.loglog(gu.limitdata2[:,0], gu.limitdata2[:,1], '--', label=gu.limitlab2, \ linewidth=3, color='k') plt.xlabel('Length Scale: $\lambda$ [m]') plt.ylabel('Strength: |$\\alpha$| [arb]') plt.xlim(1e-7, 1e-3) plt.ylim(1e4, 1e14) plt.legend() plt.grid() plt.show() for ind in range(Ncomp): fig2 = plt.figure(2) plt.title("%s fit for Basis Vector: %i" % (fit_type, ind)) plt.loglog(lambdas, np.abs(alpha_arr[:,0,ind,data_ind]), \ color=comp_colors[ind], ls='--', label='$\\alpha_x$') plt.loglog(lambdas, np.abs(alpha_arr[:,0,ind,err_ind]), \ color=comp_colors[ind], ls='--', label='$\sigma_{\\alpha_x}$', \ alpha=0.5) plt.loglog(lambdas, np.abs(alpha_w[:,ind]), \ color=comp_colors[ind], ls='-', lw=3, label='Weighted mean') plt.loglog(lambdas, np.abs(alpha_arr[:,1,ind,data_ind]), \ color=comp_colors[ind], ls='-.', label='$\\alpha_y$') plt.loglog(lambdas, np.abs(alpha_arr[:,1,ind,err_ind]), \ color=comp_colors[ind], ls='-.', label='$\sigma_{\\alpha_y}$', \ alpha=0.5) plt.xlabel('Length Scale: $\lambda$ [m]') plt.ylabel('Strength: |$\\alpha$| [arb]') plt.xlim(1e-6, 1e-3) plt.ylim(1e6, 1e15) plt.legend() plt.grid() fig_title = '/home/charles/plots/' + date + '/' + parts[-1] + '/' \ + date + '_' + parts[-1] + '_%s-fit_comp%i.png' % (fit_type, ind) fig2.savefig(fig_title) plt.close(fig2) #plt.show() #for fig_num in [1,2,3]: # plt.figure(fig_num) # plt.xlabel('Length Scale: $\lambda$ [m]') # plt.ylabel('Strength: |$\\alpha$| [arb]') # plt.legend() # plt.grid() #plt.show()
[ 11748, 288, 359, 355, 2298, 293, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 285, 489, 62, 25981, 74, 896, 13, 76, 29487, 18, 67, 1330, 12176, 274, 18, 35, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 11748, 9067, 62, 22602, 62, 18, 355, 915, 198, 11748, 49773, 62, 22602, 355, 809, 198, 11748, 8398, 355, 4566, 198, 198, 11748, 14601, 198, 40539, 654, 13, 24455, 40539, 654, 7203, 46430, 4943, 628, 628, 198, 1169, 652, 62, 7890, 62, 15908, 796, 31051, 7890, 14, 70, 4108, 62, 14323, 62, 7890, 14, 17, 388, 62, 2777, 4092, 62, 7890, 14, 6, 198, 198, 7890, 62, 15908, 82, 796, 685, 2, 26488, 7890, 14, 1264, 1795, 26704, 14, 65, 1329, 16, 14, 70, 4108, 62, 7890, 14, 26662, 14, 55, 1120, 12, 2425, 388, 62, 57, 1314, 12, 1495, 388, 62, 1558, 7399, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26488, 7890, 14, 1264, 1795, 26704, 14, 65, 1329, 16, 14, 70, 4108, 62, 7890, 14, 26662, 14, 55, 1120, 12, 2425, 388, 62, 57, 1314, 12, 1495, 388, 62, 1558, 7399, 62, 11129, 66, 12, 4354, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26488, 7890, 14, 1264, 1795, 32869, 14, 65, 1329, 16, 14, 70, 4108, 62, 7890, 14, 26662, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26488, 7890, 14, 1264, 1795, 32869, 14, 65, 1329, 16, 14, 70, 4108, 62, 7890, 14, 26662, 62, 16, 82, 62, 16, 71, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26488, 7890, 14, 1264, 1795, 32869, 14, 65, 1329, 16, 14, 70, 4108, 62, 7890, 14, 26662, 17, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26488, 7890, 14, 1264, 1795, 32869, 14, 65, 1329, 16, 14, 70, 4108, 62, 7890, 14, 26662, 18, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26488, 7890, 14, 1264, 1795, 32869, 14, 65, 1329, 16, 14, 70, 4108, 62, 7890, 14, 26662, 19, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 7890, 14, 1264, 1795, 32869, 14, 3919, 62, 65, 1329, 14, 70, 4108, 62, 7890, 14, 26662, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26488, 7890, 14, 1264, 1795, 28362, 14, 65, 1329, 19, 14, 70, 4108, 62, 7890, 14, 26662, 16, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 198, 11147, 62, 4906, 796, 705, 35389, 31562, 6, 198, 2, 11147, 62, 4906, 796, 705, 20854, 283, 6, 198, 198, 79, 15, 62, 65, 1329, 62, 11600, 796, 1391, 6, 1264, 1795, 26704, 10354, 685, 1129, 13, 15, 11, 1821, 13, 15, 11, 1238, 13, 15, 4357, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1264, 1795, 32869, 10354, 685, 1507, 13, 22, 11, 1821, 13, 15, 11, 1238, 13, 15, 4357, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1264, 1795, 28362, 10354, 685, 1507, 11, 1821, 13, 15, 11, 1954, 13, 15, 60, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 198, 2220, 62, 9460, 796, 6407, 198, 198, 71, 8357, 796, 685, 16, 11, 17, 11, 18, 11, 19, 11, 20, 11, 21, 60, 198, 198, 2, 8738, 62, 2302, 796, 705, 51, 6465, 6, 198, 8738, 62, 2302, 796, 705, 62, 21, 29155, 12, 12853, 6, 628, 198, 198, 361, 4197, 62, 4906, 6624, 705, 35389, 31562, 10354, 198, 220, 220, 220, 1366, 62, 521, 796, 362, 198, 220, 220, 220, 11454, 62, 521, 796, 604, 198, 361, 4197, 62, 4906, 6624, 705, 20854, 283, 10354, 198, 220, 220, 220, 1366, 62, 521, 796, 657, 198, 220, 220, 220, 11454, 62, 521, 796, 352, 628, 198, 1640, 288, 15908, 287, 1366, 62, 15908, 82, 25, 198, 220, 220, 220, 3601, 3419, 628, 220, 220, 220, 3354, 796, 288, 15908, 13, 35312, 10786, 14, 11537, 198, 220, 220, 220, 3128, 796, 3354, 58, 17, 60, 198, 220, 220, 220, 279, 15, 62, 65, 1329, 796, 279, 15, 62, 65, 1329, 62, 11600, 58, 4475, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 31801, 1329, 796, 19203, 3919, 62, 65, 1329, 6, 287, 3354, 8, 393, 19203, 34952, 1329, 6, 287, 3354, 8, 393, 19203, 3919, 12, 65, 1329, 6, 287, 3354, 8, 198, 220, 220, 220, 611, 31801, 1329, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2172, 62, 2302, 15853, 705, 62, 15285, 12, 12473, 2885, 6, 628, 220, 220, 220, 4194, 62, 6978, 796, 31051, 14681, 276, 62, 7890, 14, 9460, 19608, 14, 6, 1343, 3128, 1343, 705, 62, 6, 1343, 3354, 58, 12, 16, 60, 1343, 2172, 62, 2302, 1343, 45302, 9460, 6, 198, 220, 220, 220, 17130, 62, 3258, 62, 6978, 796, 31051, 14681, 276, 62, 7890, 14, 26591, 62, 3258, 82, 14, 6, 1343, 3128, 1343, 705, 62, 6, 1343, 3354, 58, 12, 16, 60, 1343, 2172, 62, 2302, 1343, 45302, 3258, 6, 198, 220, 220, 220, 37456, 62, 6978, 796, 17130, 62, 3258, 62, 6978, 58, 21912, 19, 60, 1343, 705, 62, 2543, 17457, 292, 13, 3258, 6, 628, 220, 220, 220, 611, 3440, 62, 9460, 25, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9460, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4194, 62, 19608, 796, 915, 13, 46384, 49373, 6601, 26933, 4357, 279, 15, 62, 65, 1329, 28, 79, 15, 62, 65, 1329, 11, 34859, 28, 71, 8357, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4194, 62, 19608, 13, 2220, 7, 9460, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4194, 62, 19608, 13, 260, 2220, 62, 70, 4108, 62, 12543, 6359, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9460, 62, 19608, 13, 11147, 62, 26591, 62, 5431, 89, 62, 14259, 62, 282, 335, 320, 7, 6551, 62, 11578, 283, 28, 25101, 11, 7110, 28, 25101, 11, 7110, 62, 71, 1023, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 62, 3258, 796, 4194, 62, 19608, 13, 26591, 62, 5431, 89, 62, 13466, 62, 11147, 198, 220, 220, 220, 220, 220, 220, 220, 19343, 67, 292, 796, 4194, 62, 19608, 13, 2543, 17457, 292, 628, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21928, 7, 9654, 7, 26591, 62, 3258, 62, 6978, 11, 705, 39346, 33809, 17130, 62, 3258, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21928, 7, 9654, 7, 50033, 62, 6978, 11, 705, 39346, 33809, 4194, 62, 19608, 13, 2543, 17457, 292, 8, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 62, 3258, 796, 45941, 13, 2220, 7, 9654, 7, 26591, 62, 3258, 62, 6978, 11, 705, 26145, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 19343, 67, 292, 796, 45941, 13, 2220, 7, 9654, 7, 50033, 62, 6978, 11, 705, 26145, 6, 4008, 628, 198, 220, 220, 220, 399, 5589, 796, 17130, 62, 3258, 13, 43358, 58, 12, 17, 60, 198, 220, 220, 220, 552, 62, 4033, 669, 796, 809, 13, 1136, 62, 8043, 62, 8899, 7, 45, 5589, 11, 269, 8899, 11639, 37040, 29207, 11537, 628, 220, 220, 220, 17130, 62, 86, 796, 45941, 13, 16345, 7, 26591, 62, 3258, 58, 45299, 15, 25, 17, 11, 45299, 7890, 62, 521, 60, 9, 26591, 62, 3258, 58, 45299, 15, 25, 17, 11, 45299, 8056, 62, 521, 60, 1174, 32590, 17, 828, 16488, 28, 16, 8, 1220, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 26591, 62, 3258, 58, 45299, 15, 25, 17, 11, 45299, 8056, 62, 521, 60, 1174, 32590, 17, 828, 16488, 28, 16, 8, 628, 220, 220, 220, 1303, 26591, 62, 86, 796, 45941, 13, 16345, 7, 26591, 62, 3258, 58, 45299, 15, 25, 17, 11, 45299, 17, 4357, 16488, 28, 16, 8, 1635, 657, 13, 20, 628, 220, 220, 220, 1931, 3808, 62, 87, 796, 45941, 13, 9107, 418, 62, 2339, 7, 26591, 62, 3258, 58, 45299, 15, 11, 15, 11, 15, 12962, 198, 220, 220, 220, 399, 796, 657, 198, 220, 220, 220, 329, 773, 287, 2837, 7, 45, 5589, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1931, 3808, 62, 87, 15853, 17130, 62, 86, 58, 45299, 521, 10, 16, 60, 1174, 17, 198, 220, 220, 220, 220, 220, 220, 220, 399, 15853, 352, 198, 220, 220, 220, 1931, 3808, 62, 87, 796, 45941, 13, 31166, 17034, 7, 263, 3808, 62, 87, 1220, 399, 8, 628, 220, 220, 220, 264, 13495, 62, 26591, 62, 86, 796, 352, 13, 15, 1220, 45941, 13, 31166, 17034, 7, 45941, 13, 16345, 7, 26591, 62, 3258, 58, 45299, 25, 17, 11, 45299, 18, 60, 1174, 32590, 17, 828, 16488, 28, 16, 8, 1267, 198, 220, 220, 220, 399, 62, 86, 796, 45941, 13, 16345, 7, 26591, 62, 3258, 58, 45299, 25, 17, 11, 45299, 22, 4357, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 458, 83, 13, 26875, 7, 16, 8, 198, 220, 220, 220, 611, 31801, 1329, 25, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7839, 7, 4475, 1343, 705, 62, 6, 1343, 705, 3919, 12, 65, 1329, 6, 1343, 705, 25, 25414, 286, 4064, 82, 376, 2535, 6, 4064, 4197, 62, 4906, 11, 10369, 7857, 28, 1433, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7839, 7, 4475, 1343, 705, 62, 6, 1343, 3354, 58, 12, 16, 60, 1343, 705, 25, 25414, 286, 4064, 82, 376, 2535, 6, 4064, 4197, 62, 4906, 11, 10369, 7857, 28, 1433, 8, 628, 220, 220, 220, 458, 83, 13, 6404, 6404, 7, 2543, 17457, 292, 11, 45941, 13, 8937, 7, 26591, 62, 86, 58, 45299, 15, 46570, 300, 86, 28, 19, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 11639, 30800, 4308, 15879, 11537, 628, 220, 220, 220, 458, 83, 13, 6404, 6404, 7, 2543, 17457, 292, 11, 1931, 3808, 62, 87, 11, 705, 438, 3256, 300, 86, 28, 17, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 11639, 4507, 41909, 1300, 2160, 286, 584, 30104, 11537, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 458, 83, 13, 6404, 6404, 7, 5162, 13, 32374, 7890, 58, 45299, 15, 4357, 915, 13, 32374, 7890, 58, 45299, 16, 4357, 705, 438, 3256, 6167, 28, 5162, 13, 32374, 23912, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 28, 18, 11, 3124, 11639, 81, 11537, 198, 220, 220, 220, 458, 83, 13, 6404, 6404, 7, 5162, 13, 32374, 7890, 17, 58, 45299, 15, 4357, 915, 13, 32374, 7890, 17, 58, 45299, 16, 4357, 705, 438, 3256, 6167, 28, 5162, 13, 32374, 23912, 17, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 28, 18, 11, 3124, 11639, 74, 11537, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 24539, 21589, 25, 39280, 50033, 3, 685, 76, 60, 11537, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 10786, 45027, 25, 930, 3, 6852, 26591, 3, 91, 685, 38039, 60, 11537, 198, 220, 220, 220, 458, 83, 13, 87, 2475, 7, 16, 68, 12, 22, 11, 352, 68, 12, 18, 8, 198, 220, 220, 220, 458, 83, 13, 88, 2475, 7, 16, 68, 19, 11, 352, 68, 1415, 8, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 198, 220, 220, 220, 458, 83, 13, 25928, 3419, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 773, 287, 2837, 7, 45, 5589, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 17, 796, 458, 83, 13, 26875, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7839, 7203, 4, 82, 4197, 329, 6455, 271, 20650, 25, 4064, 72, 1, 4064, 357, 11147, 62, 4906, 11, 773, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 6404, 6404, 7, 2543, 17457, 292, 11, 45941, 13, 8937, 7, 26591, 62, 3258, 58, 45299, 15, 11, 521, 11, 7890, 62, 521, 46570, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 5589, 62, 4033, 669, 58, 521, 4357, 43979, 11639, 438, 3256, 6167, 11639, 3, 6852, 26591, 62, 87, 3, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 6404, 6404, 7, 2543, 17457, 292, 11, 45941, 13, 8937, 7, 26591, 62, 3258, 58, 45299, 15, 11, 521, 11, 8056, 62, 521, 46570, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 5589, 62, 4033, 669, 58, 521, 4357, 43979, 11639, 438, 3256, 6167, 11639, 3, 59, 82, 13495, 23330, 6852, 26591, 62, 87, 92, 3, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 6404, 6404, 7, 2543, 17457, 292, 11, 45941, 13, 8937, 7, 26591, 62, 86, 58, 45299, 521, 46570, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 5589, 62, 4033, 669, 58, 521, 4357, 43979, 11639, 12, 3256, 300, 86, 28, 18, 11, 6167, 11639, 25844, 276, 1612, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 6404, 6404, 7, 2543, 17457, 292, 11, 45941, 13, 8937, 7, 26591, 62, 3258, 58, 45299, 16, 11, 521, 11, 7890, 62, 521, 46570, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 5589, 62, 4033, 669, 58, 521, 4357, 43979, 11639, 12, 2637, 11, 6167, 11639, 3, 6852, 26591, 62, 88, 3, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 6404, 6404, 7, 2543, 17457, 292, 11, 45941, 13, 8937, 7, 26591, 62, 3258, 58, 45299, 16, 11, 521, 11, 8056, 62, 521, 46570, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 5589, 62, 4033, 669, 58, 521, 4357, 43979, 11639, 12, 2637, 11, 6167, 11639, 3, 59, 82, 13495, 23330, 6852, 26591, 62, 88, 92, 3, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 24539, 21589, 25, 39280, 50033, 3, 685, 76, 60, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 2645, 9608, 10786, 45027, 25, 930, 3, 6852, 26591, 3, 91, 685, 38039, 60, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 87, 2475, 7, 16, 68, 12, 21, 11, 352, 68, 12, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 88, 2475, 7, 16, 68, 21, 11, 352, 68, 1314, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 25928, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2336, 62, 7839, 796, 31051, 11195, 14, 10641, 829, 14, 489, 1747, 14, 6, 1343, 3128, 1343, 31051, 6, 1343, 3354, 58, 12, 16, 60, 1343, 31051, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 3128, 1343, 705, 62, 6, 1343, 3354, 58, 12, 16, 60, 1343, 705, 62, 4, 82, 12, 11147, 62, 5589, 4, 72, 13, 11134, 6, 4064, 357, 11147, 62, 4906, 11, 773, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2336, 17, 13, 21928, 5647, 7, 5647, 62, 7839, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 19836, 7, 5647, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 489, 83, 13, 12860, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 1640, 2336, 62, 22510, 287, 685, 16, 11, 17, 11, 18, 5974, 198, 220, 220, 220, 1303, 220, 220, 220, 458, 83, 13, 26875, 7, 5647, 62, 22510, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 24539, 21589, 25, 39280, 50033, 3, 685, 76, 60, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 458, 83, 13, 2645, 9608, 10786, 45027, 25, 930, 3, 6852, 26591, 3, 91, 685, 38039, 60, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 458, 83, 13, 25928, 3419, 198, 220, 220, 220, 1303, 489, 83, 13, 12860, 3419, 198 ]
