text
stringlengths
938
1.05M
/////////////////////////////////////////////////////////////////////////////// // // File name: axi_protocol_converter_v2_1_b2s_wr_cmd_fsm.v // /////////////////////////////////////////////////////////////////////////////// `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_protocol_converter_v2_1_b2s_wr_cmd_fsm ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire clk , input wire reset , output wire s_awready , input wire s_awvalid , output wire m_awvalid , input wire m_awready , // signal to increment to the next mc transaction output wire next , // signal to the fsm there is another transaction required input wire next_pending , // Write Data portion has completed or Read FIFO has a slot available (not // full) output wire b_push , input wire b_full , output wire a_push ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// // States localparam SM_IDLE = 2'b00; localparam SM_CMD_EN = 2'b01; localparam SM_CMD_ACCEPTED = 2'b10; localparam SM_DONE_WAIT = 2'b11; //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [1:0] state; // synthesis attribute MAX_FANOUT of state is 20; reg [1:0] next_state; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL /////////////////////////////////////////////////////////////////////////////// always @(posedge clk) begin if (reset) begin state <= SM_IDLE; end else begin state <= next_state; end end // Next state transitions. always @( * ) begin next_state = state; case (state) SM_IDLE: if (s_awvalid) begin next_state = SM_CMD_EN; end else next_state = state; SM_CMD_EN: if (m_awready & next_pending) next_state = SM_CMD_ACCEPTED; else if (m_awready & ~next_pending & b_full) next_state = SM_DONE_WAIT; else if (m_awready & ~next_pending & ~b_full) next_state = SM_IDLE; else next_state = state; SM_CMD_ACCEPTED: next_state = SM_CMD_EN; SM_DONE_WAIT: if (!b_full) next_state = SM_IDLE; else next_state = state; default: next_state = SM_IDLE; endcase end // Assign outputs based on current state. assign m_awvalid = (state == SM_CMD_EN); assign next = ((state == SM_CMD_ACCEPTED) | (((state == SM_CMD_EN) | (state == SM_DONE_WAIT)) & (next_state == SM_IDLE))) ; assign a_push = (state == SM_IDLE); assign s_awready = ((state == SM_CMD_EN) | (state == SM_DONE_WAIT)) & (next_state == SM_IDLE); assign b_push = ((state == SM_CMD_EN) | (state == SM_DONE_WAIT)) & (next_state == SM_IDLE); endmodule `default_nettype wire
/////////////////////////////////////////////////////////////////////////////// // // File name: axi_protocol_converter_v2_1_b2s_wr_cmd_fsm.v // /////////////////////////////////////////////////////////////////////////////// `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_protocol_converter_v2_1_b2s_wr_cmd_fsm ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire clk , input wire reset , output wire s_awready , input wire s_awvalid , output wire m_awvalid , input wire m_awready , // signal to increment to the next mc transaction output wire next , // signal to the fsm there is another transaction required input wire next_pending , // Write Data portion has completed or Read FIFO has a slot available (not // full) output wire b_push , input wire b_full , output wire a_push ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// // States localparam SM_IDLE = 2'b00; localparam SM_CMD_EN = 2'b01; localparam SM_CMD_ACCEPTED = 2'b10; localparam SM_DONE_WAIT = 2'b11; //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [1:0] state; // synthesis attribute MAX_FANOUT of state is 20; reg [1:0] next_state; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL /////////////////////////////////////////////////////////////////////////////// always @(posedge clk) begin if (reset) begin state <= SM_IDLE; end else begin state <= next_state; end end // Next state transitions. always @( * ) begin next_state = state; case (state) SM_IDLE: if (s_awvalid) begin next_state = SM_CMD_EN; end else next_state = state; SM_CMD_EN: if (m_awready & next_pending) next_state = SM_CMD_ACCEPTED; else if (m_awready & ~next_pending & b_full) next_state = SM_DONE_WAIT; else if (m_awready & ~next_pending & ~b_full) next_state = SM_IDLE; else next_state = state; SM_CMD_ACCEPTED: next_state = SM_CMD_EN; SM_DONE_WAIT: if (!b_full) next_state = SM_IDLE; else next_state = state; default: next_state = SM_IDLE; endcase end // Assign outputs based on current state. assign m_awvalid = (state == SM_CMD_EN); assign next = ((state == SM_CMD_ACCEPTED) | (((state == SM_CMD_EN) | (state == SM_DONE_WAIT)) & (next_state == SM_IDLE))) ; assign a_push = (state == SM_IDLE); assign s_awready = ((state == SM_CMD_EN) | (state == SM_DONE_WAIT)) & (next_state == SM_IDLE); assign b_push = ((state == SM_CMD_EN) | (state == SM_DONE_WAIT)) & (next_state == SM_IDLE); endmodule `default_nettype wire
/////////////////////////////////////////////////////////////////////////////// // // File name: axi_protocol_converter_v2_1_b2s_wr_cmd_fsm.v // /////////////////////////////////////////////////////////////////////////////// `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_protocol_converter_v2_1_b2s_wr_cmd_fsm ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire clk , input wire reset , output wire s_awready , input wire s_awvalid , output wire m_awvalid , input wire m_awready , // signal to increment to the next mc transaction output wire next , // signal to the fsm there is another transaction required input wire next_pending , // Write Data portion has completed or Read FIFO has a slot available (not // full) output wire b_push , input wire b_full , output wire a_push ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// // States localparam SM_IDLE = 2'b00; localparam SM_CMD_EN = 2'b01; localparam SM_CMD_ACCEPTED = 2'b10; localparam SM_DONE_WAIT = 2'b11; //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [1:0] state; // synthesis attribute MAX_FANOUT of state is 20; reg [1:0] next_state; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL /////////////////////////////////////////////////////////////////////////////// always @(posedge clk) begin if (reset) begin state <= SM_IDLE; end else begin state <= next_state; end end // Next state transitions. always @( * ) begin next_state = state; case (state) SM_IDLE: if (s_awvalid) begin next_state = SM_CMD_EN; end else next_state = state; SM_CMD_EN: if (m_awready & next_pending) next_state = SM_CMD_ACCEPTED; else if (m_awready & ~next_pending & b_full) next_state = SM_DONE_WAIT; else if (m_awready & ~next_pending & ~b_full) next_state = SM_IDLE; else next_state = state; SM_CMD_ACCEPTED: next_state = SM_CMD_EN; SM_DONE_WAIT: if (!b_full) next_state = SM_IDLE; else next_state = state; default: next_state = SM_IDLE; endcase end // Assign outputs based on current state. assign m_awvalid = (state == SM_CMD_EN); assign next = ((state == SM_CMD_ACCEPTED) | (((state == SM_CMD_EN) | (state == SM_DONE_WAIT)) & (next_state == SM_IDLE))) ; assign a_push = (state == SM_IDLE); assign s_awready = ((state == SM_CMD_EN) | (state == SM_DONE_WAIT)) & (next_state == SM_IDLE); assign b_push = ((state == SM_CMD_EN) | (state == SM_DONE_WAIT)) & (next_state == SM_IDLE); endmodule `default_nettype wire
/////////////////////////////////////////////////////////////////////////////// // // File name: axi_protocol_converter_v2_1_b2s_incr_cmd.v // /////////////////////////////////////////////////////////////////////////////// `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_protocol_converter_v2_1_b2s_incr_cmd # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// // Width of AxADDR // Range: 32. parameter integer C_AXI_ADDR_WIDTH = 32 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire clk , input wire reset , input wire [C_AXI_ADDR_WIDTH-1:0] axaddr , input wire [7:0] axlen , input wire [2:0] axsize , // axhandshake = axvalid & axready input wire axhandshake , output wire [C_AXI_ADDR_WIDTH-1:0] cmd_byte_addr , // Connections to/from fsm module // signal to increment to the next mc transaction input wire next , // signal to the fsm there is another transaction required output reg next_pending ); //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// reg sel_first; reg [11:0] axaddr_incr; reg [8:0] axlen_cnt; reg next_pending_r; wire [3:0] axsize_shift; wire [11:0] axsize_mask; localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // calculate cmd_byte_addr generate if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_incr[11:0]}; end else begin : ADDR_4K assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_incr[11:0]; end endgenerate assign axsize_shift = (1 << axsize[1:0]); assign axsize_mask = ~(axsize_shift - 1'b1); // Incremented version of axaddr always @(posedge clk) begin if (sel_first) begin if(~next) begin axaddr_incr <= axaddr[11:0] & axsize_mask; end else begin axaddr_incr <= (axaddr[11:0] & axsize_mask) + axsize_shift; end end else if (next) begin axaddr_incr <= axaddr_incr + axsize_shift; end end always @(posedge clk) begin if (axhandshake)begin axlen_cnt <= axlen; next_pending_r <= (axlen >= 1); end else if (next) begin if (axlen_cnt > 1) begin axlen_cnt <= axlen_cnt - 1; next_pending_r <= ((axlen_cnt - 1) >= 1); end else begin axlen_cnt <= 9'd0; next_pending_r <= 1'b0; end end end always @( * ) begin if (axhandshake)begin next_pending = (axlen >= 1); end else if (next) begin if (axlen_cnt > 1) begin next_pending = ((axlen_cnt - 1) >= 1); end else begin next_pending = 1'b0; end end else begin next_pending = next_pending_r; end end // last and ignore signals to data channel. These signals are used for // BL8 to ignore and insert data for even len transactions with offset // and odd len transactions // For odd len transactions with no offset the last read is ignored and // last write is masked // For odd len transactions with offset the first read is ignored and // first write is masked // For even len transactions with offset the last & first read is ignored and // last& first write is masked // For even len transactions no ingnores or masks. // Indicates if we are on the first transaction of a mc translation with more // than 1 transaction. always @(posedge clk) begin if (reset | axhandshake) begin sel_first <= 1'b1; end else if (next) begin sel_first <= 1'b0; end end endmodule `default_nettype wire
/////////////////////////////////////////////////////////////////////////////// // // File name: axi_protocol_converter_v2_1_b2s_incr_cmd.v // /////////////////////////////////////////////////////////////////////////////// `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_protocol_converter_v2_1_b2s_incr_cmd # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// // Width of AxADDR // Range: 32. parameter integer C_AXI_ADDR_WIDTH = 32 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire clk , input wire reset , input wire [C_AXI_ADDR_WIDTH-1:0] axaddr , input wire [7:0] axlen , input wire [2:0] axsize , // axhandshake = axvalid & axready input wire axhandshake , output wire [C_AXI_ADDR_WIDTH-1:0] cmd_byte_addr , // Connections to/from fsm module // signal to increment to the next mc transaction input wire next , // signal to the fsm there is another transaction required output reg next_pending ); //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// reg sel_first; reg [11:0] axaddr_incr; reg [8:0] axlen_cnt; reg next_pending_r; wire [3:0] axsize_shift; wire [11:0] axsize_mask; localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // calculate cmd_byte_addr generate if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_incr[11:0]}; end else begin : ADDR_4K assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_incr[11:0]; end endgenerate assign axsize_shift = (1 << axsize[1:0]); assign axsize_mask = ~(axsize_shift - 1'b1); // Incremented version of axaddr always @(posedge clk) begin if (sel_first) begin if(~next) begin axaddr_incr <= axaddr[11:0] & axsize_mask; end else begin axaddr_incr <= (axaddr[11:0] & axsize_mask) + axsize_shift; end end else if (next) begin axaddr_incr <= axaddr_incr + axsize_shift; end end always @(posedge clk) begin if (axhandshake)begin axlen_cnt <= axlen; next_pending_r <= (axlen >= 1); end else if (next) begin if (axlen_cnt > 1) begin axlen_cnt <= axlen_cnt - 1; next_pending_r <= ((axlen_cnt - 1) >= 1); end else begin axlen_cnt <= 9'd0; next_pending_r <= 1'b0; end end end always @( * ) begin if (axhandshake)begin next_pending = (axlen >= 1); end else if (next) begin if (axlen_cnt > 1) begin next_pending = ((axlen_cnt - 1) >= 1); end else begin next_pending = 1'b0; end end else begin next_pending = next_pending_r; end end // last and ignore signals to data channel. These signals are used for // BL8 to ignore and insert data for even len transactions with offset // and odd len transactions // For odd len transactions with no offset the last read is ignored and // last write is masked // For odd len transactions with offset the first read is ignored and // first write is masked // For even len transactions with offset the last & first read is ignored and // last& first write is masked // For even len transactions no ingnores or masks. // Indicates if we are on the first transaction of a mc translation with more // than 1 transaction. always @(posedge clk) begin if (reset | axhandshake) begin sel_first <= 1'b1; end else if (next) begin sel_first <= 1'b0; end end endmodule `default_nettype wire
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: BLK_MEM_GEN_v8_2.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_2 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_2 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_2 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_2 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_2 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_2 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_2 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_2 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_2 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_2 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (BLK_MEM_GEN_v8_2) which is // declared/implemented further down in this file. //***************************************************************************** module BLK_MEM_GEN_v8_2_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module BLK_MEM_GEN_v8_2_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_2" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_2_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY)))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]); end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_2 #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "" ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_2 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: BLK_MEM_GEN_v8_2.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_2 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_2 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_2 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_2 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_2 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_2 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_2 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_2 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_2 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_2 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (BLK_MEM_GEN_v8_2) which is // declared/implemented further down in this file. //***************************************************************************** module BLK_MEM_GEN_v8_2_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module BLK_MEM_GEN_v8_2_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_2" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_2_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY)))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]); end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_2 #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "" ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_2 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: BLK_MEM_GEN_v8_2.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_2 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_2 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_2 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_2 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_2 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_2 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_2 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_2 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_2 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_2 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (BLK_MEM_GEN_v8_2) which is // declared/implemented further down in this file. //***************************************************************************** module BLK_MEM_GEN_v8_2_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module BLK_MEM_GEN_v8_2_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_2" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_2_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY)))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]); end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_2 #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "" ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_2 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: BLK_MEM_GEN_v8_2.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_2 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_2 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_2 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_2 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_2 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_2 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_2 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_2 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_2 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_2 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (BLK_MEM_GEN_v8_2) which is // declared/implemented further down in this file. //***************************************************************************** module BLK_MEM_GEN_v8_2_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module BLK_MEM_GEN_v8_2_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_2" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_2_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY)))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]); end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_2 #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "" ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_2 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
// -*- verilog -*- // // USRP - Universal Software Radio Peripheral // // Copyright (C) 2003 Matt Ettus // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA // // Sign extension "macro" // bits_out should be greater than bits_in module sign_extend (in,out); parameter bits_in=0; // FIXME Quartus insists on a default parameter bits_out=0; input [bits_in-1:0] in; output [bits_out-1:0] out; assign out = {{(bits_out-bits_in){in[bits_in-1]}},in}; endmodule
// -*- verilog -*- // // USRP - Universal Software Radio Peripheral // // Copyright (C) 2003 Matt Ettus // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA // // Sign extension "macro" // bits_out should be greater than bits_in module sign_extend (in,out); parameter bits_in=0; // FIXME Quartus insists on a default parameter bits_out=0; input [bits_in-1:0] in; output [bits_out-1:0] out; assign out = {{(bits_out-bits_in){in[bits_in-1]}},in}; endmodule
`include "lo_simulate.v" /* pck0 - input main 24Mhz clock (PLL / 4) [7:0] adc_d - input data from A/D converter pwr_lo - output to coil drivers (ssp_clk / 8) adc_clk - output A/D clock signal ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted) ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first) ssp_clk - output SSP clock signal ck_1356meg - input unused ck_1356megb - input unused ssp_dout - input unused cross_hi - input unused cross_lo - input unused pwr_hi - output unused, tied low pwr_oe1 - output unused, undefined pwr_oe2 - output unused, undefined pwr_oe3 - output unused, undefined pwr_oe4 - output unused, undefined dbg - output alias for adc_clk */ module testbed_lo_simulate; reg pck0; reg [7:0] adc_d; wire pwr_lo; wire adc_clk; wire ck_1356meg; wire ck_1356megb; wire ssp_frame; wire ssp_din; wire ssp_clk; reg ssp_dout; wire pwr_hi; wire pwr_oe1; wire pwr_oe2; wire pwr_oe3; wire pwr_oe4; reg cross_lo; wire cross_hi; wire dbg; lo_simulate #(5,200) dut( .pck0(pck0), .ck_1356meg(ck_1356meg), .ck_1356megb(ck_1356megb), .pwr_lo(pwr_lo), .pwr_hi(pwr_hi), .pwr_oe1(pwr_oe1), .pwr_oe2(pwr_oe2), .pwr_oe3(pwr_oe3), .pwr_oe4(pwr_oe4), .adc_d(adc_d), .adc_clk(adc_clk), .ssp_frame(ssp_frame), .ssp_din(ssp_din), .ssp_dout(ssp_dout), .ssp_clk(ssp_clk), .cross_hi(cross_hi), .cross_lo(cross_lo), .dbg(dbg) ); integer i, counter=0; // main clock always #5 pck0 = !pck0; //cross_lo is not really synced to pck0 but it's roughly pck0/192 (24Mhz/192=125Khz) task crank_dut; begin @(posedge pck0) ; counter = counter + 1; if (counter == 192) begin counter = 0; ssp_dout = $random; cross_lo = 1; end else begin cross_lo = 0; end end endtask initial begin pck0 = 0; for (i = 0 ; i < 4096 ; i = i + 1) begin crank_dut; end $finish; end endmodule // main
