Datasets:
annotations_creators:
- crowdsourced
- found
language_creators:
- crowdsourced
- found
language:
- en
- id
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-nus-sms-corpus
task_categories:
- text-classification
- text-generation
task_ids:
- intent-classification
paperswithcode_id: sms-spam-collection-data-set
pretty_name: SMS Spam Collection Data Set
dataset_info:
features:
- name: sms
dtype: string
- name: label
dtype:
class_label:
names:
'0': ham
'1': spam
config_name: plain_text
splits:
- name: train
num_bytes: 521756
num_examples: 5574
download_size: 203415
dataset_size: 521756
train-eval-index:
- config: plain_text
task: text-classification
task_id: binary_classification
splits:
train_split: train
col_mapping:
sms: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 macro
args:
average: macro
- type: f1
name: F1 micro
args:
average: micro
- type: f1
name: F1 weighted
args:
average: weighted
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
Dataset Card for [Dataset Name]
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
- Repository:
- Paper: Almeida, T.A., Gomez Hidalgo, J.M., Yamakami, A. Contributions to the study of SMS Spam Filtering: New Collection and Results. Proceedings of the 2011 ACM Symposium on Document Engineering (ACM DOCENG'11), Mountain View, CA, USA, 2011.
- Leaderboard:
- Point of Contact:
Dataset Summary
The SMS Spam Collection v.1 is a public set of SMS labeled messages that have been collected for mobile phone spam research. It has one collection composed by 5,574 English, real and non-enconded messages, tagged according being legitimate (ham) or spam.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
English
Dataset Structure
Data Instances
[More Information Needed]
Data Fields
- sms: the sms message
- label: indicating if the sms message is ham or spam, ham means it is not spam
Data Splits
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
@inproceedings{Almeida2011SpamFiltering, title={Contributions to the Study of SMS Spam Filtering: New Collection and Results}, author={Tiago A. Almeida and Jose Maria Gomez Hidalgo and Akebo Yamakami}, year={2011}, booktitle = "Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG'11)", }
Contributions
Thanks to @czabo for adding this dataset.