1.836181
2,985
from ursina import * # Test Cube # Test button # update is run every frame # basic window app = Ursina() # basic cube cube = Entity(model='quad', color=color.orange, scale = (2,5), position = (5,1)) # quad with texture #sans_image = load_texture('Sans.png') #sans = Entity(model = 'quad', texture = sans_image) #sans = Entity(model = 'quad', texture = 'Sans.png') # creating a block properly test = Test_cube() # creating a button btn = Test_button() punch_sound = Audio('assets/punch', loop=False, autoplay=False) app.run()
[ 6738, 220, 1834, 1437, 1330, 1635, 198, 198, 2, 6208, 23315, 198, 198, 2, 6208, 4936, 628, 198, 2, 4296, 318, 1057, 790, 5739, 198, 198, 2, 4096, 4324, 198, 1324, 796, 37935, 1437, 3419, 198, 198, 2, 4096, 23441, 220, 198, 40296, 796, 20885, 7, 19849, 11639, 47003, 3256, 3124, 28, 8043, 13, 43745, 11, 5046, 796, 357, 17, 11, 20, 828, 2292, 796, 357, 20, 11, 16, 4008, 198, 198, 2, 15094, 351, 11743, 198, 2, 82, 504, 62, 9060, 796, 3440, 62, 41293, 10786, 50, 504, 13, 11134, 11537, 198, 2, 82, 504, 796, 20885, 7, 19849, 796, 705, 47003, 3256, 11743, 796, 38078, 62, 9060, 8, 198, 2, 82, 504, 796, 20885, 7, 19849, 796, 705, 47003, 3256, 11743, 796, 705, 50, 504, 13, 11134, 11537, 198, 198, 2, 4441, 257, 2512, 6105, 198, 9288, 796, 6208, 62, 40296, 3419, 198, 198, 2, 4441, 257, 4936, 198, 46118, 796, 6208, 62, 16539, 3419, 198, 79, 3316, 62, 23661, 796, 13491, 10786, 19668, 14, 79, 3316, 3256, 9052, 28, 25101, 11, 22320, 10724, 28, 25101, 8, 198, 198, 1324, 13, 5143, 3419, 198 ]
2.88172
186
import numpy as np from copy import copy, deepcopy from utils.rvs.utils import COMPARATOR_NEGATIONS def parse_value(value): ''' Attempts to interpret <value> as a number. ''' if isinstance(value, str): try: value = int(value) except ValueError: value = float(value) return value
[ 11748, 299, 32152, 355, 45941, 198, 6738, 4866, 1330, 4866, 11, 2769, 30073, 198, 6738, 3384, 4487, 13, 81, 14259, 13, 26791, 1330, 24301, 1503, 25633, 62, 45, 7156, 18421, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 198, 4299, 21136, 62, 8367, 7, 8367, 2599, 198, 197, 7061, 6, 25770, 82, 284, 6179, 1279, 8367, 29, 355, 257, 1271, 13, 705, 7061, 198, 197, 361, 318, 39098, 7, 8367, 11, 965, 2599, 198, 197, 197, 28311, 25, 198, 197, 197, 197, 8367, 796, 493, 7, 8367, 8, 198, 197, 197, 16341, 11052, 12331, 25, 198, 197, 197, 197, 8367, 796, 12178, 7, 8367, 8, 198, 197, 7783, 1988, 628, 198 ]
2.74359
117
from django import forms
[ 6738, 42625, 14208, 1330, 5107, 628, 198 ]
3.857143
7
# This code is part of Qiskit. # # (C) Copyright IBM 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name """ Sphinx documentation builder """ project = 'Qiskit AQT Provider' copyright = '2021, Qiskit and AQT development teams' # pylint: disable=redefined-builtin author = 'Qiskit and AQT development teams' # The short X.Y version version = '0.5.0' # The full version, including alpha/beta/rc tags release = '0.5.0' extensions = [ 'sphinx.ext.napoleon', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.extlinks', 'jupyter_sphinx', ] templates_path = ["_templates"] html_static_path = ['_static'] html_css_files = [] autosummary_generate = True autosummary_generate_overwrite = False autoclass_content = "both" numfig = True numfig_format = { 'table': 'Table %s' } language = None exclude_patterns = ['_build', '**.ipynb_checkpoints'] pygments_style = 'colorful' add_module_names = False modindex_common_prefix = ['qiskit_aqt.'] html_theme = 'qiskit_sphinx_theme' html_last_updated_fmt = '%Y/%m/%d' html_theme_options = { 'logo_only': True, 'display_version': True, 'prev_next_buttons_location': 'bottom', 'style_external_links': True, }
[ 2, 770, 2438, 318, 636, 286, 1195, 1984, 270, 13, 198, 2, 198, 2, 357, 34, 8, 15069, 19764, 2864, 13, 198, 2, 198, 2, 770, 2438, 318, 11971, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 13, 921, 743, 198, 2, 7330, 257, 4866, 286, 428, 5964, 287, 262, 38559, 24290, 13, 14116, 2393, 287, 262, 6808, 8619, 198, 2, 286, 428, 2723, 5509, 393, 379, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 13, 198, 2, 198, 2, 4377, 19008, 393, 27255, 2499, 286, 428, 2438, 1276, 12377, 428, 198, 2, 6634, 4003, 11, 290, 9518, 3696, 761, 284, 3283, 257, 4003, 12739, 198, 2, 326, 484, 423, 587, 14294, 422, 262, 47324, 13, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 37811, 198, 50, 746, 28413, 10314, 27098, 198, 37811, 628, 198, 16302, 796, 705, 48, 1984, 270, 39514, 51, 32549, 6, 198, 22163, 4766, 796, 705, 1238, 2481, 11, 1195, 1984, 270, 290, 39514, 51, 2478, 3466, 6, 220, 1303, 279, 2645, 600, 25, 15560, 28, 445, 18156, 12, 18780, 259, 198, 9800, 796, 705, 48, 1984, 270, 290, 39514, 51, 2478, 3466, 6, 198, 198, 2, 383, 1790, 1395, 13, 56, 2196, 198, 9641, 796, 705, 15, 13, 20, 13, 15, 6, 198, 2, 383, 1336, 2196, 11, 1390, 17130, 14, 31361, 14, 6015, 15940, 198, 20979, 796, 705, 15, 13, 20, 13, 15, 6, 198, 198, 2302, 5736, 796, 685, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 77, 499, 25637, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 2306, 375, 420, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 2306, 418, 388, 6874, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 11018, 73, 897, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 1177, 8189, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 2302, 28751, 3256, 198, 220, 220, 220, 705, 73, 929, 88, 353, 62, 82, 746, 28413, 3256, 198, 60, 198, 11498, 17041, 62, 6978, 796, 14631, 62, 11498, 17041, 8973, 198, 6494, 62, 12708, 62, 6978, 796, 37250, 62, 12708, 20520, 198, 6494, 62, 25471, 62, 16624, 796, 17635, 198, 198, 2306, 418, 388, 6874, 62, 8612, 378, 796, 6407, 198, 2306, 418, 388, 6874, 62, 8612, 378, 62, 2502, 13564, 796, 10352, 198, 2306, 420, 31172, 62, 11299, 796, 366, 16885, 1, 198, 198, 22510, 5647, 796, 6407, 198, 198, 22510, 5647, 62, 18982, 796, 1391, 198, 220, 220, 220, 705, 11487, 10354, 705, 10962, 4064, 82, 6, 198, 92, 198, 16129, 796, 6045, 198, 198, 1069, 9152, 62, 33279, 82, 796, 37250, 62, 11249, 3256, 705, 1174, 13, 541, 2047, 65, 62, 9122, 13033, 20520, 198, 198, 9078, 11726, 62, 7635, 796, 705, 8043, 913, 6, 198, 198, 2860, 62, 21412, 62, 14933, 796, 10352, 198, 198, 4666, 9630, 62, 11321, 62, 40290, 796, 37250, 80, 1984, 270, 62, 30188, 83, 2637, 60, 198, 198, 6494, 62, 43810, 796, 705, 80, 1984, 270, 62, 82, 746, 28413, 62, 43810, 6, 198, 6494, 62, 12957, 62, 43162, 62, 69, 16762, 796, 705, 4, 56, 14, 4, 76, 14, 4, 67, 6, 198, 6494, 62, 43810, 62, 25811, 796, 1391, 198, 220, 220, 220, 705, 6404, 78, 62, 8807, 10354, 6407, 11, 198, 220, 220, 220, 705, 13812, 62, 9641, 10354, 6407, 11, 198, 220, 220, 220, 705, 47050, 62, 19545, 62, 4360, 27288, 62, 24886, 10354, 705, 22487, 3256, 198, 220, 220, 220, 705, 7635, 62, 22615, 62, 28751, 10354, 6407, 11, 198, 92, 198 ]
2.697561
615
# Generated by Django 3.1.2 on 2021-09-20 13:36 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 17, 319, 33448, 12, 2931, 12, 1238, 1511, 25, 2623, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
#!/usr/bin/env python3 # Copyright <2019> <Chen Wang [https://chenwang.site], Carnegie Mellon University> # Redistribution and use in source and binary forms, with or without modification, are # permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this list of # conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list # of conditions and the following disclaimer in the documentation and/or other materials # provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its contributors may be # used to endorse or promote products derived from this software without specific prior # written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT # SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED # TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH # DAMAGE. import os import cv2 import copy import time import math import torch import os.path import argparse import torchvision import numpy as np import torch.nn as nn import torch.optim as optim from torchvision import models import torch.utils.data as Data from torch.autograd import Variable from torch.nn import functional as F from torchvision.models.vgg import VGG import torchvision.transforms as transforms from torchvision.datasets import CocoDetection from torch.optim.lr_scheduler import ReduceLROnPlateau from interestingness import AE, VAE, AutoEncoder, Interestingness from dataset import ImageData, Dronefilm, DroneFilming, SubT, SubTF, PersonalVideo from torchutil import count_parameters, show_batch, show_batch_origin, Timer, MovAvg from torchutil import ConvLoss, CosineLoss, CorrelationLoss, Split2d, Merge2d, PearsonLoss, FiveSplit2d class Interest(): ''' Maintain top K interests ''' if __name__ == "__main__": # Arguements parser = argparse.ArgumentParser(description='Test Interestingness Networks') parser.add_argument("--data-root", type=str, default='/data/datasets', help="dataset root folder") parser.add_argument("--model-save", type=str, default='saves/ae.pt.SubTF.n1000.mse', help="read model") parser.add_argument("--test-data", type=int, default=2, help='test data ID.') parser.add_argument("--seed", type=int, default=0, help='Random seed.') parser.add_argument("--crop-size", type=int, default=320, help='crop size') parser.add_argument("--num-interest", type=int, default=10, help='loss compute by grid') parser.add_argument("--skip-frames", type=int, default=1, help='number of skip frame') parser.add_argument("--window-size", type=int, default=1, help='smooth window size >=1') parser.add_argument('--dataset', type=str, default='SubTF', help='dataset type (SubTF, DroneFilming') parser.add_argument('--save-flag', type=str, default='n1000', help='save name flag') parser.add_argument("--rr", type=float, default=5, help="reading rate") parser.add_argument("--wr", type=float, default=5, help="writing rate") parser.add_argument('--debug', dest='debug', action='store_true') parser.add_argument('--drawbox', dest='drawbox', action='store_true') parser.set_defaults(debug=False) parser.set_defaults(drawbox=False) args = parser.parse_args(); print(args) torch.manual_seed(args.seed) os.makedirs('results', exist_ok=True) if args.debug is True and not os.path.exists('images/%s-%d'%(args.dataset,args.test_data)): os.makedirs('images/%s-%d'%(args.dataset,args.test_data)) transform = transforms.Compose([ # transforms.CenterCrop(args.crop_size), transforms.Resize((args.crop_size,args.crop_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) timer = Timer() test_name = '%s-%d-%s-%s'%(args.dataset, args.test_data, time.strftime('%Y-%m-%d-%H:%M:%S'), args.save_flag) if args.dataset == 'DroneFilming': test_data = DroneFilming(root=args.data_root, train=False, test_data=args.test_data, transform=transform) elif args.dataset == 'SubTF': test_data = SubTF(root=args.data_root, train=False, test_data=args.test_data, transform=transform) elif args.dataset == 'PersonalVideo': test_data = PersonalVideo(root=args.data_root, train=False, test_data=args.test_data, transform=transform) test_loader = Data.DataLoader(dataset=test_data, batch_size=1, shuffle=False) net = torch.load(args.model_save) net.set_train(False) net.memory.set_learning_rate(rr=args.rr, wr=args.wr) interest = Interest(args.num_interest, 'results/%s.txt'%(test_name)) movavg = MovAvg(args.window_size) if torch.cuda.is_available(): net = net.cuda() drawbox = ConvLoss(input_size=args.crop_size, kernel_size=args.crop_size//2, stride=args.crop_size//4) criterion = CorrelationLoss(args.crop_size//2, reduce=False, accept_translation=False) fivecrop = FiveSplit2d(args.crop_size//2) print('number of parameters:', count_parameters(net)) val_loss = performance(test_loader, net) print('Done.')
