Datasets:
File size: 7,709 Bytes
ab61ac4 c179bec ab61ac4 0a2c2eb ab61ac4 0a2c2eb ab61ac4 0a2c2eb ab61ac4 0a2c2eb ab61ac4 bac7667 ab61ac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PropSegmEnt: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition."""
import csv
import json
import os
import datasets
_CITATION = """\
@inproceedings{chen2023propsegment,
title = "{PropSegmEnt}: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition",
author = "Chen, Sihao and Buthpitiya, Senaka and Fabrikant, Alex and Roth, Dan and Schuster, Tal",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
year = "2023",
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This is a reproduced (i.e. after web-crawling) and processed version of the "PropSegment" dataset from Google Research.
Since the News portion of the dataset is released only via urls, we reconstruct the dataset by crawling. Overall, ~96%
of the dataset can be reproduced, and the rest ~4% either have url no longer valid, or sentences that have been edited
(i.e. cannot be aligned with the orignial dataset).
PropSegment (Proposition-level Segmentation and Entailment) is a large-scale, human annotated dataset for segmenting
English text into propositions, and recognizing proposition-level entailment relations --- whether a different, related
document entails each proposition, contradicts it, or neither.
The original dataset features >45k human annotated propositions, i.e. individual semantic units within sentences, as
well as >45k entailment labels between propositions and documents.
"""
_HOMEPAGE = "https://github.com/google-research-datasets/PropSegmEnt"
_LICENSE = "CC-BY-4.0"
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://raw.githubusercontent.com/schen149/PropSegmEnt/main/"
_URLS = {
"segmentation": {
"train": _URL + "proposition_segmentation.train.jsonl",
"dev": _URL + "proposition_segmentation.dev.jsonl",
"test": _URL + "proposition_segmentation.test.jsonl",
},
"nli": {
"train": _URL + "propnli.train.jsonl",
"dev": _URL + "propnli.dev.jsonl",
"test": _URL + "propnli.test.jsonl",
}
}
_CONFIG_TO_FILENAME = {
"segmentation": "proposition_segmentation",
"nli": "propnli"
}
class PropSegment(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="segmentation", version=VERSION, description="This part of my dataset covers a first domain"),
datasets.BuilderConfig(name="nli", version=VERSION, description="This part of my dataset covers a second domain"),
]
DEFAULT_CONFIG_NAME = "segmentation" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
if self.config.name == "segmentation": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"sentence": datasets.Value("string"),
"propositions": datasets.Value("string"),
}
)
else:
features = datasets.Features(
{
"hypothesis": datasets.Value("string"),
"premise": datasets.Value("string"),
"label": datasets.Value("string")
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
config_name = self.config.name
urls = _URLS[config_name]
data_dir = dl_manager.download(urls)
file_prefix = _CONFIG_TO_FILENAME[config_name]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["dev"],
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["test"],
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
if self.config.name == "segmentation":
yield key, {
"sentence": data["sentence"],
"propositions": data["propositions"],
}
else:
yield key, {
"hypothesis": data["hypothesis"],
"premise": data["premise"],
"label": data["label"],
} |