|
--- |
|
language: |
|
- en |
|
license: mit |
|
task_categories: |
|
- text-generation |
|
- feature-extraction |
|
pretty_name: AI/Technology Articles |
|
tags: |
|
- temporal series data |
|
- language data |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: year |
|
dtype: int64 |
|
- name: title |
|
dtype: string |
|
- name: url |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 180820047 |
|
num_examples: 17092 |
|
download_size: 81702921 |
|
dataset_size: 180820047 |
|
--- |
|
|
|
# AI/Tech Dataset |
|
|
|
This dataset is a collection of AI/tech articles scraped from the web. |
|
|
|
It's hosted on [HuggingFace Datasets](https://huggingface.co/datasets/siavava/ai-tech-articles), so it is easier to load in and work with. |
|
|
|
## To load the dataset |
|
|
|
### 1. Install [HuggingFace Datasets](https://huggingface.co/docs/datasets/installation.html) |
|
|
|
```bash |
|
pip install datasets |
|
``` |
|
|
|
### 2. Load the dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("siavava/ai-tech-articles") |
|
|
|
# optionally, convert it to a pandas dataframe: |
|
df = dataset["train"].to_pandas() |
|
``` |
|
|
|
You do not need to clone this repo. |
|
HuggingFace will download the dataset for you, the first time that you load it, |
|
and cache it locally so it does not need to re-download it again |
|
(unless it detects a change upstream). |
|
|
|
## File Structure |
|
|
|
- [`analytics.ipynb`](analytics.ipynb) - Notebook containing some details about the dataset. |
|
- [`example.ipynb`](example.ipynb) - A minimal notebook that loads in the dataset and converts to Pandas. |
|
- [`raw.csv`](raw.csv) - The raw data, in CSV format. |
|
- `data/*.parquet`- compressed [parquet](https://www.databricks.com/glossary/what-is-parquet) containing the data. |
|
- For raw text files, see the [scraper repo](https://github.com/siavava/scrape.hs) on GitHub. |
|
|