//Legal Notice: (C)2017 Altera Corporation. All rights reserved. Your //use of Altera Corporation's design tools, logic functions and other //software and tools, and its AMPP partner logic functions, and any //output files any of the foregoing (including device programming or //simulation files), and any associated documentation or information are //expressly subject to the terms and conditions of the Altera Program //License Subscription Agreement or other applicable license agreement, //including, without limitation, that your use is for the sole purpose //of programming logic devices manufactured by Altera and sold by Altera //or its authorized distributors. Please refer to the applicable //agreement for further details. // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module soc_design_Sys_Timer ( // inputs: address, chipselect, clk, reset_n, write_n, writedata, // outputs: irq, readdata ) ; output irq; output [ 15: 0] readdata; input [ 2: 0] address; input chipselect; input clk; input reset_n; input write_n; input [ 15: 0] writedata; wire clk_en; wire control_interrupt_enable; reg control_register; wire control_wr_strobe; reg counter_is_running; wire counter_is_zero; wire [ 16: 0] counter_load_value; reg delayed_unxcounter_is_zeroxx0; wire do_start_counter; wire do_stop_counter; reg force_reload; reg [ 16: 0] internal_counter; wire irq; wire period_h_wr_strobe; wire period_l_wr_strobe; wire [ 15: 0] read_mux_out; reg [ 15: 0] readdata; wire status_wr_strobe; wire timeout_event; reg timeout_occurred; assign clk_en = 1; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) internal_counter <= 17'h1869F; else if (counter_is_running || force_reload) if (counter_is_zero || force_reload) internal_counter <= counter_load_value; else internal_counter <= internal_counter - 1; end assign counter_is_zero = internal_counter == 0; assign counter_load_value = 17'h1869F; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) force_reload <= 0; else if (clk_en) force_reload <= period_h_wr_strobe || period_l_wr_strobe; end assign do_start_counter = 1; assign do_stop_counter = 0; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) counter_is_running <= 1'b0; else if (clk_en) if (do_start_counter) counter_is_running <= -1; else if (do_stop_counter) counter_is_running <= 0; end //delayed_unxcounter_is_zeroxx0, which is an e_register always @(posedge clk or negedge reset_n) begin if (reset_n == 0) delayed_unxcounter_is_zeroxx0 <= 0; else if (clk_en) delayed_unxcounter_is_zeroxx0 <= counter_is_zero; end assign timeout_event = (counter_is_zero) & ~(delayed_unxcounter_is_zeroxx0); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) timeout_occurred <= 0; else if (clk_en) if (status_wr_strobe) timeout_occurred <= 0; else if (timeout_event) timeout_occurred <= -1; end assign irq = timeout_occurred && control_interrupt_enable; //s1, which is an e_avalon_slave assign read_mux_out = ({16 {(address == 1)}} & control_register) | ({16 {(address == 0)}} & {counter_is_running, timeout_occurred}); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) readdata <= 0; else if (clk_en) readdata <= read_mux_out; end assign period_l_wr_strobe = chipselect && ~write_n && (address == 2); assign period_h_wr_strobe = chipselect && ~write_n && (address == 3); assign control_wr_strobe = chipselect && ~write_n && (address == 1); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) control_register <= 0; else if (control_wr_strobe) control_register <= writedata[0]; end assign control_interrupt_enable = control_register; assign status_wr_strobe = chipselect && ~write_n && (address == 0); endmodule
//Legal Notice: (C)2017 Altera Corporation. All rights reserved. Your //use of Altera Corporation's design tools, logic functions and other //software and tools, and its AMPP partner logic functions, and any //output files any of the foregoing (including device programming or //simulation files), and any associated documentation or information are //expressly subject to the terms and conditions of the Altera Program //License Subscription Agreement or other applicable license agreement, //including, without limitation, that your use is for the sole purpose //of programming logic devices manufactured by Altera and sold by Altera //or its authorized distributors. Please refer to the applicable //agreement for further details. // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module soc_design_Sys_Timer ( // inputs: address, chipselect, clk, reset_n, write_n, writedata, // outputs: irq, readdata ) ; output irq; output [ 15: 0] readdata; input [ 2: 0] address; input chipselect; input clk; input reset_n; input write_n; input [ 15: 0] writedata; wire clk_en; wire control_interrupt_enable; reg control_register; wire control_wr_strobe; reg counter_is_running; wire counter_is_zero; wire [ 16: 0] counter_load_value; reg delayed_unxcounter_is_zeroxx0; wire do_start_counter; wire do_stop_counter; reg force_reload; reg [ 16: 0] internal_counter; wire irq; wire period_h_wr_strobe; wire period_l_wr_strobe; wire [ 15: 0] read_mux_out; reg [ 15: 0] readdata; wire status_wr_strobe; wire timeout_event; reg timeout_occurred; assign clk_en = 1; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) internal_counter <= 17'h1869F; else if (counter_is_running || force_reload) if (counter_is_zero || force_reload) internal_counter <= counter_load_value; else internal_counter <= internal_counter - 1; end assign counter_is_zero = internal_counter == 0; assign counter_load_value = 17'h1869F; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) force_reload <= 0; else if (clk_en) force_reload <= period_h_wr_strobe || period_l_wr_strobe; end assign do_start_counter = 1; assign do_stop_counter = 0; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) counter_is_running <= 1'b0; else if (clk_en) if (do_start_counter) counter_is_running <= -1; else if (do_stop_counter) counter_is_running <= 0; end //delayed_unxcounter_is_zeroxx0, which is an e_register always @(posedge clk or negedge reset_n) begin if (reset_n == 0) delayed_unxcounter_is_zeroxx0 <= 0; else if (clk_en) delayed_unxcounter_is_zeroxx0 <= counter_is_zero; end assign timeout_event = (counter_is_zero) & ~(delayed_unxcounter_is_zeroxx0); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) timeout_occurred <= 0; else if (clk_en) if (status_wr_strobe) timeout_occurred <= 0; else if (timeout_event) timeout_occurred <= -1; end assign irq = timeout_occurred && control_interrupt_enable; //s1, which is an e_avalon_slave assign read_mux_out = ({16 {(address == 1)}} & control_register) | ({16 {(address == 0)}} & {counter_is_running, timeout_occurred}); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) readdata <= 0; else if (clk_en) readdata <= read_mux_out; end assign period_l_wr_strobe = chipselect && ~write_n && (address == 2); assign period_h_wr_strobe = chipselect && ~write_n && (address == 3); assign control_wr_strobe = chipselect && ~write_n && (address == 1); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) control_register <= 0; else if (control_wr_strobe) control_register <= writedata[0]; end assign control_interrupt_enable = control_register; assign status_wr_strobe = chipselect && ~write_n && (address == 0); endmodule
//Legal Notice: (C)2017 Altera Corporation. All rights reserved. Your //use of Altera Corporation's design tools, logic functions and other //software and tools, and its AMPP partner logic functions, and any //output files any of the foregoing (including device programming or //simulation files), and any associated documentation or information are //expressly subject to the terms and conditions of the Altera Program //License Subscription Agreement or other applicable license agreement, //including, without limitation, that your use is for the sole purpose //of programming logic devices manufactured by Altera and sold by Altera //or its authorized distributors. Please refer to the applicable //agreement for further details. // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module soc_design_Sys_Timer ( // inputs: address, chipselect, clk, reset_n, write_n, writedata, // outputs: irq, readdata ) ; output irq; output [ 15: 0] readdata; input [ 2: 0] address; input chipselect; input clk; input reset_n; input write_n; input [ 15: 0] writedata; wire clk_en; wire control_interrupt_enable; reg control_register; wire control_wr_strobe; reg counter_is_running; wire counter_is_zero; wire [ 16: 0] counter_load_value; reg delayed_unxcounter_is_zeroxx0; wire do_start_counter; wire do_stop_counter; reg force_reload; reg [ 16: 0] internal_counter; wire irq; wire period_h_wr_strobe; wire period_l_wr_strobe; wire [ 15: 0] read_mux_out; reg [ 15: 0] readdata; wire status_wr_strobe; wire timeout_event; reg timeout_occurred; assign clk_en = 1; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) internal_counter <= 17'h1869F; else if (counter_is_running || force_reload) if (counter_is_zero || force_reload) internal_counter <= counter_load_value; else internal_counter <= internal_counter - 1; end assign counter_is_zero = internal_counter == 0; assign counter_load_value = 17'h1869F; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) force_reload <= 0; else if (clk_en) force_reload <= period_h_wr_strobe || period_l_wr_strobe; end assign do_start_counter = 1; assign do_stop_counter = 0; always @(posedge clk or negedge reset_n) begin if (reset_n == 0) counter_is_running <= 1'b0; else if (clk_en) if (do_start_counter) counter_is_running <= -1; else if (do_stop_counter) counter_is_running <= 0; end //delayed_unxcounter_is_zeroxx0, which is an e_register always @(posedge clk or negedge reset_n) begin if (reset_n == 0) delayed_unxcounter_is_zeroxx0 <= 0; else if (clk_en) delayed_unxcounter_is_zeroxx0 <= counter_is_zero; end assign timeout_event = (counter_is_zero) & ~(delayed_unxcounter_is_zeroxx0); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) timeout_occurred <= 0; else if (clk_en) if (status_wr_strobe) timeout_occurred <= 0; else if (timeout_event) timeout_occurred <= -1; end assign irq = timeout_occurred && control_interrupt_enable; //s1, which is an e_avalon_slave assign read_mux_out = ({16 {(address == 1)}} & control_register) | ({16 {(address == 0)}} & {counter_is_running, timeout_occurred}); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) readdata <= 0; else if (clk_en) readdata <= read_mux_out; end assign period_l_wr_strobe = chipselect && ~write_n && (address == 2); assign period_h_wr_strobe = chipselect && ~write_n && (address == 3); assign control_wr_strobe = chipselect && ~write_n && (address == 1); always @(posedge clk or negedge reset_n) begin if (reset_n == 0) control_register <= 0; else if (control_wr_strobe) control_register <= writedata[0]; end assign control_interrupt_enable = control_register; assign status_wr_strobe = chipselect && ~write_n && (address == 0); endmodule
// This is a component of pluto_step, a hardware step waveform generator // Copyright 2007 Jeff Epler <[email protected]> // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA module stepgen(clk, enable, position, velocity, dirtime, steptime, step, dir, tap); `define STATE_STEP 0 `define STATE_DIRCHANGE 1 `define STATE_DIRWAIT 2 parameter W=12; parameter F=10; parameter T=5; input clk, enable; output [W+F-1:0] position; reg [W+F-1:0] position; input [F:0] velocity; input [T-1:0] dirtime, steptime; input [1:0] tap; output step, dir; reg step, dir; reg [T-1:0] timer; reg [1:0] state; reg ones; wire dbit = velocity[F]; wire pbit = (tap == 0 ? position[F] : (tap == 1 ? position[F+1] : (tap == 2 ? position[F+2] : position[F+3]))); wire [W+F-1:0] xvelocity = {{W{velocity[F]}}, {1{velocity[F-1:0]}}}; `ifdef TESTING // for testing: initial position = 1'b0; initial state = `STATE_STEP; initial timer = 0; initial dir = 0; initial ones = 0; `endif always @(posedge clk) begin if(enable) begin // $display("state=%d timer=%d position=%h velocity=%h dir=%d dbit=%d pbit=%d ones=%d", state, timer, position, xvelocity, dir, dbit, pbit, ones); if((dir != dbit) && (pbit == ones)) begin if(state == `STATE_DIRCHANGE) begin if(timer == 0) begin dir <= dbit; timer <= dirtime; state <= `STATE_DIRWAIT; end else begin timer <= timer - 1'd1; end end else begin if(timer == 0) begin step <= 0; timer <= dirtime; state <= `STATE_DIRCHANGE; end else begin timer <= timer - 1'd1; end end end else if(state == `STATE_DIRWAIT) begin if(timer == 0) begin state <= `STATE_STEP; end else begin timer <= timer - 1'd1; end end else begin if(timer == 0) begin if(pbit != ones) begin ones <= pbit; step <= 1'd1; timer <= steptime; end else begin step <= 0; end end else begin timer <= timer - 1'd1; end if(dir == dbit) position <= position + xvelocity; end end end endmodule
//Legal Notice: (C)2017 Altera Corporation. All rights reserved. Your //use of Altera Corporation's design tools, logic functions and other //software and tools, and its AMPP partner logic functions, and any //output files any of the foregoing (including device programming or //simulation files), and any associated documentation or information are //expressly subject to the terms and conditions of the Altera Program //License Subscription Agreement or other applicable license agreement, //including, without limitation, that your use is for the sole purpose //of programming logic devices manufactured by Altera and sold by Altera //or its authorized distributors. Please refer to the applicable //agreement for further details. // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module soc_design_niosII_core_cpu_mult_cell ( // inputs: E_src1, E_src2, M_en, clk, reset_n, // outputs: M_mul_cell_p1, M_mul_cell_p2, M_mul_cell_p3 ) ; output [ 31: 0] M_mul_cell_p1; output [ 31: 0] M_mul_cell_p2; output [ 31: 0] M_mul_cell_p3; input [ 31: 0] E_src1; input [ 31: 0] E_src2; input M_en; input clk; input reset_n; wire [ 31: 0] M_mul_cell_p1; wire [ 31: 0] M_mul_cell_p2; wire [ 31: 0] M_mul_cell_p3; wire mul_clr; wire [ 31: 0] mul_src1; wire [ 31: 0] mul_src2; assign mul_clr = ~reset_n; assign mul_src1 = E_src1; assign mul_src2 = E_src2; altera_mult_add the_altmult_add_p1 ( .aclr0 (mul_clr), .clock0 (clk), .dataa (mul_src1[15 : 0]), .datab (mul_src2[15 : 0]), .ena0 (M_en), .result (M_mul_cell_p1) ); defparam the_altmult_add_p1.addnsub_multiplier_pipeline_aclr1 = "ACLR0", the_altmult_add_p1.addnsub_multiplier_pipeline_register1 = "CLOCK0", the_altmult_add_p1.addnsub_multiplier_register1 = "UNREGISTERED", the_altmult_add_p1.dedicated_multiplier_circuitry = "YES", the_altmult_add_p1.input_register_a0 = "UNREGISTERED", the_altmult_add_p1.input_register_b0 = "UNREGISTERED", the_altmult_add_p1.input_source_a0 = "DATAA", the_altmult_add_p1.input_source_b0 = "DATAB", the_altmult_add_p1.lpm_type = "altera_mult_add", the_altmult_add_p1.multiplier1_direction = "ADD", the_altmult_add_p1.multiplier_aclr0 = "ACLR0", the_altmult_add_p1.multiplier_register0 = "CLOCK0", the_altmult_add_p1.number_of_multipliers = 1, the_altmult_add_p1.output_register = "UNREGISTERED", the_altmult_add_p1.port_addnsub1 = "PORT_UNUSED", the_altmult_add_p1.port_addnsub3 = "PORT_UNUSED", the_altmult_add_p1.representation_a = "UNSIGNED", the_altmult_add_p1.representation_b = "UNSIGNED", the_altmult_add_p1.selected_device_family = "CYCLONEV", the_altmult_add_p1.signed_pipeline_aclr_a = "ACLR0", the_altmult_add_p1.signed_pipeline_aclr_b = "ACLR0", the_altmult_add_p1.signed_pipeline_register_a = "CLOCK0", the_altmult_add_p1.signed_pipeline_register_b = "CLOCK0", the_altmult_add_p1.signed_register_a = "UNREGISTERED", the_altmult_add_p1.signed_register_b = "UNREGISTERED", the_altmult_add_p1.width_a = 16, the_altmult_add_p1.width_b = 16, the_altmult_add_p1.width_result = 32; altera_mult_add the_altmult_add_p2 ( .aclr0 (mul_clr), .clock0 (clk), .dataa (mul_src1[15 : 0]), .datab (mul_src2[31 : 16]), .ena0 (M_en), .result (M_mul_cell_p2) ); defparam the_altmult_add_p2.addnsub_multiplier_pipeline_aclr1 = "ACLR0", the_altmult_add_p2.addnsub_multiplier_pipeline_register1 = "CLOCK0", the_altmult_add_p2.addnsub_multiplier_register1 = "UNREGISTERED", the_altmult_add_p2.dedicated_multiplier_circuitry = "YES", the_altmult_add_p2.input_register_a0 = "UNREGISTERED", the_altmult_add_p2.input_register_b0 = "UNREGISTERED", the_altmult_add_p2.input_source_a0 = "DATAA", the_altmult_add_p2.input_source_b0 = "DATAB", the_altmult_add_p2.lpm_type = "altera_mult_add", the_altmult_add_p2.multiplier1_direction = "ADD", the_altmult_add_p2.multiplier_aclr0 = "ACLR0", the_altmult_add_p2.multiplier_register0 = "CLOCK0", the_altmult_add_p2.number_of_multipliers = 1, the_altmult_add_p2.output_register = "UNREGISTERED", the_altmult_add_p2.port_addnsub1 = "PORT_UNUSED", the_altmult_add_p2.port_addnsub3 = "PORT_UNUSED", the_altmult_add_p2.representation_a = "UNSIGNED", the_altmult_add_p2.representation_b = "UNSIGNED", the_altmult_add_p2.selected_device_family = "CYCLONEV", the_altmult_add_p2.signed_pipeline_aclr_a = "ACLR0", the_altmult_add_p2.signed_pipeline_aclr_b = "ACLR0", the_altmult_add_p2.signed_pipeline_register_a = "CLOCK0", the_altmult_add_p2.signed_pipeline_register_b = "CLOCK0", the_altmult_add_p2.signed_register_a = "UNREGISTERED", the_altmult_add_p2.signed_register_b = "UNREGISTERED", the_altmult_add_p2.width_a = 16, the_altmult_add_p2.width_b = 16, the_altmult_add_p2.width_result = 32; altera_mult_add the_altmult_add_p3 ( .aclr0 (mul_clr), .clock0 (clk), .dataa (mul_src1[31 : 16]), .datab (mul_src2[15 : 0]), .ena0 (M_en), .result (M_mul_cell_p3) ); defparam the_altmult_add_p3.addnsub_multiplier_pipeline_aclr1 = "ACLR0", the_altmult_add_p3.addnsub_multiplier_pipeline_register1 = "CLOCK0", the_altmult_add_p3.addnsub_multiplier_register1 = "UNREGISTERED", the_altmult_add_p3.dedicated_multiplier_circuitry = "YES", the_altmult_add_p3.input_register_a0 = "UNREGISTERED", the_altmult_add_p3.input_register_b0 = "UNREGISTERED", the_altmult_add_p3.input_source_a0 = "DATAA", the_altmult_add_p3.input_source_b0 = "DATAB", the_altmult_add_p3.lpm_type = "altera_mult_add", the_altmult_add_p3.multiplier1_direction = "ADD", the_altmult_add_p3.multiplier_aclr0 = "ACLR0", the_altmult_add_p3.multiplier_register0 = "CLOCK0", the_altmult_add_p3.number_of_multipliers = 1, the_altmult_add_p3.output_register = "UNREGISTERED", the_altmult_add_p3.port_addnsub1 = "PORT_UNUSED", the_altmult_add_p3.port_addnsub3 = "PORT_UNUSED", the_altmult_add_p3.representation_a = "UNSIGNED", the_altmult_add_p3.representation_b = "UNSIGNED", the_altmult_add_p3.selected_device_family = "CYCLONEV", the_altmult_add_p3.signed_pipeline_aclr_a = "ACLR0", the_altmult_add_p3.signed_pipeline_aclr_b = "ACLR0", the_altmult_add_p3.signed_pipeline_register_a = "CLOCK0", the_altmult_add_p3.signed_pipeline_register_b = "CLOCK0", the_altmult_add_p3.signed_register_a = "UNREGISTERED", the_altmult_add_p3.signed_register_b = "UNREGISTERED", the_altmult_add_p3.width_a = 16, the_altmult_add_p3.width_b = 16, the_altmult_add_p3.width_result = 32; endmodule
