Datasets:
metadata
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: sentence
dtype: string
splits:
- name: train
num_bytes: 12290918193
num_examples: 42566
download_size: 10107309830
dataset_size: 12290918193
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: apache-2.0
task_categories:
- automatic-speech-recognition
language:
- ja
tags:
- audio
- nlp
- asr
size_categories:
- 10K<n<100K
dataset = load_dataset("sin2piusc/CSS10_jsss_jvs_cv")
output_file = 'metadata.csv'
special_characters = '[,♬「」 ?!;:“%‘” ~♪…~ !?!?#$%&゛#$%&()*+:;〈=〉?@^_‘{|}~".,]'
for i, sample in tqdm(enumerate(dataset)): # Process each sample in the filtered dataset
audio_sample = name + f'_{i}.mp3'
audio_path = os.path.join(folder_path, audio_sample)
transcription_path = os.path.join(folder_path, output_file) # Path to save transcription file
sf.write(audio_path, sample['audio']['array'], sample['audio']['sampling_rate']) # Save mp3/wav files
sample["audio_length"] = len(sample["audio"]["array"]) / sample["audio"]["sampling_rate"] # Get audio length
with open(transcription_path, 'a', encoding='utf-8') as transcription_file: # Save transcription file
sample["sentence"] = re.sub(special_characters,'', sample["sentence"]) # Remove special characters
transcription_file.write(audio_sample + ",") # Save transcription file name
transcription_file.write(sample['sentence']) # Save transcription
transcription_file.write(str(","+str(sample['audio_length']))) # Save audio length
transcription_file.write('\n')