|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PropSegmEnt: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition.""" |
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@inproceedings{chen2023propsegment, |
|
title = "{PropSegmEnt}: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition", |
|
author = "Chen, Sihao and Buthpitiya, Senaka and Fabrikant, Alex and Roth, Dan and Schuster, Tal", |
|
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023", |
|
year = "2023", |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
This is a reproduced (i.e. after web-crawling) and processed version of the "PropSegment" dataset from Google Research. |
|
|
|
Since the News portion of the dataset is released only via urls, we reconstruct the dataset by crawling. Overall, ~96% |
|
of the dataset can be reproduced, and the rest ~4% either have url no longer valid, or sentences that have been edited |
|
(i.e. cannot be aligned with the orignial dataset). |
|
|
|
PropSegment (Proposition-level Segmentation and Entailment) is a large-scale, human annotated dataset for segmenting |
|
English text into propositions, and recognizing proposition-level entailment relations --- whether a different, related |
|
document entails each proposition, contradicts it, or neither. |
|
|
|
The original dataset features >45k human annotated propositions, i.e. individual semantic units within sentences, as |
|
well as >45k entailment labels between propositions and documents. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/google-research-datasets/PropSegmEnt" |
|
|
|
_LICENSE = "CC-BY-4.0" |
|
|
|
|
|
|
|
_URL = "https://raw.githubusercontent.com/schen149/PropSegmEnt/main/" |
|
_URLS = { |
|
"segmentation": { |
|
"train": _URL + "proposition_segmentation.train.jsonl", |
|
"dev": _URL + "proposition_segmentation.dev.jsonl", |
|
"test": _URL + "proposition_segmentation.test.jsonl", |
|
}, |
|
"nli": { |
|
"train": _URL + "propnli.train.jsonl", |
|
"dev": _URL + "propnli.dev.jsonl", |
|
"test": _URL + "propnli.test.jsonl", |
|
} |
|
} |
|
|
|
_CONFIG_TO_FILENAME = { |
|
"segmentation": "proposition_segmentation", |
|
"nli": "propnli" |
|
} |
|
|
|
class PropSegment(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="segmentation", version=VERSION, description="This part of my dataset covers a first domain"), |
|
datasets.BuilderConfig(name="nli", version=VERSION, description="This part of my dataset covers a second domain"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "segmentation" |
|
|
|
def _info(self): |
|
if self.config.name == "segmentation": |
|
features = datasets.Features( |
|
{ |
|
"sentence": datasets.Value("string"), |
|
"propositions": datasets.Value("string"), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"hypothesis": datasets.Value("string"), |
|
"premise": datasets.Value("string"), |
|
"label": datasets.Value("string") |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
config_name = self.config.name |
|
urls = _URLS[config_name] |
|
|
|
data_dir = dl_manager.download(urls) |
|
file_prefix = _CONFIG_TO_FILENAME[config_name] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["dev"], |
|
"split": "dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
data = json.loads(row) |
|
if self.config.name == "segmentation": |
|
yield key, { |
|
"sentence": data["sentence"], |
|
"propositions": data["propositions"], |
|
} |
|
else: |
|
yield key, { |
|
"hypothesis": data["hypothesis"], |
|
"premise": data["premise"], |
|
"label": data["label"], |
|
} |