//Legal Notice: (C)2017 Altera Corporation. All rights reserved. Your //use of Altera Corporation's design tools, logic functions and other //software and tools, and its AMPP partner logic functions, and any //output files any of the foregoing (including device programming or //simulation files), and any associated documentation or information are //expressly subject to the terms and conditions of the Altera Program //License Subscription Agreement or other applicable license agreement, //including, without limitation, that your use is for the sole purpose //of programming logic devices manufactured by Altera and sold by Altera //or its authorized distributors. Please refer to the applicable //agreement for further details. // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module soc_design_niosII_core_cpu_mult_cell ( // inputs: E_src1, E_src2, M_en, clk, reset_n, // outputs: M_mul_cell_p1, M_mul_cell_p2, M_mul_cell_p3 ) ; output [ 31: 0] M_mul_cell_p1; output [ 31: 0] M_mul_cell_p2; output [ 31: 0] M_mul_cell_p3; input [ 31: 0] E_src1; input [ 31: 0] E_src2; input M_en; input clk; input reset_n; wire [ 31: 0] M_mul_cell_p1; wire [ 31: 0] M_mul_cell_p2; wire [ 31: 0] M_mul_cell_p3; wire mul_clr; wire [ 31: 0] mul_src1; wire [ 31: 0] mul_src2; assign mul_clr = ~reset_n; assign mul_src1 = E_src1; assign mul_src2 = E_src2; altera_mult_add the_altmult_add_p1 ( .aclr0 (mul_clr), .clock0 (clk), .dataa (mul_src1[15 : 0]), .datab (mul_src2[15 : 0]), .ena0 (M_en), .result (M_mul_cell_p1) ); defparam the_altmult_add_p1.addnsub_multiplier_pipeline_aclr1 = "ACLR0", the_altmult_add_p1.addnsub_multiplier_pipeline_register1 = "CLOCK0", the_altmult_add_p1.addnsub_multiplier_register1 = "UNREGISTERED", the_altmult_add_p1.dedicated_multiplier_circuitry = "YES", the_altmult_add_p1.input_register_a0 = "UNREGISTERED", the_altmult_add_p1.input_register_b0 = "UNREGISTERED", the_altmult_add_p1.input_source_a0 = "DATAA", the_altmult_add_p1.input_source_b0 = "DATAB", the_altmult_add_p1.lpm_type = "altera_mult_add", the_altmult_add_p1.multiplier1_direction = "ADD", the_altmult_add_p1.multiplier_aclr0 = "ACLR0", the_altmult_add_p1.multiplier_register0 = "CLOCK0", the_altmult_add_p1.number_of_multipliers = 1, the_altmult_add_p1.output_register = "UNREGISTERED", the_altmult_add_p1.port_addnsub1 = "PORT_UNUSED", the_altmult_add_p1.port_addnsub3 = "PORT_UNUSED", the_altmult_add_p1.representation_a = "UNSIGNED", the_altmult_add_p1.representation_b = "UNSIGNED", the_altmult_add_p1.selected_device_family = "CYCLONEV", the_altmult_add_p1.signed_pipeline_aclr_a = "ACLR0", the_altmult_add_p1.signed_pipeline_aclr_b = "ACLR0", the_altmult_add_p1.signed_pipeline_register_a = "CLOCK0", the_altmult_add_p1.signed_pipeline_register_b = "CLOCK0", the_altmult_add_p1.signed_register_a = "UNREGISTERED", the_altmult_add_p1.signed_register_b = "UNREGISTERED", the_altmult_add_p1.width_a = 16, the_altmult_add_p1.width_b = 16, the_altmult_add_p1.width_result = 32; altera_mult_add the_altmult_add_p2 ( .aclr0 (mul_clr), .clock0 (clk), .dataa (mul_src1[15 : 0]), .datab (mul_src2[31 : 16]), .ena0 (M_en), .result (M_mul_cell_p2) ); defparam the_altmult_add_p2.addnsub_multiplier_pipeline_aclr1 = "ACLR0", the_altmult_add_p2.addnsub_multiplier_pipeline_register1 = "CLOCK0", the_altmult_add_p2.addnsub_multiplier_register1 = "UNREGISTERED", the_altmult_add_p2.dedicated_multiplier_circuitry = "YES", the_altmult_add_p2.input_register_a0 = "UNREGISTERED", the_altmult_add_p2.input_register_b0 = "UNREGISTERED", the_altmult_add_p2.input_source_a0 = "DATAA", the_altmult_add_p2.input_source_b0 = "DATAB", the_altmult_add_p2.lpm_type = "altera_mult_add", the_altmult_add_p2.multiplier1_direction = "ADD", the_altmult_add_p2.multiplier_aclr0 = "ACLR0", the_altmult_add_p2.multiplier_register0 = "CLOCK0", the_altmult_add_p2.number_of_multipliers = 1, the_altmult_add_p2.output_register = "UNREGISTERED", the_altmult_add_p2.port_addnsub1 = "PORT_UNUSED", the_altmult_add_p2.port_addnsub3 = "PORT_UNUSED", the_altmult_add_p2.representation_a = "UNSIGNED", the_altmult_add_p2.representation_b = "UNSIGNED", the_altmult_add_p2.selected_device_family = "CYCLONEV", the_altmult_add_p2.signed_pipeline_aclr_a = "ACLR0", the_altmult_add_p2.signed_pipeline_aclr_b = "ACLR0", the_altmult_add_p2.signed_pipeline_register_a = "CLOCK0", the_altmult_add_p2.signed_pipeline_register_b = "CLOCK0", the_altmult_add_p2.signed_register_a = "UNREGISTERED", the_altmult_add_p2.signed_register_b = "UNREGISTERED", the_altmult_add_p2.width_a = 16, the_altmult_add_p2.width_b = 16, the_altmult_add_p2.width_result = 32; altera_mult_add the_altmult_add_p3 ( .aclr0 (mul_clr), .clock0 (clk), .dataa (mul_src1[31 : 16]), .datab (mul_src2[15 : 0]), .ena0 (M_en), .result (M_mul_cell_p3) ); defparam the_altmult_add_p3.addnsub_multiplier_pipeline_aclr1 = "ACLR0", the_altmult_add_p3.addnsub_multiplier_pipeline_register1 = "CLOCK0", the_altmult_add_p3.addnsub_multiplier_register1 = "UNREGISTERED", the_altmult_add_p3.dedicated_multiplier_circuitry = "YES", the_altmult_add_p3.input_register_a0 = "UNREGISTERED", the_altmult_add_p3.input_register_b0 = "UNREGISTERED", the_altmult_add_p3.input_source_a0 = "DATAA", the_altmult_add_p3.input_source_b0 = "DATAB", the_altmult_add_p3.lpm_type = "altera_mult_add", the_altmult_add_p3.multiplier1_direction = "ADD", the_altmult_add_p3.multiplier_aclr0 = "ACLR0", the_altmult_add_p3.multiplier_register0 = "CLOCK0", the_altmult_add_p3.number_of_multipliers = 1, the_altmult_add_p3.output_register = "UNREGISTERED", the_altmult_add_p3.port_addnsub1 = "PORT_UNUSED", the_altmult_add_p3.port_addnsub3 = "PORT_UNUSED", the_altmult_add_p3.representation_a = "UNSIGNED", the_altmult_add_p3.representation_b = "UNSIGNED", the_altmult_add_p3.selected_device_family = "CYCLONEV", the_altmult_add_p3.signed_pipeline_aclr_a = "ACLR0", the_altmult_add_p3.signed_pipeline_aclr_b = "ACLR0", the_altmult_add_p3.signed_pipeline_register_a = "CLOCK0", the_altmult_add_p3.signed_pipeline_register_b = "CLOCK0", the_altmult_add_p3.signed_register_a = "UNREGISTERED", the_altmult_add_p3.signed_register_b = "UNREGISTERED", the_altmult_add_p3.width_a = 16, the_altmult_add_p3.width_b = 16, the_altmult_add_p3.width_result = 32; endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
/* * Copyright (c) 2009 Zeus Gomez Marmolejo <[email protected]> * * This file is part of the Zet processor. This processor is free * hardware; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software * Foundation; either version 3, or (at your option) any later version. * * Zet is distrubuted in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with Zet; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>. */ module hex_display ( input [15:0] num, input en, output [6:0] hex0, output [6:0] hex1, output [6:0] hex2, output [6:0] hex3 ); // Module instantiations seg_7 hex_group0 ( .num (num[3:0]), .en (en), .seg (hex0) ); seg_7 hex_group1 ( .num (num[7:4]), .en (en), .seg (hex1) ); seg_7 hex_group2 ( .num (num[11:8]), .en (en), .seg (hex2) ); seg_7 hex_group3 ( .num (num[15:12]), .en (en), .seg (hex3) ); endmodule
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Description: SRL based FIFO for AXIS/AXI Channels. //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_axic_srl_fifo #( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter C_FAMILY = "virtex7", parameter integer C_PAYLOAD_WIDTH = 1, parameter integer C_FIFO_DEPTH = 16 // Range: 4-16. ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire aclk, // Clock input wire aresetn, // Reset input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data input wire s_valid, // Input data valid output reg s_ready, // Input data ready output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data output reg m_valid, // Output data valid input wire m_ready // Output data ready ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// // ceiling logb2 function integer f_clogb2 (input integer size); integer s; begin s = size; s = s - 1; for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1) s = s >> 1; end endfunction // clogb2 //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index; wire [4-1:0] fifo_addr; wire push; wire pop ; reg areset_r1; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// always @(posedge aclk) begin areset_r1 <= ~aresetn; end always @(posedge aclk) begin if (~aresetn) begin fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}}; end else begin fifo_index <= push & ~pop ? fifo_index + 1'b1 : ~push & pop ? fifo_index - 1'b1 : fifo_index; end end assign push = s_valid & s_ready; always @(posedge aclk) begin if (~aresetn) begin s_ready <= 1'b0; end else begin s_ready <= areset_r1 ? 1'b1 : push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 : ~push & pop ? 1'b1 : s_ready; end end assign pop = m_valid & m_ready; always @(posedge aclk) begin if (~aresetn) begin m_valid <= 1'b0; end else begin m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 : push & ~pop ? 1'b1 : m_valid; end end generate if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}}; end else begin : gen_fifo_addr assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; end endgenerate generate genvar i; for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit SRL16E u_srl_fifo( .Q ( m_payload[i] ) , .A0 ( fifo_addr[0] ) , .A1 ( fifo_addr[1] ) , .A2 ( fifo_addr[2] ) , .A3 ( fifo_addr[3] ) , .CE ( push ) , .CLK ( aclk ) , .D ( s_payload[i] ) ); end endgenerate endmodule `default_nettype wire
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Description: SRL based FIFO for AXIS/AXI Channels. //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_axic_srl_fifo #( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter C_FAMILY = "virtex7", parameter integer C_PAYLOAD_WIDTH = 1, parameter integer C_FIFO_DEPTH = 16 // Range: 4-16. ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire aclk, // Clock input wire aresetn, // Reset input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data input wire s_valid, // Input data valid output reg s_ready, // Input data ready output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data output reg m_valid, // Output data valid input wire m_ready // Output data ready ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// // ceiling logb2 function integer f_clogb2 (input integer size); integer s; begin s = size; s = s - 1; for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1) s = s >> 1; end endfunction // clogb2 //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index; wire [4-1:0] fifo_addr; wire push; wire pop ; reg areset_r1; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// always @(posedge aclk) begin areset_r1 <= ~aresetn; end always @(posedge aclk) begin if (~aresetn) begin fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}}; end else begin fifo_index <= push & ~pop ? fifo_index + 1'b1 : ~push & pop ? fifo_index - 1'b1 : fifo_index; end end assign push = s_valid & s_ready; always @(posedge aclk) begin if (~aresetn) begin s_ready <= 1'b0; end else begin s_ready <= areset_r1 ? 1'b1 : push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 : ~push & pop ? 1'b1 : s_ready; end end assign pop = m_valid & m_ready; always @(posedge aclk) begin if (~aresetn) begin m_valid <= 1'b0; end else begin m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 : push & ~pop ? 1'b1 : m_valid; end end generate if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}}; end else begin : gen_fifo_addr assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; end endgenerate generate genvar i; for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit SRL16E u_srl_fifo( .Q ( m_payload[i] ) , .A0 ( fifo_addr[0] ) , .A1 ( fifo_addr[1] ) , .A2 ( fifo_addr[2] ) , .A3 ( fifo_addr[3] ) , .CE ( push ) , .CLK ( aclk ) , .D ( s_payload[i] ) ); end endgenerate endmodule `default_nettype wire
`include "hi_read_tx.v" /* pck0 - input main 24Mhz clock (PLL / 4) [7:0] adc_d - input data from A/D converter shallow_modulation - modulation type pwr_lo - output to coil drivers (ssp_clk / 8) adc_clk - output A/D clock signal ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted) ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first) ssp_clk - output SSP clock signal ck_1356meg - input unused ck_1356megb - input unused ssp_dout - input unused cross_hi - input unused cross_lo - input unused pwr_hi - output unused, tied low pwr_oe1 - output unused, undefined pwr_oe2 - output unused, undefined pwr_oe3 - output unused, undefined pwr_oe4 - output unused, undefined dbg - output alias for adc_clk */ module testbed_hi_read_tx; reg pck0; reg [7:0] adc_d; reg shallow_modulation; wire pwr_lo; wire adc_clk; reg ck_1356meg; reg ck_1356megb; wire ssp_frame; wire ssp_din; wire ssp_clk; reg ssp_dout; wire pwr_hi; wire pwr_oe1; wire pwr_oe2; wire pwr_oe3; wire pwr_oe4; wire cross_lo; wire cross_hi; wire dbg; hi_read_tx #(5,200) dut( .pck0(pck0), .ck_1356meg(ck_1356meg), .ck_1356megb(ck_1356megb), .pwr_lo(pwr_lo), .pwr_hi(pwr_hi), .pwr_oe1(pwr_oe1), .pwr_oe2(pwr_oe2), .pwr_oe3(pwr_oe3), .pwr_oe4(pwr_oe4), .adc_d(adc_d), .adc_clk(adc_clk), .ssp_frame(ssp_frame), .ssp_din(ssp_din), .ssp_dout(ssp_dout), .ssp_clk(ssp_clk), .cross_hi(cross_hi), .cross_lo(cross_lo), .dbg(dbg), .shallow_modulation(shallow_modulation) ); integer idx, i; // main clock always #5 begin ck_1356megb = !ck_1356megb; ck_1356meg = ck_1356megb; end //crank DUT task crank_dut; begin @(posedge ssp_clk) ; ssp_dout = $random; end endtask initial begin // init inputs ck_1356megb = 0; adc_d = 0; ssp_dout=0; // shallow modulation off shallow_modulation=0; for (i = 0 ; i < 16 ; i = i + 1) begin crank_dut; end // shallow modulation on shallow_modulation=1; for (i = 0 ; i < 16 ; i = i + 1) begin crank_dut; end $finish; end endmodule // main
`include "hi_read_tx.v" /* pck0 - input main 24Mhz clock (PLL / 4) [7:0] adc_d - input data from A/D converter shallow_modulation - modulation type pwr_lo - output to coil drivers (ssp_clk / 8) adc_clk - output A/D clock signal ssp_frame - output SSS frame indicator (goes high while the 8 bits are shifted) ssp_din - output SSP data to ARM (shifts 8 bit A/D value serially to ARM MSB first) ssp_clk - output SSP clock signal ck_1356meg - input unused ck_1356megb - input unused ssp_dout - input unused cross_hi - input unused cross_lo - input unused pwr_hi - output unused, tied low pwr_oe1 - output unused, undefined pwr_oe2 - output unused, undefined pwr_oe3 - output unused, undefined pwr_oe4 - output unused, undefined dbg - output alias for adc_clk */ module testbed_hi_read_tx; reg pck0; reg [7:0] adc_d; reg shallow_modulation; wire pwr_lo; wire adc_clk; reg ck_1356meg; reg ck_1356megb; wire ssp_frame; wire ssp_din; wire ssp_clk; reg ssp_dout; wire pwr_hi; wire pwr_oe1; wire pwr_oe2; wire pwr_oe3; wire pwr_oe4; wire cross_lo; wire cross_hi; wire dbg; hi_read_tx #(5,200) dut( .pck0(pck0), .ck_1356meg(ck_1356meg), .ck_1356megb(ck_1356megb), .pwr_lo(pwr_lo), .pwr_hi(pwr_hi), .pwr_oe1(pwr_oe1), .pwr_oe2(pwr_oe2), .pwr_oe3(pwr_oe3), .pwr_oe4(pwr_oe4), .adc_d(adc_d), .adc_clk(adc_clk), .ssp_frame(ssp_frame), .ssp_din(ssp_din), .ssp_dout(ssp_dout), .ssp_clk(ssp_clk), .cross_hi(cross_hi), .cross_lo(cross_lo), .dbg(dbg), .shallow_modulation(shallow_modulation) ); integer idx, i; // main clock always #5 begin ck_1356megb = !ck_1356megb; ck_1356meg = ck_1356megb; end //crank DUT task crank_dut; begin @(posedge ssp_clk) ; ssp_dout = $random; end endtask initial begin // init inputs ck_1356megb = 0; adc_d = 0; ssp_dout=0; // shallow modulation off shallow_modulation=0; for (i = 0 ; i < 16 ; i = i + 1) begin crank_dut; end // shallow modulation on shallow_modulation=1; for (i = 0 ; i < 16 ; i = i + 1) begin crank_dut; end $finish; end endmodule // main
`timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_protocol_converter_v2_1_b2s_aw_channel # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// // Width of ID signals. // Range: >= 1. parameter integer C_ID_WIDTH = 4, // Width of AxADDR // Range: 32. parameter integer C_AXI_ADDR_WIDTH = 32 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // AXI Slave Interface // Slave Interface System Signals input wire clk , input wire reset , // Slave Interface Write Address Ports input wire [C_ID_WIDTH-1:0] s_awid , input wire [C_AXI_ADDR_WIDTH-1:0] s_awaddr , input wire [7:0] s_awlen , input wire [2:0] s_awsize , input wire [1:0] s_awburst , input wire s_awvalid , output wire s_awready , output wire m_awvalid , output wire [C_AXI_ADDR_WIDTH-1:0] m_awaddr , input wire m_awready , // Connections to/from axi_protocol_converter_v2_1_b2s_b_channel module output wire b_push , output wire [C_ID_WIDTH-1:0] b_awid , output wire [7:0] b_awlen , input wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_awid_r; reg [7:0] s_awlen_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_awaddr ) , .s_axlen ( s_awlen ) , .s_axsize ( s_awsize ) , .s_axburst ( s_awburst ) , .s_axhandshake ( s_awvalid & a_push ) , .m_axaddr ( m_awaddr ) , .incr_burst ( incr_burst ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_awready ( s_awready ) , .s_awvalid ( s_awvalid ) , .m_awvalid ( m_awvalid ) , .m_awready ( m_awready ) , .next ( next ) , .next_pending ( next_pending ) , .b_push ( b_push ) , .b_full ( b_full ) , .a_push ( a_push ) ); assign b_awid = s_awid_r; assign b_awlen = s_awlen_r; always @(posedge clk) begin s_awid_r <= s_awid ; s_awlen_r <= s_awlen ; end endmodule `default_nettype wire
`timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_protocol_converter_v2_1_b2s_aw_channel # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// // Width of ID signals. // Range: >= 1. parameter integer C_ID_WIDTH = 4, // Width of AxADDR // Range: 32. parameter integer C_AXI_ADDR_WIDTH = 32 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // AXI Slave Interface // Slave Interface System Signals input wire clk , input wire reset , // Slave Interface Write Address Ports input wire [C_ID_WIDTH-1:0] s_awid , input wire [C_AXI_ADDR_WIDTH-1:0] s_awaddr , input wire [7:0] s_awlen , input wire [2:0] s_awsize , input wire [1:0] s_awburst , input wire s_awvalid , output wire s_awready , output wire m_awvalid , output wire [C_AXI_ADDR_WIDTH-1:0] m_awaddr , input wire m_awready , // Connections to/from axi_protocol_converter_v2_1_b2s_b_channel module output wire b_push , output wire [C_ID_WIDTH-1:0] b_awid , output wire [7:0] b_awlen , input wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_awid_r; reg [7:0] s_awlen_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_awaddr ) , .s_axlen ( s_awlen ) , .s_axsize ( s_awsize ) , .s_axburst ( s_awburst ) , .s_axhandshake ( s_awvalid & a_push ) , .m_axaddr ( m_awaddr ) , .incr_burst ( incr_burst ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_awready ( s_awready ) , .s_awvalid ( s_awvalid ) , .m_awvalid ( m_awvalid ) , .m_awready ( m_awready ) , .next ( next ) , .next_pending ( next_pending ) , .b_push ( b_push ) , .b_full ( b_full ) , .a_push ( a_push ) ); assign b_awid = s_awid_r; assign b_awlen = s_awlen_r; always @(posedge clk) begin s_awid_r <= s_awid ; s_awlen_r <= s_awlen ; end endmodule `default_nettype wire
`timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_protocol_converter_v2_1_b2s_aw_channel # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// // Width of ID signals. // Range: >= 1. parameter integer C_ID_WIDTH = 4, // Width of AxADDR // Range: 32. parameter integer C_AXI_ADDR_WIDTH = 32 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // AXI Slave Interface // Slave Interface System Signals input wire clk , input wire reset , // Slave Interface Write Address Ports input wire [C_ID_WIDTH-1:0] s_awid , input wire [C_AXI_ADDR_WIDTH-1:0] s_awaddr , input wire [7:0] s_awlen , input wire [2:0] s_awsize , input wire [1:0] s_awburst , input wire s_awvalid , output wire s_awready , output wire m_awvalid , output wire [C_AXI_ADDR_WIDTH-1:0] m_awaddr , input wire m_awready , // Connections to/from axi_protocol_converter_v2_1_b2s_b_channel module output wire b_push , output wire [C_ID_WIDTH-1:0] b_awid , output wire [7:0] b_awlen , input wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_awid_r; reg [7:0] s_awlen_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_awaddr ) , .s_axlen ( s_awlen ) , .s_axsize ( s_awsize ) , .s_axburst ( s_awburst ) , .s_axhandshake ( s_awvalid & a_push ) , .m_axaddr ( m_awaddr ) , .incr_burst ( incr_burst ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_awready ( s_awready ) , .s_awvalid ( s_awvalid ) , .m_awvalid ( m_awvalid ) , .m_awready ( m_awready ) , .next ( next ) , .next_pending ( next_pending ) , .b_push ( b_push ) , .b_full ( b_full ) , .a_push ( a_push ) ); assign b_awid = s_awid_r; assign b_awlen = s_awlen_r; always @(posedge clk) begin s_awid_r <= s_awid ; s_awlen_r <= s_awlen ; end endmodule `default_nettype wire
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 03/17/2016 05:20:59 PM // Design Name: // Module Name: Priority_Codec_64 // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Priority_Codec_64( input wire [54:0] Data_Dec_i, output reg [5:0] Data_Bin_o ); always @(Data_Dec_i) begin Data_Bin_o=6'b000000; if(~Data_Dec_i[54]) begin Data_Bin_o = 6'b000000;//0 end else if(~Data_Dec_i[53]) begin Data_Bin_o = 6'b000001;//1 end else if(~Data_Dec_i[52]) begin Data_Bin_o = 6'b000010;//2 end else if(~Data_Dec_i[51]) begin Data_Bin_o = 6'b000011;//3 end else if(~Data_Dec_i[50]) begin Data_Bin_o = 6'b000100;//4 end else if(~Data_Dec_i[49]) begin Data_Bin_o = 6'b000101;//5 end else if(~Data_Dec_i[48]) begin Data_Bin_o = 6'b000110;//6 end else if(~Data_Dec_i[47]) begin Data_Bin_o = 6'b000111;//7 end else if(~Data_Dec_i[46]) begin Data_Bin_o = 6'b001000;//8 end else if(~Data_Dec_i[45]) begin Data_Bin_o = 6'b001001;//9 end else if(~Data_Dec_i[44]) begin Data_Bin_o = 6'b001010;//10 end else if(~Data_Dec_i[43]) begin Data_Bin_o = 6'b001011;//11 end else if(~Data_Dec_i[42]) begin Data_Bin_o = 6'b001100;//12 end else if(~Data_Dec_i[41]) begin Data_Bin_o = 6'b001101;//13 end else if(~Data_Dec_i[40]) begin Data_Bin_o = 6'b001110;//14 end else if(~Data_Dec_i[39]) begin Data_Bin_o = 6'b001111;//15 end else if(~Data_Dec_i[38]) begin Data_Bin_o = 6'b010000;//16 end else if(~Data_Dec_i[37]) begin Data_Bin_o = 6'b010001;//17 end else if(~Data_Dec_i[36]) begin Data_Bin_o = 6'b010010;//18 end else if(~Data_Dec_i[35]) begin Data_Bin_o = 6'b010011;//19 end else if(~Data_Dec_i[34]) begin Data_Bin_o = 6'b010100;//20 end else if(~Data_Dec_i[33]) begin Data_Bin_o = 6'b010101;//21 end else if(~Data_Dec_i[32]) begin Data_Bin_o = 6'b010110;//22 end else if(~Data_Dec_i[31]) begin Data_Bin_o = 6'b010111;//23 end else if(~Data_Dec_i[30]) begin Data_Bin_o = 6'b011000;//24 end else if(~Data_Dec_i[29]) begin Data_Bin_o = 6'b010101;//25 end else if(~Data_Dec_i[28]) begin Data_Bin_o = 6'b010110;//26 end else if(~Data_Dec_i[27]) begin Data_Bin_o = 6'b010111;//27 end else if(~Data_Dec_i[26]) begin Data_Bin_o = 6'b011000;//28 end else if(~Data_Dec_i[25]) begin Data_Bin_o = 6'b011001;//29 end else if(~Data_Dec_i[24]) begin Data_Bin_o = 6'b011010;//30 end else if(~Data_Dec_i[23]) begin Data_Bin_o = 6'b011011;//31 end else if(~Data_Dec_i[22]) begin Data_Bin_o = 6'b011100;//32 end else if(~Data_Dec_i[21]) begin Data_Bin_o = 6'b011101;//33 end else if(~Data_Dec_i[20]) begin Data_Bin_o = 6'b011110;//34 end else if(~Data_Dec_i[19]) begin Data_Bin_o = 6'b011111;//35 end else if(~Data_Dec_i[18]) begin Data_Bin_o = 6'b100000;//36 end else if(~Data_Dec_i[17]) begin Data_Bin_o = 6'b100001;//37 end else if(~Data_Dec_i[16]) begin Data_Bin_o = 6'b100010;//38 end else if(~Data_Dec_i[15]) begin Data_Bin_o = 6'b100011;//39 end else if(~Data_Dec_i[14]) begin Data_Bin_o = 6'b100100;//40 end else if(~Data_Dec_i[13]) begin Data_Bin_o = 6'b100101;//41 end else if(~Data_Dec_i[12]) begin Data_Bin_o = 6'b100110;//42 end else if(~Data_Dec_i[11]) begin Data_Bin_o = 6'b100111;//43 end else if(~Data_Dec_i[10]) begin Data_Bin_o = 6'b101000;//44 end else if(~Data_Dec_i[9]) begin Data_Bin_o = 6'b101001;//45 end else if(~Data_Dec_i[8]) begin Data_Bin_o = 6'b101010;//46 end else if(~Data_Dec_i[7]) begin Data_Bin_o = 6'b101011;//47 end else if(~Data_Dec_i[6]) begin Data_Bin_o = 6'b101100;//48 end else if(~Data_Dec_i[5]) begin Data_Bin_o = 6'b101101;//49 end else if(~Data_Dec_i[4]) begin Data_Bin_o = 6'b101110;//50 end else if(~Data_Dec_i[3]) begin Data_Bin_o = 6'b101111;//51 end else if(~Data_Dec_i[2]) begin Data_Bin_o = 6'b110000;//52 end else if(~Data_Dec_i[1]) begin Data_Bin_o = 6'b110001;//53 end else if(~Data_Dec_i[0]) begin Data_Bin_o = 6'b110010;//54 end else begin Data_Bin_o = 6'b000000;//zero value end end endmodule
