test_ID
stringlengths 3
3
| test_file
stringlengths 14
119
| ground_truth
stringlengths 70
28.7k
| hints_removed
stringlengths 58
28.7k
|
---|---|---|---|
200 | Dafny_tmp_tmpmvs2dmry_examples2.dfy | method add_by_inc(x: nat, y:nat) returns (z:nat)
ensures z == x+y;
{
z := x;
var i := 0;
while (i < y)
decreases y-i;
invariant 0 <= i <= y;
invariant z == x + i;
{
z := z+1;
i := i+1;
}
assert (z == x+y);
assert (i == y);
}
method Product(m: nat, n:nat) returns (res:nat)
ensures res == m*n;
{
var m1: nat := m;
res:=0;
while (m1 != 0)
invariant 0 <= m1 <= m;
decreases m1;
invariant res == (m-m1)*n;
{
var n1: nat := n;
while (n1 != 0)
invariant 0 <= n1 <= n;
decreases n1;
invariant res == (m-m1)*n + (n-n1);
{
res := res+1;
n1 := n1-1;
}
m1 := m1-1;
}
}
method gcdCalc(m: nat, n: nat) returns (res: nat)
requires m>0 && n>0;
ensures res == gcd(m,n);
{
var m1 : nat := m;
var n1 : nat := n;
while (m1 != n1)
invariant 0< m1 <=m;
invariant 0 < n1 <=n;
invariant gcd(m,n) == gcd (m1,n1)
decreases m1+n1;
{
if( m1>n1)
{
m1 := m1- n1;
}
else
{
n1:= n1-m1;
}
}
return n1;
}
function gcd(m: nat, n: nat) : nat
requires m>0 && n>0;
decreases m+n
{
if(m==n) then n
else if( m > n) then gcd(m-n,n)
else gcd(m, n-m)
}
method exp_by_sqr(x0: real, n0: nat) returns (r:real)
requires x0 >= 0.0;
ensures r == exp(x0, n0);
{
if(n0 == 0) {return 1.0;}
if(x0 == 0.0) {return 0.0;}
var x,n,y := x0, n0, 1.0;
while(n>1)
invariant 1<=n<=n0;
invariant exp(x0,n0) == exp(x,n) * y;
decreases n;
{
if( n % 2 == 0)
{
assume (exp(x,n) == exp(x*x,n/2));
x := x*x;
n:= n/2;
}
else
{
assume (exp(x,n) == exp(x*x,(n-1)/2) * x);
y:=x*y;
x:=x*x;
n:=(n-1)/2;
}
}
// assert (exp(x0,n0) == exp(x,n) * y);
// assert (x*y == exp(x0,n0));
return x*y;
}
function exp(x: real, n: nat) :real
decreases n;
{
if(n == 0) then 1.0
else if (x==0.0) then 0.0
else if (n ==0 && x == 0.0) then 1.0
else x*exp(x, n-1)
}
// method add_by_inc_vc(x: int, y:int) returns (z:int)
// {
// assume x>=0 && y>=0;
// z := x;
// var i := 0;
// assert 0 <= i <= y && z == x + i;
// z,i = *,*;
// assume 0 <= i <= y && z == x + i;
// if (i < y)
// {
// ghost var rank0 := y-i
// z := z+1;
// i := i+1;
// assert(y-i < rank0)
// ghost var rank1 := y-i
// assert(rank1 < rank0)
// assert(rank1 >=0)
// assert 0 <= i <= y && z == x + i;
// assume(false);
// }
// assert (z == x+y);
// assert (i == y);
// return z;
// }
| method add_by_inc(x: nat, y:nat) returns (z:nat)
ensures z == x+y;
{
z := x;
var i := 0;
while (i < y)
{
z := z+1;
i := i+1;
}
}
method Product(m: nat, n:nat) returns (res:nat)
ensures res == m*n;
{
var m1: nat := m;
res:=0;
while (m1 != 0)
{
var n1: nat := n;
while (n1 != 0)
{
res := res+1;
n1 := n1-1;
}
m1 := m1-1;
}
}
method gcdCalc(m: nat, n: nat) returns (res: nat)
requires m>0 && n>0;
ensures res == gcd(m,n);
{
var m1 : nat := m;
var n1 : nat := n;
while (m1 != n1)
{
if( m1>n1)
{
m1 := m1- n1;
}
else
{
n1:= n1-m1;
}
}
return n1;
}
function gcd(m: nat, n: nat) : nat
requires m>0 && n>0;
{
if(m==n) then n
else if( m > n) then gcd(m-n,n)
else gcd(m, n-m)
}
method exp_by_sqr(x0: real, n0: nat) returns (r:real)
requires x0 >= 0.0;
ensures r == exp(x0, n0);
{
if(n0 == 0) {return 1.0;}
if(x0 == 0.0) {return 0.0;}
var x,n,y := x0, n0, 1.0;
while(n>1)
{
if( n % 2 == 0)
{
assume (exp(x,n) == exp(x*x,n/2));
x := x*x;
n:= n/2;
}
else
{
assume (exp(x,n) == exp(x*x,(n-1)/2) * x);
y:=x*y;
x:=x*x;
n:=(n-1)/2;
}
}
// assert (exp(x0,n0) == exp(x,n) * y);
// assert (x*y == exp(x0,n0));
return x*y;
}
function exp(x: real, n: nat) :real
{
if(n == 0) then 1.0
else if (x==0.0) then 0.0
else if (n ==0 && x == 0.0) then 1.0
else x*exp(x, n-1)
}
// method add_by_inc_vc(x: int, y:int) returns (z:int)
// {
// assume x>=0 && y>=0;
// z := x;
// var i := 0;
// assert 0 <= i <= y && z == x + i;
// z,i = *,*;
// assume 0 <= i <= y && z == x + i;
// if (i < y)
// {
// ghost var rank0 := y-i
// z := z+1;
// i := i+1;
// assert(y-i < rank0)
// ghost var rank1 := y-i
// assert(rank1 < rank0)
// assert(rank1 >=0)
// assert 0 <= i <= y && z == x + i;
// assume(false);
// }
// assert (z == x+y);
// assert (i == y);
// return z;
// }
|
201 | Dafny_tmp_tmpmvs2dmry_pancakesort_findmax.dfy | // returns an index of the largest element of array 'a' in the range [0..n)
method findMax (a : array<int>, n : int) returns (r:int)
requires a.Length > 0
requires 0 < n <= a.Length
ensures 0 <= r < n <= a.Length;
ensures forall k :: 0 <= k < n <= a.Length ==> a[r] >= a[k];
ensures multiset(a[..]) == multiset(old(a[..]));
{
var mi;
var i;
mi := 0;
i := 0;
while (i < n)
invariant 0 <= i <= n <= a.Length;
invariant 0 <= mi < n;
invariant forall k :: 0 <= k < i ==> a[mi] >= a[k];
decreases n-i;
{
if (a[i] > a[mi])
{
mi := i;
}
i := i + 1;
}
return mi;
}
| // returns an index of the largest element of array 'a' in the range [0..n)
method findMax (a : array<int>, n : int) returns (r:int)
requires a.Length > 0
requires 0 < n <= a.Length
ensures 0 <= r < n <= a.Length;
ensures forall k :: 0 <= k < n <= a.Length ==> a[r] >= a[k];
ensures multiset(a[..]) == multiset(old(a[..]));
{
var mi;
var i;
mi := 0;
i := 0;
while (i < n)
{
if (a[i] > a[mi])
{
mi := i;
}
i := i + 1;
}
return mi;
}
|
202 | Dafny_tmp_tmpmvs2dmry_pancakesort_flip.dfy | // flips (i.e., reverses) array elements in the range [0..num]
method flip (a: array<int>, num: int)
requires a.Length > 0;
requires 0 <= num < a.Length;
modifies a;
ensures forall k :: 0 <= k <= num ==> a[k] == old(a[num-k])
ensures forall k :: num < k < a.Length ==> a[k] == old(a[k])
// ensures multiset(a[..]) == old(multiset(a[..]))
{
var tmp:int;
var i := 0;
var j := num;
while (i < j)
decreases j
// invariant 0 <= i < j <= num
invariant i + j == num
invariant 0 <= i <= num/2+1
invariant num/2 <= j <= num
invariant forall n :: 0 <= n < i ==> a[n] == old(a[num-n])
invariant forall n :: 0 <= n < i ==> a[num-n]==old(a[n])
invariant forall k :: i <= k <= j ==> a[k] == old(a[k])
invariant forall k :: num < k < a.Length ==> a[k] == old(a[k])
{
tmp := a[i];
a[i] := a[j];
a[j] := tmp;
i := i + 1;
j := j - 1;
}
}
| // flips (i.e., reverses) array elements in the range [0..num]
method flip (a: array<int>, num: int)
requires a.Length > 0;
requires 0 <= num < a.Length;
modifies a;
ensures forall k :: 0 <= k <= num ==> a[k] == old(a[num-k])
ensures forall k :: num < k < a.Length ==> a[k] == old(a[k])
// ensures multiset(a[..]) == old(multiset(a[..]))
{
var tmp:int;
var i := 0;
var j := num;
while (i < j)
// invariant 0 <= i < j <= num
{
tmp := a[i];
a[i] := a[j];
a[j] := tmp;
i := i + 1;
j := j - 1;
}
}
|
203 | Dafny_tmp_tmpv_d3qi10_2_min.dfy |
function min(a: int, b: int): int
ensures min(a, b) <= a && min(a, b) <= b
ensures min(a, b) == a || min(a, b) == b
{
if a < b then a else b
}
method minMethod(a: int, b: int) returns (c: int)
ensures c <= a && c <= b
ensures c == a || c == b
// Ou encore:
ensures c == min(a, b)
{
if a < b {
c := a;
} else {
c := b;
}
}
ghost function minFunction(a: int, b: int): int
ensures minFunction(a, b) <= a && minFunction(a, b) <= b
ensures minFunction(a, b) == a || minFunction(a, b) == b
{
if a < b then a else b
}
// Return a minimum of a.
method minArray(a: array<int>) returns (m: int)
requires a!= null && a.Length > 0 ;
ensures forall k | 0 <= k < a.Length :: m <= a[k]
ensures exists k | 0 <= k < a.Length :: m == a[k]
{
/* TODO */
m := a[0]; // Initialise m avec le premier élément du tableau
var i := 1;
while i < a.Length
invariant 0 <= i <= a.Length
invariant forall k | 0 <= k < i :: m <= a[k]
invariant exists k | 0 <= k < i :: m == a[k]
{
/* TODO */
if a[i] < m {
m := a[i];
}
i := i + 1;
}
}
method Main(){
var integer:= min(1,2);
print(integer);
}
|
function min(a: int, b: int): int
ensures min(a, b) <= a && min(a, b) <= b
ensures min(a, b) == a || min(a, b) == b
{
if a < b then a else b
}
method minMethod(a: int, b: int) returns (c: int)
ensures c <= a && c <= b
ensures c == a || c == b
// Ou encore:
ensures c == min(a, b)
{
if a < b {
c := a;
} else {
c := b;
}
}
ghost function minFunction(a: int, b: int): int
ensures minFunction(a, b) <= a && minFunction(a, b) <= b
ensures minFunction(a, b) == a || minFunction(a, b) == b
{
if a < b then a else b
}
// Return a minimum of a.
method minArray(a: array<int>) returns (m: int)
requires a!= null && a.Length > 0 ;
ensures forall k | 0 <= k < a.Length :: m <= a[k]
ensures exists k | 0 <= k < a.Length :: m == a[k]
{
/* TODO */
m := a[0]; // Initialise m avec le premier élément du tableau
var i := 1;
while i < a.Length
{
/* TODO */
if a[i] < m {
m := a[i];
}
i := i + 1;
}
}
method Main(){
var integer:= min(1,2);
print(integer);
}
|
204 | Dafny_tmp_tmpv_d3qi10_3_cumsum.dfy | function sum(a: array<int>, i: int): int
requires 0 <= i < a.Length
reads a
{
a[i] + if i == 0 then 0 else sum(a, i - 1)
}
method cumsum(a: array<int>, b: array<int>)
requires a.Length == b.Length && a.Length > 0 && a != b
// when you change a , that's not the same object than b .
//requires b.Length > 0
ensures forall i | 0 <= i < a.Length :: b[i] == sum(a, i)
modifies b
{
b[0] := a[0]; // Initialise le premier élément de b
var i := 1;
while i < a.Length
invariant 1 <= i <= a.Length
invariant forall i' | 0 <= i' < i :: b[i'] == sum(a, i')
{
b[i] := b[i - 1] + a[i]; // Calcule la somme cumulée pour chaque élément
i := i + 1;
}
}
| function sum(a: array<int>, i: int): int
requires 0 <= i < a.Length
reads a
{
a[i] + if i == 0 then 0 else sum(a, i - 1)
}
method cumsum(a: array<int>, b: array<int>)
requires a.Length == b.Length && a.Length > 0 && a != b
// when you change a , that's not the same object than b .
//requires b.Length > 0
ensures forall i | 0 <= i < a.Length :: b[i] == sum(a, i)
modifies b
{
b[0] := a[0]; // Initialise le premier élément de b
var i := 1;
while i < a.Length
{
b[i] := b[i - 1] + a[i]; // Calcule la somme cumulée pour chaque élément
i := i + 1;
}
}
|
205 | FMSE-2022-2023_tmp_tmp6_x_ba46_Lab10_Lab10.dfy | predicate IsOdd(x: int) {
x % 2 == 1
}
newtype Odd = n : int | IsOdd(n) witness 3
trait OddListSpec
{
var s: seq<Odd>
var capacity: nat
predicate Valid()
reads this
{
0 <= |s| <= this.capacity &&
forall i :: 0 <= i < |s| ==> IsOdd(s[i] as int)
}
method insert(index: nat, element: Odd)
modifies this
requires 0 <= index <= |s|
requires |s| + 1 <= this.capacity
ensures |s| == |old(s)| + 1
ensures s[index] == element
ensures old(capacity) == capacity
ensures Valid()
method pushFront(element: Odd)
modifies this
requires |s| + 1 <= this.capacity
ensures |s| == |old(s)| + 1
ensures s[0] == element
ensures old(capacity) == capacity
ensures Valid()
method pushBack(element: Odd)
modifies this
requires |s| + 1 <= this.capacity
ensures |s| == |old(s)| + 1
ensures s[|s| - 1] == element
ensures old(capacity) == capacity
ensures Valid()
method remove(element: Odd)
modifies this
requires Valid()
requires |s| > 0
requires element in s
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
method removeAtIndex(index: nat)
modifies this
requires Valid()
requires |s| > 0
requires 0 <= index < |s|
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
method popFront() returns (x: Odd)
modifies this
requires Valid()
requires |s| > 0
ensures old(s)[0] == x
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
method popBack() returns (x: Odd)
modifies this
requires Valid()
requires |s| > 0
ensures old(s)[|old(s)| - 1] == x
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
method length() returns (n: nat)
ensures n == |s|
method at(index: nat) returns (x: Odd)
requires 0 <= index < |s|
method BinarySearch(element: Odd) returns (index: int)
requires forall i, j :: 0 <= i < j < |s| ==> s[i] <= s[j]
ensures 0 <= index ==> index < |s| && s[index] == element
ensures index == -1 ==> element !in s[..]
method mergedWith(l2: OddList) returns (l: OddList)
requires Valid()
requires l2.Valid()
requires this.capacity >= 0
requires l2.capacity >= 0
requires forall i, j :: 0 <= i < j < |s| ==> s[i] <= s[j]
requires forall i, j :: 0 <= i < j < |l2.s| ==> l2.s[i] <= l2.s[j]
ensures l.capacity == this.capacity + l2.capacity
ensures |l.s| == |s| + |l2.s|
}
class OddList extends OddListSpec
{
constructor (capacity: nat)
ensures Valid()
ensures |s| == 0
ensures this.capacity == capacity
{
s := [];
this.capacity := capacity;
}
method insert(index: nat, element: Odd)
modifies this
requires 0 <= index <= |s|
requires |s| + 1 <= this.capacity
ensures |s| == |old(s)| + 1
ensures s[index] == element
ensures old(capacity) == capacity
ensures Valid()
{
var tail := s[index..];
s := s[..index] + [element];
s := s + tail;
}
method pushFront(element: Odd)
modifies this
requires |s| + 1 <= this.capacity
ensures |s| == |old(s)| + 1
ensures s[0] == element
ensures old(capacity) == capacity
ensures Valid()
{
insert(0, element);
}
method pushBack(element: Odd)
modifies this
requires |s| + 1 <= this.capacity
ensures |s| == |old(s)| + 1
ensures s[|s| - 1] == element
ensures old(capacity) == capacity
ensures Valid()
{
insert(|s|, element);
}
method remove(element: Odd)
modifies this
requires Valid()
requires |s| > 0
requires element in s
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
{
for i: int := 0 to |s|
invariant 0 <= i <= |s|
invariant forall k :: 0 <= k < i ==> s[k] != element
{
if s[i] == element
{
s := s[..i] + s[i + 1..];
break;
}
}
}
method removeAtIndex(index: nat)
modifies this
requires Valid()
requires |s| > 0
requires 0 <= index < |s|
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
{
s := s[..index] + s[index + 1..];
}
method popFront() returns (x: Odd)
modifies this
requires Valid()
requires |s| > 0
ensures old(s)[0] == x
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
{
x := s[0];
s := s[1..];
}
method popBack() returns (x: Odd)
modifies this
requires Valid()
requires |s| > 0
ensures old(s)[|old(s)| - 1] == x
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
{
x := s[|s| - 1];
s := s[..|s| - 1];
}
method length() returns (n: nat)
ensures n == |s|
{
return |s|;
}
method at(index: nat) returns (x: Odd)
requires 0 <= index < |s|
ensures s[index] == x
{
return s[index];
}
method BinarySearch(element: Odd) returns (index: int)
requires forall i, j :: 0 <= i < j < |s| ==> s[i] <= s[j]
ensures 0 <= index ==> index < |s| && s[index] == element
ensures index == -1 ==> element !in s[..]
{
var left, right := 0, |s|;
while left < right
invariant 0 <= left <= right <= |s|
invariant element !in s[..left] && element !in s[right..]
{
var mid := (left + right) / 2;
if element < s[mid]
{
right := mid;
}
else if s[mid] < element
{
left := mid + 1;
}
else
{
return mid;
}
}
return -1;
}
method mergedWith(l2: OddList) returns (l: OddList)
requires Valid()
requires l2.Valid()
requires this.capacity >= 0
requires l2.capacity >= 0
requires forall i, j :: 0 <= i < j < |s| ==> s[i] <= s[j]
requires forall i, j :: 0 <= i < j < |l2.s| ==> l2.s[i] <= l2.s[j]
ensures l.capacity == this.capacity + l2.capacity
ensures |l.s| == |s| + |l2.s|
{
l := new OddList(this.capacity + l2.capacity);
var i, j := 0, 0;
while i < |s| || j < |l2.s|
invariant 0 <= i <= |s|
invariant 0 <= j <= |l2.s|
invariant i + j == |l.s|
invariant |l.s| <= l.capacity
invariant l.capacity == this.capacity + l2.capacity
decreases |s| - i, |l2.s| - j
{
if i == |s|
{
if j == |l2.s|
{
return l;
}
else
{
l.pushBack(l2.s[j]);
j := j + 1;
}
}
else
{
if j == |l2.s|
{
l.pushBack(s[i]);
i := i + 1;
}
else
{
if s[i] < l2.s[j]
{
l.pushBack(s[i]);
i := i + 1;
}
else
{
l.pushBack(l2.s[j]);
j := j + 1;
}
}
}
}
return l;
}
}
trait CircularLinkedListSpec<T(==)>
{
var l: seq<T>
var capacity: nat
predicate Valid()
reads this
{
0 <= |l| <= this.capacity
}
method insert(index: int, element: T)
// allows for integer and out-of-bounds index due to circularity
// managed by applying modulus
modifies this
requires |l| + 1 <= this.capacity
ensures |old(l)| == 0 ==> l == [element]
ensures |l| == |old(l)| + 1
ensures |old(l)| > 0 ==> l[index % |old(l)|] == element
ensures old(capacity) == capacity
ensures Valid()
method remove(element: T)
modifies this
requires Valid()
requires |l| > 0
requires element in l
ensures |l| == |old(l)| - 1
ensures old(capacity) == capacity
ensures Valid()
method removeAtIndex(index: int)
modifies this
requires Valid()
requires |l| > 0
ensures |l| == |old(l)| - 1
ensures old(capacity) == capacity
ensures Valid()
method length() returns (n: nat)
ensures n == |l|
method at(index: int) returns (x: T)
requires |l| > 0
ensures l[index % |l|] == x
method nextAfter(index: int) returns (x: T)
requires |l| > 0
ensures |l| == 1 ==> x == l[0]
ensures |l| > 1 && index % |l| == (|l| - 1) ==> x == l[0]
ensures |l| > 1 && 0 <= index && |l| < (|l| - 1) ==> x == l[index % |l| + 1]
}
class CircularLinkedList<T(==)> extends CircularLinkedListSpec<T>
{
constructor (capacity: nat)
requires capacity >= 0
ensures Valid()
ensures |l| == 0
ensures this.capacity == capacity
{
l := [];
this.capacity := capacity;
}
method insert(index: int, element: T)
// allows for integer and out-of-bounds index due to circularity
// managed by applying modulus
modifies this
requires |l| + 1 <= this.capacity
ensures |old(l)| == 0 ==> l == [element]
ensures |l| == |old(l)| + 1
ensures |old(l)| > 0 ==> l[index % |old(l)|] == element
ensures old(capacity) == capacity
ensures Valid()
{
if (|l| == 0)
{
l := [element];
}
else
{
var actualIndex := index % |l|;
var tail := l[actualIndex..];
l := l[..actualIndex] + [element];
l := l + tail;
}
}
method remove(element: T)
modifies this
requires Valid()
requires |l| > 0
requires element in l
ensures |l| == |old(l)| - 1
ensures old(capacity) == capacity
ensures Valid()
{
for i: nat := 0 to |l|
invariant 0 <= i <= |l|
invariant forall k :: 0 <= k < i ==> l[k] != element
{
if l[i] == element
{
l := l[..i] + l[i + 1..];
break;
}
}
}
method removeAtIndex(index: int)
modifies this
requires Valid()
requires |l| > 0
ensures |l| == |old(l)| - 1
ensures old(capacity) == capacity
ensures Valid()
{
var actualIndex := index % |l|;
l := l[..actualIndex] + l[actualIndex + 1..];
}
method length() returns (n: nat)
ensures n == |l|
{
return |l|;
}
method at(index: int) returns (x: T)
requires |l| > 0
ensures l[index % |l|] == x
{
var actualIndex := index % |l|;
return l[actualIndex];
}
method nextAfter(index: int) returns (x: T)
requires |l| > 0
ensures |l| == 1 ==> x == l[0]
ensures |l| > 1 && index % |l| == (|l| - 1) ==> x == l[0]
ensures |l| > 1 && 0 <= index && |l| < (|l| - 1) ==> x == l[index % |l| + 1]
{
if (|l| == 1)
{
x := l[0];
}
else
{
var actualIndex := index % |l|;
if (actualIndex == (|l| - 1))
{
x := l[0];
} else {
x := l[actualIndex + 1];
}
}
return x;
}
method isIn(element: T) returns (b: bool)
ensures |l| == 0 ==> b == false
ensures |l| > 0 && b == true ==> exists i :: 0 <= i < |l| && l[i] == element
ensures |l| > 0 && b == false ==> !exists i :: 0 <= i < |l| && l[i] == element
{
if (|l| == 0)
{
b := false;
}
else
{
b := false;
for i: nat := 0 to |l|
invariant 0 <= i <= |l|
invariant forall k :: 0 <= k < i ==> l[k] != element
{
if l[i] == element
{
b := true;
break;
}
}
}
}
}
| predicate IsOdd(x: int) {
x % 2 == 1
}
newtype Odd = n : int | IsOdd(n) witness 3
trait OddListSpec
{
var s: seq<Odd>
var capacity: nat
predicate Valid()
reads this
{
0 <= |s| <= this.capacity &&
forall i :: 0 <= i < |s| ==> IsOdd(s[i] as int)
}
method insert(index: nat, element: Odd)
modifies this
requires 0 <= index <= |s|
requires |s| + 1 <= this.capacity
ensures |s| == |old(s)| + 1
ensures s[index] == element
ensures old(capacity) == capacity
ensures Valid()
method pushFront(element: Odd)
modifies this
requires |s| + 1 <= this.capacity
ensures |s| == |old(s)| + 1
ensures s[0] == element
ensures old(capacity) == capacity
ensures Valid()
method pushBack(element: Odd)
modifies this
requires |s| + 1 <= this.capacity
ensures |s| == |old(s)| + 1
ensures s[|s| - 1] == element
ensures old(capacity) == capacity
ensures Valid()
method remove(element: Odd)
modifies this
requires Valid()
requires |s| > 0
requires element in s
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
method removeAtIndex(index: nat)
modifies this
requires Valid()
requires |s| > 0
requires 0 <= index < |s|
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
method popFront() returns (x: Odd)
modifies this
requires Valid()
requires |s| > 0
ensures old(s)[0] == x
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
method popBack() returns (x: Odd)
modifies this
requires Valid()
requires |s| > 0
ensures old(s)[|old(s)| - 1] == x
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
method length() returns (n: nat)
ensures n == |s|
method at(index: nat) returns (x: Odd)
requires 0 <= index < |s|
method BinarySearch(element: Odd) returns (index: int)
requires forall i, j :: 0 <= i < j < |s| ==> s[i] <= s[j]
ensures 0 <= index ==> index < |s| && s[index] == element
ensures index == -1 ==> element !in s[..]
method mergedWith(l2: OddList) returns (l: OddList)
requires Valid()
requires l2.Valid()
requires this.capacity >= 0
requires l2.capacity >= 0
requires forall i, j :: 0 <= i < j < |s| ==> s[i] <= s[j]
requires forall i, j :: 0 <= i < j < |l2.s| ==> l2.s[i] <= l2.s[j]
ensures l.capacity == this.capacity + l2.capacity
ensures |l.s| == |s| + |l2.s|
}
class OddList extends OddListSpec
{
constructor (capacity: nat)
ensures Valid()
ensures |s| == 0
ensures this.capacity == capacity
{
s := [];
this.capacity := capacity;
}
method insert(index: nat, element: Odd)
modifies this
requires 0 <= index <= |s|
requires |s| + 1 <= this.capacity
ensures |s| == |old(s)| + 1
ensures s[index] == element
ensures old(capacity) == capacity
ensures Valid()
{
var tail := s[index..];
s := s[..index] + [element];
s := s + tail;
}
method pushFront(element: Odd)
modifies this
requires |s| + 1 <= this.capacity
ensures |s| == |old(s)| + 1
ensures s[0] == element
ensures old(capacity) == capacity
ensures Valid()
{
insert(0, element);
}
method pushBack(element: Odd)
modifies this
requires |s| + 1 <= this.capacity
ensures |s| == |old(s)| + 1
ensures s[|s| - 1] == element
ensures old(capacity) == capacity
ensures Valid()
{
insert(|s|, element);
}
method remove(element: Odd)
modifies this
requires Valid()
requires |s| > 0
requires element in s
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
{
for i: int := 0 to |s|
{
if s[i] == element
{
s := s[..i] + s[i + 1..];
break;
}
}
}
method removeAtIndex(index: nat)
modifies this
requires Valid()
requires |s| > 0
requires 0 <= index < |s|
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
{
s := s[..index] + s[index + 1..];
}
method popFront() returns (x: Odd)
modifies this
requires Valid()
requires |s| > 0
ensures old(s)[0] == x
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
{
x := s[0];
s := s[1..];
}
method popBack() returns (x: Odd)
modifies this
requires Valid()
requires |s| > 0
ensures old(s)[|old(s)| - 1] == x
ensures |s| == |old(s)| - 1
ensures old(capacity) == capacity
ensures Valid()
{
x := s[|s| - 1];
s := s[..|s| - 1];
}
method length() returns (n: nat)
ensures n == |s|
{
return |s|;
}
method at(index: nat) returns (x: Odd)
requires 0 <= index < |s|
ensures s[index] == x
{
return s[index];
}
method BinarySearch(element: Odd) returns (index: int)
requires forall i, j :: 0 <= i < j < |s| ==> s[i] <= s[j]
ensures 0 <= index ==> index < |s| && s[index] == element
ensures index == -1 ==> element !in s[..]
{
var left, right := 0, |s|;
while left < right
{
var mid := (left + right) / 2;
if element < s[mid]
{
right := mid;
}
else if s[mid] < element
{
left := mid + 1;
}
else
{
return mid;
}
}
return -1;
}
method mergedWith(l2: OddList) returns (l: OddList)
requires Valid()
requires l2.Valid()
requires this.capacity >= 0
requires l2.capacity >= 0
requires forall i, j :: 0 <= i < j < |s| ==> s[i] <= s[j]
requires forall i, j :: 0 <= i < j < |l2.s| ==> l2.s[i] <= l2.s[j]
ensures l.capacity == this.capacity + l2.capacity
ensures |l.s| == |s| + |l2.s|
{
l := new OddList(this.capacity + l2.capacity);
var i, j := 0, 0;
while i < |s| || j < |l2.s|
{
if i == |s|
{
if j == |l2.s|
{
return l;
}
else
{
l.pushBack(l2.s[j]);
j := j + 1;
}
}
else
{
if j == |l2.s|
{
l.pushBack(s[i]);
i := i + 1;
}
else
{
if s[i] < l2.s[j]
{
l.pushBack(s[i]);
i := i + 1;
}
else
{
l.pushBack(l2.s[j]);
j := j + 1;
}
}
}
}
return l;
}
}
trait CircularLinkedListSpec<T(==)>
{
var l: seq<T>
var capacity: nat
predicate Valid()
reads this
{
0 <= |l| <= this.capacity
}
method insert(index: int, element: T)
// allows for integer and out-of-bounds index due to circularity
// managed by applying modulus
modifies this
requires |l| + 1 <= this.capacity
ensures |old(l)| == 0 ==> l == [element]
ensures |l| == |old(l)| + 1
ensures |old(l)| > 0 ==> l[index % |old(l)|] == element
ensures old(capacity) == capacity
ensures Valid()
method remove(element: T)
modifies this
requires Valid()
requires |l| > 0
requires element in l
ensures |l| == |old(l)| - 1
ensures old(capacity) == capacity
ensures Valid()
method removeAtIndex(index: int)
modifies this
requires Valid()
requires |l| > 0
ensures |l| == |old(l)| - 1
ensures old(capacity) == capacity
ensures Valid()
method length() returns (n: nat)
ensures n == |l|
method at(index: int) returns (x: T)
requires |l| > 0
ensures l[index % |l|] == x
method nextAfter(index: int) returns (x: T)
requires |l| > 0
ensures |l| == 1 ==> x == l[0]
ensures |l| > 1 && index % |l| == (|l| - 1) ==> x == l[0]
ensures |l| > 1 && 0 <= index && |l| < (|l| - 1) ==> x == l[index % |l| + 1]
}
class CircularLinkedList<T(==)> extends CircularLinkedListSpec<T>
{
constructor (capacity: nat)
requires capacity >= 0
ensures Valid()
ensures |l| == 0
ensures this.capacity == capacity
{
l := [];
this.capacity := capacity;
}
method insert(index: int, element: T)
// allows for integer and out-of-bounds index due to circularity
// managed by applying modulus
modifies this
requires |l| + 1 <= this.capacity
ensures |old(l)| == 0 ==> l == [element]
ensures |l| == |old(l)| + 1
ensures |old(l)| > 0 ==> l[index % |old(l)|] == element
ensures old(capacity) == capacity
ensures Valid()
{
if (|l| == 0)
{
l := [element];
}
else
{
var actualIndex := index % |l|;
var tail := l[actualIndex..];
l := l[..actualIndex] + [element];
l := l + tail;
}
}
method remove(element: T)
modifies this
requires Valid()
requires |l| > 0
requires element in l
ensures |l| == |old(l)| - 1
ensures old(capacity) == capacity
ensures Valid()
{
for i: nat := 0 to |l|
{
if l[i] == element
{
l := l[..i] + l[i + 1..];
break;
}
}
}
method removeAtIndex(index: int)
modifies this
requires Valid()
requires |l| > 0
ensures |l| == |old(l)| - 1
ensures old(capacity) == capacity
ensures Valid()
{
var actualIndex := index % |l|;
l := l[..actualIndex] + l[actualIndex + 1..];
}
method length() returns (n: nat)
ensures n == |l|
{
return |l|;
}
method at(index: int) returns (x: T)
requires |l| > 0
ensures l[index % |l|] == x
{
var actualIndex := index % |l|;
return l[actualIndex];
}
method nextAfter(index: int) returns (x: T)
requires |l| > 0
ensures |l| == 1 ==> x == l[0]
ensures |l| > 1 && index % |l| == (|l| - 1) ==> x == l[0]
ensures |l| > 1 && 0 <= index && |l| < (|l| - 1) ==> x == l[index % |l| + 1]
{
if (|l| == 1)
{
x := l[0];
}
else
{
var actualIndex := index % |l|;
if (actualIndex == (|l| - 1))
{
x := l[0];
} else {
x := l[actualIndex + 1];
}
}
return x;
}
method isIn(element: T) returns (b: bool)
ensures |l| == 0 ==> b == false
ensures |l| > 0 && b == true ==> exists i :: 0 <= i < |l| && l[i] == element
ensures |l| > 0 && b == false ==> !exists i :: 0 <= i < |l| && l[i] == element
{
if (|l| == 0)
{
b := false;
}
else
{
b := false;
for i: nat := 0 to |l|
{
if l[i] == element
{
b := true;
break;
}
}
}
}
}
|
206 | FMSE-2022-2023_tmp_tmp6_x_ba46_Lab1_Lab1.dfy | /// Types defined as part of Tasks 3, 5 and 9
// Since we have created the IsOddNat predicate we use it to define the new Odd subsort
newtype Odd = n : int | IsOddNat(n) witness 1
// Since we have created the IsEvenNat predicate we use it to define the new Even subsort
newtype Even = n : int | IsEvenNat(n) witness 2
/*
* We use int as the native type, so that the basic operations are available.
* However, we restrict the domain in order to accomodate the requirements.
*/
newtype int32 = n: int | -2147483648 <= n < 2147483648 witness 3
/// Task 2
/*
* In order for an integer to be a natural, odd number, two requirements must be satisfied:
* The integer in cause must be positive and the remainder of the division by 2 must be 1.
*/
predicate IsOddNat(x: int) {
(x >= 0) && (x % 2 == 1)
}
/// Task 4
/*
* In order for an integer to be a natural, even number, two requirements must be satisfied:
* The integer in cause must be positive and the remainder of the division by 2 must be 0.
*/
predicate IsEvenNat(x: int) {
(x >= 0) && (x % 2 == 0)
}
/// Task 6
/*
* In order to prove the statement, we rewrite the two numbers to reflect their form:
* The sum between a multiple of 2 and 1.
*
* By rewriting them like this and then adding them together, the sum is shown to
* be a multiple of 2 and thus, an even number.
*/
lemma AdditionOfTwoOddsResultsInEven(x: int, y: int)
requires IsOddNat(x);
requires IsOddNat(y);
ensures IsEvenNat(x + y);
{
calc {
IsOddNat(x);
x % 2 == 1;
}
calc {
IsOddNat(y);
y % 2 == 1;
}
calc {
(x + y) % 2 == 0;
IsEvenNat(x + y);
true;
}
}
/// Task 7
/*
* In order for an integer to be a natural, prime number, two requirements must be satisfied:
* The integer in cause must be natural (positive) and must have exactly two divisors:
* 1 and itself.
*
* Aside from two, which is the only even prime, we test the primality by checking if there
* is no number greater or equal to 2 that the number in cause is divisible with.
*/
predicate IsPrime(x: int)
requires x >= 0;
{
x == 2 || forall d :: 2 <= d < x ==> x % d != 0
}
/// Task 8
/*
* It is a known fact that any prime divided by any number, aside from 1 and itself,
* will yield a non-zero remainder.
*
* Thus, when dividing a prime (other than 2) by 2, the only non-zero remainder possible
* is 1, therefore making the number an odd one.
*/
lemma AnyPrimeGreaterThanTwoIsOdd(x : int)
requires x > 2;
requires IsPrime(x);
ensures IsOddNat(x);
{
calc {
x % 2;
{
assert forall d :: 2 <= d < x ==> x % d != 0;
}
1;
}
calc {
IsOddNat(x);
(x >= 0) && (x % 2 == 1);
{
assert x > 2;
}
true && true;
true;
}
}
/*
* Task 9
* Defined the basic arithmetic functions.
* Also defined the absolute value.
*
* Over/Underflow are represented by the return of 0.
*/
function add(x: int32, y: int32): int32 {
if (-2147483648 <= (x as int) + (y as int) <= 2147483647) then x + y else 0
}
function sub(x: int32, y: int32): int32 {
if (-2147483648 <= (x as int) - (y as int) <= 2147483647) then x - y else 0
}
function mul(x: int32, y: int32): int32 {
if (-2147483648 <= (x as int) * (y as int) <= 2147483647) then x * y else 0
}
function div(x: int32, y: int32): int32
requires y != 0;
{
if (-2147483648 <= (x as int) / (y as int) <= 2147483647) then x / y else 0
}
function mod(x: int32, y: int32): int32
requires y != 0;
{
x % y
/*
* Given that y is int32 and
* given that the remainder is positive and smaller than the denominator
* the result cannot over/underflow and is, therefore, not checked
*/
}
function abs(x: int32): (r: int32)
ensures r >= 0;
{
if (x == -2147483648) then 0 else if (x < 0) then -x else x
}
| /// Types defined as part of Tasks 3, 5 and 9
// Since we have created the IsOddNat predicate we use it to define the new Odd subsort
newtype Odd = n : int | IsOddNat(n) witness 1
// Since we have created the IsEvenNat predicate we use it to define the new Even subsort
newtype Even = n : int | IsEvenNat(n) witness 2
/*
* We use int as the native type, so that the basic operations are available.
* However, we restrict the domain in order to accomodate the requirements.
*/
newtype int32 = n: int | -2147483648 <= n < 2147483648 witness 3
/// Task 2
/*
* In order for an integer to be a natural, odd number, two requirements must be satisfied:
* The integer in cause must be positive and the remainder of the division by 2 must be 1.
*/
predicate IsOddNat(x: int) {
(x >= 0) && (x % 2 == 1)
}
/// Task 4
/*
* In order for an integer to be a natural, even number, two requirements must be satisfied:
* The integer in cause must be positive and the remainder of the division by 2 must be 0.
*/
predicate IsEvenNat(x: int) {
(x >= 0) && (x % 2 == 0)
}
/// Task 6
/*
* In order to prove the statement, we rewrite the two numbers to reflect their form:
* The sum between a multiple of 2 and 1.
*
* By rewriting them like this and then adding them together, the sum is shown to
* be a multiple of 2 and thus, an even number.
*/
lemma AdditionOfTwoOddsResultsInEven(x: int, y: int)
requires IsOddNat(x);
requires IsOddNat(y);
ensures IsEvenNat(x + y);
{
calc {
IsOddNat(x);
x % 2 == 1;
}
calc {
IsOddNat(y);
y % 2 == 1;
}
calc {
(x + y) % 2 == 0;
IsEvenNat(x + y);
true;
}
}
/// Task 7
/*
* In order for an integer to be a natural, prime number, two requirements must be satisfied:
* The integer in cause must be natural (positive) and must have exactly two divisors:
* 1 and itself.
*
* Aside from two, which is the only even prime, we test the primality by checking if there
* is no number greater or equal to 2 that the number in cause is divisible with.
*/
predicate IsPrime(x: int)
requires x >= 0;
{
x == 2 || forall d :: 2 <= d < x ==> x % d != 0
}
/// Task 8
/*
* It is a known fact that any prime divided by any number, aside from 1 and itself,
* will yield a non-zero remainder.
*
* Thus, when dividing a prime (other than 2) by 2, the only non-zero remainder possible
* is 1, therefore making the number an odd one.
*/
lemma AnyPrimeGreaterThanTwoIsOdd(x : int)
requires x > 2;
requires IsPrime(x);
ensures IsOddNat(x);
{
calc {
x % 2;
{
}
1;
}
calc {
IsOddNat(x);
(x >= 0) && (x % 2 == 1);
{
}
true && true;
true;
}
}
/*
* Task 9
* Defined the basic arithmetic functions.
* Also defined the absolute value.
*
* Over/Underflow are represented by the return of 0.
*/
function add(x: int32, y: int32): int32 {
if (-2147483648 <= (x as int) + (y as int) <= 2147483647) then x + y else 0
}
function sub(x: int32, y: int32): int32 {
if (-2147483648 <= (x as int) - (y as int) <= 2147483647) then x - y else 0
}
function mul(x: int32, y: int32): int32 {
if (-2147483648 <= (x as int) * (y as int) <= 2147483647) then x * y else 0
}
function div(x: int32, y: int32): int32
requires y != 0;
{
if (-2147483648 <= (x as int) / (y as int) <= 2147483647) then x / y else 0
}
function mod(x: int32, y: int32): int32
requires y != 0;
{
x % y
/*
* Given that y is int32 and
* given that the remainder is positive and smaller than the denominator
* the result cannot over/underflow and is, therefore, not checked
*/
}
function abs(x: int32): (r: int32)
ensures r >= 0;
{
if (x == -2147483648) then 0 else if (x < 0) then -x else x
}
|
207 | FMSE-2022-2023_tmp_tmp6_x_ba46_Lab2_Lab2.dfy | /*
* Task 2: Define the natural numbers as an algebraic data type
*
* Being an inductive data type, it's required that we have a base case constructor and an inductive one.
*/
datatype Nat = Zero | S(Pred: Nat)
/// Task 2
// Exercise (a'): proving that the successor constructor is injective
/*
* It's known that the successors are equal.
* It's know that for equal inputs, a non-random function returns the same result.
* Thus, the predecessors of the successors, namely, the numbers themselves, are equal.
*/
lemma SIsInjective(x: Nat, y: Nat)
ensures S(x) == S(y) ==> x == y
{
assume S(x) == S(y);
assert S(x).Pred == S(y).Pred;
assert x == y;
}
// Exercise (a''): Zero is different from successor(x), for any x
/*
* For all x: Nat, S(x) is built using the S constructor, implying that S(x).Zero? is inherently false.
*/
lemma ZeroIsDifferentFromSuccessor(n: Nat)
ensures S(n) != Zero
{
assert S(n).Zero? == false;
}
// Exercise (b): inductively defining the addition of natural numbers
/*
* The function decreases y until it reaches the base inductive case.
* The Addition between Zero and a x: Nat will be x.
* The Addition between a successor of a y': Nat and another x: Nat is the successor of the Addition between y' and x
*
* x + y = 1 + ((x - 1) + y)
*/
function Add(x: Nat, y: Nat) : Nat
decreases y
{
match y
case Zero => x
case S(y') => S(Add(x, y'))
}
// Exercise (c'): proving that the addition is commutative
/*
* It is necessary, as with any induction, to have a proven base case.
* In this case, we first prove that the Addition with Zero is Neutral.
*/
lemma {:induction n} ZeroAddNeutral(n: Nat)
ensures Add(n, Zero) == Add(Zero, n) == n
{
match n
case Zero => {
assert Add(n, Zero)
== Add(Zero, Zero)
== Add(Zero, n)
== n;
}
case S(n') => {
assert Add(n, Zero)
== Add(S(n'), Zero)
== S(n')
== Add(Zero, S(n'))
== Add(Zero, n)
== n;
}
}
/*
* Since Zero is neutral, it is trivial that the order of addition is not of importance.
*/
lemma {:induction n} ZeroAddCommutative(n: Nat)
ensures Add(Zero, n) == Add(n, Zero)
{
assert Add(Zero, n)
== n
== Add(n, Zero);
}
/*
* Since now the base case of commutative addition with Zero is proven, we can now prove using induction.
*/
lemma {:induction x, y} AddCommutative(x: Nat, y: Nat)
ensures Add(x, y) == Add(y, x)
decreases x, y
{
match x
case Zero => ZeroAddCommutative(y);
case S(x') => AddCommutative(x', y);
}
// Exercise (c''): proving that the addition is associative
/*
* It is necessary, as with any induction, to have a proven base case.
* In this case, we first prove that the Addition with Zero is Associative.
*
* Again, given that addition with Zero is neutral, the order of calculations is irrelevant.
*/
lemma {:induction x, y} ZeroAddAssociative(x: Nat, y: Nat)
ensures Add(Add(Zero, x), y) == Add(Zero, Add(x, y))
{
ZeroAddNeutral(x);
assert Add(Add(Zero, x), y)
== // ZeroAddNeutral
Add(x, y)
== Add(Zero, Add(x, y));
}
/*
* Since now the base case of commutative addition with Zero is proven, we can now prove using induction.
*/
lemma {:induction x, y} AddAssociative(x: Nat, y: Nat, z: Nat)
ensures Add(Add(x, y), z) == Add(x, Add(y, z))
decreases z
{
match z
case Zero => ZeroAddAssociative(Add(x, y), Zero);
case S(z') => AddAssociative(x, y, z');
}
// Exercise (d): defining a predicate lt(m, n) that holds when m is less than n
/*
* If x is Zero and y is a Successor, given that we have proven ZeroIsDifferentFromSuccessor for all x, the predicate holds.
* Otherwise, if both are successors, we inductively check their predecessors.
*/
predicate LessThan(x: Nat, y: Nat)
decreases x, y
{
(x.Zero? && y.S?) || (x.S? && y.S? && LessThan(x.Pred, y.Pred))
}
// Exercise (e): proving that lt is transitive
/*
* It is necessary, as with any induction, to have a proven base case.
* In this case, we first prove that LessThan is Transitive having a Zero as the left-most parameter.
*
* We prove this statement using Reductio Ad Absurdum.
* We suppose that Zero is not smaller that an arbitrary z that is non-Zero.
* This would imply that Zero has to be a Successor (i.e. Zero.S? == true).
* This is inherently false.
*/
lemma {:induction y, z} LessThanIsTransitiveWithZero(y: Nat, z: Nat)
requires LessThan(Zero, y)
requires LessThan(y, z)
ensures LessThan(Zero, z)
{
if !LessThan(Zero, z) {
assert z != Zero;
assert Zero.S?;
assert false;
}
}
/*
* Since now the base case of transitive LessThan with Zero is proven, we can now prove using induction.
*
* In this case, the induction decreases on all three variables, all x, y, z until the base case.
*/
lemma {:induction x, y, z} LessThanIsTransitive(x: Nat, y: Nat, z: Nat)
requires LessThan(x, y)
requires LessThan(y, z)
ensures LessThan(x, z)
decreases x
{
match x
case Zero => LessThanIsTransitiveWithZero(y, z);
case S(x') => match y
case S(y') => match z
case S(z') => LessThanIsTransitive(x', y', z');
}
/// Task 3: Define the parametric lists as an algebraic data type
/*
* Being an inductive data type, it's required that we have a base case constructor and an inductive one.
* The inductive Append constructor takes as input a Nat, the head, and a tail, the rest of the list.
*/
datatype List<T> = Nil | Append(head: T, tail: List)
// Exercise (a): defining the size of a list (using natural numbers defined above)
/*
* We are modelling the function as a recursive one.
* The size of an empty list (Nil) is Zero.
*
* The size of a non-empty list is the successor of the size of the list's tail.
*/
function Size(l: List<Nat>): Nat
decreases l
{
if l.Nil? then Zero else S(Size(l.tail))
}
// Exercise (b): defining the concatenation of two lists
/*
* Concatenation with an empty list yields the other list.
*
* The function recursively calculates the result of the concatenation.
*/
function Concatenation(l1: List<Nat>, l2: List<Nat>) : List<Nat>
decreases l1, l2
{
match l1
case Nil => l2
case Append(head1, tail1) => match l2
case Nil => l1
case Append(_, _) => Append(head1, Concatenation(tail1, l2))
}
// Exercise (c): proving that the size of the concatenation of two lists is the sum of the lists' sizes
/*
* Starting with a base case in which the first list is empty, the proof is trivial, given ZeroAddNeutral.
* Afterwards, the induction follows the next step and matches the second list.
* If the list is empty, the result will be, of course, the first list.
* Otherwise, an element is discarded from both (the heads), and the verification continues on the tails.
*/
lemma {:induction l1, l2} SizeOfConcatenationIsSumOfSizes(l1: List<Nat>, l2: List<Nat>)
ensures Size(Concatenation(l1, l2)) == Add(Size(l1), Size(l2))
decreases l1, l2
{
match l1
case Nil => {
ZeroAddNeutral(Size(l2));
assert Size(Concatenation(l1, l2))
== Size(Concatenation(Nil, l2))
== Size(l2)
== // ZeroAddNeutral
Add(Zero, Size(l2))
== Add(Size(l1), Size(l2));
}
case Append(_, tail1) => match l2
case Nil => {
assert Size(Concatenation(l1, l2))
== Size(Concatenation(l1, Nil))
== Size(l1)
== Add(Size(l1), Zero)
== Add(Size(l1), Size(l2));
}
case Append(_, tail2) => SizeOfConcatenationIsSumOfSizes(tail1, tail2);
}
// Exercise (d): defining a function reversing a list
/*
* The base case is, again, the empty list.
* When the list is empty, the reverse of the list is also Nil.
*
* When dealing with a non-empty list, we make use of the Concatenation operation.
* The Reverse of the list will be a concatenation between the reverse of the tail and the head.
* Since the head is not a list on its own, a list is created using the Append constructor.
*/
function ReverseList(l: List<Nat>) : List<Nat>
decreases l
{
if l.Nil? then Nil else Concatenation(ReverseList(l.tail), Append(l.head, Nil))
}
// Exercise (e): proving that reversing a list twice we obtain the initial list.
/*
* Given that during the induction we need to make use of this property,
* we first save the result of reversing a concatenation between a list and a single element.
*
* Aside from the base case, proven with chained equality assertions, the proof follows an inductive approach as well.
*/
lemma {:induction l, n} ReversalOfConcatenationWithHead(l: List<Nat>, n: Nat)
ensures ReverseList(Concatenation(l, Append(n, Nil))) == Append(n, ReverseList(l))
decreases l, n
{
match l
case Nil => {
assert ReverseList(Concatenation(l, Append(n, Nil)))
== ReverseList(Concatenation(Nil, Append(n, Nil)))
== ReverseList(Append(n, Nil))
== Concatenation(ReverseList(Append(n, Nil).tail), Append(Append(n, Nil).head, Nil))
== Concatenation(ReverseList(Nil), Append(n, Nil))
== Concatenation(Nil, Append(n, Nil))
== Append(n, Nil)
== Append(n, l)
== Append(n, ReverseList(l));
}
case Append(head, tail) => ReversalOfConcatenationWithHead(tail, n);
}
/*
* The induction starts with the base case, which is trivial.
*
* For the inductive steps, there is a need for the property proven above.
* Once the property is guaranteed, the chained assertions lead to the solution.
*/
lemma {:induction l} DoubleReversalResultsInInitialList(l: List<Nat>)
ensures l == ReverseList(ReverseList(l))
{
match l
case Nil => {
assert ReverseList(ReverseList(l))
== ReverseList(ReverseList(Nil))
== ReverseList(Nil)
== Nil;
assert l == ReverseList(ReverseList(l));
}
case Append(head, tail) => {
ReversalOfConcatenationWithHead(ReverseList(tail), head);
assert ReverseList(ReverseList(l))
== ReverseList(ReverseList(Append(head, tail)))
== ReverseList(Concatenation(ReverseList(tail), Append(head, Nil)))
== // ReversalOfConcatenationWithHead
Append(head, ReverseList(ReverseList(tail)))
== Append(head, tail)
== l;
}
}
| /*
* Task 2: Define the natural numbers as an algebraic data type
*
* Being an inductive data type, it's required that we have a base case constructor and an inductive one.
*/
datatype Nat = Zero | S(Pred: Nat)
/// Task 2
// Exercise (a'): proving that the successor constructor is injective
/*
* It's known that the successors are equal.
* It's know that for equal inputs, a non-random function returns the same result.
* Thus, the predecessors of the successors, namely, the numbers themselves, are equal.
*/
lemma SIsInjective(x: Nat, y: Nat)
ensures S(x) == S(y) ==> x == y
{
assume S(x) == S(y);
}
// Exercise (a''): Zero is different from successor(x), for any x
/*
* For all x: Nat, S(x) is built using the S constructor, implying that S(x).Zero? is inherently false.
*/
lemma ZeroIsDifferentFromSuccessor(n: Nat)
ensures S(n) != Zero
{
}
// Exercise (b): inductively defining the addition of natural numbers
/*
* The function decreases y until it reaches the base inductive case.
* The Addition between Zero and a x: Nat will be x.
* The Addition between a successor of a y': Nat and another x: Nat is the successor of the Addition between y' and x
*
* x + y = 1 + ((x - 1) + y)
*/
function Add(x: Nat, y: Nat) : Nat
{
match y
case Zero => x
case S(y') => S(Add(x, y'))
}
// Exercise (c'): proving that the addition is commutative
/*
* It is necessary, as with any induction, to have a proven base case.
* In this case, we first prove that the Addition with Zero is Neutral.
*/
lemma {:induction n} ZeroAddNeutral(n: Nat)
ensures Add(n, Zero) == Add(Zero, n) == n
{
match n
case Zero => {
== Add(Zero, Zero)
== Add(Zero, n)
== n;
}
case S(n') => {
== Add(S(n'), Zero)
== S(n')
== Add(Zero, S(n'))
== Add(Zero, n)
== n;
}
}
/*
* Since Zero is neutral, it is trivial that the order of addition is not of importance.
*/
lemma {:induction n} ZeroAddCommutative(n: Nat)
ensures Add(Zero, n) == Add(n, Zero)
{
== n
== Add(n, Zero);
}
/*
* Since now the base case of commutative addition with Zero is proven, we can now prove using induction.
*/
lemma {:induction x, y} AddCommutative(x: Nat, y: Nat)
ensures Add(x, y) == Add(y, x)
{
match x
case Zero => ZeroAddCommutative(y);
case S(x') => AddCommutative(x', y);
}
// Exercise (c''): proving that the addition is associative
/*
* It is necessary, as with any induction, to have a proven base case.
* In this case, we first prove that the Addition with Zero is Associative.
*
* Again, given that addition with Zero is neutral, the order of calculations is irrelevant.