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 2, 15069, 1279, 23344, 29, 1279, 34, 831, 15233, 685, 5450, 1378, 6607, 47562, 13, 15654, 4357, 33976, 49808, 2059, 29, 198, 198, 2, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 17613, 11, 389, 220, 198, 2, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 198, 2, 352, 13, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 428, 1351, 286, 220, 198, 2, 3403, 290, 262, 1708, 37592, 13, 198, 198, 2, 362, 13, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 428, 1351, 220, 198, 2, 286, 3403, 290, 262, 1708, 37592, 287, 262, 10314, 290, 14, 273, 584, 5696, 220, 198, 2, 2810, 351, 262, 6082, 13, 198, 198, 2, 513, 13, 16126, 262, 1438, 286, 262, 6634, 15762, 4249, 262, 3891, 286, 663, 20420, 743, 307, 220, 198, 2, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 428, 3788, 1231, 2176, 3161, 220, 198, 2, 3194, 7170, 13, 198, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 5357, 15529, 220, 198, 2, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 8959, 49094, 34764, 11015, 220, 198, 2, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 13954, 48778, 1961, 13, 3268, 8005, 49261, 220, 198, 2, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 220, 198, 2, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 220, 198, 2, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 220, 198, 2, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 220, 198, 2, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 220, 198, 2, 15529, 34882, 16289, 3963, 3336, 23210, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 220, 198, 2, 29506, 11879, 13, 198, 198, 11748, 28686, 198, 11748, 269, 85, 17, 198, 11748, 4866, 198, 11748, 640, 198, 11748, 10688, 198, 11748, 28034, 198, 11748, 28686, 13, 6978, 198, 11748, 1822, 29572, 198, 11748, 28034, 10178, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 40085, 355, 6436, 198, 6738, 28034, 10178, 1330, 4981, 198, 11748, 28034, 13, 26791, 13, 7890, 355, 6060, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 198, 6738, 28034, 13, 20471, 1330, 10345, 355, 376, 198, 6738, 28034, 10178, 13, 27530, 13, 85, 1130, 1330, 569, 11190, 198, 11748, 28034, 10178, 13, 7645, 23914, 355, 31408, 198, 6738, 28034, 10178, 13, 19608, 292, 1039, 1330, 48222, 11242, 3213, 198, 6738, 28034, 13, 40085, 13, 14050, 62, 1416, 704, 18173, 1330, 44048, 35972, 2202, 3646, 378, 559, 198, 198, 6738, 3499, 1108, 1330, 25603, 11, 13753, 36, 11, 11160, 27195, 12342, 11, 43580, 1108, 198, 6738, 27039, 1330, 7412, 6601, 11, 38959, 26240, 11, 38959, 11928, 2229, 11, 3834, 51, 11, 3834, 10234, 11, 15644, 10798, 198, 6738, 28034, 22602, 1330, 954, 62, 17143, 7307, 11, 905, 62, 43501, 11, 905, 62, 43501, 62, 47103, 11, 5045, 263, 11, 44795, 48997, 198, 6738, 28034, 22602, 1330, 34872, 43, 793, 11, 10437, 500, 43, 793, 11, 2744, 49501, 43, 793, 11, 27758, 17, 67, 11, 39407, 17, 67, 11, 31074, 43, 793, 11, 10579, 41205, 17, 67, 198, 198, 4871, 12033, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 337, 32725, 1353, 509, 5353, 198, 220, 220, 220, 705, 7061, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 943, 5162, 3196, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 14402, 43580, 1108, 27862, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 7890, 12, 15763, 1600, 2099, 28, 2536, 11, 4277, 11639, 14, 7890, 14, 19608, 292, 1039, 3256, 1037, 2625, 19608, 292, 316, 6808, 9483, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 19849, 12, 21928, 1600, 2099, 28, 2536, 11, 4277, 11639, 82, 3080, 14, 3609, 13, 457, 13, 7004, 10234, 13, 77, 12825, 13, 76, 325, 3256, 1037, 2625, 961, 2746, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 9288, 12, 7890, 1600, 2099, 28, 600, 11, 4277, 28, 17, 11, 1037, 11639, 9288, 1366, 4522, 2637, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 28826, 1600, 2099, 28, 600, 11, 4277, 28, 15, 11, 1037, 11639, 29531, 9403, 2637, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 31476, 12, 7857, 1600, 2099, 28, 600, 11, 4277, 28, 19504, 11, 1037, 11639, 31476, 2546, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 22510, 12, 9446, 1600, 2099, 28, 600, 11, 4277, 28, 940, 11, 1037, 11639, 22462, 24061, 416, 10706, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 48267, 12, 37805, 1600, 2099, 28, 600, 11, 4277, 28, 16, 11, 1037, 11639, 17618, 286, 14267, 5739, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 17497, 12, 7857, 1600, 2099, 28, 600, 11, 4277, 28, 16, 11, 1037, 11639, 5796, 5226, 4324, 2546, 18189, 16, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 19608, 292, 316, 3256, 2099, 28, 2536, 11, 4277, 11639, 7004, 10234, 3256, 1037, 11639, 19608, 292, 316, 2099, 357, 7004, 10234, 11, 38959, 11928, 2229, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 21928, 12, 32109, 3256, 2099, 28, 2536, 11, 4277, 11639, 77, 12825, 3256, 1037, 11639, 21928, 1438, 6056, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 21062, 1600, 2099, 28, 22468, 11, 4277, 28, 20, 11, 1037, 2625, 25782, 2494, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 18351, 1600, 2099, 28, 22468, 11, 4277, 28, 20, 11, 1037, 2625, 16502, 2494, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 24442, 3256, 2244, 11639, 24442, 3256, 2223, 11639, 8095, 62, 7942, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 19334, 3524, 3256, 2244, 11639, 19334, 3524, 3256, 2223, 11639, 8095, 62, 7942, 11537, 198, 220, 220, 220, 30751, 13, 2617, 62, 12286, 82, 7, 24442, 28, 25101, 8, 198, 220, 220, 220, 30751, 13, 2617, 62, 12286, 82, 7, 19334, 3524, 28, 25101, 8, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 9783, 3601, 7, 22046, 8, 198, 220, 220, 220, 28034, 13, 805, 723, 62, 28826, 7, 22046, 13, 28826, 8, 628, 220, 220, 220, 28686, 13, 76, 4335, 17062, 10786, 43420, 3256, 2152, 62, 482, 28, 17821, 8, 628, 220, 220, 220, 611, 26498, 13, 24442, 318, 6407, 290, 407, 28686, 13, 6978, 13, 1069, 1023, 10786, 17566, 14, 4, 82, 12, 4, 67, 6, 4, 7, 22046, 13, 19608, 292, 316, 11, 22046, 13, 9288, 62, 7890, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 10786, 17566, 14, 4, 82, 12, 4, 67, 6, 4, 7, 22046, 13, 19608, 292, 316, 11, 22046, 13, 9288, 62, 7890, 4008, 628, 220, 220, 220, 6121, 796, 31408, 13, 7293, 577, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 31408, 13, 23656, 34, 1773, 7, 22046, 13, 31476, 62, 7857, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 4965, 1096, 19510, 22046, 13, 31476, 62, 7857, 11, 22046, 13, 31476, 62, 7857, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 2514, 51, 22854, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 26447, 1096, 7, 32604, 41888, 15, 13, 32642, 11, 657, 13, 29228, 11, 657, 13, 29703, 4357, 14367, 41888, 15, 13, 23539, 11, 657, 13, 24137, 11, 657, 13, 18182, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33761, 628, 220, 220, 220, 19781, 796, 5045, 263, 3419, 198, 220, 220, 220, 1332, 62, 3672, 796, 705, 4, 82, 12, 4, 67, 12, 4, 82, 12, 4, 82, 6, 4, 7, 22046, 13, 19608, 292, 316, 11, 26498, 13, 9288, 62, 7890, 11, 640, 13, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 12, 4, 39, 25, 4, 44, 25, 4, 50, 33809, 26498, 13, 21928, 62, 32109, 8, 628, 220, 220, 220, 611, 26498, 13, 19608, 292, 316, 6624, 705, 6187, 505, 11928, 2229, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7890, 796, 38959, 11928, 2229, 7, 15763, 28, 22046, 13, 7890, 62, 15763, 11, 4512, 28, 25101, 11, 1332, 62, 7890, 28, 22046, 13, 9288, 62, 7890, 11, 6121, 28, 35636, 8, 198, 220, 220, 220, 1288, 361, 26498, 13, 19608, 292, 316, 6624, 705, 7004, 10234, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7890, 796, 3834, 10234, 7, 15763, 28, 22046, 13, 7890, 62, 15763, 11, 4512, 28, 25101, 11, 1332, 62, 7890, 28, 22046, 13, 9288, 62, 7890, 11, 6121, 28, 35636, 8, 198, 220, 220, 220, 1288, 361, 26498, 13, 19608, 292, 316, 6624, 705, 30228, 10798, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7890, 796, 15644, 10798, 7, 15763, 28, 22046, 13, 7890, 62, 15763, 11, 4512, 28, 25101, 11, 1332, 62, 7890, 28, 22046, 13, 9288, 62, 7890, 11, 6121, 28, 35636, 8, 628, 220, 220, 220, 1332, 62, 29356, 796, 6060, 13, 6601, 17401, 7, 19608, 292, 316, 28, 9288, 62, 7890, 11, 15458, 62, 7857, 28, 16, 11, 36273, 28, 25101, 8, 628, 220, 220, 220, 2010, 796, 28034, 13, 2220, 7, 22046, 13, 19849, 62, 21928, 8, 198, 220, 220, 220, 2010, 13, 2617, 62, 27432, 7, 25101, 8, 198, 220, 220, 220, 2010, 13, 31673, 13, 2617, 62, 40684, 62, 4873, 7, 21062, 28, 22046, 13, 21062, 11, 1319, 28, 22046, 13, 18351, 8, 628, 220, 220, 220, 1393, 796, 12033, 7, 22046, 13, 22510, 62, 9446, 11, 705, 43420, 14, 4, 82, 13, 14116, 6, 4, 7, 9288, 62, 3672, 4008, 198, 220, 220, 220, 1409, 615, 70, 796, 44795, 48997, 7, 22046, 13, 17497, 62, 7857, 8, 198, 220, 220, 220, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 2010, 13, 66, 15339, 3419, 628, 220, 220, 220, 3197, 3524, 796, 34872, 43, 793, 7, 15414, 62, 7857, 28, 22046, 13, 31476, 62, 7857, 11, 9720, 62, 7857, 28, 22046, 13, 31476, 62, 7857, 1003, 17, 11, 33769, 28, 22046, 13, 31476, 62, 7857, 1003, 19, 8, 198, 220, 220, 220, 34054, 796, 2744, 49501, 43, 793, 7, 22046, 13, 31476, 62, 7857, 1003, 17, 11, 4646, 28, 25101, 11, 2453, 62, 41519, 28, 25101, 8, 198, 220, 220, 220, 1936, 31476, 796, 10579, 41205, 17, 67, 7, 22046, 13, 31476, 62, 7857, 1003, 17, 8, 628, 220, 220, 220, 3601, 10786, 17618, 286, 10007, 25, 3256, 954, 62, 17143, 7307, 7, 3262, 4008, 198, 220, 220, 220, 1188, 62, 22462, 796, 2854, 7, 9288, 62, 29356, 11, 2010, 8, 198, 220, 220, 220, 3601, 10786, 45677, 2637, 8, 198 ]
2.901542
2,011
from .features import FeatureBinarizer, FeatureBinarizerFromTrees from .linear_regression import LinearRuleRegression from .logistic_regression import LogisticRuleRegression from .boolean_rule_cg import BooleanRuleCG from .GLRM import GLRMExplainer from .BRCG import BRCGExplainer
[ 6738, 764, 40890, 1330, 27018, 33, 22050, 7509, 11, 27018, 33, 22050, 7509, 4863, 51, 6037, 198, 6738, 764, 29127, 62, 2301, 2234, 1330, 44800, 31929, 8081, 2234, 198, 6738, 764, 6404, 2569, 62, 2301, 2234, 1330, 5972, 2569, 31929, 8081, 2234, 198, 6738, 764, 2127, 21052, 62, 25135, 62, 66, 70, 1330, 41146, 31929, 39816, 198, 6738, 764, 8763, 29138, 1330, 10188, 29138, 18438, 10613, 198, 6738, 764, 33, 7397, 38, 1330, 347, 7397, 38, 18438, 10613, 198 ]
3.556962
79
import tkinter import time from . import render
[ 11748, 256, 74, 3849, 198, 11748, 640, 198, 6738, 764, 1330, 8543, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 628, 198 ]
1.685185
54
from numpy import array import os import inspect import matplotlib.pyplot as plt def plot_learning_curve(title, computed_score, train_sizes, \ train_scores_mean, train_scores_std, test_scores_mean, \ test_scores_std): """Generate a plot of the test and training learning curves. Parameters ---------- title: string Contains the title of the chart. computed_score: string Contains the name of the computed score. train_sizes: a one dimension numpy.ndarray An array containing the various sizes of the training set for which the scores have been computed. train_scores_mean: a one dimension numpy.ndarray An array containing the various means of the scores related to each element in train_sizes. These scores should have been computed on the training set. train_scores_std: a one dimension numpy.ndarray An array containing the various standard deviations of the scores related to each element in train_sizes. These scores should have been computed on the training set. test_scores_mean: a one dimension numpy.ndarray An array containing the various means of the scores related to each element in train_sizes. These scores should have been computed on the test set. test_scores_std: a one dimension numpy.ndarray An array containing the various standard deviations of the scores related to each element in train_sizes. These scores should have been computed on the test set. ylim: tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. """ fig = plt.figure(figsize=(20.0, 12.5)) plt.title(title, size=31) plt.xlim(xmin=0, xmax=25000) plt.ylim(ymin=0.0, ymax=1.0) plt.xlabel("Training examples", size=28) plt.ylabel(computed_score.capitalize(), size=28) plt.grid(linewidth=3) plt.fill_between(train_sizes, train_scores_mean - \ train_scores_std, train_scores_mean + train_scores_std, \ alpha=0.3, color="r") plt.fill_between(train_sizes, test_scores_mean - \ test_scores_std, test_scores_mean + test_scores_std, \ alpha=0.3, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", \ label="Training {}".format(computed_score), \ linewidth=5.0, markersize=13.0) plt.plot(train_sizes, test_scores_mean, 'o-', color="g", \ label="Test {}".format(computed_score), \ linewidth=5.0, markersize=13.0) plt.legend(loc="best", prop={'size': 26}) plt.tick_params(axis='both', which='major', labelsize=22) return fig if __name__ == "__main__": main()
[ 6738, 299, 32152, 1330, 7177, 198, 11748, 28686, 198, 11748, 10104, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 198, 4299, 7110, 62, 40684, 62, 22019, 303, 7, 7839, 11, 29231, 62, 26675, 11, 4512, 62, 82, 4340, 11, 3467, 198, 220, 220, 220, 4512, 62, 1416, 2850, 62, 32604, 11, 4512, 62, 1416, 2850, 62, 19282, 11, 1332, 62, 1416, 2850, 62, 32604, 11, 3467, 198, 220, 220, 220, 1332, 62, 1416, 2850, 62, 19282, 2599, 198, 220, 220, 220, 37227, 8645, 378, 257, 7110, 286, 262, 1332, 290, 3047, 4673, 23759, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3670, 25, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 49850, 262, 3670, 286, 262, 8262, 13, 628, 220, 220, 220, 29231, 62, 26675, 25, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 49850, 262, 1438, 286, 262, 29231, 4776, 13, 628, 220, 220, 220, 4512, 62, 82, 4340, 25, 257, 530, 15793, 299, 32152, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 7268, 262, 2972, 10620, 286, 262, 3047, 900, 329, 220, 198, 220, 220, 220, 220, 220, 220, 220, 543, 262, 8198, 423, 587, 29231, 13, 628, 220, 220, 220, 4512, 62, 1416, 2850, 62, 32604, 25, 257, 530, 15793, 299, 32152, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 7268, 262, 2972, 1724, 286, 262, 8198, 3519, 220, 198, 220, 220, 220, 220, 220, 220, 220, 284, 1123, 5002, 287, 4512, 62, 82, 4340, 13, 2312, 8198, 815, 423, 587, 220, 198, 220, 220, 220, 220, 220, 220, 220, 29231, 319, 262, 3047, 900, 13, 628, 220, 220, 220, 4512, 62, 1416, 2850, 62, 19282, 25, 257, 530, 15793, 299, 32152, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 7268, 262, 2972, 3210, 47060, 286, 262, 220, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 3519, 284, 1123, 5002, 287, 4512, 62, 82, 4340, 13, 2312, 8198, 220, 198, 220, 220, 220, 220, 220, 220, 220, 815, 423, 587, 29231, 319, 262, 3047, 900, 13, 628, 220, 220, 220, 1332, 62, 1416, 2850, 62, 32604, 25, 257, 530, 15793, 299, 32152, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 7268, 262, 2972, 1724, 286, 262, 8198, 3519, 220, 198, 220, 220, 220, 220, 220, 220, 220, 284, 1123, 5002, 287, 4512, 62, 82, 4340, 13, 2312, 8198, 815, 423, 587, 220, 198, 220, 220, 220, 220, 220, 220, 220, 29231, 319, 262, 1332, 900, 13, 628, 220, 220, 220, 1332, 62, 1416, 2850, 62, 19282, 25, 257, 530, 15793, 299, 32152, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 7268, 262, 2972, 3210, 47060, 286, 262, 220, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 3519, 284, 1123, 5002, 287, 4512, 62, 82, 4340, 13, 2312, 8198, 220, 198, 220, 220, 220, 220, 220, 220, 220, 815, 423, 587, 29231, 319, 262, 1332, 900, 13, 628, 220, 220, 220, 331, 2475, 25, 46545, 11, 5485, 357, 88, 1084, 11, 331, 9806, 828, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 2896, 1127, 5288, 290, 5415, 331, 27160, 37515, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 7, 5647, 7857, 16193, 1238, 13, 15, 11, 1105, 13, 20, 4008, 198, 220, 220, 220, 458, 83, 13, 7839, 7, 7839, 11, 2546, 28, 3132, 8, 198, 220, 220, 220, 458, 83, 13, 87, 2475, 7, 87, 1084, 28, 15, 11, 2124, 9806, 28, 1495, 830, 8, 198, 220, 220, 220, 458, 83, 13, 88, 2475, 7, 88, 1084, 28, 15, 13, 15, 11, 331, 9806, 28, 16, 13, 15, 8, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 7203, 44357, 6096, 1600, 2546, 28, 2078, 8, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 7, 785, 17128, 62, 26675, 13, 27544, 1096, 22784, 2546, 28, 2078, 8, 198, 220, 220, 220, 458, 83, 13, 25928, 7, 2815, 413, 5649, 28, 18, 8, 628, 220, 220, 220, 458, 83, 13, 20797, 62, 23395, 7, 27432, 62, 82, 4340, 11, 4512, 62, 1416, 2850, 62, 32604, 532, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 1416, 2850, 62, 19282, 11, 4512, 62, 1416, 2850, 62, 32604, 1343, 4512, 62, 1416, 2850, 62, 19282, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 18, 11, 3124, 2625, 81, 4943, 198, 220, 220, 220, 458, 83, 13, 20797, 62, 23395, 7, 27432, 62, 82, 4340, 11, 1332, 62, 1416, 2850, 62, 32604, 532, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 1416, 2850, 62, 19282, 11, 1332, 62, 1416, 2850, 62, 32604, 1343, 1332, 62, 1416, 2850, 62, 19282, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 18, 11, 3124, 2625, 70, 4943, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 27432, 62, 82, 4340, 11, 4512, 62, 1416, 2850, 62, 32604, 11, 705, 78, 12, 3256, 3124, 2625, 81, 1600, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 44357, 23884, 1911, 18982, 7, 785, 17128, 62, 26675, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 28, 20, 13, 15, 11, 19736, 1096, 28, 1485, 13, 15, 8, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 27432, 62, 82, 4340, 11, 1332, 62, 1416, 2850, 62, 32604, 11, 705, 78, 12, 3256, 3124, 2625, 70, 1600, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 14402, 23884, 1911, 18982, 7, 785, 17128, 62, 26675, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 28, 20, 13, 15, 11, 19736, 1096, 28, 1485, 13, 15, 8, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 17946, 2625, 13466, 1600, 2632, 34758, 6, 7857, 10354, 2608, 30072, 198, 220, 220, 220, 458, 83, 13, 42298, 62, 37266, 7, 22704, 11639, 16885, 3256, 543, 11639, 22478, 3256, 14722, 1096, 28, 1828, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 2336, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419 ]