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 03/17/2016 05:20:59 PM // Design Name: // Module Name: Priority_Codec_64 // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Priority_Codec_64( input wire [54:0] Data_Dec_i, output reg [5:0] Data_Bin_o ); always @(Data_Dec_i) begin Data_Bin_o=6'b000000; if(~Data_Dec_i[54]) begin Data_Bin_o = 6'b000000;//0 end else if(~Data_Dec_i[53]) begin Data_Bin_o = 6'b000001;//1 end else if(~Data_Dec_i[52]) begin Data_Bin_o = 6'b000010;//2 end else if(~Data_Dec_i[51]) begin Data_Bin_o = 6'b000011;//3 end else if(~Data_Dec_i[50]) begin Data_Bin_o = 6'b000100;//4 end else if(~Data_Dec_i[49]) begin Data_Bin_o = 6'b000101;//5 end else if(~Data_Dec_i[48]) begin Data_Bin_o = 6'b000110;//6 end else if(~Data_Dec_i[47]) begin Data_Bin_o = 6'b000111;//7 end else if(~Data_Dec_i[46]) begin Data_Bin_o = 6'b001000;//8 end else if(~Data_Dec_i[45]) begin Data_Bin_o = 6'b001001;//9 end else if(~Data_Dec_i[44]) begin Data_Bin_o = 6'b001010;//10 end else if(~Data_Dec_i[43]) begin Data_Bin_o = 6'b001011;//11 end else if(~Data_Dec_i[42]) begin Data_Bin_o = 6'b001100;//12 end else if(~Data_Dec_i[41]) begin Data_Bin_o = 6'b001101;//13 end else if(~Data_Dec_i[40]) begin Data_Bin_o = 6'b001110;//14 end else if(~Data_Dec_i[39]) begin Data_Bin_o = 6'b001111;//15 end else if(~Data_Dec_i[38]) begin Data_Bin_o = 6'b010000;//16 end else if(~Data_Dec_i[37]) begin Data_Bin_o = 6'b010001;//17 end else if(~Data_Dec_i[36]) begin Data_Bin_o = 6'b010010;//18 end else if(~Data_Dec_i[35]) begin Data_Bin_o = 6'b010011;//19 end else if(~Data_Dec_i[34]) begin Data_Bin_o = 6'b010100;//20 end else if(~Data_Dec_i[33]) begin Data_Bin_o = 6'b010101;//21 end else if(~Data_Dec_i[32]) begin Data_Bin_o = 6'b010110;//22 end else if(~Data_Dec_i[31]) begin Data_Bin_o = 6'b010111;//23 end else if(~Data_Dec_i[30]) begin Data_Bin_o = 6'b011000;//24 end else if(~Data_Dec_i[29]) begin Data_Bin_o = 6'b010101;//25 end else if(~Data_Dec_i[28]) begin Data_Bin_o = 6'b010110;//26 end else if(~Data_Dec_i[27]) begin Data_Bin_o = 6'b010111;//27 end else if(~Data_Dec_i[26]) begin Data_Bin_o = 6'b011000;//28 end else if(~Data_Dec_i[25]) begin Data_Bin_o = 6'b011001;//29 end else if(~Data_Dec_i[24]) begin Data_Bin_o = 6'b011010;//30 end else if(~Data_Dec_i[23]) begin Data_Bin_o = 6'b011011;//31 end else if(~Data_Dec_i[22]) begin Data_Bin_o = 6'b011100;//32 end else if(~Data_Dec_i[21]) begin Data_Bin_o = 6'b011101;//33 end else if(~Data_Dec_i[20]) begin Data_Bin_o = 6'b011110;//34 end else if(~Data_Dec_i[19]) begin Data_Bin_o = 6'b011111;//35 end else if(~Data_Dec_i[18]) begin Data_Bin_o = 6'b100000;//36 end else if(~Data_Dec_i[17]) begin Data_Bin_o = 6'b100001;//37 end else if(~Data_Dec_i[16]) begin Data_Bin_o = 6'b100010;//38 end else if(~Data_Dec_i[15]) begin Data_Bin_o = 6'b100011;//39 end else if(~Data_Dec_i[14]) begin Data_Bin_o = 6'b100100;//40 end else if(~Data_Dec_i[13]) begin Data_Bin_o = 6'b100101;//41 end else if(~Data_Dec_i[12]) begin Data_Bin_o = 6'b100110;//42 end else if(~Data_Dec_i[11]) begin Data_Bin_o = 6'b100111;//43 end else if(~Data_Dec_i[10]) begin Data_Bin_o = 6'b101000;//44 end else if(~Data_Dec_i[9]) begin Data_Bin_o = 6'b101001;//45 end else if(~Data_Dec_i[8]) begin Data_Bin_o = 6'b101010;//46 end else if(~Data_Dec_i[7]) begin Data_Bin_o = 6'b101011;//47 end else if(~Data_Dec_i[6]) begin Data_Bin_o = 6'b101100;//48 end else if(~Data_Dec_i[5]) begin Data_Bin_o = 6'b101101;//49 end else if(~Data_Dec_i[4]) begin Data_Bin_o = 6'b101110;//50 end else if(~Data_Dec_i[3]) begin Data_Bin_o = 6'b101111;//51 end else if(~Data_Dec_i[2]) begin Data_Bin_o = 6'b110000;//52 end else if(~Data_Dec_i[1]) begin Data_Bin_o = 6'b110001;//53 end else if(~Data_Dec_i[0]) begin Data_Bin_o = 6'b110010;//54 end else begin Data_Bin_o = 6'b000000;//zero value end end endmodule
/* -*- verilog -*- * * USRP - Universal Software Radio Peripheral * * Copyright (C) 2005 Matt Ettus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA */ /* * This implements a 31-tap halfband filter that decimates by two. * The coefficients are symmetric, and with the exception of the middle tap, * every other coefficient is zero. The middle section of taps looks like this: * * ..., -1468, 0, 2950, 0, -6158, 0, 20585, 32768, 20585, 0, -6158, 0, 2950, 0, -1468, ... * | * middle tap -------+ * * See coeff_rom.v for the full set. The taps are scaled relative to 32768, * thus the middle tap equals 1.0. Not counting the middle tap, there are 8 * non-zero taps on each side, and they are symmetric. A naive implementation * requires a mulitply for each non-zero tap. Because of symmetry, we can * replace 2 multiplies with 1 add and 1 multiply. Thus, to compute each output * sample, we need to perform 8 multiplications. Since the middle tap is 1.0, * we just add the corresponding delay line value. * * About timing: We implement this with a single multiplier, so it takes * 8 cycles to compute a single output. However, since we're decimating by two * we can accept a new input value every 4 cycles. strobe_in is asserted when * there's a new input sample available. Depending on the overall decimation * rate, strobe_in may be asserted less frequently than once every 4 clocks. * On the output side, we assert strobe_out when output contains a new sample. * * Implementation: Every time strobe_in is asserted we store the new data into * the delay line. We split the delay line into two components, one for the * even samples, and one for the odd samples. ram16_odd is the delay line for * the odd samples. This ram is written on each odd assertion of strobe_in, and * is read on each clock when we're computing the dot product. ram16_even is * similar, although because it holds the even samples we must be able to read * two samples from different addresses at the same time, while writing the incoming * even samples. Thus it's "triple-ported". */ module halfband_decim (input clock, input reset, input enable, input strobe_in, output wire strobe_out, input wire [15:0] data_in, output reg [15:0] data_out,output wire [15:0] debugctrl); reg [3:0] rd_addr1; reg [3:0] rd_addr2; reg [3:0] phase; reg [3:0] base_addr; wire signed [15:0] mac_out,middle_data, sum, coeff; wire signed [30:0] product; wire signed [33:0] sum_even; wire clear; reg store_odd; always @(posedge clock) if(reset) store_odd <= #1 1'b0; else if(strobe_in) store_odd <= #1 ~store_odd; wire start = strobe_in & store_odd; always @(posedge clock) if(reset) base_addr <= #1 4'd0; else if(start) base_addr <= #1 base_addr + 4'd1; always @(posedge clock) if(reset) phase <= #1 4'd8; else if (start) phase <= #1 4'd0; else if(phase != 4'd8) phase <= #1 phase + 4'd1; reg start_d1,start_d2,start_d3,start_d4,start_d5,start_d6,start_d7,start_d8,start_d9,start_dA,start_dB,start_dC,start_dD; always @(posedge clock) begin start_d1 <= #1 start; start_d2 <= #1 start_d1; start_d3 <= #1 start_d2; start_d4 <= #1 start_d3; start_d5 <= #1 start_d4; start_d6 <= #1 start_d5; start_d7 <= #1 start_d6; start_d8 <= #1 start_d7; start_d9 <= #1 start_d8; start_dA <= #1 start_d9; start_dB <= #1 start_dA; start_dC <= #1 start_dB; start_dD <= #1 start_dC; end // always @ (posedge clock) reg mult_en, mult_en_pre; always @(posedge clock) begin mult_en_pre <= #1 phase!=8; mult_en <= #1 mult_en_pre; end assign clear = start_d4; // was dC wire latch_result = start_d4; // was dC assign strobe_out = start_d5; // was dD wire acc_en; always @* case(phase[2:0]) 3'd0 : begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end 3'd1 : begin rd_addr1 = base_addr + 4'd1; rd_addr2 = base_addr + 4'd14; end 3'd2 : begin rd_addr1 = base_addr + 4'd2; rd_addr2 = base_addr + 4'd13; end 3'd3 : begin rd_addr1 = base_addr + 4'd3; rd_addr2 = base_addr + 4'd12; end 3'd4 : begin rd_addr1 = base_addr + 4'd4; rd_addr2 = base_addr + 4'd11; end 3'd5 : begin rd_addr1 = base_addr + 4'd5; rd_addr2 = base_addr + 4'd10; end 3'd6 : begin rd_addr1 = base_addr + 4'd6; rd_addr2 = base_addr + 4'd9; end 3'd7 : begin rd_addr1 = base_addr + 4'd7; rd_addr2 = base_addr + 4'd8; end default: begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end endcase // case(phase) coeff_rom coeff_rom (.clock(clock),.addr(phase[2:0]-3'd1),.data(coeff)); ram16_2sum ram16_even (.clock(clock),.write(strobe_in & ~store_odd), .wr_addr(base_addr),.wr_data(data_in), .rd_addr1(rd_addr1),.rd_addr2(rd_addr2), .sum(sum)); ram16 ram16_odd (.clock(clock),.write(strobe_in & store_odd), // Holds middle items .wr_addr(base_addr),.wr_data(data_in), //.rd_addr(base_addr+4'd7),.rd_data(middle_data)); .rd_addr(base_addr+4'd6),.rd_data(middle_data)); mult mult(.clock(clock),.x(coeff),.y(sum),.product(product),.enable_in(mult_en),.enable_out(acc_en)); acc acc(.clock(clock),.reset(reset),.enable_in(acc_en),.enable_out(), .clear(clear),.addend(product),.sum(sum_even)); wire signed [33:0] dout = sum_even + {{4{middle_data[15]}},middle_data,14'b0}; // We already divided product by 2!!!! always @(posedge clock) if(reset) data_out <= #1 16'd0; else if(latch_result) data_out <= #1 dout[30:15] + (dout[33]& |dout[14:0]); assign debugctrl = { clock,reset,acc_en,mult_en,clear,latch_result,store_odd,strobe_in,strobe_out,phase}; endmodule // halfband_decim
/* -*- verilog -*- * * USRP - Universal Software Radio Peripheral * * Copyright (C) 2005 Matt Ettus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA */ /* * This implements a 31-tap halfband filter that decimates by two. * The coefficients are symmetric, and with the exception of the middle tap, * every other coefficient is zero. The middle section of taps looks like this: * * ..., -1468, 0, 2950, 0, -6158, 0, 20585, 32768, 20585, 0, -6158, 0, 2950, 0, -1468, ... * | * middle tap -------+ * * See coeff_rom.v for the full set. The taps are scaled relative to 32768, * thus the middle tap equals 1.0. Not counting the middle tap, there are 8 * non-zero taps on each side, and they are symmetric. A naive implementation * requires a mulitply for each non-zero tap. Because of symmetry, we can * replace 2 multiplies with 1 add and 1 multiply. Thus, to compute each output * sample, we need to perform 8 multiplications. Since the middle tap is 1.0, * we just add the corresponding delay line value. * * About timing: We implement this with a single multiplier, so it takes * 8 cycles to compute a single output. However, since we're decimating by two * we can accept a new input value every 4 cycles. strobe_in is asserted when * there's a new input sample available. Depending on the overall decimation * rate, strobe_in may be asserted less frequently than once every 4 clocks. * On the output side, we assert strobe_out when output contains a new sample. * * Implementation: Every time strobe_in is asserted we store the new data into * the delay line. We split the delay line into two components, one for the * even samples, and one for the odd samples. ram16_odd is the delay line for * the odd samples. This ram is written on each odd assertion of strobe_in, and * is read on each clock when we're computing the dot product. ram16_even is * similar, although because it holds the even samples we must be able to read * two samples from different addresses at the same time, while writing the incoming * even samples. Thus it's "triple-ported". */ module halfband_decim (input clock, input reset, input enable, input strobe_in, output wire strobe_out, input wire [15:0] data_in, output reg [15:0] data_out,output wire [15:0] debugctrl); reg [3:0] rd_addr1; reg [3:0] rd_addr2; reg [3:0] phase; reg [3:0] base_addr; wire signed [15:0] mac_out,middle_data, sum, coeff; wire signed [30:0] product; wire signed [33:0] sum_even; wire clear; reg store_odd; always @(posedge clock) if(reset) store_odd <= #1 1'b0; else if(strobe_in) store_odd <= #1 ~store_odd; wire start = strobe_in & store_odd; always @(posedge clock) if(reset) base_addr <= #1 4'd0; else if(start) base_addr <= #1 base_addr + 4'd1; always @(posedge clock) if(reset) phase <= #1 4'd8; else if (start) phase <= #1 4'd0; else if(phase != 4'd8) phase <= #1 phase + 4'd1; reg start_d1,start_d2,start_d3,start_d4,start_d5,start_d6,start_d7,start_d8,start_d9,start_dA,start_dB,start_dC,start_dD; always @(posedge clock) begin start_d1 <= #1 start; start_d2 <= #1 start_d1; start_d3 <= #1 start_d2; start_d4 <= #1 start_d3; start_d5 <= #1 start_d4; start_d6 <= #1 start_d5; start_d7 <= #1 start_d6; start_d8 <= #1 start_d7; start_d9 <= #1 start_d8; start_dA <= #1 start_d9; start_dB <= #1 start_dA; start_dC <= #1 start_dB; start_dD <= #1 start_dC; end // always @ (posedge clock) reg mult_en, mult_en_pre; always @(posedge clock) begin mult_en_pre <= #1 phase!=8; mult_en <= #1 mult_en_pre; end assign clear = start_d4; // was dC wire latch_result = start_d4; // was dC assign strobe_out = start_d5; // was dD wire acc_en; always @* case(phase[2:0]) 3'd0 : begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end 3'd1 : begin rd_addr1 = base_addr + 4'd1; rd_addr2 = base_addr + 4'd14; end 3'd2 : begin rd_addr1 = base_addr + 4'd2; rd_addr2 = base_addr + 4'd13; end 3'd3 : begin rd_addr1 = base_addr + 4'd3; rd_addr2 = base_addr + 4'd12; end 3'd4 : begin rd_addr1 = base_addr + 4'd4; rd_addr2 = base_addr + 4'd11; end 3'd5 : begin rd_addr1 = base_addr + 4'd5; rd_addr2 = base_addr + 4'd10; end 3'd6 : begin rd_addr1 = base_addr + 4'd6; rd_addr2 = base_addr + 4'd9; end 3'd7 : begin rd_addr1 = base_addr + 4'd7; rd_addr2 = base_addr + 4'd8; end default: begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end endcase // case(phase) coeff_rom coeff_rom (.clock(clock),.addr(phase[2:0]-3'd1),.data(coeff)); ram16_2sum ram16_even (.clock(clock),.write(strobe_in & ~store_odd), .wr_addr(base_addr),.wr_data(data_in), .rd_addr1(rd_addr1),.rd_addr2(rd_addr2), .sum(sum)); ram16 ram16_odd (.clock(clock),.write(strobe_in & store_odd), // Holds middle items .wr_addr(base_addr),.wr_data(data_in), //.rd_addr(base_addr+4'd7),.rd_data(middle_data)); .rd_addr(base_addr+4'd6),.rd_data(middle_data)); mult mult(.clock(clock),.x(coeff),.y(sum),.product(product),.enable_in(mult_en),.enable_out(acc_en)); acc acc(.clock(clock),.reset(reset),.enable_in(acc_en),.enable_out(), .clear(clear),.addend(product),.sum(sum_even)); wire signed [33:0] dout = sum_even + {{4{middle_data[15]}},middle_data,14'b0}; // We already divided product by 2!!!! always @(posedge clock) if(reset) data_out <= #1 16'd0; else if(latch_result) data_out <= #1 dout[30:15] + (dout[33]& |dout[14:0]); assign debugctrl = { clock,reset,acc_en,mult_en,clear,latch_result,store_odd,strobe_in,strobe_out,phase}; endmodule // halfband_decim
/* -*- verilog -*- * * USRP - Universal Software Radio Peripheral * * Copyright (C) 2005 Matt Ettus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA */ /* * This implements a 31-tap halfband filter that decimates by two. * The coefficients are symmetric, and with the exception of the middle tap, * every other coefficient is zero. The middle section of taps looks like this: * * ..., -1468, 0, 2950, 0, -6158, 0, 20585, 32768, 20585, 0, -6158, 0, 2950, 0, -1468, ... * | * middle tap -------+ * * See coeff_rom.v for the full set. The taps are scaled relative to 32768, * thus the middle tap equals 1.0. Not counting the middle tap, there are 8 * non-zero taps on each side, and they are symmetric. A naive implementation * requires a mulitply for each non-zero tap. Because of symmetry, we can * replace 2 multiplies with 1 add and 1 multiply. Thus, to compute each output * sample, we need to perform 8 multiplications. Since the middle tap is 1.0, * we just add the corresponding delay line value. * * About timing: We implement this with a single multiplier, so it takes * 8 cycles to compute a single output. However, since we're decimating by two * we can accept a new input value every 4 cycles. strobe_in is asserted when * there's a new input sample available. Depending on the overall decimation * rate, strobe_in may be asserted less frequently than once every 4 clocks. * On the output side, we assert strobe_out when output contains a new sample. * * Implementation: Every time strobe_in is asserted we store the new data into * the delay line. We split the delay line into two components, one for the * even samples, and one for the odd samples. ram16_odd is the delay line for * the odd samples. This ram is written on each odd assertion of strobe_in, and * is read on each clock when we're computing the dot product. ram16_even is * similar, although because it holds the even samples we must be able to read * two samples from different addresses at the same time, while writing the incoming * even samples. Thus it's "triple-ported". */ module halfband_decim (input clock, input reset, input enable, input strobe_in, output wire strobe_out, input wire [15:0] data_in, output reg [15:0] data_out,output wire [15:0] debugctrl); reg [3:0] rd_addr1; reg [3:0] rd_addr2; reg [3:0] phase; reg [3:0] base_addr; wire signed [15:0] mac_out,middle_data, sum, coeff; wire signed [30:0] product; wire signed [33:0] sum_even; wire clear; reg store_odd; always @(posedge clock) if(reset) store_odd <= #1 1'b0; else if(strobe_in) store_odd <= #1 ~store_odd; wire start = strobe_in & store_odd; always @(posedge clock) if(reset) base_addr <= #1 4'd0; else if(start) base_addr <= #1 base_addr + 4'd1; always @(posedge clock) if(reset) phase <= #1 4'd8; else if (start) phase <= #1 4'd0; else if(phase != 4'd8) phase <= #1 phase + 4'd1; reg start_d1,start_d2,start_d3,start_d4,start_d5,start_d6,start_d7,start_d8,start_d9,start_dA,start_dB,start_dC,start_dD; always @(posedge clock) begin start_d1 <= #1 start; start_d2 <= #1 start_d1; start_d3 <= #1 start_d2; start_d4 <= #1 start_d3; start_d5 <= #1 start_d4; start_d6 <= #1 start_d5; start_d7 <= #1 start_d6; start_d8 <= #1 start_d7; start_d9 <= #1 start_d8; start_dA <= #1 start_d9; start_dB <= #1 start_dA; start_dC <= #1 start_dB; start_dD <= #1 start_dC; end // always @ (posedge clock) reg mult_en, mult_en_pre; always @(posedge clock) begin mult_en_pre <= #1 phase!=8; mult_en <= #1 mult_en_pre; end assign clear = start_d4; // was dC wire latch_result = start_d4; // was dC assign strobe_out = start_d5; // was dD wire acc_en; always @* case(phase[2:0]) 3'd0 : begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end 3'd1 : begin rd_addr1 = base_addr + 4'd1; rd_addr2 = base_addr + 4'd14; end 3'd2 : begin rd_addr1 = base_addr + 4'd2; rd_addr2 = base_addr + 4'd13; end 3'd3 : begin rd_addr1 = base_addr + 4'd3; rd_addr2 = base_addr + 4'd12; end 3'd4 : begin rd_addr1 = base_addr + 4'd4; rd_addr2 = base_addr + 4'd11; end 3'd5 : begin rd_addr1 = base_addr + 4'd5; rd_addr2 = base_addr + 4'd10; end 3'd6 : begin rd_addr1 = base_addr + 4'd6; rd_addr2 = base_addr + 4'd9; end 3'd7 : begin rd_addr1 = base_addr + 4'd7; rd_addr2 = base_addr + 4'd8; end default: begin rd_addr1 = base_addr + 4'd0; rd_addr2 = base_addr + 4'd15; end endcase // case(phase) coeff_rom coeff_rom (.clock(clock),.addr(phase[2:0]-3'd1),.data(coeff)); ram16_2sum ram16_even (.clock(clock),.write(strobe_in & ~store_odd), .wr_addr(base_addr),.wr_data(data_in), .rd_addr1(rd_addr1),.rd_addr2(rd_addr2), .sum(sum)); ram16 ram16_odd (.clock(clock),.write(strobe_in & store_odd), // Holds middle items .wr_addr(base_addr),.wr_data(data_in), //.rd_addr(base_addr+4'd7),.rd_data(middle_data)); .rd_addr(base_addr+4'd6),.rd_data(middle_data)); mult mult(.clock(clock),.x(coeff),.y(sum),.product(product),.enable_in(mult_en),.enable_out(acc_en)); acc acc(.clock(clock),.reset(reset),.enable_in(acc_en),.enable_out(), .clear(clear),.addend(product),.sum(sum_even)); wire signed [33:0] dout = sum_even + {{4{middle_data[15]}},middle_data,14'b0}; // We already divided product by 2!!!! always @(posedge clock) if(reset) data_out <= #1 16'd0; else if(latch_result) data_out <= #1 dout[30:15] + (dout[33]& |dout[14:0]); assign debugctrl = { clock,reset,acc_en,mult_en,clear,latch_result,store_odd,strobe_in,strobe_out,phase}; endmodule // halfband_decim