*/
lemma {:induction x, y} ZeroAddAssociative(x: Nat, y: Nat)
ensures Add(Add(Zero, x), y) == Add(Zero, Add(x, y))
{
ZeroAddNeutral(x);
== // ZeroAddNeutral
Add(x, y)
== Add(Zero, Add(x, y));
}
/*
* Since now the base case of commutative addition with Zero is proven, we can now prove using induction.
*/
lemma {:induction x, y} AddAssociative(x: Nat, y: Nat, z: Nat)
ensures Add(Add(x, y), z) == Add(x, Add(y, z))
{
match z
case Zero => ZeroAddAssociative(Add(x, y), Zero);
case S(z') => AddAssociative(x, y, z');
}
// Exercise (d): defining a predicate lt(m, n) that holds when m is less than n
/*
* If x is Zero and y is a Successor, given that we have proven ZeroIsDifferentFromSuccessor for all x, the predicate holds.
* Otherwise, if both are successors, we inductively check their predecessors.
*/
predicate LessThan(x: Nat, y: Nat)
{
(x.Zero? && y.S?) || (x.S? && y.S? && LessThan(x.Pred, y.Pred))
}
// Exercise (e): proving that lt is transitive
/*
* It is necessary, as with any induction, to have a proven base case.
* In this case, we first prove that LessThan is Transitive having a Zero as the left-most parameter.
*
* We prove this statement using Reductio Ad Absurdum.
* We suppose that Zero is not smaller that an arbitrary z that is non-Zero.
* This would imply that Zero has to be a Successor (i.e. Zero.S? == true).
* This is inherently false.
*/
lemma {:induction y, z} LessThanIsTransitiveWithZero(y: Nat, z: Nat)
requires LessThan(Zero, y)
requires LessThan(y, z)
ensures LessThan(Zero, z)
{
if !LessThan(Zero, z) {
}
}
/*
* Since now the base case of transitive LessThan with Zero is proven, we can now prove using induction.
*
* In this case, the induction decreases on all three variables, all x, y, z until the base case.
*/
lemma {:induction x, y, z} LessThanIsTransitive(x: Nat, y: Nat, z: Nat)
requires LessThan(x, y)
requires LessThan(y, z)
ensures LessThan(x, z)
{
match x
case Zero => LessThanIsTransitiveWithZero(y, z);
case S(x') => match y
case S(y') => match z
case S(z') => LessThanIsTransitive(x', y', z');
}
/// Task 3: Define the parametric lists as an algebraic data type
/*
* Being an inductive data type, it's required that we have a base case constructor and an inductive one.
* The inductive Append constructor takes as input a Nat, the head, and a tail, the rest of the list.
*/
datatype List<T> = Nil | Append(head: T, tail: List)
// Exercise (a): defining the size of a list (using natural numbers defined above)
/*
* We are modelling the function as a recursive one.
* The size of an empty list (Nil) is Zero.
*
* The size of a non-empty list is the successor of the size of the list's tail.
*/
function Size(l: List<Nat>): Nat
{
if l.Nil? then Zero else S(Size(l.tail))
}
// Exercise (b): defining the concatenation of two lists
/*
* Concatenation with an empty list yields the other list.
*
* The function recursively calculates the result of the concatenation.
*/
function Concatenation(l1: List<Nat>, l2: List<Nat>) : List<Nat>
{
match l1
case Nil => l2
case Append(head1, tail1) => match l2
case Nil => l1
case Append(_, _) => Append(head1, Concatenation(tail1, l2))
}
// Exercise (c): proving that the size of the concatenation of two lists is the sum of the lists' sizes
/*
* Starting with a base case in which the first list is empty, the proof is trivial, given ZeroAddNeutral.
* Afterwards, the induction follows the next step and matches the second list.
* If the list is empty, the result will be, of course, the first list.
* Otherwise, an element is discarded from both (the heads), and the verification continues on the tails.
*/
lemma {:induction l1, l2} SizeOfConcatenationIsSumOfSizes(l1: List<Nat>, l2: List<Nat>)
ensures Size(Concatenation(l1, l2)) == Add(Size(l1), Size(l2))
{
match l1
case Nil => {
ZeroAddNeutral(Size(l2));
== Size(Concatenation(Nil, l2))
== Size(l2)
== // ZeroAddNeutral
Add(Zero, Size(l2))
== Add(Size(l1), Size(l2));
}
case Append(_, tail1) => match l2
case Nil => {
== Size(Concatenation(l1, Nil))
== Size(l1)
== Add(Size(l1), Zero)
== Add(Size(l1), Size(l2));
}
case Append(_, tail2) => SizeOfConcatenationIsSumOfSizes(tail1, tail2);
}
// Exercise (d): defining a function reversing a list
/*
* The base case is, again, the empty list.
* When the list is empty, the reverse of the list is also Nil.
*
* When dealing with a non-empty list, we make use of the Concatenation operation.
* The Reverse of the list will be a concatenation between the reverse of the tail and the head.
* Since the head is not a list on its own, a list is created using the Append constructor.
*/
function ReverseList(l: List<Nat>) : List<Nat>
{
if l.Nil? then Nil else Concatenation(ReverseList(l.tail), Append(l.head, Nil))
}
// Exercise (e): proving that reversing a list twice we obtain the initial list.
/*
* Given that during the induction we need to make use of this property,
* we first save the result of reversing a concatenation between a list and a single element.
*
* Aside from the base case, proven with chained equality assertions, the proof follows an inductive approach as well.
*/
lemma {:induction l, n} ReversalOfConcatenationWithHead(l: List<Nat>, n: Nat)
ensures ReverseList(Concatenation(l, Append(n, Nil))) == Append(n, ReverseList(l))
{
match l
case Nil => {
== ReverseList(Concatenation(Nil, Append(n, Nil)))
== ReverseList(Append(n, Nil))
== Concatenation(ReverseList(Append(n, Nil).tail), Append(Append(n, Nil).head, Nil))
== Concatenation(ReverseList(Nil), Append(n, Nil))
== Concatenation(Nil, Append(n, Nil))
== Append(n, Nil)
== Append(n, l)
== Append(n, ReverseList(l));
}
case Append(head, tail) => ReversalOfConcatenationWithHead(tail, n);
}
/*
* The induction starts with the base case, which is trivial.
*
* For the inductive steps, there is a need for the property proven above.
* Once the property is guaranteed, the chained assertions lead to the solution.
*/
lemma {:induction l} DoubleReversalResultsInInitialList(l: List<Nat>)
ensures l == ReverseList(ReverseList(l))
{
match l
case Nil => {
== ReverseList(ReverseList(Nil))
== ReverseList(Nil)
== Nil;
}
case Append(head, tail) => {
ReversalOfConcatenationWithHead(ReverseList(tail), head);
== ReverseList(ReverseList(Append(head, tail)))
== ReverseList(Concatenation(ReverseList(tail), Append(head, Nil)))
== // ReversalOfConcatenationWithHead
Append(head, ReverseList(ReverseList(tail)))
== Append(head, tail)
== l;
}
}
|
208 | FMSE-2022-2023_tmp_tmp6_x_ba46_Lab3_Lab3.dfy | /*
* Task 2: Define in Dafny the conatural numbers as a coinductive datatype
*
* Being a coinductive data type, it's required that we have a base case constructor and an inductive one
* (as is the case with inductive ones as well)
*/
codatatype Conat = Zero | Succ(Pred: Conat)
// Exercise (a): explain why the following coinductive property does NOT hold
// lemma ConstructorConat(n: Conat)
// ensures n != Succ(n)
// {
// the following coinductive property does not hold because coinductive datatypes, as opposed to normal datatypes,
// are designed for infinite domains, as such, it is improper to test the equality above when dealing with infinity
// }
// Exercise (b): show that the constructor successor is injective
greatest lemma ConstructorInjective(x: Conat, y: Conat)
ensures Succ(x) == Succ(y) ==> x == y
{
assume Succ(x) == Succ(y);
assert Succ(x).Pred == Succ(y).Pred;
assert x == y;
}
// Exercise (c): define the ∞ constant (as a corecursive function)
// We use a co-recursive call using the Succ constructor on the result, producing an infinite call stack
function inf(n: Conat): Conat
{
Succ(inf(n))
}
// Exercise (d): define the addition of conaturals
// Similar to add function over the Nat datatype (See Lab2)
function add(x: Conat, y: Conat) : Conat
{
match x
case Zero => y
case Succ(x') => Succ(add(x', y))
}
// Exercise (e): show that by adding ∞ to itself it remains unchanged
// Because the focus is on greatest fixed-point we need to use a co-predicate
// Aptly renamed to greatest predicate
greatest predicate InfinityAddition()
{
add(inf(Zero), inf(Zero)) == inf(Zero)
}
// Task 3: Define the parametric streams as a coinductive datatype where s ranges over streams
codatatype Stream<A> = Cons(head: A, tail: Stream<A>)
// Exercise (a): corecursively define the pointwise addition of two streams of integers
// After performing the addition of the value in the heads, proceed similarly with the tails
function addition(a: Stream<int>, b: Stream<int>): Stream<int>
{
Cons(a.head + b.head, addition(a.tail, b.tail))
}
// Exercise (b): define a parametric integer constant stream
// An infinite stream with the same value
function cnst(a: int): Stream<int>
{
Cons(a, cnst(a))
}
// Exercise (c): prove by coinduction that add(s, cnst(0)) = s;
// The proof tried below is not complete, however, by telling Dafny that we are dealing with a colemma,
// Aptly renamed to greatest lemma, it is able to reason and prove the post-condition by itself
greatest lemma additionWithZero(a : Stream<int>)
ensures addition(a, cnst(0)) == a
{
// assert addition(a, cnst(0))
// ==
// Cons(a.head + cnst(0).head, addition(a.tail, cnst(0).tail))
// ==
// Cons(a.head + 0, addition(a.tail, cnst(0)))
// ==
// Cons(a.head, addition(a.tail, cnst(0)))
// ==
// Cons(a.head, a.tail)
// ==
// a;
}
// Exercise (d): define coinductively the predicate
greatest predicate leq(a: Stream<int>, b: Stream<int>)
{ a.head <= b.head && ((a.head == b.head) ==> leq(a.tail, b.tail)) }
// Exercise (e): (e) define the stream blink
function blink(): Stream<int>
{
Cons(0, Cons(1, blink()))
}
// Exercise (f): prove by coinduction that leq(cnst(0), blink)
lemma CnstZeroLeqBlink()
ensures leq(cnst(0), blink())
{
}
// Exercise (g): define a function that ”zips” two streams
// A stream formed by alternating the elements of both streams one by one
function zip(a: Stream<int>, b: Stream<int>): Stream<int>
{
Cons(a.head, Cons(b.head, zip(a.tail, b.tail)))
}
// Exercise (h): prove that zipping cnst(0) and cnst(1) yields blink
// By using a greatest lemma, Dafny can reason on its own
greatest lemma ZipCnstZeroCnstOneEqualsBlink()
ensures zip(cnst(0), cnst(1)) == blink()
{
// assert zip(cnst(0), cnst(1))
// ==
// Cons(cnst(0).head, Cons(cnst(1).head, zip(cnst(0).tail, cnst(1).tail)))
// ==
// Cons(0, Cons(1, zip(cnst(0).tail, cnst(1).tail)))
// ==
// Cons(0, Cons(1, zip(cnst(0), cnst(1))))
// ==
// Cons(0, Cons(1, Cons(cnst(0).head, Cons(cnst(1).head, zip(cnst(0).tail, cnst(1).tail)))))
// ==
// Cons(0, Cons(1, Cons(0, Cons(1, zip(cnst(0).tail, cnst(1).tail)))))
// ==
// Cons(0, Cons(1, Cons(0, Cons(1, zip(cnst(0), cnst(1))))))
// ==
// blink();
}
| /*
* Task 2: Define in Dafny the conatural numbers as a coinductive datatype
*
* Being a coinductive data type, it's required that we have a base case constructor and an inductive one
* (as is the case with inductive ones as well)
*/
codatatype Conat = Zero | Succ(Pred: Conat)
// Exercise (a): explain why the following coinductive property does NOT hold
// lemma ConstructorConat(n: Conat)
// ensures n != Succ(n)
// {
// the following coinductive property does not hold because coinductive datatypes, as opposed to normal datatypes,
// are designed for infinite domains, as such, it is improper to test the equality above when dealing with infinity
// }
// Exercise (b): show that the constructor successor is injective
greatest lemma ConstructorInjective(x: Conat, y: Conat)
ensures Succ(x) == Succ(y) ==> x == y
{
assume Succ(x) == Succ(y);
}
// Exercise (c): define the ∞ constant (as a corecursive function)
// We use a co-recursive call using the Succ constructor on the result, producing an infinite call stack
function inf(n: Conat): Conat
{
Succ(inf(n))
}
// Exercise (d): define the addition of conaturals
// Similar to add function over the Nat datatype (See Lab2)
function add(x: Conat, y: Conat) : Conat
{
match x
case Zero => y
case Succ(x') => Succ(add(x', y))
}
// Exercise (e): show that by adding ∞ to itself it remains unchanged
// Because the focus is on greatest fixed-point we need to use a co-predicate
// Aptly renamed to greatest predicate
greatest predicate InfinityAddition()
{
add(inf(Zero), inf(Zero)) == inf(Zero)
}
// Task 3: Define the parametric streams as a coinductive datatype where s ranges over streams
codatatype Stream<A> = Cons(head: A, tail: Stream<A>)
// Exercise (a): corecursively define the pointwise addition of two streams of integers
// After performing the addition of the value in the heads, proceed similarly with the tails
function addition(a: Stream<int>, b: Stream<int>): Stream<int>
{
Cons(a.head + b.head, addition(a.tail, b.tail))
}
// Exercise (b): define a parametric integer constant stream
// An infinite stream with the same value
function cnst(a: int): Stream<int>
{
Cons(a, cnst(a))
}
// Exercise (c): prove by coinduction that add(s, cnst(0)) = s;
// The proof tried below is not complete, however, by telling Dafny that we are dealing with a colemma,
// Aptly renamed to greatest lemma, it is able to reason and prove the post-condition by itself
greatest lemma additionWithZero(a : Stream<int>)
ensures addition(a, cnst(0)) == a
{
// assert addition(a, cnst(0))
// ==
// Cons(a.head + cnst(0).head, addition(a.tail, cnst(0).tail))
// ==
// Cons(a.head + 0, addition(a.tail, cnst(0)))
// ==
// Cons(a.head, addition(a.tail, cnst(0)))
// ==
// Cons(a.head, a.tail)
// ==
// a;
}
// Exercise (d): define coinductively the predicate
greatest predicate leq(a: Stream<int>, b: Stream<int>)
{ a.head <= b.head && ((a.head == b.head) ==> leq(a.tail, b.tail)) }
// Exercise (e): (e) define the stream blink
function blink(): Stream<int>
{
Cons(0, Cons(1, blink()))
}
// Exercise (f): prove by coinduction that leq(cnst(0), blink)
lemma CnstZeroLeqBlink()
ensures leq(cnst(0), blink())
{
}
// Exercise (g): define a function that ”zips” two streams
// A stream formed by alternating the elements of both streams one by one
function zip(a: Stream<int>, b: Stream<int>): Stream<int>
{
Cons(a.head, Cons(b.head, zip(a.tail, b.tail)))
}
// Exercise (h): prove that zipping cnst(0) and cnst(1) yields blink
// By using a greatest lemma, Dafny can reason on its own
greatest lemma ZipCnstZeroCnstOneEqualsBlink()
ensures zip(cnst(0), cnst(1)) == blink()
{
// assert zip(cnst(0), cnst(1))
// ==
// Cons(cnst(0).head, Cons(cnst(1).head, zip(cnst(0).tail, cnst(1).tail)))
// ==
// Cons(0, Cons(1, zip(cnst(0).tail, cnst(1).tail)))
// ==
// Cons(0, Cons(1, zip(cnst(0), cnst(1))))
// ==
// Cons(0, Cons(1, Cons(cnst(0).head, Cons(cnst(1).head, zip(cnst(0).tail, cnst(1).tail)))))
// ==
// Cons(0, Cons(1, Cons(0, Cons(1, zip(cnst(0).tail, cnst(1).tail)))))
// ==
// Cons(0, Cons(1, Cons(0, Cons(1, zip(cnst(0), cnst(1))))))
// ==
// blink();
}
|
209 | Final-Project-Dafny_tmp_tmpmcywuqox_Attempts_Exercise3_Increment_Array.dfy | method incrementArray(a:array<int>)
requires a.Length > 0
ensures forall i :: 0 <= i < a.Length ==> a[i] == old(a[i]) + 1
modifies a
{
var j : int := 0;
while(j < a.Length)
invariant 0 <= j <= a.Length
invariant forall i :: j <= i < a.Length ==> a[i] == old(a[i])
invariant forall i :: 0 <= i < j ==> a[i] == old(a[i]) + 1
decreases a.Length - j
{
assert forall i :: 0 <= i < j ==> a[i] == old(a[i]) + 1;
assert a[j] == old(a[j]);
a[j] := a[j] + 1;
assert forall i :: 0 <= i < j ==> a[i] == old(a[i]) + 1;
assert a[j] == old(a[j]) + 1;
j := j+1;
}
}
| method incrementArray(a:array<int>)
requires a.Length > 0
ensures forall i :: 0 <= i < a.Length ==> a[i] == old(a[i]) + 1
modifies a
{
var j : int := 0;
while(j < a.Length)
{
a[j] := a[j] + 1;
j := j+1;
}
}
|
210 | Final-Project-Dafny_tmp_tmpmcywuqox_Attempts_Exercise4_Find_Max.dfy | method findMax(a:array<int>) returns (pos:int, maxVal: int)
requires a.Length > 0;
requires forall i :: 0 <= i < a.Length ==> a[i] >= 0;
ensures forall i :: 0 <= i < a.Length ==> a[i] <= maxVal;
ensures exists i :: 0 <= i < a.Length && a[i] == maxVal;
ensures 0 <= pos < a.Length
ensures a[pos] == maxVal;
{
pos := 0;
maxVal := a[0];
var j := 1;
while(j < a.Length)
invariant 1 <= j <= a.Length;
invariant forall i :: 0 <= i < j ==> a[i] <= maxVal;
invariant exists i :: 0 <= i < j && a[i] == maxVal;
invariant 0 <= pos < a.Length;
invariant a[pos] == maxVal;
{
if (a[j] > maxVal)
{
maxVal := a[j];
pos := j;
}
j := j+1;
}
return;
}
| method findMax(a:array<int>) returns (pos:int, maxVal: int)
requires a.Length > 0;
requires forall i :: 0 <= i < a.Length ==> a[i] >= 0;
ensures forall i :: 0 <= i < a.Length ==> a[i] <= maxVal;
ensures exists i :: 0 <= i < a.Length && a[i] == maxVal;
ensures 0 <= pos < a.Length
ensures a[pos] == maxVal;
{
pos := 0;
maxVal := a[0];
var j := 1;
while(j < a.Length)
{
if (a[j] > maxVal)
{
maxVal := a[j];
pos := j;
}
j := j+1;
}
return;
}
|
211 | Final-Project-Dafny_tmp_tmpmcywuqox_Attempts_Exercise6_Binary_Search.dfy | method binarySearch(a:array<int>, val:int) returns (pos:int)
requires a.Length > 0
requires forall i, j :: 0 <= i < j < a.Length ==> a[i] <= a[j]
ensures 0 <= pos < a.Length ==> a[pos] == val
ensures pos < 0 || pos >= a.Length ==> forall i :: 0 <= i < a.Length ==> a[i] != val
{
var left := 0;
var right := a.Length;
if a[left] > val || a[right-1] < val
{
return -1;
}
while left < right
invariant 0 <= left <= right <= a.Length
invariant forall i :: 0 <= i < a.Length && !(left <= i < right) ==> a[i] != val
decreases right - left
{
var med := (left + right) / 2;
assert left <= med <= right;
if a[med] < val
{
left := med + 1;
}
else if a[med] > val
{
right := med;
}
else
{
assert a[med] == val;
pos := med;
return;
}
}
return -1;
}
| method binarySearch(a:array<int>, val:int) returns (pos:int)
requires a.Length > 0
requires forall i, j :: 0 <= i < j < a.Length ==> a[i] <= a[j]
ensures 0 <= pos < a.Length ==> a[pos] == val
ensures pos < 0 || pos >= a.Length ==> forall i :: 0 <= i < a.Length ==> a[i] != val
{
var left := 0;
var right := a.Length;
if a[left] > val || a[right-1] < val
{
return -1;
}
while left < right
{
var med := (left + right) / 2;
if a[med] < val
{
left := med + 1;
}
else if a[med] > val
{
right := med;
}
else
{
pos := med;
return;
}
}
return -1;
}
|
212 | Final-Project-Dafny_tmp_tmpmcywuqox_Attempts_Insertion_Sort_Normal.dfy | predicate sorted (a: array<int>)
reads a
{
sortedA(a, a.Length)
}
predicate sortedA (a: array<int>, i: int)
requires 0 <= i <= a.Length
reads a
{
forall k :: 0 < k < i ==> a[k-1] <= a[k]
}
method lookForMin (a: array<int>, i: int) returns (m: int)
requires 0 <= i < a.Length
ensures i <= m < a.Length
ensures forall k :: i <= k < a.Length ==> a[k] >= a[m]
{
var j := i;
m := i;
while(j < a.Length)
invariant i <= j <= a.Length
invariant i <= m < a.Length
invariant forall k :: i <= k < j ==> a[k] >= a[m]
decreases a.Length - j
{
if(a[j] < a[m]) { m := j; }
j := j + 1;
}
}
method insertionSort (a: array<int>)
modifies a
ensures sorted(a)
{
var c := 0;
while(c < a.Length)
invariant 0 <= c <= a.Length
invariant forall k, l :: 0 <= k < c <= l < a.Length ==> a[k] <= a[l]
invariant sortedA(a, c)
{
var m := lookForMin(a, c);
a[m], a[c] := a[c], a[m];
assert forall k :: c <= k < a.Length ==> a[k] >= a[c];
c := c + 1;
}
}
| predicate sorted (a: array<int>)
reads a
{
sortedA(a, a.Length)
}
predicate sortedA (a: array<int>, i: int)
requires 0 <= i <= a.Length
reads a
{
forall k :: 0 < k < i ==> a[k-1] <= a[k]
}
method lookForMin (a: array<int>, i: int) returns (m: int)
requires 0 <= i < a.Length
ensures i <= m < a.Length
ensures forall k :: i <= k < a.Length ==> a[k] >= a[m]
{
var j := i;
m := i;
while(j < a.Length)
{
if(a[j] < a[m]) { m := j; }
j := j + 1;
}
}
method insertionSort (a: array<int>)
modifies a
ensures sorted(a)
{
var c := 0;
while(c < a.Length)
{
var m := lookForMin(a, c);
a[m], a[c] := a[c], a[m];
c := c + 1;
}
}
|
213 | Final-Project-Dafny_tmp_tmpmcywuqox_Attempts_Insertion_Sorted_Standard.dfy | predicate InsertionSorted(Array: array<int>, left: int, right: int)
requires 0 <= left <= right <= Array.Length
reads Array
{
forall i,j :: left <= i < j < right ==> Array[i] <= Array[j]
}
method sorting(Array: array<int>)
requires Array.Length > 1
ensures InsertionSorted(Array, 0, Array.Length)
modifies Array
{
var high := 1;
while (high < Array.Length)
invariant 1 <= high <= Array.Length
invariant InsertionSorted(Array,0,high)
{
var low := high-1;
while low >= 0 && Array[low+1] < Array[low]
invariant forall idx,idx' :: 0 <= idx < idx' < high+1 && idx' != low+1 ==> Array[idx] <= Array[idx']
{
Array[low], Array[low+1] := Array[low+1], Array[low];
low := low-1;
}
high := high+1;
}
}
| predicate InsertionSorted(Array: array<int>, left: int, right: int)
requires 0 <= left <= right <= Array.Length
reads Array
{
forall i,j :: left <= i < j < right ==> Array[i] <= Array[j]
}
method sorting(Array: array<int>)
requires Array.Length > 1
ensures InsertionSorted(Array, 0, Array.Length)
modifies Array
{
var high := 1;
while (high < Array.Length)
{
var low := high-1;
while low >= 0 && Array[low+1] < Array[low]
{
Array[low], Array[low+1] := Array[low+1], Array[low];
low := low-1;
}
high := high+1;
}
}
|
214 | Final-Project-Dafny_tmp_tmpmcywuqox_Attempts_Merge_Sort.dfy | method mergeSort(a: array<int>)
modifies a
{
sorting(a, 0, a.Length-1);
}
method merging(a: array<int>, low: int, medium: int, high: int)
requires 0 <= low <= medium <= high < a.Length
modifies a
{
var x := 0;
var y := 0;
var z := 0;
var a1: array<int> := new [medium - low + 1];
var a2: array<int> := new [high - medium];
// The first case
while(y < a1.Length && low+y < a.Length)
invariant 0 <= y <= a1.Length
invariant 0 <= low+y <= a.Length
decreases a1.Length-y
{
a1[y] := a[low+y];
y := y +1;
}
// The second case
while(z < a2.Length && medium+z+1 < a.Length)
invariant 0 <= z <= a2.Length
invariant 0 <= medium+z <= a.Length
decreases a2.Length-z
{
a2[z] := a[medium+z+1];
z := z +1;
}
y, z := 0, 0;
// The third case
while (x < high - low + 1 && y <= a1.Length && z <= a2.Length && low+x < a.Length)
invariant 0 <= x <= high - low + 1
decreases high-low-x
{
if(y >= a1.Length && z >= a2.Length) {
break;
} else if(y >= a1.Length) {
a[low+x] := a2[z];
z := z+1;
} else if(z >= a2.Length) {
a[low+x] := a1[y];
y := y+1;
} else {
if(a1[y] <= a2[z]) {
a[low+x] := a1[y];
y := y +1;
} else {
a[low+x] := a2[z];
z := z +1;
}
}
x := x+1;
}
}
method sorting(a: array<int>, low: int, high: int)
requires 0 <= low && high < a.Length
decreases high-low
modifies a
{
if (low < high) {
var medium: int := low + (high - low)/2;
sorting(a, low, medium);
sorting(a, medium+1, high);
merging(a, low, medium, high);
}
}
| method mergeSort(a: array<int>)
modifies a
{
sorting(a, 0, a.Length-1);
}
method merging(a: array<int>, low: int, medium: int, high: int)
requires 0 <= low <= medium <= high < a.Length
modifies a
{
var x := 0;
var y := 0;
var z := 0;
var a1: array<int> := new [medium - low + 1];
var a2: array<int> := new [high - medium];
// The first case
while(y < a1.Length && low+y < a.Length)
{
a1[y] := a[low+y];
y := y +1;
}
// The second case
while(z < a2.Length && medium+z+1 < a.Length)
{
a2[z] := a[medium+z+1];
z := z +1;
}
y, z := 0, 0;
// The third case
while (x < high - low + 1 && y <= a1.Length && z <= a2.Length && low+x < a.Length)
{
if(y >= a1.Length && z >= a2.Length) {
break;
} else if(y >= a1.Length) {
a[low+x] := a2[z];
z := z+1;
} else if(z >= a2.Length) {
a[low+x] := a1[y];
y := y+1;
} else {
if(a1[y] <= a2[z]) {
a[low+x] := a1[y];
y := y +1;
} else {
a[low+x] := a2[z];
z := z +1;
}
}
x := x+1;
}
}
method sorting(a: array<int>, low: int, high: int)
requires 0 <= low && high < a.Length
modifies a
{
if (low < high) {
var medium: int := low + (high - low)/2;
sorting(a, low, medium);
sorting(a, medium+1, high);
merging(a, low, medium, high);
}
}
|
215 | Final-Project-Dafny_tmp_tmpmcywuqox_Attempts_Quick_Sort.dfy | predicate quickSorted(Seq: seq<int>)
{
forall idx_1, idx_2 :: 0 <= idx_1 < idx_2 < |Seq| ==> Seq[idx_1] <= Seq[idx_2]
}
method threshold(thres:int,Seq:seq<int>) returns (Seq_1:seq<int>,Seq_2:seq<int>)
ensures (forall x | x in Seq_1 :: x <= thres) && (forall x | x in Seq_2 :: x >= thres)
ensures |Seq_1| + |Seq_2| == |Seq|
ensures multiset(Seq_1) + multiset(Seq_2) == multiset(Seq)
{
Seq_1 := [];
Seq_2 := [];
var i := 0;
while (i < |Seq|)
invariant i <= |Seq|
invariant (forall x | x in Seq_1 :: x <= thres) && (forall x | x in Seq_2 :: x >= thres)
invariant |Seq_1| + |Seq_2| == i
invariant multiset(Seq[..i]) == multiset(Seq_1) + multiset(Seq_2)
{
if (Seq[i] <= thres) {
Seq_1 := Seq_1 + [Seq[i]];
} else {
Seq_2 := Seq_2 + [Seq[i]];
}
assert (Seq[..i] + [Seq[i]]) == Seq[..i+1];
i := i + 1;
}
assert (Seq[..|Seq|] == Seq);
}
lemma Lemma_1(Seq_1:seq,Seq_2:seq) // The proof of the lemma is not necessary
requires multiset(Seq_1) == multiset(Seq_2)
ensures forall x | x in Seq_1 :: x in Seq_2
{
forall x | x in Seq_1
ensures x in multiset(Seq_1)
{
var i := 0;
while (i < |Seq_1|)
invariant 0 <= i <= |Seq_1|
invariant forall idx_1 | 0 <= idx_1 < i :: Seq_1[idx_1] in multiset(Seq_1)
{
i := i + 1;
}
}
}
method quickSort(Seq: seq<int>) returns (Seq': seq<int>)
ensures multiset(Seq) == multiset(Seq')
decreases |Seq|
{
if |Seq| == 0 {
return [];
} else if |Seq| == 1 {
return Seq;
} else {
var Seq_1,Seq_2 := threshold(Seq[0],Seq[1..]);
var Seq_1' := quickSort(Seq_1);
Lemma_1(Seq_1',Seq_1);
var Seq_2' := quickSort(Seq_2);
Lemma_1(Seq_2',Seq_2);
assert Seq == [Seq[0]] + Seq[1..];
return Seq_1' + [Seq[0]] + Seq_2';
}
}
| predicate quickSorted(Seq: seq<int>)
{
forall idx_1, idx_2 :: 0 <= idx_1 < idx_2 < |Seq| ==> Seq[idx_1] <= Seq[idx_2]
}
method threshold(thres:int,Seq:seq<int>) returns (Seq_1:seq<int>,Seq_2:seq<int>)
ensures (forall x | x in Seq_1 :: x <= thres) && (forall x | x in Seq_2 :: x >= thres)
ensures |Seq_1| + |Seq_2| == |Seq|
ensures multiset(Seq_1) + multiset(Seq_2) == multiset(Seq)
{
Seq_1 := [];
Seq_2 := [];
var i := 0;
while (i < |Seq|)
{
if (Seq[i] <= thres) {
Seq_1 := Seq_1 + [Seq[i]];
} else {
Seq_2 := Seq_2 + [Seq[i]];
}
i := i + 1;
}
}
lemma Lemma_1(Seq_1:seq,Seq_2:seq) // The proof of the lemma is not necessary
requires multiset(Seq_1) == multiset(Seq_2)
ensures forall x | x in Seq_1 :: x in Seq_2
{
forall x | x in Seq_1
ensures x in multiset(Seq_1)
{
var i := 0;
while (i < |Seq_1|)
{
i := i + 1;
}
}
}
method quickSort(Seq: seq<int>) returns (Seq': seq<int>)
ensures multiset(Seq) == multiset(Seq')
{
if |Seq| == 0 {
return [];
} else if |Seq| == 1 {
return Seq;
} else {
var Seq_1,Seq_2 := threshold(Seq[0],Seq[1..]);
var Seq_1' := quickSort(Seq_1);
Lemma_1(Seq_1',Seq_1);
var Seq_2' := quickSort(Seq_2);
Lemma_1(Seq_2',Seq_2);
return Seq_1' + [Seq[0]] + Seq_2';
}
}
|
216 | Final-Project-Dafny_tmp_tmpmcywuqox_Attempts_Selection_Sort_Standard.dfy | method selectionSorted(Array: array<int>)
modifies Array
ensures multiset(old(Array[..])) == multiset(Array[..])
{
var idx := 0;
while (idx < Array.Length)
invariant 0 <= idx <= Array.Length
invariant forall i,j :: 0 <= i < idx <= j < Array.Length ==> Array[i] <= Array[j]
invariant forall i,j :: 0 <= i < j < idx ==> Array[i] <= Array[j]
invariant multiset(old(Array[..])) == multiset(Array[..])
{
var minIndex := idx;
var idx' := idx + 1;
while (idx' < Array.Length)
invariant idx <= idx' <= Array.Length
invariant idx <= minIndex < idx' <= Array.Length
invariant forall k :: idx <= k < idx' ==> Array[minIndex] <= Array[k]
{
if (Array[idx'] < Array[minIndex]) {
minIndex := idx';
}
idx' := idx' + 1;
}
Array[idx], Array[minIndex] := Array[minIndex], Array[idx];
idx := idx + 1;
}
}
| method selectionSorted(Array: array<int>)
modifies Array
ensures multiset(old(Array[..])) == multiset(Array[..])
{
var idx := 0;
while (idx < Array.Length)
{
var minIndex := idx;
var idx' := idx + 1;
while (idx' < Array.Length)
{
if (Array[idx'] < Array[minIndex]) {
minIndex := idx';
}
idx' := idx' + 1;
}
Array[idx], Array[minIndex] := Array[minIndex], Array[idx];
idx := idx + 1;
}
}
|
217 | Final-Project-Dafny_tmp_tmpmcywuqox_Final_Project_3.dfy | method nonZeroReturn(x: int) returns (y: int)
ensures y != 0
{
if x == 0 {
return x + 1;
} else {
return -x;
}
}
method test() {
var input := nonZeroReturn(-1);
assert input != 0;
}
| method nonZeroReturn(x: int) returns (y: int)
ensures y != 0
{
if x == 0 {
return x + 1;
} else {
return -x;
}
}
method test() {
var input := nonZeroReturn(-1);
}
|
218 | FlexWeek_tmp_tmpc_tfdj_3_ex2.dfy | // 2. Given an array of positive and negative integers, it returns an array of the absolute value of all the integers. [-4,1,5,-2,-5]->[4,1,5,2,5]
function abs(a:int):nat
{
if a < 0 then -a else a
}
method aba(a:array<int>)returns (b:array<int>)
ensures a.Length == b.Length // needed for next line
ensures forall x :: 0<=x<b.Length ==> b[x] == abs(a[x])
{
b := new int[a.Length];
var i:=0;
while(i < a.Length)
invariant 0<= i <= a.Length
invariant forall x :: 0<=x<i ==> b[x] == abs(a[x])
{
if(a[i] < 0){
b[i] := -a[i];
} else{
b[i] := a[i];
}
i := i + 1;
}
}
method Main()
{
var a := new int[][1,-2,-2,1];
var b := aba(a);
assert b[..] == [1,2,2,1];
}
| // 2. Given an array of positive and negative integers, it returns an array of the absolute value of all the integers. [-4,1,5,-2,-5]->[4,1,5,2,5]
function abs(a:int):nat
{
if a < 0 then -a else a
}
method aba(a:array<int>)returns (b:array<int>)
ensures a.Length == b.Length // needed for next line
ensures forall x :: 0<=x<b.Length ==> b[x] == abs(a[x])
{
b := new int[a.Length];
var i:=0;
while(i < a.Length)
{
if(a[i] < 0){
b[i] := -a[i];
} else{
b[i] := a[i];
}
i := i + 1;
}
}
method Main()
{
var a := new int[][1,-2,-2,1];
var b := aba(a);
}
|
219 | FlexWeek_tmp_tmpc_tfdj_3_ex3.dfy | method Max(a:array<nat>)returns(m:int)
ensures a.Length > 0 ==> forall k :: 0<=k<a.Length ==> m >= a[k]// not strong enough
ensures a.Length == 0 ==> m == -1
ensures a.Length > 0 ==> m in a[..] // finally at the top // approach did not work for recusrive function
{
if(a.Length == 0){
return -1;
}
assert a.Length > 0;
var i := 0;
m := a[0];
assert m in a[..]; // had to show that m is in a[..], otherwise how could i assert for it
while(i < a.Length)
invariant 0<=i<=a.Length
invariant forall k :: 0<=k<i ==> m >= a[k]// Not strong enough
invariant m in a[..] // again i the array
// invariant 0 < i <= a.Length ==> (ret_max(a,i-1) == m)
{
if(a[i] >= m){
m:= a[i];
}
i := i+1;
}
assert m in a[..]; //
}
method Checker()
{
var a := new nat[][1,2,3,50,5,51];
// ghost var a := [1,2,3];
var n := Max(a);
// assert a[..] == [1,2,3];
assert n == 51;
// assert MAXIMUM(1,2) == 2;
// assert ret_max(a,a.Length-1) == 12;
// assert ret_max(a,a.Length-1) == x+3;
}
| method Max(a:array<nat>)returns(m:int)
ensures a.Length > 0 ==> forall k :: 0<=k<a.Length ==> m >= a[k]// not strong enough
ensures a.Length == 0 ==> m == -1
ensures a.Length > 0 ==> m in a[..] // finally at the top // approach did not work for recusrive function
{
if(a.Length == 0){
return -1;
}
var i := 0;
m := a[0];
while(i < a.Length)
// invariant 0 < i <= a.Length ==> (ret_max(a,i-1) == m)
{
if(a[i] >= m){
m:= a[i];
}
i := i+1;
}
}
method Checker()
{
var a := new nat[][1,2,3,50,5,51];
// ghost var a := [1,2,3];
var n := Max(a);
// assert a[..] == [1,2,3];
// assert MAXIMUM(1,2) == 2;
// assert ret_max(a,a.Length-1) == 12;
// assert ret_max(a,a.Length-1) == x+3;
}
|
220 | FlexWeek_tmp_tmpc_tfdj_3_ex4.dfy | method join(a:array<int>,b:array<int>) returns (c:array<int>)
ensures a[..] + b[..] == c[..]
ensures multiset(a[..] + b[..]) == multiset(c[..])
ensures multiset(a[..]) + multiset(b[..]) == multiset(c[..])
ensures a.Length+b.Length == c.Length
// Forall
ensures forall i :: 0<=i<a.Length ==> c[i] == a[i]
ensures forall i_2,j_2::
a.Length <= i_2 < c.Length &&
0<=j_2< b.Length && i_2 - j_2 == a.Length ==> c[i_2] == b[j_2]
{
c := new int[a.Length+b.Length];
var i:= 0;
while(i < a.Length)
invariant 0 <= i <=a.Length
invariant c[..i] == a[..i]
invariant multiset(c[..i]) == multiset(a[..i])
invariant forall k :: 0<=k<i<a.Length ==> c[k] == a[k]
{
c[i] := a[i];
i := i +1;
}
i:= a.Length;
var j := 0;
while(i < c.Length && j<b.Length) // missed j condition
invariant 0<=j<=b.Length
invariant 0 <= a.Length <= i <= c.Length
invariant c[..a.Length] == a[..a.Length]
//Sequences
invariant c[a.Length..i] == b[..j] // prev loop
invariant c[..a.Length] + c[a.Length..i] == a[..a.Length] + b[..j] // prev loop + prev curr loop
//Multiset
invariant multiset(c[a.Length..i]) == multiset(b[..j]) // prev loop
invariant multiset( c[..a.Length] + c[a.Length..i]) == multiset(a[..a.Length] + b[..j]) // prev loop + prev curr loop
// Forall
invariant forall k :: 0<=k<a.Length ==> c[k] == a[k] // prev loop
invariant forall i_2,j_2::
a.Length <= i_2 < i &&
0<=j_2< j && i_2 - j_2 == a.Length ==> c[i_2] == b[j_2] // curr loop
invariant forall k_2,i_2,j_2::
0<=k_2<a.Length &&
a.Length <= i_2 < i &&
0<=j_2< j && i_2 - j_2 == a.Length ==> c[i_2] == b[j_2] && c[k_2] == a[k_2] // prev loop+curr loop
{
c[i] := b[j];
i := i +1;
j := j +1;
}
// assert j == b.Length;
// assert b[..]==b[..b.Length];
// assert j + a.Length == c.Length;
// assert multiset(c[..a.Length]) == multiset(a[..a.Length]);
// assert multiset(b[..]) == multiset(b[..j]);
// assert multiset(c[a.Length..j+a.Length]) == multiset(c[a.Length..c.Length]);
// assert multiset(c[a.Length..c.Length]) == multiset(c[a.Length..c.Length]);
// assert multiset(c[a.Length..c.Length]) == multiset(b[..]);
// assert multiset(c[0..c.Length]) == multiset(c[0..a.Length]) + multiset(c[a.Length..c.Length]);
// uncomment
assert a[..] + b[..] == c[..];
assert multiset(a[..]) + multiset(b[..]) == multiset(c[..]);
}
method Check(){
var a := new int[][1,2,3];
var b := new int[][4,5];
var c := new int[][1,2,3,4,5];
var d:= join(a,b);
assert d[..] == a[..] + b[..]; // works
assert multiset(d[..]) == multiset(a[..] + b[..]);
assert multiset(d[..]) == multiset(a[..]) + multiset(b[..]);
assert d[..] == c[..]; // works
assert d[..] == c[..]; //doesn't
// print n[..];
}
| method join(a:array<int>,b:array<int>) returns (c:array<int>)
ensures a[..] + b[..] == c[..]
ensures multiset(a[..] + b[..]) == multiset(c[..])
ensures multiset(a[..]) + multiset(b[..]) == multiset(c[..])
ensures a.Length+b.Length == c.Length
// Forall
ensures forall i :: 0<=i<a.Length ==> c[i] == a[i]
ensures forall i_2,j_2::
a.Length <= i_2 < c.Length &&
0<=j_2< b.Length && i_2 - j_2 == a.Length ==> c[i_2] == b[j_2]
{
c := new int[a.Length+b.Length];
var i:= 0;
while(i < a.Length)
{
c[i] := a[i];
i := i +1;
}
i:= a.Length;
var j := 0;
while(i < c.Length && j<b.Length) // missed j condition
//Sequences
//Multiset
// Forall
a.Length <= i_2 < i &&
0<=j_2< j && i_2 - j_2 == a.Length ==> c[i_2] == b[j_2] // curr loop
0<=k_2<a.Length &&
a.Length <= i_2 < i &&
0<=j_2< j && i_2 - j_2 == a.Length ==> c[i_2] == b[j_2] && c[k_2] == a[k_2] // prev loop+curr loop
{
c[i] := b[j];
i := i +1;
j := j +1;
}
// assert j == b.Length;
// assert b[..]==b[..b.Length];
// assert j + a.Length == c.Length;
// assert multiset(c[..a.Length]) == multiset(a[..a.Length]);
// assert multiset(b[..]) == multiset(b[..j]);
// assert multiset(c[a.Length..j+a.Length]) == multiset(c[a.Length..c.Length]);
// assert multiset(c[a.Length..c.Length]) == multiset(c[a.Length..c.Length]);
// assert multiset(c[a.Length..c.Length]) == multiset(b[..]);
// assert multiset(c[0..c.Length]) == multiset(c[0..a.Length]) + multiset(c[a.Length..c.Length]);
// uncomment
}
method Check(){
var a := new int[][1,2,3];
var b := new int[][4,5];
var c := new int[][1,2,3,4,5];
var d:= join(a,b);
// print n[..];
}
|
221 | FlexWeek_tmp_tmpc_tfdj_3_reverse.dfy | // Write an *iterative* Dafny method Reverse with signature:
// method Reverse(a: array<char>) returns (b: array<char>)
// which takes an input array of characters 'a' and outputs array 'b' consisting of
// the elements of the input array in reverse order. The following conditions apply:
// - the input array cannot be empty
// - the input array is not modified
// - you must use iteration
// - not permitted is an *executable* (parallel) forall statement
// - not permitted are any other predicates, functions or methods
// For the purposes of this practice exercise, I'll include a test method.
method Reverse(a: array<char>) returns (b: array<char>)
requires a.Length > 0
ensures a.Length == b.Length
ensures forall k :: 0 <= k < a.Length ==> b[k] == a[(a.Length-1) - k];
{
b := new char[a.Length];
assert b.Length == a.Length;
var i:= 0;
while(i < a.Length)
invariant 0<=i<=a.Length
// invariant 0 < i <= a.Length-1 ==> b[i-1] == a[(a.Length-1) - i+1] // Not good enough
invariant forall k :: 0 <= k < i ==> b[k] == a[(a.Length-1) - k]
{
b[i] := a[(a.Length-1) - i];
i := i + 1;
}
// assert forall k :: 0 <= k < a.Length ==> a[k] == b[(a.Length-1) - k];
}
method Main()
{
var a := new char[8];
a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7] := 'd', 'e', 's', 'r', 'e', 'v', 'e', 'r';
var b := Reverse(a);
assert b[..] == [ 'r', 'e', 'v', 'e', 'r', 's', 'e', 'd' ];
print b[..];
a := new char[1];
a[0] := '!';
b := Reverse(a);
assert b[..] == [ '!' ];
print b[..], '\n';
}
// Notice it compiles and the executable generates output (just to see the arrays printed in reverse).
| // Write an *iterative* Dafny method Reverse with signature:
// method Reverse(a: array<char>) returns (b: array<char>)
// which takes an input array of characters 'a' and outputs array 'b' consisting of
// the elements of the input array in reverse order. The following conditions apply:
// - the input array cannot be empty
// - the input array is not modified
// - you must use iteration
// - not permitted is an *executable* (parallel) forall statement
// - not permitted are any other predicates, functions or methods
// For the purposes of this practice exercise, I'll include a test method.
method Reverse(a: array<char>) returns (b: array<char>)
requires a.Length > 0
ensures a.Length == b.Length
ensures forall k :: 0 <= k < a.Length ==> b[k] == a[(a.Length-1) - k];
{
b := new char[a.Length];
var i:= 0;
while(i < a.Length)
// invariant 0 < i <= a.Length-1 ==> b[i-1] == a[(a.Length-1) - i+1] // Not good enough
{
b[i] := a[(a.Length-1) - i];
i := i + 1;
}
// assert forall k :: 0 <= k < a.Length ==> a[k] == b[(a.Length-1) - k];
}
method Main()
{
var a := new char[8];
a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7] := 'd', 'e', 's', 'r', 'e', 'v', 'e', 'r';
var b := Reverse(a);
print b[..];
a := new char[1];
a[0] := '!';
b := Reverse(a);
print b[..], '\n';
}
// Notice it compiles and the executable generates output (just to see the arrays printed in reverse).
|
222 | Formal-Methods-Project_tmp_tmphh2ar2xv_BubbleSort.dfy | predicate sorted(a: array?<int>, l: int, u: int)
reads a;
requires a != null;
{
forall i, j :: 0 <= l <= i <= j <= u < a.Length ==> a[i] <= a[j]
}
predicate partitioned(a: array?<int>, i: int)
reads a
requires a != null
{
forall k, k' :: 0 <= k <= i < k' < a.Length ==> a[k] <= a[k']
}
method BubbleSort(a: array?<int>)
modifies a
requires a != null
{
var i := a.Length - 1;
while(i > 0)
invariant sorted(a, i, a.Length-1)
invariant partitioned(a, i)
{
var j := 0;
while (j < i)
invariant 0 < i < a.Length && 0 <= j <= i
invariant sorted(a, i, a.Length-1)
invariant partitioned(a, i)
invariant forall k :: 0 <= k <= j ==> a[k] <= a[j]
{
if(a[j] > a[j+1])
{
a[j], a[j+1] := a[j+1], a[j];
}
j := j + 1;
}
i := i -1;
}
}
method Main() {
var a := new int[5];
a[0], a[1], a[2], a[3], a[4] := 9, 4, 6, 3, 8;
BubbleSort(a);
var k := 0;
while(k < 5) { print a[k], "\n"; k := k+1;}
}
| predicate sorted(a: array?<int>, l: int, u: int)
reads a;
requires a != null;
{
forall i, j :: 0 <= l <= i <= j <= u < a.Length ==> a[i] <= a[j]
}
predicate partitioned(a: array?<int>, i: int)
reads a
requires a != null
{
forall k, k' :: 0 <= k <= i < k' < a.Length ==> a[k] <= a[k']
}
method BubbleSort(a: array?<int>)
modifies a
requires a != null
{
var i := a.Length - 1;
while(i > 0)
{
var j := 0;
while (j < i)
{
if(a[j] > a[j+1])
{
a[j], a[j+1] := a[j+1], a[j];
}
j := j + 1;
}
i := i -1;
}
}
method Main() {
var a := new int[5];
a[0], a[1], a[2], a[3], a[4] := 9, 4, 6, 3, 8;
BubbleSort(a);
var k := 0;
while(k < 5) { print a[k], "\n"; k := k+1;}
}
|
223 | Formal-Methods-Project_tmp_tmphh2ar2xv_Factorial.dfy |
method Fact(x: int) returns (y: int)
requires x >= 0;
{
y := 1;
var z := 0;
while(z != x)
decreases x - z;
invariant 0 <= x-z;
{
z := z + 1;
y := y * z;
}
}
method Main() {
var a := Fact(87);
print a;
}
|
method Fact(x: int) returns (y: int)
requires x >= 0;
{
y := 1;
var z := 0;
while(z != x)
{
z := z + 1;
y := y * z;
}
}
method Main() {
var a := Fact(87);
print a;
}
|
224 | Formal-Verification-Project_tmp_tmp9gmwsmyp_strings3.dfy | predicate isPrefixPred(pre:string, str:string)
{
(|pre| <= |str|) &&
pre == str[..|pre|]
}
predicate isNotPrefixPred(pre:string, str:string)
{
(|pre| > |str|) ||
pre != str[..|pre|]
}
lemma PrefixNegationLemma(pre:string, str:string)
ensures isPrefixPred(pre,str) <==> !isNotPrefixPred(pre,str)
ensures !isPrefixPred(pre,str) <==> isNotPrefixPred(pre,str)
{}
method isPrefix(pre: string, str: string) returns (res:bool)
ensures !res <==> isNotPrefixPred(pre,str)
ensures res <==> isPrefixPred(pre,str)
{
if |str| < |pre|
{
return false;
}
else if pre[..] == str[..|pre|]
{
return true;
}
else{
return false;
}
}
predicate isSubstringPred(sub:string, str:string)
{
(exists i :: 0 <= i <= |str| && isPrefixPred(sub, str[i..]))
}
predicate isNotSubstringPred(sub:string, str:string)
{
(forall i :: 0 <= i <= |str| ==> isNotPrefixPred(sub,str[i..]))
}
lemma SubstringNegationLemma(sub:string, str:string)
ensures isSubstringPred(sub,str) <==> !isNotSubstringPred(sub,str)
ensures !isSubstringPred(sub,str) <==> isNotSubstringPred(sub,str)
{}
method isSubstring(sub: string, str: string) returns (res:bool)
ensures res <==> isSubstringPred(sub, str)
//ensures !res <==> isNotSubstringPred(sub, str) // This postcondition follows from the above lemma.
{
// Initializing variables
var i := 0;
res := false;
// Check if sub is a prefix of str[i..] and if not, keep incrementing until i = |str|
while i <= |str|
// Invariant to stay within bounds
invariant 0 <= i <= |str| + 1
// Invariant to show that for all j that came before i, no prefix has been found
invariant forall j :: (0 <= j < i ==> isNotPrefixPred(sub, str[j..]))
// Telling dafny that i is that value that is increasing
decreases |str| - i
//invariant res <==> isSubstringPred(sub, str)
{
// Check if the substring is a prefix
var temp := isPrefix(sub, str[i..]);
// If so, return true as the prefix is a substring of the string
if temp == true
{
return true;
}
// Otherwise, increment i and try again
i := i + 1;
}
// If we have reached this point, it means that no substring has been found, hence return false
return false;
}
predicate haveCommonKSubstringPred(k:nat, str1:string, str2:string)
{
exists i1, j1 :: 0 <= i1 <= |str1|- k && j1 == i1 + k && isSubstringPred(str1[i1..j1],str2)
}
predicate haveNotCommonKSubstringPred(k:nat, str1:string, str2:string)
{
forall i1, j1 :: 0 <= i1 <= |str1|- k && j1 == i1 + k ==> isNotSubstringPred(str1[i1..j1],str2)
}
lemma commonKSubstringLemma(k:nat, str1:string, str2:string)
ensures haveCommonKSubstringPred(k,str1,str2) <==> !haveNotCommonKSubstringPred(k,str1,str2)
ensures !haveCommonKSubstringPred(k,str1,str2) <==> haveNotCommonKSubstringPred(k,str1,str2)
{}
method haveCommonKSubstring(k: nat, str1: string, str2: string) returns (found: bool)
ensures found <==> haveCommonKSubstringPred(k,str1,str2)
//ensures !found <==> haveNotCommonKSubstringPred(k,str1,str2) // This postcondition follows from the above lemma.