2.565789
1,064
from .args import get_args from .config import get_config, get_connection_config, get_engine, get_meta from .query import query from .export import get_exporter def main(): """ Provides a CLI entrypoint to access a database and export a subset of its data in a specified format. """ args = get_args() config = get_config(args.config) connection_config = get_connection_config(config, args.connection) engine = get_engine(connection_config) export = get_exporter(args.format, config['exporters']) connection = engine.connect() meta = get_meta(engine) resolver = connection_config['resolver'] data = query(connection, meta, resolver, args.query) export(meta, data, args.output)
[ 6738, 764, 22046, 1330, 651, 62, 22046, 198, 6738, 764, 11250, 1330, 651, 62, 11250, 11, 651, 62, 38659, 62, 11250, 11, 651, 62, 18392, 11, 651, 62, 28961, 198, 6738, 764, 22766, 1330, 12405, 198, 6738, 764, 39344, 1330, 651, 62, 1069, 26634, 198, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47081, 257, 43749, 5726, 4122, 284, 1895, 257, 6831, 290, 10784, 257, 24637, 286, 663, 198, 220, 220, 220, 1366, 287, 257, 7368, 5794, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 26498, 796, 651, 62, 22046, 3419, 198, 220, 220, 220, 4566, 796, 651, 62, 11250, 7, 22046, 13, 11250, 8, 198, 220, 220, 220, 4637, 62, 11250, 796, 651, 62, 38659, 62, 11250, 7, 11250, 11, 26498, 13, 38659, 8, 198, 220, 220, 220, 3113, 796, 651, 62, 18392, 7, 38659, 62, 11250, 8, 198, 220, 220, 220, 10784, 796, 651, 62, 1069, 26634, 7, 22046, 13, 18982, 11, 4566, 17816, 1069, 1819, 1010, 6, 12962, 628, 220, 220, 220, 4637, 796, 3113, 13, 8443, 3419, 198, 220, 220, 220, 13634, 796, 651, 62, 28961, 7, 18392, 8, 198, 220, 220, 220, 581, 14375, 796, 4637, 62, 11250, 17816, 411, 14375, 20520, 198, 220, 220, 220, 1366, 796, 12405, 7, 38659, 11, 13634, 11, 581, 14375, 11, 26498, 13, 22766, 8, 198, 220, 220, 220, 10784, 7, 28961, 11, 1366, 11, 26498, 13, 22915, 8, 198 ]
3.088235
238
"""Circles URLs""" # Django from django.urls import path # Views from cride.circles.views import list_circles from cride.circles.views import create_circle urlpatterns = [ path ('circles/', list_circles), path ('circles/create/', create_circle), ]
[ 37811, 34, 343, 5427, 32336, 37811, 198, 198, 2, 37770, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 198, 2, 29978, 198, 6738, 1067, 485, 13, 66, 343, 5427, 13, 33571, 1330, 1351, 62, 66, 343, 5427, 198, 6738, 1067, 485, 13, 66, 343, 5427, 13, 33571, 1330, 2251, 62, 45597, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 19203, 66, 343, 5427, 14, 3256, 1351, 62, 66, 343, 5427, 828, 198, 220, 220, 220, 3108, 19203, 66, 343, 5427, 14, 17953, 14, 3256, 2251, 62, 45597, 828, 198, 60 ]
2.6875
96
__version__ = '1.5.4' __copyright__ = 'Copyright (c) 2018, Skioo SA' __licence__ = 'MIT' __URL__ = 'https://github.com/skioo/django-customer-billing'
[ 834, 9641, 834, 796, 705, 16, 13, 20, 13, 19, 6, 198, 834, 22163, 4766, 834, 796, 705, 15269, 357, 66, 8, 2864, 11, 3661, 952, 78, 14719, 6, 198, 834, 677, 594, 834, 796, 705, 36393, 6, 198, 834, 21886, 834, 796, 705, 5450, 1378, 12567, 13, 785, 14, 8135, 952, 78, 14, 28241, 14208, 12, 23144, 263, 12, 65, 4509, 6, 198 ]
2.34375
64
# Copyright (c) 2013, Nathan Dunsworth - NFXPlugins # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NFXPlugins nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NFXPLUGINS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # __all__ = [ 'SgFieldCheckbox', 'SgFieldColor', 'SgFieldColor2', 'SgFieldDate', 'SgFieldDateTime', 'SgFieldEntity', 'SgFieldEntityMulti', 'SgFieldFloat', 'SgFieldID', 'SgFieldImage', 'SgFieldInt', 'SgFieldSelectionList', 'SgFieldTagList', 'SgFieldText', 'SgFieldType', 'SgFieldUrl' ] # Python imports import copy import datetime import os import re import threading import urllib2 import webbrowser # This module imports import ShotgunORM class SgFieldCheckbox(ShotgunORM.SgField): ''' Entity field that stores a bool value for a checkbox. ''' class SgFieldColor(ShotgunORM.SgField): ''' Entity field that stores a list of 3 ints that represent a rgb color 0-255. Example: [128, 128, 128] ''' REGEXP_COLOR = re.compile(r'(\d+,\d+,\d+)') class SgFieldColor2(ShotgunORM.SgField): ''' Entity field that stores a list of 3 ints that represent a rgb color 0-255. Fix the color return value for Task and Phase Entities color field. Task and Phase Entities can have their color field set to a value that points to the color field of the pipeline step or project they belong to. Brilliant engineering to still call the return type "color" and not differentiate the two I know right? ''' REGEXP_COLOR = re.compile(r'(\d+,\d+,\d+)') REGEXP_TASK_COLOR = re.compile(r'(\d+,\d+,\d+)|(pipeline_step)') REGEXP_PHASE_COLOR = re.compile(r'(\d+,\d+,\d+)|(project)') def linkField(self): ''' Returns the link field this color field can possibly link to. ''' return self._linkField def parentChanged(self): ''' ''' parent = self.parentEntity() if parent == None: return pType = parent.schemaInfo().name() if pType == 'Task': self._regexp = self.REGEXP_TASK_COLOR self._linkString = 'pipeline_step' self._linkField = 'step' elif pType == 'Phase': self._regexp = self.REGEXP_PHASE_COLOR self._linkString = 'project' self._linkField= 'project' else: self._regexp = self.REGEXP_COLOR def value(self, linkEvaluate=True): ''' Args: * (bool) linkEvaluate: When True and the color field is a link to another Entity's color field the value of the linked color field will be returned. If linkEvaluate is False a string may be returned instead of a list. ''' result = super(SgFieldColor2, self).value() if result == None: return None if not linkEvaluate and result == self._linkString: return result parent = self.parentEntity() if parent == None: if result == self._linkString: return None newResult = [] for i in result.split(','): newResult.append(int(i)) if result == self._linkString: linkObj = self.parentEntity()[self._linkField] if linkObj == None: return None return linkObj['color'] else: newResult = [] for i in result.split(','): newResult.append(int(i)) class SgFieldDate(ShotgunORM.SgField): ''' Entity field that stores a date string Example: "1980-01-30". ''' REGEXP = re.compile(r'^\d{4}-\d{2}-\d{2}') class SgFieldDateTime(ShotgunORM.SgField): ''' Entity field that stores a python datetime object. ''' class SgFieldEntity(ShotgunORM.SgField): ''' Entity field that stores a link to another Entity. ''' ############################################################################## # # IMPORTANT!!!! # # Any changes to _fromFieldData, _setValue, _toFieldData, value functions # should also be applied to the SgUserFieldAbstractEntity class. # ############################################################################## def value(self, sgSyncFields=None): ''' Returns the fields value as a Entity object. Args: * (list) sgSyncFields: List of field names to populate the returned Entity with. ''' value = super(SgFieldEntity, self).value() parent = self.parentEntity() if value == None or parent == None: return None connection = parent.connection() if isinstance(sgSyncFields, dict): sgSyncFields = sgSyncFields.get(parent.type, None) elif isinstance(sgSyncFields, str): sgSyncFields = [sgSyncFields] if sgSyncFields == None: sgSyncFields = connection.defaultEntityQueryFields(value['type']) if len(sgSyncFields) <= 0: sgSyncFields = None else: pullFields = set(sgSyncFields) extraFields = [] if 'all' in pullFields: pullFields.remove('all') extraFields = parent.fieldNames() if 'default' in pullFields: pullFields.remove('default') elif 'default' in pullFields: pullFields.remove('default') extraFields = connection.defaultEntityQueryFields(value['type']) pullFields.update(extraFields) if len(pullFields) >= 1: sgSyncFields = list(pullFields) else: sgSyncFields = None result = connection._createEntity( value['type'], value, sgSyncFields=sgSyncFields ) return result class SgFieldEntityMulti(ShotgunORM.SgField): ''' Entity field that stores a list of links to other Entities. Example: [Entity01, Entity02, ...] ''' ############################################################################## # # IMPORTANT!!!! # # Any changes to _fromFieldData, _setValue, _toFieldData, value functions # should also be applied to the SgUserFieldAbstractMultiEntity class. # ############################################################################## def value(self, sgSyncFields=None): ''' Returns the fields value as a list of Entity objects. Args: * (dict) sgSyncFields: Dict of entity types and field names to populate the returned Entities with. ''' result = super(SgFieldEntityMulti, self).value() if result in [None, []]: return result parent = self.parentEntity() if parent == None: return copy.deepcopy(result) connection = parent.connection() schema = connection.schema() tmp = [] qEng = connection.queryEngine() qEng.block() try: for i in result: t = i['type'] iSyncFields = None if sgSyncFields != None: if sgSyncFields.has_key(t): iFields = sgSyncFields[t] if iFields == None: iSyncFields = connection.defaultEntityQueryFields(t) if len(iSyncFields) <= 0: iSyncFields = None else: pullFields = [] if isinstance(iFields, str): pullFields = set([iFields]) else: pullFields = set(iFields) extraFields = [] if 'all' in pullFields: pullFields.remove('all') extraFields = schema.entityInfo(t).fieldNames() if 'default' in pullFields: pullFields.remove('default') elif 'default' in pullFields: pullFields.remove('default') extraFields = connection.defaultEntityQueryFields(t) pullFields.update(extraFields) if len(pullFields) >= 1: iSyncFields = list(pullFields) else: iSyncFields = None else: iSyncFields = connection.defaultEntityQueryFields(t) if len(iSyncFields) <= 0: iSyncFields = None else: iSyncFields = connection.defaultEntityQueryFields(t) entity = connection._createEntity(t, i, sgSyncFields=iSyncFields) tmp.append(entity) finally: qEng.unblock() return tmp class SgFieldFloat(ShotgunORM.SgField): ''' Entity field that stores a float. ''' class SgFieldInt(ShotgunORM.SgField): ''' Entity field that stores an integer. ''' class SgFieldSelectionList(ShotgunORM.SgField): ''' Entity field that stores a text string that is from a list selection. The field may contain a list of valid values which when the field is set are compared and an Exception thrown when the value is not a valid one. ''' class SgFieldSerializable(ShotgunORM.SgField): ''' Entity field that stores serializable data. ''' class SgFieldSummary(ShotgunORM.SgField): ''' Entity field that returns an Entity or list of Entities based on a search expression. Summary fields. ''' DATE_REGEXP = re.compile(r'(\d{4})-(\d{2})-(\d{2}) (\d{2}):(\d{2}):(\d{2}) UTC') def _buildLogicalOp(self, conditions, info): ''' Builds the logical operator search pattern and returns it. ''' result = [] parent = self.parentEntity() connection = parent.connection() for c in conditions: if c.has_key('logical_operator'): logicalOp = { 'conditions': self._buildLogicalOp(c['conditions'], info), 'logical_operator': c['logical_operator'] } result.append(logicalOp) else: newValues = [] cInfo = info.fieldInfo(c['path']) cType = cInfo.returnType() ######################################################################## # # Date and Date Time fields # ######################################################################## if cType in [ShotgunORM.SgField.RETURN_TYPE_DATE, ShotgunORM.SgField.RETURN_TYPE_DATE_TIME]: # http://stackoverflow.com/a/13287083 for v in c['values']: if isinstance(v, dict): if v.has_key('relative_day'): time = datetime.time(*v['time']) date = datetime.date.today() rd = v['relative_day'] if rd == 'tomorrow': date = date.replace(day=date.day + 1) elif rd == 'yesterday': date = date.replace(day=date.day - 1) dt = datetime.datetime.combine(date, time) # Relative day calcs use utc time! dt.replace(tzinfo=None) newValues.append(dt) else: newValues.append(v) elif isinstance(v, str): search = DATE_REGEXP.match(v) if search: time = datetime.time(search.group(4), search.group(5), search.group(6)) date = datetime.date(search.group(1), search.group(2), search.group(3)) dt = datetime.datetime.combine(date, time) dt.replace(tzinfo=None) newValues.append(utc_to_local(dt)) else: newValues.append(v) ######################################################################## # # Entity and Multi-Entity fields # ######################################################################## elif cType in [ShotgunORM.SgField.RETURN_TYPE_ENTITY, ShotgunORM.SgField.RETURN_TYPE_MULTI_ENTITY]: for v in c['values']: if v['name'] == 'Current %s' % parent.type: newValues.append(parent.toEntityFieldData()) elif v['name'] == 'Me': login = os.getenv('USERNAME') user = connection.findOne('HumanUser', [['login', 'is', login]], ['login']) if user == None: raise RuntimError('summary field unable to find user "%s" in Shotgun' % login) newValues.append(user.toEntityFieldData()) else: newValues.append(v) else: # Do nothing newValues = c['values'] c['values'] = newValues del c['active'] result.append(c) return result def _buildSearchFilter(self): ''' ''' opsRaw = copy.deepcopy(self._filtersRaw) logicalOps = { 'conditions': self._buildLogicalOp( opsRaw['conditions'], self.parentEntity().connection().schema().entityInfo(self.entityType()) ), 'logical_operator': opsRaw['logical_operator'] } self._searchFilter = logicalOps def _fromFieldData(self, sgData): ''' Always return False for summary fields, they can not be set. ''' if self._value == sgData: return False self._value = sgData return True def entityType(self): ''' Returns the type of Entity the summary field will return. ''' return self._entityType def hasCommit(self): ''' Always returns False for summary fields. ''' return False def _invalidate(self): ''' Deletes the search filter so its built again. ''' self._searchFilter = None def isEditable(self): ''' Always return False for summary fields. ''' return False def isQueryable(self): ''' Even though summary fields can be queried from Shotgun return False. ''' return False def setHasCommit(self, valid): ''' Summary fields can't be committed, always returns False. ''' return False def setHasSyncUpdate(self, valid): ''' Summary fields cant be queried so thus they can not be background pulled. Always returns False. ''' return False def _setValue(self, value): ''' Always return False for summary fields, they can not be set. ''' return False class SgFieldTagList(ShotgunORM.SgField): ''' Entity field that stores a list of strings. The field may contain a list of valid values which when the field is set are compared and an Exception thrown when the value is not a valid one. ''' class SgFieldText(ShotgunORM.SgField): ''' Entity field that stores a str. ''' class SgFieldImage(SgFieldText): ''' See SgFieldText. ''' def downloadThumbnail(self, path): ''' Downloads the image to the specified path. ''' url = self.value() if url == None or url == '': raise ValueError('%s value is empty' % self) if os.path.exists(path) and os.path.isdir(path): raise OSError('output path "%s" is a directory' % path) try: data = urllib2.urlopen(url) f = open(path, 'w') f.write(data.read()) f.close() except Exception, e: ShotgunORM.LoggerField.error('%(field)s: %(error)s', { 'field': self, 'error': e }) raise RuntimeError('%s an error occured while downloading the file' % self) return True def openInBrowser(self): ''' Opens the image in a web-browser ''' url = self.value() if url == None: url = '' webbrowser.open(url) def uploadThumbnail(self, path): ''' Uploads the specified image file and sets it as the Entities thumbnail. Returns the Attachment id. ''' parent = self.parentEntity() if not parent.exists(): raise RuntimeError('parent entity does not exist') with self: if self.hasCommit(): raise RuntimeError('can not upload a new thumbnail while the image field has an un-commited update') parent = self.parentEntity() if parent == None or not parent.exist(): raise RuntimeError('parent entity does not exists') sgconnection = parent.connection().connection() with ShotgunORM.SHOTGUN_API_LOCK: sgResult = sgconnection.upload_thumbnail(parent.type, parent['id'], path) parent.sync([self.name()]) return sgResult def uploadFilmstripThumbnail(self, path): ''' Uploads the specified image file and sets it as the Entities flimstrip thumbnail. Returns the Attachment id. Note: This function is only valid for Version Entities. ''' with self: if self.hasCommit(): raise RuntimeError('can not upload a new thumbnail while the image field has an un-commited update') parent = self.parentEntity() if not parent.type == 'Version': raise RuntimeError('only valid on Version Entities') if parent == None or not parent.exist(): raise RuntimeError('parent entity does not exists') sgconnection = parent.connection().connection() sgResult = sgconnection.upload_filmstrip_thumbnail(parent.type, parent['id'], path) parent.sync([self.name()]) return sgResult class SgFieldUrl(ShotgunORM.SgField): ''' Entity field that stores a url. Example URL: { 'content_type': 'image/jpeg', 'link_type': 'upload', 'name': 'bob.jpg', 'url': 'http://www.owned.com/bob.jpg' } Example Local: { 'content_type': 'image/jpeg', 'link_type': 'local', 'name': 'bob.jpg', 'local_storage': 'c:/temp/bob.jpg' } ''' def url(self, openInBrowser=False): ''' Returns the url value. When the arg "openInBrowser" is set to True then the returned URL will also be opened in the operating systems default web-browser. ''' data = self.value() result = '' if data == None: result = '' else: try: result = data['url'] except: pass if openInBrowser: webbrowser.open(url) return result # Register the fields. ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_CHECKBOX, SgFieldCheckbox) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_COLOR, SgFieldColor) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_COLOR2, SgFieldColor2) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_DATE, SgFieldDate) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_DATE_TIME, SgFieldDateTime) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_ENTITY, SgFieldEntity) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_FLOAT, SgFieldFloat) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_IMAGE, SgFieldImage) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_INT, SgFieldInt) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_LIST, SgFieldSelectionList) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_MULTI_ENTITY, SgFieldEntityMulti) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_SERIALIZABLE, SgFieldSerializable) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_STATUS_LIST, SgFieldSelectionList) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_SUMMARY, SgFieldSummary) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_TAG_LIST, SgFieldTagList) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_TEXT, SgFieldText) ShotgunORM.SgField.registerFieldClass(ShotgunORM.SgField.RETURN_TYPE_URL, SgFieldUrl) ################################################################################ # # Custom fields # ################################################################################ class SgFieldID(SgFieldInt): ''' Field that returns the parent Entities Type. ''' # Do not allow the field to lock, no point in it. def invalidate(self): ''' Does nothing for ID fields. ''' return False def isCacheable(self): ''' Always returns False for ID fields. ''' return False def setHasSyncUpdate(self, valid): ''' Always returns False for ID fields. ''' return False def setValid(self, valid): ''' Always returns False for ID fields. ''' return False def setValueFromShotgun(self): ''' Always returns False for ID fields. ''' return False def validate(self, forReal=False, force=False): ''' Always returns False for ID fields. ''' return False def value(self): ''' Returns the value of the ID field. ''' return self._value def _valueSg(self): ''' Returns the value of the ID field. For ID fields this will never query Shotgun. ''' return self._value class SgFieldType(SgFieldText): ''' Field that returns the parent Entities Type. ''' # Do not allow the field to lock, no point in it. def invalidate(self): ''' Always returns False for Type fields. ''' return False def isCacheable(self): ''' Always returns False for Type fields. ''' return False def setHasSyncUpdate(self, valid): ''' Always returns False for Type fields. ''' return False def setValid(self, valid): ''' Always returns False for Type fields. ''' return False def setValueFromShotgun(self): ''' Always returns False for Type fields. ''' return False def validate(self, forReal=False, force=False): ''' Always returns False for Type fields. ''' return False def value(self): ''' Returns the Entity type the field belongs to. ''' return self._value def _valueSg(self): ''' Returns the Entity type the field belongs to. For Type fields this will never query Shotgun. ''' return self._value
[ 2, 15069, 357, 66, 8, 2211, 11, 18106, 5648, 30567, 532, 399, 17213, 23257, 1040, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 2, 220, 220, 220, 220, 1635, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 198, 2, 220, 220, 220, 220, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 220, 220, 220, 220, 1635, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 198, 2, 220, 220, 220, 220, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 198, 2, 220, 220, 220, 220, 220, 220, 10314, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 220, 220, 220, 220, 1635, 16126, 262, 1438, 286, 262, 399, 17213, 23257, 1040, 4249, 262, 3891, 286, 663, 20420, 198, 2, 220, 220, 220, 220, 220, 220, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 428, 3788, 198, 2, 220, 220, 220, 220, 220, 220, 1231, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 5357, 198, 2, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 8959, 49094, 198, 2, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 198, 2, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 399, 17213, 6489, 7340, 20913, 9348, 43031, 19146, 7473, 15529, 198, 2, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 198, 2, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 198, 2, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 198, 2, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 198, 2, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 3963, 12680, 198, 2, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 2, 198, 198, 834, 439, 834, 796, 685, 198, 220, 705, 50, 70, 15878, 9787, 3524, 3256, 198, 220, 705, 50, 70, 15878, 10258, 3256, 198, 220, 705, 50, 70, 15878, 10258, 17, 3256, 198, 220, 705, 50, 70, 15878, 10430, 3256, 198, 220, 705, 50, 70, 15878, 10430, 7575, 3256, 198, 220, 705, 50, 70, 15878, 32398, 3256, 198, 220, 705, 50, 70, 15878, 32398, 29800, 3256, 198, 220, 705, 50, 70, 15878, 43879, 3256, 198, 220, 705, 50, 70, 15878, 2389, 3256, 198, 220, 705, 50, 70, 15878, 5159, 3256, 198, 220, 705, 50, 70, 15878, 5317, 3256, 198, 220, 705, 50, 70, 15878, 4653, 1564, 8053, 3256, 198, 220, 705, 50, 70, 15878, 24835, 8053, 3256, 198, 220, 705, 50, 70, 15878, 8206, 3256, 198, 220, 705, 50, 70, 15878, 6030, 3256, 198, 220, 705, 50, 70, 15878, 28165, 6, 198, 60, 198, 198, 2, 11361, 17944, 198, 11748, 4866, 198, 11748, 4818, 8079, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 4704, 278, 198, 11748, 2956, 297, 571, 17, 198, 11748, 3992, 40259, 198, 198, 2, 770, 8265, 17944, 198, 11748, 34198, 1581, 44, 198, 198, 4871, 311, 70, 15878, 9787, 3524, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 257, 20512, 1988, 329, 257, 2198, 3524, 13, 198, 220, 705, 7061, 198, 198, 4871, 311, 70, 15878, 10258, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 257, 1351, 286, 513, 493, 82, 326, 2380, 257, 46140, 3124, 657, 12, 13381, 13, 628, 220, 17934, 25, 685, 12762, 11, 13108, 11, 13108, 60, 198, 220, 705, 7061, 628, 220, 23337, 49864, 62, 46786, 796, 302, 13, 5589, 576, 7, 81, 6, 38016, 67, 28200, 59, 67, 28200, 59, 67, 28988, 11537, 198, 198, 4871, 311, 70, 15878, 10258, 17, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 257, 1351, 286, 513, 493, 82, 326, 2380, 257, 46140, 3124, 657, 12, 13381, 13, 628, 220, 13268, 262, 3124, 1441, 1988, 329, 15941, 290, 18983, 7232, 871, 3124, 2214, 13, 628, 220, 15941, 290, 18983, 7232, 871, 460, 423, 511, 3124, 2214, 900, 284, 257, 1988, 326, 2173, 198, 220, 284, 262, 3124, 2214, 286, 262, 11523, 2239, 393, 1628, 484, 5594, 284, 13, 628, 220, 45891, 8705, 284, 991, 869, 262, 1441, 2099, 366, 8043, 1, 290, 407, 198, 220, 28754, 262, 734, 314, 760, 826, 30, 198, 220, 705, 7061, 628, 220, 23337, 49864, 62, 46786, 796, 302, 13, 5589, 576, 7, 81, 6, 38016, 67, 28200, 59, 67, 28200, 59, 67, 28988, 11537, 198, 220, 23337, 49864, 62, 51, 1921, 42, 62, 46786, 796, 302, 13, 5589, 576, 7, 81, 6, 38016, 67, 28200, 59, 67, 28200, 59, 67, 10, 14726, 7, 79, 541, 4470, 62, 9662, 8, 11537, 198, 220, 23337, 49864, 62, 11909, 11159, 62, 46786, 796, 302, 13, 5589, 576, 7, 81, 6, 38016, 67, 28200, 59, 67, 28200, 59, 67, 10, 14726, 7, 16302, 8, 11537, 628, 220, 825, 2792, 15878, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16409, 262, 2792, 2214, 428, 3124, 2214, 460, 5457, 2792, 284, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 2116, 13557, 8726, 15878, 628, 220, 825, 2560, 31813, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 2560, 796, 2116, 13, 8000, 32398, 3419, 628, 220, 220, 220, 611, 2560, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 279, 6030, 796, 2560, 13, 15952, 2611, 12360, 22446, 3672, 3419, 628, 220, 220, 220, 611, 279, 6030, 6624, 705, 25714, 10354, 198, 220, 220, 220, 220, 220, 2116, 13557, 260, 25636, 79, 796, 2116, 13, 31553, 49864, 62, 51, 1921, 42, 62, 46786, 198, 220, 220, 220, 220, 220, 2116, 13557, 8726, 10100, 796, 705, 79, 541, 4470, 62, 9662, 6, 198, 220, 220, 220, 220, 220, 2116, 13557, 8726, 15878, 796, 705, 9662, 6, 198, 220, 220, 220, 1288, 361, 279, 6030, 6624, 705, 35645, 10354, 198, 220, 220, 220, 220, 220, 2116, 13557, 260, 25636, 79, 796, 2116, 13, 31553, 49864, 62, 11909, 11159, 62, 46786, 198, 220, 220, 220, 220, 220, 2116, 13557, 8726, 10100, 796, 705, 16302, 6, 198, 220, 220, 220, 220, 220, 2116, 13557, 8726, 15878, 28, 705, 16302, 6, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 260, 25636, 79, 796, 2116, 13, 31553, 49864, 62, 46786, 628, 220, 825, 1988, 7, 944, 11, 2792, 36, 2100, 4985, 28, 17821, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 1635, 357, 30388, 8, 2792, 36, 2100, 4985, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1649, 6407, 290, 262, 3124, 2214, 318, 257, 2792, 284, 1194, 20885, 338, 3124, 2214, 198, 220, 220, 220, 220, 220, 220, 220, 262, 1988, 286, 262, 6692, 3124, 2214, 481, 307, 4504, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 2792, 36, 2100, 4985, 318, 10352, 257, 4731, 743, 307, 4504, 2427, 286, 257, 1351, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1255, 796, 2208, 7, 50, 70, 15878, 10258, 17, 11, 2116, 737, 8367, 3419, 628, 220, 220, 220, 611, 1255, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 611, 407, 2792, 36, 2100, 4985, 290, 1255, 6624, 2116, 13557, 8726, 10100, 25, 198, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 2560, 796, 2116, 13, 8000, 32398, 3419, 628, 220, 220, 220, 611, 2560, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 611, 1255, 6624, 2116, 13557, 8726, 10100, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 220, 220, 649, 23004, 796, 17635, 628, 220, 220, 220, 220, 220, 329, 1312, 287, 1255, 13, 35312, 7, 41707, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 649, 23004, 13, 33295, 7, 600, 7, 72, 4008, 628, 220, 220, 220, 611, 1255, 6624, 2116, 13557, 8726, 10100, 25, 198, 220, 220, 220, 220, 220, 2792, 49201, 796, 2116, 13, 8000, 32398, 3419, 58, 944, 13557, 8726, 15878, 60, 628, 220, 220, 220, 220, 220, 611, 2792, 49201, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 220, 220, 1441, 2792, 49201, 17816, 8043, 20520, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 649, 23004, 796, 17635, 628, 220, 220, 220, 220, 220, 329, 1312, 287, 1255, 13, 35312, 7, 41707, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 649, 23004, 13, 33295, 7, 600, 7, 72, 4008, 198, 198, 4871, 311, 70, 15878, 10430, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 257, 3128, 4731, 628, 220, 17934, 25, 366, 23664, 12, 486, 12, 1270, 1911, 198, 220, 705, 7061, 628, 220, 23337, 49864, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 59, 67, 90, 19, 92, 12, 59, 67, 90, 17, 92, 12, 59, 67, 90, 17, 92, 11537, 198, 198, 4871, 311, 70, 15878, 10430, 7575, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 257, 21015, 4818, 8079, 2134, 13, 198, 220, 705, 7061, 198, 198, 4871, 311, 70, 15878, 32398, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 257, 2792, 284, 1194, 20885, 13, 198, 220, 705, 7061, 628, 220, 1303, 29113, 29113, 7804, 4242, 2, 198, 220, 1303, 198, 220, 1303, 30023, 9863, 8643, 13896, 198, 220, 1303, 198, 220, 1303, 4377, 2458, 284, 4808, 6738, 15878, 6601, 11, 4808, 2617, 11395, 11, 4808, 1462, 15878, 6601, 11, 1988, 5499, 198, 220, 1303, 815, 635, 307, 5625, 284, 262, 311, 70, 12982, 15878, 23839, 32398, 1398, 13, 198, 220, 1303, 198, 220, 1303, 29113, 29113, 7804, 4242, 2, 628, 220, 825, 1988, 7, 944, 11, 264, 70, 28985, 15878, 82, 28, 14202, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16409, 262, 7032, 1988, 355, 257, 20885, 2134, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 1635, 357, 4868, 8, 264, 70, 28985, 15878, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 2214, 3891, 284, 48040, 262, 4504, 20885, 351, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1988, 796, 2208, 7, 50, 70, 15878, 32398, 11, 2116, 737, 8367, 3419, 628, 220, 220, 220, 2560, 796, 2116, 13, 8000, 32398, 3419, 628, 220, 220, 220, 611, 1988, 6624, 6045, 393, 2560, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 4637, 796, 2560, 13, 38659, 3419, 628, 220, 220, 220, 611, 318, 39098, 7, 45213, 28985, 15878, 82, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 264, 70, 28985, 15878, 82, 796, 264, 70, 28985, 15878, 82, 13, 1136, 7, 8000, 13, 4906, 11, 6045, 8, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 45213, 28985, 15878, 82, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 264, 70, 28985, 15878, 82, 796, 685, 45213, 28985, 15878, 82, 60, 628, 220, 220, 220, 611, 264, 70, 28985, 15878, 82, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 264, 70, 28985, 15878, 82, 796, 4637, 13, 12286, 32398, 20746, 15878, 82, 7, 8367, 17816, 4906, 6, 12962, 628, 220, 220, 220, 220, 220, 611, 18896, 7, 45213, 28985, 15878, 82, 8, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 70, 28985, 15878, 82, 796, 6045, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 2834, 15878, 82, 796, 900, 7, 45213, 28985, 15878, 82, 8, 628, 220, 220, 220, 220, 220, 3131, 15878, 82, 796, 17635, 628, 220, 220, 220, 220, 220, 611, 705, 439, 6, 287, 2834, 15878, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2834, 15878, 82, 13, 28956, 10786, 439, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 3131, 15878, 82, 796, 2560, 13, 3245, 36690, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 705, 12286, 6, 287, 2834, 15878, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2834, 15878, 82, 13, 28956, 10786, 12286, 11537, 198, 220, 220, 220, 220, 220, 1288, 361, 705, 12286, 6, 287, 2834, 15878, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2834, 15878, 82, 13, 28956, 10786, 12286, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 3131, 15878, 82, 796, 4637, 13, 12286, 32398, 20746, 15878, 82, 7, 8367, 17816, 4906, 6, 12962, 628, 220, 220, 220, 220, 220, 2834, 15878, 82, 13, 19119, 7, 26086, 15878, 82, 8, 628, 220, 220, 220, 220, 220, 611, 18896, 7, 31216, 15878, 82, 8, 18189, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 70, 28985, 15878, 82, 796, 1351, 7, 31216, 15878, 82, 8, 198, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 70, 28985, 15878, 82, 796, 6045, 628, 220, 220, 220, 1255, 796, 4637, 13557, 17953, 32398, 7, 198, 220, 220, 220, 220, 220, 1988, 17816, 4906, 6, 4357, 198, 220, 220, 220, 220, 220, 1988, 11, 198, 220, 220, 220, 220, 220, 264, 70, 28985, 15878, 82, 28, 45213, 28985, 15878, 82, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 1255, 198, 198, 4871, 311, 70, 15878, 32398, 29800, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 