/***************************************************************************** * File : processing_system7_bfm_v2_0_5_unused_ports.v * * Date : 2012-11 * * Description : Semantic checks for unused ports. * *****************************************************************************/ /* CAN */ assign CAN0_PHY_TX = 0; assign CAN1_PHY_TX = 0; always @(CAN0_PHY_RX or CAN1_PHY_RX) begin if(CAN0_PHY_RX | CAN1_PHY_RX) $display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* ETHERNET */ /* ------------------------------------------- */ assign ENET0_GMII_TX_EN = 0; assign ENET0_GMII_TX_ER = 0; assign ENET0_MDIO_MDC = 0; assign ENET0_MDIO_O = 0; /// confirm assign ENET0_MDIO_T = 0; assign ENET0_PTP_DELAY_REQ_RX = 0; assign ENET0_PTP_DELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_REQ_RX = 0; assign ENET0_PTP_PDELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_RESP_RX = 0; assign ENET0_PTP_PDELAY_RESP_TX = 0; assign ENET0_PTP_SYNC_FRAME_RX = 0; assign ENET0_PTP_SYNC_FRAME_TX = 0; assign ENET0_SOF_RX = 0; assign ENET0_SOF_TX = 0; assign ENET0_GMII_TXD = 0; always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD) begin if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN | ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER | ENET0_GMII_TX_CLK | ENET0_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end assign ENET1_GMII_TX_EN = 0; assign ENET1_GMII_TX_ER = 0; assign ENET1_MDIO_MDC = 0; assign ENET1_MDIO_O = 0;/// confirm assign ENET1_MDIO_T = 0; assign ENET1_PTP_DELAY_REQ_RX = 0; assign ENET1_PTP_DELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_REQ_RX = 0; assign ENET1_PTP_PDELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_RESP_RX = 0; assign ENET1_PTP_PDELAY_RESP_TX = 0; assign ENET1_PTP_SYNC_FRAME_RX = 0; assign ENET1_PTP_SYNC_FRAME_TX = 0; assign ENET1_SOF_RX = 0; assign ENET1_SOF_TX = 0; assign ENET1_GMII_TXD = 0; always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD) begin if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN | ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER | ENET1_GMII_TX_CLK | ENET1_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* GPIO */ /* ------------------------------------------- */ assign GPIO_O = 0; assign GPIO_T = 0; always@(GPIO_I) begin if(GPIO_I !== 0) $display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* I2C */ /* ------------------------------------------- */ assign I2C0_SDA_O = 0; assign I2C0_SDA_T = 0; assign I2C0_SCL_O = 0; assign I2C0_SCL_T = 0; assign I2C1_SDA_O = 0; assign I2C1_SDA_T = 0; assign I2C1_SCL_O = 0; assign I2C1_SCL_T = 0; always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I ) begin if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I) $display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* JTAG */ /* ------------------------------------------- */ assign PJTAG_TD_T = 0; assign PJTAG_TD_O = 0; always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I) begin if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I) $display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SDIO */ /* ------------------------------------------- */ assign SDIO0_CLK = 0; assign SDIO0_CMD_O = 0; assign SDIO0_CMD_T = 0; assign SDIO0_DATA_O = 0; assign SDIO0_DATA_T = 0; assign SDIO0_LED = 0; assign SDIO0_BUSPOW = 0; assign SDIO0_BUSVOLT = 0; always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP ) begin if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end assign SDIO1_CLK = 0; assign SDIO1_CMD_O = 0; assign SDIO1_CMD_T = 0; assign SDIO1_DATA_O = 0; assign SDIO1_DATA_T = 0; assign SDIO1_LED = 0; assign SDIO1_BUSPOW = 0; assign SDIO1_BUSVOLT = 0; always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP ) begin if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SPI */ /* ------------------------------------------- */ assign SPI0_SCLK_O = 0; assign SPI0_SCLK_T = 0; assign SPI0_MOSI_O = 0; assign SPI0_MOSI_T = 0; assign SPI0_MISO_O = 0; assign SPI0_MISO_T = 0; assign SPI0_SS_O = 0; /// confirm assign SPI0_SS1_O = 0;/// confirm assign SPI0_SS2_O = 0;/// confirm assign SPI0_SS_T = 0; always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I) begin if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end assign SPI1_SCLK_O = 0; assign SPI1_SCLK_T = 0; assign SPI1_MOSI_O = 0; assign SPI1_MOSI_T = 0; assign SPI1_MISO_O = 0; assign SPI1_MISO_T = 0; assign SPI1_SS_O = 0; assign SPI1_SS1_O = 0; assign SPI1_SS2_O = 0; assign SPI1_SS_T = 0; always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I) begin if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* UART */ /* ------------------------------------------- */ /// confirm assign UART0_DTRN = 0; assign UART0_RTSN = 0; assign UART0_TX = 0; always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX) begin if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end assign UART1_DTRN = 0; assign UART1_RTSN = 0; assign UART1_TX = 0; always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX) begin if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TTC */ /* ------------------------------------------- */ assign TTC0_WAVE0_OUT = 0; assign TTC0_WAVE1_OUT = 0; assign TTC0_WAVE2_OUT = 0; always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN) begin if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end assign TTC1_WAVE0_OUT = 0; assign TTC1_WAVE1_OUT = 0; assign TTC1_WAVE2_OUT = 0; always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN) begin if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* WDT */ /* ------------------------------------------- */ assign WDT_RST_OUT = 0; always@(WDT_CLK_IN) begin if(WDT_CLK_IN) $display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TRACE */ /* ------------------------------------------- */ assign TRACE_CTL = 0; assign TRACE_DATA = 0; always@(TRACE_CLK) begin if(TRACE_CLK) $display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* USB */ /* ------------------------------------------- */ assign USB0_PORT_INDCTL = 0; assign USB0_VBUS_PWRSELECT = 0; always@(USB0_VBUS_PWRFAULT) begin if(USB0_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end assign USB1_PORT_INDCTL = 0; assign USB1_VBUS_PWRSELECT = 0; always@(USB1_VBUS_PWRFAULT) begin if(USB1_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end always@(SRAM_INTIN) begin if(SRAM_INTIN) $display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DMA */ /* ------------------------------------------- */ assign DMA0_DATYPE = 0; assign DMA0_DAVALID = 0; assign DMA0_DRREADY = 0; assign DMA0_RSTN = 0; always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE) begin if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA1_DATYPE = 0; assign DMA1_DAVALID = 0; assign DMA1_DRREADY = 0; assign DMA1_RSTN = 0; always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE) begin if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA2_DATYPE = 0; assign DMA2_DAVALID = 0; assign DMA2_DRREADY = 0; assign DMA2_RSTN = 0; always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE) begin if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA3_DATYPE = 0; assign DMA3_DAVALID = 0; assign DMA3_DRREADY = 0; assign DMA3_RSTN = 0; always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE) begin if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FTM */ /* ------------------------------------------- */ assign FTMT_F2P_TRIGACK = 0; assign FTMT_P2F_TRIG = 0; assign FTMT_P2F_DEBUG = 0; always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK) begin if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK) $display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* EVENT */ /* ------------------------------------------- */ assign EVENT_EVENTO = 0; assign EVENT_STANDBYWFE = 0; assign EVENT_STANDBYWFI = 0; always@(EVENT_EVENTI) begin if(EVENT_EVENTI) $display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MIO */ /* ------------------------------------------- */ always@(MIO) begin if(MIO !== 0) $display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FCLK_TRIG */ /* ------------------------------------------- */ always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N ) begin if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N ) $display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MISC */ /* ------------------------------------------- */ always@(FPGA_IDLE_N) begin if(FPGA_IDLE_N) $display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR); end always@(DDR_ARB) begin if(DDR_ARB !== 0) $display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR); end always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ ) begin if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ) $display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DDR */ /* ------------------------------------------- */ assign DDR_WEB = 0; always@(DDR_Clk or DDR_CS_n) begin if(!DDR_CS_n) $display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* IRQ_P2F */ /* ------------------------------------------- */ assign IRQ_P2F_DMAC_ABORT = 0; assign IRQ_P2F_DMAC0 = 0; assign IRQ_P2F_DMAC1 = 0; assign IRQ_P2F_DMAC2 = 0; assign IRQ_P2F_DMAC3 = 0; assign IRQ_P2F_DMAC4 = 0; assign IRQ_P2F_DMAC5 = 0; assign IRQ_P2F_DMAC6 = 0; assign IRQ_P2F_DMAC7 = 0; assign IRQ_P2F_SMC = 0; assign IRQ_P2F_QSPI = 0; assign IRQ_P2F_CTI = 0; assign IRQ_P2F_GPIO = 0; assign IRQ_P2F_USB0 = 0; assign IRQ_P2F_ENET0 = 0; assign IRQ_P2F_ENET_WAKE0 = 0; assign IRQ_P2F_SDIO0 = 0; assign IRQ_P2F_I2C0 = 0; assign IRQ_P2F_SPI0 = 0; assign IRQ_P2F_UART0 = 0; assign IRQ_P2F_CAN0 = 0; assign IRQ_P2F_USB1 = 0; assign IRQ_P2F_ENET1 = 0; assign IRQ_P2F_ENET_WAKE1 = 0; assign IRQ_P2F_SDIO1 = 0; assign IRQ_P2F_I2C1 = 0; assign IRQ_P2F_SPI1 = 0; assign IRQ_P2F_UART1 = 0; assign IRQ_P2F_CAN1 = 0;
/***************************************************************************** * File : processing_system7_bfm_v2_0_5_unused_ports.v * * Date : 2012-11 * * Description : Semantic checks for unused ports. * *****************************************************************************/ /* CAN */ assign CAN0_PHY_TX = 0; assign CAN1_PHY_TX = 0; always @(CAN0_PHY_RX or CAN1_PHY_RX) begin if(CAN0_PHY_RX | CAN1_PHY_RX) $display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* ETHERNET */ /* ------------------------------------------- */ assign ENET0_GMII_TX_EN = 0; assign ENET0_GMII_TX_ER = 0; assign ENET0_MDIO_MDC = 0; assign ENET0_MDIO_O = 0; /// confirm assign ENET0_MDIO_T = 0; assign ENET0_PTP_DELAY_REQ_RX = 0; assign ENET0_PTP_DELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_REQ_RX = 0; assign ENET0_PTP_PDELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_RESP_RX = 0; assign ENET0_PTP_PDELAY_RESP_TX = 0; assign ENET0_PTP_SYNC_FRAME_RX = 0; assign ENET0_PTP_SYNC_FRAME_TX = 0; assign ENET0_SOF_RX = 0; assign ENET0_SOF_TX = 0; assign ENET0_GMII_TXD = 0; always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD) begin if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN | ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER | ENET0_GMII_TX_CLK | ENET0_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end assign ENET1_GMII_TX_EN = 0; assign ENET1_GMII_TX_ER = 0; assign ENET1_MDIO_MDC = 0; assign ENET1_MDIO_O = 0;/// confirm assign ENET1_MDIO_T = 0; assign ENET1_PTP_DELAY_REQ_RX = 0; assign ENET1_PTP_DELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_REQ_RX = 0; assign ENET1_PTP_PDELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_RESP_RX = 0; assign ENET1_PTP_PDELAY_RESP_TX = 0; assign ENET1_PTP_SYNC_FRAME_RX = 0; assign ENET1_PTP_SYNC_FRAME_TX = 0; assign ENET1_SOF_RX = 0; assign ENET1_SOF_TX = 0; assign ENET1_GMII_TXD = 0; always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD) begin if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN | ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER | ENET1_GMII_TX_CLK | ENET1_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* GPIO */ /* ------------------------------------------- */ assign GPIO_O = 0; assign GPIO_T = 0; always@(GPIO_I) begin if(GPIO_I !== 0) $display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* I2C */ /* ------------------------------------------- */ assign I2C0_SDA_O = 0; assign I2C0_SDA_T = 0; assign I2C0_SCL_O = 0; assign I2C0_SCL_T = 0; assign I2C1_SDA_O = 0; assign I2C1_SDA_T = 0; assign I2C1_SCL_O = 0; assign I2C1_SCL_T = 0; always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I ) begin if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I) $display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* JTAG */ /* ------------------------------------------- */ assign PJTAG_TD_T = 0; assign PJTAG_TD_O = 0; always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I) begin if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I) $display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SDIO */ /* ------------------------------------------- */ assign SDIO0_CLK = 0; assign SDIO0_CMD_O = 0; assign SDIO0_CMD_T = 0; assign SDIO0_DATA_O = 0; assign SDIO0_DATA_T = 0; assign SDIO0_LED = 0; assign SDIO0_BUSPOW = 0; assign SDIO0_BUSVOLT = 0; always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP ) begin if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end assign SDIO1_CLK = 0; assign SDIO1_CMD_O = 0; assign SDIO1_CMD_T = 0; assign SDIO1_DATA_O = 0; assign SDIO1_DATA_T = 0; assign SDIO1_LED = 0; assign SDIO1_BUSPOW = 0; assign SDIO1_BUSVOLT = 0; always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP ) begin if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SPI */ /* ------------------------------------------- */ assign SPI0_SCLK_O = 0; assign SPI0_SCLK_T = 0; assign SPI0_MOSI_O = 0; assign SPI0_MOSI_T = 0; assign SPI0_MISO_O = 0; assign SPI0_MISO_T = 0; assign SPI0_SS_O = 0; /// confirm assign SPI0_SS1_O = 0;/// confirm assign SPI0_SS2_O = 0;/// confirm assign SPI0_SS_T = 0; always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I) begin if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end assign SPI1_SCLK_O = 0; assign SPI1_SCLK_T = 0; assign SPI1_MOSI_O = 0; assign SPI1_MOSI_T = 0; assign SPI1_MISO_O = 0; assign SPI1_MISO_T = 0; assign SPI1_SS_O = 0; assign SPI1_SS1_O = 0; assign SPI1_SS2_O = 0; assign SPI1_SS_T = 0; always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I) begin if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* UART */ /* ------------------------------------------- */ /// confirm assign UART0_DTRN = 0; assign UART0_RTSN = 0; assign UART0_TX = 0; always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX) begin if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end assign UART1_DTRN = 0; assign UART1_RTSN = 0; assign UART1_TX = 0; always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX) begin if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TTC */ /* ------------------------------------------- */ assign TTC0_WAVE0_OUT = 0; assign TTC0_WAVE1_OUT = 0; assign TTC0_WAVE2_OUT = 0; always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN) begin if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end assign TTC1_WAVE0_OUT = 0; assign TTC1_WAVE1_OUT = 0; assign TTC1_WAVE2_OUT = 0; always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN) begin if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* WDT */ /* ------------------------------------------- */ assign WDT_RST_OUT = 0; always@(WDT_CLK_IN) begin if(WDT_CLK_IN) $display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TRACE */ /* ------------------------------------------- */ assign TRACE_CTL = 0; assign TRACE_DATA = 0; always@(TRACE_CLK) begin if(TRACE_CLK) $display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* USB */ /* ------------------------------------------- */ assign USB0_PORT_INDCTL = 0; assign USB0_VBUS_PWRSELECT = 0; always@(USB0_VBUS_PWRFAULT) begin if(USB0_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end assign USB1_PORT_INDCTL = 0; assign USB1_VBUS_PWRSELECT = 0; always@(USB1_VBUS_PWRFAULT) begin if(USB1_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end always@(SRAM_INTIN) begin if(SRAM_INTIN) $display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DMA */ /* ------------------------------------------- */ assign DMA0_DATYPE = 0; assign DMA0_DAVALID = 0; assign DMA0_DRREADY = 0; assign DMA0_RSTN = 0; always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE) begin if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA1_DATYPE = 0; assign DMA1_DAVALID = 0; assign DMA1_DRREADY = 0; assign DMA1_RSTN = 0; always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE) begin if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA2_DATYPE = 0; assign DMA2_DAVALID = 0; assign DMA2_DRREADY = 0; assign DMA2_RSTN = 0; always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE) begin if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA3_DATYPE = 0; assign DMA3_DAVALID = 0; assign DMA3_DRREADY = 0; assign DMA3_RSTN = 0; always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE) begin if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FTM */ /* ------------------------------------------- */ assign FTMT_F2P_TRIGACK = 0; assign FTMT_P2F_TRIG = 0; assign FTMT_P2F_DEBUG = 0; always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK) begin if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK) $display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* EVENT */ /* ------------------------------------------- */ assign EVENT_EVENTO = 0; assign EVENT_STANDBYWFE = 0; assign EVENT_STANDBYWFI = 0; always@(EVENT_EVENTI) begin if(EVENT_EVENTI) $display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MIO */ /* ------------------------------------------- */ always@(MIO) begin if(MIO !== 0) $display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FCLK_TRIG */ /* ------------------------------------------- */ always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N ) begin if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N ) $display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MISC */ /* ------------------------------------------- */ always@(FPGA_IDLE_N) begin if(FPGA_IDLE_N) $display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR); end always@(DDR_ARB) begin if(DDR_ARB !== 0) $display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR); end always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ ) begin if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ) $display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DDR */ /* ------------------------------------------- */ assign DDR_WEB = 0; always@(DDR_Clk or DDR_CS_n) begin if(!DDR_CS_n) $display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* IRQ_P2F */ /* ------------------------------------------- */ assign IRQ_P2F_DMAC_ABORT = 0; assign IRQ_P2F_DMAC0 = 0; assign IRQ_P2F_DMAC1 = 0; assign IRQ_P2F_DMAC2 = 0; assign IRQ_P2F_DMAC3 = 0; assign IRQ_P2F_DMAC4 = 0; assign IRQ_P2F_DMAC5 = 0; assign IRQ_P2F_DMAC6 = 0; assign IRQ_P2F_DMAC7 = 0; assign IRQ_P2F_SMC = 0; assign IRQ_P2F_QSPI = 0; assign IRQ_P2F_CTI = 0; assign IRQ_P2F_GPIO = 0; assign IRQ_P2F_USB0 = 0; assign IRQ_P2F_ENET0 = 0; assign IRQ_P2F_ENET_WAKE0 = 0; assign IRQ_P2F_SDIO0 = 0; assign IRQ_P2F_I2C0 = 0; assign IRQ_P2F_SPI0 = 0; assign IRQ_P2F_UART0 = 0; assign IRQ_P2F_CAN0 = 0; assign IRQ_P2F_USB1 = 0; assign IRQ_P2F_ENET1 = 0; assign IRQ_P2F_ENET_WAKE1 = 0; assign IRQ_P2F_SDIO1 = 0; assign IRQ_P2F_I2C1 = 0; assign IRQ_P2F_SPI1 = 0; assign IRQ_P2F_UART1 = 0; assign IRQ_P2F_CAN1 = 0;