{
// Check that both strings are larger than k
if (k > |str1| || k > |str2| ){
return false;
}
// Initialize variables
var i := 0;
var temp := false;
// Don't want to exceed the bounds of str1 when checking for the element that is k entries away
while i <= |str1|-k
// Invariant to stay within bounds
invariant 0 <= i <= (|str1|-k) + 1
// Invariant to show that when temp is true, it is a substring
invariant temp ==> 0 <= i <= (|str1| - k) && isSubstringPred(str1[i..i+k], str2)
// Invariant to show that when temp is false, it is not a substring
invariant !temp ==> (forall m,n :: (0 <= m < i && n == m+k) ==> isNotSubstringPred(str1[m..n], str2))
// Telling dafny that i is that value that is increasing
decreases |str1| - k - i
{
// Get an index from the array position were are at to the array position that is k away and check the substring
temp := isSubstring(str1[i..(i + k)], str2);
if temp == true
{
return true;
}
i := i + 1;
}
return false;
}
lemma haveCommon0SubstringLemma(str1:string, str2:string)
ensures haveCommonKSubstringPred(0,str1,str2)
{
assert isPrefixPred(str1[0..0], str2[0..]);
}
method maxCommonSubstringLength(str1: string, str2: string) returns (len:nat)
requires (|str1| <= |str2|)
ensures (forall k :: len < k <= |str1| ==> !haveCommonKSubstringPred(k,str1,str2))
ensures haveCommonKSubstringPred(len,str1,str2)
{
var temp := false;
var i := |str1|+1;
len := i;
// Idea is to start the counter at |str1| and decrement until common string is found
while i > 0
decreases i
// Invariant to stay within bounds
invariant 0 <= i <= |str1| + 1
// When temp is true, there is a common sub string of size i
invariant temp ==> haveCommonKSubstringPred(i, str1, str2)
// When temp is false, there is not a common sub string of size i
invariant !temp ==> haveNotCommonKSubstringPred(i, str1, str2)
// When temp is false, there is no common sub string of sizes >= i
invariant !temp ==> (forall k :: i <= k <= |str1| ==> !haveCommonKSubstringPred(k,str1,str2))
// When temp is true, there is no common sub string of sizes > i
invariant temp ==> (forall k :: (i < k <= |str1|) ==> !haveCommonKSubstringPred(k,str1,str2))
{
i:= i-1;
len := i;
temp := haveCommonKSubstring(i, str1, str2);
if temp == true
{
break;
}
}
haveCommon0SubstringLemma(str1, str2);
return len;
}
| predicate isPrefixPred(pre:string, str:string)
{
(|pre| <= |str|) &&
pre == str[..|pre|]
}
predicate isNotPrefixPred(pre:string, str:string)
{
(|pre| > |str|) ||
pre != str[..|pre|]
}
lemma PrefixNegationLemma(pre:string, str:string)
ensures isPrefixPred(pre,str) <==> !isNotPrefixPred(pre,str)
ensures !isPrefixPred(pre,str) <==> isNotPrefixPred(pre,str)
{}
method isPrefix(pre: string, str: string) returns (res:bool)
ensures !res <==> isNotPrefixPred(pre,str)
ensures res <==> isPrefixPred(pre,str)
{
if |str| < |pre|
{
return false;
}
else if pre[..] == str[..|pre|]
{
return true;
}
else{
return false;
}
}
predicate isSubstringPred(sub:string, str:string)
{
(exists i :: 0 <= i <= |str| && isPrefixPred(sub, str[i..]))
}
predicate isNotSubstringPred(sub:string, str:string)
{
(forall i :: 0 <= i <= |str| ==> isNotPrefixPred(sub,str[i..]))
}
lemma SubstringNegationLemma(sub:string, str:string)
ensures isSubstringPred(sub,str) <==> !isNotSubstringPred(sub,str)
ensures !isSubstringPred(sub,str) <==> isNotSubstringPred(sub,str)
{}
method isSubstring(sub: string, str: string) returns (res:bool)
ensures res <==> isSubstringPred(sub, str)
//ensures !res <==> isNotSubstringPred(sub, str) // This postcondition follows from the above lemma.
{
// Initializing variables
var i := 0;
res := false;
// Check if sub is a prefix of str[i..] and if not, keep incrementing until i = |str|
while i <= |str|
// Invariant to stay within bounds
// Invariant to show that for all j that came before i, no prefix has been found
// Telling dafny that i is that value that is increasing
//invariant res <==> isSubstringPred(sub, str)
{
// Check if the substring is a prefix
var temp := isPrefix(sub, str[i..]);
// If so, return true as the prefix is a substring of the string
if temp == true
{
return true;
}
// Otherwise, increment i and try again
i := i + 1;
}
// If we have reached this point, it means that no substring has been found, hence return false
return false;
}
predicate haveCommonKSubstringPred(k:nat, str1:string, str2:string)
{
exists i1, j1 :: 0 <= i1 <= |str1|- k && j1 == i1 + k && isSubstringPred(str1[i1..j1],str2)
}
predicate haveNotCommonKSubstringPred(k:nat, str1:string, str2:string)
{
forall i1, j1 :: 0 <= i1 <= |str1|- k && j1 == i1 + k ==> isNotSubstringPred(str1[i1..j1],str2)
}
lemma commonKSubstringLemma(k:nat, str1:string, str2:string)
ensures haveCommonKSubstringPred(k,str1,str2) <==> !haveNotCommonKSubstringPred(k,str1,str2)
ensures !haveCommonKSubstringPred(k,str1,str2) <==> haveNotCommonKSubstringPred(k,str1,str2)
{}
method haveCommonKSubstring(k: nat, str1: string, str2: string) returns (found: bool)
ensures found <==> haveCommonKSubstringPred(k,str1,str2)
//ensures !found <==> haveNotCommonKSubstringPred(k,str1,str2) // This postcondition follows from the above lemma.
{
// Check that both strings are larger than k
if (k > |str1| || k > |str2| ){
return false;
}
// Initialize variables
var i := 0;
var temp := false;
// Don't want to exceed the bounds of str1 when checking for the element that is k entries away
while i <= |str1|-k
// Invariant to stay within bounds
// Invariant to show that when temp is true, it is a substring
// Invariant to show that when temp is false, it is not a substring
// Telling dafny that i is that value that is increasing
{
// Get an index from the array position were are at to the array position that is k away and check the substring
temp := isSubstring(str1[i..(i + k)], str2);
if temp == true
{
return true;
}
i := i + 1;
}
return false;
}
lemma haveCommon0SubstringLemma(str1:string, str2:string)
ensures haveCommonKSubstringPred(0,str1,str2)
{
}
method maxCommonSubstringLength(str1: string, str2: string) returns (len:nat)
requires (|str1| <= |str2|)
ensures (forall k :: len < k <= |str1| ==> !haveCommonKSubstringPred(k,str1,str2))
ensures haveCommonKSubstringPred(len,str1,str2)
{
var temp := false;
var i := |str1|+1;
len := i;
// Idea is to start the counter at |str1| and decrement until common string is found
while i > 0
// Invariant to stay within bounds
// When temp is true, there is a common sub string of size i
// When temp is false, there is not a common sub string of size i
// When temp is false, there is no common sub string of sizes >= i
// When temp is true, there is no common sub string of sizes > i
{
i:= i-1;
len := i;
temp := haveCommonKSubstring(i, str1, str2);
if temp == true
{
break;
}
}
haveCommon0SubstringLemma(str1, str2);
return len;
}
|
225 | Formal-Verification_tmp_tmpuyt21wjt_Dafny_strings1.dfy | predicate isPrefixPredicate(pre: string, str:string)
{
|str| >= |pre| && pre <= str
}
method isPrefix(pre: string, str: string) returns (res: bool)
ensures |pre| > |str| ==> !res
ensures res == isPrefixPredicate(pre, str)
{
if |pre| > |str|
{return false;}
var i := 0;
while i < |pre|
decreases |pre| - i
invariant 0 <= i <= |pre|
invariant forall j :: 0 <= j < i ==> pre[j] == str[j]
{
if pre[i] != str[i]
{
return false;
}
i := i + 1;
}
return true;
}
predicate isSubstringPredicate (sub: string, str:string)
{
|str| >= |sub| && (exists i :: 0 <= i <= |str| && isPrefixPredicate(sub, str[i..]))
}
method isSubstring(sub: string, str: string) returns (res:bool)
ensures res == isSubstringPredicate(sub, str)
{
if |sub| > |str| {
return false;
}
var i := |str| - |sub|;
while i >= 0
decreases i
invariant i >= -1
invariant forall j :: i < j <= |str|-|sub| ==> !(isPrefixPredicate(sub, str[j..]))
{
var isPref := isPrefix(sub, str[i..]);
if isPref
{
return true;
}
i := i-1;
}
return false;
}
predicate haveCommonKSubstringPredicate(k: nat, str1: string, str2: string)
{
|str1| >= k && |str2| >= k && (exists i :: 0 <= i <= |str1| - k && isSubstringPredicate((str1[i..])[..k], str2))
}
method haveCommonKSubstring(k: nat, str1: string, str2: string) returns (found: bool)
ensures |str1| < k || |str2| < k ==> !found
ensures haveCommonKSubstringPredicate(k,str1,str2) == found
{
if( |str1| < k || |str2| < k){
return false;
}
var i := |str1| - k;
while i >= 0
decreases i
invariant i >= -1
invariant forall j :: i < j <= |str1| - k ==> !isSubstringPredicate(str1[j..][..k], str2)
{
var isSub := isSubstring(str1[i..][..k], str2);
if isSub
{
return true;
}
i := i-1;
}
return false;
}
predicate maxCommonSubstringPredicate(str1: string, str2: string, len:nat)
{
forall k :: len < k <= |str1| ==> !haveCommonKSubstringPredicate(k, str1, str2)
}
method maxCommonSubstringLength(str1: string, str2: string) returns (len:nat)
ensures len <= |str1| && len <= |str2|
ensures len >= 0
ensures maxCommonSubstringPredicate(str1, str2, len)
{
var i := |str1|;
while i > 0
decreases i
invariant i >= 0
invariant forall j :: i < j <= |str1| ==> !haveCommonKSubstringPredicate(j, str1, str2)
{
var ans := haveCommonKSubstring(i, str1, str2);
if ans {
return i;
}
i := i -1;
}
assert i == 0;
return 0;
}
| predicate isPrefixPredicate(pre: string, str:string)
{
|str| >= |pre| && pre <= str
}
method isPrefix(pre: string, str: string) returns (res: bool)
ensures |pre| > |str| ==> !res
ensures res == isPrefixPredicate(pre, str)
{
if |pre| > |str|
{return false;}
var i := 0;
while i < |pre|
{
if pre[i] != str[i]
{
return false;
}
i := i + 1;
}
return true;
}
predicate isSubstringPredicate (sub: string, str:string)
{
|str| >= |sub| && (exists i :: 0 <= i <= |str| && isPrefixPredicate(sub, str[i..]))
}
method isSubstring(sub: string, str: string) returns (res:bool)
ensures res == isSubstringPredicate(sub, str)
{
if |sub| > |str| {
return false;
}
var i := |str| - |sub|;
while i >= 0
{
var isPref := isPrefix(sub, str[i..]);
if isPref
{
return true;
}
i := i-1;
}
return false;
}
predicate haveCommonKSubstringPredicate(k: nat, str1: string, str2: string)
{
|str1| >= k && |str2| >= k && (exists i :: 0 <= i <= |str1| - k && isSubstringPredicate((str1[i..])[..k], str2))
}
method haveCommonKSubstring(k: nat, str1: string, str2: string) returns (found: bool)
ensures |str1| < k || |str2| < k ==> !found
ensures haveCommonKSubstringPredicate(k,str1,str2) == found
{
if( |str1| < k || |str2| < k){
return false;
}
var i := |str1| - k;
while i >= 0
{
var isSub := isSubstring(str1[i..][..k], str2);
if isSub
{
return true;
}
i := i-1;
}
return false;
}
predicate maxCommonSubstringPredicate(str1: string, str2: string, len:nat)
{
forall k :: len < k <= |str1| ==> !haveCommonKSubstringPredicate(k, str1, str2)
}
method maxCommonSubstringLength(str1: string, str2: string) returns (len:nat)
ensures len <= |str1| && len <= |str2|
ensures len >= 0
ensures maxCommonSubstringPredicate(str1, str2, len)
{
var i := |str1|;
while i > 0
{
var ans := haveCommonKSubstring(i, str1, str2);
if ans {
return i;
}
i := i -1;
}
return 0;
}
|
226 | Formal-Verification_tmp_tmpuyt21wjt_Dafny_strings3.dfy | // We spent 2h each on this assignment
predicate isPrefixPred(pre:string, str:string)
{
(|pre| <= |str|) &&
pre == str[..|pre|]
}
predicate isNotPrefixPred(pre:string, str:string)
{
(|pre| > |str|) ||
pre != str[..|pre|]
}
lemma PrefixNegationLemma(pre:string, str:string)
ensures isPrefixPred(pre,str) <==> !isNotPrefixPred(pre,str)
ensures !isPrefixPred(pre,str) <==> isNotPrefixPred(pre,str)
{}
method isPrefix(pre: string, str: string) returns (res:bool)
ensures !res <==> isNotPrefixPred(pre,str)
ensures res <==> isPrefixPred(pre,str)
{
if |pre| > |str|
{return false;}
var i := 0;
while i < |pre|
decreases |pre| - i
invariant 0 <= i <= |pre|
invariant forall j :: 0 <= j < i ==> pre[j] == str[j]
{
if pre[i] != str[i]
{
return false;
}
i := i + 1;
}
return true;
}
predicate isSubstringPred(sub:string, str:string)
{
(exists i :: 0 <= i <= |str| && isPrefixPred(sub, str[i..]))
}
predicate isNotSubstringPred(sub:string, str:string)
{
(forall i :: 0 <= i <= |str| ==> isNotPrefixPred(sub,str[i..]))
}
lemma SubstringNegationLemma(sub:string, str:string)
ensures isSubstringPred(sub,str) <==> !isNotSubstringPred(sub,str)
ensures !isSubstringPred(sub,str) <==> isNotSubstringPred(sub,str)
{}
method isSubstring(sub: string, str: string) returns (res:bool)
ensures res <==> isSubstringPred(sub, str)
//ensures !res <==> isNotSubstringPred(sub, str) // This postcondition follows from the above lemma.
{
if |sub| > |str| {
return false;
}
var i := |str| - |sub|;
while i >= 0
decreases i
invariant i >= -1
invariant forall j :: i < j <= |str|-|sub| ==> !(isPrefixPred(sub, str[j..]))
{
var isPref := isPrefix(sub, str[i..]);
if isPref
{
return true;
}
i := i-1;
}
return false;
}
predicate haveCommonKSubstringPred(k:nat, str1:string, str2:string)
{
exists i1, j1 :: 0 <= i1 <= |str1|- k && j1 == i1 + k && isSubstringPred(str1[i1..j1],str2)
}
predicate haveNotCommonKSubstringPred(k:nat, str1:string, str2:string)
{
forall i1, j1 :: 0 <= i1 <= |str1|- k && j1 == i1 + k ==> isNotSubstringPred(str1[i1..j1],str2)
}
lemma commonKSubstringLemma(k:nat, str1:string, str2:string)
ensures haveCommonKSubstringPred(k,str1,str2) <==> !haveNotCommonKSubstringPred(k,str1,str2)
ensures !haveCommonKSubstringPred(k,str1,str2) <==> haveNotCommonKSubstringPred(k,str1,str2)
{}
method haveCommonKSubstring(k: nat, str1: string, str2: string) returns (found: bool)
ensures found <==> haveCommonKSubstringPred(k,str1,str2)
//ensures !found <==> haveNotCommonKSubstringPred(k,str1,str2) // This postcondition follows from the above lemma.
{
if( |str1| < k || |str2| < k){
return false;
}
var i := |str1| - k;
while i >= 0
decreases i
invariant i >= -1
invariant forall j,t :: i < j <= |str1| - k && t==j+k ==> !isSubstringPred(str1[j..t], str2)
{
var t := i+k;
var isSub := isSubstring(str1[i..t], str2);
if isSub
{
return true;
}
i := i-1;
}
return false;
}
method maxCommonSubstringLength(str1: string, str2: string) returns (len:nat)
requires (|str1| <= |str2|)
ensures (forall k :: len < k <= |str1| ==> !haveCommonKSubstringPred(k,str1,str2))
ensures haveCommonKSubstringPred(len,str1,str2)
{
var i := |str1|;
while i > 0
decreases i
invariant i >= 0
invariant forall j :: i < j <= |str1| ==> !haveCommonKSubstringPred(j, str1, str2)
{
var ans := haveCommonKSubstring(i, str1, str2);
if ans {
return i;
}
i := i -1;
}
assert i == 0;
assert isPrefixPred(str1[0..0],str2[0..]);
return 0;
}
| // We spent 2h each on this assignment
predicate isPrefixPred(pre:string, str:string)
{
(|pre| <= |str|) &&
pre == str[..|pre|]
}
predicate isNotPrefixPred(pre:string, str:string)
{
(|pre| > |str|) ||
pre != str[..|pre|]
}
lemma PrefixNegationLemma(pre:string, str:string)
ensures isPrefixPred(pre,str) <==> !isNotPrefixPred(pre,str)
ensures !isPrefixPred(pre,str) <==> isNotPrefixPred(pre,str)
{}
method isPrefix(pre: string, str: string) returns (res:bool)
ensures !res <==> isNotPrefixPred(pre,str)
ensures res <==> isPrefixPred(pre,str)
{
if |pre| > |str|
{return false;}
var i := 0;
while i < |pre|
{
if pre[i] != str[i]
{
return false;
}
i := i + 1;
}
return true;
}
predicate isSubstringPred(sub:string, str:string)
{
(exists i :: 0 <= i <= |str| && isPrefixPred(sub, str[i..]))
}
predicate isNotSubstringPred(sub:string, str:string)
{
(forall i :: 0 <= i <= |str| ==> isNotPrefixPred(sub,str[i..]))
}
lemma SubstringNegationLemma(sub:string, str:string)
ensures isSubstringPred(sub,str) <==> !isNotSubstringPred(sub,str)
ensures !isSubstringPred(sub,str) <==> isNotSubstringPred(sub,str)
{}
method isSubstring(sub: string, str: string) returns (res:bool)
ensures res <==> isSubstringPred(sub, str)
//ensures !res <==> isNotSubstringPred(sub, str) // This postcondition follows from the above lemma.
{
if |sub| > |str| {
return false;
}
var i := |str| - |sub|;
while i >= 0
{
var isPref := isPrefix(sub, str[i..]);
if isPref
{
return true;
}
i := i-1;
}
return false;
}
predicate haveCommonKSubstringPred(k:nat, str1:string, str2:string)
{
exists i1, j1 :: 0 <= i1 <= |str1|- k && j1 == i1 + k && isSubstringPred(str1[i1..j1],str2)
}
predicate haveNotCommonKSubstringPred(k:nat, str1:string, str2:string)
{
forall i1, j1 :: 0 <= i1 <= |str1|- k && j1 == i1 + k ==> isNotSubstringPred(str1[i1..j1],str2)
}
lemma commonKSubstringLemma(k:nat, str1:string, str2:string)
ensures haveCommonKSubstringPred(k,str1,str2) <==> !haveNotCommonKSubstringPred(k,str1,str2)
ensures !haveCommonKSubstringPred(k,str1,str2) <==> haveNotCommonKSubstringPred(k,str1,str2)
{}
method haveCommonKSubstring(k: nat, str1: string, str2: string) returns (found: bool)
ensures found <==> haveCommonKSubstringPred(k,str1,str2)
//ensures !found <==> haveNotCommonKSubstringPred(k,str1,str2) // This postcondition follows from the above lemma.
{
if( |str1| < k || |str2| < k){
return false;
}
var i := |str1| - k;
while i >= 0
{
var t := i+k;
var isSub := isSubstring(str1[i..t], str2);
if isSub
{
return true;
}
i := i-1;
}
return false;
}
method maxCommonSubstringLength(str1: string, str2: string) returns (len:nat)
requires (|str1| <= |str2|)
ensures (forall k :: len < k <= |str1| ==> !haveCommonKSubstringPred(k,str1,str2))
ensures haveCommonKSubstringPred(len,str1,str2)
{
var i := |str1|;
while i > 0
{
var ans := haveCommonKSubstring(i, str1, str2);
if ans {
return i;
}
i := i -1;
}
return 0;
}
|
227 | Formal-methods-of-software-development_tmp_tmppryvbyty_Bloque 1_Lab3.dfy |
method multipleReturns (x:int, y:int) returns (more:int, less:int)
requires y > 0
ensures less < x < more
method multipleReturns2 (x:int, y:int) returns (more:int, less:int)
requires y > 0
ensures more + less == 2*x
// TODO: Hacer en casa
method multipleReturns3 (x:int, y:int) returns (more:int, less:int)
requires y > 0
ensures more - less == 2*y
function factorial(n:int):int
requires n>=0
{
if n==0 || n==1 then 1 else n*factorial(n-1)
}
// PROGRAMA VERIFICADOR DE WHILE
method ComputeFact (n:int) returns (f:int)
requires n >=0
ensures f== factorial(n)
{
assert 0 <= n <= n && 1*factorial(n) == factorial(n);
f:=1;
assert 0 <= n <= n && f*factorial(n) == factorial(n);
var x:=n;
assert 0 <= x <= n && f*factorial(x) == factorial(n);
while x > 0
invariant 0 <= x <= n;
invariant f*factorial(x)== factorial(n);
decreases x-0;
{
assert 0 <= x-1 <= n && (f*x)*factorial(x-1) == factorial(n);
f:= f*x;
assert 0 <= x-1 <= n && f*factorial(x-1) == factorial(n);
x:=x-1;
assert 0 <= x <= n && f*factorial(x) == factorial(n);
}
assert 0 <= x <= n && f*factorial(x) == factorial(n);
}
method ComputeFact2 (n:int) returns (f:int)
requires n >=0
ensures f== factorial(n)
{
var x:= 0;
f:= 1;
while x<n
invariant 0<=x<=n;
invariant f==factorial(x);
decreases n - x;
{
x:=x+1;
f:= f*x;
assert 0<=x<=n && f==factorial(x);
}
}
// n>=1 ==> 1 + 3 + 5 + ... + (2*n-1) = n*n
method Sqare(a:int) returns (x:int)
requires a>=1
ensures x == a*a
{
assert 1==1 && 1 <= 1 <= a;
var y:=1;
assert y*y==1 && 1 <= y <= a;
x:=1;
while y < a
invariant 1 <= y <= a;
invariant y*y==x;
{
assert (y+1)*(y+1)==x+ (2*(y+1)-1) && 1 <= (y+1) <= a;
y:= y+1;
assert y*y==x+ (2*y-1) && 1 <= y <= a;
x:= x+ (2*y-1);
assert y*y==x && 1 <= y <= a;
}
assert y*y==x && 1 <= y <= a;
}
function sumSerie(n:int):int
requires n >=1
{
if n==1 then 1 else sumSerie(n-1) + 2*n -1
}
lemma {:induction false} Sqare_Lemma (n:int)
requires n>=1
ensures sumSerie(n) == n*n
{
if n==1 {}
else{
Sqare_Lemma(n-1);
assert sumSerie(n-1) ==(n-1)*(n-1);
calc == {
sumSerie(n);
sumSerie(n-1) + 2*n -1;
{
Sqare_Lemma(n-1);
assert sumSerie(n-1) ==(n-1)*(n-1);
}
(n-1)*(n-1) + 2*n -1;
n*n-2*n+1 +2*n -1;
n*n;
}
assert sumSerie(n) == n*n;
}
}
method Sqare2(a:int) returns (x:int)
requires a>=1
ensures x == a*a
{
assert 1 <= 1 <= a && 1==1*1;
var y:=1;
assert 1 <= y <= a && 1==y*y;
x:=1;
assert 1 <= y <= a && x==y*y;
while y < a
invariant 1 <= y <= a
invariant x==y*y
decreases a - y
{
assert 1 <= (y+1) <= a && (x+2*(y+1)-1)==(y+1)*(y+1);
y:= y+1;
assert 1 <= y <= a && (x+2*y-1)==y*y;
x:= x +2*y -1;
assert 1 <= y <= a && x==y*y;
}
assert 1 <= y <= a && x==y*y;
}
|
method multipleReturns (x:int, y:int) returns (more:int, less:int)
requires y > 0
ensures less < x < more
method multipleReturns2 (x:int, y:int) returns (more:int, less:int)
requires y > 0
ensures more + less == 2*x
// TODO: Hacer en casa
method multipleReturns3 (x:int, y:int) returns (more:int, less:int)
requires y > 0
ensures more - less == 2*y
function factorial(n:int):int
requires n>=0
{
if n==0 || n==1 then 1 else n*factorial(n-1)
}
// PROGRAMA VERIFICADOR DE WHILE
method ComputeFact (n:int) returns (f:int)
requires n >=0
ensures f== factorial(n)
{
f:=1;
var x:=n;
while x > 0
{
f:= f*x;
x:=x-1;
}
}
method ComputeFact2 (n:int) returns (f:int)
requires n >=0
ensures f== factorial(n)
{
var x:= 0;
f:= 1;
while x<n
{
x:=x+1;
f:= f*x;
}
}
// n>=1 ==> 1 + 3 + 5 + ... + (2*n-1) = n*n
method Sqare(a:int) returns (x:int)
requires a>=1
ensures x == a*a
{
var y:=1;
x:=1;
while y < a
{
y:= y+1;
x:= x+ (2*y-1);
}
}
function sumSerie(n:int):int
requires n >=1
{
if n==1 then 1 else sumSerie(n-1) + 2*n -1
}
lemma {:induction false} Sqare_Lemma (n:int)
requires n>=1
ensures sumSerie(n) == n*n
{
if n==1 {}
else{
Sqare_Lemma(n-1);
calc == {
sumSerie(n);
sumSerie(n-1) + 2*n -1;
{
Sqare_Lemma(n-1);
}
(n-1)*(n-1) + 2*n -1;
n*n-2*n+1 +2*n -1;
n*n;
}
}
}
method Sqare2(a:int) returns (x:int)
requires a>=1
ensures x == a*a
{
var y:=1;
x:=1;
while y < a
{
y:= y+1;
x:= x +2*y -1;
}
}
|
228 | Formal-methods-of-software-development_tmp_tmppryvbyty_Bloque 2_Lab6.dfy | /*predicate palindrome<T(==)> (s:seq<T>)
{
forall i:: 0<=i<|s| ==> s[i] == s[|s|-i-1]
}
*/
// SUM OF A SEQUENCE OF INTEGERS
function sum(v: seq<int>): int
decreases v
{
if v==[] then 0
else if |v|==1 then v[0]
else v[0]+sum(v[1..])
}
/*
method vector_Sum(v:seq<int>) returns (x:int)
ensures x == sum(v)
{
var n := 0 ;
x := 0;
while n != |v|
invariant 0 <= n <= |v|
invariant x==sum(v[..n])
{
assert x == sum(v[..n]) && 0 <= n+1 <= |v|;
assert x + v[n] == sum(v[..n])+ v[n] && 0 <= n+1 <= |v|;
left_sum_Lemma(v, n+1);
assert x + v[n] == sum(v[..n+1]) && 0 <= n+1 <= |v|;
x, n := x + v[n], n + 1;
assert x==sum(v[..n]) && 0 <= n <= |v|;
}
assert v== v[..v];
assert sum(v)==sum(v[..n]);
assert x == sum(v) && 0 <= n <= |v|;
assert x==sum(v[..n]) && 0 <= n <= |v|;
}
// Structural Induction on Sequences
lemma left_sum_Lemma(r:seq<int>, k:int)
requires 0 <= k < |r|
ensures sum(r[..k]) + r[k] == sum(r[..k+1]);
{
if |r|==1 || k==0{
assert sum(r[..0])+r[0]== sum(r[..1]);
}
else {
left_sum_Lemma(r[1..], k);
assert sum(r[1..][..k]) + r[k] == sum(r[1..][..k+1]);
calc {
sum(r[..k+1]);
sum(r[..k]) + [r[k]];
}
}
}
// MAXIMUM OF A SEQUENCE
method maxSeq(v: seq<int>) returns (max:int)
requires |v| >= 1
ensures forall i :: 0 <= i < |v| ==> max >= v[i]
ensures max in v
{
max := v[0];
var v' := v[1..];
ghost var t := [v[0]];
while |v'| >= 1
invariant forall i :: 0 <= i < |t| ==> max >= t[i]
invariant v == t + v'
invariant max in t
decreases |v'| - 1
{
if v'[0] > max { max := v'[0]; }
v', t := v'[1..], t + [v'[0]];
}
}
// TODO: Hacer
// Derivar formalmente un calculo incremental de j*j*j
method Cubes (n:int) returns (s:seq<int>)
requires n >= 0
ensures |s| == n
ensures forall i:int :: 0 <= i < n ==> s[i] == i*i*i
{
s := [];
var c, j, k, m := 0,0,1,6;
while j < n
invariant 0 <= j ==|s| <= n
invariant forall i:int :: 0 <= i < j ==> s[i] == i*i*i
invariant c == j*j*j
invariant k == 3*j*j + 3*j + 1
invariant m == 6*j + 6
{
s := s+[c];
//c := (j+1)*(j+1)*(j+1);
c := c + k;
k := k + 6*j + 6;
m := m + 6;
//assert m == 6*(j+1) + 6 == 6*j + 6 + 6;
assert k == 3*(j+1)*(j+1) + 3*(j+1) + 1
== 3*j*j + 9*j + 7
== 3*j*j + 3*j + 1 + (6*j + 6);
//assert c == (j+1)*(j+1)*(j+1) == j*j*j + 3*j*j + 3*j + 1;
j := j+1;
//assert m == 6*j + 6;
//assert k == 3*j*j + 3*j + 1;
//assert c == j*j*j;
}
}
// REVERSE OF A SEQUENCE
function reverse<T> (s:seq<T>):seq<T>
{
if s==[] then []
else reverse(s[1..])+[s[0]]
}
function seq2set<T> (s:seq<T>): set<T>
{
if s==[] then {}
else {s[0]}+seq2set(s[1..])
}
lemma seq2setRev_Lemma<T> (s:seq<T>)
ensures seq2set(reverse(s)) == seq2set(s)
{
if s==[]{}
else {
seq2setRev_Lemma(s[1..]);
assert seq2set(reverse(s[1..])) == seq2set(s[1..]);
calc {
seq2set(s);
seq2set([s[0]]+s[1..]);
{
concat_seq2set_Lemma([s[0]], s[1..]);
assert seq2set([s[0]]+s[1..]) == seq2set([s[0]]) + seq2set(s[1..]);
}
seq2set([s[0]]) + seq2set(s[1..]);
{
seq2setRev_Lemma(s[1..]);
assert seq2set(reverse(s[1..])) == seq2set(s[1..]);
}
seq2set([s[0]]) + seq2set(reverse(s[1..]));
seq2set(reverse(s[1..])) + seq2set([s[0]]);
{
concat_seq2set_Lemma(reverse(s[1..]), [s[0]]);
}
seq2set(reverse(s[1..]) + [s[0]]);
{
assert reverse([s[0]]+s[1..]) == reverse(s);
assert [s[0]]+s[1..] == s;
assert reverse(s[1..])+[s[0]] == reverse(s);
}
seq2set(reverse(s));
}
}
}
lemma concat_seq2set_Lemma<T>(s1:seq<T>,s2:seq<T>)
ensures seq2set(s1+s2) == seq2set(s1) + seq2set(s2)
{
if s1==[]{
assert seq2set(s2) == seq2set([]) + seq2set(s2);
assert []==s1;
assert []+s2==s2;
assert s1+s2==s2;
assert seq2set(s1+s2)==seq2set(s2);
}
else {
concat_seq2set_Lemma(s1[1..], s2);
assert seq2set(s1[1..]+s2) == seq2set(s1[1..]) + seq2set(s2);
calc{
seq2set(s1) + seq2set(s2);
seq2set([s1[0]]+s1[1..]) + seq2set(s2);
seq2set([s1[0]]) + seq2set(s1[1..]) + seq2set(s2);
{
concat_seq2set_Lemma(s1[1..], s2);
assert seq2set(s1[1..]+s2) == seq2set(s1[1..]) + seq2set(s2);
}
seq2set([s1[0]]) + seq2set(s1[1..]+s2);
{
assert s1[1..]+s2 == (s1+s2)[1..];
}
seq2set([s1[0]]) + seq2set((s1+s2)[1..]);
{
// assert seq2set([s1[0]]) + seq2set((s1+s2)[1..]) == seq2set(s1+s2);
var ls:= s1+s2;
calc {
seq2set([s1[0]]) + seq2set((s1+s2)[1..]);
seq2set([ls[0]])+ seq2set(ls[1..]);
seq2set([ls[0]]+ ls[1..]);
seq2set(ls);
seq2set(s1+s2);
}
}
seq2set(s1+s2);
}
}
}
// REVERSE IS ITS OWN INVERSE
lemma Rev_Lemma<T(==)>(s:seq<T>)
//ensures forall i :: 0 <= i < |s| ==> s[i] == reverse(s)[|s|-1-i]
lemma ItsOwnInverse_Lemma<T> (s:seq<T>)
ensures s == reverse(reverse(s))
{
if s==[]{}
else{
ItsOwnInverse_Lemma(s[1..]);
assert s[1..] == reverse(reverse(s[1..]));
calc {
reverse(reverse(s));
reverse(reverse(s[1..])+[s[0]]);
reverse(reverse([s[0]]+s[1..]));
{
assert reverse([s[0]]+ s[1..]) == reverse(s[1..]) + [s[0]];
assert reverse(reverse([s[0]]+ s[1..])) == reverse(reverse(s[1..]) + [s[0]]);
}
reverse(reverse(s[1..]) + [s[0]]);
{
// TODO: Demostrar este assume
assume reverse(reverse(s[1..]) + [s[0]]) == [s[0]] + reverse(reverse(s[1..]));
}
[s[0]] + reverse(reverse(s[1..]));
{
ItsOwnInverse_Lemma(s[1..]);
assert s[1..] == reverse(reverse(s[1..]));
}
[s[0]]+s[1..];
s;
}
}
}
// SCALAR PRODUCT OF TWO VECTORS OF INTEGER
function scalar_product (v1:seq<int>, v2:seq<int>):int
requires |v1| == |v2|
{
if v1 == [] then 0 else v1[0]*v2[0] + scalar_product(v1[1..],v2[1..])
}
lemma scalar_product_Lemma (v1:seq<int>, v2:seq<int>)
requires |v1| == |v2| > 0
ensures scalar_product(v1,v2) == scalar_product(v1[..|v1|-1],v2[..|v2|-1]) + v1[|v1|-1] * v2[|v2|-1]
{
// INDUCCION EN LA LONGITUD DE V1
if |v1| == 0 && |v2| == 0 {}
else if |v1| == 1 {}
else {
// Se crean estas variables para simplificar las operaciones
var v1r:= v1[1..];
var v2r:= v2[1..];
var t1:= |v1[1..]|-1;
var t2:= |v2[1..]|-1;
// Se realiza la induccion utilizando las variables
scalar_product_Lemma(v1r, v2r);
assert scalar_product(v1r,v2r) ==
scalar_product(v1r[..t1],v2r[..t2]) + v1r[t1] * v2r[t2]; //HI
// Se demuestra que la propiedad se mantiene
calc{
scalar_product(v1,v2);
v1[0]*v2[0] + scalar_product(v1r, v2r);
v1[0]*v2[0] + scalar_product(v1r[..t1],v2r[..t2]) + v1r[t1] * v2r[t2];
{
scalar_product_Lemma(v1r, v2r);
assert scalar_product(v1r,v2r) ==
scalar_product(v1r[..t1],v2r[..t2]) + v1r[t1] * v2r[t2]; //HI
}
v1[0]*v2[0] + scalar_product(v1r,v2r);
v1[0]*v2[0] + scalar_product(v1[1..],v2[1..]);
scalar_product(v1,v2);
}
}
}
// MULTISETS
method multiplicity_examples<T> ()
{
var m := multiset{2,4,6,2,1,3,1,7,1,5,4,7,8,1,6};
assert m[7] == 2;
assert m[1] == 4;
assert forall m1: multiset<T>, m2 :: m1 == m2 <==> forall z:T :: m1[z] == m2[z];
}
// REVERSE HAS THE SAME MULTISET
lemma seqMultiset_Lemma<T> (s:seq<T>)
ensures multiset(reverse(s)) == multiset(s)
{
if s==[]{}
else {
seqMultiset_Lemma(s[1..]);
assert multiset(reverse(s[1..])) == multiset(s[1..]);
calc {
multiset(reverse(s));
multiset(reverse(s[1..]) + [s[0]]);
multiset(reverse(s[1..])) + multiset{[s[0]]};
multiset(s[1..]) + multiset{[s[0]]};
multiset(s);
}
assert multiset(reverse(s)) == multiset(s);
}
}
*/
lemma empty_Lemma<T> (r:seq<T>)
requires multiset(r) == multiset{}
ensures r == []
{
if r != [] {
assert r[0] in multiset(r);
}
}
lemma elem_Lemma<T> (s:seq<T>,r:seq<T>)
requires s != [] && multiset(s) == multiset(r)
ensures exists i :: 0 <= i < |r| && r[i] == s[0] && multiset(s[1..]) == multiset(r[..i]+r[i+1..]);
// SEQUENCES WITH EQUAL MULTISETS HAVE EQUAL SUMS
lemma sumElems_Lemma(s:seq<int>, r:seq<int>)
requires multiset(s) == multiset(r)
ensures sum(s) == sum(r)
{
if s==[]{
empty_Lemma(r);
}
else {
// Con este lema demuestro que el elemento que le quito a s tambien se lo quito a r y de esta manera
// poder hacer la induccion
elem_Lemma(s,r);
var i :| 0 <= i < |r| && r[i] == s[0] && multiset(s[1..]) == multiset(r[..i]+r[i+1..]);
sumElems_Lemma(s[1..], r[..i]+r[i+1..]);
assert sum(s[1..]) == sum(r[..i]+r[i+1..]); //HI
// Hago la llamada recursiva
sumElems_Lemma(s[1..], r[..i]+r[i+1..]);
assert sum(s[1..]) == sum(r[..i]+r[i+1..]);
calc {
sum(s);
s[0]+sum(s[1..]);
{
sumElems_Lemma(s[1..], r[..i]+r[i+1..]);
assert sum(s[1..]) == sum(r[..i]+r[i+1..]);
}
s[0]+sum(r[..i]+r[i+1..]);
{
assert s[0] == r[i];
}
r[i]+sum(r[..i]+r[i+1..]);
{
// TODO: No consigo acertarlo
assume r[i]+sum(r[..i]+r[i+1..]) == sum([r[i]]+r[..i] + r[i+1..]) == sum(r);
}
sum(r);
}
}
}
| /*predicate palindrome<T(==)> (s:seq<T>)
{
forall i:: 0<=i<|s| ==> s[i] == s[|s|-i-1]
}
*/
// SUM OF A SEQUENCE OF INTEGERS
function sum(v: seq<int>): int
{
if v==[] then 0
else if |v|==1 then v[0]
else v[0]+sum(v[1..])
}
/*
method vector_Sum(v:seq<int>) returns (x:int)
ensures x == sum(v)
{
var n := 0 ;
x := 0;
while n != |v|
{
left_sum_Lemma(v, n+1);
x, n := x + v[n], n + 1;
}
}
// Structural Induction on Sequences
lemma left_sum_Lemma(r:seq<int>, k:int)
requires 0 <= k < |r|
ensures sum(r[..k]) + r[k] == sum(r[..k+1]);
{
if |r|==1 || k==0{
}
else {
left_sum_Lemma(r[1..], k);
calc {
sum(r[..k+1]);
sum(r[..k]) + [r[k]];
}
}
}
// MAXIMUM OF A SEQUENCE
method maxSeq(v: seq<int>) returns (max:int)
requires |v| >= 1
ensures forall i :: 0 <= i < |v| ==> max >= v[i]
ensures max in v
{
max := v[0];
var v' := v[1..];
ghost var t := [v[0]];
while |v'| >= 1
{
if v'[0] > max { max := v'[0]; }
v', t := v'[1..], t + [v'[0]];
}
}
// TODO: Hacer
// Derivar formalmente un calculo incremental de j*j*j
method Cubes (n:int) returns (s:seq<int>)
requires n >= 0
ensures |s| == n
ensures forall i:int :: 0 <= i < n ==> s[i] == i*i*i
{
s := [];
var c, j, k, m := 0,0,1,6;
while j < n
{
s := s+[c];
//c := (j+1)*(j+1)*(j+1);
c := c + k;
k := k + 6*j + 6;
m := m + 6;
//assert m == 6*(j+1) + 6 == 6*j + 6 + 6;
== 3*j*j + 9*j + 7
== 3*j*j + 3*j + 1 + (6*j + 6);
//assert c == (j+1)*(j+1)*(j+1) == j*j*j + 3*j*j + 3*j + 1;
j := j+1;
//assert m == 6*j + 6;
//assert k == 3*j*j + 3*j + 1;
//assert c == j*j*j;
}
}
// REVERSE OF A SEQUENCE
function reverse<T> (s:seq<T>):seq<T>
{
if s==[] then []
else reverse(s[1..])+[s[0]]
}
function seq2set<T> (s:seq<T>): set<T>
{
if s==[] then {}
else {s[0]}+seq2set(s[1..])
}
lemma seq2setRev_Lemma<T> (s:seq<T>)
ensures seq2set(reverse(s)) == seq2set(s)
{
if s==[]{}
else {
seq2setRev_Lemma(s[1..]);
calc {
seq2set(s);
seq2set([s[0]]+s[1..]);
{
concat_seq2set_Lemma([s[0]], s[1..]);
}
seq2set([s[0]]) + seq2set(s[1..]);
{
seq2setRev_Lemma(s[1..]);
}
seq2set([s[0]]) + seq2set(reverse(s[1..]));
seq2set(reverse(s[1..])) + seq2set([s[0]]);
{
concat_seq2set_Lemma(reverse(s[1..]), [s[0]]);
}
seq2set(reverse(s[1..]) + [s[0]]);
{
}
seq2set(reverse(s));
}
}
}
lemma concat_seq2set_Lemma<T>(s1:seq<T>,s2:seq<T>)
ensures seq2set(s1+s2) == seq2set(s1) + seq2set(s2)
{
if s1==[]{
}
else {
concat_seq2set_Lemma(s1[1..], s2);
calc{
seq2set(s1) + seq2set(s2);
seq2set([s1[0]]+s1[1..]) + seq2set(s2);
seq2set([s1[0]]) + seq2set(s1[1..]) + seq2set(s2);
{
concat_seq2set_Lemma(s1[1..], s2);
}
seq2set([s1[0]]) + seq2set(s1[1..]+s2);
{
}
seq2set([s1[0]]) + seq2set((s1+s2)[1..]);
{
// assert seq2set([s1[0]]) + seq2set((s1+s2)[1..]) == seq2set(s1+s2);
var ls:= s1+s2;
calc {
seq2set([s1[0]]) + seq2set((s1+s2)[1..]);
seq2set([ls[0]])+ seq2set(ls[1..]);
seq2set([ls[0]]+ ls[1..]);
seq2set(ls);
seq2set(s1+s2);
}
}
seq2set(s1+s2);
}
}
}
// REVERSE IS ITS OWN INVERSE
lemma Rev_Lemma<T(==)>(s:seq<T>)
//ensures forall i :: 0 <= i < |s| ==> s[i] == reverse(s)[|s|-1-i]
lemma ItsOwnInverse_Lemma<T> (s:seq<T>)
ensures s == reverse(reverse(s))
{
if s==[]{}
else{
ItsOwnInverse_Lemma(s[1..]);
calc {
reverse(reverse(s));
reverse(reverse(s[1..])+[s[0]]);
reverse(reverse([s[0]]+s[1..]));
{
}
reverse(reverse(s[1..]) + [s[0]]);
{
// TODO: Demostrar este assume
assume reverse(reverse(s[1..]) + [s[0]]) == [s[0]] + reverse(reverse(s[1..]));
}
[s[0]] + reverse(reverse(s[1..]));
{
ItsOwnInverse_Lemma(s[1..]);
}
[s[0]]+s[1..];
s;
}
}
}
// SCALAR PRODUCT OF TWO VECTORS OF INTEGER
function scalar_product (v1:seq<int>, v2:seq<int>):int
requires |v1| == |v2|
{
if v1 == [] then 0 else v1[0]*v2[0] + scalar_product(v1[1..],v2[1..])
}
lemma scalar_product_Lemma (v1:seq<int>, v2:seq<int>)
requires |v1| == |v2| > 0
ensures scalar_product(v1,v2) == scalar_product(v1[..|v1|-1],v2[..|v2|-1]) + v1[|v1|-1] * v2[|v2|-1]
{
// INDUCCION EN LA LONGITUD DE V1
if |v1| == 0 && |v2| == 0 {}
else if |v1| == 1 {}
else {
// Se crean estas variables para simplificar las operaciones
var v1r:= v1[1..];
var v2r:= v2[1..];
var t1:= |v1[1..]|-1;
var t2:= |v2[1..]|-1;
// Se realiza la induccion utilizando las variables
scalar_product_Lemma(v1r, v2r);
scalar_product(v1r[..t1],v2r[..t2]) + v1r[t1] * v2r[t2]; //HI
// Se demuestra que la propiedad se mantiene
calc{
scalar_product(v1,v2);
v1[0]*v2[0] + scalar_product(v1r, v2r);
v1[0]*v2[0] + scalar_product(v1r[..t1],v2r[..t2]) + v1r[t1] * v2r[t2];
{
scalar_product_Lemma(v1r, v2r);
scalar_product(v1r[..t1],v2r[..t2]) + v1r[t1] * v2r[t2]; //HI
}
v1[0]*v2[0] + scalar_product(v1r,v2r);
v1[0]*v2[0] + scalar_product(v1[1..],v2[1..]);
scalar_product(v1,v2);
}
}
}
// MULTISETS
method multiplicity_examples<T> ()
{
var m := multiset{2,4,6,2,1,3,1,7,1,5,4,7,8,1,6};
}
// REVERSE HAS THE SAME MULTISET
lemma seqMultiset_Lemma<T> (s:seq<T>)
ensures multiset(reverse(s)) == multiset(s)
{
if s==[]{}
else {
seqMultiset_Lemma(s[1..]);
calc {
multiset(reverse(s));
multiset(reverse(s[1..]) + [s[0]]);
multiset(reverse(s[1..])) + multiset{[s[0]]};
multiset(s[1..]) + multiset{[s[0]]};
multiset(s);
}
}
}
*/
lemma empty_Lemma<T> (r:seq<T>)
requires multiset(r) == multiset{}
ensures r == []
{
if r != [] {
}
}
lemma elem_Lemma<T> (s:seq<T>,r:seq<T>)
requires s != [] && multiset(s) == multiset(r)
ensures exists i :: 0 <= i < |r| && r[i] == s[0] && multiset(s[1..]) == multiset(r[..i]+r[i+1..]);
// SEQUENCES WITH EQUAL MULTISETS HAVE EQUAL SUMS
lemma sumElems_Lemma(s:seq<int>, r:seq<int>)
requires multiset(s) == multiset(r)
ensures sum(s) == sum(r)
{
if s==[]{
empty_Lemma(r);
}
else {
// Con este lema demuestro que el elemento que le quito a s tambien se lo quito a r y de esta manera
// poder hacer la induccion
elem_Lemma(s,r);
var i :| 0 <= i < |r| && r[i] == s[0] && multiset(s[1..]) == multiset(r[..i]+r[i+1..]);
sumElems_Lemma(s[1..], r[..i]+r[i+1..]);
// Hago la llamada recursiva
sumElems_Lemma(s[1..], r[..i]+r[i+1..]);
calc {
sum(s);
s[0]+sum(s[1..]);
{
sumElems_Lemma(s[1..], r[..i]+r[i+1..]);
}
s[0]+sum(r[..i]+r[i+1..]);
{
}
r[i]+sum(r[..i]+r[i+1..]);
{
// TODO: No consigo acertarlo
assume r[i]+sum(r[..i]+r[i+1..]) == sum([r[i]]+r[..i] + r[i+1..]) == sum(r);
}
sum(r);
}
}
}
|
229 | Formal-methods-of-software-development_tmp_tmppryvbyty_Examenes_Beni_Heusel-Benedikt-Ass-1.dfy | // APELLIDOS: Heusel
// NOMBRE: Benedikt
// ESPECIALIDAD: ninguna (Erasmus)
// ESTÁ PERFECTO, NO HAY NINGUN COMENTARIO MAS ABAJO
// EJERCICIO 1
// Demostrar el lemma div10_Lemma por inducción en n
// y luego usarlo para demostrar el lemma div10Forall_Lemma
function exp (x:int,e:nat):int
{
if e == 0 then 1 else x * exp(x,e-1)
}
lemma div10_Lemma (n:nat)
requires n >= 3;
ensures (exp(3,4*n)+9)%10 == 0
{
if n == 3 { //paso base
calc { //sólo para mí, comprobado automaticamente
(exp(3,4*n)+9);
(exp(3,4*3)+9);
exp(3, 12) + 9;
531441 + 9;
531450;
10 * 53145;
}
} else { //paso inductivo
div10_Lemma(n-1);
//assert (exp(3,4*(n-1))+9)%10 == 0; // HI
var k := (exp(3,4*(n-1))+9) / 10;
assert 10 * k == (exp(3,4*(n-1))+9);
calc {
exp(3, 4*n) + 9;
3 * 3 * exp(3,4*n - 2) + 9;
3 * 3 * 3 * 3 * exp(3,4*n - 4) + 9;
81 * exp(3,4*n - 4) + 9;
81 * exp(3,4 * (n-1)) + 9;
80 * exp(3,4 * (n-1)) + (exp(3,4 * (n-1)) + 9);
80 * exp(3,4 * (n-1)) + 10*k;
10 * (8 * exp(3,4 * (n-1)) + k);
}
}
}
//Por inducción en n
lemma div10Forall_Lemma ()
ensures forall n :: n>=3 ==> (exp(3,4*n)+9)%10==0
{
forall n | n>=3 {div10_Lemma(n);}
}
//Llamando al lemma anterior
// EJERCICIO 2
// Demostrar por inducción en n el lemma de abajo acerca de la función sumSerie que se define primero.
// Recuerda que debes JUSTIFICAR como se obtiene la propiedad del ensures a partir de la hipótesis de inducción.
function sumSerie (x:int,n:nat):int
{
if n == 0 then 1 else sumSerie(x,n-1) + exp(x,n)
}
lemma {:induction false} sumSerie_Lemma (x:int,n:nat)
ensures (1-x) * sumSerie(x,n) == 1 - exp(x,n+1)
{
if n == 0 { //paso base
calc {
(1-x) * sumSerie(x,n);
(1-x) * sumSerie(x,0);
(1-x) * 1;
1 - x;
1 - exp(x,1);
1 - exp(x,n+1);
}
} else{ //paso inductivo
calc {
(1-x) * sumSerie(x,n);
(1-x) * (sumSerie(x,n-1) + exp(x,n));
(1-x) * sumSerie(x,n-1) + (1-x) * exp(x,n);
{
sumSerie_Lemma(x, n-1);
//assert (1-x) * sumSerie(x,n-1) == 1 - exp(x,n); // HI
}
1 - exp(x,n) + (1-x) * exp(x,n);
1 - exp(x,n) + exp(x,n) - x * exp(x,n);
1 - x * exp(x,n);
1 - exp(x,n + 1);
}
}
}
// EJERCICIO 3
// Probar el lemma noSq_Lemma por contradicción + casos (ver el esquema de abajo).
// Se niega la propiedad en el ensures y luego se hacen dos casos (1) z%2 == 0 y (2) z%2 == 1.
// En cada uno de los dos casos hay que llegar a probar "assert false"
lemma notSq_Lemma (n:int)
ensures !exists z :: z*z == 4*n + 2
{ //Por contradicción con dos casos:
if exists z :: 4*n + 2 == z*z
{
var z :| z*z == 4*n + 2 == z*z;
if z%2 == 0 {
//llegar aquí a una contradicción y cambiar el "assume false" por "assert false"
var k := z/2;
assert z == 2*k;
calc ==> {
4*n + 2 == z*z;
4*n + 2 == (2*k)*(2*k);
2 * (2*n+1) == 2 * (2*k*k);
2*n+1 == 2*k*k;
2*n+1 == 2*(k*k);
}
assert 0 == 2*(k*k) % 2 == (2*n+1) % 2 == 1;
assert false;
}
else {
//llegar aquí a una contradicción y cambiar el "assume false" por "assert false"
//assert z % 2 == 1;
var k := (z-1) / 2;
assert z == 2*k + 1;
calc ==> {
4*n + 2 == z*z;
4*n + 2 == (2*k + 1)*(2*k + 1);
4*n + 2 == 4*k*k + 4*k + 1;
4*n + 2 == 2 * (2*k*k + 2*k) + 1;
2 * (2*n + 1) == 2 * (2*k*k + 2*k) + 1;
}
assert 0 == (2 * (2*n + 1)) % 2 == (2 * (2*k*k + 2*k) + 1) % 2 == 1;
assert false;
}
}
}
// EJERCICIO 4
//Probar el lemma oneIsEven_Lemma por contradicción, usando también el lemma del EJERCICIO 3.
lemma oneIsEven_Lemma (x:int,y:int,z:int)
requires z*z == x*x + y*y
ensures x%2 == 0 || y%2 == 0
{
if !(x%2 == 0 || y%2 == 0) {
//assert x%2 == 1 && y%2 == 1;
assert x == 2 * ((x-1)/2) + 1;
var k: int :| 2*k + 1 == x;
assert y == 2 * ((y-1)/2) + 1;
var b: int :| 2*b + 1 == y;
calc {
x*x + y*y;
(2*k + 1) * (2*k + 1) + (2*b + 1) * (2*b + 1);
4*k*k + 4*k + 1 + (2*b + 1) * (2*b + 1);
4*k*k + 4*k + 1 + 4*b*b + 4*b + 1;
4*k*k + 4*k + 4*b*b + 4*b + 2;
4 * (k*k + k + b*b + b) + 2;
}
assert z * z == 4 * (k*k + k + b*b + b) + 2;
notSq_Lemma(k*k + k + b*b + b);
//assert !exists z :: z*z == 4*(k*k + k + b*b + b) + 2;
assert false;
}
}
// Por contradicción, y usando notSq_Lemma.
//////////////////////////////////////////////////////////////////////////////////////////////
/* ESTE EJERCICIO SÓLO DEBES HACERLO SI HAS CONSEGUIDO DEMOSTRAR CON EXITO LOS EJERCICIOS 1 y 2
EJERCICIO 5
En este ejercicio se dan dos lemma: exp_Lemma y prod_Lemma, que Dafny demuestra automáticamente.
Lo que se pide es probar expPlus1_Lemma, por inducción en n, haciendo una calculation con == y >=,
que en las pistas (hints) use la HI y también llamadas a esos dos lemas.