257, 1351, 286, 6117, 284, 584, 7232, 871, 13, 628, 220, 17934, 25, 685, 32398, 486, 11, 20885, 2999, 11, 2644, 60, 198, 220, 705, 7061, 628, 220, 1303, 29113, 29113, 7804, 4242, 2, 198, 220, 1303, 198, 220, 1303, 30023, 9863, 8643, 13896, 198, 220, 1303, 198, 220, 1303, 4377, 2458, 284, 4808, 6738, 15878, 6601, 11, 4808, 2617, 11395, 11, 4808, 1462, 15878, 6601, 11, 1988, 5499, 198, 220, 1303, 815, 635, 307, 5625, 284, 262, 311, 70, 12982, 15878, 23839, 29800, 32398, 1398, 13, 198, 220, 1303, 198, 220, 1303, 29113, 29113, 7804, 4242, 2, 628, 220, 825, 1988, 7, 944, 11, 264, 70, 28985, 15878, 82, 28, 14202, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16409, 262, 7032, 1988, 355, 257, 1351, 286, 20885, 5563, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 1635, 357, 11600, 8, 264, 70, 28985, 15878, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 360, 713, 286, 9312, 3858, 290, 2214, 3891, 284, 48040, 262, 4504, 7232, 871, 198, 220, 220, 220, 220, 220, 220, 220, 351, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1255, 796, 2208, 7, 50, 70, 15878, 32398, 29800, 11, 2116, 737, 8367, 3419, 628, 220, 220, 220, 611, 1255, 287, 685, 14202, 11, 17635, 5974, 198, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 2560, 796, 2116, 13, 8000, 32398, 3419, 628, 220, 220, 220, 611, 2560, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 1441, 4866, 13, 22089, 30073, 7, 20274, 8, 628, 220, 220, 220, 4637, 796, 2560, 13, 38659, 3419, 198, 220, 220, 220, 32815, 796, 4637, 13, 15952, 2611, 3419, 628, 220, 220, 220, 45218, 796, 17635, 628, 220, 220, 220, 10662, 7936, 796, 4637, 13, 22766, 13798, 3419, 628, 220, 220, 220, 10662, 7936, 13, 9967, 3419, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 329, 1312, 287, 1255, 25, 198, 220, 220, 220, 220, 220, 220, 220, 256, 796, 1312, 17816, 4906, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 1312, 28985, 15878, 82, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 264, 70, 28985, 15878, 82, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 264, 70, 28985, 15878, 82, 13, 10134, 62, 2539, 7, 83, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15878, 82, 796, 264, 70, 28985, 15878, 82, 58, 83, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 15878, 82, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 28985, 15878, 82, 796, 4637, 13, 12286, 32398, 20746, 15878, 82, 7, 83, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 72, 28985, 15878, 82, 8, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 28985, 15878, 82, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2834, 15878, 82, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 72, 15878, 82, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2834, 15878, 82, 796, 900, 26933, 72, 15878, 82, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2834, 15878, 82, 796, 900, 7, 72, 15878, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3131, 15878, 82, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 439, 6, 287, 2834, 15878, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2834, 15878, 82, 13, 28956, 10786, 439, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3131, 15878, 82, 796, 32815, 13, 26858, 12360, 7, 83, 737, 3245, 36690, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 12286, 6, 287, 2834, 15878, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2834, 15878, 82, 13, 28956, 10786, 12286, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 12286, 6, 287, 2834, 15878, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2834, 15878, 82, 13, 28956, 10786, 12286, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3131, 15878, 82, 796, 4637, 13, 12286, 32398, 20746, 15878, 82, 7, 83, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2834, 15878, 82, 13, 19119, 7, 26086, 15878, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 31216, 15878, 82, 8, 18189, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 28985, 15878, 82, 796, 1351, 7, 31216, 15878, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 28985, 15878, 82, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 28985, 15878, 82, 796, 4637, 13, 12286, 32398, 20746, 15878, 82, 7, 83, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 72, 28985, 15878, 82, 8, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 28985, 15878, 82, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 28985, 15878, 82, 796, 4637, 13, 12286, 32398, 20746, 15878, 82, 7, 83, 8, 628, 220, 220, 220, 220, 220, 220, 220, 9312, 796, 4637, 13557, 17953, 32398, 7, 83, 11, 1312, 11, 264, 70, 28985, 15878, 82, 28, 72, 28985, 15878, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 33295, 7, 26858, 8, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 10662, 7936, 13, 403, 9967, 3419, 628, 220, 220, 220, 1441, 45218, 198, 198, 4871, 311, 70, 15878, 43879, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 257, 12178, 13, 198, 220, 705, 7061, 198, 198, 4871, 311, 70, 15878, 5317, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 281, 18253, 13, 198, 220, 705, 7061, 198, 198, 4871, 311, 70, 15878, 4653, 1564, 8053, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 257, 2420, 4731, 326, 318, 422, 257, 1351, 6356, 13, 628, 220, 383, 2214, 743, 3994, 257, 1351, 286, 4938, 3815, 543, 618, 262, 2214, 318, 900, 389, 198, 220, 3688, 290, 281, 35528, 8754, 618, 262, 1988, 318, 407, 257, 4938, 530, 13, 198, 220, 705, 7061, 198, 198, 4871, 311, 70, 15878, 32634, 13821, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 11389, 13821, 1366, 13, 198, 220, 705, 7061, 198, 198, 4871, 311, 70, 15878, 22093, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 5860, 281, 20885, 393, 1351, 286, 7232, 871, 1912, 319, 257, 2989, 198, 220, 5408, 13, 628, 220, 21293, 7032, 13, 198, 220, 705, 7061, 628, 220, 360, 6158, 62, 31553, 49864, 796, 302, 13, 5589, 576, 7, 81, 6, 38016, 67, 90, 19, 92, 13219, 38016, 67, 90, 17, 92, 13219, 38016, 67, 90, 17, 30072, 357, 59, 67, 90, 17, 92, 2599, 38016, 67, 90, 17, 92, 2599, 38016, 67, 90, 17, 30072, 18119, 11537, 628, 220, 825, 4808, 11249, 11187, 605, 18257, 7, 944, 11, 3403, 11, 7508, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 10934, 82, 262, 12219, 10088, 2989, 3912, 290, 5860, 340, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1255, 796, 17635, 628, 220, 220, 220, 2560, 796, 2116, 13, 8000, 32398, 3419, 198, 220, 220, 220, 4637, 796, 2560, 13, 38659, 3419, 628, 220, 220, 220, 329, 269, 287, 3403, 25, 198, 220, 220, 220, 220, 220, 611, 269, 13, 10134, 62, 2539, 10786, 6404, 605, 62, 46616, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 12219, 18257, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17561, 1756, 10354, 2116, 13557, 11249, 11187, 605, 18257, 7, 66, 17816, 17561, 1756, 6, 4357, 7508, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6404, 605, 62, 46616, 10354, 269, 17816, 6404, 605, 62, 46616, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 33295, 7, 6404, 605, 18257, 8, 198, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 649, 40161, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 269, 12360, 796, 7508, 13, 3245, 12360, 7, 66, 17816, 6978, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 269, 6030, 796, 269, 12360, 13, 7783, 6030, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 29113, 4242, 21017, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7536, 290, 7536, 3862, 7032, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 29113, 4242, 21017, 198, 220, 220, 220, 220, 220, 220, 220, 611, 269, 6030, 287, 685, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 35, 6158, 11, 34198, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 35, 6158, 62, 34694, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2638, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 1485, 2078, 2154, 5999, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 269, 17816, 27160, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 85, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 410, 13, 10134, 62, 2539, 10786, 43762, 62, 820, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 796, 4818, 8079, 13, 2435, 46491, 85, 17816, 2435, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 796, 4818, 8079, 13, 4475, 13, 40838, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 67, 796, 410, 17816, 43762, 62, 820, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 67, 6624, 705, 39532, 6254, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 796, 3128, 13, 33491, 7, 820, 28, 4475, 13, 820, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 374, 67, 6624, 705, 8505, 6432, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 796, 3128, 13, 33491, 7, 820, 28, 4475, 13, 820, 532, 352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 83, 796, 4818, 8079, 13, 19608, 8079, 13, 24011, 500, 7, 4475, 11, 640, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 45344, 1110, 2386, 6359, 779, 3384, 66, 640, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 83, 13, 33491, 7, 22877, 10951, 28, 14202, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 40161, 13, 33295, 7, 28664, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 40161, 13, 33295, 7, 85, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 85, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2989, 796, 360, 6158, 62, 31553, 49864, 13, 15699, 7, 85, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2989, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 796, 4818, 8079, 13, 2435, 7, 12947, 13, 8094, 7, 19, 828, 2989, 13, 8094, 7, 20, 828, 2989, 13, 8094, 7, 21, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 796, 4818, 8079, 13, 4475, 7, 12947, 13, 8094, 7, 16, 828, 2989, 13, 8094, 7, 17, 828, 2989, 13, 8094, 7, 18, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 83, 796, 4818, 8079, 13, 19608, 8079, 13, 24011, 500, 7, 4475, 11, 640, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 83, 13, 33491, 7, 22877, 10951, 28, 14202, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 40161, 13, 33295, 7, 315, 66, 62, 1462, 62, 12001, 7, 28664, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 40161, 13, 33295, 7, 85, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 29113, 4242, 21017, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20885, 290, 15237, 12, 32398, 7032, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 29113, 4242, 21017, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 269, 6030, 287, 685, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 3525, 9050, 11, 34198, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 44, 16724, 40, 62, 3525, 9050, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 269, 17816, 27160, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 410, 17816, 3672, 20520, 6624, 705, 11297, 4064, 82, 6, 4064, 2560, 13, 4906, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 40161, 13, 33295, 7, 8000, 13, 1462, 32398, 15878, 6601, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 410, 17816, 3672, 20520, 6624, 705, 5308, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17594, 796, 28686, 13, 1136, 24330, 10786, 29904, 20608, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 4637, 13, 19796, 3198, 10786, 20490, 12982, 3256, 16410, 6, 38235, 3256, 705, 271, 3256, 17594, 60, 4357, 37250, 38235, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 371, 2797, 320, 12331, 10786, 49736, 2214, 5906, 284, 1064, 2836, 36521, 82, 1, 287, 34198, 6, 4064, 17594, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 40161, 13, 33295, 7, 7220, 13, 1462, 32398, 15878, 6601, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 40161, 13, 33295, 7, 85, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2141, 2147, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 40161, 796, 269, 17816, 27160, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 269, 17816, 27160, 20520, 796, 649, 40161, 628, 220, 220, 220, 220, 220, 220, 220, 1619, 269, 17816, 5275, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 33295, 7, 66, 8, 628, 220, 220, 220, 1441, 1255, 628, 220, 825, 4808, 11249, 18243, 22417, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 39628, 27369, 796, 4866, 13, 22089, 30073, 7, 944, 13557, 10379, 1010, 27369, 8, 628, 220, 220, 220, 12219, 41472, 796, 1391, 198, 220, 220, 220, 220, 220, 705, 17561, 1756, 10354, 2116, 13557, 11249, 11187, 605, 18257, 7, 198, 220, 220, 220, 220, 220, 220, 220, 39628, 27369, 17816, 17561, 1756, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8000, 32398, 22446, 38659, 22446, 15952, 2611, 22446, 26858, 12360, 7, 944, 13, 26858, 6030, 28955, 198, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 705, 6404, 605, 62, 46616, 10354, 39628, 27369, 17816, 6404, 605, 62, 46616, 20520, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 2116, 13557, 12947, 22417, 796, 12219, 41472, 628, 220, 825, 4808, 6738, 15878, 6601, 7, 944, 11, 264, 70, 6601, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 1441, 10352, 329, 10638, 7032, 11, 484, 460, 407, 307, 900, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 611, 2116, 13557, 8367, 6624, 264, 70, 6601, 25, 198, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 2116, 13557, 8367, 796, 264, 70, 6601, 628, 220, 220, 220, 1441, 6407, 628, 220, 825, 9312, 6030, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16409, 262, 2099, 286, 20885, 262, 10638, 2214, 481, 1441, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 2116, 13557, 26858, 6030, 628, 220, 825, 468, 6935, 270, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 5860, 10352, 329, 10638, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 4808, 259, 12102, 378, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1024, 40676, 262, 2989, 8106, 523, 663, 3170, 757, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 2116, 13557, 12947, 22417, 796, 6045, 628, 220, 825, 318, 7407, 4674, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 1441, 10352, 329, 10638, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 318, 20746, 540, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3412, 996, 10638, 7032, 460, 307, 42517, 798, 422, 34198, 1441, 10352, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 900, 19242, 6935, 270, 7, 944, 11, 4938, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 21293, 7032, 460, 470, 307, 5364, 11, 1464, 5860, 10352, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 900, 19242, 28985, 10260, 7, 944, 11, 4938, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 21293, 7032, 18548, 307, 42517, 798, 523, 4145, 484, 460, 407, 307, 4469, 5954, 13, 628, 220, 220, 220, 16622, 5860, 10352, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 4808, 2617, 11395, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 1441, 10352, 329, 10638, 7032, 11, 484, 460, 407, 307, 900, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 198, 198, 4871, 311, 70, 15878, 24835, 8053, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 257, 1351, 286, 13042, 13, 628, 220, 383, 2214, 743, 3994, 257, 1351, 286, 4938, 3815, 543, 618, 262, 2214, 318, 900, 389, 198, 220, 3688, 290, 281, 35528, 8754, 618, 262, 1988, 318, 407, 257, 4938, 530, 13, 198, 220, 705, 7061, 198, 198, 4871, 311, 70, 15878, 8206, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 257, 965, 13, 198, 220, 705, 7061, 198, 198, 4871, 311, 70, 15878, 5159, 7, 50, 70, 15878, 8206, 2599, 198, 220, 705, 7061, 198, 220, 4091, 311, 70, 15878, 8206, 13, 198, 220, 705, 7061, 628, 220, 825, 4321, 35523, 7, 944, 11, 3108, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 50093, 262, 2939, 284, 262, 7368, 3108, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 19016, 796, 2116, 13, 8367, 3419, 628, 220, 220, 220, 611, 19016, 6624, 6045, 393, 19016, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 4, 82, 1988, 318, 6565, 6, 4064, 2116, 8, 628, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 6978, 8, 290, 28686, 13, 6978, 13, 9409, 343, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 5298, 440, 5188, 81, 1472, 10786, 22915, 3108, 36521, 82, 1, 318, 257, 8619, 6, 4064, 3108, 8, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 1366, 796, 2956, 297, 571, 17, 13, 6371, 9654, 7, 6371, 8, 628, 220, 220, 220, 220, 220, 277, 796, 1280, 7, 6978, 11, 705, 86, 11537, 628, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 7890, 13, 961, 28955, 628, 220, 220, 220, 220, 220, 277, 13, 19836, 3419, 198, 220, 220, 220, 2845, 35528, 11, 304, 25, 198, 220, 220, 220, 220, 220, 34198, 1581, 44, 13, 11187, 1362, 15878, 13, 18224, 10786, 4, 7, 3245, 8, 82, 25, 4064, 7, 18224, 8, 82, 3256, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3245, 10354, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18224, 10354, 304, 198, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 