/***************************************************************************** * File : processing_system7_bfm_v2_0_5_unused_ports.v * * Date : 2012-11 * * Description : Semantic checks for unused ports. * *****************************************************************************/ /* CAN */ assign CAN0_PHY_TX = 0; assign CAN1_PHY_TX = 0; always @(CAN0_PHY_RX or CAN1_PHY_RX) begin if(CAN0_PHY_RX | CAN1_PHY_RX) $display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* ETHERNET */ /* ------------------------------------------- */ assign ENET0_GMII_TX_EN = 0; assign ENET0_GMII_TX_ER = 0; assign ENET0_MDIO_MDC = 0; assign ENET0_MDIO_O = 0; /// confirm assign ENET0_MDIO_T = 0; assign ENET0_PTP_DELAY_REQ_RX = 0; assign ENET0_PTP_DELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_REQ_RX = 0; assign ENET0_PTP_PDELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_RESP_RX = 0; assign ENET0_PTP_PDELAY_RESP_TX = 0; assign ENET0_PTP_SYNC_FRAME_RX = 0; assign ENET0_PTP_SYNC_FRAME_TX = 0; assign ENET0_SOF_RX = 0; assign ENET0_SOF_TX = 0; assign ENET0_GMII_TXD = 0; always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD) begin if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN | ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER | ENET0_GMII_TX_CLK | ENET0_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end assign ENET1_GMII_TX_EN = 0; assign ENET1_GMII_TX_ER = 0; assign ENET1_MDIO_MDC = 0; assign ENET1_MDIO_O = 0;/// confirm assign ENET1_MDIO_T = 0; assign ENET1_PTP_DELAY_REQ_RX = 0; assign ENET1_PTP_DELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_REQ_RX = 0; assign ENET1_PTP_PDELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_RESP_RX = 0; assign ENET1_PTP_PDELAY_RESP_TX = 0; assign ENET1_PTP_SYNC_FRAME_RX = 0; assign ENET1_PTP_SYNC_FRAME_TX = 0; assign ENET1_SOF_RX = 0; assign ENET1_SOF_TX = 0; assign ENET1_GMII_TXD = 0; always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD) begin if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN | ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER | ENET1_GMII_TX_CLK | ENET1_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* GPIO */ /* ------------------------------------------- */ assign GPIO_O = 0; assign GPIO_T = 0; always@(GPIO_I) begin if(GPIO_I !== 0) $display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* I2C */ /* ------------------------------------------- */ assign I2C0_SDA_O = 0; assign I2C0_SDA_T = 0; assign I2C0_SCL_O = 0; assign I2C0_SCL_T = 0; assign I2C1_SDA_O = 0; assign I2C1_SDA_T = 0; assign I2C1_SCL_O = 0; assign I2C1_SCL_T = 0; always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I ) begin if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I) $display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* JTAG */ /* ------------------------------------------- */ assign PJTAG_TD_T = 0; assign PJTAG_TD_O = 0; always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I) begin if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I) $display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SDIO */ /* ------------------------------------------- */ assign SDIO0_CLK = 0; assign SDIO0_CMD_O = 0; assign SDIO0_CMD_T = 0; assign SDIO0_DATA_O = 0; assign SDIO0_DATA_T = 0; assign SDIO0_LED = 0; assign SDIO0_BUSPOW = 0; assign SDIO0_BUSVOLT = 0; always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP ) begin if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end assign SDIO1_CLK = 0; assign SDIO1_CMD_O = 0; assign SDIO1_CMD_T = 0; assign SDIO1_DATA_O = 0; assign SDIO1_DATA_T = 0; assign SDIO1_LED = 0; assign SDIO1_BUSPOW = 0; assign SDIO1_BUSVOLT = 0; always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP ) begin if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SPI */ /* ------------------------------------------- */ assign SPI0_SCLK_O = 0; assign SPI0_SCLK_T = 0; assign SPI0_MOSI_O = 0; assign SPI0_MOSI_T = 0; assign SPI0_MISO_O = 0; assign SPI0_MISO_T = 0; assign SPI0_SS_O = 0; /// confirm assign SPI0_SS1_O = 0;/// confirm assign SPI0_SS2_O = 0;/// confirm assign SPI0_SS_T = 0; always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I) begin if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end assign SPI1_SCLK_O = 0; assign SPI1_SCLK_T = 0; assign SPI1_MOSI_O = 0; assign SPI1_MOSI_T = 0; assign SPI1_MISO_O = 0; assign SPI1_MISO_T = 0; assign SPI1_SS_O = 0; assign SPI1_SS1_O = 0; assign SPI1_SS2_O = 0; assign SPI1_SS_T = 0; always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I) begin if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* UART */ /* ------------------------------------------- */ /// confirm assign UART0_DTRN = 0; assign UART0_RTSN = 0; assign UART0_TX = 0; always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX) begin if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end assign UART1_DTRN = 0; assign UART1_RTSN = 0; assign UART1_TX = 0; always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX) begin if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TTC */ /* ------------------------------------------- */ assign TTC0_WAVE0_OUT = 0; assign TTC0_WAVE1_OUT = 0; assign TTC0_WAVE2_OUT = 0; always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN) begin if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end assign TTC1_WAVE0_OUT = 0; assign TTC1_WAVE1_OUT = 0; assign TTC1_WAVE2_OUT = 0; always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN) begin if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* WDT */ /* ------------------------------------------- */ assign WDT_RST_OUT = 0; always@(WDT_CLK_IN) begin if(WDT_CLK_IN) $display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TRACE */ /* ------------------------------------------- */ assign TRACE_CTL = 0; assign TRACE_DATA = 0; always@(TRACE_CLK) begin if(TRACE_CLK) $display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* USB */ /* ------------------------------------------- */ assign USB0_PORT_INDCTL = 0; assign USB0_VBUS_PWRSELECT = 0; always@(USB0_VBUS_PWRFAULT) begin if(USB0_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end assign USB1_PORT_INDCTL = 0; assign USB1_VBUS_PWRSELECT = 0; always@(USB1_VBUS_PWRFAULT) begin if(USB1_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end always@(SRAM_INTIN) begin if(SRAM_INTIN) $display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DMA */ /* ------------------------------------------- */ assign DMA0_DATYPE = 0; assign DMA0_DAVALID = 0; assign DMA0_DRREADY = 0; assign DMA0_RSTN = 0; always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE) begin if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA1_DATYPE = 0; assign DMA1_DAVALID = 0; assign DMA1_DRREADY = 0; assign DMA1_RSTN = 0; always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE) begin if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA2_DATYPE = 0; assign DMA2_DAVALID = 0; assign DMA2_DRREADY = 0; assign DMA2_RSTN = 0; always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE) begin if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA3_DATYPE = 0; assign DMA3_DAVALID = 0; assign DMA3_DRREADY = 0; assign DMA3_RSTN = 0; always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE) begin if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FTM */ /* ------------------------------------------- */ assign FTMT_F2P_TRIGACK = 0; assign FTMT_P2F_TRIG = 0; assign FTMT_P2F_DEBUG = 0; always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK) begin if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK) $display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* EVENT */ /* ------------------------------------------- */ assign EVENT_EVENTO = 0; assign EVENT_STANDBYWFE = 0; assign EVENT_STANDBYWFI = 0; always@(EVENT_EVENTI) begin if(EVENT_EVENTI) $display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MIO */ /* ------------------------------------------- */ always@(MIO) begin if(MIO !== 0) $display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FCLK_TRIG */ /* ------------------------------------------- */ always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N ) begin if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N ) $display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MISC */ /* ------------------------------------------- */ always@(FPGA_IDLE_N) begin if(FPGA_IDLE_N) $display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR); end always@(DDR_ARB) begin if(DDR_ARB !== 0) $display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR); end always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ ) begin if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ) $display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DDR */ /* ------------------------------------------- */ assign DDR_WEB = 0; always@(DDR_Clk or DDR_CS_n) begin if(!DDR_CS_n) $display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* IRQ_P2F */ /* ------------------------------------------- */ assign IRQ_P2F_DMAC_ABORT = 0; assign IRQ_P2F_DMAC0 = 0; assign IRQ_P2F_DMAC1 = 0; assign IRQ_P2F_DMAC2 = 0; assign IRQ_P2F_DMAC3 = 0; assign IRQ_P2F_DMAC4 = 0; assign IRQ_P2F_DMAC5 = 0; assign IRQ_P2F_DMAC6 = 0; assign IRQ_P2F_DMAC7 = 0; assign IRQ_P2F_SMC = 0; assign IRQ_P2F_QSPI = 0; assign IRQ_P2F_CTI = 0; assign IRQ_P2F_GPIO = 0; assign IRQ_P2F_USB0 = 0; assign IRQ_P2F_ENET0 = 0; assign IRQ_P2F_ENET_WAKE0 = 0; assign IRQ_P2F_SDIO0 = 0; assign IRQ_P2F_I2C0 = 0; assign IRQ_P2F_SPI0 = 0; assign IRQ_P2F_UART0 = 0; assign IRQ_P2F_CAN0 = 0; assign IRQ_P2F_USB1 = 0; assign IRQ_P2F_ENET1 = 0; assign IRQ_P2F_ENET_WAKE1 = 0; assign IRQ_P2F_SDIO1 = 0; assign IRQ_P2F_I2C1 = 0; assign IRQ_P2F_SPI1 = 0; assign IRQ_P2F_UART1 = 0; assign IRQ_P2F_CAN1 = 0;
/***************************************************************************** * File : processing_system7_bfm_v2_0_5_unused_ports.v * * Date : 2012-11 * * Description : Semantic checks for unused ports. * *****************************************************************************/ /* CAN */ assign CAN0_PHY_TX = 0; assign CAN1_PHY_TX = 0; always @(CAN0_PHY_RX or CAN1_PHY_RX) begin if(CAN0_PHY_RX | CAN1_PHY_RX) $display("[%0d] : %0s : CAN Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* ETHERNET */ /* ------------------------------------------- */ assign ENET0_GMII_TX_EN = 0; assign ENET0_GMII_TX_ER = 0; assign ENET0_MDIO_MDC = 0; assign ENET0_MDIO_O = 0; /// confirm assign ENET0_MDIO_T = 0; assign ENET0_PTP_DELAY_REQ_RX = 0; assign ENET0_PTP_DELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_REQ_RX = 0; assign ENET0_PTP_PDELAY_REQ_TX = 0; assign ENET0_PTP_PDELAY_RESP_RX = 0; assign ENET0_PTP_PDELAY_RESP_TX = 0; assign ENET0_PTP_SYNC_FRAME_RX = 0; assign ENET0_PTP_SYNC_FRAME_TX = 0; assign ENET0_SOF_RX = 0; assign ENET0_SOF_TX = 0; assign ENET0_GMII_TXD = 0; always@(ENET0_GMII_COL or ENET0_GMII_CRS or ENET0_EXT_INTIN or ENET0_GMII_RX_CLK or ENET0_GMII_RX_DV or ENET0_GMII_RX_ER or ENET0_GMII_TX_CLK or ENET0_MDIO_I or ENET0_GMII_RXD) begin if(ENET0_GMII_COL | ENET0_GMII_CRS | ENET0_EXT_INTIN | ENET0_GMII_RX_CLK | ENET0_GMII_RX_DV | ENET0_GMII_RX_ER | ENET0_GMII_TX_CLK | ENET0_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end assign ENET1_GMII_TX_EN = 0; assign ENET1_GMII_TX_ER = 0; assign ENET1_MDIO_MDC = 0; assign ENET1_MDIO_O = 0;/// confirm assign ENET1_MDIO_T = 0; assign ENET1_PTP_DELAY_REQ_RX = 0; assign ENET1_PTP_DELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_REQ_RX = 0; assign ENET1_PTP_PDELAY_REQ_TX = 0; assign ENET1_PTP_PDELAY_RESP_RX = 0; assign ENET1_PTP_PDELAY_RESP_TX = 0; assign ENET1_PTP_SYNC_FRAME_RX = 0; assign ENET1_PTP_SYNC_FRAME_TX = 0; assign ENET1_SOF_RX = 0; assign ENET1_SOF_TX = 0; assign ENET1_GMII_TXD = 0; always@(ENET1_GMII_COL or ENET1_GMII_CRS or ENET1_EXT_INTIN or ENET1_GMII_RX_CLK or ENET1_GMII_RX_DV or ENET1_GMII_RX_ER or ENET1_GMII_TX_CLK or ENET1_MDIO_I or ENET1_GMII_RXD) begin if(ENET1_GMII_COL | ENET1_GMII_CRS | ENET1_EXT_INTIN | ENET1_GMII_RX_CLK | ENET1_GMII_RX_DV | ENET1_GMII_RX_ER | ENET1_GMII_TX_CLK | ENET1_MDIO_I ) $display("[%0d] : %0s : ETHERNET Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* GPIO */ /* ------------------------------------------- */ assign GPIO_O = 0; assign GPIO_T = 0; always@(GPIO_I) begin if(GPIO_I !== 0) $display("[%0d] : %0s : GPIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* I2C */ /* ------------------------------------------- */ assign I2C0_SDA_O = 0; assign I2C0_SDA_T = 0; assign I2C0_SCL_O = 0; assign I2C0_SCL_T = 0; assign I2C1_SDA_O = 0; assign I2C1_SDA_T = 0; assign I2C1_SCL_O = 0; assign I2C1_SCL_T = 0; always@(I2C0_SDA_I or I2C0_SCL_I or I2C1_SDA_I or I2C1_SCL_I ) begin if(I2C0_SDA_I | I2C0_SCL_I | I2C1_SDA_I | I2C1_SCL_I) $display("[%0d] : %0s : I2C Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* JTAG */ /* ------------------------------------------- */ assign PJTAG_TD_T = 0; assign PJTAG_TD_O = 0; always@(PJTAG_TCK or PJTAG_TMS or PJTAG_TD_I) begin if(PJTAG_TCK | PJTAG_TMS | PJTAG_TD_I) $display("[%0d] : %0s : JTAG Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SDIO */ /* ------------------------------------------- */ assign SDIO0_CLK = 0; assign SDIO0_CMD_O = 0; assign SDIO0_CMD_T = 0; assign SDIO0_DATA_O = 0; assign SDIO0_DATA_T = 0; assign SDIO0_LED = 0; assign SDIO0_BUSPOW = 0; assign SDIO0_BUSVOLT = 0; always@(SDIO0_CLK_FB or SDIO0_CMD_I or SDIO0_DATA_I or SDIO0_CDN or SDIO0_WP ) begin if(SDIO0_CLK_FB | SDIO0_CMD_I | SDIO0_CDN | SDIO0_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end assign SDIO1_CLK = 0; assign SDIO1_CMD_O = 0; assign SDIO1_CMD_T = 0; assign SDIO1_DATA_O = 0; assign SDIO1_DATA_T = 0; assign SDIO1_LED = 0; assign SDIO1_BUSPOW = 0; assign SDIO1_BUSVOLT = 0; always@(SDIO1_CLK_FB or SDIO1_CMD_I or SDIO1_DATA_I or SDIO1_CDN or SDIO1_WP ) begin if(SDIO1_CLK_FB | SDIO1_CMD_I | SDIO1_CDN | SDIO1_WP ) $display("[%0d] : %0s : SDIO Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* SPI */ /* ------------------------------------------- */ assign SPI0_SCLK_O = 0; assign SPI0_SCLK_T = 0; assign SPI0_MOSI_O = 0; assign SPI0_MOSI_T = 0; assign SPI0_MISO_O = 0; assign SPI0_MISO_T = 0; assign SPI0_SS_O = 0; /// confirm assign SPI0_SS1_O = 0;/// confirm assign SPI0_SS2_O = 0;/// confirm assign SPI0_SS_T = 0; always@(SPI0_SCLK_I or SPI0_MOSI_I or SPI0_MISO_I or SPI0_SS_I) begin if(SPI0_SCLK_I | SPI0_MOSI_I | SPI0_MISO_I | SPI0_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end assign SPI1_SCLK_O = 0; assign SPI1_SCLK_T = 0; assign SPI1_MOSI_O = 0; assign SPI1_MOSI_T = 0; assign SPI1_MISO_O = 0; assign SPI1_MISO_T = 0; assign SPI1_SS_O = 0; assign SPI1_SS1_O = 0; assign SPI1_SS2_O = 0; assign SPI1_SS_T = 0; always@(SPI1_SCLK_I or SPI1_MOSI_I or SPI1_MISO_I or SPI1_SS_I) begin if(SPI1_SCLK_I | SPI1_MOSI_I | SPI1_MISO_I | SPI1_SS_I) $display("[%0d] : %0s : SPI Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* UART */ /* ------------------------------------------- */ /// confirm assign UART0_DTRN = 0; assign UART0_RTSN = 0; assign UART0_TX = 0; always@(UART0_CTSN or UART0_DCDN or UART0_DSRN or UART0_RIN or UART0_RX) begin if(UART0_CTSN | UART0_DCDN | UART0_DSRN | UART0_RIN | UART0_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end assign UART1_DTRN = 0; assign UART1_RTSN = 0; assign UART1_TX = 0; always@(UART1_CTSN or UART1_DCDN or UART1_DSRN or UART1_RIN or UART1_RX) begin if(UART1_CTSN | UART1_DCDN | UART1_DSRN | UART1_RIN | UART1_RX) $display("[%0d] : %0s : UART Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TTC */ /* ------------------------------------------- */ assign TTC0_WAVE0_OUT = 0; assign TTC0_WAVE1_OUT = 0; assign TTC0_WAVE2_OUT = 0; always@(TTC0_CLK0_IN or TTC0_CLK1_IN or TTC0_CLK2_IN) begin if(TTC0_CLK0_IN | TTC0_CLK1_IN | TTC0_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end assign TTC1_WAVE0_OUT = 0; assign TTC1_WAVE1_OUT = 0; assign TTC1_WAVE2_OUT = 0; always@(TTC1_CLK0_IN or TTC1_CLK1_IN or TTC1_CLK2_IN) begin if(TTC1_CLK0_IN | TTC1_CLK1_IN | TTC1_CLK2_IN) $display("[%0d] : %0s : TTC Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* WDT */ /* ------------------------------------------- */ assign WDT_RST_OUT = 0; always@(WDT_CLK_IN) begin if(WDT_CLK_IN) $display("[%0d] : %0s : WDT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* TRACE */ /* ------------------------------------------- */ assign TRACE_CTL = 0; assign TRACE_DATA = 0; always@(TRACE_CLK) begin if(TRACE_CLK) $display("[%0d] : %0s : TRACE Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* USB */ /* ------------------------------------------- */ assign USB0_PORT_INDCTL = 0; assign USB0_VBUS_PWRSELECT = 0; always@(USB0_VBUS_PWRFAULT) begin if(USB0_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end assign USB1_PORT_INDCTL = 0; assign USB1_VBUS_PWRSELECT = 0; always@(USB1_VBUS_PWRFAULT) begin if(USB1_VBUS_PWRFAULT) $display("[%0d] : %0s : USB Interface is not supported.",$time, DISP_ERR); end always@(SRAM_INTIN) begin if(SRAM_INTIN) $display("[%0d] : %0s : SRAM_INTIN is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DMA */ /* ------------------------------------------- */ assign DMA0_DATYPE = 0; assign DMA0_DAVALID = 0; assign DMA0_DRREADY = 0; assign DMA0_RSTN = 0; always@(DMA0_ACLK or DMA0_DAREADY or DMA0_DRLAST or DMA0_DRVALID or DMA0_DRTYPE) begin if(DMA0_ACLK | DMA0_DAREADY | DMA0_DRLAST | DMA0_DRVALID | DMA0_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA1_DATYPE = 0; assign DMA1_DAVALID = 0; assign DMA1_DRREADY = 0; assign DMA1_RSTN = 0; always@(DMA1_ACLK or DMA1_DAREADY or DMA1_DRLAST or DMA1_DRVALID or DMA1_DRTYPE) begin if(DMA1_ACLK | DMA1_DAREADY | DMA1_DRLAST | DMA1_DRVALID | DMA1_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA2_DATYPE = 0; assign DMA2_DAVALID = 0; assign DMA2_DRREADY = 0; assign DMA2_RSTN = 0; always@(DMA2_ACLK or DMA2_DAREADY or DMA2_DRLAST or DMA2_DRVALID or DMA2_DRTYPE) begin if(DMA2_ACLK | DMA2_DAREADY | DMA2_DRLAST | DMA2_DRVALID | DMA2_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end assign DMA3_DATYPE = 0; assign DMA3_DAVALID = 0; assign DMA3_DRREADY = 0; assign DMA3_RSTN = 0; always@(DMA3_ACLK or DMA3_DAREADY or DMA3_DRLAST or DMA3_DRVALID or DMA3_DRTYPE) begin if(DMA3_ACLK | DMA3_DAREADY | DMA3_DRLAST | DMA3_DRVALID | DMA3_DRTYPE) $display("[%0d] : %0s : DMA Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FTM */ /* ------------------------------------------- */ assign FTMT_F2P_TRIGACK = 0; assign FTMT_P2F_TRIG = 0; assign FTMT_P2F_DEBUG = 0; always@(FTMD_TRACEIN_DATA or FTMD_TRACEIN_VALID or FTMD_TRACEIN_CLK or FTMD_TRACEIN_ATID or FTMT_F2P_TRIG or FTMT_F2P_DEBUG or FTMT_P2F_TRIGACK) begin if(FTMD_TRACEIN_DATA | FTMD_TRACEIN_VALID | FTMD_TRACEIN_CLK | FTMD_TRACEIN_ATID | FTMT_F2P_TRIG | FTMT_F2P_DEBUG | FTMT_P2F_TRIGACK) $display("[%0d] : %0s : FTM Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* EVENT */ /* ------------------------------------------- */ assign EVENT_EVENTO = 0; assign EVENT_STANDBYWFE = 0; assign EVENT_STANDBYWFI = 0; always@(EVENT_EVENTI) begin if(EVENT_EVENTI) $display("[%0d] : %0s : EVENT Interface is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MIO */ /* ------------------------------------------- */ always@(MIO) begin if(MIO !== 0) $display("[%0d] : %0s : MIO is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* FCLK_TRIG */ /* ------------------------------------------- */ always@(FCLK_CLKTRIG3_N or FCLK_CLKTRIG2_N or FCLK_CLKTRIG1_N or FCLK_CLKTRIG0_N ) begin if(FCLK_CLKTRIG3_N | FCLK_CLKTRIG2_N | FCLK_CLKTRIG1_N | FCLK_CLKTRIG0_N ) $display("[%0d] : %0s : FCLK_TRIG is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* MISC */ /* ------------------------------------------- */ always@(FPGA_IDLE_N) begin if(FPGA_IDLE_N) $display("[%0d] : %0s : FPGA_IDLE_N is not supported.",$time, DISP_ERR); end always@(DDR_ARB) begin if(DDR_ARB !== 0) $display("[%0d] : %0s : DDR_ARB is not supported.",$time, DISP_ERR); end always@(Core0_nFIQ or Core0_nIRQ or Core1_nFIQ or Core1_nIRQ ) begin if(Core0_nFIQ | Core0_nIRQ | Core1_nFIQ | Core1_nIRQ) $display("[%0d] : %0s : CORE FIQ,IRQ is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* DDR */ /* ------------------------------------------- */ assign DDR_WEB = 0; always@(DDR_Clk or DDR_CS_n) begin if(!DDR_CS_n) $display("[%0d] : %0s : EXTERNAL DDR is not supported.",$time, DISP_ERR); end /* ------------------------------------------- */ /* IRQ_P2F */ /* ------------------------------------------- */ assign IRQ_P2F_DMAC_ABORT = 0; assign IRQ_P2F_DMAC0 = 0; assign IRQ_P2F_DMAC1 = 0; assign IRQ_P2F_DMAC2 = 0; assign IRQ_P2F_DMAC3 = 0; assign IRQ_P2F_DMAC4 = 0; assign IRQ_P2F_DMAC5 = 0; assign IRQ_P2F_DMAC6 = 0; assign IRQ_P2F_DMAC7 = 0; assign IRQ_P2F_SMC = 0; assign IRQ_P2F_QSPI = 0; assign IRQ_P2F_CTI = 0; assign IRQ_P2F_GPIO = 0; assign IRQ_P2F_USB0 = 0; assign IRQ_P2F_ENET0 = 0; assign IRQ_P2F_ENET_WAKE0 = 0; assign IRQ_P2F_SDIO0 = 0; assign IRQ_P2F_I2C0 = 0; assign IRQ_P2F_SPI0 = 0; assign IRQ_P2F_UART0 = 0; assign IRQ_P2F_CAN0 = 0; assign IRQ_P2F_USB1 = 0; assign IRQ_P2F_ENET1 = 0; assign IRQ_P2F_ENET_WAKE1 = 0; assign IRQ_P2F_SDIO1 = 0; assign IRQ_P2F_I2C1 = 0; assign IRQ_P2F_SPI1 = 0; assign IRQ_P2F_UART1 = 0; assign IRQ_P2F_CAN1 = 0;
// -- (c) Copyright 2010 - 2012 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // AXI data fifo module: // 5-channel memory-mapped AXI4 interfaces. // SRL or BRAM based FIFO on AXI W and/or R channels. // FIFO to accommodate various data flow rates through the AXI interconnect // // Verilog-standard: Verilog 2001 //----------------------------------------------------------------------------- // // Structure: // axi_data_fifo // fifo_generator // //----------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module axi_data_fifo_v2_1_axi_data_fifo # ( parameter C_FAMILY = "virtex7", parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_WRITE_FIFO_DEPTH = 0, // Range: (0, 32, 512) parameter C_AXI_WRITE_FIFO_TYPE = "lut", // "lut" = LUT (SRL) based, // "bram" = BRAM based parameter integer C_AXI_WRITE_FIFO_DELAY = 0, // 0 = No, 1 = Yes // Indicates whether AWVALID and WVALID assertion is delayed until: // a. the corresponding WLAST is stored in the FIFO, or // b. no WLAST is stored and the FIFO is full. // 0 means AW channel is pass-through and // WVALID is asserted whenever FIFO is not empty. parameter integer C_AXI_READ_FIFO_DEPTH = 0, // Range: (0, 32, 512) parameter C_AXI_READ_FIFO_TYPE = "lut", // "lut" = LUT (SRL) based, // "bram" = BRAM based parameter integer C_AXI_READ_FIFO_DELAY = 0) // 0 = No, 1 = Yes // Indicates whether ARVALID assertion is delayed until the // the remaining vacancy of the FIFO is at least the burst length // as indicated by ARLEN. // 0 means AR channel is pass-through. // System Signals (input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready); localparam integer P_WIDTH_RACH = 4+4+3+4+2+3+((C_AXI_PROTOCOL==1)?6:9)+C_AXI_ADDR_WIDTH+C_AXI_ID_WIDTH+C_AXI_ARUSER_WIDTH; localparam integer P_WIDTH_WACH = 4+4+3+4+2+3+((C_AXI_PROTOCOL==1)?6:9)+C_AXI_ADDR_WIDTH+C_AXI_ID_WIDTH+C_AXI_AWUSER_WIDTH; localparam integer P_WIDTH_RDCH = 1 + 2 + C_AXI_DATA_WIDTH + C_AXI_ID_WIDTH + C_AXI_RUSER_WIDTH; localparam integer P_WIDTH_WDCH = 1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8+((C_AXI_PROTOCOL==1)?C_AXI_ID_WIDTH:0)+C_AXI_WUSER_WIDTH; localparam integer P_WIDTH_WRCH = 2 + C_AXI_ID_WIDTH + C_AXI_BUSER_WIDTH; localparam P_PRIM_FIFO_TYPE = "512x72" ; localparam integer P_AXI4 = 0; localparam integer P_AXI3 = 1; localparam integer P_AXILITE = 2; localparam integer P_WRITE_FIFO_DEPTH_LOG = (C_AXI_WRITE_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_WRITE_FIFO_DEPTH) : 1; localparam integer P_READ_FIFO_DEPTH_LOG = (C_AXI_READ_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_READ_FIFO_DEPTH) : 1; // Ceiling of log2(x) function integer f_ceil_log2 ( input integer x ); integer acc; begin acc=0; while ((2**acc) < x) acc = acc + 1; f_ceil_log2 = acc; end endfunction generate if (((C_AXI_WRITE_FIFO_DEPTH == 0) && (C_AXI_READ_FIFO_DEPTH == 0)) || (C_AXI_PROTOCOL == P_AXILITE)) begin : gen_bypass assign m_axi_awid = s_axi_awid; assign m_axi_awaddr = s_axi_awaddr; assign m_axi_awlen = s_axi_awlen; assign m_axi_awsize = s_axi_awsize; assign m_axi_awburst = s_axi_awburst; assign m_axi_awlock = s_axi_awlock; assign m_axi_awcache = s_axi_awcache; assign m_axi_awprot = s_axi_awprot; assign m_axi_awregion = s_axi_awregion; assign m_axi_awqos = s_axi_awqos; assign m_axi_awuser = s_axi_awuser; assign m_axi_awvalid = s_axi_awvalid; assign s_axi_awready = m_axi_awready; assign m_axi_wid = s_axi_wid; assign m_axi_wdata = s_axi_wdata; assign m_axi_wstrb = s_axi_wstrb; assign m_axi_wlast = s_axi_wlast; assign m_axi_wuser = s_axi_wuser; assign m_axi_wvalid = s_axi_wvalid; assign s_axi_wready = m_axi_wready; assign s_axi_bid = m_axi_bid; assign s_axi_bresp = m_axi_bresp; assign s_axi_buser = m_axi_buser; assign s_axi_bvalid = m_axi_bvalid; assign m_axi_bready = s_axi_bready; assign m_axi_arid = s_axi_arid; assign m_axi_araddr = s_axi_araddr; assign m_axi_arlen = s_axi_arlen; assign m_axi_arsize = s_axi_arsize; assign m_axi_arburst = s_axi_arburst; assign m_axi_arlock = s_axi_arlock; assign m_axi_arcache = s_axi_arcache; assign m_axi_arprot = s_axi_arprot; assign m_axi_arregion = s_axi_arregion; assign m_axi_arqos = s_axi_arqos; assign m_axi_aruser = s_axi_aruser; assign m_axi_arvalid = s_axi_arvalid; assign s_axi_arready = m_axi_arready; assign s_axi_rid = m_axi_rid; assign s_axi_rdata = m_axi_rdata; assign s_axi_rresp = m_axi_rresp; assign s_axi_rlast = m_axi_rlast; assign s_axi_ruser = m_axi_ruser; assign s_axi_rvalid = m_axi_rvalid; assign m_axi_rready = s_axi_rready; end else begin : gen_fifo wire [4-1:0] s_axi_awregion_i; wire [4-1:0] s_axi_arregion_i; wire [4-1:0] m_axi_awregion_i; wire [4-1:0] m_axi_arregion_i; wire [C_AXI_ID_WIDTH-1:0] s_axi_wid_i; wire [C_AXI_ID_WIDTH-1:0] m_axi_wid_i; assign s_axi_awregion_i = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : s_axi_awregion; assign s_axi_arregion_i = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : s_axi_arregion; assign m_axi_awregion = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : m_axi_awregion_i; assign m_axi_arregion = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : m_axi_arregion_i; assign s_axi_wid_i = (C_AXI_PROTOCOL == P_AXI3) ? s_axi_wid : {C_AXI_ID_WIDTH{1'b0}}; assign m_axi_wid = (C_AXI_PROTOCOL == P_AXI3) ? m_axi_wid_i : {C_AXI_ID_WIDTH{1'b0}}; fifo_generator_v12_0 #( .C_INTERFACE_TYPE(2), .C_AXI_TYPE((C_AXI_PROTOCOL == P_AXI4) ? 