*/
lemma exp_Lemma(x:int, e:nat)
requires x >= 1
ensures exp(x,e) >= 1
{} //NO DEMOSTRAR, USAR PARA PROBAR EL DE ABAJO
lemma prod_Lemma(z:int, a:int, b:int)
requires z >= 1 && a >= b >= 1
ensures z*a >= z*b
{} //NO DEMOSTRAR, USAR PARA PROBAR EL DE ABAJO
lemma expPlus1_Lemma(x:int,n:nat)
requires x >= 1 && n >= 1
ensures exp(x+1,n) >= exp(x,n) + 1
{
if n == 1 {
calc {
exp(x+1,n);
==
exp(x+1,1);
==
x + 1;
>= //efectivamente en el caso base tenemos igualdad
x + 1;
==
exp(x,1) + 1;
==
exp(x,n) + 1;
}
} else {
calc {
exp(x+1,n);
==
(x + 1) * exp(x+1,n-1);
>= {
expPlus1_Lemma(x, n-1);
//assert exp(x+1,n-1) >= exp(x,n-1) + 1; HI
//assert exp(x+1,n-1) >= exp(x,n-1) + 1; // HI
//aquí se necesitaría tambien prod_lemma,
//pero parece que el paso se demuestra tambien
//sin la llamada
}
(x + 1) * (exp(x,n-1) + 1);
==
x * exp(x,n-1) + x + exp(x,n-1) + 1;
==
exp(x,n) + x + exp(x,n-1) + 1;
==
exp(x,n) + 1 + exp(x,n-1) + x;
>= {
exp_Lemma(x, n-1);
}
exp(x,n) + 1;
}
}
}
// Por inducción en n, y usando exp_Lemma y prod_Lemma.
| // APELLIDOS: Heusel
// NOMBRE: Benedikt
// ESPECIALIDAD: ninguna (Erasmus)
// ESTÁ PERFECTO, NO HAY NINGUN COMENTARIO MAS ABAJO
// EJERCICIO 1
// Demostrar el lemma div10_Lemma por inducción en n
// y luego usarlo para demostrar el lemma div10Forall_Lemma
function exp (x:int,e:nat):int
{
if e == 0 then 1 else x * exp(x,e-1)
}
lemma div10_Lemma (n:nat)
requires n >= 3;
ensures (exp(3,4*n)+9)%10 == 0
{
if n == 3 { //paso base
calc { //sólo para mí, comprobado automaticamente
(exp(3,4*n)+9);
(exp(3,4*3)+9);
exp(3, 12) + 9;
531441 + 9;
531450;
10 * 53145;
}
} else { //paso inductivo
div10_Lemma(n-1);
//assert (exp(3,4*(n-1))+9)%10 == 0; // HI
var k := (exp(3,4*(n-1))+9) / 10;
calc {
exp(3, 4*n) + 9;
3 * 3 * exp(3,4*n - 2) + 9;
3 * 3 * 3 * 3 * exp(3,4*n - 4) + 9;
81 * exp(3,4*n - 4) + 9;
81 * exp(3,4 * (n-1)) + 9;
80 * exp(3,4 * (n-1)) + (exp(3,4 * (n-1)) + 9);
80 * exp(3,4 * (n-1)) + 10*k;
10 * (8 * exp(3,4 * (n-1)) + k);
}
}
}
//Por inducción en n
lemma div10Forall_Lemma ()
ensures forall n :: n>=3 ==> (exp(3,4*n)+9)%10==0
{
forall n | n>=3 {div10_Lemma(n);}
}
//Llamando al lemma anterior
// EJERCICIO 2
// Demostrar por inducción en n el lemma de abajo acerca de la función sumSerie que se define primero.
// Recuerda que debes JUSTIFICAR como se obtiene la propiedad del ensures a partir de la hipótesis de inducción.
function sumSerie (x:int,n:nat):int
{
if n == 0 then 1 else sumSerie(x,n-1) + exp(x,n)
}
lemma {:induction false} sumSerie_Lemma (x:int,n:nat)
ensures (1-x) * sumSerie(x,n) == 1 - exp(x,n+1)
{
if n == 0 { //paso base
calc {
(1-x) * sumSerie(x,n);
(1-x) * sumSerie(x,0);
(1-x) * 1;
1 - x;
1 - exp(x,1);
1 - exp(x,n+1);
}
} else{ //paso inductivo
calc {
(1-x) * sumSerie(x,n);
(1-x) * (sumSerie(x,n-1) + exp(x,n));
(1-x) * sumSerie(x,n-1) + (1-x) * exp(x,n);
{
sumSerie_Lemma(x, n-1);
//assert (1-x) * sumSerie(x,n-1) == 1 - exp(x,n); // HI
}
1 - exp(x,n) + (1-x) * exp(x,n);
1 - exp(x,n) + exp(x,n) - x * exp(x,n);
1 - x * exp(x,n);
1 - exp(x,n + 1);
}
}
}
// EJERCICIO 3
// Probar el lemma noSq_Lemma por contradicción + casos (ver el esquema de abajo).
// Se niega la propiedad en el ensures y luego se hacen dos casos (1) z%2 == 0 y (2) z%2 == 1.
// En cada uno de los dos casos hay que llegar a probar "assert false"
lemma notSq_Lemma (n:int)
ensures !exists z :: z*z == 4*n + 2
{ //Por contradicción con dos casos:
if exists z :: 4*n + 2 == z*z
{
var z :| z*z == 4*n + 2 == z*z;
if z%2 == 0 {
//llegar aquí a una contradicción y cambiar el "assume false" por "assert false"
var k := z/2;
calc ==> {
4*n + 2 == z*z;
4*n + 2 == (2*k)*(2*k);
2 * (2*n+1) == 2 * (2*k*k);
2*n+1 == 2*k*k;
2*n+1 == 2*(k*k);
}
}
else {
//llegar aquí a una contradicción y cambiar el "assume false" por "assert false"
//assert z % 2 == 1;
var k := (z-1) / 2;
calc ==> {
4*n + 2 == z*z;
4*n + 2 == (2*k + 1)*(2*k + 1);
4*n + 2 == 4*k*k + 4*k + 1;
4*n + 2 == 2 * (2*k*k + 2*k) + 1;
2 * (2*n + 1) == 2 * (2*k*k + 2*k) + 1;
}
}
}
}
// EJERCICIO 4
//Probar el lemma oneIsEven_Lemma por contradicción, usando también el lemma del EJERCICIO 3.
lemma oneIsEven_Lemma (x:int,y:int,z:int)
requires z*z == x*x + y*y
ensures x%2 == 0 || y%2 == 0
{
if !(x%2 == 0 || y%2 == 0) {
//assert x%2 == 1 && y%2 == 1;
var k: int :| 2*k + 1 == x;
var b: int :| 2*b + 1 == y;
calc {
x*x + y*y;
(2*k + 1) * (2*k + 1) + (2*b + 1) * (2*b + 1);
4*k*k + 4*k + 1 + (2*b + 1) * (2*b + 1);
4*k*k + 4*k + 1 + 4*b*b + 4*b + 1;
4*k*k + 4*k + 4*b*b + 4*b + 2;
4 * (k*k + k + b*b + b) + 2;
}
notSq_Lemma(k*k + k + b*b + b);
//assert !exists z :: z*z == 4*(k*k + k + b*b + b) + 2;
}
}
// Por contradicción, y usando notSq_Lemma.
//////////////////////////////////////////////////////////////////////////////////////////////
/* ESTE EJERCICIO SÓLO DEBES HACERLO SI HAS CONSEGUIDO DEMOSTRAR CON EXITO LOS EJERCICIOS 1 y 2
EJERCICIO 5
En este ejercicio se dan dos lemma: exp_Lemma y prod_Lemma, que Dafny demuestra automáticamente.
Lo que se pide es probar expPlus1_Lemma, por inducción en n, haciendo una calculation con == y >=,
que en las pistas (hints) use la HI y también llamadas a esos dos lemas.
*/
lemma exp_Lemma(x:int, e:nat)
requires x >= 1
ensures exp(x,e) >= 1
{} //NO DEMOSTRAR, USAR PARA PROBAR EL DE ABAJO
lemma prod_Lemma(z:int, a:int, b:int)
requires z >= 1 && a >= b >= 1
ensures z*a >= z*b
{} //NO DEMOSTRAR, USAR PARA PROBAR EL DE ABAJO
lemma expPlus1_Lemma(x:int,n:nat)
requires x >= 1 && n >= 1
ensures exp(x+1,n) >= exp(x,n) + 1
{
if n == 1 {
calc {
exp(x+1,n);
==
exp(x+1,1);
==
x + 1;
>= //efectivamente en el caso base tenemos igualdad
x + 1;
==
exp(x,1) + 1;
==
exp(x,n) + 1;
}
} else {
calc {
exp(x+1,n);
==
(x + 1) * exp(x+1,n-1);
>= {
expPlus1_Lemma(x, n-1);
//assert exp(x+1,n-1) >= exp(x,n-1) + 1; HI
//assert exp(x+1,n-1) >= exp(x,n-1) + 1; // HI
//aquí se necesitaría tambien prod_lemma,
//pero parece que el paso se demuestra tambien
//sin la llamada
}
(x + 1) * (exp(x,n-1) + 1);
==
x * exp(x,n-1) + x + exp(x,n-1) + 1;
==
exp(x,n) + x + exp(x,n-1) + 1;
==
exp(x,n) + 1 + exp(x,n-1) + x;
>= {
exp_Lemma(x, n-1);
}
exp(x,n) + 1;
}
}
}
// Por inducción en n, y usando exp_Lemma y prod_Lemma.
|
230 | FormalMethods_tmp_tmpvda2r3_o_dafny_Invariants_ex1.dfy | method Mult(x:nat, y:nat) returns (r:nat)
ensures r == x * y
{
// Valores passados por parâmetros são imutáveis
var m := x;
var n := y;
r := 0;
// Soma sucessiva para multiplicar dois números.
while m > 0
invariant m*n+r == x*y
invariant m>=0
{
r := r + n;
m := m - 1;
}
return r; // NOT(m>0) ^ Inv ==> r = x*y
}
/*
Inv = m*n + r = x*y
Mult(5,3)
Teste de mesa
x y m n r Inv --> m*n + r = x*y
5 3 5 3 0 5x3+0 = 5*3
5 3 4 3 3 4x3+3 = 5*3
5 3 3 3 6 3x3+6 = 5*3
5 3 2 3 9 2x3+9 = 5*3
5 3 1 3 12 1x3+12 = 5*3
5 3 0 3 15 0x3+15 = 5*3
*/
| method Mult(x:nat, y:nat) returns (r:nat)
ensures r == x * y
{
// Valores passados por parâmetros são imutáveis
var m := x;
var n := y;
r := 0;
// Soma sucessiva para multiplicar dois números.
while m > 0
{
r := r + n;
m := m - 1;
}
return r; // NOT(m>0) ^ Inv ==> r = x*y
}
/*
Inv = m*n + r = x*y
Mult(5,3)
Teste de mesa
x y m n r Inv --> m*n + r = x*y
5 3 5 3 0 5x3+0 = 5*3
5 3 4 3 3 4x3+3 = 5*3
5 3 3 3 6 3x3+6 = 5*3
5 3 2 3 9 2x3+9 = 5*3
5 3 1 3 12 1x3+12 = 5*3
5 3 0 3 15 0x3+15 = 5*3
*/
|
231 | FormalMethods_tmp_tmpvda2r3_o_dafny_Invariants_ex2.dfy | function Potencia(x:nat, y:nat):nat
{
if y == 0
then 1
else x * Potencia(x, y-1)
}
method Pot(x:nat, y:nat) returns (r:nat)
ensures r == Potencia(x,y)
{
r := 1;
var b := x;
var e := y;
while e > 0
invariant Potencia(b,e) * r == Potencia(x,y)
{
r := r * b;
e := e - 1;
}
return r;
}
/*
Inv =
Pot(2,3)
Teste de mesa
x y b e r Inv --> b^e * r = x^y
2 3 2 3 1 2^3 * 2^0 = 2^3
2 3 2 2 1*2 2^2 * 2^1 = 2^3
2 3 2 1 1*2*2 2^1 * 2^2 = 2^3
2 3 2 0 1*2*2*2 2^0 * 2^3 = 2^3
*/
| function Potencia(x:nat, y:nat):nat
{
if y == 0
then 1
else x * Potencia(x, y-1)
}
method Pot(x:nat, y:nat) returns (r:nat)
ensures r == Potencia(x,y)
{
r := 1;
var b := x;
var e := y;
while e > 0
{
r := r * b;
e := e - 1;
}
return r;
}
/*
Inv =
Pot(2,3)
Teste de mesa
x y b e r Inv --> b^e * r = x^y
2 3 2 3 1 2^3 * 2^0 = 2^3
2 3 2 2 1*2 2^2 * 2^1 = 2^3
2 3 2 1 1*2*2 2^1 * 2^2 = 2^3
2 3 2 0 1*2*2*2 2^0 * 2^3 = 2^3
*/
|
232 | Formal_Verification_With_Dafny_tmp_tmp5j79rq48_Counter.dfy | class Counter {
var value : int ;
constructor init()
ensures value == 0;
{
value := 0 ;
}
method getValue() returns (x:int)
ensures x == value;
{
x := value ;
}
method inc()
modifies this`value
requires value >= 0;
ensures value == old(value) + 1;
{
value := value + 1;
}
method dec()
modifies this`value
requires value > 0;
ensures value == old(value) - 1;
{
value := value - 1 ;
}
method Main ()
{
var count := new Counter.init() ;
count.inc();
count.inc();
count.dec();
count.inc();
var aux : int := count.getValue();
assert (aux == 2) ;
}
}
| class Counter {
var value : int ;
constructor init()
ensures value == 0;
{
value := 0 ;
}
method getValue() returns (x:int)
ensures x == value;
{
x := value ;
}
method inc()
modifies this`value
requires value >= 0;
ensures value == old(value) + 1;
{
value := value + 1;
}
method dec()
modifies this`value
requires value > 0;
ensures value == old(value) - 1;
{
value := value - 1 ;
}
method Main ()
{
var count := new Counter.init() ;
count.inc();
count.inc();
count.dec();
count.inc();
var aux : int := count.getValue();
}
}
|
233 | Formal_Verification_With_Dafny_tmp_tmp5j79rq48_LimitedStack.dfy | // A LIFO queue (aka a stack) with limited capacity.
class LimitedStack{
var capacity : int; // capacity, max number of elements allowed on the stack.
var arr : array<int>; // contents of stack.
var top : int; // The index of the top of the stack, or -1 if the stack is empty
// This predicate express a class invariant: All objects of this calls should satisfy this.
predicate Valid()
reads this;
{
arr != null && capacity > 0 && capacity == arr.Length && top >= -1 && top < capacity
}
predicate Empty()
reads this`top;
{
top == -1
}
predicate Full()
reads this`top, this`capacity;
{
top == (capacity - 1)
}
method Init(c : int)
modifies this;
requires c > 0
ensures Valid() && Empty() && c == capacity
ensures fresh(arr); // ensures arr is a newly created object.
// Additional post-condition to be given here!
{
capacity := c;
arr := new int[c];
top := -1;
}
method isEmpty() returns (res : bool)
ensures res == Empty()
{
if(top == -1)
{ return true; }
else {
return false;
}
}
// Returns the top element of the stack, without removing it.
method Peek() returns (elem : int)
requires Valid() && !Empty()
ensures elem == arr[top]
{
return arr[top];
}
// Pushed an element to the top of a (non full) stack.
method Push(elem : int)
modifies this`top, this.arr
requires Valid()
requires !Full()
ensures Valid() && top == old(top) + 1 && arr[top] == elem
ensures !old(Empty()) ==> forall i : int :: 0 <= i <= old(top) ==> arr[i] == old(arr[i]);
{
top := top + 1;
arr[top] := elem;
}
// Pops the top element off the stack.
method Pop() returns (elem : int)
modifies this`top
requires Valid() && !Empty()
ensures Valid() && top == old(top) - 1
ensures elem == arr[old(top)]
{
elem := arr[top];
top := top - 1;
return elem;
}
method Shift()
requires Valid() && !Empty();
ensures Valid();
ensures forall i : int :: 0 <= i < capacity - 1 ==> arr[i] == old(arr[i + 1]);
ensures top == old(top) - 1;
modifies this.arr, this`top;
{
var i : int := 0;
while (i < capacity - 1 )
invariant 0 <= i < capacity;
invariant top == old(top);
invariant forall j : int :: 0 <= j < i ==> arr[j] == old(arr[j + 1]);
invariant forall j : int :: i <= j < capacity ==> arr[j] == old(arr[j]);
{
arr[i] := arr[i + 1];
i := i + 1;
}
top := top - 1;
}
//Push onto full stack, oldest element is discarded.
method Push2(elem : int)
modifies this.arr, this`top
requires Valid()
ensures Valid() && !Empty()
ensures arr[top] == elem
ensures old(!Full()) ==> top == old(top) + 1 && old(Full()) ==> top == old(top)
ensures ((old(Full()) ==> arr[capacity - 1] == elem) && (old(!Full()) ==> (top == old(top) + 1 && arr[top] == elem) ))
ensures old(Full()) ==> forall i : int :: 0 <= i < capacity - 1 ==> arr[i] == old(arr[i + 1]);
{
if(top == capacity - 1){
Shift();
top := top + 1;
arr[top] := elem;
}
else{
top := top + 1;
arr[top] := elem;
}
}
// When you are finished, all the below assertions should be provable.
// Feel free to add extra ones as well.
method Main(){
var s := new LimitedStack;
s.Init(3);
assert s.Empty() && !s.Full();
s.Push(27);
assert !s.Empty();
var e := s.Pop();
assert e == 27;
assert s.top == -1;
assert s.Empty() && !s.Full();
s.Push(5);
assert s.top == 0;
assert s.capacity == 3;
s.Push(32);
s.Push(9);
assert s.Full();
assert s.arr[0] == 5;
var e2 := s.Pop();
assert e2 == 9 && !s.Full();
assert s.arr[0] == 5;
s.Push(e2);
s.Push2(99);
var e3 := s.Peek();
assert e3 == 99;
assert s.arr[0] == 32;
}
}
| // A LIFO queue (aka a stack) with limited capacity.
class LimitedStack{
var capacity : int; // capacity, max number of elements allowed on the stack.
var arr : array<int>; // contents of stack.
var top : int; // The index of the top of the stack, or -1 if the stack is empty
// This predicate express a class invariant: All objects of this calls should satisfy this.
predicate Valid()
reads this;
{
arr != null && capacity > 0 && capacity == arr.Length && top >= -1 && top < capacity
}
predicate Empty()
reads this`top;
{
top == -1
}
predicate Full()
reads this`top, this`capacity;
{
top == (capacity - 1)
}
method Init(c : int)
modifies this;
requires c > 0
ensures Valid() && Empty() && c == capacity
ensures fresh(arr); // ensures arr is a newly created object.
// Additional post-condition to be given here!
{
capacity := c;
arr := new int[c];
top := -1;
}
method isEmpty() returns (res : bool)
ensures res == Empty()
{
if(top == -1)
{ return true; }
else {
return false;
}
}
// Returns the top element of the stack, without removing it.
method Peek() returns (elem : int)
requires Valid() && !Empty()
ensures elem == arr[top]
{
return arr[top];
}
// Pushed an element to the top of a (non full) stack.
method Push(elem : int)
modifies this`top, this.arr
requires Valid()
requires !Full()
ensures Valid() && top == old(top) + 1 && arr[top] == elem
ensures !old(Empty()) ==> forall i : int :: 0 <= i <= old(top) ==> arr[i] == old(arr[i]);
{
top := top + 1;
arr[top] := elem;
}
// Pops the top element off the stack.
method Pop() returns (elem : int)
modifies this`top
requires Valid() && !Empty()
ensures Valid() && top == old(top) - 1
ensures elem == arr[old(top)]
{
elem := arr[top];
top := top - 1;
return elem;
}
method Shift()
requires Valid() && !Empty();
ensures Valid();
ensures forall i : int :: 0 <= i < capacity - 1 ==> arr[i] == old(arr[i + 1]);
ensures top == old(top) - 1;
modifies this.arr, this`top;
{
var i : int := 0;
while (i < capacity - 1 )
{
arr[i] := arr[i + 1];
i := i + 1;
}
top := top - 1;
}
//Push onto full stack, oldest element is discarded.
method Push2(elem : int)
modifies this.arr, this`top
requires Valid()
ensures Valid() && !Empty()
ensures arr[top] == elem
ensures old(!Full()) ==> top == old(top) + 1 && old(Full()) ==> top == old(top)
ensures ((old(Full()) ==> arr[capacity - 1] == elem) && (old(!Full()) ==> (top == old(top) + 1 && arr[top] == elem) ))
ensures old(Full()) ==> forall i : int :: 0 <= i < capacity - 1 ==> arr[i] == old(arr[i + 1]);
{
if(top == capacity - 1){
Shift();
top := top + 1;
arr[top] := elem;
}
else{
top := top + 1;
arr[top] := elem;
}
}
// When you are finished, all the below assertions should be provable.
// Feel free to add extra ones as well.
method Main(){
var s := new LimitedStack;
s.Init(3);
s.Push(27);
var e := s.Pop();
s.Push(5);
s.Push(32);
s.Push(9);
var e2 := s.Pop();
s.Push(e2);
s.Push2(99);
var e3 := s.Peek();
}
}
|
234 | HATRA-2022-Paper_tmp_tmp5texxy8l_copilot_verification_Binary Search_binary_search.dfy | // Dafny verification of binary search alogirthm from binary_search.py
// Inspired by: https://ece.uwaterloo.ca/~agurfink/stqam/rise4fun-Dafny/#h211
method BinarySearch(arr: array<int>, target: int) returns (index: int)
requires distinct(arr)
requires sorted(arr)
ensures -1 <= index < arr.Length
ensures index == -1 ==> not_found(arr, target)
ensures index != -1 ==> found(arr, target, index)
{
var low, high := 0 , arr.Length-1;
while low <= high
invariant 0 <= low <= high + 1
invariant low-1 <= high < arr.Length
invariant forall i :: 0 <= i <= low && high <= i < arr.Length ==> arr[i] != target
{
var mid := (low + high) / 2;
if arr[mid] == target
{
return mid;
}
else if arr[mid] < target
{
low := mid + 1;
}
else
{
high := mid - 1;
}
}
return -1;
}
// Predicate to check that the array is sorted
predicate sorted(a: array<int>)
reads a
{
forall j, k :: 0 <= j < k < a.Length ==> a[j] <= a[k]
}
// Predicate to that each element is unique
predicate distinct(arr: array<int>)
reads arr
{
forall i, j :: 0 <= i < arr.Length && 0 <= j < arr.Length ==> arr[i] != arr[j]
}
// Predicate to that the target is not in the array
predicate not_found(arr: array<int>, target: int)
reads arr
{
(forall j :: 0 <= j < arr.Length ==> arr[j] != target)
}
// Predicate to that the target is in the array
predicate found(arr: array<int>, target: int, index: int)
requires -1 <= index < arr.Length;
reads arr
{
if index == -1 then false
else if arr[index] == target then true
else false
}
| // Dafny verification of binary search alogirthm from binary_search.py
// Inspired by: https://ece.uwaterloo.ca/~agurfink/stqam/rise4fun-Dafny/#h211
method BinarySearch(arr: array<int>, target: int) returns (index: int)
requires distinct(arr)
requires sorted(arr)
ensures -1 <= index < arr.Length
ensures index == -1 ==> not_found(arr, target)
ensures index != -1 ==> found(arr, target, index)
{
var low, high := 0 , arr.Length-1;
while low <= high
{
var mid := (low + high) / 2;
if arr[mid] == target
{
return mid;
}
else if arr[mid] < target
{
low := mid + 1;
}
else
{
high := mid - 1;
}
}
return -1;
}
// Predicate to check that the array is sorted
predicate sorted(a: array<int>)
reads a
{
forall j, k :: 0 <= j < k < a.Length ==> a[j] <= a[k]
}
// Predicate to that each element is unique
predicate distinct(arr: array<int>)
reads arr
{
forall i, j :: 0 <= i < arr.Length && 0 <= j < arr.Length ==> arr[i] != arr[j]
}
// Predicate to that the target is not in the array
predicate not_found(arr: array<int>, target: int)
reads arr
{
(forall j :: 0 <= j < arr.Length ==> arr[j] != target)
}
// Predicate to that the target is in the array
predicate found(arr: array<int>, target: int, index: int)
requires -1 <= index < arr.Length;
reads arr
{
if index == -1 then false
else if arr[index] == target then true
else false
}
|
235 | HATRA-2022-Paper_tmp_tmp5texxy8l_copilot_verification_Largest Sum_largest_sum.dfy | // CoPilot function converted to dafny
method largest_sum(nums: array<int>, k: int) returns (sum: int)
requires nums.Length > 0
ensures max_sum_subarray(nums, sum, 0, nums.Length)
{
var max_sum := 0;
var current_sum := 0;
var i := 0;
while (i < nums.Length)
invariant 0 <= i <= nums.Length
invariant max_sum_subarray(nums, max_sum, 0, i) // Invariant for the max_sum
invariant forall j :: 0 <= j < i ==> Sum_Array(nums, j, i) <= current_sum // Invariant for the current_sum
{
current_sum := current_sum + nums[i];
if (current_sum > max_sum)
{
max_sum := current_sum;
}
if (current_sum < 0)
{
current_sum := 0;
}
i := i + 1;
}
return max_sum;
}
// Predicate to confirm that sum is the maximum summation of element [start, stop)
predicate max_sum_subarray(arr: array<int>, sum: int, start: int, stop: int)
requires arr.Length > 0
requires 0 <= start <= stop <= arr.Length
reads arr
{
forall u, v :: start <= u < v <= stop ==> Sum_Array(arr, u, v) <= sum
}
//Sums array elements between [start, stop)
function Sum_Array(arr: array<int>, start: int, stop: int): int
requires 0 <= start <= stop <= arr.Length
decreases stop - start
reads arr
{
if start >= stop then 0
else arr[stop-1] + Sum_Array(arr, start, stop-1)
}
| // CoPilot function converted to dafny
method largest_sum(nums: array<int>, k: int) returns (sum: int)
requires nums.Length > 0
ensures max_sum_subarray(nums, sum, 0, nums.Length)
{
var max_sum := 0;
var current_sum := 0;
var i := 0;
while (i < nums.Length)
{
current_sum := current_sum + nums[i];
if (current_sum > max_sum)
{
max_sum := current_sum;
}
if (current_sum < 0)
{
current_sum := 0;
}
i := i + 1;
}
return max_sum;
}
// Predicate to confirm that sum is the maximum summation of element [start, stop)
predicate max_sum_subarray(arr: array<int>, sum: int, start: int, stop: int)
requires arr.Length > 0
requires 0 <= start <= stop <= arr.Length
reads arr
{
forall u, v :: start <= u < v <= stop ==> Sum_Array(arr, u, v) <= sum
}
//Sums array elements between [start, stop)
function Sum_Array(arr: array<int>, start: int, stop: int): int
requires 0 <= start <= stop <= arr.Length
reads arr
{
if start >= stop then 0
else arr[stop-1] + Sum_Array(arr, start, stop-1)
}
|
236 | HATRA-2022-Paper_tmp_tmp5texxy8l_copilot_verification_Sort Array_sort_array.dfy | method sortArray(arr: array<int>) returns (arr_sorted: array<int>)
// Requires array length to be between 0 and 10000
requires 0 <= arr.Length < 10000
// Ensuring the arry has been sorted
ensures sorted(arr_sorted, 0, arr_sorted.Length)
// Ensuring that we have not modified elements but have only changed their indices
ensures multiset(arr[..]) == multiset(arr_sorted[..])
// Modifies arr
modifies arr
{
var i := 0;
while i < arr.Length
invariant i <= arr.Length
invariant sorted(arr, 0, i)
invariant multiset(old(arr[..])) == multiset(arr[..])
invariant forall u, v :: 0 <= u < i && i <= v < arr.Length ==> arr[u] <= arr[v]
invariant pivot(arr, i)
{
var j := i;
while j < arr.Length
invariant j <= arr.Length
invariant multiset(old(arr[..])) == multiset(arr[..])
invariant pivot(arr, i)
invariant forall u :: i < u < j ==> arr[i] <= arr[u]
invariant forall u :: 0 <= u < i ==> arr[u] <= arr[i]
invariant sorted(arr, 0, i+1)
{
if arr[i] > arr[j]
{
var temp := arr[i];
arr[i] := arr[j];
arr[j] := temp;
}
j := j + 1;
}
i := i + 1;
}
return arr;
}
// Predicate to determine whether the list is sorted between [start, stop)
predicate sorted(arr: array<int>, start: int, end: int)
requires 0 <= start <= end <= arr.Length
reads arr
{
forall i, j :: start <= i <= j < end ==> arr[i] <= arr[j]
}
// Predicate to determine whether element arr[pivot] is a pivot point
// Based on: https://github.com/stqam/dafny/blob/master/BubbleSort.dfy
predicate pivot(arr: array<int>, pivot: int)
requires 0 <= pivot <= arr.Length
reads arr
{
forall u, v :: 0 <= u < pivot < v < arr.Length ==> arr[u] <= arr[v]
}
| method sortArray(arr: array<int>) returns (arr_sorted: array<int>)
// Requires array length to be between 0 and 10000
requires 0 <= arr.Length < 10000
// Ensuring the arry has been sorted
ensures sorted(arr_sorted, 0, arr_sorted.Length)
// Ensuring that we have not modified elements but have only changed their indices
ensures multiset(arr[..]) == multiset(arr_sorted[..])
// Modifies arr
modifies arr
{
var i := 0;
while i < arr.Length
{
var j := i;
while j < arr.Length
{
if arr[i] > arr[j]
{
var temp := arr[i];
arr[i] := arr[j];
arr[j] := temp;
}
j := j + 1;
}
i := i + 1;
}
return arr;
}
// Predicate to determine whether the list is sorted between [start, stop)
predicate sorted(arr: array<int>, start: int, end: int)
requires 0 <= start <= end <= arr.Length
reads arr
{
forall i, j :: start <= i <= j < end ==> arr[i] <= arr[j]
}
// Predicate to determine whether element arr[pivot] is a pivot point
// Based on: https://github.com/stqam/dafny/blob/master/BubbleSort.dfy
predicate pivot(arr: array<int>, pivot: int)
requires 0 <= pivot <= arr.Length
reads arr
{
forall u, v :: 0 <= u < pivot < v < arr.Length ==> arr[u] <= arr[v]
}
|
237 | HATRA-2022-Paper_tmp_tmp5texxy8l_copilot_verification_Two Sum_two_sum.dfy | method twoSum(nums: array<int>, target: int) returns (index1: int, index2: int)
requires 2 <= nums.Length
requires exists i, j :: (0 <= i < j < nums.Length && nums[i] + nums[j] == target)
ensures index1 != index2
ensures 0 <= index1 < nums.Length
ensures 0 <= index2 < nums.Length
ensures nums[index1] + nums[index2] == target
{
var i := 0;
while i < nums.Length
invariant 0 <= i < nums.Length
invariant forall u, v :: 0 <= u < v < nums.Length && u < i ==> nums[u] + nums[v] != target
invariant exists u, v :: i <= u < v < nums.Length && nums[u] + nums[v] == target
{
var j := i + 1;
while j < nums.Length
invariant 0 <= i < j <= nums.Length
invariant forall u, v :: 0 <= u < v < nums.Length && u < i ==> nums[u] + nums[v] != target
invariant exists u, v :: i <= u < v < nums.Length && nums[u] + nums[v] == target
invariant forall u :: i < u < j ==> nums[i] + nums[u] != target
{
if nums[i] + nums[j] == target
{
return i, j;
}
j := j + 1;
}
i := i + 1;
}
}
| method twoSum(nums: array<int>, target: int) returns (index1: int, index2: int)
requires 2 <= nums.Length
requires exists i, j :: (0 <= i < j < nums.Length && nums[i] + nums[j] == target)
ensures index1 != index2
ensures 0 <= index1 < nums.Length
ensures 0 <= index2 < nums.Length
ensures nums[index1] + nums[index2] == target
{
var i := 0;
while i < nums.Length
{
var j := i + 1;
while j < nums.Length
{
if nums[i] + nums[j] == target
{
return i, j;
}
j := j + 1;
}
i := i + 1;
}
}
|
238 | Invoker_tmp_tmpypx0gs8x_dafny_abstract-interpreter_SimpleVerifier.dfy | module Ints {
const U32_BOUND: nat := 0x1_0000_0000
newtype u32 = x:int | 0 <= x < 0x1_0000_0000
newtype i32 = x: int | -0x8000_0000 <= x < 0x8000_0000
}
module Lang {
import opened Ints
datatype Reg = R0 | R1 | R2 | R3
datatype Expr =
| Const(n: u32)
// overflow during addition is an error
| Add(r1: Reg, r2: Reg)
// this is saturating subtraction (to allow comparing numbers)
| Sub(r1: Reg, r2: Reg)
datatype Stmt =
| Assign(r: Reg, e: Expr)
// Jump by offset if condition is true
| JmpZero(r: Reg, offset: i32)
datatype Program = Program(stmts: seq<Stmt>)
}
/* Well-formed check: offsets are all within the program */
/* Main safety property: additions do not overflow */
/* First, we give the concrete semantics of programs. */
module ConcreteEval {
import opened Ints
import opened Lang
type State = Reg -> u32
function update_state(s: State, r0: Reg, v: u32): State {
((r: Reg) => if r == r0 then v else s(r))
}
datatype Option<T> = Some(v: T) | None
function expr_eval(env: State, e: Expr): Option<u32>
{
match e {
case Const(n) => Some(n)
case Add(r1, r2) =>
(if (env(r1) as int + env(r2) as int >= U32_BOUND) then None
else Some(env(r1) + env(r2)))
case Sub(r1, r2) =>
(if env(r1) as int - env(r2) as int < 0 then Some(0)
else Some(env(r1) - env(r2)))
}
}
// stmt_step executes a single statement
//
// Returns a new state and a relative PC offset (which is 1 for non-jump
// statements).
function stmt_step(env: State, s: Stmt): Option<(State, int)> {
match s {
case Assign(r, e) =>
var e' := expr_eval(env, e);
match e' {
case Some(v) => Some((update_state(env, r, v), 1))
case None => None
}
case JmpZero(r, offset) =>
Some((env, (if env(r) == 0 then offset else 1) as int))
}
}
datatype ExecResult = Ok(env: State) | NoFuel | Error
// Run a program starting at pc.
//
// The sequence of statements is constant, meant to reflect a static program.
// Termination occurs if the pc ever reaches exactly the end.
//
// Errors can come from either executing statements (see stmt_step for those
// errors), or from an out-of-bounds pc (negative or not past the end of ss).
//
// fuel is needed to make this function terminate; the idea is that if there
// exists some fuel that makes the program terminate, that is it's complete
// execution, and if it always runs out of fuel it has an infinite loop.
function stmts_step(env: State, ss: seq<Stmt>, pc: nat, fuel: nat): ExecResult
requires pc <= |ss|
decreases fuel
{
if fuel == 0 then NoFuel
else if pc == |ss| then Ok(env)
else match stmt_step(env, ss[pc]) {
case None => Error
case Some((env', offset)) =>
if !(0 <= pc + offset <= |ss|) then Error
else stmts_step(env', ss, pc + offset, fuel - 1)
}
}
}
/* Now we turn to analyzing programs */
module AbstractEval {
import opened Ints
import opened Lang
datatype Val = Interval(lo: int, hi: int)
datatype AbstractState = AbstractState(rs: Reg -> Val)
function expr_eval(env: AbstractState, e: Expr): Val {
match e {
case Const(n) => Interval(n as int, n as int)
case Add(r1, r2) =>
var v1 := env.rs(r1);
var v2 := env.rs(r2);
Interval(v1.lo + v2.lo, v1.hi + v2.hi)
case Sub(r1, r2) =>
// this was quite buggy initially: low is bounded (due to saturating
// subtraction), and upper bound also should cannot go negative
var v1 := env.rs(r1);
var v2 := env.rs(r2);
Interval(0, if v1.hi - v2.lo >= 0 then v1.hi - v2.lo else 0)
}
}
function update_state(env: AbstractState, r0: Reg, v: Val): AbstractState {
AbstractState((r: Reg) => if r == r0 then v else env.rs(r))
}
// function stmt_step(env: State, s: Stmt): Option<(State, int)>
function stmt_eval(env: AbstractState, s: Stmt): (AbstractState, set<int>) {
match s {
case Assign(r, e) => var v := expr_eval(env, e);
(update_state(env, r, v), {1 as int})
case JmpZero(r, offset) =>
// imprecise analysis: we don't try to prove that this jump is or isn't taken
(env, {offset as int, 1})
}
}
/* TODO(tej): to interpret a program, we need to explore all paths. Along the
* way, we would have to look for loops - our plan is to disallow them (unlike
* a normal abstract interpretation which would try to run till a fixpoint). */
// Implement a check for just the jump targets, which are static and thus
// don't even need abstract interpretation.
// Check that jump targets ss[from..] are valid.
function has_valid_jump_targets(ss: seq<Stmt>, from: nat): bool
decreases |ss|-from
requires from <= |ss|
{
if from == |ss| then true
else (match ss[from] {
case JmpZero(_, offset) =>
0 <= from + offset as int <= |ss|
case _ => true
} &&
has_valid_jump_targets(ss, from+1))
}
ghost predicate valid_jump_targets(ss: seq<Stmt>) {
forall i | 0 <= i < |ss| :: ss[i].JmpZero? ==> 0 <= i + ss[i].offset as int <= |ss|
}
lemma has_valid_jump_targets_ok_helper(ss: seq<Stmt>, from: nat)
requires from <= |ss|
decreases |ss|-from
ensures has_valid_jump_targets(ss, from) <==>
(forall i | from <= i < |ss| :: ss[i].JmpZero? ==> 0 <= i + ss[i].offset as int <= |ss|)
{
}
lemma has_valid_jump_targets_ok(ss: seq<Stmt>)
ensures has_valid_jump_targets(ss, 0) <==> valid_jump_targets(ss)
{
has_valid_jump_targets_ok_helper(ss, 0);
}
}
module AbstractEvalProof {
import opened Ints
import opened Lang
import E = ConcreteEval
import opened AbstractEval
/* What does it mean for a concrete state to be captured by an abstract state?
* (Alternately, interpret each abstract state as a set of concrete states) */
ghost predicate reg_included(c_v: u32, v: Val) {
v.lo <= c_v as int <= v.hi
}
ghost predicate state_included(env: E.State, abs: AbstractState) {
forall r: Reg :: reg_included(env(r), abs.rs(r))
}
lemma expr_eval_ok(env: E.State, abs: AbstractState, e: Expr)
requires state_included(env, abs)
requires E.expr_eval(env, e).Some?
ensures reg_included(E.expr_eval(env, e).v, expr_eval(abs, e))
{
match e {
case Add(_, _) => { return; }
case Const(_) => { return; }
case Sub(r1, r2) => {
/* debugging bug in the abstract interpretation */
assert reg_included(env(r1), abs.rs(r1));
assert reg_included(env(r2), abs.rs(r2));
assert env(r1) as int <= abs.rs(r1).hi;
assert env(r2) as int >= abs.rs(r2).lo;
if env(r1) <= env(r2) {
assert E.expr_eval(env, e).v == 0;
return;
}
assert E.expr_eval(env, e).v as int == env(r1) as int - env(r2) as int;
return;
}
}
}
lemma stmt_eval_ok(env: E.State, abs: AbstractState, stmt: Stmt)
requires state_included(env, abs)
requires E.stmt_step(env, stmt).Some?
ensures state_included(E.stmt_step(env, stmt).v.0, stmt_eval(abs, stmt).0)
{}
}
| module Ints {
const U32_BOUND: nat := 0x1_0000_0000
newtype u32 = x:int | 0 <= x < 0x1_0000_0000
newtype i32 = x: int | -0x8000_0000 <= x < 0x8000_0000
}
module Lang {
import opened Ints
datatype Reg = R0 | R1 | R2 | R3
datatype Expr =
| Const(n: u32)
// overflow during addition is an error
| Add(r1: Reg, r2: Reg)
// this is saturating subtraction (to allow comparing numbers)
| Sub(r1: Reg, r2: Reg)
datatype Stmt =
| Assign(r: Reg, e: Expr)
// Jump by offset if condition is true
| JmpZero(r: Reg, offset: i32)
datatype Program = Program(stmts: seq<Stmt>)
}
/* Well-formed check: offsets are all within the program */
/* Main safety property: additions do not overflow */
/* First, we give the concrete semantics of programs. */
module ConcreteEval {
import opened Ints
import opened Lang
type State = Reg -> u32
function update_state(s: State, r0: Reg, v: u32): State {
((r: Reg) => if r == r0 then v else s(r))
}
datatype Option<T> = Some(v: T) | None
function expr_eval(env: State, e: Expr): Option<u32>
{
match e {
case Const(n) => Some(n)
case Add(r1, r2) =>
(if (env(r1) as int + env(r2) as int >= U32_BOUND) then None
else Some(env(r1) + env(r2)))
case Sub(r1, r2) =>
(if env(r1) as int - env(r2) as int < 0 then Some(0)
else Some(env(r1) - env(r2)))
}
}
// stmt_step executes a single statement
//
// Returns a new state and a relative PC offset (which is 1 for non-jump
// statements).
function stmt_step(env: State, s: Stmt): Option<(State, int)> {
match s {
case Assign(r, e) =>
var e' := expr_eval(env, e);
match e' {
case Some(v) => Some((update_state(env, r, v), 1))
case None => None
}
case JmpZero(r, offset) =>
Some((env, (if env(r) == 0 then offset else 1) as int))
}
}
datatype ExecResult = Ok(env: State) | NoFuel | Error
// Run a program starting at pc.
//
// The sequence of statements is constant, meant to reflect a static program.
// Termination occurs if the pc ever reaches exactly the end.
//
// Errors can come from either executing statements (see stmt_step for those
// errors), or from an out-of-bounds pc (negative or not past the end of ss).
//
// fuel is needed to make this function terminate; the idea is that if there
// exists some fuel that makes the program terminate, that is it's complete
// execution, and if it always runs out of fuel it has an infinite loop.
function stmts_step(env: State, ss: seq<Stmt>, pc: nat, fuel: nat): ExecResult
requires pc <= |ss|
{
if fuel == 0 then NoFuel
else if pc == |ss| then Ok(env)
else match stmt_step(env, ss[pc]) {
case None => Error
case Some((env', offset)) =>
if !(0 <= pc + offset <= |ss|) then Error
else stmts_step(env', ss, pc + offset, fuel - 1)
}
}
}
/* Now we turn to analyzing programs */
module AbstractEval {
import opened Ints
import opened Lang
datatype Val = Interval(lo: int, hi: int)
datatype AbstractState = AbstractState(rs: Reg -> Val)
function expr_eval(env: AbstractState, e: Expr): Val {
match e {
case Const(n) => Interval(n as int, n as int)
case Add(r1, r2) =>
var v1 := env.rs(r1);
var v2 := env.rs(r2);
Interval(v1.lo + v2.lo, v1.hi + v2.hi)
case Sub(r1, r2) =>
// this was quite buggy initially: low is bounded (due to saturating
// subtraction), and upper bound also should cannot go negative
var v1 := env.rs(r1);
var v2 := env.rs(r2);
Interval(0, if v1.hi - v2.lo >= 0 then v1.hi - v2.lo else 0)
}
}
function update_state(env: AbstractState, r0: Reg, v: Val): AbstractState {
AbstractState((r: Reg) => if r == r0 then v else env.rs(r))
}
// function stmt_step(env: State, s: Stmt): Option<(State, int)>
function stmt_eval(env: AbstractState, s: Stmt): (AbstractState, set<int>) {
match s {
case Assign(r, e) => var v := expr_eval(env, e);
(update_state(env, r, v), {1 as int})
case JmpZero(r, offset) =>
// imprecise analysis: we don't try to prove that this jump is or isn't taken
(env, {offset as int, 1})
}
}
/* TODO(tej): to interpret a program, we need to explore all paths. Along the
* way, we would have to look for loops - our plan is to disallow them (unlike
* a normal abstract interpretation which would try to run till a fixpoint). */
// Implement a check for just the jump targets, which are static and thus
// don't even need abstract interpretation.
// Check that jump targets ss[from..] are valid.
function has_valid_jump_targets(ss: seq<Stmt>, from: nat): bool
requires from <= |ss|
{
if from == |ss| then true
else (match ss[from] {
case JmpZero(_, offset) =>
0 <= from + offset as int <= |ss|
case _ => true
} &&
has_valid_jump_targets(ss, from+1))
}
ghost predicate valid_jump_targets(ss: seq<Stmt>) {
forall i | 0 <= i < |ss| :: ss[i].JmpZero? ==> 0 <= i + ss[i].offset as int <= |ss|
}
lemma has_valid_jump_targets_ok_helper(ss: seq<Stmt>, from: nat)
requires from <= |ss|
ensures has_valid_jump_targets(ss, from) <==>
(forall i | from <= i < |ss| :: ss[i].JmpZero? ==> 0 <= i + ss[i].offset as int <= |ss|)
{
}
lemma has_valid_jump_targets_ok(ss: seq<Stmt>)
ensures has_valid_jump_targets(ss, 0) <==> valid_jump_targets(ss)
{
has_valid_jump_targets_ok_helper(ss, 0);
}
}
module AbstractEvalProof {
import opened Ints
import opened Lang
import E = ConcreteEval
import opened AbstractEval
/* What does it mean for a concrete state to be captured by an abstract state?
* (Alternately, interpret each abstract state as a set of concrete states) */
ghost predicate reg_included(c_v: u32, v: Val) {
v.lo <= c_v as int <= v.hi
}
ghost predicate state_included(env: E.State, abs: AbstractState) {
forall r: Reg :: reg_included(env(r), abs.rs(r))
}
lemma expr_eval_ok(env: E.State, abs: AbstractState, e: Expr)
requires state_included(env, abs)
requires E.expr_eval(env, e).Some?
ensures reg_included(E.expr_eval(env, e).v, expr_eval(abs, e))
{
match e {
case Add(_, _) => { return; }
case Const(_) => { return; }
case Sub(r1, r2) => {
/* debugging bug in the abstract interpretation */
if env(r1) <= env(r2) {
return;
}
return;
}
}
}
lemma stmt_eval_ok(env: E.State, abs: AbstractState, stmt: Stmt)
requires state_included(env, abs)
requires E.stmt_step(env, stmt).Some?
ensures state_included(E.stmt_step(env, stmt).v.0, stmt_eval(abs, stmt).0)
{}
}
|
239 | M2_tmp_tmp2laaavvl_Software Verification_Exercices_Exo4-CountAndReturn.dfy | method CountToAndReturnN(n: int) returns (r: int)
requires n >= 0
ensures r == n
{
var i := 0;
while i < n
invariant 0 <= i <= n
{
i := i + 1;
}
r := i;
}
| method CountToAndReturnN(n: int) returns (r: int)
requires n >= 0
ensures r == n
{
var i := 0;
while i < n
{
i := i + 1;
}
r := i;
}
|
240 | M2_tmp_tmp2laaavvl_Software Verification_Exercices_Exo7-ComputeSum.dfy | function Sum(n:nat):nat
{
if n==0 then 0 else n + Sum(n-1)
}
method ComputeSum(n:nat) returns (s:nat)
ensures s ==Sum(n)
{
s := 0;
var i := 0;
while i< n
invariant 0 <= i <= n
invariant s == Sum(i)
{
s := s + i + 1;
i := i+1;
}
}
| function Sum(n:nat):nat
{
if n==0 then 0 else n + Sum(n-1)
}
method ComputeSum(n:nat) returns (s:nat)
ensures s ==Sum(n)
{
s := 0;
var i := 0;
while i< n
{
s := s + i + 1;
i := i+1;
}
}
|
241 | M2_tmp_tmp2laaavvl_Software Verification_Exercices_Exo9-Carre.dfy | method Carre(a: nat) returns (c: nat)
ensures c == a*a
{
var i := 0;
c := 0;
while i != a
invariant 0 <= i <= a
invariant c == i*i
decreases a - i
{
c := c + 2*i +1;
i := i + 1;
}
}
| method Carre(a: nat) returns (c: nat)
ensures c == a*a
{
var i := 0;
c := 0;
while i != a
{
c := c + 2*i +1;
i := i + 1;
}
}
|
242 | MFDS_tmp_tmpvvr5y1t9_Assignments_Ass-1-2020-21-Sol-eGela.dfy | // Ejercicio 1: Demostrar por inducci�n el siguiente lema:
lemma EcCuadDiv2_Lemma (x:int)
requires x >= 1
ensures (x*x + x) % 2 == 0
{
if x != 1 {
EcCuadDiv2_Lemma(x-1);
assert x*x+x == ((x-1)*(x-1) + (x-1)) + 2*x;
}
}
// Ejercicio 2: Demostrar por inducci�n el siguiente lema
// Indicaciones: (1) Puedes llamar al lema del ejercicio anterior, si lo necesitas.
// (2) Recuerda que, a veces, simplificar la HI puede ayudar a saber donde utilizarla.
lemma EcCubicaDiv6_Lemma (x:int)
requires x >= 1
ensures (x*x*x + 3*x*x + 2*x) % 6 == 0
{
if x>1 {
EcCubicaDiv6_Lemma(x-1);
//assert ((x-1)*(x-1)*(x-1) + 3*(x-1)*(x-1) + 2*(x-1)) % 6 == 0; //HI
assert (x*x*x - 3*x*x + 3*x -1 + 3*x*x - 6*x + 3 + 2*x -2) % 6 == 0; //HI
assert (x*x*x - x) % 6 == 0; //HI
assert x*x*x + 3*x*x + 2*x == (x*x*x - x) + 3*(x*x + x);
EcCuadDiv2_Lemma(x);
}
}
// Ejercicio 3: Probar por contradicci�n el siguiente lemma:
lemma cubEven_Lemma (x:int)
requires (x*x*x + 5) % 2 == 1
ensures x % 2 == 0
{
if x%2 == 1 {
var k := (x-1)/2;
assert x*x*x + 5 == (2*k+1)*(2*k+1)*(2*k+1) + 5
== 8*k*k*k + 12*k*k + 6*k + 6
== 2*(4*k*k*k + 6*k*k + 3*k + 3);
assert false;
}
}
// Ejercicio 4: Prueba el siguiente lemma por casos (de acuerdo a los tres valores posibles de x%3)
lemma perfectCube_Lemma (x:int)
ensures exists z :: (x*x*x == 3*z || x*x*x == 3*z + 1 || x*x*x == 3*z - 1);
{
if x%3 == 0 {
var k := x/3;
assert x*x*x == 27*k*k*k == 3*(9*k*k*k);
}
else if x%3 == 1 {
var k := (x-1)/3;
assert x*x*x == (3*k+1)*(3*k+1)*(3*k+1) == 27*k*k*k + 27*k*k + 9*k + 1;
assert x*x*x == 3*(9*k*k*k + 9*k*k + 3*k) + 1;
}
else {
var k := (x-2)/3;
assert x*x*x == (3*k+2)*(3*k+2)*(3*k+2) == 27*k*k*k + 54*k*k + 36*k + 8;
assert x*x*x == 3*(9*k*k*k + 18*k*k + 12*k + 3) - 1;
}
}
// Ejercicio 5: Dada la siguiente funci�n exp y los dos lemmas expGET1_Lemma y prodMon_Lemma (que Dafny demuestra autom�ticamente)
// demostrar el lemma expMon_Lemma por inducci�n en n. Usar calc {} y poner como "hints" las llamadas a los lemmas en los
// pasos del c�lculo donde son utilizadas.
function exp(x:int, e:nat):int
{
if e == 0 then 1 else x * exp(x,e-1)
}
lemma expGET1_Lemma(x:int, e:nat)
requires x >= 1
ensures exp(x,e) >= 1
{}
lemma prodMon_Lemma(z:int, a:int, b:int)
requires z >= 1 && a >= b >= 1
ensures z*a >= z*b
{}
lemma expMon_Lemma(x:int, n:nat)
requires x >= 1 && n >= 1
ensures exp(x+1,n) >= exp(x,n) + 1
{
if n != 1 {
calc {
exp(x+1,n);
==
(x+1)*exp(x+1,n-1);
==
x*exp(x+1,n-1) + exp(x+1,n-1);
>= {
expGET1_Lemma(x+1,n-1);
}
x*exp(x+1,n-1);
>= {
expMon_Lemma(x,n-1);
//assert exp(x+1,n-1) >= (exp(x,n-1) + 1);
expGET1_Lemma(x+1,n-1);
//assert exp(x+1,n-1) >= 1;
expGET1_Lemma(x,n-1);
//assert (exp(x,n-1) + 1) >= 1;
prodMon_Lemma(x, exp(x+1,n-1), exp(x,n-1) + 1);
//assert x*exp(x+1,n-1) >= x*(exp(x,n-1) + 1);
}
x*(exp(x,n-1) + 1);
==
x*exp(x,n-1) + x;
>=
exp(x,n)+1;
}
}
}
| // Ejercicio 1: Demostrar por inducci�n el siguiente lema:
lemma EcCuadDiv2_Lemma (x:int)
requires x >= 1
ensures (x*x + x) % 2 == 0
{
if x != 1 {
EcCuadDiv2_Lemma(x-1);
}
}
// Ejercicio 2: Demostrar por inducci�n el siguiente lema
// Indicaciones: (1) Puedes llamar al lema del ejercicio anterior, si lo necesitas.