220, 220, 5298, 43160, 12331, 10786, 4, 82, 281, 4049, 1609, 1522, 981, 22023, 262, 2393, 6, 4064, 2116, 8, 628, 220, 220, 220, 1441, 6407, 628, 220, 825, 1280, 818, 46532, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 8670, 641, 262, 2939, 287, 257, 3992, 12, 40259, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 19016, 796, 2116, 13, 8367, 3419, 628, 220, 220, 220, 611, 19016, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 19016, 796, 10148, 628, 220, 220, 220, 3992, 40259, 13, 9654, 7, 6371, 8, 628, 220, 825, 9516, 35523, 7, 944, 11, 3108, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 36803, 82, 262, 7368, 2939, 2393, 290, 5621, 340, 355, 262, 7232, 871, 40901, 13, 628, 220, 220, 220, 16409, 262, 3460, 15520, 4686, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 2560, 796, 2116, 13, 8000, 32398, 3419, 628, 220, 220, 220, 611, 407, 2560, 13, 1069, 1023, 33529, 198, 220, 220, 220, 220, 220, 5298, 43160, 12331, 10786, 8000, 9312, 857, 407, 2152, 11537, 628, 220, 220, 220, 351, 2116, 25, 198, 220, 220, 220, 220, 220, 611, 2116, 13, 10134, 6935, 270, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 10786, 5171, 407, 9516, 257, 649, 40901, 981, 262, 2939, 2214, 468, 281, 555, 12, 9503, 863, 4296, 11537, 628, 220, 220, 220, 220, 220, 2560, 796, 2116, 13, 8000, 32398, 3419, 628, 220, 220, 220, 220, 220, 611, 2560, 6624, 6045, 393, 407, 2560, 13, 38476, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 10786, 8000, 9312, 857, 407, 7160, 11537, 628, 220, 220, 220, 220, 220, 264, 70, 38659, 796, 2560, 13, 38659, 22446, 38659, 3419, 628, 220, 220, 220, 220, 220, 351, 34198, 1581, 44, 13, 9693, 2394, 38, 4944, 62, 17614, 62, 36840, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 70, 23004, 796, 264, 70, 38659, 13, 25850, 62, 400, 20566, 7, 8000, 13, 4906, 11, 2560, 17816, 312, 6, 4357, 3108, 8, 628, 220, 220, 220, 220, 220, 2560, 13, 27261, 26933, 944, 13, 3672, 3419, 12962, 628, 220, 220, 220, 220, 220, 1441, 264, 70, 23004, 628, 220, 825, 9516, 39750, 36311, 35523, 7, 944, 11, 3108, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 36803, 82, 262, 7368, 2939, 2393, 290, 5621, 340, 355, 262, 7232, 871, 781, 320, 36311, 198, 220, 220, 220, 40901, 13, 628, 220, 220, 220, 16409, 262, 3460, 15520, 4686, 13, 628, 220, 220, 220, 5740, 25, 198, 220, 220, 220, 770, 2163, 318, 691, 4938, 329, 10628, 7232, 871, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 351, 2116, 25, 198, 220, 220, 220, 220, 220, 611, 2116, 13, 10134, 6935, 270, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 10786, 5171, 407, 9516, 257, 649, 40901, 981, 262, 2939, 2214, 468, 281, 555, 12, 9503, 863, 4296, 11537, 628, 220, 220, 220, 220, 220, 2560, 796, 2116, 13, 8000, 32398, 3419, 628, 220, 220, 220, 220, 220, 611, 407, 2560, 13, 4906, 6624, 705, 14815, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 10786, 8807, 4938, 319, 10628, 7232, 871, 11537, 628, 220, 220, 220, 220, 220, 611, 2560, 6624, 6045, 393, 407, 2560, 13, 38476, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 10786, 8000, 9312, 857, 407, 7160, 11537, 628, 220, 220, 220, 220, 220, 264, 70, 38659, 796, 2560, 13, 38659, 22446, 38659, 3419, 628, 220, 220, 220, 220, 220, 264, 70, 23004, 796, 264, 70, 38659, 13, 25850, 62, 26240, 36311, 62, 400, 20566, 7, 8000, 13, 4906, 11, 2560, 17816, 312, 6, 4357, 3108, 8, 628, 220, 220, 220, 220, 220, 2560, 13, 27261, 26933, 944, 13, 3672, 3419, 12962, 628, 220, 220, 220, 220, 220, 1441, 264, 70, 23004, 198, 198, 4871, 311, 70, 15878, 28165, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 2599, 198, 220, 705, 7061, 198, 220, 20885, 2214, 326, 7000, 257, 19016, 13, 628, 220, 17934, 10289, 25, 1391, 198, 220, 220, 220, 705, 11299, 62, 4906, 10354, 705, 9060, 14, 73, 22071, 3256, 198, 220, 220, 220, 705, 8726, 62, 4906, 10354, 705, 25850, 3256, 198, 220, 220, 220, 705, 3672, 10354, 705, 65, 672, 13, 9479, 3256, 198, 220, 220, 220, 705, 6371, 10354, 705, 4023, 1378, 2503, 13, 11990, 13, 785, 14, 65, 672, 13, 9479, 6, 198, 220, 1782, 628, 220, 17934, 10714, 25, 1391, 198, 220, 220, 220, 705, 11299, 62, 4906, 10354, 705, 9060, 14, 73, 22071, 3256, 198, 220, 220, 220, 705, 8726, 62, 4906, 10354, 705, 12001, 3256, 198, 220, 220, 220, 705, 3672, 10354, 705, 65, 672, 13, 9479, 3256, 198, 220, 220, 220, 705, 12001, 62, 35350, 10354, 705, 66, 14079, 29510, 14, 65, 672, 13, 9479, 6, 198, 220, 1782, 198, 220, 705, 7061, 628, 220, 825, 19016, 7, 944, 11, 1280, 818, 46532, 28, 25101, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16409, 262, 19016, 1988, 13, 628, 220, 220, 220, 1649, 262, 1822, 366, 9654, 818, 46532, 1, 318, 900, 284, 6407, 788, 262, 4504, 10289, 481, 198, 220, 220, 220, 635, 307, 4721, 287, 262, 5361, 3341, 4277, 3992, 12, 40259, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1366, 796, 2116, 13, 8367, 3419, 628, 220, 220, 220, 1255, 796, 10148, 628, 220, 220, 220, 611, 1366, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 1255, 796, 10148, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1366, 17816, 6371, 20520, 198, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 611, 1280, 818, 46532, 25, 198, 220, 220, 220, 220, 220, 3992, 40259, 13, 9654, 7, 6371, 8, 628, 220, 220, 220, 1441, 1255, 198, 198, 2, 17296, 262, 7032, 13, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 50084, 39758, 11, 311, 70, 15878, 9787, 3524, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 46786, 11, 311, 70, 15878, 10258, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 46786, 17, 11, 311, 70, 15878, 10258, 17, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 35, 6158, 11, 311, 70, 15878, 10430, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 35, 6158, 62, 34694, 11, 311, 70, 15878, 10430, 7575, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 3525, 9050, 11, 311, 70, 15878, 32398, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 3697, 46, 1404, 11, 311, 70, 15878, 43879, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 3955, 11879, 11, 311, 70, 15878, 5159, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 12394, 11, 311, 70, 15878, 5317, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 45849, 11, 311, 70, 15878, 4653, 1564, 8053, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 44, 16724, 40, 62, 3525, 9050, 11, 311, 70, 15878, 32398, 29800, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 35009, 12576, 14887, 17534, 11, 311, 70, 15878, 32634, 13821, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 35744, 2937, 62, 45849, 11, 311, 70, 15878, 4653, 1564, 8053, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 50, 5883, 44, 13153, 11, 311, 70, 15878, 22093, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 42197, 62, 45849, 11, 311, 70, 15878, 24835, 8053, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 32541, 11, 311, 70, 15878, 8206, 8, 198, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 30238, 15878, 9487, 7, 28512, 7145, 1581, 44, 13, 50, 70, 15878, 13, 26087, 27064, 62, 25216, 62, 21886, 11, 311, 70, 15878, 28165, 8, 198, 198, 29113, 29113, 14468, 198, 2, 198, 2, 8562, 7032, 198, 2, 198, 29113, 29113, 14468, 198, 198, 4871, 311, 70, 15878, 2389, 7, 50, 70, 15878, 5317, 2599, 198, 220, 705, 7061, 198, 220, 7663, 326, 5860, 262, 2560, 7232, 871, 5994, 13, 198, 220, 705, 7061, 628, 220, 1303, 2141, 407, 1249, 262, 2214, 284, 5793, 11, 645, 966, 287, 340, 13, 628, 220, 825, 12515, 378, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 8314, 2147, 329, 4522, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 318, 30562, 540, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 5860, 10352, 329, 4522, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 900, 19242, 28985, 10260, 7, 944, 11, 4938, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 5860, 10352, 329, 4522, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 900, 47139, 7, 944, 11, 4938, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 5860, 10352, 329, 4522, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 900, 11395, 4863, 28512, 7145, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 5860, 10352, 329, 4522, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 26571, 7, 944, 11, 329, 15633, 28, 25101, 11, 2700, 28, 25101, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 5860, 10352, 329, 4522, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 1988, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16409, 262, 1988, 286, 262, 4522, 2214, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 2116, 13557, 8367, 628, 220, 825, 4808, 8367, 50, 70, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16409, 262, 1988, 286, 262, 4522, 2214, 13, 628, 220, 220, 220, 1114, 4522, 7032, 428, 481, 1239, 12405, 34198, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 2116, 13557, 8367, 198, 198, 4871, 311, 70, 15878, 6030, 7, 50, 70, 15878, 8206, 2599, 198, 220, 705, 7061, 198, 220, 7663, 326, 5860, 262, 2560, 7232, 871, 5994, 13, 198, 220, 705, 7061, 628, 220, 1303, 2141, 407, 1249, 262, 2214, 284, 5793, 11, 645, 966, 287, 340, 13, 628, 220, 825, 12515, 378, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 5860, 10352, 329, 5994, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 318, 30562, 540, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 5860, 10352, 329, 5994, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 900, 19242, 28985, 10260, 7, 944, 11, 4938, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 5860, 10352, 329, 5994, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 900, 47139, 7, 944, 11, 4938, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 5860, 10352, 329, 5994, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 900, 11395, 4863, 28512, 7145, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 5860, 10352, 329, 5994, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 26571, 7, 944, 11, 329, 15633, 28, 25101, 11, 2700, 28, 25101, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16622, 5860, 10352, 329, 5994, 7032, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 10352, 628, 220, 825, 1988, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16409, 262, 20885, 2099, 262, 2214, 14448, 284, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 2116, 13557, 8367, 628, 220, 825, 4808, 8367, 50, 70, 7, 944, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 16409, 262, 20885, 2099, 262, 2214, 14448, 284, 13, 628, 220, 220, 220, 1114, 5994, 7032, 428, 481, 1239, 12405, 34198, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1441, 2116, 13557, 8367, 198 ]
2.556234
8,838
import numpy as np
[ 11748, 299, 32152, 355, 45941, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220 ]
1.333333
42
# Advent of Code 2018, Day 16 # (c) blu3r4y from collections import namedtuple from parse import parse OPERATIONS = ['addr', 'addi', 'mulr', 'muli', 'banr', 'bani', 'borr', 'bori', 'setr', 'seti', 'gtir', 'gtri', 'gtrr', 'eqir', 'eqri', 'eqrr'] Observation = namedtuple("Observation", ["instruction", "before", "after"]) if __name__ == "__main__": print(part1(_parse(open(r"../assets/day16.txt").readlines())[0])) print(part2(*_parse(open(r"../assets/day16.txt").readlines())))
[ 2, 33732, 286, 6127, 2864, 11, 3596, 1467, 198, 2, 357, 66, 8, 48208, 18, 81, 19, 88, 198, 198, 6738, 17268, 1330, 3706, 83, 29291, 198, 198, 6738, 21136, 1330, 21136, 198, 198, 31054, 18421, 796, 37250, 29851, 3256, 705, 2860, 72, 3256, 705, 76, 377, 81, 3256, 705, 76, 32176, 3256, 705, 3820, 81, 3256, 705, 65, 3216, 3256, 705, 2865, 81, 3256, 705, 2865, 72, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2617, 81, 3256, 705, 2617, 72, 3256, 705, 13655, 343, 3256, 705, 13655, 380, 3256, 705, 70, 2213, 81, 3256, 705, 27363, 343, 3256, 705, 27363, 380, 3256, 705, 27363, 21062, 20520, 198, 198, 31310, 13208, 796, 3706, 83, 29291, 7203, 31310, 13208, 1600, 14631, 8625, 2762, 1600, 366, 19052, 1600, 366, 8499, 8973, 8, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 7, 3911, 16, 28264, 29572, 7, 9654, 7, 81, 1, 40720, 19668, 14, 820, 1433, 13, 14116, 11074, 961, 6615, 28955, 58, 15, 60, 4008, 198, 220, 220, 220, 3601, 7, 3911, 17, 46491, 62, 29572, 7, 9654, 7, 81, 1, 40720, 19668, 14, 820, 1433, 13, 14116, 11074, 961, 6615, 3419, 22305, 198 ]
2.40566
212
from keras.models import load_model import keras.preprocessing.text as kpt from keras.preprocessing.sequence import pad_sequences import sys import os import json import numpy as np from utils import ConfigurationManager, FileManager ## global dictionary global model dictionaryUrl = os.path.join(FileManager.getRootUrl(), 'tmp/wordindex.json') dictionary = json.loads(FileManager.readFile(dictionaryUrl)) modelUrl = os.path.join(FileManager.getRootUrl(), 'tmp/code_model.h5') model = load_model(modelUrl) ## ## if __name__ == "__main__": main()
[ 6738, 41927, 292, 13, 27530, 1330, 3440, 62, 19849, 198, 11748, 41927, 292, 13, 3866, 36948, 13, 5239, 355, 479, 457, 198, 6738, 41927, 292, 13, 3866, 36948, 13, 43167, 1330, 14841, 62, 3107, 3007, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 33918, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 3384, 4487, 1330, 28373, 13511, 11, 9220, 13511, 628, 198, 2235, 198, 198, 20541, 22155, 198, 20541, 2746, 198, 198, 67, 14188, 28165, 796, 28686, 13, 6978, 13, 22179, 7, 8979, 13511, 13, 1136, 30016, 28165, 22784, 705, 22065, 14, 4775, 9630, 13, 17752, 11537, 198, 67, 14188, 796, 33918, 13, 46030, 7, 8979, 13511, 13, 961, 8979, 7, 67, 14188, 28165, 4008, 198, 198, 19849, 28165, 796, 28686, 13, 6978, 13, 22179, 7, 8979, 13511, 13, 1136, 30016, 28165, 22784, 705, 22065, 14, 8189, 62, 19849, 13, 71, 20, 11537, 198, 19849, 796, 3440, 62, 19849, 7, 19849, 28165, 8, 628, 198, 2235, 628, 198, 198, 2235, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.139665
179
import pandas as pd from PIL import Image # www.pythonware.com/library/pil/handbook from PIL import ImageFont, ImageDraw, ImageEnhance from PIL import ImageFilter import os #import time import logging from Animate.Items import * from Animate.Properties import * from Animate.Constants import * LOG_FILENAME = '__logfile.txt' logging.basicConfig(filename=LOG_FILENAME,level=logging.DEBUG)
[ 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 350, 4146, 1330, 7412, 1303, 7324, 13, 29412, 1574, 13, 785, 14, 32016, 14, 79, 346, 14, 4993, 2070, 198, 6738, 350, 4146, 1330, 7412, 23252, 11, 7412, 25302, 11, 7412, 35476, 590, 198, 6738, 350, 4146, 1330, 7412, 22417, 198, 198, 11748, 28686, 198, 2, 11748, 640, 198, 11748, 18931, 628, 198, 6738, 1052, 1920, 13, 23022, 1330, 1635, 198, 6738, 1052, 1920, 13, 2964, 18200, 1330, 1635, 198, 6738, 1052, 1920, 13, 34184, 1187, 1330, 1635, 198, 198, 25294, 62, 46700, 1677, 10067, 796, 705, 834, 6404, 7753, 13, 14116, 6, 198, 6404, 2667, 13, 35487, 16934, 7, 34345, 28, 25294, 62, 46700, 1677, 10067, 11, 5715, 28, 6404, 2667, 13, 30531, 8, 628, 628 ]
3.142857
126
import os def get_project_folder(): ''' Gives us the path to MGR-Project-Code from a list of allowed folders. :return: ''' PATH_ALTERNATIVES = ['/home/ekmek/Project II/MGR-Project-Code/', '/storage/brno2/home/previtus/MGR-Project-Code/', '/home/ekmek/Vitek/MGR-Project-Code/'] ABS_PATH_TO_PRJ = use_path_which_exists(PATH_ALTERNATIVES) return ABS_PATH_TO_PRJ def get_geojson_path(): ''' Gives us the path directly to attractivity_previtus_data_1_edges.geojson from a list of allowed paths :return: ''' folders = ['/home/ekmek/Desktop/Project II/graph_new_data/', '/home/ekmek/Vitek/graph_new_data/', '/storage/brno2/home/previtus/important_files/'] folder = use_path_which_exists(folders) return folder+'attractivity_previtus_data_1_edges.geojson' def use_path_which_exists(list_of_possible_paths): ''' From a list of possible paths choose the one which exists. :param list_of_possible_paths: possible paths :return: working path ''' used_path = '' for path in list_of_possible_paths: if os.path.exists(path): used_path = path if used_path == '': print "Error, cannot locate the path of project, will likely fail!" return used_path def file_exists(fname): ''' Does file exist, returns boolean.''' return os.path.isfile(fname) def get_folder_from_file(fname): ''' Get folder name from path to a file.''' return os.path.dirname(fname) + '/' def folder_exists(directory): ''' Does folder with this name exist, returns boolean''' return os.path.exists(directory) def make_folder_ifItDoesntExist(directory): ''' Make a new directory, if it didn't previously exist.''' if not os.path.exists(directory): os.makedirs(directory) import shutil, errno def copy_folder(src, dst): ''' Copy and paste folders. Used for dataset augmentation.''' try: shutil.copytree(src, dst) except OSError as exc: # python >2.5 if exc.errno == errno.ENOTDIR: shutil.copy(src, dst) else: raise def copy_file(src, dst): ''' Copy and paste file.''' try: shutil.copy(src, dst) except OSError as exc: raise import hashlib def md5(fname): ''' Get md5 hash of a file.''' hash_md5 = hashlib.md5() with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest()