1 : 3), .C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH), .C_AXI_ID_WIDTH(C_AXI_ID_WIDTH), .C_HAS_AXI_ID(1), .C_AXI_LEN_WIDTH((C_AXI_PROTOCOL == P_AXI4) ? 8 : 4), .C_AXI_LOCK_WIDTH((C_AXI_PROTOCOL == P_AXI4) ? 1 : 2), .C_HAS_AXI_ARUSER(1), .C_HAS_AXI_AWUSER(1), .C_HAS_AXI_BUSER(1), .C_HAS_AXI_RUSER(1), .C_HAS_AXI_WUSER(1), .C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH), .C_AXI_ARUSER_WIDTH(C_AXI_ARUSER_WIDTH), .C_AXI_AWUSER_WIDTH(C_AXI_AWUSER_WIDTH), .C_AXI_BUSER_WIDTH(C_AXI_BUSER_WIDTH), .C_AXI_RUSER_WIDTH(C_AXI_RUSER_WIDTH), .C_AXI_WUSER_WIDTH(C_AXI_WUSER_WIDTH), .C_DIN_WIDTH_RACH(P_WIDTH_RACH), .C_DIN_WIDTH_RDCH(P_WIDTH_RDCH), .C_DIN_WIDTH_WACH(P_WIDTH_WACH), .C_DIN_WIDTH_WDCH(P_WIDTH_WDCH), .C_DIN_WIDTH_WRCH(P_WIDTH_WDCH), .C_RACH_TYPE(((C_AXI_READ_FIFO_DEPTH != 0) && C_AXI_READ_FIFO_DELAY) ? 0 : 2), .C_WACH_TYPE(((C_AXI_WRITE_FIFO_DEPTH != 0) && C_AXI_WRITE_FIFO_DELAY) ? 0 : 2), .C_WDCH_TYPE((C_AXI_WRITE_FIFO_DEPTH != 0) ? 0 : 2), .C_RDCH_TYPE((C_AXI_READ_FIFO_DEPTH != 0) ? 0 : 2), .C_WRCH_TYPE(2), .C_COMMON_CLOCK(1), .C_ADD_NGC_CONSTRAINT(0), .C_APPLICATION_TYPE_AXIS(0), .C_APPLICATION_TYPE_RACH(C_AXI_READ_FIFO_DELAY ? 1 : 0), .C_APPLICATION_TYPE_RDCH(0), .C_APPLICATION_TYPE_WACH(C_AXI_WRITE_FIFO_DELAY ? 1 : 0), .C_APPLICATION_TYPE_WDCH(0), .C_APPLICATION_TYPE_WRCH(0), .C_AXIS_TDATA_WIDTH(64), .C_AXIS_TDEST_WIDTH(4), .C_AXIS_TID_WIDTH(8), .C_AXIS_TKEEP_WIDTH(4), .C_AXIS_TSTRB_WIDTH(4), .C_AXIS_TUSER_WIDTH(4), .C_AXIS_TYPE(0), .C_COUNT_TYPE(0), .C_DATA_COUNT_WIDTH(10), .C_DEFAULT_VALUE("BlankString"), .C_DIN_WIDTH(18), .C_DIN_WIDTH_AXIS(1), .C_DOUT_RST_VAL("0"), .C_DOUT_WIDTH(18), .C_ENABLE_RLOCS(0), .C_ENABLE_RST_SYNC(1), .C_ERROR_INJECTION_TYPE(0), .C_ERROR_INJECTION_TYPE_AXIS(0), .C_ERROR_INJECTION_TYPE_RACH(0), .C_ERROR_INJECTION_TYPE_RDCH(0), .C_ERROR_INJECTION_TYPE_WACH(0), .C_ERROR_INJECTION_TYPE_WDCH(0), .C_ERROR_INJECTION_TYPE_WRCH(0), .C_FAMILY(C_FAMILY), .C_FULL_FLAGS_RST_VAL(1), .C_HAS_ALMOST_EMPTY(0), .C_HAS_ALMOST_FULL(0), .C_HAS_AXI_RD_CHANNEL(1), .C_HAS_AXI_WR_CHANNEL(1), .C_HAS_AXIS_TDATA(0), .C_HAS_AXIS_TDEST(0), .C_HAS_AXIS_TID(0), .C_HAS_AXIS_TKEEP(0), .C_HAS_AXIS_TLAST(0), .C_HAS_AXIS_TREADY(1), .C_HAS_AXIS_TSTRB(0), .C_HAS_AXIS_TUSER(0), .C_HAS_BACKUP(0), .C_HAS_DATA_COUNT(0), .C_HAS_DATA_COUNTS_AXIS(0), .C_HAS_DATA_COUNTS_RACH(0), .C_HAS_DATA_COUNTS_RDCH(0), .C_HAS_DATA_COUNTS_WACH(0), .C_HAS_DATA_COUNTS_WDCH(0), .C_HAS_DATA_COUNTS_WRCH(0), .C_HAS_INT_CLK(0), .C_HAS_MASTER_CE(0), .C_HAS_MEMINIT_FILE(0), .C_HAS_OVERFLOW(0), .C_HAS_PROG_FLAGS_AXIS(0), .C_HAS_PROG_FLAGS_RACH(0), .C_HAS_PROG_FLAGS_RDCH(0), .C_HAS_PROG_FLAGS_WACH(0), .C_HAS_PROG_FLAGS_WDCH(0), .C_HAS_PROG_FLAGS_WRCH(0), .C_HAS_RD_DATA_COUNT(0), .C_HAS_RD_RST(0), .C_HAS_RST(1), .C_HAS_SLAVE_CE(0), .C_HAS_SRST(0), .C_HAS_UNDERFLOW(0), .C_HAS_VALID(0), .C_HAS_WR_ACK(0), .C_HAS_WR_DATA_COUNT(0), .C_HAS_WR_RST(0), .C_IMPLEMENTATION_TYPE(0), .C_IMPLEMENTATION_TYPE_AXIS(1), .C_IMPLEMENTATION_TYPE_RACH(2), .C_IMPLEMENTATION_TYPE_RDCH((C_AXI_READ_FIFO_TYPE == "bram") ? 1 : 2), .C_IMPLEMENTATION_TYPE_WACH(2), .C_IMPLEMENTATION_TYPE_WDCH((C_AXI_WRITE_FIFO_TYPE == "bram") ? 1 : 2), .C_IMPLEMENTATION_TYPE_WRCH(2), .C_INIT_WR_PNTR_VAL(0), .C_MEMORY_TYPE(1), .C_MIF_FILE_NAME("BlankString"), .C_MSGON_VAL(1), .C_OPTIMIZATION_MODE(0), .C_OVERFLOW_LOW(0), .C_PRELOAD_LATENCY(1), .C_PRELOAD_REGS(0), .C_PRIM_FIFO_TYPE(P_PRIM_FIFO_TYPE), .C_PROG_EMPTY_THRESH_ASSERT_VAL(2), .C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH(30), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH(510), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH(30), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH(510), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH(14), .C_PROG_EMPTY_THRESH_NEGATE_VAL(3), .C_PROG_EMPTY_TYPE(0), .C_PROG_EMPTY_TYPE_AXIS(5), .C_PROG_EMPTY_TYPE_RACH(5), .C_PROG_EMPTY_TYPE_RDCH(5), .C_PROG_EMPTY_TYPE_WACH(5), .C_PROG_EMPTY_TYPE_WDCH(5), .C_PROG_EMPTY_TYPE_WRCH(5), .C_PROG_FULL_THRESH_ASSERT_VAL(1022), .C_PROG_FULL_THRESH_ASSERT_VAL_AXIS(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RACH(31), .C_PROG_FULL_THRESH_ASSERT_VAL_RDCH(511), .C_PROG_FULL_THRESH_ASSERT_VAL_WACH(31), .C_PROG_FULL_THRESH_ASSERT_VAL_WDCH(511), .C_PROG_FULL_THRESH_ASSERT_VAL_WRCH(15), .C_PROG_FULL_THRESH_NEGATE_VAL(1021), .C_PROG_FULL_TYPE(0), .C_PROG_FULL_TYPE_AXIS(5), .C_PROG_FULL_TYPE_RACH(5), .C_PROG_FULL_TYPE_RDCH(5), .C_PROG_FULL_TYPE_WACH(5), .C_PROG_FULL_TYPE_WDCH(5), .C_PROG_FULL_TYPE_WRCH(5), .C_RD_DATA_COUNT_WIDTH(10), .C_RD_DEPTH(1024), .C_RD_FREQ(1), .C_RD_PNTR_WIDTH(10), .C_REG_SLICE_MODE_AXIS(0), .C_REG_SLICE_MODE_RACH(0), .C_REG_SLICE_MODE_RDCH(0), .C_REG_SLICE_MODE_WACH(0), .C_REG_SLICE_MODE_WDCH(0), .C_REG_SLICE_MODE_WRCH(0), .C_UNDERFLOW_LOW(0), .C_USE_COMMON_OVERFLOW(0), .C_USE_COMMON_UNDERFLOW(0), .C_USE_DEFAULT_SETTINGS(0), .C_USE_DOUT_RST(1), .C_USE_ECC(0), .C_USE_ECC_AXIS(0), .C_USE_ECC_RACH(0), .C_USE_ECC_RDCH(0), .C_USE_ECC_WACH(0), .C_USE_ECC_WDCH(0), .C_USE_ECC_WRCH(0), .C_USE_EMBEDDED_REG(0), .C_USE_FIFO16_FLAGS(0), .C_USE_FWFT_DATA_COUNT(0), .C_VALID_LOW(0), .C_WR_ACK_LOW(0), .C_WR_DATA_COUNT_WIDTH(10), .C_WR_DEPTH(1024), .C_WR_DEPTH_AXIS(1024), .C_WR_DEPTH_RACH(32), .C_WR_DEPTH_RDCH(C_AXI_READ_FIFO_DEPTH), .C_WR_DEPTH_WACH(32), .C_WR_DEPTH_WDCH(C_AXI_WRITE_FIFO_DEPTH), .C_WR_DEPTH_WRCH(16), .C_WR_FREQ(1), .C_WR_PNTR_WIDTH(10), .C_WR_PNTR_WIDTH_AXIS(10), .C_WR_PNTR_WIDTH_RACH(5), .C_WR_PNTR_WIDTH_RDCH((C_AXI_READ_FIFO_DEPTH> 1) ? f_ceil_log2(C_AXI_READ_FIFO_DEPTH) : 1), .C_WR_PNTR_WIDTH_WACH(5), .C_WR_PNTR_WIDTH_WDCH((C_AXI_WRITE_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_WRITE_FIFO_DEPTH) : 1), .C_WR_PNTR_WIDTH_WRCH(4), .C_WR_RESPONSE_LATENCY(1) ) fifo_gen_inst ( .s_aclk(aclk), .s_aresetn(aresetn), .s_axi_awid(s_axi_awid), .s_axi_awaddr(s_axi_awaddr), .s_axi_awlen(s_axi_awlen), .s_axi_awsize(s_axi_awsize), .s_axi_awburst(s_axi_awburst), .s_axi_awlock(s_axi_awlock), .s_axi_awcache(s_axi_awcache), .s_axi_awprot(s_axi_awprot), .s_axi_awqos(s_axi_awqos), .s_axi_awregion(s_axi_awregion_i), .s_axi_awuser(s_axi_awuser), .s_axi_awvalid(s_axi_awvalid), .s_axi_awready(s_axi_awready), .s_axi_wid(s_axi_wid_i), .s_axi_wdata(s_axi_wdata), .s_axi_wstrb(s_axi_wstrb), .s_axi_wlast(s_axi_wlast), .s_axi_wvalid(s_axi_wvalid), .s_axi_wready(s_axi_wready), .s_axi_bid(s_axi_bid), .s_axi_bresp(s_axi_bresp), .s_axi_bvalid(s_axi_bvalid), .s_axi_bready(s_axi_bready), .m_axi_awid(m_axi_awid), .m_axi_awaddr(m_axi_awaddr), .m_axi_awlen(m_axi_awlen), .m_axi_awsize(m_axi_awsize), .m_axi_awburst(m_axi_awburst), .m_axi_awlock(m_axi_awlock), .m_axi_awcache(m_axi_awcache), .m_axi_awprot(m_axi_awprot), .m_axi_awqos(m_axi_awqos), .m_axi_awregion(m_axi_awregion_i), .m_axi_awuser(m_axi_awuser), .m_axi_awvalid(m_axi_awvalid), .m_axi_awready(m_axi_awready), .m_axi_wid(m_axi_wid_i), .m_axi_wdata(m_axi_wdata), .m_axi_wstrb(m_axi_wstrb), .m_axi_wlast(m_axi_wlast), .m_axi_wvalid(m_axi_wvalid), .m_axi_wready(m_axi_wready), .m_axi_bid(m_axi_bid), .m_axi_bresp(m_axi_bresp), .m_axi_bvalid(m_axi_bvalid), .m_axi_bready(m_axi_bready), .s_axi_arid(s_axi_arid), .s_axi_araddr(s_axi_araddr), .s_axi_arlen(s_axi_arlen), .s_axi_arsize(s_axi_arsize), .s_axi_arburst(s_axi_arburst), .s_axi_arlock(s_axi_arlock), .s_axi_arcache(s_axi_arcache), .s_axi_arprot(s_axi_arprot), .s_axi_arqos(s_axi_arqos), .s_axi_arregion(s_axi_arregion_i), .s_axi_arvalid(s_axi_arvalid), .s_axi_arready(s_axi_arready), .s_axi_rid(s_axi_rid), .s_axi_rdata(s_axi_rdata), .s_axi_rresp(s_axi_rresp), .s_axi_rlast(s_axi_rlast), .s_axi_rvalid(s_axi_rvalid), .s_axi_rready(s_axi_rready), .m_axi_arid(m_axi_arid), .m_axi_araddr(m_axi_araddr), .m_axi_arlen(m_axi_arlen), .m_axi_arsize(m_axi_arsize), .m_axi_arburst(m_axi_arburst), .m_axi_arlock(m_axi_arlock), .m_axi_arcache(m_axi_arcache), .m_axi_arprot(m_axi_arprot), .m_axi_arqos(m_axi_arqos), .m_axi_arregion(m_axi_arregion_i), .m_axi_arvalid(m_axi_arvalid), .m_axi_arready(m_axi_arready), .m_axi_rid(m_axi_rid), .m_axi_rdata(m_axi_rdata), .m_axi_rresp(m_axi_rresp), .m_axi_rlast(m_axi_rlast), .m_axi_rvalid(m_axi_rvalid), .m_axi_rready(m_axi_rready), .m_aclk(aclk), .m_aclk_en(1'b1), .s_aclk_en(1'b1), .s_axi_wuser(s_axi_wuser), .s_axi_buser(s_axi_buser), .m_axi_wuser(m_axi_wuser), .m_axi_buser(m_axi_buser), .s_axi_aruser(s_axi_aruser), .s_axi_ruser(s_axi_ruser), .m_axi_aruser(m_axi_aruser), .m_axi_ruser(m_axi_ruser), .almost_empty(), .almost_full(), .axis_data_count(), .axis_dbiterr(), .axis_injectdbiterr(1'b0), .axis_injectsbiterr(1'b0), .axis_overflow(), .axis_prog_empty(), .axis_prog_empty_thresh(10'b0), .axis_prog_full(), .axis_prog_full_thresh(10'b0), .axis_rd_data_count(), .axis_sbiterr(), .axis_underflow(), .axis_wr_data_count(), .axi_ar_data_count(), .axi_ar_dbiterr(), .axi_ar_injectdbiterr(1'b0), .axi_ar_injectsbiterr(1'b0), .axi_ar_overflow(), .axi_ar_prog_empty(), .axi_ar_prog_empty_thresh(5'b0), .axi_ar_prog_full(), .axi_ar_prog_full_thresh(5'b0), .axi_ar_rd_data_count(), .axi_ar_sbiterr(), .axi_ar_underflow(), .axi_ar_wr_data_count(), .axi_aw_data_count(), .axi_aw_dbiterr(), .axi_aw_injectdbiterr(1'b0), .axi_aw_injectsbiterr(1'b0), .axi_aw_overflow(), .axi_aw_prog_empty(), .axi_aw_prog_empty_thresh(5'b0), .axi_aw_prog_full(), .axi_aw_prog_full_thresh(5'b0), .axi_aw_rd_data_count(), .axi_aw_sbiterr(), .axi_aw_underflow(), .axi_aw_wr_data_count(), .axi_b_data_count(), .axi_b_dbiterr(), .axi_b_injectdbiterr(1'b0), .axi_b_injectsbiterr(1'b0), .axi_b_overflow(), .axi_b_prog_empty(), .axi_b_prog_empty_thresh(4'b0), .axi_b_prog_full(), .axi_b_prog_full_thresh(4'b0), .axi_b_rd_data_count(), .axi_b_sbiterr(), .axi_b_underflow(), .axi_b_wr_data_count(), .axi_r_data_count(), .axi_r_dbiterr(), .axi_r_injectdbiterr(1'b0), .axi_r_injectsbiterr(1'b0), .axi_r_overflow(), .axi_r_prog_empty(), .axi_r_prog_empty_thresh({P_READ_FIFO_DEPTH_LOG{1'b0}}), .axi_r_prog_full(), .axi_r_prog_full_thresh({P_READ_FIFO_DEPTH_LOG{1'b0}}), .axi_r_rd_data_count(), .axi_r_sbiterr(), .axi_r_underflow(), .axi_r_wr_data_count(), .axi_w_data_count(), .axi_w_dbiterr(), .axi_w_injectdbiterr(1'b0), .axi_w_injectsbiterr(1'b0), .axi_w_overflow(), .axi_w_prog_empty(), .axi_w_prog_empty_thresh({P_WRITE_FIFO_DEPTH_LOG{1'b0}}), .axi_w_prog_full(), .axi_w_prog_full_thresh({P_WRITE_FIFO_DEPTH_LOG{1'b0}}), .axi_w_rd_data_count(), .axi_w_sbiterr(), .axi_w_underflow(), .axi_w_wr_data_count(), .backup(1'b0), .backup_marker(1'b0), .clk(1'b0), .data_count(), .dbiterr(), .din(18'b0), .dout(), .empty(), .full(), .injectdbiterr(1'b0), .injectsbiterr(1'b0), .int_clk(1'b0), .m_axis_tdata(), .m_axis_tdest(), .m_axis_tid(), .m_axis_tkeep(), .m_axis_tlast(), .m_axis_tready(1'b0), .m_axis_tstrb(), .m_axis_tuser(), .m_axis_tvalid(), .overflow(), .prog_empty(), .prog_empty_thresh(10'b0), .prog_empty_thresh_assert(10'b0), .prog_empty_thresh_negate(10'b0), .prog_full(), .prog_full_thresh(10'b0), .prog_full_thresh_assert(10'b0), .prog_full_thresh_negate(10'b0), .rd_clk(1'b0), .rd_data_count(), .rd_en(1'b0), .rd_rst(1'b0), .rst(1'b0), .sbiterr(), .srst(1'b0), .s_axis_tdata(64'b0), .s_axis_tdest(4'b0), .s_axis_tid(8'b0), .s_axis_tkeep(4'b0), .s_axis_tlast(1'b0), .s_axis_tready(), .s_axis_tstrb(4'b0), .s_axis_tuser(4'b0), .s_axis_tvalid(1'b0), .underflow(), .valid(), .wr_ack(), .wr_clk(1'b0), .wr_data_count(), .wr_en(1'b0), .wr_rst(1'b0), .wr_rst_busy(), .rd_rst_busy(), .sleep(1'b0) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2012 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // AXI data fifo module: // 5-channel memory-mapped AXI4 interfaces. // SRL or BRAM based FIFO on AXI W and/or R channels. // FIFO to accommodate various data flow rates through the AXI interconnect // // Verilog-standard: Verilog 2001 //----------------------------------------------------------------------------- // // Structure: // axi_data_fifo // fifo_generator // //----------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module axi_data_fifo_v2_1_axi_data_fifo # ( parameter C_FAMILY = "virtex7", parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_WRITE_FIFO_DEPTH = 0, // Range: (0, 32, 512) parameter C_AXI_WRITE_FIFO_TYPE = "lut", // "lut" = LUT (SRL) based, // "bram" = BRAM based parameter integer C_AXI_WRITE_FIFO_DELAY = 0, // 0 = No, 1 = Yes // Indicates whether AWVALID and WVALID assertion is delayed until: // a. the corresponding WLAST is stored in the FIFO, or // b. no WLAST is stored and the FIFO is full. // 0 means AW channel is pass-through and // WVALID is asserted whenever FIFO is not empty. parameter integer C_AXI_READ_FIFO_DEPTH = 0, // Range: (0, 32, 512) parameter C_AXI_READ_FIFO_TYPE = "lut", // "lut" = LUT (SRL) based, // "bram" = BRAM based parameter integer C_AXI_READ_FIFO_DELAY = 0) // 0 = No, 1 = Yes // Indicates whether ARVALID assertion is delayed until the // the remaining vacancy of the FIFO is at least the burst length // as indicated by ARLEN. // 0 means AR channel is pass-through. // System Signals (input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready); localparam integer P_WIDTH_RACH = 4+4+3+4+2+3+((C_AXI_PROTOCOL==1)?6:9)+C_AXI_ADDR_WIDTH+C_AXI_ID_WIDTH+C_AXI_ARUSER_WIDTH; localparam integer P_WIDTH_WACH = 4+4+3+4+2+3+((C_AXI_PROTOCOL==1)?6:9)+C_AXI_ADDR_WIDTH+C_AXI_ID_WIDTH+C_AXI_AWUSER_WIDTH; localparam integer P_WIDTH_RDCH = 1 + 2 + C_AXI_DATA_WIDTH + C_AXI_ID_WIDTH + C_AXI_RUSER_WIDTH; localparam integer P_WIDTH_WDCH = 1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8+((C_AXI_PROTOCOL==1)?C_AXI_ID_WIDTH:0)+C_AXI_WUSER_WIDTH; localparam integer P_WIDTH_WRCH = 2 + C_AXI_ID_WIDTH + C_AXI_BUSER_WIDTH; localparam P_PRIM_FIFO_TYPE = "512x72" ; localparam integer P_AXI4 = 0; localparam integer P_AXI3 = 1; localparam integer P_AXILITE = 2; localparam integer P_WRITE_FIFO_DEPTH_LOG = (C_AXI_WRITE_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_WRITE_FIFO_DEPTH) : 1; localparam integer P_READ_FIFO_DEPTH_LOG = (C_AXI_READ_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_READ_FIFO_DEPTH) : 1; // Ceiling of log2(x) function integer f_ceil_log2 ( input integer x ); integer acc; begin acc=0; while ((2**acc) < x) acc = acc + 1; f_ceil_log2 = acc; end endfunction generate if (((C_AXI_WRITE_FIFO_DEPTH == 0) && (C_AXI_READ_FIFO_DEPTH == 0)) || (C_AXI_PROTOCOL == P_AXILITE)) begin : gen_bypass assign m_axi_awid = s_axi_awid; assign m_axi_awaddr = s_axi_awaddr; assign m_axi_awlen = s_axi_awlen; assign m_axi_awsize = s_axi_awsize; assign m_axi_awburst = s_axi_awburst; assign m_axi_awlock = s_axi_awlock; assign m_axi_awcache = s_axi_awcache; assign m_axi_awprot = s_axi_awprot; assign m_axi_awregion = s_axi_awregion; assign m_axi_awqos = s_axi_awqos; assign m_axi_awuser = s_axi_awuser; assign m_axi_awvalid = s_axi_awvalid; assign s_axi_awready = m_axi_awready; assign m_axi_wid = s_axi_wid; assign m_axi_wdata = s_axi_wdata; assign m_axi_wstrb = s_axi_wstrb; assign m_axi_wlast = s_axi_wlast; assign m_axi_wuser = s_axi_wuser; assign m_axi_wvalid = s_axi_wvalid; assign s_axi_wready = m_axi_wready; assign s_axi_bid = m_axi_bid; assign s_axi_bresp = m_axi_bresp; assign s_axi_buser = m_axi_buser; assign s_axi_bvalid = m_axi_bvalid; assign m_axi_bready = s_axi_bready; assign m_axi_arid = s_axi_arid; assign m_axi_araddr = s_axi_araddr; assign m_axi_arlen = s_axi_arlen; assign m_axi_arsize = s_axi_arsize; assign m_axi_arburst = s_axi_arburst; assign m_axi_arlock = s_axi_arlock; assign m_axi_arcache = s_axi_arcache; assign m_axi_arprot = s_axi_arprot; assign m_axi_arregion = s_axi_arregion; assign m_axi_arqos = s_axi_arqos; assign m_axi_aruser = s_axi_aruser; assign m_axi_arvalid = s_axi_arvalid; assign s_axi_arready = m_axi_arready; assign s_axi_rid = m_axi_rid; assign s_axi_rdata = m_axi_rdata; assign s_axi_rresp = m_axi_rresp; assign s_axi_rlast = m_axi_rlast; assign s_axi_ruser = m_axi_ruser; assign s_axi_rvalid = m_axi_rvalid; assign m_axi_rready = s_axi_rready; end else begin : gen_fifo wire [4-1:0] s_axi_awregion_i; wire [4-1:0] s_axi_arregion_i; wire [4-1:0] m_axi_awregion_i; wire [4-1:0] m_axi_arregion_i; wire [C_AXI_ID_WIDTH-1:0] s_axi_wid_i; wire [C_AXI_ID_WIDTH-1:0] m_axi_wid_i; assign s_axi_awregion_i = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : s_axi_awregion; assign s_axi_arregion_i = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : s_axi_arregion; assign m_axi_awregion = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : m_axi_awregion_i; assign m_axi_arregion = (C_AXI_PROTOCOL == P_AXI3) ? 4'b0 : m_axi_arregion_i; assign s_axi_wid_i = (C_AXI_PROTOCOL == P_AXI3) ? s_axi_wid : {C_AXI_ID_WIDTH{1'b0}}; assign m_axi_wid = (C_AXI_PROTOCOL == P_AXI3) ? m_axi_wid_i : {C_AXI_ID_WIDTH{1'b0}}; fifo_generator_v12_0 #( .C_INTERFACE_TYPE(2), .C_AXI_TYPE((C_AXI_PROTOCOL == P_AXI4) ? 1 : 3), .C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH), .C_AXI_ID_WIDTH(C_AXI_ID_WIDTH), .C_HAS_AXI_ID(1), .C_AXI_LEN_WIDTH((C_AXI_PROTOCOL == P_AXI4) ? 8 : 4), .C_AXI_LOCK_WIDTH((C_AXI_PROTOCOL == P_AXI4) ? 1 : 2), .C_HAS_AXI_ARUSER(1), .C_HAS_AXI_AWUSER(1), .C_HAS_AXI_BUSER(1), .C_HAS_AXI_RUSER(1), .C_HAS_AXI_WUSER(1), .C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH), .C_AXI_ARUSER_WIDTH(C_AXI_ARUSER_WIDTH), .C_AXI_AWUSER_WIDTH(C_AXI_AWUSER_WIDTH), .C_AXI_BUSER_WIDTH(C_AXI_BUSER_WIDTH), .C_AXI_RUSER_WIDTH(C_AXI_RUSER_WIDTH), .C_AXI_WUSER_WIDTH(C_AXI_WUSER_WIDTH), .C_DIN_WIDTH_RACH(P_WIDTH_RACH), .C_DIN_WIDTH_RDCH(P_WIDTH_RDCH), .C_DIN_WIDTH_WACH(P_WIDTH_WACH), .C_DIN_WIDTH_WDCH(P_WIDTH_WDCH), .C_DIN_WIDTH_WRCH(P_WIDTH_WDCH), .C_RACH_TYPE(((C_AXI_READ_FIFO_DEPTH != 0) && C_AXI_READ_FIFO_DELAY) ? 0 : 2), .C_WACH_TYPE(((C_AXI_WRITE_FIFO_DEPTH != 0) && C_AXI_WRITE_FIFO_DELAY) ? 0 : 2), .C_WDCH_TYPE((C_AXI_WRITE_FIFO_DEPTH != 0) ? 0 : 2), .C_RDCH_TYPE((C_AXI_READ_FIFO_DEPTH != 0) ? 0 : 2), .C_WRCH_TYPE(2), .C_COMMON_CLOCK(1), .C_ADD_NGC_CONSTRAINT(0), .C_APPLICATION_TYPE_AXIS(0), .C_APPLICATION_TYPE_RACH(C_AXI_READ_FIFO_DELAY ? 1 : 0), .C_APPLICATION_TYPE_RDCH(0), .C_APPLICATION_TYPE_WACH(C_AXI_WRITE_FIFO_DELAY ? 1 : 0), .C_APPLICATION_TYPE_WDCH(0), .C_APPLICATION_TYPE_WRCH(0), .C_AXIS_TDATA_WIDTH(64), .C_AXIS_TDEST_WIDTH(4), .C_AXIS_TID_WIDTH(8), .C_AXIS_TKEEP_WIDTH(4), .C_AXIS_TSTRB_WIDTH(4), .C_AXIS_TUSER_WIDTH(4), .C_AXIS_TYPE(0), .C_COUNT_TYPE(0), .C_DATA_COUNT_WIDTH(10), .C_DEFAULT_VALUE("BlankString"), .C_DIN_WIDTH(18), .C_DIN_WIDTH_AXIS(1), .C_DOUT_RST_VAL("0"), .C_DOUT_WIDTH(18), .C_ENABLE_RLOCS(0), .C_ENABLE_RST_SYNC(1), .C_ERROR_INJECTION_TYPE(0), .C_ERROR_INJECTION_TYPE_AXIS(0), .C_ERROR_INJECTION_TYPE_RACH(0), .C_ERROR_INJECTION_TYPE_RDCH(0), .C_ERROR_INJECTION_TYPE_WACH(0), .C_ERROR_INJECTION_TYPE_WDCH(0), .C_ERROR_INJECTION_TYPE_WRCH(0), .C_FAMILY(C_FAMILY), .C_FULL_FLAGS_RST_VAL(1), .C_HAS_ALMOST_EMPTY(0), .C_HAS_ALMOST_FULL(0), .C_HAS_AXI_RD_CHANNEL(1), .C_HAS_AXI_WR_CHANNEL(1), .C_HAS_AXIS_TDATA(0), .C_HAS_AXIS_TDEST(0), .C_HAS_AXIS_TID(0), .C_HAS_AXIS_TKEEP(0), .C_HAS_AXIS_TLAST(0), .C_HAS_AXIS_TREADY(1), .C_HAS_AXIS_TSTRB(0), .C_HAS_AXIS_TUSER(0), .C_HAS_BACKUP(0), .C_HAS_DATA_COUNT(0), .C_HAS_DATA_COUNTS_AXIS(0), .C_HAS_DATA_COUNTS_RACH(0), .C_HAS_DATA_COUNTS_RDCH(0), .C_HAS_DATA_COUNTS_WACH(0), .C_HAS_DATA_COUNTS_WDCH(0), .C_HAS_DATA_COUNTS_WRCH(0), .C_HAS_INT_CLK(0), .C_HAS_MASTER_CE(0), .C_HAS_MEMINIT_FILE(0), .C_HAS_OVERFLOW(0), .C_HAS_PROG_FLAGS_AXIS(0), .C_HAS_PROG_FLAGS_RACH(0), .C_HAS_PROG_FLAGS_RDCH(0), .C_HAS_PROG_FLAGS_WACH(0), .C_HAS_PROG_FLAGS_WDCH(0), .C_HAS_PROG_FLAGS_WRCH(0), .C_HAS_RD_DATA_COUNT(0), .C_HAS_RD_RST(0), .C_HAS_RST(1), .C_HAS_SLAVE_CE(0), .C_HAS_SRST(0), .C_HAS_UNDERFLOW(0), .C_HAS_VALID(0), .C_HAS_WR_ACK(0), .C_HAS_WR_DATA_COUNT(0), .C_HAS_WR_RST(0), .C_IMPLEMENTATION_TYPE(0), .C_IMPLEMENTATION_TYPE_AXIS(1), .C_IMPLEMENTATION_TYPE_RACH(2), .C_IMPLEMENTATION_TYPE_RDCH((C_AXI_READ_FIFO_TYPE == "bram") ? 1 : 2), .C_IMPLEMENTATION_TYPE_WACH(2), .C_IMPLEMENTATION_TYPE_WDCH((C_AXI_WRITE_FIFO_TYPE == "bram") ? 