// (2) Recuerda que, a veces, simplificar la HI puede ayudar a saber donde utilizarla.
lemma EcCubicaDiv6_Lemma (x:int)
requires x >= 1
ensures (x*x*x + 3*x*x + 2*x) % 6 == 0
{
if x>1 {
EcCubicaDiv6_Lemma(x-1);
//assert ((x-1)*(x-1)*(x-1) + 3*(x-1)*(x-1) + 2*(x-1)) % 6 == 0; //HI
EcCuadDiv2_Lemma(x);
}
}
// Ejercicio 3: Probar por contradicci�n el siguiente lemma:
lemma cubEven_Lemma (x:int)
requires (x*x*x + 5) % 2 == 1
ensures x % 2 == 0
{
if x%2 == 1 {
var k := (x-1)/2;
== 8*k*k*k + 12*k*k + 6*k + 6
== 2*(4*k*k*k + 6*k*k + 3*k + 3);
}
}
// Ejercicio 4: Prueba el siguiente lemma por casos (de acuerdo a los tres valores posibles de x%3)
lemma perfectCube_Lemma (x:int)
ensures exists z :: (x*x*x == 3*z || x*x*x == 3*z + 1 || x*x*x == 3*z - 1);
{
if x%3 == 0 {
var k := x/3;
}
else if x%3 == 1 {
var k := (x-1)/3;
}
else {
var k := (x-2)/3;
}
}
// Ejercicio 5: Dada la siguiente funci�n exp y los dos lemmas expGET1_Lemma y prodMon_Lemma (que Dafny demuestra autom�ticamente)
// demostrar el lemma expMon_Lemma por inducci�n en n. Usar calc {} y poner como "hints" las llamadas a los lemmas en los
// pasos del c�lculo donde son utilizadas.
function exp(x:int, e:nat):int
{
if e == 0 then 1 else x * exp(x,e-1)
}
lemma expGET1_Lemma(x:int, e:nat)
requires x >= 1
ensures exp(x,e) >= 1
{}
lemma prodMon_Lemma(z:int, a:int, b:int)
requires z >= 1 && a >= b >= 1
ensures z*a >= z*b
{}
lemma expMon_Lemma(x:int, n:nat)
requires x >= 1 && n >= 1
ensures exp(x+1,n) >= exp(x,n) + 1
{
if n != 1 {
calc {
exp(x+1,n);
==
(x+1)*exp(x+1,n-1);
==
x*exp(x+1,n-1) + exp(x+1,n-1);
>= {
expGET1_Lemma(x+1,n-1);
}
x*exp(x+1,n-1);
>= {
expMon_Lemma(x,n-1);
//assert exp(x+1,n-1) >= (exp(x,n-1) + 1);
expGET1_Lemma(x+1,n-1);
//assert exp(x+1,n-1) >= 1;
expGET1_Lemma(x,n-1);
//assert (exp(x,n-1) + 1) >= 1;
prodMon_Lemma(x, exp(x+1,n-1), exp(x,n-1) + 1);
//assert x*exp(x+1,n-1) >= x*(exp(x,n-1) + 1);
}
x*(exp(x,n-1) + 1);
==
x*exp(x,n-1) + x;
>=
exp(x,n)+1;
}
}
}
|
243 | MFES_2021_tmp_tmpuljn8zd9_Exams_Special_Exam_03_2020_4_CatalanNumbers.dfy | function C(n: nat): nat
decreases n
{
if n == 0 then 1 else (4 * n - 2) * C(n-1) / (n + 1)
}
method calcC(n: nat) returns (res: nat)
ensures res == C(n)
{
var i := 0;
res := 1;
assert res == C(i) && 0 <= i <= n;
while i < n
decreases n - i //a - loop variant
invariant res == C(i) && 0 <= i <= n //b - loop invariant
{
ghost var v0 := n - i;
assert res == C(i) && 0 <= i <= n && i < n && n - i == v0;
i := i + 1;
res := (4 * i - 2) * res / (i + 1);
assert res == C(i) && 0 <= i <= n && 0 <= n - i < v0;
}
assert res == C(i) && 0 <= i <= n && i >= n;
}
| function C(n: nat): nat
{
if n == 0 then 1 else (4 * n - 2) * C(n-1) / (n + 1)
}
method calcC(n: nat) returns (res: nat)
ensures res == C(n)
{
var i := 0;
res := 1;
while i < n
{
ghost var v0 := n - i;
i := i + 1;
res := (4 * i - 2) * res / (i + 1);
}
}
|
244 | MFES_2021_tmp_tmpuljn8zd9_FCUL_Exercises_10_find.dfy | method find(a: array<int>, key: int) returns(index: int)
requires a.Length > 0;
ensures 0 <= index <= a.Length;
ensures index < a.Length ==> a[index] == key;
{
index := 0;
while index < a.Length && a[index] != key
decreases a.Length - index
invariant 0 <= index <= a.Length
invariant forall x :: 0 <= x < index ==> a[x] != key
{
index := index + 1;
}
}
| method find(a: array<int>, key: int) returns(index: int)
requires a.Length > 0;
ensures 0 <= index <= a.Length;
ensures index < a.Length ==> a[index] == key;
{
index := 0;
while index < a.Length && a[index] != key
{
index := index + 1;
}
}
|
245 | MFES_2021_tmp_tmpuljn8zd9_FCUL_Exercises_8_sum.dfy | function calcSum(n: nat) : nat
{
n * (n - 1) / 2
}
method sum(n: nat) returns(s: nat)
ensures s == calcSum(n + 1)
{
s := 0;
var i := 0;
while i < n
decreases n - i
invariant 0 <= i <= n
invariant s == calcSum(i + 1)
{
i := i + 1;
s := s + i;
}
}
| function calcSum(n: nat) : nat
{
n * (n - 1) / 2
}
method sum(n: nat) returns(s: nat)
ensures s == calcSum(n + 1)
{
s := 0;
var i := 0;
while i < n
{
i := i + 1;
s := s + i;
}
}
|
246 | MFES_2021_tmp_tmpuljn8zd9_PracticalClasses_TP3_2_Insertion_Sort.dfy | // Sorts array 'a' using the insertion sort algorithm.
method insertionSort(a: array<int>)
modifies a
ensures isSorted(a, 0, a.Length)
ensures multiset(a[..]) == multiset(old(a[..]))
{
var i := 0;
while i < a.Length
decreases a.Length - i
invariant 0 <= i <= a.Length
invariant isSorted(a, 0, i)
invariant multiset(a[..]) == multiset(old(a[..]))
{
var j := i;
while j > 0 && a[j-1] > a[j]
decreases j
invariant 0 <= j <= i
invariant multiset(a[..]) == multiset(old(a[..]))
invariant forall l, r :: 0 <= l < r <= i && r != j ==> a[l] <= a[r]
{
a[j-1], a[j] := a[j], a[j-1];
j := j - 1;
}
i := i + 1;
}
}
// Checks if array 'a' is sorted.
predicate isSorted(a: array<int>, from: nat, to: nat)
reads a
requires 0 <= from <= to <= a.Length
{
forall i, j :: from <= i < j < to ==> a[i] <= a[j]
}
// Simple test case to check the postcondition
method testInsertionSort() {
var a := new int[] [ 9, 4, 3, 6, 8];
assert a[..] == [9, 4, 3, 6, 8];
insertionSort(a);
assert a[..] == [3, 4, 6, 8, 9];
}
| // Sorts array 'a' using the insertion sort algorithm.
method insertionSort(a: array<int>)
modifies a
ensures isSorted(a, 0, a.Length)
ensures multiset(a[..]) == multiset(old(a[..]))
{
var i := 0;
while i < a.Length
{
var j := i;
while j > 0 && a[j-1] > a[j]
{
a[j-1], a[j] := a[j], a[j-1];
j := j - 1;
}
i := i + 1;
}
}
// Checks if array 'a' is sorted.
predicate isSorted(a: array<int>, from: nat, to: nat)
reads a
requires 0 <= from <= to <= a.Length
{
forall i, j :: from <= i < j < to ==> a[i] <= a[j]
}
// Simple test case to check the postcondition
method testInsertionSort() {
var a := new int[] [ 9, 4, 3, 6, 8];
insertionSort(a);
}
|
247 | MFES_2021_tmp_tmpuljn8zd9_TheoreticalClasses_Power.dfy | /*
* Formal verification of O(n) and O(log n) algorithms to calculate the natural
* power of a real number (x^n), illustrating the usage of lemmas.
* FEUP, MIEIC, MFES, 2020/21.
*/
// Initial specification/definition of x^n, recursive, functional style,
// with time and space complexity O(n).
function power(x: real, n: nat) : real
decreases n
{
if n == 0 then 1.0 else x * power(x, n-1)
}
// Iterative version, imperative, with time complexity O(n) and space complexity O(1).
method powerIter(x: real, n: nat) returns (p : real)
ensures p == power(x, n)
{
// start with p = x^0
var i := 0;
p := 1.0; // x ^ i
// iterate until reaching p = x^n
while i < n
decreases n - i
invariant 0 <= i <= n && p == power(x, i)
{
p := p * x;
i := i + 1;
}
}
// Recursive version, imperative, with time and space complexity O(log n).
method powerOpt(x: real, n: nat) returns (p : real)
ensures p == power(x, n);
decreases n;
{
if n == 0 {
return 1.0;
}
else if n == 1 {
return x;
}
else if n % 2 == 0 {
distributiveProperty(x, n/2, n/2); // recall lemma here
var temp := powerOpt(x, n/2);
return temp * temp;
}
else {
distributiveProperty(x, (n-1)/2, (n-1)/2); // recall lemma here
var temp := powerOpt(x, (n-1)/2);
return temp * temp * x;
}
}
// States the property x^a * x^b = x^(a+b), that powerOpt takes advantage of.
// The annotation {:induction a} guides Dafny to prove the property
// by automatic induction on 'a'.
lemma {:induction a} distributiveProperty(x: real, a: nat, b: nat)
ensures power(x, a) * power(x, b) == power(x, a + b)
{
//
// To use the proof below, deactivate automatic induction, with {:induction false}.
/* if a == 0 {
// base case
calc == {
power(x, a) * power(x, b);
power(x, 0) * power(x, b); // substitution
1.0 * power(x, b); // by the definition of power
power(x, b); // neutral element of "*"
power(x, a + b); // neutral element of "+"
}
}
else {
// recursive case, assuming property holds for a-1 (proof by induction)
distributiveProperty(x, a-1, b);
// now do the proof
calc == {
power(x, a) * power(x, b);
(x * power(x, a-1)) * power(x, b); // by the definition of power
x * (power(x, a-1) * power(x, b)); // associative property
x * power(x, a + b - 1); // this same property for a-1
power(x, a + b); // definition of power
}
}*/
}
// A simple test case to make sure the specification is adequate.
method testPowerIter(){
var p1 := powerIter(2.0, 5);
assert p1 == 32.0;
}
method testPowerOpt(){
var p1 := powerOpt(2.0, 5);
assert p1 == 32.0;
}
| /*
* Formal verification of O(n) and O(log n) algorithms to calculate the natural
* power of a real number (x^n), illustrating the usage of lemmas.
* FEUP, MIEIC, MFES, 2020/21.
*/
// Initial specification/definition of x^n, recursive, functional style,
// with time and space complexity O(n).
function power(x: real, n: nat) : real
{
if n == 0 then 1.0 else x * power(x, n-1)
}
// Iterative version, imperative, with time complexity O(n) and space complexity O(1).
method powerIter(x: real, n: nat) returns (p : real)
ensures p == power(x, n)
{
// start with p = x^0
var i := 0;
p := 1.0; // x ^ i
// iterate until reaching p = x^n
while i < n
{
p := p * x;
i := i + 1;
}
}
// Recursive version, imperative, with time and space complexity O(log n).
method powerOpt(x: real, n: nat) returns (p : real)
ensures p == power(x, n);
{
if n == 0 {
return 1.0;
}
else if n == 1 {
return x;
}
else if n % 2 == 0 {
distributiveProperty(x, n/2, n/2); // recall lemma here
var temp := powerOpt(x, n/2);
return temp * temp;
}
else {
distributiveProperty(x, (n-1)/2, (n-1)/2); // recall lemma here
var temp := powerOpt(x, (n-1)/2);
return temp * temp * x;
}
}
// States the property x^a * x^b = x^(a+b), that powerOpt takes advantage of.
// The annotation {:induction a} guides Dafny to prove the property
// by automatic induction on 'a'.
lemma {:induction a} distributiveProperty(x: real, a: nat, b: nat)
ensures power(x, a) * power(x, b) == power(x, a + b)
{
//
// To use the proof below, deactivate automatic induction, with {:induction false}.
/* if a == 0 {
// base case
calc == {
power(x, a) * power(x, b);
power(x, 0) * power(x, b); // substitution
1.0 * power(x, b); // by the definition of power
power(x, b); // neutral element of "*"
power(x, a + b); // neutral element of "+"
}
}
else {
// recursive case, assuming property holds for a-1 (proof by induction)
distributiveProperty(x, a-1, b);
// now do the proof
calc == {
power(x, a) * power(x, b);
(x * power(x, a-1)) * power(x, b); // by the definition of power
x * (power(x, a-1) * power(x, b)); // associative property
x * power(x, a + b - 1); // this same property for a-1
power(x, a + b); // definition of power
}
}*/
}
// A simple test case to make sure the specification is adequate.
method testPowerIter(){
var p1 := powerIter(2.0, 5);
}
method testPowerOpt(){
var p1 := powerOpt(2.0, 5);
}
|
248 | MFS_tmp_tmpmmnu354t_Praticas_TP9_Power.dfy | /*
* Formal verification of O(n) and O(log n) algorithms to calculate the natural
* power of a real number (x^n), illustrating the usage of lemmas.
* FEUP, M.EIC, MFS, 2021/22.
*/
// Initial specification/definition of x^n, recursive, functional style,
// with time and space complexity O(n).
function power(x: real, n: nat) : real
{
if n == 0 then 1.0 else x * power(x, n-1)
}
// Iterative version, imperative, with time complexity O(n) and space complexity O(1).
method powerIter(b: real, n: nat) returns (p : real)
ensures p == power(b, n)
{
// start with p = b^0
p := 1.0;
var i := 0;
// iterate until reaching p = b^n
while i < n
invariant p == power(b, i) && 0 <= i <= n
{
p := p * b;
i := i + 1;
}
}
lemma {:induction e1} powDist(b: real, e1: nat, e2: nat)
ensures power(b, e1+e2) == power(b, e1) * power(b, e2)
{}
lemma {:induction false} distributiveProperty(x: real, a: nat, b: nat)
ensures power(x, a) * power(x, b) == power(x, a+b)
{
if a == 0 {
assert
power(x, a) * power(x, b) ==
1.0 * power(x, b) ==
power(x, b) ==
power(x, a + b);
}
else {
distributiveProperty(x, a-1, b);
assert
power(x, a) * power(x, b) ==
(x * power(x, a-1)) * power(x, b) ==
x * (power(x, a-1) * power(x, b)) ==
x * power(x, a - 1 + b) ==
power(x, a + b);
}
}
// Recursive version, imperative, with time and space complexity O(log n).
method powerOpt(b: real, n: nat) returns (p : real)
ensures p == power(b, n)
{
if n == 0 {
return 1.0;
}
else if n % 2 == 0 {
distributiveProperty(b, n/2, n/2);
var r := powerOpt(b, n/2);
return r * r;
}
else {
distributiveProperty(b, (n-1)/2, (n-1)/2);
var r := powerOpt(b, (n-1)/2);
return r * r * b;
}
}
// A simple test case to make sure the specification is adequate.
method testPower() {
var p1 := powerIter(2.0, 5);
var p2 := powerOpt(2.0, 5);
print "P1: ", p1, "\n";
print "P2: ", p2, "\n";
assert p1 == 32.0;
assert p2 == 32.0;
}
| /*
* Formal verification of O(n) and O(log n) algorithms to calculate the natural
* power of a real number (x^n), illustrating the usage of lemmas.
* FEUP, M.EIC, MFS, 2021/22.
*/
// Initial specification/definition of x^n, recursive, functional style,
// with time and space complexity O(n).
function power(x: real, n: nat) : real
{
if n == 0 then 1.0 else x * power(x, n-1)
}
// Iterative version, imperative, with time complexity O(n) and space complexity O(1).
method powerIter(b: real, n: nat) returns (p : real)
ensures p == power(b, n)
{
// start with p = b^0
p := 1.0;
var i := 0;
// iterate until reaching p = b^n
while i < n
{
p := p * b;
i := i + 1;
}
}
lemma {:induction e1} powDist(b: real, e1: nat, e2: nat)
ensures power(b, e1+e2) == power(b, e1) * power(b, e2)
{}
lemma {:induction false} distributiveProperty(x: real, a: nat, b: nat)
ensures power(x, a) * power(x, b) == power(x, a+b)
{
if a == 0 {
power(x, a) * power(x, b) ==
1.0 * power(x, b) ==
power(x, b) ==
power(x, a + b);
}
else {
distributiveProperty(x, a-1, b);
power(x, a) * power(x, b) ==
(x * power(x, a-1)) * power(x, b) ==
x * (power(x, a-1) * power(x, b)) ==
x * power(x, a - 1 + b) ==
power(x, a + b);
}
}
// Recursive version, imperative, with time and space complexity O(log n).
method powerOpt(b: real, n: nat) returns (p : real)
ensures p == power(b, n)
{
if n == 0 {
return 1.0;
}
else if n % 2 == 0 {
distributiveProperty(b, n/2, n/2);
var r := powerOpt(b, n/2);
return r * r;
}
else {
distributiveProperty(b, (n-1)/2, (n-1)/2);
var r := powerOpt(b, (n-1)/2);
return r * r * b;
}
}
// A simple test case to make sure the specification is adequate.
method testPower() {
var p1 := powerIter(2.0, 5);
var p2 := powerOpt(2.0, 5);
print "P1: ", p1, "\n";
print "P2: ", p2, "\n";
}
|
249 | MFS_tmp_tmpmmnu354t_Testes anteriores_T2_ex5_2020_2.dfy | method leq(a: array<int>, b: array<int>) returns (result: bool)
ensures result <==> (a.Length <= b.Length && a[..] == b[..a.Length]) || (exists k :: 0 <= k < a.Length && k < b.Length && a[..k] == b[..k] && a[k] < b[k])
{
var i := 0;
while i < a.Length && i < b.Length
decreases a.Length - i
invariant 0 <= i <= a.Length && 0 <= i <= b.Length
invariant a[..i] == b[..i]
{
if a[i] < b[i] { return true; }
else if a[i] > b[i] { return false; }
else {i := i + 1; }
}
return a.Length <= b.Length;
}
method testLeq() {
var b := new int[][1, 2];
var a1 := new int[][]; var r1 := leq(a1, b); assert r1;
var a2 := new int[][1]; var r2 := leq(a2, b); assert r2;
var a3 := new int[][1, 2]; var r3 := leq(a3, b); assert r3;
var a4 := new int[][1, 1, 2]; var r4 := leq(a4, b); assert a4[1]<b[1] && r4;
var a5 := new int[][1, 2, 3]; var r5 := leq(a5, b); assert !r5;
var a6 := new int[][2]; var r6 := leq(a6, b); assert !r6;
}
| method leq(a: array<int>, b: array<int>) returns (result: bool)
ensures result <==> (a.Length <= b.Length && a[..] == b[..a.Length]) || (exists k :: 0 <= k < a.Length && k < b.Length && a[..k] == b[..k] && a[k] < b[k])
{
var i := 0;
while i < a.Length && i < b.Length
{
if a[i] < b[i] { return true; }
else if a[i] > b[i] { return false; }
else {i := i + 1; }
}
return a.Length <= b.Length;
}
method testLeq() {
var b := new int[][1, 2];
var a1 := new int[][]; var r1 := leq(a1, b); assert r1;
var a2 := new int[][1]; var r2 := leq(a2, b); assert r2;
var a3 := new int[][1, 2]; var r3 := leq(a3, b); assert r3;
var a4 := new int[][1, 1, 2]; var r4 := leq(a4, b); assert a4[1]<b[1] && r4;
var a5 := new int[][1, 2, 3]; var r5 := leq(a5, b); assert !r5;
var a6 := new int[][2]; var r6 := leq(a6, b); assert !r6;
}
|
250 | MIEIC_mfes_tmp_tmpq3ho7nve_TP3_binary_search.dfy | // Checks if array 'a' is sorted.
predicate isSorted(a: array<int>)
reads a
{
forall i, j :: 0 <= i < j < a.Length ==> a[i] <= a[j]
}
// Finds a value 'x' in a sorted array 'a', and returns its index,
// or -1 if not found.
method binarySearch(a: array<int>, x: int) returns (index: int)
requires isSorted(a)
ensures -1 <= index < a.Length
ensures if index != -1 then a[index] == x
else x !in a[..] //forall i :: 0 <= i < a.Length ==> a[i] != x
{
var low, high := 0, a.Length;
while low < high
decreases high - low
invariant 0 <= low <= high <= a.Length &&
x !in a[..low] && x !in a[high..]
{
var mid := low + (high - low) / 2;
if {
case a[mid] < x => low := mid + 1;
case a[mid] > x => high := mid;
case a[mid] == x => return mid;
}
}
return -1;
}
// Simple test cases to check the post-condition.
method testBinarySearch() {
var a := new int[] [1, 4, 4, 6, 8];
assert a[..] == [1, 4, 4, 6, 8];
var id1 := binarySearch(a, 6);
assert a[3] == 6; // added
assert id1 == 3;
var id2 := binarySearch(a, 3);
assert id2 == -1;
var id3 := binarySearch(a, 4);
assert a[1] == 4 && a[2] == 4; // added
assert id3 in {1, 2};
}
/*
a) Identify adequate pre and post-conditions for this method,
and encode them as “requires” and “ensures” clauses in Dafny.
You can use the predicate below if needed.
b) Identify an adequate loop variant and loop invariant, and encode them
as “decreases” and “invariant” clauses in Dafny.
*/
| // Checks if array 'a' is sorted.
predicate isSorted(a: array<int>)
reads a
{
forall i, j :: 0 <= i < j < a.Length ==> a[i] <= a[j]
}
// Finds a value 'x' in a sorted array 'a', and returns its index,
// or -1 if not found.
method binarySearch(a: array<int>, x: int) returns (index: int)
requires isSorted(a)
ensures -1 <= index < a.Length
ensures if index != -1 then a[index] == x
else x !in a[..] //forall i :: 0 <= i < a.Length ==> a[i] != x
{
var low, high := 0, a.Length;
while low < high
x !in a[..low] && x !in a[high..]
{
var mid := low + (high - low) / 2;
if {
case a[mid] < x => low := mid + 1;
case a[mid] > x => high := mid;
case a[mid] == x => return mid;
}
}
return -1;
}
// Simple test cases to check the post-condition.
method testBinarySearch() {
var a := new int[] [1, 4, 4, 6, 8];
var id1 := binarySearch(a, 6);
var id2 := binarySearch(a, 3);
var id3 := binarySearch(a, 4);
}
/*
a) Identify adequate pre and post-conditions for this method,
and encode them as “requires” and “ensures” clauses in Dafny.
You can use the predicate below if needed.
b) Identify an adequate loop variant and loop invariant, and encode them
as “decreases” and “invariant” clauses in Dafny.
*/
|
251 | MIEIC_mfes_tmp_tmpq3ho7nve_exams_appeal_20_p4.dfy | function F(n: nat): nat { if n <= 2 then n else F(n-1) + F(n-3)}
method calcF(n: nat) returns (res: nat)
ensures res == F(n)
{
var a, b, c := 0, 1, 2;
var i := 0;
while i < n
decreases n-i
invariant 0 <= i <= n
invariant a == F(i) && b == F(i+1) && c == F(i+2)
{
a, b, c := b, c, a + c;
i := i + 1;
}
res := a;
}
| function F(n: nat): nat { if n <= 2 then n else F(n-1) + F(n-3)}
method calcF(n: nat) returns (res: nat)
ensures res == F(n)
{
var a, b, c := 0, 1, 2;
var i := 0;
while i < n
{
a, b, c := b, c, a + c;
i := i + 1;
}
res := a;
}
|
252 | MIEIC_mfes_tmp_tmpq3ho7nve_exams_mt2_19_p4.dfy | function R(n: nat): nat {
if n == 0 then 0 else if R(n-1) > n then R(n-1) - n else R(n-1) + n
}
method calcR(n: nat) returns (r: nat)
ensures r == R(n)
{
r := 0;
var i := 0;
while i < n
decreases n-i
invariant 0 <= i <= n
invariant r == R(i)
{
i := i + 1;
if r > i {
r := r - i;
}
else {
r := r + i;
}
}
}
| function R(n: nat): nat {
if n == 0 then 0 else if R(n-1) > n then R(n-1) - n else R(n-1) + n
}
method calcR(n: nat) returns (r: nat)
ensures r == R(n)
{
r := 0;
var i := 0;
while i < n
{
i := i + 1;
if r > i {
r := r - i;
}
else {
r := r + i;
}
}
}
|
253 | MIEIC_mfes_tmp_tmpq3ho7nve_exams_mt2_19_p5.dfy | type T = int // example
// Partitions a nonempty array 'a', by reordering the elements in the array,
// so that elements smaller than a chosen pivot are placed to the left of the
// pivot, and values greater or equal than the pivot are placed to the right of
// the pivot. Returns the pivot position.
method partition(a: array<T>) returns(pivotPos: int)
requires a.Length > 0
ensures 0 <= pivotPos < a.Length
ensures forall i :: 0 <= i < pivotPos ==> a[i] < a[pivotPos]
ensures forall i :: pivotPos < i < a.Length ==> a[i] >= a[pivotPos]
ensures multiset(a[..]) == multiset(old(a[..]))
modifies a
{
pivotPos := a.Length - 1; // chooses pivot at end of array
var i := 0; // index that separates values smaller than pivot (0 to i-1),
// and values greater or equal than pivot (i to j-1)
var j := 0; // index to scan the array
// Scan the array and move elements as needed
while j < a.Length-1
decreases a.Length-1-j
invariant 0 <= i <= j < a.Length
invariant forall k :: 0 <= k < i ==> a[k] < a[pivotPos]
invariant forall k :: i <= k < j ==> a[k] >= a[pivotPos]
invariant multiset(a[..]) == multiset(old(a[..]))
{
if a[j] < a[pivotPos] {
a[i], a[j] := a[j], a[i];
i := i + 1;
}
j := j+1;
}
// Swap pivot to the 'mid' of the array
a[a.Length-1], a[i] := a[i], a[a.Length-1];
pivotPos := i;
}
| type T = int // example
// Partitions a nonempty array 'a', by reordering the elements in the array,
// so that elements smaller than a chosen pivot are placed to the left of the
// pivot, and values greater or equal than the pivot are placed to the right of
// the pivot. Returns the pivot position.
method partition(a: array<T>) returns(pivotPos: int)
requires a.Length > 0
ensures 0 <= pivotPos < a.Length
ensures forall i :: 0 <= i < pivotPos ==> a[i] < a[pivotPos]
ensures forall i :: pivotPos < i < a.Length ==> a[i] >= a[pivotPos]
ensures multiset(a[..]) == multiset(old(a[..]))
modifies a
{
pivotPos := a.Length - 1; // chooses pivot at end of array
var i := 0; // index that separates values smaller than pivot (0 to i-1),
// and values greater or equal than pivot (i to j-1)
var j := 0; // index to scan the array
// Scan the array and move elements as needed
while j < a.Length-1
{
if a[j] < a[pivotPos] {
a[i], a[j] := a[j], a[i];
i := i + 1;
}
j := j+1;
}
// Swap pivot to the 'mid' of the array
a[a.Length-1], a[i] := a[i], a[a.Length-1];
pivotPos := i;
}
|
254 | MIEIC_mfes_tmp_tmpq3ho7nve_exams_special_20_p5.dfy | type T = int // for demo purposes, but could be another type
predicate sorted(a: array<T>, n: nat)
requires n <= a.Length
reads a
{
forall i,j :: 0 <= i < j < n ==> a[i] <= a[j]
}
// Use binary search to find an appropriate position to insert a value 'x'
// in a sorted array 'a', so that it remains sorted.
method binarySearch(a: array<T>, x: T) returns (index: int)
requires sorted(a, a.Length)
ensures sorted(a, a.Length)
//ensures a[..] == old(a)[..]
ensures 0 <= index <= a.Length
//ensures forall i :: 0 <= i < index ==> a[i] <= x
//ensures forall i :: index <= i < a.Length ==> a[i] >= x
ensures index > 0 ==> a[index-1] <= x
ensures index < a.Length ==> a[index] >= x
{
var low, high := 0, a.Length;
while low < high
decreases high-low
invariant 0 <= low <= high <= a.Length
invariant low > 0 ==> a[low-1] <= x
invariant high < a.Length ==> a[high] >= x
{
var mid := low + (high - low) / 2;
if {
case a[mid] < x => low := mid + 1;
case a[mid] > x => high := mid;
case a[mid] == x => return mid;
}
}
return low;
}
// Simple test cases to check the post-condition
method testBinarySearch() {
var a := new int[2] [1, 3];
var id0 := binarySearch(a, 0);
assert id0 == 0;
var id1 := binarySearch(a, 1);
assert id1 in {0, 1};
var id2 := binarySearch(a, 2);
assert id2 == 1;
var id3 := binarySearch(a, 3);
assert id3 in {1, 2};
var id4 := binarySearch(a, 4);
assert id4 == 2;
}
| type T = int // for demo purposes, but could be another type
predicate sorted(a: array<T>, n: nat)
requires n <= a.Length
reads a
{
forall i,j :: 0 <= i < j < n ==> a[i] <= a[j]
}
// Use binary search to find an appropriate position to insert a value 'x'
// in a sorted array 'a', so that it remains sorted.
method binarySearch(a: array<T>, x: T) returns (index: int)
requires sorted(a, a.Length)
ensures sorted(a, a.Length)
//ensures a[..] == old(a)[..]
ensures 0 <= index <= a.Length
//ensures forall i :: 0 <= i < index ==> a[i] <= x
//ensures forall i :: index <= i < a.Length ==> a[i] >= x
ensures index > 0 ==> a[index-1] <= x
ensures index < a.Length ==> a[index] >= x
{
var low, high := 0, a.Length;
while low < high
{
var mid := low + (high - low) / 2;
if {
case a[mid] < x => low := mid + 1;
case a[mid] > x => high := mid;
case a[mid] == x => return mid;
}
}
return low;
}
// Simple test cases to check the post-condition
method testBinarySearch() {
var a := new int[2] [1, 3];
var id0 := binarySearch(a, 0);
var id1 := binarySearch(a, 1);
var id2 := binarySearch(a, 2);
var id3 := binarySearch(a, 3);
var id4 := binarySearch(a, 4);
}
|
255 | Metodos_Formais_tmp_tmpbez22nnn_Aula_2_ex1.dfy | method Mult(x:nat, y:nat) returns (r: nat)
ensures r == x * y
{
var m := x;
var n := y;
r:=0;
while m > 0
invariant m >= 0
invariant m*n+r == x*y
{
r := r + n;
m := m - 1;
}
return r;
}
| method Mult(x:nat, y:nat) returns (r: nat)
ensures r == x * y
{
var m := x;
var n := y;
r:=0;
while m > 0
{
r := r + n;
m := m - 1;
}
return r;
}
|
256 | Metodos_Formais_tmp_tmpbez22nnn_Aula_2_ex2.dfy | function Potencia(x: nat, y: nat): nat
{
if y == 0
then 1
else x * Potencia(x, y-1)
}
method Pot(x: nat, y: nat) returns (r: nat)
ensures r == Potencia(x,y)
{
var b := x;
var e := y;
r := 1;
while e > 0
invariant Potencia(b, e) * r == Potencia(x,y)
{
r := b * r;
e := e - 1;
}
return r;
}
| function Potencia(x: nat, y: nat): nat
{
if y == 0
then 1
else x * Potencia(x, y-1)
}
method Pot(x: nat, y: nat) returns (r: nat)
ensures r == Potencia(x,y)
{
var b := x;
var e := y;
r := 1;
while e > 0
{
r := b * r;
e := e - 1;
}
return r;
}
|
257 | Metodos_Formais_tmp_tmpbez22nnn_Aula_4_ex1.dfy | predicate Par(n:int)
{
n % 2 == 0
}
method FazAlgo (a:int, b:int) returns (x:int, y:int)
requires a >= b && Par (a-b)
{
x := a;
y := b;
while x != y
invariant x >= y
invariant Par(x-y)
decreases x-y
{
x := x - 1;
y := y + 1;
}
}
| predicate Par(n:int)
{
n % 2 == 0
}
method FazAlgo (a:int, b:int) returns (x:int, y:int)
requires a >= b && Par (a-b)
{
x := a;
y := b;
while x != y
{
x := x - 1;
y := y + 1;
}
}
|
258 | Metodos_Formais_tmp_tmpbez22nnn_Aula_4_ex3.dfy | function Fib(n:nat):nat
{
if n < 2
then n
else Fib(n-2) + Fib(n-1)
}
method ComputeFib(n:nat) returns (x:nat)
ensures x == Fib(n)
{
var i := 0;
x := 0;
var y := 1;
while i < n
decreases n - i
invariant 0 <= i <= n
invariant x == Fib(i)
invariant y == Fib(i+1)
{
x, y := y, x + y;
i := i + 1;
}
}
method Teste()
{
var n := 3;
var f := ComputeFib(n);
assert f == 2;
}
| function Fib(n:nat):nat
{
if n < 2
then n
else Fib(n-2) + Fib(n-1)
}
method ComputeFib(n:nat) returns (x:nat)
ensures x == Fib(n)
{
var i := 0;
x := 0;
var y := 1;
while i < n
{
x, y := y, x + y;
i := i + 1;
}
}
method Teste()
{
var n := 3;
var f := ComputeFib(n);
}
|
259 | Metodos_Formais_tmp_tmpql2hwcsh_Arrays_explicacao.dfy | // Array<T> = visualização de um array
// Uma busca ordenada em um array
// Buscar: Array<Z>xZ -> Z (Z é inteiro)
// Pré: True (pré-condição é sempre verdadeira)
// Pos: R < 0 => Para todo i pertencente aos naturais(0 <= i < A.length => A[i] != X) e
// 0 <= R < A.length => A[R] = x
//
// método em qualquer linguagem:
// R = 0
// Enquanto(R < |A|) {
// Se (A[R] == X) retorne E
// R = R + 1
// }
// retorne -1
//
// X | R | |A|
// 10 | 0 | 5
// 10 | 1 | 5
// 10 | 2 |
// invariante detectada: 0 <= R <= |A| e Para todo i pertencente aos naturais(0 <= i < R => A[i] != X)
// no dafy
// forall = é o para todo logico
// :: é igual ao tal que lógico
// ==> é o então lógico
// forall i :: 0 <= i < a.Length ==> a[i] != x (para todo i tal que i e maior ou igual a zero e menor que o tamanho do array, então a posição i do array a é diferente de x)
method buscar(a:array<int>, x:int) returns (r:int)
ensures r < 0 ==> forall i :: 0 <= i < a.Length ==> a[i] != x
ensures 0 <= r < a.Length ==> a[r] == x
{
r := 0;
while r < a.Length
decreases a.Length - r //variante, decrescendo a cada passo com o r
invariant 0 <= r <= a.Length //a invariante é quando nao é encontado o x depois de rodado todo o projeto
invariant forall i :: 0 <= i < r ==> a[i] != x
{
if a[r] == x
{
return r;
}
r := r + 1;
}
return -1;
}
| // Array<T> = visualização de um array
// Uma busca ordenada em um array
// Buscar: Array<Z>xZ -> Z (Z é inteiro)
// Pré: True (pré-condição é sempre verdadeira)
// Pos: R < 0 => Para todo i pertencente aos naturais(0 <= i < A.length => A[i] != X) e
// 0 <= R < A.length => A[R] = x
//
// método em qualquer linguagem:
// R = 0
// Enquanto(R < |A|) {
// Se (A[R] == X) retorne E
// R = R + 1
// }
// retorne -1
//
// X | R | |A|
// 10 | 0 | 5
// 10 | 1 | 5
// 10 | 2 |
// invariante detectada: 0 <= R <= |A| e Para todo i pertencente aos naturais(0 <= i < R => A[i] != X)
// no dafy
// forall = é o para todo logico
// :: é igual ao tal que lógico
// ==> é o então lógico
// forall i :: 0 <= i < a.Length ==> a[i] != x (para todo i tal que i e maior ou igual a zero e menor que o tamanho do array, então a posição i do array a é diferente de x)
method buscar(a:array<int>, x:int) returns (r:int)
ensures r < 0 ==> forall i :: 0 <= i < a.Length ==> a[i] != x
ensures 0 <= r < a.Length ==> a[r] == x
{
r := 0;
while r < a.Length
{
if a[r] == x
{
return r;
}
r := r + 1;
}
return -1;
}
|
260 | Metodos_Formais_tmp_tmpql2hwcsh_Arrays_somatorioArray.dfy | // Deve ser criado uma função explicando o que é um somatório
// Somatorio: Array<N> -> N
// Pre: True
// Pos: Somatorio(A) = somatório de i = 0 até |A|-1 os valores das posições do array pelo i
//
// function é uma fórmula matemática, ele não possui variaveis globais
// Soma: Array<N>xN -> N
// { Soma(A,0) = A[0]
// { Soma(A,i) = A[i] + soma(A, i-1) , se i > 0
// Teste
// |A| = 4
// Soma(A, |A|-1) = Soma(A,3)
// A[3] + Soma(A,2)
// A[3] + A[2] + Soma(A,1)
// A[3] + A[2] + A[1] + Soma(A,0)
// A[3] + A[2] + A[1] + A[0]
function soma(a:array<nat>, i:nat):nat
requires i <= a.Length //Tem que dizer que o i só vai até um valor antes do tamanho do array
reads a //serve para dizer que está sendo lido da memoria o array a (áreas de memória)
{
if i == 0
then 0
else a[i-1] + soma(a,i-1)
}
method somatorio(a:array<nat>) returns (s:nat)
ensures s == soma(a, a.Length)
{
s := 0;
for i := 0 to a.Length
invariant s == soma(a,i)
{
s := s + a[i];
}
}
| // Deve ser criado uma função explicando o que é um somatório
// Somatorio: Array<N> -> N
// Pre: True
// Pos: Somatorio(A) = somatório de i = 0 até |A|-1 os valores das posições do array pelo i
//
// function é uma fórmula matemática, ele não possui variaveis globais
// Soma: Array<N>xN -> N
// { Soma(A,0) = A[0]
// { Soma(A,i) = A[i] + soma(A, i-1) , se i > 0
// Teste
// |A| = 4
// Soma(A, |A|-1) = Soma(A,3)
// A[3] + Soma(A,2)
// A[3] + A[2] + Soma(A,1)
// A[3] + A[2] + A[1] + Soma(A,0)
// A[3] + A[2] + A[1] + A[0]
function soma(a:array<nat>, i:nat):nat
requires i <= a.Length //Tem que dizer que o i só vai até um valor antes do tamanho do array
reads a //serve para dizer que está sendo lido da memoria o array a (áreas de memória)
{
if i == 0
then 0
else a[i-1] + soma(a,i-1)
}
method somatorio(a:array<nat>) returns (s:nat)
ensures s == soma(a, a.Length)
{
s := 0;
for i := 0 to a.Length
{
s := s + a[i];
}
}
|
261 | Metodos_Formais_tmp_tmpql2hwcsh_Invariantes_fatorial2.dfy | function Fat(n:nat):nat
{
if n == 0 then 1 else n*Fat(n-1)
}
method Fatorial(n:nat) returns (f:nat)
ensures f == Fat(n)
{
f := 1;
var i := 1;
while i <= n
decreases n-i //variante
invariant 1 <= i <= n+1 //invariante
invariant f == Fat(i-1) //invariante
{
f := f * i;
i := i + 1;
}
return f;
}
// i | n | variante
// 1 | 3 | 2
// 2 | 3 | 1
// 3 | 3 | 0
// 4 | 3 | -1
// variante = n - i
// então é usado o decreases n-1
| function Fat(n:nat):nat
{
if n == 0 then 1 else n*Fat(n-1)
}
method Fatorial(n:nat) returns (f:nat)
ensures f == Fat(n)
{
f := 1;
var i := 1;
while i <= n
{
f := f * i;
i := i + 1;
}
return f;
}
// i | n | variante
// 1 | 3 | 2
// 2 | 3 | 1
// 3 | 3 | 0
// 4 | 3 | -1
// variante = n - i
// então é usado o decreases n-1
|
262 | Metodos_Formais_tmp_tmpql2hwcsh_Invariantes_fibonacci.dfy | // Provando fibonacci
function Fib(n:nat):nat
{
if n < 2
then n
else Fib(n-2) + Fib(n-1)
}
method ComputeFib(n:nat) returns (x:nat)
ensures x == Fib(n)
{
var i := 0;
x := 0;
var y := 1;
while i < n
decreases n-i
invariant 0 <= i <= n
invariant x == Fib(i)
invariant y == Fib(i+1)
{
x, y := y, x + y; //multiplas atribuições
i := i + 1;
}
}
// Fibonnaci
// n | Fib
// 0 | 0
// 1 | 1
// 2 | 1
// 3 | 2
// 4 | 3
// 5 | 5
// Teste da computação do Fibonnaci
// i | n | x | y | n-1
// 0 | 3 | 0 | 1 | 3
// 1 | 3 | 1 | 1 | 2
// 2 | 3 | 1 | 2 | 1
// 3 | 3 | 2 | 3 | 0
// Variante: n - 1
// Invariante: x = Fib(i) = x sempre é o resultado do fibonnaci do valor de i
// Invariante: 0 <= i <= n = i deve ter um valor entre 0 e o valor de n
// Invariante: y = Fib(i+1) = o valor de y sempre vai ser o valor de fibonnaci mais um
| // Provando fibonacci
function Fib(n:nat):nat
{
if n < 2
then n
else Fib(n-2) + Fib(n-1)
}
method ComputeFib(n:nat) returns (x:nat)
ensures x == Fib(n)
{
var i := 0;
x := 0;
var y := 1;
while i < n
{
x, y := y, x + y; //multiplas atribuições
i := i + 1;
}
}
// Fibonnaci
// n | Fib
// 0 | 0
// 1 | 1
// 2 | 1
// 3 | 2
// 4 | 3
// 5 | 5
// Teste da computação do Fibonnaci
// i | n | x | y | n-1
// 0 | 3 | 0 | 1 | 3
// 1 | 3 | 1 | 1 | 2
// 2 | 3 | 1 | 2 | 1
// 3 | 3 | 2 | 3 | 0
// Variante: n - 1
// Invariante: x = Fib(i) = x sempre é o resultado do fibonnaci do valor de i
// Invariante: 0 <= i <= n = i deve ter um valor entre 0 e o valor de n
// Invariante: y = Fib(i+1) = o valor de y sempre vai ser o valor de fibonnaci mais um
|
263 | Metodos_Formais_tmp_tmpql2hwcsh_Invariantes_multiplicador.dfy | // Exemplo de invariantes
// Invariante significa que o valor não muda desde a pré-condição até a pós-condição
method Mult(x:nat, y:nat) returns (r:nat)
ensures r == x * y
{
// parâmetros de entrada são imutáveis, por isso
// é preciso a atribuir a variáveis locais para usar em blocos de códigos para mudar
var m := x;
var n := y;
r := 0;
while m > 0
invariant m >= 0
invariant m*n+r == x*y
{
r := r + n;
m := m -1;
}
return r;
}
// Teste do método para encontrar a invariante
// x | y | m | n | r
// 5 | 3 | 5 | 3 | 0
// 5 | 3 | 4 | 3 | 3
// 5 | 3 | 3 | 3 | 6
// 5 | 3 | 2 | 3 | 9
// 5 | 3 | 1 | 3 | 12
// 5 | 3 | 0 | 3 | 15
// vimos o seguinte:
// m * n + r = x * y
// 5 * 3 + 0 (15) = 5 * 3 (15)
// portanto a fórmula m*n+r == x*y é uma invariante
// mas só isso não serve, o m ele é maior ou igual a zero quando acaba o while
// por isso, também é a invariante que necessita
// com isso dizemos para o programa as alterações do m de maior ou igual a zero
// e mostramos a função encontrada que alterava o valor de m e n das variaveis criadas
// SE OS ALGORITMOS TIVEREM REPETIÇÃO OU RECURSÃO, DEVEM SER MOSTRADOS QUAIS SÃO AS INVARIANTES
// OU SEJA, OS VALORES QUE NÃO ESTÃO SENDO MUDADOS E COLOCAR A FÓRMULA DELE COMO ACIMA
| // Exemplo de invariantes
// Invariante significa que o valor não muda desde a pré-condição até a pós-condição
method Mult(x:nat, y:nat) returns (r:nat)
ensures r == x * y
{
// parâmetros de entrada são imutáveis, por isso
// é preciso a atribuir a variáveis locais para usar em blocos de códigos para mudar
var m := x;
var n := y;
r := 0;
while m > 0
{
r := r + n;
m := m -1;
}
return r;
}
// Teste do método para encontrar a invariante
// x | y | m | n | r
// 5 | 3 | 5 | 3 | 0
// 5 | 3 | 4 | 3 | 3
// 5 | 3 | 3 | 3 | 6
// 5 | 3 | 2 | 3 | 9
// 5 | 3 | 1 | 3 | 12
// 5 | 3 | 0 | 3 | 15
// vimos o seguinte:
// m * n + r = x * y
// 5 * 3 + 0 (15) = 5 * 3 (15)
// portanto a fórmula m*n+r == x*y é uma invariante
// mas só isso não serve, o m ele é maior ou igual a zero quando acaba o while
// por isso, também é a invariante que necessita
// com isso dizemos para o programa as alterações do m de maior ou igual a zero
// e mostramos a função encontrada que alterava o valor de m e n das variaveis criadas
// SE OS ALGORITMOS TIVEREM REPETIÇÃO OU RECURSÃO, DEVEM SER MOSTRADOS QUAIS SÃO AS INVARIANTES
// OU SEJA, OS VALORES QUE NÃO ESTÃO SENDO MUDADOS E COLOCAR A FÓRMULA DELE COMO ACIMA
|
264 | Metodos_Formais_tmp_tmpql2hwcsh_Invariantes_potencia.dfy | // Potência
// deve ser especificado a potência, porque ele não existe n dafny
// Função recursiva da potência
function Potencia(x:nat, y:nat):nat
{
if y == 0
then 1
else x * Potencia(x,y-1)
}
// Quero agora implementar como uma função não recursiva
method Pot(x:nat, y:nat) returns (r:nat)
ensures r == Potencia(x,y)
{
r := 1; //sempre r começa com 1
var b := x; //base
var e := y; //expoente
while e > 0
invariant Potencia(b,e)*r == Potencia(x,y)
{
r := r * b;
e := e - 1;
}
return r;
}
// Devemos sempre construir uma tabela para vermos passo a passo o processo
// POT(2,3)
// x | y | b | e | r |
// 2 | 3 | 2 | 3 | 1 |
// 2 | 3 | 2 | 2 | 1x2 |
// 2 | 3 | 2 | 1 | 1x2x2 |
// 2 | 3 | 2 | 0 | 1x2x2x2 |
// temos que na invariante queremos a fórmula x^y
// INV ... = x^y
// vendo pelo que foi processado fica dando o seguinte
// x | y | b | e | r |
// 2 | 3 | 2 | 3 | 1 (2^0) | 2^3 x 2^0 = 2^3
// 2 | 3 | 2 | 2 | 1x2 (2^1) | 2^2 x 2^1 = 2^3
// 2 | 3 | 2 | 1 | 1x2x2 (2^2) | 2^1 x 2^2 = 2^3
// 2 | 3 | 2 | 0 | 1x2x2x2 (2^3)| 2^0 x 2^3 = 2^3
// portanto a base está sendo feito a potencia de e (usando o potencia) e multiplicado pelo valor de r
// b^e * r
// assim temos a fórmula: b^e * r = x^y
// dai utilizamos a function potencia para construir a fórmula
// Potencia(b,e)*r == Potencia(x,y)
| // Potência
// deve ser especificado a potência, porque ele não existe n dafny
// Função recursiva da potência
function Potencia(x:nat, y:nat):nat
{
if y == 0
then 1
else x * Potencia(x,y-1)
}
// Quero agora implementar como uma função não recursiva
method Pot(x:nat, y:nat) returns (r:nat)
ensures r == Potencia(x,y)
{
r := 1; //sempre r começa com 1
var b := x; //base
var e := y; //expoente
while e > 0
{
r := r * b;
e := e - 1;
}
return r;
}
// Devemos sempre construir uma tabela para vermos passo a passo o processo
// POT(2,3)
// x | y | b | e | r |
// 2 | 3 | 2 | 3 | 1 |
// 2 | 3 | 2 | 2 | 1x2 |
// 2 | 3 | 2 | 1 | 1x2x2 |
// 2 | 3 | 2 | 0 | 1x2x2x2 |
// temos que na invariante queremos a fórmula x^y
// INV ... = x^y
// vendo pelo que foi processado fica dando o seguinte
// x | y | b | e | r |
// 2 | 3 | 2 | 3 | 1 (2^0) | 2^3 x 2^0 = 2^3
// 2 | 3 | 2 | 2 | 1x2 (2^1) | 2^2 x 2^1 = 2^3
// 2 | 3 | 2 | 1 | 1x2x2 (2^2) | 2^1 x 2^2 = 2^3
// 2 | 3 | 2 | 0 | 1x2x2x2 (2^3)| 2^0 x 2^3 = 2^3
// portanto a base está sendo feito a potencia de e (usando o potencia) e multiplicado pelo valor de r
// b^e * r
// assim temos a fórmula: b^e * r = x^y
// dai utilizamos a function potencia para construir a fórmula
// Potencia(b,e)*r == Potencia(x,y)
|
265 | Prog-Fun-Solutions_tmp_tmp7_gmnz5f_extra_mod.dfy | ghost function f(n: nat): nat {
if n == 0 then 1
else if n%2 == 0 then 1 + 2*f(n/2)
else 2*f(n/2)
}
method mod(n:nat) returns (a:nat)
ensures a == f(n)
{
var x:nat := 0;
var y:nat := 1;
var k:nat := n;
while k > 0
invariant f(n) == x + y*f(k)
invariant 0 <= k <= n
decreases k
{
assert f(n) == x + y*f(k);
if (k%2 == 0) {
assert f(n) == x + y*f(k);
assert f(n) == x + y*(1+2*f(k/2));
assert f(n) == x + y + 2*y*f(k/2);
x := x + y;
assert f(n) == x + 2*y*f(k/2);
} else {
assert f(n) == x + y*(2*f(k/2));
assert f(n) == x + 2*y*f(k/2);
}
y := 2*y;
assert f(n) == x + y*f(k/2);
k := k/2;
assert f(n) == x + y*f(k);
}
assert k == 0;
assert f(n) == x+y*f(0);
assert f(n) == x+y;
a := x+y;
}
| ghost function f(n: nat): nat {
if n == 0 then 1
else if n%2 == 0 then 1 + 2*f(n/2)
else 2*f(n/2)
}
method mod(n:nat) returns (a:nat)
ensures a == f(n)
{
var x:nat := 0;
var y:nat := 1;
var k:nat := n;
while k > 0
{
if (k%2 == 0) {
x := x + y;
} else {
}
y := 2*y;
k := k/2;
}
a := x+y;
}
|
266 | Prog-Fun-Solutions_tmp_tmp7_gmnz5f_extra_mod2.dfy |
ghost function f2(n: nat): nat {
if n == 0 then 0
else 5*f2(n/3) + n%4
}
method mod2(n:nat) returns (a:nat)
ensures a == f2(n)
{
var x:nat := 1;
var y:nat := 0;
var k:nat := n;
while k > 0
invariant f2(n) == x*f2(k) + y
invariant 0 <= k <= n
decreases k
{
assert f2(n) == x*f2(k) + y;
assert f2(n) == x*(5*f2(k/3) + k%4) + y;
assert f2(n) == 5*x*f2(k/3) + x*(k%4) + y;
y := x*(k%4) + y;
assert f2(n) == 5*x*f2(k/3) + y;
x := 5*x;
assert f2(n) == x*f2(k/3) + y;
k := k/3;
assert f2(n) == x*f2(k) + y;
}
assert k == 0;
assert f2(n) == x*f2(0) + y;
assert f2(n) == x*0 + y;
assert f2(n) == y;
a := y;
}
|
ghost function f2(n: nat): nat {
if n == 0 then 0
else 5*f2(n/3) + n%4
}
method mod2(n:nat) returns (a:nat)
ensures a == f2(n)
{
var x:nat := 1;
var y:nat := 0;
var k:nat := n;
while k > 0
{
y := x*(k%4) + y;
x := 5*x;
k := k/3;
}
a := y;
}
|
267 | Prog-Fun-Solutions_tmp_tmp7_gmnz5f_extra_pow.dfy | ghost function pow(a: int, e: nat): int {
if e == 0 then 1 else a*pow(a, e-1)
}
method Pow(a: nat, n: nat) returns (y: nat)
ensures y == pow(a, n)
{
var x:nat := 1;
var k:nat := 0;
while k < n
invariant x == pow(a, k)
invariant 0 <= k <= n
decreases n-k
{
assert x == pow(a, k);
x := a*x;
assert x == a*pow(a, k);
assert x == pow(a, k+1);
k := k + 1;
assert x == pow(a, k);
}
assert k == n;
y := x;
assert y == pow(a, n);
}
| ghost function pow(a: int, e: nat): int {
if e == 0 then 1 else a*pow(a, e-1)
}
method Pow(a: nat, n: nat) returns (y: nat)
ensures y == pow(a, n)
{
var x:nat := 1;
var k:nat := 0;
while k < n
{
x := a*x;
k := k + 1;
}
y := x;
}
|
268 | Prog-Fun-Solutions_tmp_tmp7_gmnz5f_extra_sum.dfy |
ghost function sum(n: nat): int
{
if n == 0 then 0 else n + sum(n - 1)
}
method Sum(n: nat) returns (s: int)
ensures s == sum(n)
{
var x:nat := 0;
var y:nat := 1;
var k:nat := n;
while k > 0
invariant sum(n) == x + y*sum(k)
invariant 0 <= k <= n
decreases k
{
assert sum(n) == x + y*sum(k);
assert sum(n) == x + y*(k+sum(k-1));
assert sum(n) == x + y*k + y*sum(k-1);
x := x + y*k;
assert sum(n) == x + y*sum(k-1);
assert sum(n) == x + y*sum(k-1);
k := k-1;
assert sum(n) == x + y*sum(k);
}
assert k == 0;
assert sum(n) == x + y*sum(0);
assert sum(n) == x + y*0;
s := x;
assert sum(n) == s;
}
|
ghost function sum(n: nat): int
{
if n == 0 then 0 else n + sum(n - 1)
}
method Sum(n: nat) returns (s: int)
ensures s == sum(n)
{
var x:nat := 0;
var y:nat := 1;
var k:nat := n;
while k > 0
{
x := x + y*k;
k := k-1;
}
s := x;
}
|
269 | Prog-Fun-Solutions_tmp_tmp7_gmnz5f_mockExam2_p2.dfy | // problem 2:
// name: Gabriele Berardi