[ 11748, 28686, 198, 198, 4299, 651, 62, 16302, 62, 43551, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 402, 1083, 514, 262, 3108, 284, 337, 10761, 12, 16775, 12, 10669, 422, 257, 1351, 286, 3142, 24512, 13, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 46490, 62, 1847, 31800, 1404, 42472, 796, 685, 26488, 11195, 14, 988, 76, 988, 14, 16775, 2873, 14, 44, 10761, 12, 16775, 12, 10669, 14, 3256, 31051, 35350, 14, 1671, 3919, 17, 14, 11195, 14, 47050, 17506, 14, 44, 10761, 12, 16775, 12, 10669, 14, 3256, 31051, 11195, 14, 988, 76, 988, 14, 53, 578, 74, 14, 44, 10761, 12, 16775, 12, 10669, 14, 20520, 198, 220, 220, 220, 29950, 62, 34219, 62, 10468, 62, 4805, 41, 796, 779, 62, 6978, 62, 4758, 62, 1069, 1023, 7, 34219, 62, 1847, 31800, 1404, 42472, 8, 198, 220, 220, 220, 1441, 29950, 62, 34219, 62, 10468, 62, 4805, 41, 198, 198, 4299, 651, 62, 469, 13210, 1559, 62, 6978, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 402, 1083, 514, 262, 3108, 3264, 284, 4729, 3458, 62, 47050, 17506, 62, 7890, 62, 16, 62, 276, 3212, 13, 469, 13210, 1559, 422, 257, 1351, 286, 3142, 13532, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 24512, 796, 685, 26488, 11195, 14, 988, 76, 988, 14, 36881, 14, 16775, 2873, 14, 34960, 62, 3605, 62, 7890, 14, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 11195, 14, 988, 76, 988, 14, 53, 578, 74, 14, 34960, 62, 3605, 62, 7890, 14, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 35350, 14, 1671, 3919, 17, 14, 11195, 14, 47050, 17506, 14, 18049, 62, 16624, 14, 20520, 198, 220, 220, 220, 9483, 796, 779, 62, 6978, 62, 4758, 62, 1069, 1023, 7, 11379, 364, 8, 628, 220, 220, 220, 1441, 9483, 10, 6, 1078, 974, 3458, 62, 47050, 17506, 62, 7890, 62, 16, 62, 276, 3212, 13, 469, 13210, 1559, 6, 198, 198, 4299, 779, 62, 6978, 62, 4758, 62, 1069, 1023, 7, 4868, 62, 1659, 62, 79, 4733, 62, 6978, 82, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3574, 257, 1351, 286, 1744, 13532, 3853, 262, 530, 543, 7160, 13, 198, 220, 220, 220, 1058, 17143, 1351, 62, 1659, 62, 79, 4733, 62, 6978, 82, 25, 1744, 13532, 198, 220, 220, 220, 1058, 7783, 25, 1762, 3108, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 973, 62, 6978, 796, 10148, 628, 220, 220, 220, 329, 3108, 287, 1351, 62, 1659, 62, 79, 4733, 62, 6978, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 973, 62, 6978, 796, 3108, 628, 220, 220, 220, 611, 973, 62, 6978, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 12331, 11, 2314, 17276, 262, 3108, 286, 1628, 11, 481, 1884, 2038, 2474, 628, 220, 220, 220, 1441, 973, 62, 6978, 198, 198, 4299, 2393, 62, 1069, 1023, 7, 69, 3672, 2599, 198, 220, 220, 220, 705, 7061, 8314, 2393, 2152, 11, 5860, 25131, 2637, 7061, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 4468, 576, 7, 69, 3672, 8, 198, 198, 4299, 651, 62, 43551, 62, 6738, 62, 7753, 7, 69, 3672, 2599, 198, 220, 220, 220, 705, 7061, 3497, 9483, 1438, 422, 3108, 284, 257, 2393, 2637, 7061, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 15908, 3672, 7, 69, 3672, 8, 1343, 31051, 6, 198, 198, 4299, 9483, 62, 1069, 1023, 7, 34945, 2599, 198, 220, 220, 220, 705, 7061, 8314, 9483, 351, 428, 1438, 2152, 11, 5860, 25131, 7061, 6, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 1069, 1023, 7, 34945, 8, 198, 198, 4299, 787, 62, 43551, 62, 361, 1026, 13921, 429, 3109, 396, 7, 34945, 2599, 198, 220, 220, 220, 705, 7061, 6889, 257, 649, 8619, 11, 611, 340, 1422, 470, 4271, 2152, 2637, 7061, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 34945, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 34945, 8, 198, 198, 11748, 4423, 346, 11, 11454, 3919, 198, 4299, 4866, 62, 43551, 7, 10677, 11, 29636, 2599, 198, 220, 220, 220, 705, 7061, 17393, 290, 17008, 24512, 13, 16718, 329, 27039, 16339, 14374, 2637, 7061, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 21048, 7, 10677, 11, 29636, 8, 198, 220, 220, 220, 2845, 440, 5188, 81, 1472, 355, 2859, 25, 1303, 21015, 1875, 17, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2859, 13, 8056, 3919, 6624, 11454, 3919, 13, 1677, 2394, 34720, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7, 10677, 11, 29636, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 5298, 198, 198, 4299, 4866, 62, 7753, 7, 10677, 11, 29636, 2599, 198, 220, 220, 220, 705, 7061, 17393, 290, 17008, 2393, 2637, 7061, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7, 10677, 11, 29636, 8, 198, 220, 220, 220, 2845, 440, 5188, 81, 1472, 355, 2859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 198, 198, 11748, 12234, 8019, 198, 4299, 45243, 20, 7, 69, 3672, 2599, 198, 220, 220, 220, 705, 7061, 3497, 45243, 20, 12234, 286, 257, 2393, 2637, 7061, 198, 220, 220, 220, 12234, 62, 9132, 20, 796, 12234, 8019, 13, 9132, 20, 3419, 198, 220, 220, 220, 351, 1280, 7, 69, 3672, 11, 366, 26145, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 16058, 287, 11629, 7, 50033, 25, 277, 13, 961, 7, 1821, 4846, 828, 275, 15931, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12234, 62, 9132, 20, 13, 19119, 7, 354, 2954, 8, 198, 220, 220, 220, 1441, 12234, 62, 9132, 20, 13, 33095, 12894, 395, 3419, 198 ]
2.356808
1,065
# from sympy import * # Robot Chassis Parameters l = 370 #hip to hip length of the robot b = 210.1 #hip to hip breadth of the robot h = 44 #height of the robot ## Leg Type 1: Rear ''' Variable name convention as follows: The first number represents the length and the second number represents the Leg Type l11 is the hip to knee length of Leg Type 1 l21 is the knee to ankle length of Leg Type 1 l22 is the knee to ankle length of Leg Type 2 and so on... ''' # Defining lengths and offsets l11 = 160 #hip to knee length l21 = 160 #knee to ankle length l3 = 39 #ankle to toe length d1 = 37 #hip offset d2 = 12.95 #knee offset ''' Variable name convention as follows: The first number represents the angle and the second number represents the Leg # theta11 is the hip rotation angle of Leg 1 theta21 is the knee roation angle of Leg 1 theta31 is the ankle roation angle of Leg 1 theta14 is the hip rotation angle of Leg 4 and so on... ''' # theta11, alpha11, theta21, alpha21, theta31, alpha31 = symbols("theta11 alpha11 theta21 alpha21 theta31 alpha31") # theta14, alpha14, theta24, alpha24, theta34, alpha34 = symbols("theta14 alpha14 theta24 alpha24 theta34 alpha34") ## Leg Type 2: Front # Defining lengths and offsets l12 = 160 #hip to knee length l22 = 173.5 #knee to ankle length # theta12, alpha12, theta22, alpha22 = symbols("theta12 alpha12 theta22 alpha22") # theta13, alpha13, theta23, alpha23 = symbols("theta13 alpha13 theta23 alpha23")
[ 2, 422, 10558, 88, 1330, 1635, 201, 198, 201, 198, 2, 16071, 609, 20297, 40117, 201, 198, 75, 796, 28687, 220, 220, 220, 220, 220, 220, 1303, 1056, 284, 10359, 4129, 286, 262, 9379, 201, 198, 65, 796, 20064, 13, 16, 220, 220, 220, 220, 1303, 1056, 284, 10359, 32483, 286, 262, 9379, 201, 198, 71, 796, 5846, 220, 220, 220, 220, 220, 220, 220, 1303, 17015, 286, 262, 9379, 201, 198, 201, 198, 2235, 3564, 5994, 352, 25, 30144, 201, 198, 201, 198, 7061, 6, 201, 198, 43015, 1438, 9831, 355, 5679, 25, 201, 198, 201, 198, 464, 717, 1271, 6870, 262, 4129, 290, 262, 1218, 1271, 6870, 262, 3564, 5994, 201, 198, 201, 198, 75, 1157, 318, 262, 10359, 284, 10329, 4129, 286, 3564, 5994, 352, 201, 198, 75, 2481, 318, 262, 10329, 284, 19847, 4129, 286, 3564, 5994, 352, 201, 198, 201, 198, 75, 1828, 318, 262, 10329, 284, 19847, 4129, 286, 3564, 5994, 362, 201, 198, 392, 523, 319, 986, 201, 198, 201, 198, 7061, 6, 201, 198, 201, 198, 2, 2896, 3191, 20428, 290, 49005, 201, 198, 75, 1157, 796, 13454, 220, 220, 220, 220, 220, 1303, 1056, 284, 10329, 4129, 201, 198, 75, 2481, 796, 13454, 220, 220, 220, 220, 220, 1303, 74, 21381, 284, 19847, 4129, 201, 198, 75, 18, 796, 5014, 220, 220, 220, 220, 220, 220, 220, 1303, 962, 293, 284, 21189, 4129, 201, 198, 67, 16, 796, 5214, 220, 220, 220, 220, 220, 220, 220, 1303, 1056, 11677, 201, 198, 67, 17, 796, 1105, 13, 3865, 220, 220, 220, 220, 1303, 74, 21381, 11677, 201, 198, 201, 198, 7061, 6, 201, 198, 43015, 1438, 9831, 355, 5679, 25, 201, 198, 201, 198, 464, 717, 1271, 6870, 262, 9848, 290, 262, 1218, 1271, 6870, 262, 3564, 1303, 201, 198, 201, 198, 1169, 8326, 1157, 318, 262, 10359, 13179, 9848, 286, 3564, 352, 201, 198, 1169, 8326, 2481, 318, 262, 10329, 686, 341, 9848, 286, 3564, 352, 201, 198, 1169, 8326, 3132, 318, 262, 19847, 686, 341, 9848, 286, 3564, 352, 201, 198, 201, 198, 1169, 8326, 1415, 318, 262, 10359, 13179, 9848, 286, 3564, 604, 201, 198, 392, 523, 319, 986, 201, 198, 201, 198, 7061, 6, 201, 198, 201, 198, 2, 262, 8326, 1157, 11, 17130, 1157, 11, 262, 8326, 2481, 11, 17130, 2481, 11, 262, 8326, 3132, 11, 17130, 3132, 796, 14354, 7203, 1169, 8326, 1157, 17130, 1157, 262, 8326, 2481, 17130, 2481, 262, 8326, 3132, 17130, 3132, 4943, 201, 198, 2, 262, 8326, 1415, 11, 17130, 1415, 11, 262, 8326, 1731, 11, 17130, 1731, 11, 262, 8326, 2682, 11, 17130, 2682, 796, 14354, 7203, 1169, 8326, 1415, 17130, 1415, 262, 8326, 1731, 17130, 1731, 262, 8326, 2682, 17130, 2682, 4943, 201, 198, 201, 198, 201, 198, 2235, 3564, 5994, 362, 25, 8880, 201, 198, 201, 198, 2, 2896, 3191, 20428, 290, 49005, 201, 198, 75, 1065, 796, 13454, 220, 220, 220, 220, 220, 1303, 1056, 284, 10329, 4129, 201, 198, 75, 1828, 796, 28174, 13, 20, 220, 220, 220, 1303, 74, 21381, 284, 19847, 4129, 201, 198, 201, 198, 2, 262, 8326, 1065, 11, 17130, 1065, 11, 262, 8326, 1828, 11, 17130, 1828, 796, 14354, 7203, 1169, 8326, 1065, 17130, 1065, 262, 8326, 1828, 17130, 1828, 4943, 201, 198, 2, 262, 8326, 1485, 11, 17130, 1485, 11, 262, 8326, 1954, 11, 17130, 1954, 796, 14354, 7203, 1169, 8326, 1485, 17130, 1485, 262, 8326, 1954, 17130, 1954, 4943, 201, 198 ]
2.758319
571
from math import floor, log10
[ 6738, 10688, 1330, 4314, 11, 2604, 940, 198 ]
3.75
8
import folium import csv from folium.plugins import MarkerCluster def main(): """ Creates a map of nodes with available SSH connection.\n :return: map_ssh.html file """ map_ssh = folium.Map(location=[45.523, -122.675], zoom_start=2) with open('lib/base_data.txt') as tsv: for row in csv.reader(tsv, delimiter='\t'): name = row[0] try: x = float(row[1]) y = float(row[2]) print(" %s " % name) folium.Marker([x, y], popup=name).add_to(map_ssh) except ValueError: pass map_ssh.save('map_ssh.html') if __name__ == "__main__": main()
[ 11748, 5955, 1505, 198, 11748, 269, 21370, 198, 6738, 5955, 1505, 13, 37390, 1330, 2940, 263, 2601, 5819, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 3975, 286, 13760, 351, 1695, 33825, 4637, 13, 59, 77, 198, 220, 220, 220, 1058, 7783, 25, 3975, 62, 45824, 13, 6494, 2393, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3975, 62, 45824, 796, 5955, 1505, 13, 13912, 7, 24886, 41888, 2231, 13, 49803, 11, 532, 18376, 13, 42444, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19792, 62, 9688, 28, 17, 8, 628, 220, 220, 220, 351, 1280, 10786, 8019, 14, 8692, 62, 7890, 13, 14116, 11537, 355, 256, 21370, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 269, 21370, 13, 46862, 7, 912, 85, 11, 46728, 2676, 11639, 59, 83, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 5752, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 12178, 7, 808, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 796, 12178, 7, 808, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4064, 82, 366, 4064, 1438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5955, 1505, 13, 9704, 263, 26933, 87, 11, 331, 4357, 46207, 28, 3672, 737, 2860, 62, 1462, 7, 8899, 62, 45824, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 3975, 62, 45824, 13, 21928, 10786, 8899, 62, 45824, 13, 6494, 11537, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
1.919571
373
#!/usr/bin/env python3 ans = 0 with open("input.txt") as f: for line in f: ans += 2 + line.count("\\") + line.count("\"") print(ans)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 504, 796, 657, 198, 4480, 1280, 7203, 15414, 13, 14116, 4943, 355, 277, 25, 198, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9093, 15853, 362, 1343, 1627, 13, 9127, 7203, 6852, 4943, 1343, 1627, 13, 9127, 7203, 7879, 4943, 198, 4798, 7, 504, 8, 198 ]
2.246154
65
""" Copyright (c) 2015 Marshall Farrier license http://opensource.org/licenses/MIT lib/ui/edit_menu.py Content for interactive editor """ from functools import partial from .obs_handlers import ObsHandlers from .menu import Menu from .spread_selector import SpreadSelector
[ 37811, 198, 15269, 357, 66, 8, 1853, 13606, 6755, 5277, 198, 43085, 2638, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 36393, 198, 198, 8019, 14, 9019, 14, 19312, 62, 26272, 13, 9078, 198, 198, 19746, 329, 14333, 5464, 198, 37811, 198, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 198, 6738, 764, 8158, 62, 4993, 8116, 1330, 11086, 12885, 8116, 198, 6738, 764, 26272, 1330, 21860, 198, 6738, 764, 43639, 62, 19738, 273, 1330, 31843, 17563, 273, 198 ]
3.4625
80
import numpy as np from uwb.generator import BlobGenerator from uwb.map import NoiseMapNormal
[ 11748, 299, 32152, 355, 45941, 198, 198, 6738, 334, 39346, 13, 8612, 1352, 1330, 1086, 672, 8645, 1352, 198, 6738, 334, 39346, 13, 8899, 1330, 30964, 13912, 26447, 628, 628 ]
3.266667
30
import sklearn from classifiers.classification_model import ClassificationModel
[ 11748, 1341, 35720, 201, 198, 201, 198, 6738, 1398, 13350, 13, 4871, 2649, 62, 19849, 1330, 40984, 17633, 201, 198, 201, 198 ]
3.909091
22
"""A helper for running inference callable multiple times, and ensemble the predictions with a simple majority vote. """ from typing import Callable from collections import Counter def majority_vote_ensemble(eval_func: Callable, num_runs: int): """ Args: eval_func: call without argument to get a prediction or a list of predictions. num_runs: how many times to run the eval_func to get the predictions Returns: a prediction or a list of predictions after majority vote. """ if num_runs == 1: return eval_func() all_predictions = [eval_func() for _ in range(num_runs)] if not isinstance(all_predictions[0][0], list): # eval func gives single prediction return _vote(all_predictions) else: # eval func gives a list of predictions results = list() for i in range(len(all_predictions[0])): results.append(_vote([pred_list[i] for pred_list in all_predictions])) return results
[ 37811, 32, 31904, 329, 2491, 32278, 869, 540, 3294, 1661, 11, 290, 34549, 262, 198, 28764, 9278, 351, 257, 2829, 3741, 3015, 13, 198, 37811, 198, 198, 6738, 19720, 1330, 4889, 540, 198, 6738, 17268, 1330, 15034, 628, 198, 4299, 3741, 62, 27257, 62, 1072, 11306, 7, 18206, 62, 20786, 25, 4889, 540, 11, 997, 62, 48381, 25, 493, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5418, 62, 20786, 25, 869, 1231, 4578, 284, 651, 257, 17724, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 1351, 286, 16277, 13, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 48381, 25, 703, 867, 1661, 284, 1057, 262, 5418, 62, 20786, 284, 651, 262, 16277, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 17724, 393, 257, 1351, 286, 16277, 706, 3741, 3015, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 997, 62, 48381, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5418, 62, 20786, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 477, 62, 28764, 9278, 796, 685, 18206, 62, 20786, 3419, 329, 4808, 287, 2837, 7, 22510, 62, 48381, 15437, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 439, 62, 28764, 9278, 58, 15, 7131, 15, 4357, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5418, 25439, 3607, 2060, 17724, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 27257, 7, 439, 62, 28764, 9278, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5418, 25439, 3607, 257, 1351, 286, 16277, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 439, 62, 28764, 9278, 58, 15, 12962, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2482, 13, 33295, 28264, 27257, 26933, 28764, 62, 4868, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2747, 62, 4868, 287, 477, 62, 28764, 9278, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2482, 198 ]
2.601485
404
import logging import os import shutil import subprocess import psutil from patroni.postgresql import Postgresql logger = logging.getLogger(__name__)
[ 11748, 18931, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 850, 14681, 198, 11748, 26692, 22602, 198, 198, 6738, 19686, 72, 13, 7353, 34239, 13976, 1330, 2947, 34239, 13976, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198 ]
3.276596
47
__all__ = ["tosca_parser", "tosca_rdcl_graph"]
[ 834, 439, 834, 796, 14631, 83, 418, 6888, 62, 48610, 1600, 366, 83, 418, 6888, 62, 4372, 565, 62, 34960, 8973 ]
2.190476
21