// s-number: s4878728
// table: XXX
method problem2(p:int, q:int, X:int, Y:int) returns (r:int, s:int)
requires p == 2*X + Y && q == X + 3
ensures r == X && s == Y
{
assert p == 2*X + Y && q == X + 3;
r, s := p, q;
assert r == 2*X + Y && s == X + 3;
r := r - 2*s + 6;
assert r == 2*X + Y-2*X-6 + 6 && s == X + 3;
assert r == Y && s == X + 3;
s := s - 3;
assert r == Y && s == X;
r,s := s, r;
assert s == Y && r == X;
}
| // problem 2:
// name: Gabriele Berardi
// s-number: s4878728
// table: XXX
method problem2(p:int, q:int, X:int, Y:int) returns (r:int, s:int)
requires p == 2*X + Y && q == X + 3
ensures r == X && s == Y
{
r, s := p, q;
r := r - 2*s + 6;
s := s - 3;
r,s := s, r;
}
|
270 | Prog-Fun-Solutions_tmp_tmp7_gmnz5f_mockExam2_p3.dfy | // problem 3:
// name: ....... (fill in your name)
// s-number: s....... (fill in your student number)
// table: ....... (fill in your table number)
method problem3(m:int, X:int) returns (r:int)
requires X >= 0 && (2*m == 1 - X || m == X + 3)
ensures r == X
{
assert X >= 0 && (X == 1 - 2*m || m-3 == X);
r := m;
assert X >= 0 && (1 - 2*r >= 0 || r-3 >= 0);
if (1-2*r >= 0) {
assert X >= 0 && 2*r == 1-X;
r := 2*r;
assert X >= 0 && r == 1-X;
r := -r+1;
} else {
assert r == X + 3;
r := r -3;
}
assert r == X;
}
| // problem 3:
// name: ....... (fill in your name)
// s-number: s....... (fill in your student number)
// table: ....... (fill in your table number)
method problem3(m:int, X:int) returns (r:int)
requires X >= 0 && (2*m == 1 - X || m == X + 3)
ensures r == X
{
r := m;
if (1-2*r >= 0) {
r := 2*r;
r := -r+1;
} else {
r := r -3;
}
}
|
271 | Prog-Fun-Solutions_tmp_tmp7_gmnz5f_mockExam2_p5.dfy | // problem 5:
// name: Gabriele Berardi
// s-number: s4878728
// table: XXXX
ghost function f(n: int): int {
if n < 0 then 0 else 3*f(n-5) + n
}
method problem5(n:nat) returns (x: int)
ensures x == f(n)
{
var a := 1;
var b := 0;
var k := n;
while k >= 0
invariant f(n) == a*f(k) + b
invariant -5 <= k <= n
decreases k
{
assert f(n) == a*f(k) + b;
assert f(n) == a*(3*f(k-5)+k) + b;
assert f(n) == 3*a*f(k-5) + a*k + b;
b := a*k + b;
assert f(n) == 3*a*f(k-5) + b;
a := 3*a;
assert f(n) == a*f(k-5) + b;
k := k - 5;
assert f(n) == a*f(k) + b;
}
assert k < 0;
assert f(n) == a*f(k) + b;
assert f(n) == a*0 + b;
x := b;
assert x== f(n);
}
| // problem 5:
// name: Gabriele Berardi
// s-number: s4878728
// table: XXXX
ghost function f(n: int): int {
if n < 0 then 0 else 3*f(n-5) + n
}
method problem5(n:nat) returns (x: int)
ensures x == f(n)
{
var a := 1;
var b := 0;
var k := n;
while k >= 0
{
b := a*k + b;
a := 3*a;
k := k - 5;
}
x := b;
}
|
272 | Prog-Fun-Solutions_tmp_tmp7_gmnz5f_mockExam2_p6.dfy | // problem 6:
// name: Gabriele Berardi
// s-number: s4878728
// table: XXXXX
ghost function f(n: int): int {
if n <= 0 then 1 else n + f(n-1)*f(n-2)
}
ghost function fSum(n: nat): int {
// give the body of this function
// it should return Sum(i: 0<=i < n: f(i))
if n <= 0 then 0 else f(n-1) + fSum(n-1)
}
method problem6(n:nat) returns (a: int)
ensures a == fSum(n)
{
a := 0;
var k := 0;
var x := 1;
var y := 2;
while k < n
invariant 0 <= k <= n && x == f(k) && y == f(k+1) && a == fSum(k)
decreases n-k
{
assert x == f(k) && y == f(k+1) && a == fSum(k);
k := k + 1;
assert x == f(k-1) && y == f(k) && a == fSum(k-1);
assert x == f(k-1) && y == f(k) && a == fSum(k) - f(k-1);
a := a + x;
assert x == f(k-1) && y == f(k) && a == fSum(k) - f(k-1) + f(k-1);
assert x == f(k-1) && y == f(k) && a == fSum(k);
x, y := y, k+1 + x*y;
assert x == f(k) && y == k+1+f(k-1)*f(k) && a == fSum(k);
assert x == f(k) && y == k+1+f(k+1-2)*f(k+1-1) && a == fSum(k);
assert x == f(k) && y == f(k+1) && a == fSum(k);
}
assert a == fSum(k);
}
| // problem 6:
// name: Gabriele Berardi
// s-number: s4878728
// table: XXXXX
ghost function f(n: int): int {
if n <= 0 then 1 else n + f(n-1)*f(n-2)
}
ghost function fSum(n: nat): int {
// give the body of this function
// it should return Sum(i: 0<=i < n: f(i))
if n <= 0 then 0 else f(n-1) + fSum(n-1)
}
method problem6(n:nat) returns (a: int)
ensures a == fSum(n)
{
a := 0;
var k := 0;
var x := 1;
var y := 2;
while k < n
{
k := k + 1;
a := a + x;
x, y := y, k+1 + x*y;
}
}
|
273 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_advanced examples_ArrayMap.dfy | // RUN: /print:log.bpl
method ArrayMap<A>(f: int -> A, a: array<A>)
requires a != null
requires forall j :: 0 <= j < a.Length ==> f.requires(j)
requires forall j :: 0 <= j < a.Length ==> a !in f.reads(j)
modifies a
ensures forall j :: 0 <= j < a.Length ==> a[j] == f(j)
{
var i := 0;
while i < a.Length
invariant 0 <= i <= a.Length;
invariant forall j :: 0 <= j < i ==> a[j] == f(j)
{
a[i] := f(i);
i := i + 1;
}
}
/*method GenericSort<A>(cmp: (A, A) -> bool, a: array<A>)
requires a != null
requires forall x, y :: a !in cmp.reads(x, y)
requires forall x, y :: cmp.requires(x, y)
modifies a
ensures forall x, y :: cmp.requires(x, y)
ensures forall x, y :: 0 <= x < y < a.Length ==> cmp(a[x], a[y])
{
var i := 0;
while i < a.Length
modifies a
{
var j := i - 1;
while j >= 0 && !cmp(a[j], a[i])
modifies a
{
a[i], a[j] := a[j], a[i];
j := j - 1;
}
i := i + 1;
}
}*/
| // RUN: /print:log.bpl
method ArrayMap<A>(f: int -> A, a: array<A>)
requires a != null
requires forall j :: 0 <= j < a.Length ==> f.requires(j)
requires forall j :: 0 <= j < a.Length ==> a !in f.reads(j)
modifies a
ensures forall j :: 0 <= j < a.Length ==> a[j] == f(j)
{
var i := 0;
while i < a.Length
{
a[i] := f(i);
i := i + 1;
}
}
/*method GenericSort<A>(cmp: (A, A) -> bool, a: array<A>)
requires a != null
requires forall x, y :: a !in cmp.reads(x, y)
requires forall x, y :: cmp.requires(x, y)
modifies a
ensures forall x, y :: cmp.requires(x, y)
ensures forall x, y :: 0 <= x < y < a.Length ==> cmp(a[x], a[y])
{
var i := 0;
while i < a.Length
modifies a
{
var j := i - 1;
while j >= 0 && !cmp(a[j], a[i])
modifies a
{
a[i], a[j] := a[j], a[i];
j := j - 1;
}
i := i + 1;
}
}*/
|
274 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_advanced examples_EvenPredicate.dfy | // RUN: /compile:0 /nologo
function IsEven(a : int) : bool
requires a >= 0
{
if a == 0 then true
else if a == 1 then false
else IsEven(a - 2)
}
lemma EvenSquare(a : int)
requires a >= 0
ensures IsEven(a) ==> IsEven(a * a)
{
if a >= 2 && IsEven(a) {
EvenSquare(a - 2);
assert a * a == (a - 2) * (a - 2) + 4 * a - 4;
EvenDouble(2 * a - 2);
EvenPlus((a - 2) * (a - 2), 4 * a - 4);
}
}
lemma EvenDouble(a: int)
requires a >= 0
ensures IsEven(a + a)
{
if a >= 2 {
EvenDouble(a - 2);
}
}
lemma {:induction x} EvenPlus(x: int, y: int)
requires x >= 0
requires y >= 0
requires IsEven(x)
requires IsEven(y)
ensures IsEven(x + y)
{
if x >= 2 {
EvenPlus(x - 2, y);
}
}
/*
lemma {:induction x} EvenTimes(x: int, y: int)
requires x >= 0
requires y >= 0
requires IsEven(x)
requires IsEven(y)
ensures IsEven(x * y)
{
if x >= 2 {
calc {
IsEven(x * y);
IsEven((x - 2) * y + 2 * y); { Check1(y); EvenPlus((x - 2) * y, 2 * y); }
true;
}
}
}
*/
| // RUN: /compile:0 /nologo
function IsEven(a : int) : bool
requires a >= 0
{
if a == 0 then true
else if a == 1 then false
else IsEven(a - 2)
}
lemma EvenSquare(a : int)
requires a >= 0
ensures IsEven(a) ==> IsEven(a * a)
{
if a >= 2 && IsEven(a) {
EvenSquare(a - 2);
EvenDouble(2 * a - 2);
EvenPlus((a - 2) * (a - 2), 4 * a - 4);
}
}
lemma EvenDouble(a: int)
requires a >= 0
ensures IsEven(a + a)
{
if a >= 2 {
EvenDouble(a - 2);
}
}
lemma {:induction x} EvenPlus(x: int, y: int)
requires x >= 0
requires y >= 0
requires IsEven(x)
requires IsEven(y)
ensures IsEven(x + y)
{
if x >= 2 {
EvenPlus(x - 2, y);
}
}
/*
lemma {:induction x} EvenTimes(x: int, y: int)
requires x >= 0
requires y >= 0
requires IsEven(x)
requires IsEven(y)
ensures IsEven(x * y)
{
if x >= 2 {
calc {
IsEven(x * y);
IsEven((x - 2) * y + 2 * y); { Check1(y); EvenPlus((x - 2) * y, 2 * y); }
true;
}
}
}
*/
|
275 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_advanced examples_GenericMax.dfy | method GenericMax<A>(cmp: (A, A) -> bool, a: array<A>) returns (max: A)
requires a != null && a.Length > 0
requires forall x, y :: cmp.requires(x, y)
requires forall x, y :: cmp(x, y) || cmp(y, x);
requires forall x, y, z :: cmp(x, y) && cmp(y, z) ==> cmp(x, z);
ensures forall x :: 0 <= x < a.Length ==>
// uncommenting the following line causes the program to verify
// assume cmp.requires(a[x], max);
cmp(a[x], max)
{
max := a[0];
var i := 0;
while i < a.Length
invariant 0 <= i <= a.Length
invariant forall x :: 0 <= x < i ==> cmp(a[x], max)
{
if !cmp(a[i], max) {
max := a[i];
}
i := i + 1;
}
}
| method GenericMax<A>(cmp: (A, A) -> bool, a: array<A>) returns (max: A)
requires a != null && a.Length > 0
requires forall x, y :: cmp.requires(x, y)
requires forall x, y :: cmp(x, y) || cmp(y, x);
requires forall x, y, z :: cmp(x, y) && cmp(y, z) ==> cmp(x, z);
ensures forall x :: 0 <= x < a.Length ==>
// uncommenting the following line causes the program to verify
// assume cmp.requires(a[x], max);
cmp(a[x], max)
{
max := a[0];
var i := 0;
while i < a.Length
{
if !cmp(a[i], max) {
max := a[i];
}
i := i + 1;
}
}
|
276 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_advanced examples_InsertionSort.dfy | predicate sorted (a:array<int>, start:int, end:int) // all "before" end are sorted
requires a!=null
requires 0<=start<=end<=a.Length
reads a
{
forall j,k:: start<=j<k<end ==> a[j]<=a[k]
}
method InsertionSort (a:array<int>)
requires a!=null && a.Length>1
ensures sorted(a, 0, a.Length)
modifies a
{
var up := 1;
while (up < a.Length) // outer loop
invariant 1 <= up <= a.Length
invariant sorted(a,0,up)
{
var down := up-1;
var temp := a[up];
while down >= 0 && a[down+1] < a[down] // inner loop
invariant forall j,k | 0 <= j < k < up+1 && k != down+1 :: a[j]<=a[k]
{
a[down],a[down+1] := a[down+1],a[down];
down := down-1;
}
up := up+1;
}
}
method Main(){
var a := new int[5];
a[0],a[1],a[2],a[3],a[4] := 3,2,5,1,8;
InsertionSort(a);
print a[..];
}
| predicate sorted (a:array<int>, start:int, end:int) // all "before" end are sorted
requires a!=null
requires 0<=start<=end<=a.Length
reads a
{
forall j,k:: start<=j<k<end ==> a[j]<=a[k]
}
method InsertionSort (a:array<int>)
requires a!=null && a.Length>1
ensures sorted(a, 0, a.Length)
modifies a
{
var up := 1;
while (up < a.Length) // outer loop
{
var down := up-1;
var temp := a[up];
while down >= 0 && a[down+1] < a[down] // inner loop
{
a[down],a[down+1] := a[down+1],a[down];
down := down-1;
}
up := up+1;
}
}
method Main(){
var a := new int[5];
a[0],a[1],a[2],a[3],a[4] := 3,2,5,1,8;
InsertionSort(a);
print a[..];
}
|
277 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_advanced examples_MatrixMultiplication.dfy | function RowColumnProduct(m1: array2<int>, m2: array2<int>, row: nat, column: nat): int
reads m1
reads m2
requires m1 != null && m2 != null && m1.Length1 == m2.Length0
requires row < m1.Length0 && column < m2.Length1
{
RowColumnProductFrom(m1, m2, row, column, 0)
}
function RowColumnProductFrom(m1: array2<int>, m2: array2<int>, row: nat, column: nat, k: nat): int
reads m1
reads m2
requires m1 != null && m2 != null && k <= m1.Length1 == m2.Length0
requires row < m1.Length0 && column < m2.Length1
decreases m1.Length1 - k
{
if k == m1.Length1 then
0
else
m1[row,k]*m2[k,column] + RowColumnProductFrom(m1, m2, row, column, k+1)
}
method multiply(m1: array2<int>, m2: array2<int>) returns (m3: array2<int>)
requires m1 != null && m2 != null
requires m1.Length1 == m2.Length0
ensures m3 != null && m3.Length0 == m1.Length0 && m3.Length1 == m2.Length1
ensures forall i, j | 0 <= i < m3.Length0 && 0 <= j < m3.Length1 ::
m3[i, j] == RowColumnProduct(m1, m2, i, j)
{
m3 := new int[m1.Length0, m2.Length1];
var i := 0;
while i < m1.Length0
invariant 0 <= i <= m1.Length0
invariant forall i', j' | 0 <= i' < i && 0 <= j' < m2.Length1 ::
m3[i',j'] == RowColumnProduct(m1, m2, i', j')
{
var j := 0;
while j < m2.Length1
invariant 0 <= j <= m2.Length1
invariant forall i', j' | 0 <= i' < i && 0 <= j' < m2.Length1 ::
m3[i',j'] == RowColumnProduct(m1, m2, i', j')
invariant forall j' | 0 <= j' < j ::
m3[i,j'] == RowColumnProduct(m1, m2, i, j')
{
var k :=0;
m3[i, j] := 0;
while k < m1.Length1
invariant 0 <= k <= m1.Length1
invariant forall i', j' | 0 <= i' < i && 0 <= j' < m2.Length1 ::
m3[i',j'] == RowColumnProduct(m1, m2, i', j')
invariant forall j' | 0 <= j' < j ::
m3[i,j'] == RowColumnProduct(m1, m2, i, j')
invariant RowColumnProduct(m1, m2, i, j) ==
m3[i,j] + RowColumnProductFrom(m1, m2, i, j, k)
{
m3[i,j] := m3[i,j] + m1[i,k] * m2[k,j];
k := k+1;
}
j := j+1;
}
i := i+1;
}
}
| function RowColumnProduct(m1: array2<int>, m2: array2<int>, row: nat, column: nat): int
reads m1
reads m2
requires m1 != null && m2 != null && m1.Length1 == m2.Length0
requires row < m1.Length0 && column < m2.Length1
{
RowColumnProductFrom(m1, m2, row, column, 0)
}
function RowColumnProductFrom(m1: array2<int>, m2: array2<int>, row: nat, column: nat, k: nat): int
reads m1
reads m2
requires m1 != null && m2 != null && k <= m1.Length1 == m2.Length0
requires row < m1.Length0 && column < m2.Length1
{
if k == m1.Length1 then
0
else
m1[row,k]*m2[k,column] + RowColumnProductFrom(m1, m2, row, column, k+1)
}
method multiply(m1: array2<int>, m2: array2<int>) returns (m3: array2<int>)
requires m1 != null && m2 != null
requires m1.Length1 == m2.Length0
ensures m3 != null && m3.Length0 == m1.Length0 && m3.Length1 == m2.Length1
ensures forall i, j | 0 <= i < m3.Length0 && 0 <= j < m3.Length1 ::
m3[i, j] == RowColumnProduct(m1, m2, i, j)
{
m3 := new int[m1.Length0, m2.Length1];
var i := 0;
while i < m1.Length0
m3[i',j'] == RowColumnProduct(m1, m2, i', j')
{
var j := 0;
while j < m2.Length1
m3[i',j'] == RowColumnProduct(m1, m2, i', j')
m3[i,j'] == RowColumnProduct(m1, m2, i, j')
{
var k :=0;
m3[i, j] := 0;
while k < m1.Length1
m3[i',j'] == RowColumnProduct(m1, m2, i', j')
m3[i,j'] == RowColumnProduct(m1, m2, i, j')
m3[i,j] + RowColumnProductFrom(m1, m2, i, j, k)
{
m3[i,j] := m3[i,j] + m1[i,k] * m2[k,j];
k := k+1;
}
j := j+1;
}
i := i+1;
}
}
|
278 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_advanced examples_Modules.dfy | // RUN: /compile:1
abstract module Interface {
type T
function F(): T
predicate P(x: T)
lemma FP()
ensures P(F())
}
module Implementation refines Interface {
predicate P(x: T) {
false
}
}
abstract module User {
import I : Interface
lemma Main()
ensures I.P(I.F());
{
I.FP();
assert I.P(I.F());
}
}
module Main refines User {
import I = Implementation
lemma Main()
ensures I.P(I.F())
{
I.FP();
assert false;
}
}
| // RUN: /compile:1
abstract module Interface {
type T
function F(): T
predicate P(x: T)
lemma FP()
ensures P(F())
}
module Implementation refines Interface {
predicate P(x: T) {
false
}
}
abstract module User {
import I : Interface
lemma Main()
ensures I.P(I.F());
{
I.FP();
}
}
module Main refines User {
import I = Implementation
lemma Main()
ensures I.P(I.F())
{
I.FP();
}
}
|
279 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_advanced examples_OneHundredPrisonersAndALightbulb.dfy | // RUN: /compile:0 /nologo
method CardinalitySubsetLt<T>(A: set<T>, B: set<T>)
requires A < B
ensures |A| < |B|
decreases B
{
var b :| b in B && b !in A;
var B' := B - {b};
assert |B| == |B'| + 1;
if A < B' {
CardinalitySubsetLt(A, B');
} else {
assert A == B';
}
}
method strategy<T>(P: set<T>, Special: T) returns (count: int)
requires |P| > 1 && Special in P
ensures count == |P| - 1
decreases *
{
count := 0;
var I := {};
var S := {};
var switch := false;
while count < |P| - 1
invariant count <= |P| - 1
invariant count > 0 ==> Special in I
invariant Special !in S && S < P && S <= I <= P
invariant if switch then |S| == count + 1 else |S| == count
decreases *
{
var p :| p in P;
I := I + {p};
if p == Special {
if switch {
switch := false;
count := count + 1;
}
} else {
if p !in S && !switch {
S := S + {p};
switch := true;
}
}
}
CardinalitySubsetLt(S, I);
if I < P {
CardinalitySubsetLt(I, P);
}
assert P <= I;
assert I == P;
}
| // RUN: /compile:0 /nologo
method CardinalitySubsetLt<T>(A: set<T>, B: set<T>)
requires A < B
ensures |A| < |B|
{
var b :| b in B && b !in A;
var B' := B - {b};
if A < B' {
CardinalitySubsetLt(A, B');
} else {
}
}
method strategy<T>(P: set<T>, Special: T) returns (count: int)
requires |P| > 1 && Special in P
ensures count == |P| - 1
{
count := 0;
var I := {};
var S := {};
var switch := false;
while count < |P| - 1
{
var p :| p in P;
I := I + {p};
if p == Special {
if switch {
switch := false;
count := count + 1;
}
} else {
if p !in S && !switch {
S := S + {p};
switch := true;
}
}
}
CardinalitySubsetLt(S, I);
if I < P {
CardinalitySubsetLt(I, P);
}
}
|
280 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_advanced examples_Percentile.dfy | // Sum of elements of A from indices 0 to end.
// end is inclusive! (not James's normal way of thinking!!)
function SumUpto(A: array<real>, end: int): real
requires -1 <= end < A.Length
reads A
{
if end == -1 then
0.0
else
A[end] + SumUpto(A, end-1)
}
function Sum(A: array<real>): real
reads A
{
SumUpto(A, A.Length-1)
}
method Percentile(p: real, A: array<real>, total: real) returns (i: int)
requires forall i | 0 <= i < A.Length :: A[i] > 0.0
requires 0.0 <= p <= 100.0
requires total == Sum(A)
requires total > 0.0
ensures -1 <= i < A.Length
ensures SumUpto(A, i) <= (p/100.0) * total
ensures i+1 < A.Length ==> SumUpto(A, i+1) > (p/100.0) * total
{
i := -1;
var s: real := 0.0;
while i+1 != A.Length && s + A[i+1] <= (p/100.0) * total
invariant -1 <= i < A.Length
invariant s == SumUpto(A, i)
invariant s <= (p/100.0) * total
{
i := i + 1;
s := s + A[i];
}
}
// example showing that, with the original postcondition, the answer is non-unique!
method PercentileNonUniqueAnswer() returns (p: real, A: array<real>, total: real, i1: int, i2: int)
ensures forall i | 0 <= i < A.Length :: A[i] > 0.0
ensures 0.0 <= p <= 100.0
ensures total == Sum(A)
ensures total > 0.0
ensures -1 <= i1 < A.Length
ensures SumUpto(A, i1) <= (p/100.0) * total
ensures i1+1 < A.Length ==> SumUpto(A, i1+1) >= (p/100.0) * total
ensures -1 <= i2 < A.Length
ensures SumUpto(A, i2) <= (p/100.0) * total
ensures i2+1 < A.Length ==> SumUpto(A, i2+1) >= (p/100.0) * total
ensures i1 != i2
{
p := 100.0;
A := new real[1];
A[0] := 1.0;
total := 1.0;
assert SumUpto(A, 0) == 1.0;
i1 := -1;
i2 := 0;
}
// proof that, with the corrected postcondition, the answer is unique
lemma PercentileUniqueAnswer(p: real, A: array<real>, total: real, i1: int, i2: int)
requires forall i | 0 <= i < A.Length :: A[i] > 0.0
requires 0.0 <= p <= 100.0
requires total == Sum(A)
requires total > 0.0
requires -1 <= i1 < A.Length
requires SumUpto(A, i1) <= (p/100.0) * total
requires i1+1 < A.Length ==> SumUpto(A, i1+1) > (p/100.0) * total
requires -1 <= i2 < A.Length
requires SumUpto(A, i2) <= (p/100.0) * total
requires i2+1 < A.Length ==> SumUpto(A, i2+1) > (p/100.0) * total
decreases if i2 < i1 then 1 else 0 // wlog i1 <= i2
ensures i1 == i2
{
if i1+1< i2 {
SumUpto_increase(A, i1+1, i2);
}
}
// lemma for previous proof: when an array has strictly positive elements, the
// sums strictly increase left to right
lemma SumUpto_increase(A: array<real>, end1: int, end2: int)
requires forall i | 0 <= i < A.Length :: A[i] > 0.0
requires -1 <= end1 < A.Length
requires -1 <= end2 < A.Length
requires end1 < end2
ensures SumUpto(A, end1) < SumUpto(A, end2)
{}
| // Sum of elements of A from indices 0 to end.
// end is inclusive! (not James's normal way of thinking!!)
function SumUpto(A: array<real>, end: int): real
requires -1 <= end < A.Length
reads A
{
if end == -1 then
0.0
else
A[end] + SumUpto(A, end-1)
}
function Sum(A: array<real>): real
reads A
{
SumUpto(A, A.Length-1)
}
method Percentile(p: real, A: array<real>, total: real) returns (i: int)
requires forall i | 0 <= i < A.Length :: A[i] > 0.0
requires 0.0 <= p <= 100.0
requires total == Sum(A)
requires total > 0.0
ensures -1 <= i < A.Length
ensures SumUpto(A, i) <= (p/100.0) * total
ensures i+1 < A.Length ==> SumUpto(A, i+1) > (p/100.0) * total
{
i := -1;
var s: real := 0.0;
while i+1 != A.Length && s + A[i+1] <= (p/100.0) * total
{
i := i + 1;
s := s + A[i];
}
}
// example showing that, with the original postcondition, the answer is non-unique!
method PercentileNonUniqueAnswer() returns (p: real, A: array<real>, total: real, i1: int, i2: int)
ensures forall i | 0 <= i < A.Length :: A[i] > 0.0
ensures 0.0 <= p <= 100.0
ensures total == Sum(A)
ensures total > 0.0
ensures -1 <= i1 < A.Length
ensures SumUpto(A, i1) <= (p/100.0) * total
ensures i1+1 < A.Length ==> SumUpto(A, i1+1) >= (p/100.0) * total
ensures -1 <= i2 < A.Length
ensures SumUpto(A, i2) <= (p/100.0) * total
ensures i2+1 < A.Length ==> SumUpto(A, i2+1) >= (p/100.0) * total
ensures i1 != i2
{
p := 100.0;
A := new real[1];
A[0] := 1.0;
total := 1.0;
i1 := -1;
i2 := 0;
}
// proof that, with the corrected postcondition, the answer is unique
lemma PercentileUniqueAnswer(p: real, A: array<real>, total: real, i1: int, i2: int)
requires forall i | 0 <= i < A.Length :: A[i] > 0.0
requires 0.0 <= p <= 100.0
requires total == Sum(A)
requires total > 0.0
requires -1 <= i1 < A.Length
requires SumUpto(A, i1) <= (p/100.0) * total
requires i1+1 < A.Length ==> SumUpto(A, i1+1) > (p/100.0) * total
requires -1 <= i2 < A.Length
requires SumUpto(A, i2) <= (p/100.0) * total
requires i2+1 < A.Length ==> SumUpto(A, i2+1) > (p/100.0) * total
ensures i1 == i2
{
if i1+1< i2 {
SumUpto_increase(A, i1+1, i2);
}
}
// lemma for previous proof: when an array has strictly positive elements, the
// sums strictly increase left to right
lemma SumUpto_increase(A: array<real>, end1: int, end2: int)
requires forall i | 0 <= i < A.Length :: A[i] > 0.0
requires -1 <= end1 < A.Length
requires -1 <= end2 < A.Length
requires end1 < end2
ensures SumUpto(A, end1) < SumUpto(A, end2)
{}
|
281 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_advanced examples_Refinement.dfy | // RUN: /nologo /rlimit:10000000 /noNLarith
abstract module Interface {
function addSome(n: nat): nat
ensures addSome(n) > n
}
abstract module Mod {
import A : Interface
method m() {
assert 6 <= A.addSome(5);
print "Test\n";
}
}
module Implementation refines Interface {
function addSome(n: nat): nat
ensures addSome(n) == n + 1
{
n + 1
}
}
module Mod2 refines Mod {
import A = Implementation
}
method Main() {
Mod2.m();
}
| // RUN: /nologo /rlimit:10000000 /noNLarith
abstract module Interface {
function addSome(n: nat): nat
ensures addSome(n) > n
}
abstract module Mod {
import A : Interface
method m() {
print "Test\n";
}
}
module Implementation refines Interface {
function addSome(n: nat): nat
ensures addSome(n) == n + 1
{
n + 1
}
}
module Mod2 refines Mod {
import A = Implementation
}
method Main() {
Mod2.m();
}
|
282 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_advanced examples_ReverseString.dfy | // RUN: /compile:0
predicate reversed (arr : array<char>, outarr: array<char>)
requires arr != null && outarr != null
//requires 0<=k<=arr.Length-1
requires arr.Length == outarr.Length
reads arr, outarr
{
forall k :: 0<=k<=arr.Length-1 ==> outarr[k] == arr[(arr.Length-1-k)]
}
method yarra(arr : array<char>) returns (outarr : array<char>)
requires arr != null && arr.Length > 0
ensures outarr != null && arr.Length == outarr.Length && reversed(arr,outarr)
{
var i:= 0;
var j:= arr.Length-1;
outarr := new char[arr.Length];
outarr[0] := arr[j];
i := i+1;
j := j-1;
while i<arr.Length && 0<=j<arr.Length
invariant 0<=i<=arr.Length
invariant j == arr.Length - 1 - i
invariant forall k | 0 <= k < i :: outarr[k] == arr[arr.Length-1-k]
decreases arr.Length-i, j
{
outarr[i] := arr[j];
i:=i+1;
j:=j-1;
}
//return outarr;
}
method Main()
{
var s := ['a','b','a','b','a','b','a','b','a','b','a','b'];
var a,b,c,d := new char[5], new char[5], new char[5], new char[5];
a[0], a[1], a[2], a[3], a[4] := 'y', 'a', 'r', 'r', 'a';
d[0], d[1], d[2], d[3], d[4] := 'y', 'a', 'r', 'r', 'a';
b := yarra(a);
c := yarra(b);
assert c[..] == a[..];
//assert c.Length > -2;
//assert d[0] == a[0];
//print c; print a;
}
| // RUN: /compile:0
predicate reversed (arr : array<char>, outarr: array<char>)
requires arr != null && outarr != null
//requires 0<=k<=arr.Length-1
requires arr.Length == outarr.Length
reads arr, outarr
{
forall k :: 0<=k<=arr.Length-1 ==> outarr[k] == arr[(arr.Length-1-k)]
}
method yarra(arr : array<char>) returns (outarr : array<char>)
requires arr != null && arr.Length > 0
ensures outarr != null && arr.Length == outarr.Length && reversed(arr,outarr)
{
var i:= 0;
var j:= arr.Length-1;
outarr := new char[arr.Length];
outarr[0] := arr[j];
i := i+1;
j := j-1;
while i<arr.Length && 0<=j<arr.Length
{
outarr[i] := arr[j];
i:=i+1;
j:=j-1;
}
//return outarr;
}
method Main()
{
var s := ['a','b','a','b','a','b','a','b','a','b','a','b'];
var a,b,c,d := new char[5], new char[5], new char[5], new char[5];
a[0], a[1], a[2], a[3], a[4] := 'y', 'a', 'r', 'r', 'a';
d[0], d[1], d[2], d[3], d[4] := 'y', 'a', 'r', 'r', 'a';
b := yarra(a);
c := yarra(b);
//assert c.Length > -2;
//assert d[0] == a[0];
//print c; print a;
}
|
283 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_advanced examples_demo.dfy | method Partition(a: array<int>) returns (lo: int, hi: int)
modifies a
ensures 0 <= lo <= hi <= a.Length
ensures forall x | 0 <= x < lo :: a[x] < 0
ensures forall x | lo <= x < hi :: a[x] == 0
ensures forall x | hi <= x < a.Length :: a[x] > 0
{
var i := 0;
var j := a.Length;
var k := a.Length;
while i < j
invariant 0 <= i <= j <= k <= a.Length
invariant forall x | 0 <= x < i :: a[x] < 0
invariant forall x | j <= x < k :: a[x] == 0
invariant forall x | k <= x < a.Length :: a[x] > 0
{
if a[i] < 0 {
i := i + 1;
} else if a[i] == 0 {
var current := a[i];
a[i] := a[j-1];
a[j-1] := current;
j := j - 1;
} else {
assert a[i] > 0;
var current := a[i];
a[i] := a[j-1];
a[j-1] := a[k-1];
a[k-1] := current;
j := j - 1;
k := k - 1;
}
}
return i, k;
}
| method Partition(a: array<int>) returns (lo: int, hi: int)
modifies a
ensures 0 <= lo <= hi <= a.Length
ensures forall x | 0 <= x < lo :: a[x] < 0
ensures forall x | lo <= x < hi :: a[x] == 0
ensures forall x | hi <= x < a.Length :: a[x] > 0
{
var i := 0;
var j := a.Length;
var k := a.Length;
while i < j
{
if a[i] < 0 {
i := i + 1;
} else if a[i] == 0 {
var current := a[i];
a[i] := a[j-1];
a[j-1] := current;
j := j - 1;
} else {
var current := a[i];
a[i] := a[j-1];
a[j-1] := a[k-1];
a[k-1] := current;
j := j - 1;
k := k - 1;
}
}
return i, k;
}
|
284 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_ProgramProofs_ch15.dfy | predicate SplitPoint(a: array<int>, n: int)
reads a
requires 0 <= n <= n
{
forall i,j :: 0 <= i < n <= j < a.Length ==> a[i] <= a[j]
}
method SelectionSort(a: array<int>)
modifies a
ensures forall i,j :: 0 <= i < j < a.Length ==> a[i] <= a[j]
ensures multiset(a[..]) == old(multiset(a[..]))
{
var n := 0;
while n != a.Length
invariant 0 <= n <= a.Length
invariant forall i,j :: 0 <= i < j < n ==> a[i] <= a[j]
// invariant forall i,j :: 0 <= i < n <= j < a.Length ==> a[i] <= a[j]
invariant SplitPoint(a, n)
invariant multiset(a[..]) == old(multiset(a[..]))
{
var mindex, m := n, n;
while m != a.Length
invariant n <= m <= a.Length && n <= mindex < a.Length
invariant forall i :: n <= i < m ==> a[mindex] <= a[i]
{
if a[m] < a[mindex] {
mindex := m;
}
m := m + 1;
}
a[n], a[mindex] := a[mindex], a[n];
assert forall i,j :: 0 <= i < j < n ==> a[i] <= a[j];
n := n + 1;
}
}
method QuickSort(a: array<int>)
modifies a
ensures forall i,j :: 0 <= i < j < a.Length ==> a[i] <= a[j]
ensures multiset(a[..]) == old(multiset(a[..]))
{
QuickSortAux(a, 0, a.Length);
}
twostate predicate SwapFrame(a: array<int>, lo: int, hi: int)
requires 0 <= lo <= hi <= a.Length
reads a
{
(forall i :: 0 <= i < lo || hi <= i < a.Length ==> a[i] == old(a[i])) && multiset(a[..]) == old(multiset(a[..]))
}
method QuickSortAux(a: array<int>, lo: int, hi: int)
requires 0 <= lo <= hi <= a.Length
requires SplitPoint(a, lo) && SplitPoint(a, hi)
modifies a
ensures forall i,j :: lo <= i < j < hi ==> a[i] <= a[j]
ensures SwapFrame(a, lo, hi)
ensures SplitPoint(a, lo) && SplitPoint(a, hi)
decreases hi - lo
{
if 2 <= hi - lo {
var p := Partition(a, lo, hi);
QuickSortAux(a, lo, p);
QuickSortAux(a, p + 1, hi);
}
}
method Partition(a: array<int>, lo: int, hi: int) returns (p: int)
requires 0 <= lo < hi <= a.Length
requires SplitPoint(a, lo) && SplitPoint(a, hi)
modifies a
ensures lo <= p < hi
ensures forall i :: lo <= i < p ==> a[i] < a[p]
ensures forall i :: p <= i < hi ==> a[p] <= a[i]
ensures SplitPoint(a, lo) && SplitPoint(a, hi)
ensures SwapFrame(a, lo, hi)
{
var pivot := a[lo];
var m, n := lo + 1, hi;
while m < n
invariant lo + 1 <= m <= n <= hi
invariant a[lo] == pivot
invariant forall i :: lo + 1 <= i < m ==> a[i] < pivot
invariant forall i :: n <= i < hi ==> pivot <= a[i]
invariant SplitPoint(a, lo) && SplitPoint(a, hi)
invariant SwapFrame(a, lo, hi)
{
if a[m] < pivot {
m := m + 1;
} else {
a[m], a[n-1] := a[n-1], a[m];
n := n - 1;
}
}
a[lo], a[m - 1] := a[m - 1], a[lo];
return m - 1;
}
| predicate SplitPoint(a: array<int>, n: int)
reads a
requires 0 <= n <= n
{
forall i,j :: 0 <= i < n <= j < a.Length ==> a[i] <= a[j]
}
method SelectionSort(a: array<int>)
modifies a
ensures forall i,j :: 0 <= i < j < a.Length ==> a[i] <= a[j]
ensures multiset(a[..]) == old(multiset(a[..]))
{
var n := 0;
while n != a.Length
// invariant forall i,j :: 0 <= i < n <= j < a.Length ==> a[i] <= a[j]
{
var mindex, m := n, n;
while m != a.Length
{
if a[m] < a[mindex] {
mindex := m;
}
m := m + 1;
}
a[n], a[mindex] := a[mindex], a[n];
n := n + 1;
}
}
method QuickSort(a: array<int>)
modifies a
ensures forall i,j :: 0 <= i < j < a.Length ==> a[i] <= a[j]
ensures multiset(a[..]) == old(multiset(a[..]))
{
QuickSortAux(a, 0, a.Length);
}
twostate predicate SwapFrame(a: array<int>, lo: int, hi: int)
requires 0 <= lo <= hi <= a.Length
reads a
{
(forall i :: 0 <= i < lo || hi <= i < a.Length ==> a[i] == old(a[i])) && multiset(a[..]) == old(multiset(a[..]))
}
method QuickSortAux(a: array<int>, lo: int, hi: int)
requires 0 <= lo <= hi <= a.Length
requires SplitPoint(a, lo) && SplitPoint(a, hi)
modifies a
ensures forall i,j :: lo <= i < j < hi ==> a[i] <= a[j]
ensures SwapFrame(a, lo, hi)
ensures SplitPoint(a, lo) && SplitPoint(a, hi)
{
if 2 <= hi - lo {
var p := Partition(a, lo, hi);
QuickSortAux(a, lo, p);
QuickSortAux(a, p + 1, hi);
}
}
method Partition(a: array<int>, lo: int, hi: int) returns (p: int)
requires 0 <= lo < hi <= a.Length
requires SplitPoint(a, lo) && SplitPoint(a, hi)
modifies a
ensures lo <= p < hi
ensures forall i :: lo <= i < p ==> a[i] < a[p]
ensures forall i :: p <= i < hi ==> a[p] <= a[i]
ensures SplitPoint(a, lo) && SplitPoint(a, hi)
ensures SwapFrame(a, lo, hi)
{
var pivot := a[lo];
var m, n := lo + 1, hi;
while m < n
{
if a[m] < pivot {
m := m + 1;
} else {
a[m], a[n-1] := a[n-1], a[m];
n := n - 1;
}
}
a[lo], a[m - 1] := a[m - 1], a[lo];
return m - 1;
}
|
285 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_examples_bubblesort.dfy | //https://stackoverflow.com/questions/69364687/how-to-prove-time-complexity-of-bubble-sort-using-dafny
function NChoose2(n: int): int
{
n * (n - 1) / 2
}
// sum of all integers in the range [lo, hi)
// (inclusive of lo, exclusive of hi)
function SumRange(lo: int, hi: int): int
decreases hi - lo
{
if lo >= hi then 0
else SumRange(lo, hi - 1) + hi - 1
}
// dafny proves this automatically by induction
lemma SumRangeNChoose2(n: nat)
ensures SumRange(0, n) == NChoose2(n)
{}
// dafny proves this automatically by induction
// (given the correct decreases clause)
lemma SumRangeUnrollLeft(lo: int, hi: int)
decreases hi - lo
ensures SumRange(lo, hi) ==
if lo >= hi then 0 else lo + SumRange(lo + 1, hi)
{}
method BubbleSort(a: array<int>) returns (n: nat)
modifies a
ensures n <= NChoose2(a.Length)
{
// it simplifies the remaining invariants to handle the empty array here
if a.Length == 0 { return 0; }
var i := a.Length - 1;
n := 0;
while i > 0
invariant 0 <= i < a.Length
invariant n <= SumRange(i+1, a.Length)
{
var j := 0;
while j < i
invariant n <= SumRange(i+1, a.Length) + j
invariant j <= i
{
if a[j] > a[j+1]
{
a[j], a[j+1] := a[j+1], a[j];
n := n + 1;
}
j := j + 1;
}
assert n <= SumRange(i, a.Length) by {
SumRangeUnrollLeft(i, a.Length); // see lemma below
}
i := i - 1;
}
calc <= {
n; // less or equal to next line by the loop invariant
SumRange(1, a.Length);
{ SumRangeUnrollLeft(0, a.Length); }
SumRange(0, a.Length);
{ SumRangeNChoose2(a.Length); } // see lemma below
NChoose2(a.Length);
}
}
| //https://stackoverflow.com/questions/69364687/how-to-prove-time-complexity-of-bubble-sort-using-dafny
function NChoose2(n: int): int
{
n * (n - 1) / 2
}
// sum of all integers in the range [lo, hi)
// (inclusive of lo, exclusive of hi)
function SumRange(lo: int, hi: int): int
{
if lo >= hi then 0
else SumRange(lo, hi - 1) + hi - 1
}
// dafny proves this automatically by induction
lemma SumRangeNChoose2(n: nat)
ensures SumRange(0, n) == NChoose2(n)
{}
// dafny proves this automatically by induction
// (given the correct decreases clause)
lemma SumRangeUnrollLeft(lo: int, hi: int)
ensures SumRange(lo, hi) ==
if lo >= hi then 0 else lo + SumRange(lo + 1, hi)
{}
method BubbleSort(a: array<int>) returns (n: nat)
modifies a
ensures n <= NChoose2(a.Length)
{
// it simplifies the remaining invariants to handle the empty array here
if a.Length == 0 { return 0; }
var i := a.Length - 1;
n := 0;
while i > 0
{
var j := 0;
while j < i
{
if a[j] > a[j+1]
{
a[j], a[j+1] := a[j+1], a[j];
n := n + 1;
}
j := j + 1;
}
SumRangeUnrollLeft(i, a.Length); // see lemma below
}
i := i - 1;
}
calc <= {
n; // less or equal to next line by the loop invariant
SumRange(1, a.Length);
{ SumRangeUnrollLeft(0, a.Length); }
SumRange(0, a.Length);
{ SumRangeNChoose2(a.Length); } // see lemma below
NChoose2(a.Length);
}
}
|
286 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_examples_relativeOrder.dfy |
predicate IsEven (n: int)
{
n % 2 == 0
}
method FindEvenNumbers (arr: array<int>)
returns (evenNumbers: array<int>)
ensures forall x :: x in arr[..] && IsEven(x) ==> x in evenNumbers[..];
ensures forall x :: x !in arr[..] ==> x !in evenNumbers[..]
ensures forall k, l :: 0 <= k < l < evenNumbers.Length ==>
exists n, m :: 0 <= n < m < arr.Length && evenNumbers[k] == arr[n] && evenNumbers[l] == arr[m]
{
var evenList: seq<int> := [];
ghost var indices: seq<int> := [];
for i := 0 to arr.Length
invariant 0 <= i <= arr.Length
invariant 0 <= |evenList| <= i
invariant forall x :: x in arr[..i] && IsEven(x) ==> x in evenList[..]
invariant forall x :: x !in arr[..i] ==> x !in evenList
invariant |evenList| == |indices|
invariant forall k :: 0 <= k < |indices| ==> indices[k] < i
invariant forall k, l :: 0 <= k < l < |indices| ==> indices[k] < indices[l]
invariant forall k :: 0 <= k < |evenList| ==> 0 <= indices[k] < i <= arr.Length && arr[indices[k]] == evenList[k]
invariant forall k, l :: 0 <= k < l < |evenList| ==>
exists n, m :: 0 <= n < m < i && evenList[k] == arr[n] && evenList[l] == arr[m]
{
if IsEven(arr[i])
{
evenList := evenList + [arr[i]];
indices := indices + [i];
}
}
evenNumbers := new int[|evenList|](i requires 0 <= i < |evenList| => evenList[i]);
assert evenList == evenNumbers[..];
}
|
predicate IsEven (n: int)
{
n % 2 == 0
}
method FindEvenNumbers (arr: array<int>)
returns (evenNumbers: array<int>)
ensures forall x :: x in arr[..] && IsEven(x) ==> x in evenNumbers[..];
ensures forall x :: x !in arr[..] ==> x !in evenNumbers[..]
ensures forall k, l :: 0 <= k < l < evenNumbers.Length ==>
exists n, m :: 0 <= n < m < arr.Length && evenNumbers[k] == arr[n] && evenNumbers[l] == arr[m]
{
var evenList: seq<int> := [];
ghost var indices: seq<int> := [];
for i := 0 to arr.Length
exists n, m :: 0 <= n < m < i && evenList[k] == arr[n] && evenList[l] == arr[m]
{
if IsEven(arr[i])
{
evenList := evenList + [arr[i]];
indices := indices + [i];
}
}
evenNumbers := new int[|evenList|](i requires 0 <= i < |evenList| => evenList[i]);
}
|
287 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_examples_simpleMultiplication.dfy |
method Foo(y: int, x: int) returns (z: int)
requires 0 <= y
ensures z == x*y
{
var a: int := 0;
z := 0;
while a != y
invariant 0 <= a <= y
invariant z == a*x
decreases y-a
{
z := z + x;
a := a + 1;
}
return z;
}
function stringToSet(s: string): (r: set<char>)
ensures forall x :: 0 <= x < |s| ==> s[x] in r
{
set x | 0 <= x < |s| :: s[x]
}
//ensures forall a, b :: 0 <= a < b < |s| ==> forall k, j :: a <=k < j <=b ==> k !=j ==> s[k] != s[j] ==> b-a <= longest
// lemma stringSet(s: string)
//
// {
// if |s| != 0 {
// }
// }
method Main() {
var sample: string := "test";
var foof := Foo(3,4);
var test: set<char> := stringToSet(sample);
// var test := set x | 0 <= x < |sample| :: sample[x];
assert test == stringToSet(sample);
assert forall x :: 0 <= x < |sample| ==> sample[x] in test;
assert 't' in sample;
assert 't' in test;
print foof;
}
|
method Foo(y: int, x: int) returns (z: int)
requires 0 <= y
ensures z == x*y
{
var a: int := 0;
z := 0;
while a != y
{
z := z + x;
a := a + 1;
}
return z;
}
function stringToSet(s: string): (r: set<char>)
ensures forall x :: 0 <= x < |s| ==> s[x] in r
{
set x | 0 <= x < |s| :: s[x]
}
//ensures forall a, b :: 0 <= a < b < |s| ==> forall k, j :: a <=k < j <=b ==> k !=j ==> s[k] != s[j] ==> b-a <= longest
// lemma stringSet(s: string)
//
// {
// if |s| != 0 {
// }
// }
method Main() {
var sample: string := "test";
var foof := Foo(3,4);
var test: set<char> := stringToSet(sample);
// var test := set x | 0 <= x < |sample| :: sample[x];
print foof;
}
|
288 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_heap2.dfy | class Heap {
var arr: array<int>
constructor Heap (input: array<int>)
ensures this.arr == input {
this.arr := input;
}
function parent(idx: int): int
{
if idx == 0 then -1
else if idx % 2 == 0 then (idx-2)/2
else (idx-1)/2
}
predicate IsMaxHeap(input: seq<int>)
{
forall i :: 0 <= i < |input| ==>
&& (2*i+1 < |input| ==> input[i] >= input[2*i+1])
&& (2*i+2 < |input| ==> input[i] >= input[2*i+2])
}
predicate IsAlmostMaxHeap(input: seq<int>, idx: int)
requires 0 <= idx
{
&& (forall i :: 0 <= i < |input| ==>
&& (2*i+1 < |input| && i != idx ==> input[i] >= input[2*i+1])
&& (2*i+2 < |input| && i != idx ==> input[i] >= input[2*i+2]))
&& (0 <= parent(idx) < |input| && 2*idx+1 < |input| ==> input[parent(idx)] >= input[2*idx+1])
&& (0 <= parent(idx) < |input| && 2*idx+2 < |input| ==> input[parent(idx)] >= input[2*idx+2])
}
method heapify(idx: int)
returns (nidx: int)
modifies this, this.arr
requires 0 <= idx < this.arr.Length
requires IsAlmostMaxHeap(this.arr[..], idx)
ensures nidx == -1 || idx < nidx < this.arr.Length
ensures nidx == -1 ==> IsMaxHeap(this.arr[..])
ensures idx < nidx < this.arr.Length ==> IsAlmostMaxHeap(this.arr[..], nidx)
{
if (2*idx+1 >= this.arr.Length) && (2*idx+2 >= this.arr.Length) {
nidx := -1;
assert IsMaxHeap(this.arr[..]);
return;
}
else {
assert 2*idx+1 < this.arr.Length || 2*idx+2 < this.arr.Length;
nidx := idx;
if 2*idx+1 < this.arr.Length && this.arr[nidx] < this.arr[2*idx+1] {
nidx := 2*idx+1;
}
if 2*idx+2 < this.arr.Length && this.arr[nidx] < this.arr[2*idx+2] {
nidx := 2*idx+2;
}
if nidx == idx {
nidx := -1;
return;
}
else {
assert nidx == 2*idx+1 || nidx == 2*idx+2;
this.arr[idx], this.arr[nidx] := this.arr[nidx], this.arr[idx];
forall i | 0 <= i < this.arr.Length
ensures (i != nidx) && (2*i+1 < this.arr.Length) ==> (this.arr[i] >= this.arr[2*i+1]) {
if (i != nidx) && (2*i+1 < this.arr.Length) {
if 2*i+1 == idx {
assert this.arr[i] >= this.arr[2*i+1];
}
}
}
forall i | 0 <= i < this.arr.Length
ensures (i != nidx) && (2*i+2 < this.arr.Length) ==> (this.arr[i] >= this.arr[2*i+2]) {
if (i != nidx) && (2*i+2 < this.arr.Length) {
if 2*i+2 == idx {
assert this.arr[i] >= this.arr[2*i+2];
}
}
}
}
}
}
}
| class Heap {
var arr: array<int>
constructor Heap (input: array<int>)
ensures this.arr == input {
this.arr := input;
}
function parent(idx: int): int
{
if idx == 0 then -1
else if idx % 2 == 0 then (idx-2)/2
else (idx-1)/2
}
predicate IsMaxHeap(input: seq<int>)
{
forall i :: 0 <= i < |input| ==>
&& (2*i+1 < |input| ==> input[i] >= input[2*i+1])
&& (2*i+2 < |input| ==> input[i] >= input[2*i+2])
}
predicate IsAlmostMaxHeap(input: seq<int>, idx: int)
requires 0 <= idx
{
&& (forall i :: 0 <= i < |input| ==>
&& (2*i+1 < |input| && i != idx ==> input[i] >= input[2*i+1])
&& (2*i+2 < |input| && i != idx ==> input[i] >= input[2*i+2]))
&& (0 <= parent(idx) < |input| && 2*idx+1 < |input| ==> input[parent(idx)] >= input[2*idx+1])
&& (0 <= parent(idx) < |input| && 2*idx+2 < |input| ==> input[parent(idx)] >= input[2*idx+2])
}
method heapify(idx: int)
returns (nidx: int)
modifies this, this.arr
requires 0 <= idx < this.arr.Length
requires IsAlmostMaxHeap(this.arr[..], idx)
ensures nidx == -1 || idx < nidx < this.arr.Length
ensures nidx == -1 ==> IsMaxHeap(this.arr[..])
ensures idx < nidx < this.arr.Length ==> IsAlmostMaxHeap(this.arr[..], nidx)
{
if (2*idx+1 >= this.arr.Length) && (2*idx+2 >= this.arr.Length) {
nidx := -1;
return;
}
else {
nidx := idx;
if 2*idx+1 < this.arr.Length && this.arr[nidx] < this.arr[2*idx+1] {
nidx := 2*idx+1;
}
if 2*idx+2 < this.arr.Length && this.arr[nidx] < this.arr[2*idx+2] {
nidx := 2*idx+2;
}
if nidx == idx {
nidx := -1;
return;
}
else {
this.arr[idx], this.arr[nidx] := this.arr[nidx], this.arr[idx];
forall i | 0 <= i < this.arr.Length
ensures (i != nidx) && (2*i+1 < this.arr.Length) ==> (this.arr[i] >= this.arr[2*i+1]) {
if (i != nidx) && (2*i+1 < this.arr.Length) {
if 2*i+1 == idx {
}
}
}
forall i | 0 <= i < this.arr.Length
ensures (i != nidx) && (2*i+2 < this.arr.Length) ==> (this.arr[i] >= this.arr[2*i+2]) {
if (i != nidx) && (2*i+2 < this.arr.Length) {
if 2*i+2 == idx {
}
}
}
}
}
}
}
|
289 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_leetcode_BoatsToSavePeople.dfy | /*
function numRescueBoats(people: number[], limit: number): number {
//people.sort((a,b) => a-b);
binsort(people, limit);
let boats = 0;
let lower = 0, upper = people.length-1;
while(lower <= upper) {
if(people[upper] == limit || people[upper]+people[lower] > limit) {
boats++
upper--;
}else if(people[upper]+people[lower] <= limit) {
upper--;
lower++;
boats++;
}
}
return boats;
};
nums[k++] = i+1;
function binsort(nums: number[], limit: number) {
let result = new Array(limit);
result.fill(0);
for(let i = 0; i < nums.length; i++) {
result[nums[i]-1]++;
}
var k = 0;
for(let i=0; i < result.length; i++) {
for(let j = 0; j < result[i]; j++) {
nums[k++] = i+1;
}
}
}
*/
function sumBoat(s: seq<nat>): nat
requires 1 <= |s| <= 2
{
if |s| == 1 then s[0] else s[0] + s[1]
}
predicate isSafeBoat(boat: seq<nat>, limit: nat) {
1 <= |boat| <= 2 && sumBoat(boat) <= limit
}
function multisetAdd(ss: seq<seq<nat>>): multiset<nat> {
if ss == [] then multiset{} else multiset(ss[0]) + multisetAdd(ss[1..])
}
predicate multisetEqual(ss: seq<seq<nat>>, xs: seq<nat>) {
multiset(xs) == multisetAdd(ss)
}
predicate allSafe(boats: seq<seq<nat>>, limit: nat) {
forall boat :: boat in boats ==> isSafeBoat(boat, limit)
}
predicate sorted(list: seq<int>)
{
forall i,j :: 0 <= i < j < |list| ==> list[i] <= list[j]
}
method numRescueBoats(people: seq<nat>, limit: nat) returns (boats: nat)
requires |people| >= 1
requires sorted(people)
requires forall i: nat :: i < |people| ==> 1 <= people[i] <= limit
ensures exists boatConfig: seq<seq<nat>> :: multisetEqual(boatConfig, people) && allSafe(boatConfig, limit) && boats == |boatConfig|// && forall boatConfigs :: multisetEqual(boatConfigs, people) && allSafe(boatConfigs, limit) ==> boats <= |boatConfigs|
{
boats := 0;
var lower: nat := 0;
var upper: int := |people| - 1;
ghost var visitedUpper: multiset<nat> := multiset{};
ghost var visitedLower: multiset<nat> := multiset{};
ghost var remaining: multiset<nat> := multiset(people);
ghost var safeBoats: seq<seq<nat>> := [];
while lower <= upper
invariant 0 <= lower <= |people|
invariant lower-1 <= upper < |people|
invariant visitedUpper == multiset(people[upper+1..])
invariant visitedLower == multiset(people[..lower])
invariant allSafe(safeBoats, limit)
invariant multisetAdd(safeBoats) == visitedLower + visitedUpper;
invariant |safeBoats| == boats
{
if people[upper] == limit || people[upper] + people[lower] > limit {
boats := boats + 1;
assert isSafeBoat([people[upper]], limit);
safeBoats := [[people[upper]]] + safeBoats;
assert visitedUpper == multiset(people[upper+1..]);
ghost var gu := people[upper+1..];
assert multiset(gu) == visitedUpper;
assert people[upper..] == [people[upper]] + gu;
visitedUpper := visitedUpper + multiset{people[upper]};
upper := upper - 1;
assert people[(upper+1)..] == [people[upper+1]] + gu;
}else{
ghost var gl := people[..lower];
boats := boats + 1;
if lower == upper {
visitedLower := visitedLower + multiset{people[lower]};
assert isSafeBoat([people[lower]], limit);
safeBoats := [[people[lower]]] + safeBoats;
}else{
ghost var gu := people[upper+1..];
assert multiset(gu) == visitedUpper;
visitedUpper := visitedUpper + multiset{people[upper]};
visitedLower := visitedLower + multiset{people[lower]};
assert isSafeBoat([people[upper], people[lower]], limit);
safeBoats := [[people[upper], people[lower]]] + safeBoats;
upper := upper - 1;
assert people[(upper+1)..] == [people[upper+1]] + gu;
}
lower := lower + 1;
assert people[..lower] == gl + [people[lower-1]];
}
}
assert visitedLower == multiset(people[..lower]);
assert visitedUpper == multiset(people[upper+1..]);
assert upper+1 == lower;
assert people == people[..lower] + people[upper+1..];
assert visitedLower + visitedUpper == multiset(people);
}
/*
limit 3
[3,2,2,1]
lower = 0
upper = 3
upper = 2
lower= 0
lower = 1
upper = 1
lower = 2 [..2]
upper = 1 [2..]
*/
| /*
function numRescueBoats(people: number[], limit: number): number {
//people.sort((a,b) => a-b);
binsort(people, limit);
let boats = 0;
let lower = 0, upper = people.length-1;
while(lower <= upper) {
if(people[upper] == limit || people[upper]+people[lower] > limit) {
boats++
upper--;
}else if(people[upper]+people[lower] <= limit) {
upper--;
lower++;
boats++;
}
}
return boats;
};
nums[k++] = i+1;
function binsort(nums: number[], limit: number) {
let result = new Array(limit);
result.fill(0);
for(let i = 0; i < nums.length; i++) {
result[nums[i]-1]++;
}
var k = 0;
for(let i=0; i < result.length; i++) {
for(let j = 0; j < result[i]; j++) {
nums[k++] = i+1;
}
}
}
*/
function sumBoat(s: seq<nat>): nat
requires 1 <= |s| <= 2
{
if |s| == 1 then s[0] else s[0] + s[1]
}
predicate isSafeBoat(boat: seq<nat>, limit: nat) {
1 <= |boat| <= 2 && sumBoat(boat) <= limit
}
function multisetAdd(ss: seq<seq<nat>>): multiset<nat> {
if ss == [] then multiset{} else multiset(ss[0]) + multisetAdd(ss[1..])
}
predicate multisetEqual(ss: seq<seq<nat>>, xs: seq<nat>) {
multiset(xs) == multisetAdd(ss)
}
predicate allSafe(boats: seq<seq<nat>>, limit: nat) {
forall boat :: boat in boats ==> isSafeBoat(boat, limit)
}
predicate sorted(list: seq<int>)
{
forall i,j :: 0 <= i < j < |list| ==> list[i] <= list[j]
}
method numRescueBoats(people: seq<nat>, limit: nat) returns (boats: nat)
requires |people| >= 1
requires sorted(people)
requires forall i: nat :: i < |people| ==> 1 <= people[i] <= limit
ensures exists boatConfig: seq<seq<nat>> :: multisetEqual(boatConfig, people) && allSafe(boatConfig, limit) && boats == |boatConfig|// && forall boatConfigs :: multisetEqual(boatConfigs, people) && allSafe(boatConfigs, limit) ==> boats <= |boatConfigs|
{
boats := 0;
var lower: nat := 0;
var upper: int := |people| - 1;
ghost var visitedUpper: multiset<nat> := multiset{};
ghost var visitedLower: multiset<nat> := multiset{};
ghost var remaining: multiset<nat> := multiset(people);
ghost var safeBoats: seq<seq<nat>> := [];
while lower <= upper
{
if people[upper] == limit || people[upper] + people[lower] > limit {
boats := boats + 1;
safeBoats := [[people[upper]]] + safeBoats;
ghost var gu := people[upper+1..];
visitedUpper := visitedUpper + multiset{people[upper]};
upper := upper - 1;
}else{
ghost var gl := people[..lower];
boats := boats + 1;
if lower == upper {
visitedLower := visitedLower + multiset{people[lower]};
safeBoats := [[people[lower]]] + safeBoats;
}else{
ghost var gu := people[upper+1..];
visitedUpper := visitedUpper + multiset{people[upper]};
visitedLower := visitedLower + multiset{people[lower]};
safeBoats := [[people[upper], people[lower]]] + safeBoats;
upper := upper - 1;
}
lower := lower + 1;
}
}
}
/*
limit 3
[3,2,2,1]
lower = 0
upper = 3
upper = 2
lower= 0
lower = 1
upper = 1
lower = 2 [..2]
upper = 1 [2..]
*/
|
290 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_leetcode_FindPivotIndex.dfy | /*
https://leetcode.com/problems/find-pivot-index/description/
Given an array of integers nums, calculate the pivot index of this array.
The pivot index is the index where the sum of all the numbers strictly to the left of the index is equal to the sum of all the numbers strictly to the index's right.
If the index is on the left edge of the array, then the left sum is 0 because there are no elements to the left. This also applies to the right edge of the array.
Return the leftmost pivot index. If no such index exists, return -1.
Example 1:
Input: nums = [1,7,3,6,5,6]
Output: 3
Explanation:
The pivot index is 3.
Left sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11
Right sum = nums[4] + nums[5] = 5 + 6 = 11
Example 2:
Input: nums = [1,2,3]
Output: -1
Explanation:
There is no index that satisfies the conditions in the problem statement.
Example 3:
Input: nums = [2,1,-1]
Output: 0
Explanation:
The pivot index is 0.
Left sum = 0 (no elements to the left of index 0)
Right sum = nums[1] + nums[2] = 1 + -1 = 0
```TypeScript
function pivotIndex(nums: number[]): number {
const n = nums.length;
let leftsums = [0], rightsums = [0];
for(let i=1; i < n+1; i++) {
leftsums.push(nums[i-1]+leftsums[i-1]);
rightsums.push(nums[n-i]+rightsums[i-1]);
}
for(let i=0; i <= n; i++) {
if(leftsums[i] == rightsums[n-(i+1)]) return i;
}
return -1;
};
```
*/
function sum(nums: seq<int>): int {
// if |nums| == 0 then 0 else nums[0]+sum(nums[1..])
if |nums| == 0 then 0 else sum(nums[0..(|nums|-1)])+nums[|nums|-1]
}
function sumUp(nums: seq<int>): int {
if |nums| == 0 then 0 else nums[0]+sumUp(nums[1..])
}
// By Divyanshu Ranjan
lemma sumUpLemma(a: seq<int>, b: seq<int>)
ensures sumUp(a + b) == sumUp(a) + sumUp(b)
{
if a == [] {
assert a + b == b;
}
else {
sumUpLemma(a[1..], b);
calc {
sumUp(a + b);
{
assert (a + b)[0] == a[0];
assert (a + b)[1..] == a[1..] + b;
}
a[0] + sumUp(a[1..] + b);
a[0] + sumUp(a[1..]) + sumUp(b);
}
}
}
// By Divyanshu Ranjan
lemma sumsEqual(nums: seq<int>)
decreases |nums|
ensures sum(nums) == sumUp(nums)
{
if nums == [] {}
else {
var ln := |nums|-1;
calc {
sumUp(nums[..]);
{
assert nums[..] == nums[0..ln] + [nums[ln]];
sumUpLemma(nums[0..ln], [nums[ln]]);
}
sumUp(nums[0..ln]) + sumUp([nums[ln]]);
{
assert forall a:: sumUp([a]) == a;
}
sumUp(nums[0..ln]) + nums[ln];
{
sumsEqual(nums[0..ln]);
}
sum(nums[0..ln]) + nums[ln];
}
}
}
method FindPivotIndex(nums: seq<int>) returns (index: int)
requires |nums| > 0
ensures index == -1 ==> forall k: nat :: k < |nums| ==> sum(nums[0..k]) != sum(nums[(k+1)..])
ensures 0 <= index < |nums| ==> sum(nums[0..index]) == sum(nums[(index+1)..])
{
var leftsums: seq<int> := [0];
var rightsums: seq<int> := [0];
var i := 1;
assert leftsums[0] == sum(nums[0..0]);
assert rightsums[0] == sumUp(nums[|nums|..]);
while i < |nums|+1
invariant 1 <= i <= |nums|+1
invariant |leftsums| == i
invariant |rightsums| == i
invariant forall k: nat :: 0 <= k < i && k <= |nums| ==> leftsums[k] == sum(nums[0..k])
invariant forall k: nat :: 0 <= k < i && k <= |nums| ==> rightsums[k] == sumUp(nums[(|nums|-k)..])
{
leftsums := leftsums + [leftsums[i-1]+nums[i-1]];
assert nums[0..i] == nums[0..i-1]+[nums[i-1]];
rightsums := rightsums + [nums[|nums|-i]+rightsums[i-1]];
i := i + 1;
}
assert forall k: nat :: 0 <= k < i && k <= |nums| ==> rightsums[k] == sum(nums[(|nums|-k)..]) by {
forall k: nat | 0 <= k < i && k <= |nums|
ensures sumUp(nums[(|nums|-k)..]) == sum(nums[(|nums|-k)..])
ensures rightsums[k] == sumUp(nums[(|nums|-k)..])
{
sumsEqual(nums[(|nums|-k)..]);
}
}
i :=0;
while i < |nums|
invariant 0 <= i <= |nums|
invariant forall k: nat :: k < i ==> sum(nums[0..k]) != sum(nums[(k+1)..])
{
var x := |nums|-(i+1);
if leftsums[i] == rightsums[x] {
assert sum(nums[0..i]) == sum(nums[(i+1)..]);
// assert rightsums[i+1] == sum(nums[(|nums|-(i+1))..]);
return i;
}
assert sum(nums[0..i]) != sum(nums[(i+1)..]);
i := i + 1;
}
return -1;
}
| /*
https://leetcode.com/problems/find-pivot-index/description/
Given an array of integers nums, calculate the pivot index of this array.
The pivot index is the index where the sum of all the numbers strictly to the left of the index is equal to the sum of all the numbers strictly to the index's right.
If the index is on the left edge of the array, then the left sum is 0 because there are no elements to the left. This also applies to the right edge of the array.
Return the leftmost pivot index. If no such index exists, return -1.
Example 1:
Input: nums = [1,7,3,6,5,6]
Output: 3
Explanation:
The pivot index is 3.
Left sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11
Right sum = nums[4] + nums[5] = 5 + 6 = 11
Example 2:
Input: nums = [1,2,3]
Output: -1
Explanation:
There is no index that satisfies the conditions in the problem statement.
Example 3:
Input: nums = [2,1,-1]
Output: 0
Explanation:
The pivot index is 0.
Left sum = 0 (no elements to the left of index 0)
Right sum = nums[1] + nums[2] = 1 + -1 = 0
```TypeScript
function pivotIndex(nums: number[]): number {
const n = nums.length;
let leftsums = [0], rightsums = [0];
for(let i=1; i < n+1; i++) {
leftsums.push(nums[i-1]+leftsums[i-1]);
rightsums.push(nums[n-i]+rightsums[i-1]);
}
for(let i=0; i <= n; i++) {
if(leftsums[i] == rightsums[n-(i+1)]) return i;
}
return -1;
};
```
*/
function sum(nums: seq<int>): int {
// if |nums| == 0 then 0 else nums[0]+sum(nums[1..])
if |nums| == 0 then 0 else sum(nums[0..(|nums|-1)])+nums[|nums|-1]
}
function sumUp(nums: seq<int>): int {
if |nums| == 0 then 0 else nums[0]+sumUp(nums[1..])
}
// By Divyanshu Ranjan
lemma sumUpLemma(a: seq<int>, b: seq<int>)
ensures sumUp(a + b) == sumUp(a) + sumUp(b)
{
if a == [] {
}
else {
sumUpLemma(a[1..], b);
calc {
sumUp(a + b);
{
}
a[0] + sumUp(a[1..] + b);
a[0] + sumUp(a[1..]) + sumUp(b);
}
}
}
// By Divyanshu Ranjan
lemma sumsEqual(nums: seq<int>)
ensures sum(nums) == sumUp(nums)
{
if nums == [] {}
else {
var ln := |nums|-1;
calc {
sumUp(nums[..]);
{
sumUpLemma(nums[0..ln], [nums[ln]]);
}
sumUp(nums[0..ln]) + sumUp([nums[ln]]);
{
}
sumUp(nums[0..ln]) + nums[ln];
{
sumsEqual(nums[0..ln]);
}
sum(nums[0..ln]) + nums[ln];
}
}
}
method FindPivotIndex(nums: seq<int>) returns (index: int)
requires |nums| > 0
ensures index == -1 ==> forall k: nat :: k < |nums| ==> sum(nums[0..k]) != sum(nums[(k+1)..])
ensures 0 <= index < |nums| ==> sum(nums[0..index]) == sum(nums[(index+1)..])
{
var leftsums: seq<int> := [0];
var rightsums: seq<int> := [0];
var i := 1;
while i < |nums|+1
{
leftsums := leftsums + [leftsums[i-1]+nums[i-1]];
rightsums := rightsums + [nums[|nums|-i]+rightsums[i-1]];
i := i + 1;
}
forall k: nat | 0 <= k < i && k <= |nums|
ensures sumUp(nums[(|nums|-k)..]) == sum(nums[(|nums|-k)..])
ensures rightsums[k] == sumUp(nums[(|nums|-k)..])
{
sumsEqual(nums[(|nums|-k)..]);
}
}
i :=0;
while i < |nums|
{
var x := |nums|-(i+1);
if leftsums[i] == rightsums[x] {
// assert rightsums[i+1] == sum(nums[(|nums|-(i+1))..]);
return i;
}
i := i + 1;
}
return -1;
}
|
291 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_leetcode_ReverseLinkedList.dfy | /*
https://leetcode.com/problems/reverse-linked-list/description/
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
function reverseList(head: ListNode | null): ListNode | null {
if (head == null) return null;
let curr = head;
let prev = null;
while(curr !== null && curr.next !== null) {
let next = curr.next;
curr.next = prev;
prev = curr;
curr = next;
}
curr.next = prev;
return curr;
};
*/
datatype ListNode = Null | Node(val: nat, next: ListNode)
function reverse<A>(x: seq<A>): seq<A>
{
if x == [] then [] else reverse(x[1..])+[x[0]]
}
function nodeConcat(xs: ListNode, end: ListNode): ListNode {
if xs == Null then end else Node(xs.val, nodeConcat(xs.next, end))
}
function reverseList(xs: ListNode): ListNode
{
if xs == Null then Null else nodeConcat(reverseList(xs.next), Node(xs.val, Null))
}
lemma ConcatNullIsRightIdentity(xs: ListNode)
ensures xs == nodeConcat(xs, Null)
{
}
lemma ConcatNullIsLeftIdentity(xs: ListNode)
ensures xs == nodeConcat(Null, xs)
{
}
lemma ConcatExtensionality(xs: ListNode)
requires xs != Null
ensures nodeConcat(Node(xs.val, Null), xs.next) == xs;
{
}
lemma ConcatAssociative(xs: ListNode, ys: ListNode, zs: ListNode)
ensures nodeConcat(nodeConcat(xs, ys), zs) == nodeConcat(xs, nodeConcat(ys, zs))
{
}
lemma reverseSingleList(xs: ListNode)
requires xs != Null;
requires xs.next == Null;
ensures reverseList(xs) == xs;
{
}
lemma {:verify true} ConcatReverseList(xs:ListNode, ys: ListNode)
ensures reverseList(nodeConcat(xs,ys)) == nodeConcat(reverseList(ys), reverseList(xs))
decreases xs;
{
if xs == Null {
calc {
reverseList(nodeConcat(xs,ys));
== {ConcatNullIsLeftIdentity(ys);}
reverseList(ys);
== {ConcatNullIsRightIdentity(reverseList(ys));}
nodeConcat(reverseList(ys), Null);
nodeConcat(reverseList(ys), xs);
nodeConcat(reverseList(ys), reverseList(xs));
}
}else{
var x := Node(xs.val, Null);
calc {
reverseList(nodeConcat(xs, ys));
reverseList(nodeConcat(nodeConcat(x, xs.next), ys));
== {ConcatAssociative(x, xs.next, ys);}
reverseList(nodeConcat(x, nodeConcat(xs.next, ys)));
nodeConcat(reverseList(nodeConcat(xs.next, ys)), x);
== {ConcatReverseList(xs.next, ys);}
nodeConcat(nodeConcat(reverseList(ys) , reverseList(xs.next)), x);
== {ConcatAssociative(reverseList(ys), reverseList(xs.next), x);}
nodeConcat(reverseList(ys) , nodeConcat(reverseList(xs.next), x));
nodeConcat(reverseList(ys) , reverseList(xs));
}
}
}
lemma reverseReverseListIsIdempotent(xs: ListNode)
ensures reverseList(reverseList(xs)) == xs
{
if xs == Null {
}else{
var x := Node(xs.val, Null);
calc {
reverseList(reverseList(xs));
reverseList(reverseList(nodeConcat(x, xs.next)));
== {ConcatReverseList(x, xs.next);}
reverseList(nodeConcat(reverseList(xs.next), reverseList(x)));
reverseList(nodeConcat(reverseList(xs.next), x));
== {ConcatReverseList(reverseList(xs.next),x);}
nodeConcat(reverseList(x), reverseList(reverseList(xs.next))); //dafny can figure out the rest from here
nodeConcat(x, reverseList(reverseList(xs.next)));
nodeConcat(x, xs.next);
xs;
}
}
}
lemma {:induction false} reversePreservesMultiset<A>(xs: seq<A>)
ensures multiset(xs) == multiset(reverse(xs))
{
if xs == [] {
}else {
var x := xs[0];
assert xs == [x] + xs[1..];
assert multiset(xs) == multiset([x]) + multiset(xs[1..]);
assert reverse(xs) == reverse(xs[1..])+[x];
reversePreservesMultiset(xs[1..]);
assert multiset(xs[1..]) == multiset(reverse(xs[1..]));
}
}
lemma reversePreservesLength<A>(xs: seq<A>)
ensures |xs| == |reverse(xs)|
{
}
lemma lastReverseIsFirst<A>(xs: seq<A>)
requires |xs| > 0
ensures xs[0] == reverse(xs)[|reverse(xs)|-1]
{
reversePreservesLength(xs);
assert |xs| == |reverse(xs)|;
}
lemma firstReverseIsLast<A>(xs: seq<A>)
requires |xs| > 0
ensures reverse(xs)[0] == xs[|xs|-1]
{
}
lemma ReverseConcat<T>(xs: seq<T>, ys: seq<T>)
ensures reverse(xs + ys) == reverse(ys) + reverse(xs)
{
// reveal Reverse();
if |xs| == 0 {
assert xs + ys == ys;
} else {
assert xs + ys == [xs[0]] + (xs[1..] + ys);
}
}
lemma reverseRest<A>(xs: seq<A>)
requires |xs| > 0
ensures reverse(xs) == [xs[ |xs| -1 ] ] + reverse(xs[0..|xs|-1])
{
firstReverseIsLast(xs);
assert xs == xs[0..|xs|-1] + [xs[|xs|-1]];
assert reverse(xs)[0] == xs[ |xs| -1];
assert reverse(xs) == [xs[ |xs| -1]] + reverse(xs)[1..];
calc {
reverse(xs);
reverse(xs[0..|xs|-1] + [xs[|xs|-1]]);
== {ReverseConcat(xs[0..|xs|-1], [xs[ |xs|-1 ]]);}
reverse([xs[ |xs|-1 ]]) + reverse(xs[0..|xs|-1]);
}
}
lemma SeqEq<T>(xs: seq<T>, ys: seq<T>)
requires |xs| == |ys|
requires forall i :: 0 <= i < |xs| ==> xs[i] == ys[i]
ensures xs == ys
{
}
lemma ReverseIndexAll<T>(xs: seq<T>)
ensures |reverse(xs)| == |xs|
ensures forall i :: 0 <= i < |xs| ==> reverse(xs)[i] == xs[|xs| - i - 1]
{
// reveal Reverse();
}
lemma ReverseIndex<T>(xs: seq<T>, i: int)
requires 0 <= i < |xs|
ensures |reverse(xs)| == |xs|
ensures reverse(xs)[i] == xs[|xs| - i - 1]
{
ReverseIndexAll(xs);
assert forall i :: 0 <= i < |xs| ==> reverse(xs)[i] == xs[|xs| - i - 1];
}
lemma ReverseSingle<A>(xs: seq<A>)
requires |xs| == 1
ensures reverse(xs) == xs
{
}
lemma reverseReverseIdempotent<A>(xs: seq<A>)
ensures reverse(reverse(xs)) == xs
{
if xs == [] {
}else{
calc {
reverse(reverse(xs));
reverse(reverse([xs[0]] + xs[1..]));
== {ReverseConcat([xs[0]] , xs[1..]);}
reverse(reverse(xs[1..]) + reverse([xs[0]]));
== {ReverseSingle([xs[0]]);}
reverse(reverse(xs[1..]) + [xs[0]]);
== {ReverseConcat(reverse(xs[1..]), [xs[0]]);}
reverse([xs[0]]) + reverse(reverse(xs[1..]));
[xs[0]] + reverse(reverse(xs[1..]));
== {reverseReverseIdempotent(xs[1..]);}
xs;
}
}
/* Alternatively */
// ReverseIndexAll(reverse(xs));
// ReverseIndexAll(xs);
// SeqEq(reverse(reverse(xs)), xs);
}
// var x := xs[0];
// assert xs == [x] + xs[1..];
// reversePreservesLength(xs);
// assert |xs| == |reverse(xs)|;
// calc {
// x;
// reverse(xs)[|xs|-1];
// == {firstReverseIsLast(reverse(xs));}
// reverse(reverse(xs))[0];
// }
// var y := xs[|xs|-1];
// calc{
// y;
// == {firstReverseIsLast(xs);}
// reverse(xs)[0];
// }
// assert xs == xs[0..|xs|-1] + [y];
// lastReverseIsFirst(xs);
// lastReverseIsFirst(reverse(xs));
// assert reverse(reverse(xs))[0] == x;
/*
/**
https://leetcode.com/problems/linked-list-cycle/description/
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function hasCycle(head: ListNode | null): boolean {
let leader = head;
let follower = head;
while(leader !== null) {
leader = leader.next;
if(follower && follower.next) {
follower = follower.next.next;
}else if(follower && follower.next == null){
follower=follower.next;
}
if(follower == leader && follower != null) return true;
}
return false;
};
*/
method test() {
var cycle := Node(1, Null);
var next := Node(2, cycle);
// cycle.next := next;
}
| /*
https://leetcode.com/problems/reverse-linked-list/description/
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
function reverseList(head: ListNode | null): ListNode | null {
if (head == null) return null;
let curr = head;
let prev = null;
while(curr !== null && curr.next !== null) {
let next = curr.next;
curr.next = prev;
prev = curr;
curr = next;
}
curr.next = prev;
return curr;
};
*/
datatype ListNode = Null | Node(val: nat, next: ListNode)
function reverse<A>(x: seq<A>): seq<A>
{
if x == [] then [] else reverse(x[1..])+[x[0]]
}
function nodeConcat(xs: ListNode, end: ListNode): ListNode {
if xs == Null then end else Node(xs.val, nodeConcat(xs.next, end))
}
function reverseList(xs: ListNode): ListNode
{
if xs == Null then Null else nodeConcat(reverseList(xs.next), Node(xs.val, Null))
}
lemma ConcatNullIsRightIdentity(xs: ListNode)
ensures xs == nodeConcat(xs, Null)
{
}
lemma ConcatNullIsLeftIdentity(xs: ListNode)
ensures xs == nodeConcat(Null, xs)
{
}
lemma ConcatExtensionality(xs: ListNode)
requires xs != Null
ensures nodeConcat(Node(xs.val, Null), xs.next) == xs;
{
}
lemma ConcatAssociative(xs: ListNode, ys: ListNode, zs: ListNode)
ensures nodeConcat(nodeConcat(xs, ys), zs) == nodeConcat(xs, nodeConcat(ys, zs))
{
}
lemma reverseSingleList(xs: ListNode)
requires xs != Null;
requires xs.next == Null;
ensures reverseList(xs) == xs;
{
}
lemma {:verify true} ConcatReverseList(xs:ListNode, ys: ListNode)
ensures reverseList(nodeConcat(xs,ys)) == nodeConcat(reverseList(ys), reverseList(xs))
{
if xs == Null {
calc {
reverseList(nodeConcat(xs,ys));
== {ConcatNullIsLeftIdentity(ys);}
reverseList(ys);
== {ConcatNullIsRightIdentity(reverseList(ys));}
nodeConcat(reverseList(ys), Null);
nodeConcat(reverseList(ys), xs);
nodeConcat(reverseList(ys), reverseList(xs));
}
}else{
var x := Node(xs.val, Null);
calc {
reverseList(nodeConcat(xs, ys));
reverseList(nodeConcat(nodeConcat(x, xs.next), ys));
== {ConcatAssociative(x, xs.next, ys);}
reverseList(nodeConcat(x, nodeConcat(xs.next, ys)));
nodeConcat(reverseList(nodeConcat(xs.next, ys)), x);
== {ConcatReverseList(xs.next, ys);}
nodeConcat(nodeConcat(reverseList(ys) , reverseList(xs.next)), x);
== {ConcatAssociative(reverseList(ys), reverseList(xs.next), x);}
nodeConcat(reverseList(ys) , nodeConcat(reverseList(xs.next), x));
nodeConcat(reverseList(ys) , reverseList(xs));
}
}
}
lemma reverseReverseListIsIdempotent(xs: ListNode)
ensures reverseList(reverseList(xs)) == xs
{
if xs == Null {
}else{
var x := Node(xs.val, Null);
calc {
reverseList(reverseList(xs));
reverseList(reverseList(nodeConcat(x, xs.next)));
== {ConcatReverseList(x, xs.next);}
reverseList(nodeConcat(reverseList(xs.next), reverseList(x)));
reverseList(nodeConcat(reverseList(xs.next), x));
== {ConcatReverseList(reverseList(xs.next),x);}
nodeConcat(reverseList(x), reverseList(reverseList(xs.next))); //dafny can figure out the rest from here
nodeConcat(x, reverseList(reverseList(xs.next)));
nodeConcat(x, xs.next);
xs;
}
}
}
lemma {:induction false} reversePreservesMultiset<A>(xs: seq<A>)
ensures multiset(xs) == multiset(reverse(xs))
{
if xs == [] {
}else {
var x := xs[0];
reversePreservesMultiset(xs[1..]);
}
}
lemma reversePreservesLength<A>(xs: seq<A>)
ensures |xs| == |reverse(xs)|
{
}
lemma lastReverseIsFirst<A>(xs: seq<A>)
requires |xs| > 0
ensures xs[0] == reverse(xs)[|reverse(xs)|-1]
{
reversePreservesLength(xs);
}
lemma firstReverseIsLast<A>(xs: seq<A>)
requires |xs| > 0
ensures reverse(xs)[0] == xs[|xs|-1]
{
}
lemma ReverseConcat<T>(xs: seq<T>, ys: seq<T>)
ensures reverse(xs + ys) == reverse(ys) + reverse(xs)
{
// reveal Reverse();
if |xs| == 0 {
} else {
}
}
lemma reverseRest<A>(xs: seq<A>)
requires |xs| > 0
ensures reverse(xs) == [xs[ |xs| -1 ] ] + reverse(xs[0..|xs|-1])
{
firstReverseIsLast(xs);
calc {
reverse(xs);
reverse(xs[0..|xs|-1] + [xs[|xs|-1]]);
== {ReverseConcat(xs[0..|xs|-1], [xs[ |xs|-1 ]]);}
reverse([xs[ |xs|-1 ]]) + reverse(xs[0..|xs|-1]);
}
}
lemma SeqEq<T>(xs: seq<T>, ys: seq<T>)
requires |xs| == |ys|
requires forall i :: 0 <= i < |xs| ==> xs[i] == ys[i]
ensures xs == ys
{
}
lemma ReverseIndexAll<T>(xs: seq<T>)
ensures |reverse(xs)| == |xs|
ensures forall i :: 0 <= i < |xs| ==> reverse(xs)[i] == xs[|xs| - i - 1]
{
// reveal Reverse();
}
lemma ReverseIndex<T>(xs: seq<T>, i: int)
requires 0 <= i < |xs|
ensures |reverse(xs)| == |xs|
ensures reverse(xs)[i] == xs[|xs| - i - 1]
{
ReverseIndexAll(xs);
}
lemma ReverseSingle<A>(xs: seq<A>)
requires |xs| == 1
ensures reverse(xs) == xs
{
}
lemma reverseReverseIdempotent<A>(xs: seq<A>)
ensures reverse(reverse(xs)) == xs
{
if xs == [] {
}else{
calc {
reverse(reverse(xs));
reverse(reverse([xs[0]] + xs[1..]));
== {ReverseConcat([xs[0]] , xs[1..]);}
reverse(reverse(xs[1..]) + reverse([xs[0]]));
== {ReverseSingle([xs[0]]);}
reverse(reverse(xs[1..]) + [xs[0]]);
== {ReverseConcat(reverse(xs[1..]), [xs[0]]);}
reverse([xs[0]]) + reverse(reverse(xs[1..]));
[xs[0]] + reverse(reverse(xs[1..]));
== {reverseReverseIdempotent(xs[1..]);}
xs;
}
}
/* Alternatively */
// ReverseIndexAll(reverse(xs));
// ReverseIndexAll(xs);
// SeqEq(reverse(reverse(xs)), xs);
}
// var x := xs[0];
// assert xs == [x] + xs[1..];
// reversePreservesLength(xs);
// assert |xs| == |reverse(xs)|;
// calc {
// x;
// reverse(xs)[|xs|-1];
// == {firstReverseIsLast(reverse(xs));}
// reverse(reverse(xs))[0];
// }
// var y := xs[|xs|-1];
// calc{
// y;
// == {firstReverseIsLast(xs);}
// reverse(xs)[0];
// }
// assert xs == xs[0..|xs|-1] + [y];
// lastReverseIsFirst(xs);
// lastReverseIsFirst(reverse(xs));
// assert reverse(reverse(xs))[0] == x;
/*
/**
https://leetcode.com/problems/linked-list-cycle/description/
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function hasCycle(head: ListNode | null): boolean {
let leader = head;
let follower = head;
while(leader !== null) {
leader = leader.next;
if(follower && follower.next) {
follower = follower.next.next;
}else if(follower && follower.next == null){
follower=follower.next;
}
if(follower == leader && follower != null) return true;
}
return false;
};
*/
method test() {
var cycle := Node(1, Null);
var next := Node(2, cycle);
// cycle.next := next;
}
|
292 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_leetcode_lc-remove-element.dfy | //https://leetcode.com/problems/remove-element/
method removeElement(nums: array<int>, val: int) returns (i: int)
ensures forall k :: 0 < k < i < nums.Length ==> nums[k] != val
modifies nums
{
i := 0;
var end := nums.Length - 1;
while i <= end
invariant 0 <= i <= nums.Length
invariant end < nums.Length
invariant forall k :: 0 <= k < i ==> nums[k] != val
{
if(nums[i] == val) {
if(nums[end] == val) {
end := end - 1;
}else{
nums[i], nums[end] := nums[end], nums[i];
i := i + 1;
end := end - 1;
}
}else{
i := i + 1;
}
}
}
///compileTarget:js
method Main() {
var elems := new int[5][1,2,3,4,5];
var res := removeElement(elems, 5);
print res, "\n", elems;
}
| //https://leetcode.com/problems/remove-element/
method removeElement(nums: array<int>, val: int) returns (i: int)
ensures forall k :: 0 < k < i < nums.Length ==> nums[k] != val
modifies nums
{
i := 0;
var end := nums.Length - 1;
while i <= end
{
if(nums[i] == val) {
if(nums[end] == val) {
end := end - 1;
}else{
nums[i], nums[end] := nums[end], nums[i];
i := i + 1;
end := end - 1;
}
}else{
i := i + 1;
}
}
}
///compileTarget:js
method Main() {
var elems := new int[5][1,2,3,4,5];
var res := removeElement(elems, 5);
print res, "\n", elems;
}
|
293 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_leetcode_pathSum.dfy | //https://leetcode.com/problems/path-sum
/**
function hasPathSum(root: TreeNode | null, targetSum: number): boolean {
if(root == null) {
return false;
}
if(root.val-targetSum == 0 && root.left == null && root.right == null) {
return true;
}
return hasPathSum(root.left, targetSum-root.val) || hasPathSum(root.right, targetSum-root.val);
};
*/
datatype TreeNode = Nil | Cons(val: nat, left: TreeNode, right: TreeNode)
function TreeSeq(root: TreeNode): seq<TreeNode> {
match root {
case Nil => [Nil]
case Cons(val, left, right) => [root]+TreeSeq(left)+TreeSeq(right)
}
}
function TreeSet(root: TreeNode): set<TreeNode> {
match root {
case Nil => {Nil}
case Cons(val, left, right) => TreeSet(left)+{root}+TreeSet(right)
}
}
predicate isPath(paths: seq<TreeNode>, root: TreeNode) {
if |paths| == 0 then false else match paths[0] {
case Nil => false
case Cons(val, left, right) => if |paths| == 1 then root == paths[0] else root == paths[0] && (isPath(paths[1..], left) || isPath(paths[1..], right))
}
}
function pathSum(paths: seq<TreeNode>): nat {
if |paths| == 0 then 0 else match paths[0] {
case Nil => 0
case Cons(val, left, right) => val + pathSum(paths[1..])
}
}
method hasPathSum(root: TreeNode, targetSum: int) returns (b: bool)
ensures b ==> exists p: seq<TreeNode> :: isPath(p, root) && pathSum(p) == targetSum
{
if root == Nil {
return false;
}
if(root.val - targetSum == 0 && root.left == Nil && root.right == Nil) {
assert isPath([root], root) && pathSum([root]) == targetSum;
return true;
}
var leftPath := hasPathSum(root.left, targetSum-root.val);
var rightPath := hasPathSum(root.right, targetSum-root.val);
if leftPath {
ghost var p: seq<TreeNode> :| isPath(p, root.left) && pathSum(p) == targetSum-root.val;
assert isPath([root]+p, root) && pathSum([root]+p) == targetSum;
}
if rightPath {
ghost var p: seq<TreeNode> :| isPath(p, root.right) && pathSum(p) == targetSum-root.val;
assert isPath([root]+p, root) && pathSum([root]+p) == targetSum;
}
return leftPath || rightPath;
}
method Test() {
var c := Cons(3, Nil, Nil);
var b := Cons(2, c, Nil);
var a := Cons(1, b, Nil);
assert isPath([a], a);
assert a.left == b;
assert isPath([a,b], a);
assert isPath([a,b,c], a);
}
| //https://leetcode.com/problems/path-sum
/**
function hasPathSum(root: TreeNode | null, targetSum: number): boolean {
if(root == null) {
return false;
}
if(root.val-targetSum == 0 && root.left == null && root.right == null) {
return true;
}
return hasPathSum(root.left, targetSum-root.val) || hasPathSum(root.right, targetSum-root.val);
};
*/
datatype TreeNode = Nil | Cons(val: nat, left: TreeNode, right: TreeNode)
function TreeSeq(root: TreeNode): seq<TreeNode> {
match root {
case Nil => [Nil]
case Cons(val, left, right) => [root]+TreeSeq(left)+TreeSeq(right)
}
}
function TreeSet(root: TreeNode): set<TreeNode> {
match root {
case Nil => {Nil}
case Cons(val, left, right) => TreeSet(left)+{root}+TreeSet(right)
}
}
predicate isPath(paths: seq<TreeNode>, root: TreeNode) {
if |paths| == 0 then false else match paths[0] {
case Nil => false
case Cons(val, left, right) => if |paths| == 1 then root == paths[0] else root == paths[0] && (isPath(paths[1..], left) || isPath(paths[1..], right))
}
}
function pathSum(paths: seq<TreeNode>): nat {
if |paths| == 0 then 0 else match paths[0] {
case Nil => 0
case Cons(val, left, right) => val + pathSum(paths[1..])
}
}
method hasPathSum(root: TreeNode, targetSum: int) returns (b: bool)
ensures b ==> exists p: seq<TreeNode> :: isPath(p, root) && pathSum(p) == targetSum
{
if root == Nil {
return false;
}
if(root.val - targetSum == 0 && root.left == Nil && root.right == Nil) {
return true;
}
var leftPath := hasPathSum(root.left, targetSum-root.val);
var rightPath := hasPathSum(root.right, targetSum-root.val);
if leftPath {
ghost var p: seq<TreeNode> :| isPath(p, root.left) && pathSum(p) == targetSum-root.val;
}
if rightPath {
ghost var p: seq<TreeNode> :| isPath(p, root.right) && pathSum(p) == targetSum-root.val;
}
return leftPath || rightPath;
}
method Test() {
var c := Cons(3, Nil, Nil);
var b := Cons(2, c, Nil);
var a := Cons(1, b, Nil);
}
|
294 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_leetcode_stairClimbing.dfy | /*
You are climbing a staircase. It takes n steps to reach the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
function climbStairs(n: number): number {
let steps = new Array(n+1);
steps[0] = 0;
steps[1] = 1;
steps[2] = 2;
for(let i = 3; i <= n; i++) {
steps[i] = steps[i-1] + steps[i-2];
}
return steps[n];
};
*/
datatype Steps = One | Two
function stepSum(xs: seq<Steps>): nat {
if xs == [] then 0 else (match xs[0] {
case One => 1
case Two => 2
} + stepSum(xs[1..]))
}
ghost predicate stepEndsAt(xs: seq<Steps>, n: nat) {
stepSum(xs) == n
}
ghost predicate allEndAtN(ss: set<seq<Steps> >, n: nat) {
forall xs :: xs in ss ==> stepEndsAt(xs, n)
}
lemma stepBaseZero()
ensures exists ss: set< seq<Steps> > :: allEndAtN(ss, 0) && |ss| == 0
{
assert allEndAtN({[]}, 0);
}
lemma stepBaseOne()
ensures exists ss: set< seq<Steps> > :: allEndAtN(ss, 1) && |ss| == 1
{
assert allEndAtN({[One]}, 1);
}
lemma stepBaseTwo()
ensures exists ss: set< seq<Steps> > :: allEndAtN(ss, 2) && |ss| == 2
{
assert allEndAtN({[One,One], [Two]}, 2);
}
ghost function plusOne(x: seq<Steps>): seq<Steps> {
[One]+x
}
ghost function addOne(ss: set<seq<Steps>>): set<seq<Steps>>
ensures forall x :: x in ss ==> plusOne(x) in addOne(ss)
ensures addOne(ss) == set x | x in ss :: plusOne(x)
{
set x | x in ss :: plusOne(x)
}
lemma SeqsNotEqualImplication<T>(xs: seq<T>, ys: seq<T>, someT: T)
requires xs != ys
ensures (exists i: nat :: i < |xs| && i <|ys| && xs[i] != ys[i]) || |xs| < |ys| || |ys| < |xs|
{}
lemma UnequalSeqs<T>(xs: seq<T>, ys: seq<T>, someT: T)
requires xs != ys
ensures [someT]+xs != [someT]+ys
{
if |xs| < |ys| {} else if |ys| > |xs| {}
else if i: nat :| i < |xs| && i <|ys| && xs[i] != ys[i] {
assert ([someT]+xs)[i+1] != ([someT]+ys)[i+1];
}
}
lemma plusOneNotIn(ss: set<seq<Steps>>, x: seq<Steps>)
requires x !in ss
ensures plusOne(x) !in addOne(ss)
{
if x == [] {
assert [] !in ss;
assert [One]+[] !in addOne(ss);
}
if plusOne(x) in addOne(ss) {
forall y | y in ss
ensures y != x
ensures plusOne(y) in addOne(ss)
ensures plusOne(y) != plusOne(x)
{
UnequalSeqs(x, y, One);
assert plusOne(y) != [One]+x;
}
assert false;
}
}
lemma addOneSize(ss: set<seq<Steps>>)
ensures |addOne(ss)| == |ss|
{
var size := |ss|;
if x :| x in ss {
assert |ss - {x}| == size - 1;
addOneSize(ss - {x});
assert |addOne(ss-{x})| == size - 1;
assert addOne(ss) == addOne(ss-{x}) + {[One]+x};
assert x !in ss-{x};
plusOneNotIn(ss-{x}, x);
assert plusOne(x) !in addOne(ss-{x});
assert |addOne(ss)| == |addOne(ss-{x})| + |{[One]+x}|;
}else{
}
}
lemma addOneSum(ss: set<seq<Steps>>, sum: nat)
requires allEndAtN(ss, sum)
ensures allEndAtN(addOne(ss), sum+1)
{
}
lemma endAtNPlus(ss: set<seq<Steps>>, sz: set<seq<Steps>>, sum: nat)
requires allEndAtN(ss, sum)
requires allEndAtN(sz, sum)
ensures allEndAtN(ss+sz, sum)
{
}
ghost function plusTwo(x: seq<Steps>): seq<Steps> {
[Two]+x
}
ghost function addTwo(ss: set<seq<Steps>>): set<seq<Steps>>
ensures forall x :: x in ss ==> plusTwo(x) in addTwo(ss)
ensures addTwo(ss) == set x | x in ss :: plusTwo(x)
{
set x | x in ss :: plusTwo(x)
}
lemma plusTwoNotIn(ss: set<seq<Steps>>, x: seq<Steps>)
requires x !in ss
ensures plusTwo(x) !in addTwo(ss)
{
if x == [] {
assert [] !in ss;
assert [Two]+[] !in addTwo(ss);
}
if plusTwo(x) in addTwo(ss) {
forall y | y in ss
ensures y != x
ensures plusTwo(y) in addTwo(ss)
ensures plusTwo(y) != plusTwo(x)
{
UnequalSeqs(x, y, Two);
assert plusTwo(y) != [Two]+x;
}
}
}
lemma addTwoSize(ss: set<seq<Steps>>)
ensures |addTwo(ss)| == |ss|
{
var size := |ss|;
if x :| x in ss {
// assert |ss - {x}| == size - 1;
addTwoSize(ss - {x});
// assert |addTwo(ss-{x})| == size - 1;
assert addTwo(ss) == addTwo(ss-{x}) + {[Two]+x};
// assert x !in ss-{x};
plusTwoNotIn(ss-{x}, x);
// assert plusTwo(x) !in addTwo(ss-{x});
assert |addTwo(ss)| == |addTwo(ss-{x})| + |{[Two]+x}|;
}
}
lemma addTwoSum(ss: set<seq<Steps>>, sum: nat)
requires allEndAtN(ss, sum)
ensures allEndAtN(addTwo(ss), sum+2)
{
}
lemma setSizeAddition<T>(sx: set<T>, sy: set<T>, sz: set<T>)
requires sx !! sy
requires sz == sx + sy
ensures |sx + sy| == |sx| + |sy|
ensures |sz| == |sx| + |sy|
{
}
lemma stepSetsAdd(i: nat, steps: array<nat>)
requires i >= 2
requires steps.Length >= i+1
requires forall k: nat :: k < i ==> exists ss: set< seq<Steps> > :: steps[k] == |ss| && allEndAtN(ss, k)
ensures exists sp : set< seq<Steps> > :: |sp| == steps[i-1] + steps[i-2] && allEndAtN(sp, i)
{
var oneStepBack :| steps[i-1] == |oneStepBack| && allEndAtN(oneStepBack, i-1);
var twoStepBack :| steps[i-2] == |twoStepBack| && allEndAtN(twoStepBack, i-2);
var stepForward := addOne(oneStepBack);
var stepTwoForward := addTwo(twoStepBack);
assert forall x :: x in stepForward ==> x[0] == One;
// assert stepForward !! stepTwoForward;
addOneSize(oneStepBack);
addTwoSize(twoStepBack);
var sumSet := stepForward + stepTwoForward;
// assert |sumSet| == steps[i-1]+steps[i-2];
}
method climbStairs(n: nat) returns (count: nat)
ensures exists ss: set< seq<Steps> > :: count == |ss| && allEndAtN(ss, n)
{
var steps := new nat[n+1];
steps[0] := 0;
if n > 0 {
steps[1] := 1;
}
if n > 1 {
steps[2] := 2;
}
stepBaseZero();
stepBaseOne();
stepBaseTwo();
if n < 3 {
return steps[n];
}
assert steps[0] == 0;
assert steps[1] == 1;
assert steps[2] == 2;
assert forall k: nat :: k < 3 ==> exists ss: set< seq<Steps> > :: steps[k] == |ss| && allEndAtN(ss, k);
var i := 3;
while i <= n
invariant 3 <= i <= n+1
invariant forall k: nat :: k < i ==> exists ss: set< seq<Steps> > :: steps[k] == |ss| && allEndAtN(ss, k)
{
steps[i] := steps[i-1] + steps[i-2];
stepSetsAdd(i, steps);
i := i + 1;
}
return steps[n];
}
method Test() {
var foo := [One, One, Two];
assert stepSum(foo) == 4;
}
| /*
You are climbing a staircase. It takes n steps to reach the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
function climbStairs(n: number): number {
let steps = new Array(n+1);
steps[0] = 0;
steps[1] = 1;
steps[2] = 2;
for(let i = 3; i <= n; i++) {
steps[i] = steps[i-1] + steps[i-2];
}
return steps[n];
};
*/
datatype Steps = One | Two
function stepSum(xs: seq<Steps>): nat {
if xs == [] then 0 else (match xs[0] {
case One => 1
case Two => 2
} + stepSum(xs[1..]))
}
ghost predicate stepEndsAt(xs: seq<Steps>, n: nat) {
stepSum(xs) == n
}
ghost predicate allEndAtN(ss: set<seq<Steps> >, n: nat) {
forall xs :: xs in ss ==> stepEndsAt(xs, n)
}
lemma stepBaseZero()
ensures exists ss: set< seq<Steps> > :: allEndAtN(ss, 0) && |ss| == 0
{
}
lemma stepBaseOne()
ensures exists ss: set< seq<Steps> > :: allEndAtN(ss, 1) && |ss| == 1
{
}
lemma stepBaseTwo()
ensures exists ss: set< seq<Steps> > :: allEndAtN(ss, 2) && |ss| == 2
{
}
ghost function plusOne(x: seq<Steps>): seq<Steps> {
[One]+x
}
ghost function addOne(ss: set<seq<Steps>>): set<seq<Steps>>
ensures forall x :: x in ss ==> plusOne(x) in addOne(ss)
ensures addOne(ss) == set x | x in ss :: plusOne(x)
{
set x | x in ss :: plusOne(x)
}
lemma SeqsNotEqualImplication<T>(xs: seq<T>, ys: seq<T>, someT: T)
requires xs != ys
ensures (exists i: nat :: i < |xs| && i <|ys| && xs[i] != ys[i]) || |xs| < |ys| || |ys| < |xs|
{}
lemma UnequalSeqs<T>(xs: seq<T>, ys: seq<T>, someT: T)
requires xs != ys
ensures [someT]+xs != [someT]+ys
{
if |xs| < |ys| {} else if |ys| > |xs| {}
else if i: nat :| i < |xs| && i <|ys| && xs[i] != ys[i] {
}
}
lemma plusOneNotIn(ss: set<seq<Steps>>, x: seq<Steps>)
requires x !in ss
ensures plusOne(x) !in addOne(ss)
{
if x == [] {
}
if plusOne(x) in addOne(ss) {
forall y | y in ss
ensures y != x
ensures plusOne(y) in addOne(ss)
ensures plusOne(y) != plusOne(x)
{
UnequalSeqs(x, y, One);
}
}
}
lemma addOneSize(ss: set<seq<Steps>>)
ensures |addOne(ss)| == |ss|
{
var size := |ss|;
if x :| x in ss {
addOneSize(ss - {x});
plusOneNotIn(ss-{x}, x);
}else{
}
}
lemma addOneSum(ss: set<seq<Steps>>, sum: nat)
requires allEndAtN(ss, sum)
ensures allEndAtN(addOne(ss), sum+1)
{
}
lemma endAtNPlus(ss: set<seq<Steps>>, sz: set<seq<Steps>>, sum: nat)
requires allEndAtN(ss, sum)
requires allEndAtN(sz, sum)
ensures allEndAtN(ss+sz, sum)
{
}
ghost function plusTwo(x: seq<Steps>): seq<Steps> {
[Two]+x
}
ghost function addTwo(ss: set<seq<Steps>>): set<seq<Steps>>
ensures forall x :: x in ss ==> plusTwo(x) in addTwo(ss)
ensures addTwo(ss) == set x | x in ss :: plusTwo(x)
{
set x | x in ss :: plusTwo(x)
}
lemma plusTwoNotIn(ss: set<seq<Steps>>, x: seq<Steps>)
requires x !in ss
ensures plusTwo(x) !in addTwo(ss)
{
if x == [] {
}
if plusTwo(x) in addTwo(ss) {
forall y | y in ss
ensures y != x
ensures plusTwo(y) in addTwo(ss)
ensures plusTwo(y) != plusTwo(x)
{
UnequalSeqs(x, y, Two);
}
}
}
lemma addTwoSize(ss: set<seq<Steps>>)
ensures |addTwo(ss)| == |ss|
{
var size := |ss|;
if x :| x in ss {
// assert |ss - {x}| == size - 1;
addTwoSize(ss - {x});
// assert |addTwo(ss-{x})| == size - 1;
// assert x !in ss-{x};
plusTwoNotIn(ss-{x}, x);
// assert plusTwo(x) !in addTwo(ss-{x});
}
}
lemma addTwoSum(ss: set<seq<Steps>>, sum: nat)
requires allEndAtN(ss, sum)
ensures allEndAtN(addTwo(ss), sum+2)
{
}
lemma setSizeAddition<T>(sx: set<T>, sy: set<T>, sz: set<T>)
requires sx !! sy
requires sz == sx + sy
ensures |sx + sy| == |sx| + |sy|
ensures |sz| == |sx| + |sy|
{
}
lemma stepSetsAdd(i: nat, steps: array<nat>)
requires i >= 2
requires steps.Length >= i+1
requires forall k: nat :: k < i ==> exists ss: set< seq<Steps> > :: steps[k] == |ss| && allEndAtN(ss, k)
ensures exists sp : set< seq<Steps> > :: |sp| == steps[i-1] + steps[i-2] && allEndAtN(sp, i)
{
var oneStepBack :| steps[i-1] == |oneStepBack| && allEndAtN(oneStepBack, i-1);
var twoStepBack :| steps[i-2] == |twoStepBack| && allEndAtN(twoStepBack, i-2);
var stepForward := addOne(oneStepBack);
var stepTwoForward := addTwo(twoStepBack);
// assert stepForward !! stepTwoForward;
addOneSize(oneStepBack);
addTwoSize(twoStepBack);
var sumSet := stepForward + stepTwoForward;
// assert |sumSet| == steps[i-1]+steps[i-2];
}
method climbStairs(n: nat) returns (count: nat)
ensures exists ss: set< seq<Steps> > :: count == |ss| && allEndAtN(ss, n)
{
var steps := new nat[n+1];
steps[0] := 0;
if n > 0 {
steps[1] := 1;
}
if n > 1 {
steps[2] := 2;
}
stepBaseZero();
stepBaseOne();
stepBaseTwo();
if n < 3 {
return steps[n];
}
var i := 3;
while i <= n
{
steps[i] := steps[i-1] + steps[i-2];
stepSetsAdd(i, steps);
i := i + 1;
}
return steps[n];
}
method Test() {
var foo := [One, One, Two];
}
|
295 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_leetcode_validAnagram.dfy |
method toMultiset(s: string) returns (mset: multiset<char>)
ensures multiset(s) == mset
{
mset := multiset{};
for i := 0 to |s|
invariant mset == multiset(s[0..i])
{
assert s == s[0..i] + [s[i]] + s[(i+1)..];
// assert multiset(s) == multiset(s[0..i])+multiset{s[i]}+multiset(s[(i+1)..]);
mset := mset + multiset{s[i]};
}
assert s == s[0..|s|];
// assert mset == multiset(s[0..|s|]);
return mset;
}
method msetEqual(s: multiset<char>, t: multiset<char>) returns (equal: bool)
ensures s == t <==> equal
{
ghost var sremoved: multiset<char> := multiset{};
var scopy := s;
while scopy != multiset{}
invariant s - sremoved == scopy
invariant sremoved !! scopy
invariant sremoved <= s
invariant forall x :: x in sremoved ==> x in s && x in t && t[x] == s[x]
{
var x :| x in scopy;
if !(x in t && s[x] == t[x]) {
return false;
}
var removed := multiset{};
// assert removed[x := s[x]] <= s;
sremoved := sremoved + removed[x := s[x]];
scopy := scopy - removed[x := s[x]];
}
// assert scopy == multiset{};
// assert s - sremoved == scopy;
// assert sremoved == s;
// assert forall x :: x in sremoved ==> x in s && x in t && t[x] == s[x];
ghost var tremoved: multiset<char> := multiset{};
var tcopy := t;
while tcopy != multiset{}
invariant t - tremoved == tcopy
invariant tremoved !! tcopy
invariant tremoved <= t
invariant forall x :: x in tremoved ==> x in s && x in t && t[x] == s[x]
{
var x :| x in tcopy;
if !(x in t && s[x] == t[x]) {
return false;
}
var removed := multiset{};
tremoved := tremoved + removed[x := s[x]];
tcopy := tcopy - removed[x := s[x]];
}
// assert forall x :: x in tremoved ==> x in s && x in t && t[x] == s[x];
return true;
}
method isAnagram(s: string, t: string) returns (equal: bool)
ensures (multiset(s) == multiset(t)) == equal
{
var smset := toMultiset(s);
var tmset := toMultiset(t);
equal := msetEqual(smset, tmset);
}
|
method toMultiset(s: string) returns (mset: multiset<char>)
ensures multiset(s) == mset
{
mset := multiset{};
for i := 0 to |s|
{
// assert multiset(s) == multiset(s[0..i])+multiset{s[i]}+multiset(s[(i+1)..]);
mset := mset + multiset{s[i]};
}
// assert mset == multiset(s[0..|s|]);
return mset;
}
method msetEqual(s: multiset<char>, t: multiset<char>) returns (equal: bool)
ensures s == t <==> equal
{
ghost var sremoved: multiset<char> := multiset{};
var scopy := s;
while scopy != multiset{}
{
var x :| x in scopy;
if !(x in t && s[x] == t[x]) {
return false;
}
var removed := multiset{};
// assert removed[x := s[x]] <= s;
sremoved := sremoved + removed[x := s[x]];
scopy := scopy - removed[x := s[x]];
}
// assert scopy == multiset{};
// assert s - sremoved == scopy;
// assert sremoved == s;
// assert forall x :: x in sremoved ==> x in s && x in t && t[x] == s[x];
ghost var tremoved: multiset<char> := multiset{};
var tcopy := t;
while tcopy != multiset{}
{
var x :| x in tcopy;
if !(x in t && s[x] == t[x]) {
return false;
}
var removed := multiset{};
tremoved := tremoved + removed[x := s[x]];
tcopy := tcopy - removed[x := s[x]];
}
// assert forall x :: x in tremoved ==> x in s && x in t && t[x] == s[x];
return true;
}
method isAnagram(s: string, t: string) returns (equal: bool)
ensures (multiset(s) == multiset(t)) == equal
{
var smset := toMultiset(s);
var tmset := toMultiset(t);
equal := msetEqual(smset, tmset);
}
|
296 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_lib_seq.dfy |
module Seq {
export reveals *
function ToSet<A>(xs: seq<A>): set<A>
ensures forall x :: x in ToSet(xs) ==> x in xs
ensures forall x :: x !in ToSet(xs) ==> x !in xs
{
if xs == [] then {} else {xs[0]}+ToSet(xs[1..])
}
predicate substring1<A(==)>(sub: seq<A>, super: seq<A>) {
exists k :: 0 <= k < |super| && sub <= super[k..]
}
ghost predicate isSubstringAlt<A(!new)>(sub: seq<A>, super: seq<A>) {
|sub| <= |super| && exists xs: seq<A> :: IsSuffix(xs, super) && sub <= xs
}
predicate isSubstring<A(==)>(sub: seq<A>, super: seq<A>) {
|sub| <= |super| && exists k,j :: 0 <= k < j <= |super| && sub == super[k..j]
}
lemma SliceOfSliceIsSlice<A>(xs: seq<A>, k: int, j: int, s: int, t: int)
requires 0 <= k <= j <= |xs|
requires 0 <= s <= t <= j-k
ensures xs[k..j][s..t] == xs[(k+s)..(k+s+(t-s))]
{
if j-k == 0 {
}else if t-s == 0 {
}else if t-s > 0 {
SliceOfSliceIsSlice(xs, k, j, s,t-1);
assert xs[k..j][s..t] == xs[k..j][s..(t-1)]+[xs[k..j][t-1]];
}
}
lemma AllSubstringsAreSubstrings<A>(subsub: seq<A>, sub: seq<A>, super: seq<A>)
requires isSubstring(sub, super)
requires isSubstring(subsub, sub)
ensures isSubstring(subsub, super)
{
assert |sub| <= |super|;
assert |subsub| <= |super|;
var k,j :| 0 <= k < j <= |super| && sub == super[k..j];
var s,t :| 0 <= s < t <= |sub| && subsub == sub[s..t];
assert t <= (j-k) <= j;
//[3,4,5,6,7,8,9,10,11,12,13][2,7] //k,j
//[5,6,7,8,9,10][1..3] //s,t
//[5,7,8]
// var example:= [3,4,5,6,7,8,9,10,11,12,13];
// assert example[2..7] == [5,6,7,8,9];
// assert example[2..7][1..3] == [6,7];
// assert example[3..5] == [6,7];
// assert k+s+(t-s)
// assert 2+1+(3-1) == 5;
/*
assert s[..idx] == [s[0]] + s[1..idx];
assert s[1..idx] == s[1..][..(idx-1)];
assert s[1..][(idx-1)..] == s[idx..];
*/
assert super[..j][..t] == super[..(t)];
assert super[k..][s..] == super[(k+s)..];
if t < j {
calc {
subsub;
super[k..j][s..t];
{SliceOfSliceIsSlice(super,k,j,s,t);}
super[(k+s)..(k+s+(t-s))];
}
} else if t <= j {
}
// var z,q :| 0 <= z <= q <= |super| && super[z..q] == super[k..j][s..t];
}
predicate IsSuffix<T(==)>(xs: seq<T>, ys: seq<T>) {
|xs| <= |ys| && xs == ys[|ys| - |xs|..]
}
predicate IsPrefix<T(==)>(xs: seq<T>, ys: seq<T>) {
|xs| <= |ys| && xs == ys[..|xs|]
}
lemma PrefixRest<T>(xs: seq<T>, ys: seq<T>)
requires IsPrefix(xs, ys)
ensures exists yss: seq<T> :: ys == xs + yss && |yss| == |ys|-|xs|;
{
assert ys == ys[..|xs|] + ys[|xs|..];
}
lemma IsSuffixReversed<T>(xs: seq<T>, ys: seq<T>)
requires IsSuffix(xs, ys)
ensures IsPrefix(reverse(xs), reverse(ys))
{
ReverseIndexAll(xs);
ReverseIndexAll(ys);
}
lemma IsPrefixReversed<T>(xs: seq<T>, ys: seq<T>)
requires IsPrefix(xs, ys)
ensures IsSuffix(reverse(xs), reverse(ys))
{
ReverseIndexAll(xs);
ReverseIndexAll(ys);
}
lemma IsPrefixReversedAll<T>(xs: seq<T>, ys: seq<T>)
requires IsPrefix(reverse(xs), reverse(ys))
ensures IsSuffix(reverse(reverse(xs)), reverse(reverse(ys)))
{
ReverseIndexAll(xs);
ReverseIndexAll(ys);
assert |ys| == |reverse(ys)|;
assert reverse(xs) == reverse(ys)[..|reverse(xs)|];
assert reverse(xs) == reverse(ys)[..|xs|];
PrefixRest(reverse(xs), reverse(ys));
var yss :| reverse(ys) == reverse(xs) + yss && |yss| == |ys|-|xs|;
reverseReverseIdempotent(ys);
ReverseConcat(reverse(xs), yss);
calc {
reverse(reverse(ys));
ys;
reverse(reverse(xs) + yss);
reverse(yss)+reverse(reverse(xs));
== {reverseReverseIdempotent(xs);}
reverse(yss)+xs;
}
}
predicate IsSuffix2<T(==)>(xs: seq<T>, ys: seq<T>) {
|xs| <= |ys| && exists K :: 0 <= K <= |ys|-|xs| && ys == ys[0..K] + xs + ys[(K+|xs|)..]
}
function reverse<A>(x: seq<A>): seq<A>
{
if x == [] then [] else reverse(x[1..])+[x[0]]
}
lemma {:induction false} reversePreservesMultiset<A>(xs: seq<A>)
ensures multiset(xs) == multiset(reverse(xs))
{
if xs == [] {
}else {
var x := xs[0];
assert xs == [x] + xs[1..];
assert multiset(xs) == multiset([x]) + multiset(xs[1..]);
assert reverse(xs) == reverse(xs[1..])+[x];
reversePreservesMultiset(xs[1..]);
assert multiset(xs[1..]) == multiset(reverse(xs[1..]));
}
}
lemma reversePreservesLength<A>(xs: seq<A>)
ensures |xs| == |reverse(xs)|
{
}
lemma lastReverseIsFirst<A>(xs: seq<A>)
requires |xs| > 0
ensures xs[0] == reverse(xs)[|reverse(xs)|-1]
{
reversePreservesLength(xs);
assert |xs| == |reverse(xs)|;
}
lemma firstReverseIsLast<A>(xs: seq<A>)
requires |xs| > 0
ensures reverse(xs)[0] == xs[|xs|-1]
{
}
lemma ReverseConcat<T>(xs: seq<T>, ys: seq<T>)
ensures reverse(xs + ys) == reverse(ys) + reverse(xs)
{
// reveal Reverse();
if |xs| == 0 {
assert xs + ys == ys;
} else {
assert xs + ys == [xs[0]] + (xs[1..] + ys);
}
}
lemma reverseRest<A>(xs: seq<A>)
requires |xs| > 0
ensures reverse(xs) == [xs[ |xs| -1 ] ] + reverse(xs[0..|xs|-1])
{
firstReverseIsLast(xs);
assert xs == xs[0..|xs|-1] + [xs[|xs|-1]];
assert reverse(xs)[0] == xs[ |xs| -1];
assert reverse(xs) == [xs[ |xs| -1]] + reverse(xs)[1..];
calc {
reverse(xs);
reverse(xs[0..|xs|-1] + [xs[|xs|-1]]);
== {ReverseConcat(xs[0..|xs|-1], [xs[ |xs|-1 ]]);}
reverse([xs[ |xs|-1 ]]) + reverse(xs[0..|xs|-1]);
}
}
lemma ReverseIndexAll<T>(xs: seq<T>)
ensures |reverse(xs)| == |xs|
ensures forall i :: 0 <= i < |xs| ==> reverse(xs)[i] == xs[|xs| - i - 1]
{
// reveal Reverse();
}
lemma ReverseIndex<T>(xs: seq<T>, i: int)
requires 0 <= i < |xs|
ensures |reverse(xs)| == |xs|
ensures reverse(xs)[i] == xs[|xs| - i - 1]
{
ReverseIndexAll(xs);
assert forall i :: 0 <= i < |xs| ==> reverse(xs)[i] == xs[|xs| - i - 1];
}
lemma ReverseIndexBack<T>(xs: seq<T>, i: int)
requires 0 <= i < |xs|
ensures |reverse(xs)| == |xs|
ensures reverse(xs)[|xs| - i - 1] == xs[i]
{
ReverseIndexAll(xs);
assert forall i :: 0 <= i < |xs| ==> reverse(xs)[i] == xs[|xs| - i - 1];
}
lemma ReverseSingle<A>(xs: seq<A>)
requires |xs| == 1
ensures reverse(xs) == xs
{
}
lemma SeqEq<T>(xs: seq<T>, ys: seq<T>)
requires |xs| == |ys|
requires forall i :: 0 <= i < |xs| ==> xs[i] == ys[i]
ensures xs == ys
{
}
lemma reverseReverseIdempotent<A>(xs: seq<A>)
ensures reverse(reverse(xs)) == xs
{
if xs == [] {
}else{
calc {
reverse(reverse(xs));
reverse(reverse([xs[0]] + xs[1..]));
== {ReverseConcat([xs[0]] , xs[1..]);}
reverse(reverse(xs[1..]) + reverse([xs[0]]));
== {ReverseSingle([xs[0]]);}
reverse(reverse(xs[1..]) + [xs[0]]);
== {ReverseConcat(reverse(xs[1..]), [xs[0]]);}
reverse([xs[0]]) + reverse(reverse(xs[1..]));
[xs[0]] + reverse(reverse(xs[1..]));
== {reverseReverseIdempotent(xs[1..]);}
xs;
}
}
/* Alternatively */
// ReverseIndexAll(reverse(xs));
// ReverseIndexAll(xs);
// SeqEq(reverse(reverse(xs)), xs);
}
lemma notInNotEqual<A>(xs: seq<A>, elem: A)
requires elem !in xs
ensures forall k :: 0 <= k < |xs| ==> xs[k] != elem
{
}
predicate distinct<A(==)>(s: seq<A>) {
forall x,y :: x != y && 0 <= x <= y < |s| ==> s[x] != s[y]
}
lemma distincts<A>(xs: seq<A>, ys: seq<A>)
requires distinct(xs)
requires distinct(ys)
requires forall x :: x in xs ==> x !in ys
requires forall y :: y in ys ==> y !in xs
ensures distinct(xs+ys)
{
var len := |xs + ys|;
forall x,y | x != y && 0 <= x <= y < |xs+ys|
ensures (xs+ys)[x] != (xs+ys)[y]
{
if 0 <= x < |xs| && 0 <= y < |xs| {
assert (xs+ys)[x] != (xs+ys)[y];
}else if |xs| <= x < |xs+ys| && |xs| <= y < |xs+ys| {
assert (xs+ys)[x] != (xs+ys)[y];
}else if 0 <= x < |xs| && |xs| <= y < |xs+ys| {
notInNotEqual(ys, xs[x]);
assert (xs+ys)[x] != (xs+ys)[y];
}
}
}
lemma reverseDistinct<A>(list: seq<A>)
requires distinct(list)
ensures distinct(reverse(list))
{
ReverseIndexAll(list);
}
lemma distinctSplits<A>(list: seq<A>)
requires distinct(list)
ensures forall i :: 1 <= i < |list| ==> distinct(list[..i])
{}
lemma multisetItems<A>(list: seq<A>, item: A)
requires item in list
requires multiset(list)[item] > 1
ensures exists i,j :: 0 <= i < j < |list| && list[i] == item && list[j] == item && i != j
{
var k :| 0 <= k < |list| && list[k] == item;
var rest := list[..k]+list[k+1..];
assert list == list[..k]+[item]+list[k+1..];
assert multiset(list) == multiset(list[..k])+multiset(list[k+1..])+multiset{item};
}
lemma distinctMultisetIs1<A>(list: seq<A>, item: A)
requires distinct(list)
requires item in list
ensures multiset(list)[item] == 1
{
if multiset(list)[item] == 0 {
assert false;
}
if multiset(list)[item] > 1 {
multisetItems(list, item);
var i,j :| 0 <= i < j < |list| && list[i] == item && list[j] == item && i != j;
}
}
lemma indistinctMultisetIsGreaterThan1<A>(list: seq<A>)
requires !distinct(list)
ensures exists item :: multiset(list)[item] > 1
{
var x,y :| x != y && 0 <= x <= y < |list| && list[x] == list[y];
var item := list[x];
assert x < y;
assert list == list[..x] + [item] + list[(x+1)..y] + [item] + list[y+1..];
assert multiset(list)[item] > 1;
}
lemma multisetIsGreaterThan1Indistinct<A>(list: seq<A>)
requires exists item :: multiset(list)[item] > 1
ensures !distinct(list)
{
var item :| multiset(list)[item] > 1;
var x :| 0 <= x < |list| && list[x] == item;
assert list == list[..x] + [item] + list[x+1..];
var y :| x != y && 0 <= y < |list| && list[y] == item;
}
lemma indistinctPlusX<A>(items: seq<A>, x: A)
requires !distinct(items)
ensures forall i :: 0 <= i < |items| ==> !distinct(items[..i]+[x]+items[i..])
{
forall i | 0 <= i < |items|
ensures !distinct(items[..i]+[x]+items[i..])
{
indistinctMultisetIsGreaterThan1(items);
var item :| multiset(items)[item] > 1;
var itemsPlus := items[..i]+[x]+items[i..];
assert items == items[..i]+items[i..];
calc {
multiset(itemsPlus);
multiset(items[..i])+multiset(items[i..])+multiset{x};
multiset(items)+multiset{x};
}
assert multiset(itemsPlus)[item] > 1;
multisetIsGreaterThan1Indistinct(itemsPlus);
}
}
lemma pigeonHolesMultiset<A>(items: set<A>, list: seq<A>, n: nat)
requires |items| == n
requires forall x :: x in list ==> x in items
requires |list| > n
ensures exists item :: multiset(list)[item] > 1
{
if x :| multiset(list)[x] > 1 {
}else if x :| multiset(list)[x] == 1 {
assert x in list;
var i :| 0 <= i < |list| && list[i] == x;
assert list == list[..i] + [x] + list[i+1..];
assert list == list[..i] + list[i..];
assert multiset(list) == multiset(list[..i])+multiset(list[i+1..])+multiset{x};
var rest := list[..i]+list[i+1..];
assert multiset(rest)[x] == 0;
forall y | y in rest
ensures y in items-{x}
{
assert y in items;
assert y != x;
}
if n -1 == 0 {
// assert |items| == 1;
// assert x in items;
assert |items-{x}| == 0;
assert list[0] in list;
assert list[0] == x;
assert list[1] in list;
assert list[1] == x;
assert false;
}else{
pigeonHolesMultiset(items-{x}, rest, n-1);
var item :| multiset(rest)[item] > 1;
assert multiset(list) == multiset(rest) + multiset{x};
assert multiset(list)[item] > 1;
}
}else if x :| multiset(list)[x] == 0 {}
}
lemma pigeonHoles<A>(items: set<A>, list: seq<A>, n: nat)
requires |items| == n
requires forall x :: x in list ==> x in items
requires |list| > n
ensures !distinct(list)
{
if x :| multiset(list)[x] > 1 {
multisetItems(list, x);
var i,j :| 0 <= i < j < |list| && list[i] == x && list[j] == x && i != j;
}else if x :| multiset(list)[x] == 1 {
assert x in list;
var i :| 0 <= i < |list| && list[i] == x;
assert list == list[..i] + [x] + list[i+1..];
assert list == list[..i] + list[i..];
assert multiset(list) == multiset(list[..i])+multiset(list[i+1..])+multiset{x};
assert multiset(list)[x] == 1;
var rest := list[..i]+list[i+1..];
assert multiset(rest)[x] == 0;
forall y | y in rest
ensures y in items-{x}
{
assert y in items;
assert y != x;
}
pigeonHoles(items-{x}, rest, n-1);
assert !distinct(rest);
indistinctPlusX(rest, x);
assert !distinct(list);
}else if x :| multiset(list)[x] == 0 {}
}
lemma reverseInitList<T>(xs: seq<T>)
requires |xs| > 1
requires |reverse(xs)| == |xs|
ensures reverse(reverse(xs)[..|xs|-1]) == xs[1..]
{
assert xs == [xs[0]] + xs[1..];
assert |reverse(xs)| == |xs|;
calc {
reverse(xs);
reverse(xs[1..])+reverse([xs[0]]);
reverse(xs[1..])+[xs[0]];
}
assert reverse(xs)[..|xs|-1] == reverse(xs[1..]);
calc {
reverse(reverse(xs)[..|xs|-1]);
reverse(reverse(xs[1..]));
== {reverseReverseIdempotent(xs[1..]);}
xs[1..];
}
}
method SeqTest() {
var t1 := [4,5,6,1,2,3];
// assert t1 == [4,5,6]+[1,2,3];
var s1 := [1,2,3];
assert IsSuffix(s1,t1);
// assert isSubstring(s1,t1);
assert substring1(s1, t1);
}
}
|
module Seq {
export reveals *
function ToSet<A>(xs: seq<A>): set<A>
ensures forall x :: x in ToSet(xs) ==> x in xs
ensures forall x :: x !in ToSet(xs) ==> x !in xs
{
if xs == [] then {} else {xs[0]}+ToSet(xs[1..])
}
predicate substring1<A(==)>(sub: seq<A>, super: seq<A>) {
exists k :: 0 <= k < |super| && sub <= super[k..]
}
ghost predicate isSubstringAlt<A(!new)>(sub: seq<A>, super: seq<A>) {
|sub| <= |super| && exists xs: seq<A> :: IsSuffix(xs, super) && sub <= xs
}
predicate isSubstring<A(==)>(sub: seq<A>, super: seq<A>) {
|sub| <= |super| && exists k,j :: 0 <= k < j <= |super| && sub == super[k..j]
}
lemma SliceOfSliceIsSlice<A>(xs: seq<A>, k: int, j: int, s: int, t: int)
requires 0 <= k <= j <= |xs|
requires 0 <= s <= t <= j-k
ensures xs[k..j][s..t] == xs[(k+s)..(k+s+(t-s))]
{
if j-k == 0 {
}else if t-s == 0 {
}else if t-s > 0 {
SliceOfSliceIsSlice(xs, k, j, s,t-1);
}
}
lemma AllSubstringsAreSubstrings<A>(subsub: seq<A>, sub: seq<A>, super: seq<A>)
requires isSubstring(sub, super)
requires isSubstring(subsub, sub)
ensures isSubstring(subsub, super)
{
var k,j :| 0 <= k < j <= |super| && sub == super[k..j];
var s,t :| 0 <= s < t <= |sub| && subsub == sub[s..t];
//[3,4,5,6,7,8,9,10,11,12,13][2,7] //k,j
//[5,6,7,8,9,10][1..3] //s,t
//[5,7,8]
// var example:= [3,4,5,6,7,8,9,10,11,12,13];
// assert example[2..7] == [5,6,7,8,9];
// assert example[2..7][1..3] == [6,7];
// assert example[3..5] == [6,7];
// assert k+s+(t-s)
// assert 2+1+(3-1) == 5;
/*
*/
if t < j {
calc {
subsub;
super[k..j][s..t];
{SliceOfSliceIsSlice(super,k,j,s,t);}
super[(k+s)..(k+s+(t-s))];
}
} else if t <= j {
}
// var z,q :| 0 <= z <= q <= |super| && super[z..q] == super[k..j][s..t];
}
predicate IsSuffix<T(==)>(xs: seq<T>, ys: seq<T>) {
|xs| <= |ys| && xs == ys[|ys| - |xs|..]
}
predicate IsPrefix<T(==)>(xs: seq<T>, ys: seq<T>) {
|xs| <= |ys| && xs == ys[..|xs|]
}
lemma PrefixRest<T>(xs: seq<T>, ys: seq<T>)
requires IsPrefix(xs, ys)
ensures exists yss: seq<T> :: ys == xs + yss && |yss| == |ys|-|xs|;
{
}
lemma IsSuffixReversed<T>(xs: seq<T>, ys: seq<T>)
requires IsSuffix(xs, ys)
ensures IsPrefix(reverse(xs), reverse(ys))
{
ReverseIndexAll(xs);
ReverseIndexAll(ys);
}
lemma IsPrefixReversed<T>(xs: seq<T>, ys: seq<T>)
requires IsPrefix(xs, ys)
ensures IsSuffix(reverse(xs), reverse(ys))
{
ReverseIndexAll(xs);
ReverseIndexAll(ys);
}
lemma IsPrefixReversedAll<T>(xs: seq<T>, ys: seq<T>)
requires IsPrefix(reverse(xs), reverse(ys))
ensures IsSuffix(reverse(reverse(xs)), reverse(reverse(ys)))
{
ReverseIndexAll(xs);
ReverseIndexAll(ys);
PrefixRest(reverse(xs), reverse(ys));
var yss :| reverse(ys) == reverse(xs) + yss && |yss| == |ys|-|xs|;
reverseReverseIdempotent(ys);
ReverseConcat(reverse(xs), yss);
calc {
reverse(reverse(ys));
ys;
reverse(reverse(xs) + yss);
reverse(yss)+reverse(reverse(xs));
== {reverseReverseIdempotent(xs);}
reverse(yss)+xs;
}
}
predicate IsSuffix2<T(==)>(xs: seq<T>, ys: seq<T>) {
|xs| <= |ys| && exists K :: 0 <= K <= |ys|-|xs| && ys == ys[0..K] + xs + ys[(K+|xs|)..]
}
function reverse<A>(x: seq<A>): seq<A>
{
if x == [] then [] else reverse(x[1..])+[x[0]]
}
lemma {:induction false} reversePreservesMultiset<A>(xs: seq<A>)
ensures multiset(xs) == multiset(reverse(xs))
{
if xs == [] {
}else {
var x := xs[0];
reversePreservesMultiset(xs[1..]);
}
}
lemma reversePreservesLength<A>(xs: seq<A>)
ensures |xs| == |reverse(xs)|
{
}
lemma lastReverseIsFirst<A>(xs: seq<A>)
requires |xs| > 0
ensures xs[0] == reverse(xs)[|reverse(xs)|-1]
{
reversePreservesLength(xs);
}
lemma firstReverseIsLast<A>(xs: seq<A>)
requires |xs| > 0
ensures reverse(xs)[0] == xs[|xs|-1]
{
}
lemma ReverseConcat<T>(xs: seq<T>, ys: seq<T>)
ensures reverse(xs + ys) == reverse(ys) + reverse(xs)
{
// reveal Reverse();
if |xs| == 0 {
} else {
}
}
lemma reverseRest<A>(xs: seq<A>)
requires |xs| > 0
ensures reverse(xs) == [xs[ |xs| -1 ] ] + reverse(xs[0..|xs|-1])
{
firstReverseIsLast(xs);
calc {
reverse(xs);
reverse(xs[0..|xs|-1] + [xs[|xs|-1]]);
== {ReverseConcat(xs[0..|xs|-1], [xs[ |xs|-1 ]]);}
reverse([xs[ |xs|-1 ]]) + reverse(xs[0..|xs|-1]);
}
}
lemma ReverseIndexAll<T>(xs: seq<T>)
ensures |reverse(xs)| == |xs|
ensures forall i :: 0 <= i < |xs| ==> reverse(xs)[i] == xs[|xs| - i - 1]
{
// reveal Reverse();
}
lemma ReverseIndex<T>(xs: seq<T>, i: int)
requires 0 <= i < |xs|
ensures |reverse(xs)| == |xs|
ensures reverse(xs)[i] == xs[|xs| - i - 1]
{
ReverseIndexAll(xs);
}
lemma ReverseIndexBack<T>(xs: seq<T>, i: int)
requires 0 <= i < |xs|
ensures |reverse(xs)| == |xs|
ensures reverse(xs)[|xs| - i - 1] == xs[i]
{
ReverseIndexAll(xs);
}
lemma ReverseSingle<A>(xs: seq<A>)
requires |xs| == 1
ensures reverse(xs) == xs
{
}
lemma SeqEq<T>(xs: seq<T>, ys: seq<T>)
requires |xs| == |ys|
requires forall i :: 0 <= i < |xs| ==> xs[i] == ys[i]
ensures xs == ys
{
}
lemma reverseReverseIdempotent<A>(xs: seq<A>)
ensures reverse(reverse(xs)) == xs
{
if xs == [] {
}else{
calc {
reverse(reverse(xs));
reverse(reverse([xs[0]] + xs[1..]));
== {ReverseConcat([xs[0]] , xs[1..]);}
reverse(reverse(xs[1..]) + reverse([xs[0]]));
== {ReverseSingle([xs[0]]);}
reverse(reverse(xs[1..]) + [xs[0]]);
== {ReverseConcat(reverse(xs[1..]), [xs[0]]);}
reverse([xs[0]]) + reverse(reverse(xs[1..]));
[xs[0]] + reverse(reverse(xs[1..]));
== {reverseReverseIdempotent(xs[1..]);}
xs;
}
}
/* Alternatively */
// ReverseIndexAll(reverse(xs));
// ReverseIndexAll(xs);
// SeqEq(reverse(reverse(xs)), xs);
}
lemma notInNotEqual<A>(xs: seq<A>, elem: A)
requires elem !in xs
ensures forall k :: 0 <= k < |xs| ==> xs[k] != elem
{
}
predicate distinct<A(==)>(s: seq<A>) {
forall x,y :: x != y && 0 <= x <= y < |s| ==> s[x] != s[y]
}
lemma distincts<A>(xs: seq<A>, ys: seq<A>)
requires distinct(xs)
requires distinct(ys)
requires forall x :: x in xs ==> x !in ys
requires forall y :: y in ys ==> y !in xs
ensures distinct(xs+ys)
{
var len := |xs + ys|;
forall x,y | x != y && 0 <= x <= y < |xs+ys|
ensures (xs+ys)[x] != (xs+ys)[y]
{
if 0 <= x < |xs| && 0 <= y < |xs| {
}else if |xs| <= x < |xs+ys| && |xs| <= y < |xs+ys| {
}else if 0 <= x < |xs| && |xs| <= y < |xs+ys| {
notInNotEqual(ys, xs[x]);
}
}
}
lemma reverseDistinct<A>(list: seq<A>)
requires distinct(list)
ensures distinct(reverse(list))
{
ReverseIndexAll(list);
}
lemma distinctSplits<A>(list: seq<A>)
requires distinct(list)
ensures forall i :: 1 <= i < |list| ==> distinct(list[..i])
{}
lemma multisetItems<A>(list: seq<A>, item: A)
requires item in list
requires multiset(list)[item] > 1
ensures exists i,j :: 0 <= i < j < |list| && list[i] == item && list[j] == item && i != j
{
var k :| 0 <= k < |list| && list[k] == item;
var rest := list[..k]+list[k+1..];
}
lemma distinctMultisetIs1<A>(list: seq<A>, item: A)
requires distinct(list)
requires item in list
ensures multiset(list)[item] == 1
{
if multiset(list)[item] == 0 {
}
if multiset(list)[item] > 1 {
multisetItems(list, item);
var i,j :| 0 <= i < j < |list| && list[i] == item && list[j] == item && i != j;
}
}
lemma indistinctMultisetIsGreaterThan1<A>(list: seq<A>)
requires !distinct(list)
ensures exists item :: multiset(list)[item] > 1
{
var x,y :| x != y && 0 <= x <= y < |list| && list[x] == list[y];
var item := list[x];
}
lemma multisetIsGreaterThan1Indistinct<A>(list: seq<A>)
requires exists item :: multiset(list)[item] > 1
ensures !distinct(list)
{
var item :| multiset(list)[item] > 1;
var x :| 0 <= x < |list| && list[x] == item;
var y :| x != y && 0 <= y < |list| && list[y] == item;
}
lemma indistinctPlusX<A>(items: seq<A>, x: A)
requires !distinct(items)
ensures forall i :: 0 <= i < |items| ==> !distinct(items[..i]+[x]+items[i..])
{
forall i | 0 <= i < |items|
ensures !distinct(items[..i]+[x]+items[i..])
{
indistinctMultisetIsGreaterThan1(items);
var item :| multiset(items)[item] > 1;
var itemsPlus := items[..i]+[x]+items[i..];
calc {
multiset(itemsPlus);
multiset(items[..i])+multiset(items[i..])+multiset{x};
multiset(items)+multiset{x};
}
multisetIsGreaterThan1Indistinct(itemsPlus);
}
}
lemma pigeonHolesMultiset<A>(items: set<A>, list: seq<A>, n: nat)
requires |items| == n
requires forall x :: x in list ==> x in items
requires |list| > n
ensures exists item :: multiset(list)[item] > 1
{
if x :| multiset(list)[x] > 1 {
}else if x :| multiset(list)[x] == 1 {
var i :| 0 <= i < |list| && list[i] == x;
var rest := list[..i]+list[i+1..];
forall y | y in rest
ensures y in items-{x}
{
}
if n -1 == 0 {
// assert |items| == 1;
// assert x in items;
}else{
pigeonHolesMultiset(items-{x}, rest, n-1);
var item :| multiset(rest)[item] > 1;
}
}else if x :| multiset(list)[x] == 0 {}
}
lemma pigeonHoles<A>(items: set<A>, list: seq<A>, n: nat)
requires |items| == n
requires forall x :: x in list ==> x in items
requires |list| > n
ensures !distinct(list)
{
if x :| multiset(list)[x] > 1 {
multisetItems(list, x);
var i,j :| 0 <= i < j < |list| && list[i] == x && list[j] == x && i != j;
}else if x :| multiset(list)[x] == 1 {
var i :| 0 <= i < |list| && list[i] == x;
var rest := list[..i]+list[i+1..];
forall y | y in rest
ensures y in items-{x}
{
}
pigeonHoles(items-{x}, rest, n-1);
indistinctPlusX(rest, x);
}else if x :| multiset(list)[x] == 0 {}
}
lemma reverseInitList<T>(xs: seq<T>)
requires |xs| > 1
requires |reverse(xs)| == |xs|
ensures reverse(reverse(xs)[..|xs|-1]) == xs[1..]
{
calc {
reverse(xs);
reverse(xs[1..])+reverse([xs[0]]);
reverse(xs[1..])+[xs[0]];
}
calc {
reverse(reverse(xs)[..|xs|-1]);
reverse(reverse(xs[1..]));
== {reverseReverseIdempotent(xs[1..]);}
xs[1..];
}
}
method SeqTest() {
var t1 := [4,5,6,1,2,3];
// assert t1 == [4,5,6]+[1,2,3];
var s1 := [1,2,3];
// assert isSubstring(s1,t1);
}
}
|
297 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_algorithms and leetcode_math_pearson.dfy |
function eight(x: nat):nat {
9 * x + 5
}
predicate isOdd(x: nat) {
x % 2 == 1
}
predicate isEven(x: nat) {
x % 2 == 0
}
lemma eightL(x: nat)
requires isOdd(x)
ensures isEven(eight(x))
{
}
function nineteenf(x: nat): nat {
7*x+4
}
function nineteens(x: nat): nat {
3*x+11
}
lemma nineteenlemma(x: nat)
requires isEven(nineteenf(x))
ensures isOdd(nineteens(x))
{
}
function relationDomain<T>(s: set<(T,T)>): set<T> {
set z | z in s :: z.1
}
predicate reflexive<T>(R: set<(T,T)>, S: set<T>)
requires relationOnASet(R, S)
{
forall s :: s in S ==> (s,s) in R
}
predicate symmetric<T>(R: set<(T,T)>, S: set<T>)
requires relationOnASet(R, S)
{
forall x: T, y:T :: x in S && y in S && (x,y) in R ==> (y, x) in R
}
predicate transitive<T>(R: set<(T,T)>, S: set<T>)
requires relationOnASet(R, S)
{
forall a,b,c :: a in S && b in S && c in S && (a,b) in R && (b,c) in R ==> (a,c) in R
}
predicate equivalenceRelation<T>(R: set<(T,T)>, S: set<T>)
requires relationOnASet(R, S)
{
reflexive(R, S) && symmetric(R, S) && transitive(R, S)
}
predicate relationOnASet<T>(R: set<(T,T)>, S: set<T>) {
forall ts :: ts in R ==> ts.0 in S && ts.1 in S
}
// lemma equivUnion<T>(R_1: set<(T,T)>, S_1: set<T>, R_2: set<(T,T)>, S_2: set<T>)
// requires |R_1| > 0
// requires |R_2| > 0
// requires |S_1| > 0
// requires |S_2| > 0
// requires relationOnASet(R_1, S_1)
// requires relationOnASet(R_2, S_2)
// requires equivalenceRelation(R_1, S_1)
// requires equivalenceRelation(R_2, S_2)
// ensures equivalenceRelation(R_1+R_2, S_1+S_2)
// {
// reflexiveUnion(R_1, S_1, R_2, S_2);
// symmetricUnion(R_1, S_1, R_2, S_2);
// transitiveUnion(R_1, S_1, R_2, S_2);
// }
lemma reflexiveUnion<T>(R_1: set<(T,T)>, S_1: set<T>, R_2: set<(T,T)>, S_2: set<T>)
requires |R_1| > 0
requires |R_2| > 0
requires |S_1| > 0
requires |S_2| > 0
requires relationOnASet(R_1, S_1)
requires relationOnASet(R_2, S_2)
requires reflexive(R_1, S_1)
requires reflexive(R_2, S_2)
ensures reflexive(R_1+R_2, S_1+S_2)
{
}
lemma symmetricUnion<T>(R_1: set<(T,T)>, S_1: set<T>, R_2: set<(T,T)>, S_2: set<T>)
requires |R_1| > 0
requires |R_2| > 0
requires |S_1| > 0
requires |S_2| > 0
requires relationOnASet(R_1, S_1)
requires relationOnASet(R_2, S_2)
requires symmetric(R_1, S_1)
requires symmetric(R_2, S_2)
ensures symmetric(R_1+R_2, S_1+S_2)
{
// assert R_1 <= (R_1+R_2);
// assert R_2 <= (R_1+R_2);
// assert symmetric(R_1, S_1);
// assert symmetric(R_2, S_2);
forall x,y | x in S_1+S_2 && y in S_1+S_2 && (x,y) in R_1+R_2
ensures (y,x) in R_1+R_2
{
// assert x in S_1+S_2;
// assert y in S_1+S_2;
// assert (x,y) in R_1+R_2;
// calc {
// (x,y) in R_1+R_2;
// ==>
// (x,y) in R_1 || (x,y) in R_2;
// }
// calc {
// x in S_1+S_2;
// ==>
// x in S_1 || x in S_2;
// }
// calc {
// y in S_1+S_2;
// ==>
// y in S_1 || y in S_2;
// }
// assert (x,y) in R_1 ==> x in S_1 && y in S_1;
// assert (x,y) in R_2 ==> x in S_2 && y in S_2;
// assert (x,y) in R_1 || (x,y) in R_2;
if x in S_1 && y in S_1 && (x,y) in R_1 {
// assert x in S_1;
// assert y in S_1;
// assert (x,y) in R_1;
// assert (y,x) in R_1;
assert (y,x) in R_1+R_2;
}else if x in S_2 && y in S_2 && (x,y) in R_2 {
// assert x in S_2;
// assert y in S_2;
// assert (x,y) in R_2;
// assert (y,x) in R_2;
assert (y,x) in R_1+R_2;
}
}
}
lemma transitiveUnion<T>(R_1: set<(T,T)>, S_1: set<T>, R_2: set<(T,T)>, S_2: set<T>)
requires |R_1| > 0
requires |R_2| > 0
requires |S_1| > 0
requires |S_2| > 0
requires relationOnASet(R_1, S_1)
requires relationOnASet(R_2, S_2)
requires transitive(R_1, S_1)
requires transitive(R_2, S_2)
ensures transitive(R_1+R_2, S_1+S_2)
{
assert R_1 <= (R_1+R_2);
assert R_2 <= (R_1+R_2);
assume forall a :: a in S_1+S_2 ==> a !in S_1 || a !in S_2;
forall a,b,c | a in S_1+S_2 && b in S_1+S_2 && c in S_1+S_2 && (a,b) in R_1+R_2 && (b,c) in R_1+R_2
ensures (a,c) in R_1+R_2
{
assert a in S_1 ==> b !in S_2;
if a in S_1 && b in S_1 && c in S_1 && (a,b) in R_1 && (b,c) in R_1 {
assert (a,c) in R_1;
assert (a,c) in R_1+R_2;
}else if a in S_2 && b in S_2 && c in S_2 && (a,b) in R_2 && (b,c) in R_2 {
assert (a,c) in R_2;
assert (a,c) in R_1+R_2;
}
}
}
// lemma transitiveUnionContra<T>(R_1: set<(T,T)>, S_1: set<T>, R_2: set<(T,T)>, S_2: set<T>)
// requires |R_1| > 0
// requires |R_2| > 0
// requires |S_1| > 0
// requires |S_2| > 0
// requires relationOnASet(R_1, S_1)
// requires relationOnASet(R_2, S_2)
// requires transitive(R_1, S_1)
// requires transitive(R_2, S_2)
// ensures exists (R_1+R_2, S_1+S_2) :: !transitive(R_1+R_2, S_1+S_2)
// {
// assume S_1 * S_2 != {};
// if transitive(R_1 + R_2, S_1+S_2) {
// forall a,b,c | a in S_1+S_2 && b in S_1+S_2 && c in S_1+S_2 && (a,b) in R_1+R_2 && (b,c) in R_1+R_2
// ensures (a,c) in R_1+R_2
// {
// if a in S_1 && a !in S_2 && b in S_1 && b in S_2 && c in S_2 && c !in S_1 {
// assert (a,c) !in R_1;
// assert (a,c) !in R_2;
// assert (a,c) !in R_1+R_2;
// assert false;
// }
// }
// }
// }
lemma transitiveUnionContra<T>()
returns (
R1: set<(T, T)>, S1: set<T>,
R2: set<(T, T)>, S2: set<T>)
ensures relationOnASet(R1, S1)
ensures relationOnASet(R2, S2)
ensures transitive(R1, S1)
ensures transitive(R2, S2)
ensures ! transitive(R1 + R2, S1 + S2)
{
var a : T :| assume true;
var b : T :| assume a != b;
var c : T :| assume a != c && b != c;
S1 := {a, b};
S2 := {b, c};
R1 := {(a, b)};
R2 := {(b, c)};
}
lemma notTrueAlways<T>()
ensures !
(forall S1 : set<T>, S2 : set<T>, R1 : set<(T,T)>, R2 : set<(T, T)> ::
relationOnASet(R1, S1) &&
relationOnASet(R2, S2) &&
transitive(R1, S1) &&
transitive(R2, S2) ==> transitive(R1 + R2, S1 + S2)
)
{
var a, b, c, d := transitiveUnionContra<T>();
}
method test() {
var x := 7;
// assert isEven(eight(7));
var four := 4;
// var test := set x: nat,y: nat | 1 <= x <= y <= 5 :: (x,y);
var sample := {1,2,3,4,5,6};
var test := set x,y | x in sample && y in sample :: (x,y);
var modulos := set x,y | x in sample && y in sample && x % y == 0 :: (x,y);
// assert reflexive(test, set x | 1 <=x <= 5);
assert reflexive(test, sample);
assert symmetric(test, sample);
assert transitive(test, sample);
assert equivalenceRelation(test, sample);
// assert equivalenceRelation(modulos, sample);
var hmm := (1,2,3);
assert hmm.2 == 3;
assert (1,2) in test;
// assert 0 <= four < 100 && isEven(nineteenf(four));
ghost var y: nat :| isEven(nineteenf(y));
assert isOdd(nineteens(y));
}
|
function eight(x: nat):nat {
9 * x + 5
}
predicate isOdd(x: nat) {
x % 2 == 1
}
predicate isEven(x: nat) {
x % 2 == 0
}
lemma eightL(x: nat)
requires isOdd(x)
ensures isEven(eight(x))
{
}
function nineteenf(x: nat): nat {
7*x+4
}
function nineteens(x: nat): nat {
3*x+11
}
lemma nineteenlemma(x: nat)
requires isEven(nineteenf(x))
ensures isOdd(nineteens(x))
{
}
function relationDomain<T>(s: set<(T,T)>): set<T> {
set z | z in s :: z.1
}
predicate reflexive<T>(R: set<(T,T)>, S: set<T>)
requires relationOnASet(R, S)
{
forall s :: s in S ==> (s,s) in R
}
predicate symmetric<T>(R: set<(T,T)>, S: set<T>)
requires relationOnASet(R, S)
{
forall x: T, y:T :: x in S && y in S && (x,y) in R ==> (y, x) in R
}
predicate transitive<T>(R: set<(T,T)>, S: set<T>)
requires relationOnASet(R, S)
{
forall a,b,c :: a in S && b in S && c in S && (a,b) in R && (b,c) in R ==> (a,c) in R
}
predicate equivalenceRelation<T>(R: set<(T,T)>, S: set<T>)
requires relationOnASet(R, S)
{
reflexive(R, S) && symmetric(R, S) && transitive(R, S)
}
predicate relationOnASet<T>(R: set<(T,T)>, S: set<T>) {
forall ts :: ts in R ==> ts.0 in S && ts.1 in S
}
// lemma equivUnion<T>(R_1: set<(T,T)>, S_1: set<T>, R_2: set<(T,T)>, S_2: set<T>)
// requires |R_1| > 0
// requires |R_2| > 0
// requires |S_1| > 0
// requires |S_2| > 0
// requires relationOnASet(R_1, S_1)
// requires relationOnASet(R_2, S_2)
// requires equivalenceRelation(R_1, S_1)
// requires equivalenceRelation(R_2, S_2)
// ensures equivalenceRelation(R_1+R_2, S_1+S_2)
// {
// reflexiveUnion(R_1, S_1, R_2, S_2);
// symmetricUnion(R_1, S_1, R_2, S_2);
// transitiveUnion(R_1, S_1, R_2, S_2);
// }
lemma reflexiveUnion<T>(R_1: set<(T,T)>, S_1: set<T>, R_2: set<(T,T)>, S_2: set<T>)
requires |R_1| > 0
requires |R_2| > 0
requires |S_1| > 0
requires |S_2| > 0
requires relationOnASet(R_1, S_1)
requires relationOnASet(R_2, S_2)
requires reflexive(R_1, S_1)
requires reflexive(R_2, S_2)
ensures reflexive(R_1+R_2, S_1+S_2)
{
}
lemma symmetricUnion<T>(R_1: set<(T,T)>, S_1: set<T>, R_2: set<(T,T)>, S_2: set<T>)
requires |R_1| > 0
requires |R_2| > 0
requires |S_1| > 0
requires |S_2| > 0
requires relationOnASet(R_1, S_1)
requires relationOnASet(R_2, S_2)
requires symmetric(R_1, S_1)
requires symmetric(R_2, S_2)
ensures symmetric(R_1+R_2, S_1+S_2)
{
// assert R_1 <= (R_1+R_2);
// assert R_2 <= (R_1+R_2);
// assert symmetric(R_1, S_1);
// assert symmetric(R_2, S_2);
forall x,y | x in S_1+S_2 && y in S_1+S_2 && (x,y) in R_1+R_2
ensures (y,x) in R_1+R_2
{
// assert x in S_1+S_2;
// assert y in S_1+S_2;
// assert (x,y) in R_1+R_2;
// calc {
// (x,y) in R_1+R_2;
// ==>
// (x,y) in R_1 || (x,y) in R_2;
// }
// calc {
// x in S_1+S_2;
// ==>
// x in S_1 || x in S_2;
// }
// calc {
// y in S_1+S_2;
// ==>
// y in S_1 || y in S_2;
// }
// assert (x,y) in R_1 ==> x in S_1 && y in S_1;
// assert (x,y) in R_2 ==> x in S_2 && y in S_2;
// assert (x,y) in R_1 || (x,y) in R_2;
if x in S_1 && y in S_1 && (x,y) in R_1 {
// assert x in S_1;
// assert y in S_1;
// assert (x,y) in R_1;
// assert (y,x) in R_1;
}else if x in S_2 && y in S_2 && (x,y) in R_2 {
// assert x in S_2;
// assert y in S_2;
// assert (x,y) in R_2;
// assert (y,x) in R_2;
}
}
}
lemma transitiveUnion<T>(R_1: set<(T,T)>, S_1: set<T>, R_2: set<(T,T)>, S_2: set<T>)
requires |R_1| > 0
requires |R_2| > 0
requires |S_1| > 0
requires |S_2| > 0
requires relationOnASet(R_1, S_1)
requires relationOnASet(R_2, S_2)
requires transitive(R_1, S_1)
requires transitive(R_2, S_2)
ensures transitive(R_1+R_2, S_1+S_2)
{
assume forall a :: a in S_1+S_2 ==> a !in S_1 || a !in S_2;
forall a,b,c | a in S_1+S_2 && b in S_1+S_2 && c in S_1+S_2 && (a,b) in R_1+R_2 && (b,c) in R_1+R_2
ensures (a,c) in R_1+R_2
{
if a in S_1 && b in S_1 && c in S_1 && (a,b) in R_1 && (b,c) in R_1 {
}else if a in S_2 && b in S_2 && c in S_2 && (a,b) in R_2 && (b,c) in R_2 {
}
}
}
// lemma transitiveUnionContra<T>(R_1: set<(T,T)>, S_1: set<T>, R_2: set<(T,T)>, S_2: set<T>)
// requires |R_1| > 0
// requires |R_2| > 0
// requires |S_1| > 0
// requires |S_2| > 0
// requires relationOnASet(R_1, S_1)
// requires relationOnASet(R_2, S_2)
// requires transitive(R_1, S_1)
// requires transitive(R_2, S_2)
// ensures exists (R_1+R_2, S_1+S_2) :: !transitive(R_1+R_2, S_1+S_2)
// {
// assume S_1 * S_2 != {};
// if transitive(R_1 + R_2, S_1+S_2) {
// forall a,b,c | a in S_1+S_2 && b in S_1+S_2 && c in S_1+S_2 && (a,b) in R_1+R_2 && (b,c) in R_1+R_2
// ensures (a,c) in R_1+R_2
// {
// if a in S_1 && a !in S_2 && b in S_1 && b in S_2 && c in S_2 && c !in S_1 {
// assert (a,c) !in R_1;
// assert (a,c) !in R_2;
// assert (a,c) !in R_1+R_2;
// assert false;
// }
// }
// }
// }
lemma transitiveUnionContra<T>()
returns (
R1: set<(T, T)>, S1: set<T>,
R2: set<(T, T)>, S2: set<T>)
ensures relationOnASet(R1, S1)
ensures relationOnASet(R2, S2)
ensures transitive(R1, S1)
ensures transitive(R2, S2)
ensures ! transitive(R1 + R2, S1 + S2)
{
var a : T :| assume true;
var b : T :| assume a != b;
var c : T :| assume a != c && b != c;
S1 := {a, b};
S2 := {b, c};
R1 := {(a, b)};
R2 := {(b, c)};
}
lemma notTrueAlways<T>()
ensures !
(forall S1 : set<T>, S2 : set<T>, R1 : set<(T,T)>, R2 : set<(T, T)> ::
relationOnASet(R1, S1) &&
relationOnASet(R2, S2) &&
transitive(R1, S1) &&
transitive(R2, S2) ==> transitive(R1 + R2, S1 + S2)
)
{
var a, b, c, d := transitiveUnionContra<T>();
}
method test() {
var x := 7;
// assert isEven(eight(7));
var four := 4;
// var test := set x: nat,y: nat | 1 <= x <= y <= 5 :: (x,y);
var sample := {1,2,3,4,5,6};
var test := set x,y | x in sample && y in sample :: (x,y);
var modulos := set x,y | x in sample && y in sample && x % y == 0 :: (x,y);
// assert reflexive(test, set x | 1 <=x <= 5);
// assert equivalenceRelation(modulos, sample);
var hmm := (1,2,3);
// assert 0 <= four < 100 && isEven(nineteenf(four));
ghost var y: nat :| isEven(nineteenf(y));
}
|
298 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_basic examples_BubbleSort.dfy | predicate sorted(a:array<int>, from:int, to:int)
requires a != null;
reads a;
requires 0 <= from <= to <= a.Length;
{
forall u, v :: from <= u < v < to ==> a[u] <= a[v]
}
predicate pivot(a:array<int>, to:int, pvt:int)
requires a != null;
reads a;
requires 0 <= pvt < to <= a.Length;
{
forall u, v :: 0 <= u < pvt < v < to ==> a[u] <= a[v]
}
method bubbleSort (a: array<int>)
requires a != null && a.Length > 0;
modifies a;
ensures sorted(a, 0, a.Length);
ensures multiset(a[..]) == multiset(old(a[..]));
{
var i:nat := 1;
while (i < a.Length)
invariant i <= a.Length;
invariant sorted(a, 0, i);
invariant multiset(a[..]) == multiset(old(a[..]));
{
var j:nat := i;
while (j > 0)
invariant multiset(a[..]) == multiset(old(a[..]));
invariant sorted(a, 0, j);
invariant sorted(a, j, i+1);
invariant pivot(a, i+1, j);
{
if (a[j-1] > a[j]) {
var temp:int := a[j-1];
a[j-1] := a[j];
a[j] := temp;
}
j := j - 1;
}
i := i+1;
}
}
| predicate sorted(a:array<int>, from:int, to:int)
requires a != null;
reads a;
requires 0 <= from <= to <= a.Length;
{
forall u, v :: from <= u < v < to ==> a[u] <= a[v]
}
predicate pivot(a:array<int>, to:int, pvt:int)
requires a != null;
reads a;
requires 0 <= pvt < to <= a.Length;
{
forall u, v :: 0 <= u < pvt < v < to ==> a[u] <= a[v]
}
method bubbleSort (a: array<int>)
requires a != null && a.Length > 0;
modifies a;
ensures sorted(a, 0, a.Length);
ensures multiset(a[..]) == multiset(old(a[..]));
{
var i:nat := 1;
while (i < a.Length)
{
var j:nat := i;
while (j > 0)
{
if (a[j-1] > a[j]) {
var temp:int := a[j-1];
a[j-1] := a[j];
a[j] := temp;
}
j := j - 1;
}
i := i+1;
}
}
|
299 | Program-Verification-Dataset_tmp_tmpgbdrlnu__Dafny_basic examples_BubbleSort_sol.dfy | predicate sorted_between (a:array<int>, from:nat, to:nat)
reads a;
requires a != null;
requires from <= to;
requires to <= a.Length;
{
forall i,j :: from <= i < j < to && 0 <= i < j < a.Length ==> a[i] <= a[j]
}
predicate sorted (a:array<int>)
reads a;
requires a!=null;
{
sorted_between (a, 0, a.Length)
}
method bubbleSort (a: array<int>)
modifies a;
requires a != null;
requires a.Length > 0;
ensures sorted(a);
ensures multiset(old(a[..])) == multiset(a[..]);
{
var i:nat := 1;
while (i < a.Length)
invariant i <= a.Length;
invariant sorted_between (a, 0, i);
invariant multiset(old (a[..])) == multiset(a[..]);
{
var j:nat := i;
while (j > 0)
invariant 0 <= j <= i;
invariant sorted_between (a, 0, j);
invariant forall u,v:: 0 <= u < j < v < i+1 ==> a[u] <= a[v];
invariant sorted_between (a, j, i+1);
invariant multiset(old (a[..])) == multiset(a[..]);
{
if (a[j-1] > a[j]) {
var temp:int := a[j-1];
// Introduced bug for permutation
a[j-1] := a[j];
//a[j-1] := a[j-1];
a[j] := temp;
}
j := j - 1;
}
i := i+1;
}
}
| predicate sorted_between (a:array<int>, from:nat, to:nat)
reads a;
requires a != null;
requires from <= to;
requires to <= a.Length;
{
forall i,j :: from <= i < j < to && 0 <= i < j < a.Length ==> a[i] <= a[j]
}
predicate sorted (a:array<int>)
reads a;
requires a!=null;
{
sorted_between (a, 0, a.Length)
}
method bubbleSort (a: array<int>)
modifies a;
requires a != null;
requires a.Length > 0;
ensures sorted(a);
ensures multiset(old(a[..])) == multiset(a[..]);
{
var i:nat := 1;
while (i < a.Length)
{
var j:nat := i;
while (j > 0)
{
if (a[j-1] > a[j]) {
var temp:int := a[j-1];
// Introduced bug for permutation
a[j-1] := a[j];
//a[j-1] := a[j-1];
a[j] := temp;
}
j := j - 1;
}
i := i+1;
}
}
|