1 : 2), .C_IMPLEMENTATION_TYPE_WRCH(2), .C_INIT_WR_PNTR_VAL(0), .C_MEMORY_TYPE(1), .C_MIF_FILE_NAME("BlankString"), .C_MSGON_VAL(1), .C_OPTIMIZATION_MODE(0), .C_OVERFLOW_LOW(0), .C_PRELOAD_LATENCY(1), .C_PRELOAD_REGS(0), .C_PRIM_FIFO_TYPE(P_PRIM_FIFO_TYPE), .C_PROG_EMPTY_THRESH_ASSERT_VAL(2), .C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH(30), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH(510), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH(30), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH(510), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH(14), .C_PROG_EMPTY_THRESH_NEGATE_VAL(3), .C_PROG_EMPTY_TYPE(0), .C_PROG_EMPTY_TYPE_AXIS(5), .C_PROG_EMPTY_TYPE_RACH(5), .C_PROG_EMPTY_TYPE_RDCH(5), .C_PROG_EMPTY_TYPE_WACH(5), .C_PROG_EMPTY_TYPE_WDCH(5), .C_PROG_EMPTY_TYPE_WRCH(5), .C_PROG_FULL_THRESH_ASSERT_VAL(1022), .C_PROG_FULL_THRESH_ASSERT_VAL_AXIS(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RACH(31), .C_PROG_FULL_THRESH_ASSERT_VAL_RDCH(511), .C_PROG_FULL_THRESH_ASSERT_VAL_WACH(31), .C_PROG_FULL_THRESH_ASSERT_VAL_WDCH(511), .C_PROG_FULL_THRESH_ASSERT_VAL_WRCH(15), .C_PROG_FULL_THRESH_NEGATE_VAL(1021), .C_PROG_FULL_TYPE(0), .C_PROG_FULL_TYPE_AXIS(5), .C_PROG_FULL_TYPE_RACH(5), .C_PROG_FULL_TYPE_RDCH(5), .C_PROG_FULL_TYPE_WACH(5), .C_PROG_FULL_TYPE_WDCH(5), .C_PROG_FULL_TYPE_WRCH(5), .C_RD_DATA_COUNT_WIDTH(10), .C_RD_DEPTH(1024), .C_RD_FREQ(1), .C_RD_PNTR_WIDTH(10), .C_REG_SLICE_MODE_AXIS(0), .C_REG_SLICE_MODE_RACH(0), .C_REG_SLICE_MODE_RDCH(0), .C_REG_SLICE_MODE_WACH(0), .C_REG_SLICE_MODE_WDCH(0), .C_REG_SLICE_MODE_WRCH(0), .C_UNDERFLOW_LOW(0), .C_USE_COMMON_OVERFLOW(0), .C_USE_COMMON_UNDERFLOW(0), .C_USE_DEFAULT_SETTINGS(0), .C_USE_DOUT_RST(1), .C_USE_ECC(0), .C_USE_ECC_AXIS(0), .C_USE_ECC_RACH(0), .C_USE_ECC_RDCH(0), .C_USE_ECC_WACH(0), .C_USE_ECC_WDCH(0), .C_USE_ECC_WRCH(0), .C_USE_EMBEDDED_REG(0), .C_USE_FIFO16_FLAGS(0), .C_USE_FWFT_DATA_COUNT(0), .C_VALID_LOW(0), .C_WR_ACK_LOW(0), .C_WR_DATA_COUNT_WIDTH(10), .C_WR_DEPTH(1024), .C_WR_DEPTH_AXIS(1024), .C_WR_DEPTH_RACH(32), .C_WR_DEPTH_RDCH(C_AXI_READ_FIFO_DEPTH), .C_WR_DEPTH_WACH(32), .C_WR_DEPTH_WDCH(C_AXI_WRITE_FIFO_DEPTH), .C_WR_DEPTH_WRCH(16), .C_WR_FREQ(1), .C_WR_PNTR_WIDTH(10), .C_WR_PNTR_WIDTH_AXIS(10), .C_WR_PNTR_WIDTH_RACH(5), .C_WR_PNTR_WIDTH_RDCH((C_AXI_READ_FIFO_DEPTH> 1) ? f_ceil_log2(C_AXI_READ_FIFO_DEPTH) : 1), .C_WR_PNTR_WIDTH_WACH(5), .C_WR_PNTR_WIDTH_WDCH((C_AXI_WRITE_FIFO_DEPTH > 1) ? f_ceil_log2(C_AXI_WRITE_FIFO_DEPTH) : 1), .C_WR_PNTR_WIDTH_WRCH(4), .C_WR_RESPONSE_LATENCY(1) ) fifo_gen_inst ( .s_aclk(aclk), .s_aresetn(aresetn), .s_axi_awid(s_axi_awid), .s_axi_awaddr(s_axi_awaddr), .s_axi_awlen(s_axi_awlen), .s_axi_awsize(s_axi_awsize), .s_axi_awburst(s_axi_awburst), .s_axi_awlock(s_axi_awlock), .s_axi_awcache(s_axi_awcache), .s_axi_awprot(s_axi_awprot), .s_axi_awqos(s_axi_awqos), .s_axi_awregion(s_axi_awregion_i), .s_axi_awuser(s_axi_awuser), .s_axi_awvalid(s_axi_awvalid), .s_axi_awready(s_axi_awready), .s_axi_wid(s_axi_wid_i), .s_axi_wdata(s_axi_wdata), .s_axi_wstrb(s_axi_wstrb), .s_axi_wlast(s_axi_wlast), .s_axi_wvalid(s_axi_wvalid), .s_axi_wready(s_axi_wready), .s_axi_bid(s_axi_bid), .s_axi_bresp(s_axi_bresp), .s_axi_bvalid(s_axi_bvalid), .s_axi_bready(s_axi_bready), .m_axi_awid(m_axi_awid), .m_axi_awaddr(m_axi_awaddr), .m_axi_awlen(m_axi_awlen), .m_axi_awsize(m_axi_awsize), .m_axi_awburst(m_axi_awburst), .m_axi_awlock(m_axi_awlock), .m_axi_awcache(m_axi_awcache), .m_axi_awprot(m_axi_awprot), .m_axi_awqos(m_axi_awqos), .m_axi_awregion(m_axi_awregion_i), .m_axi_awuser(m_axi_awuser), .m_axi_awvalid(m_axi_awvalid), .m_axi_awready(m_axi_awready), .m_axi_wid(m_axi_wid_i), .m_axi_wdata(m_axi_wdata), .m_axi_wstrb(m_axi_wstrb), .m_axi_wlast(m_axi_wlast), .m_axi_wvalid(m_axi_wvalid), .m_axi_wready(m_axi_wready), .m_axi_bid(m_axi_bid), .m_axi_bresp(m_axi_bresp), .m_axi_bvalid(m_axi_bvalid), .m_axi_bready(m_axi_bready), .s_axi_arid(s_axi_arid), .s_axi_araddr(s_axi_araddr), .s_axi_arlen(s_axi_arlen), .s_axi_arsize(s_axi_arsize), .s_axi_arburst(s_axi_arburst), .s_axi_arlock(s_axi_arlock), .s_axi_arcache(s_axi_arcache), .s_axi_arprot(s_axi_arprot), .s_axi_arqos(s_axi_arqos), .s_axi_arregion(s_axi_arregion_i), .s_axi_arvalid(s_axi_arvalid), .s_axi_arready(s_axi_arready), .s_axi_rid(s_axi_rid), .s_axi_rdata(s_axi_rdata), .s_axi_rresp(s_axi_rresp), .s_axi_rlast(s_axi_rlast), .s_axi_rvalid(s_axi_rvalid), .s_axi_rready(s_axi_rready), .m_axi_arid(m_axi_arid), .m_axi_araddr(m_axi_araddr), .m_axi_arlen(m_axi_arlen), .m_axi_arsize(m_axi_arsize), .m_axi_arburst(m_axi_arburst), .m_axi_arlock(m_axi_arlock), .m_axi_arcache(m_axi_arcache), .m_axi_arprot(m_axi_arprot), .m_axi_arqos(m_axi_arqos), .m_axi_arregion(m_axi_arregion_i), .m_axi_arvalid(m_axi_arvalid), .m_axi_arready(m_axi_arready), .m_axi_rid(m_axi_rid), .m_axi_rdata(m_axi_rdata), .m_axi_rresp(m_axi_rresp), .m_axi_rlast(m_axi_rlast), .m_axi_rvalid(m_axi_rvalid), .m_axi_rready(m_axi_rready), .m_aclk(aclk), .m_aclk_en(1'b1), .s_aclk_en(1'b1), .s_axi_wuser(s_axi_wuser), .s_axi_buser(s_axi_buser), .m_axi_wuser(m_axi_wuser), .m_axi_buser(m_axi_buser), .s_axi_aruser(s_axi_aruser), .s_axi_ruser(s_axi_ruser), .m_axi_aruser(m_axi_aruser), .m_axi_ruser(m_axi_ruser), .almost_empty(), .almost_full(), .axis_data_count(), .axis_dbiterr(), .axis_injectdbiterr(1'b0), .axis_injectsbiterr(1'b0), .axis_overflow(), .axis_prog_empty(), .axis_prog_empty_thresh(10'b0), .axis_prog_full(), .axis_prog_full_thresh(10'b0), .axis_rd_data_count(), .axis_sbiterr(), .axis_underflow(), .axis_wr_data_count(), .axi_ar_data_count(), .axi_ar_dbiterr(), .axi_ar_injectdbiterr(1'b0), .axi_ar_injectsbiterr(1'b0), .axi_ar_overflow(), .axi_ar_prog_empty(), .axi_ar_prog_empty_thresh(5'b0), .axi_ar_prog_full(), .axi_ar_prog_full_thresh(5'b0), .axi_ar_rd_data_count(), .axi_ar_sbiterr(), .axi_ar_underflow(), .axi_ar_wr_data_count(), .axi_aw_data_count(), .axi_aw_dbiterr(), .axi_aw_injectdbiterr(1'b0), .axi_aw_injectsbiterr(1'b0), .axi_aw_overflow(), .axi_aw_prog_empty(), .axi_aw_prog_empty_thresh(5'b0), .axi_aw_prog_full(), .axi_aw_prog_full_thresh(5'b0), .axi_aw_rd_data_count(), .axi_aw_sbiterr(), .axi_aw_underflow(), .axi_aw_wr_data_count(), .axi_b_data_count(), .axi_b_dbiterr(), .axi_b_injectdbiterr(1'b0), .axi_b_injectsbiterr(1'b0), .axi_b_overflow(), .axi_b_prog_empty(), .axi_b_prog_empty_thresh(4'b0), .axi_b_prog_full(), .axi_b_prog_full_thresh(4'b0), .axi_b_rd_data_count(), .axi_b_sbiterr(), .axi_b_underflow(), .axi_b_wr_data_count(), .axi_r_data_count(), .axi_r_dbiterr(), .axi_r_injectdbiterr(1'b0), .axi_r_injectsbiterr(1'b0), .axi_r_overflow(), .axi_r_prog_empty(), .axi_r_prog_empty_thresh({P_READ_FIFO_DEPTH_LOG{1'b0}}), .axi_r_prog_full(), .axi_r_prog_full_thresh({P_READ_FIFO_DEPTH_LOG{1'b0}}), .axi_r_rd_data_count(), .axi_r_sbiterr(), .axi_r_underflow(), .axi_r_wr_data_count(), .axi_w_data_count(), .axi_w_dbiterr(), .axi_w_injectdbiterr(1'b0), .axi_w_injectsbiterr(1'b0), .axi_w_overflow(), .axi_w_prog_empty(), .axi_w_prog_empty_thresh({P_WRITE_FIFO_DEPTH_LOG{1'b0}}), .axi_w_prog_full(), .axi_w_prog_full_thresh({P_WRITE_FIFO_DEPTH_LOG{1'b0}}), .axi_w_rd_data_count(), .axi_w_sbiterr(), .axi_w_underflow(), .axi_w_wr_data_count(), .backup(1'b0), .backup_marker(1'b0), .clk(1'b0), .data_count(), .dbiterr(), .din(18'b0), .dout(), .empty(), .full(), .injectdbiterr(1'b0), .injectsbiterr(1'b0), .int_clk(1'b0), .m_axis_tdata(), .m_axis_tdest(), .m_axis_tid(), .m_axis_tkeep(), .m_axis_tlast(), .m_axis_tready(1'b0), .m_axis_tstrb(), .m_axis_tuser(), .m_axis_tvalid(), .overflow(), .prog_empty(), .prog_empty_thresh(10'b0), .prog_empty_thresh_assert(10'b0), .prog_empty_thresh_negate(10'b0), .prog_full(), .prog_full_thresh(10'b0), .prog_full_thresh_assert(10'b0), .prog_full_thresh_negate(10'b0), .rd_clk(1'b0), .rd_data_count(), .rd_en(1'b0), .rd_rst(1'b0), .rst(1'b0), .sbiterr(), .srst(1'b0), .s_axis_tdata(64'b0), .s_axis_tdest(4'b0), .s_axis_tid(8'b0), .s_axis_tkeep(4'b0), .s_axis_tlast(1'b0), .s_axis_tready(), .s_axis_tstrb(4'b0), .s_axis_tuser(4'b0), .s_axis_tvalid(1'b0), .underflow(), .valid(), .wr_ack(), .wr_clk(1'b0), .wr_data_count(), .wr_en(1'b0), .wr_rst(1'b0), .wr_rst_busy(), .rd_rst_busy(), .sleep(1'b0) ); end endgenerate endmodule
(* This program is free software; you can redistribute it and/or *) (* modify it under the terms of the GNU Lesser General Public License *) (* as published by the Free Software Foundation; either version 2.1 *) (* of the License, or (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public *) (* License along with this program; if not, write to the Free *) (* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *) (* 02110-1301 USA *) (** This file includes random facts about Integers (and natural numbers) which are not found in the standard library. Some of the lemma here are not used in the QArith developement but are rather useful. *) Require Export ZArith. Require Export ZArithRing. Tactic Notation "ElimCompare" constr(c) constr(d) := elim_compare c d. Ltac Flip := apply Zgt_lt || apply Zlt_gt || apply Zle_ge || apply Zge_le; assumption. Ltac Falsum := try intro; apply False_ind; repeat match goal with | id1:(~ ?X1) |- ?X2 => (apply id1; assumption || reflexivity) || clear id1 end. Ltac Step_l a := match goal with | |- (?X1 < ?X2)%Z => replace X1 with a; [ idtac | try ring ] end. Ltac Step_r a := match goal with | |- (?X1 < ?X2)%Z => replace X2 with a; [ idtac | try ring ] end. Ltac CaseEq formula := generalize (refl_equal formula); pattern formula at -1 in |- *; case formula. Lemma pair_1 : forall (A B : Set) (H : A * B), H = pair (fst H) (snd H). Proof. intros. case H. intros. simpl in |- *. reflexivity. Qed. Lemma pair_2 : forall (A B : Set) (H1 H2 : A * B), fst H1 = fst H2 -> snd H1 = snd H2 -> H1 = H2. Proof. intros A B H1 H2. case H1. case H2. simpl in |- *. intros. rewrite H. rewrite H0. reflexivity. Qed. Section projection. Variable A : Set. Variable P : A -> Prop. Definition projP1 (H : sig P) := let (x, h) := H in x. Definition projP2 (H : sig P) := let (x, h) as H return (P (projP1 H)) := H in h. End projection. (*###########################################################################*) (* Declaring some realtions on natural numbers for stepl and stepr tactics. *) (*###########################################################################*) Lemma le_stepl: forall x y z, le x y -> x=z -> le z y. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma le_stepr: forall x y z, le x y -> y=z -> le x z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma lt_stepl: forall x y z, lt x y -> x=z -> lt z y. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma lt_stepr: forall x y z, lt x y -> y=z -> lt x z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma neq_stepl:forall (x y z:nat), x<>y -> x=z -> z<>y. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma neq_stepr:forall (x y z:nat), x<>y -> y=z -> x<>z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step le_stepl. Declare Right Step le_stepr. Declare Left Step lt_stepl. Declare Right Step lt_stepr. Declare Left Step neq_stepl. Declare Right Step neq_stepr. (*###########################################################################*) (** Some random facts about natural numbers, positive numbers and integers *) (*###########################################################################*) Lemma not_O_S : forall n : nat, n <> 0 -> {p : nat | n = S p}. Proof. intros [| np] Hn; [ exists 0; apply False_ind; apply Hn | exists np ]; reflexivity. Qed. Lemma lt_minus_neq : forall m n : nat, m < n -> n - m <> 0. Proof. intros. omega. Qed. Lemma lt_minus_eq_0 : forall m n : nat, m < n -> m - n = 0. Proof. intros. omega. Qed. Lemma le_plus_Sn_1_SSn : forall n : nat, S n + 1 <= S (S n). Proof. intros. omega. Qed. Lemma le_plus_O_l : forall p q : nat, p + q <= 0 -> p = 0. Proof. intros; omega. Qed. Lemma le_plus_O_r : forall p q : nat, p + q <= 0 -> q = 0. Proof. intros; omega. Qed. Lemma minus_pred : forall m n : nat, 0 < n -> pred m - pred n = m - n. Proof. intros. omega. Qed. (*###########################################################################*) (* Declaring some realtions on integers for stepl and stepr tactics. *) (*###########################################################################*) Lemma Zle_stepl: forall x y z, (x<=y)%Z -> x=z -> (z<=y)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zle_stepr: forall x y z, (x<=y)%Z -> y=z -> (x<=z)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zlt_stepl: forall x y z, (x<y)%Z -> x=z -> (z<y)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zlt_stepr: forall x y z, (x<y)%Z -> y=z -> (x<z)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zneq_stepl:forall (x y z:Z), (x<>y)%Z -> x=z -> (z<>y)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma Zneq_stepr:forall (x y z:Z), (x<>y)%Z -> y=z -> (x<>z)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step Zle_stepl. Declare Right Step Zle_stepr. Declare Left Step Zlt_stepl. Declare Right Step Zlt_stepr. Declare Left Step Zneq_stepl. Declare Right Step Zneq_stepr. (*###########################################################################*) (** Informative case analysis *) (*###########################################################################*) Lemma Zlt_cotrans : forall x y : Z, (x < y)%Z -> forall z : Z, {(x < z)%Z} + {(z < y)%Z}. Proof. intros. case (Z_lt_ge_dec x z). intro. left. assumption. intro. right. apply Zle_lt_trans with (m := x). apply Zge_le. assumption. assumption. Qed. Lemma Zlt_cotrans_pos : forall x y : Z, (0 < x + y)%Z -> {(0 < x)%Z} + {(0 < y)%Z}. Proof. intros. case (Zlt_cotrans 0 (x + y) H x). intro. left. assumption. intro. right. apply Zplus_lt_reg_l with (p := x). rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_cotrans_neg : forall x y : Z, (x + y < 0)%Z -> {(x < 0)%Z} + {(y < 0)%Z}. Proof. intros x y H; case (Zlt_cotrans (x + y) 0 H x); intro Hxy; [ right; apply Zplus_lt_reg_l with (p := x); rewrite Zplus_0_r | left ]; assumption. Qed. Lemma not_Zeq_inf : forall x y : Z, x <> y -> {(x < y)%Z} + {(y < x)%Z}. Proof. intros. case Z_lt_ge_dec with x y. intro. left. assumption. intro H0. generalize (Zge_le _ _ H0). intro. case (Z_le_lt_eq_dec _ _ H1). intro. right. assumption. intro. apply False_rec. apply H. symmetry in |- *. assumption. Qed. Lemma Z_dec : forall x y : Z, {(x < y)%Z} + {(x > y)%Z} + {x = y}. Proof. intros. case (Z_lt_ge_dec x y). intro H. left. left. assumption. intro H. generalize (Zge_le _ _ H). intro H0. case (Z_le_lt_eq_dec y x H0). intro H1. left. right. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. Qed. Lemma Z_dec' : forall x y : Z, {(x < y)%Z} + {(y < x)%Z} + {x = y}. Proof. intros x y. case (Z_eq_dec x y); intro H; [ right; assumption | left; apply (not_Zeq_inf _ _ H) ]. Qed. Lemma Z_lt_le_dec : forall x y : Z, {(x < y)%Z} + {(y <= x)%Z}. Proof. intros. case (Z_lt_ge_dec x y). intro. left. assumption. intro. right. apply Zge_le. assumption. Qed. Lemma Z_le_lt_dec : forall x y : Z, {(x <= y)%Z} + {(y < x)%Z}. Proof. intros; case (Z_lt_le_dec y x); [ right | left ]; assumption. Qed. Lemma Z_lt_lt_S_eq_dec : forall x y : Z, (x < y)%Z -> {(x + 1 < y)%Z} + {(x + 1)%Z = y}. Proof. intros. generalize (Zlt_le_succ _ _ H). unfold Zsucc in |- *. apply Z_le_lt_eq_dec. Qed. Lemma quadro_leq_inf : forall a b c d : Z, {(c <= a)%Z /\ (d <= b)%Z} + {~ ((c <= a)%Z /\ (d <= b)%Z)}. Proof. intros. case (Z_lt_le_dec a c). intro z. right. intro. elim H. intros. generalize z. apply Zle_not_lt. assumption. intro. case (Z_lt_le_dec b d). intro z0. right. intro. elim H. intros. generalize z0. apply Zle_not_lt. assumption. intro. left. split. assumption. assumption. Qed. (*###########################################################################*) (** General auxiliary lemmata *) (*###########################################################################*) Lemma Zminus_eq : forall x y : Z, (x - y)%Z = 0%Z -> x = y. Proof. intros. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. unfold Zminus in H. rewrite Zplus_comm. assumption. Qed. Lemma Zlt_minus : forall a b : Z, (b < a)%Z -> (0 < a - b)%Z. Proof. intros a b. intros. apply Zplus_lt_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zle_minus : forall a b : Z, (b <= a)%Z -> (0 <= a - b)%Z. Proof. intros a b. intros. apply Zplus_le_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zlt_plus_plus : forall m n p q : Z, (m < n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. apply Zlt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_lt_compat_l. assumption. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zgt_plus_plus : forall m n p q : Z, (m > n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. intros. apply Zgt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_gt_compat_l. assumption. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zle_lt_plus_plus : forall m n p q : Z, (m <= n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. case (Zle_lt_or_eq m n). assumption. intro. apply Zlt_plus_plus. assumption. assumption. intro. rewrite H1. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zge_gt_plus_plus : forall m n p q : Z, (m >= n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. Proof. intros. case (Zle_lt_or_eq n m). apply Zge_le. assumption. intro. apply Zgt_plus_plus. apply Zlt_gt. assumption. assumption. intro. rewrite H1. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zgt_ge_plus_plus : forall m n p q : Z, (m > n)%Z -> (p >= q)%Z -> (m + p > n + q)%Z. Proof. intros. rewrite Zplus_comm. replace (n + q)%Z with (q + n)%Z. apply Zge_gt_plus_plus. assumption. assumption. apply Zplus_comm. Qed. Lemma Zlt_resp_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x + y)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zlt_plus_plus; assumption. Qed. Lemma Zle_resp_neg : forall x y : Z, (x <= 0)%Z -> (y <= 0)%Z -> (x + y <= 0)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zplus_le_compat; assumption. Qed. Lemma Zlt_pos_opp : forall x : Z, (0 < x)%Z -> (- x < 0)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_neg_opp : forall x : Z, (x < 0)%Z -> (0 < - x)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_neg_opp : forall x : Z, (x <= 0)%Z -> (0 <= - x)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_pos_opp : forall x : Z, (0 <= x)%Z -> (- x <= 0)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zge_opp : forall x y : Z, (x <= y)%Z -> (- x >= - y)%Z. Proof. intros. apply Zle_ge. apply Zplus_le_reg_l with (p := (x + y)%Z). ring_simplify (x + y + - y)%Z (x + y + - x)%Z. assumption. Qed. (* Omega can't solve this *) Lemma Zmult_pos_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_neg : forall x y : Z, (x < 0)%Z -> (y < 0)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_pos : forall x y : Z, (x < 0)%Z -> (0 < y)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_pos_neg : forall x y : Z, (0 < x)%Z -> (y < 0)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Hint Resolve Zmult_pos_pos Zmult_neg_neg Zmult_neg_pos Zmult_pos_neg: zarith. Lemma Zle_reg_mult_l : forall x y a : Z, (0 < a)%Z -> (x <= y)%Z -> (a * x <= a * y)%Z. Proof. intros. apply Zplus_le_reg_l with (p := (- a * x)%Z). ring_simplify (- a * x + a * x)%Z. replace (- a * x + a * y)%Z with ((y - x) * a)%Z. apply Zmult_gt_0_le_0_compat. apply Zlt_gt. assumption. unfold Zminus in |- *. apply Zle_left. assumption. ring. Qed. Lemma Zsimpl_plus_l_dep : forall x y m n : Z, (x + m)%Z = (y + n)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite <- H0 in H. assumption. Qed. Lemma Zsimpl_plus_r_dep : forall x y m n : Z, (m + x)%Z = (n + y)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite Zplus_comm. rewrite Zplus_comm with x n. rewrite <- H0 in H. assumption. Qed. Lemma Zmult_simpl : forall n m p q : Z, n = m -> p = q -> (n * p)%Z = (m * q)%Z. Proof. intros. rewrite H. rewrite H0. reflexivity. Qed. Lemma Zsimpl_mult_l : forall n m p : Z, n <> 0%Z -> (n * m)%Z = (n * p)%Z -> m = p. Proof. intros. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + p)%Z with 0%Z. apply Zmult_integral_l with (n := n). assumption. replace ((- p + m) * n)%Z with (n * m + - (n * p))%Z. apply Zegal_left. assumption. ring. ring. Qed. Lemma Zlt_reg_mult_l : forall x y z : Z, (x > 0)%Z -> (y < z)%Z -> (x * y < x * z)%Z. (*QA*) Proof. intros. case (Zcompare_Gt_spec x 0). unfold Zgt in H. assumption. intros. cut (x = Zpos x0). intro. rewrite H2. unfold Zlt in H0. unfold Zlt in |- *. cut ((Zpos x0 * y ?= Zpos x0 * z)%Z = (y ?= z)%Z). intro. exact (trans_eq H3 H0). apply Zcompare_mult_compat. cut (x = (x + - (0))%Z). intro. exact (trans_eq H2 H1). simpl in |- *. apply (sym_eq (A:=Z)). exact (Zplus_0_r x). Qed. Lemma Zlt_opp : forall x y : Z, (x < y)%Z -> (- x > - y)%Z. (*QA*) Proof. intros. red in |- *. apply sym_eq. cut (Datatypes.Gt = (y ?= x)%Z). intro. cut ((y ?= x)%Z = (- x ?= - y)%Z). intro. exact (trans_eq H0 H1). exact (Zcompare_opp y x). apply sym_eq. exact (Zlt_gt x y H). Qed. Lemma Zlt_conv_mult_l : forall x y z : Z, (x < 0)%Z -> (y < z)%Z -> (x * y > x * z)%Z. (*QA*) Proof. intros. cut (- x > 0)%Z. intro. cut (- x * y < - x * z)%Z. intro. cut (- (- x * y) > - (- x * z))%Z. intro. cut (- - (x * y) > - - (x * z))%Z. intro. cut ((- - (x * y))%Z = (x * y)%Z). intro. rewrite H5 in H4. cut ((- - (x * z))%Z = (x * z)%Z). intro. rewrite H6 in H4. assumption. exact (Zopp_involutive (x * z)). exact (Zopp_involutive (x * y)). cut ((- (- x * y))%Z = (- - (x * y))%Z). intro. rewrite H4 in H3. cut ((- (- x * z))%Z = (- - (x * z))%Z). intro. rewrite H5 in H3. assumption. cut ((- x * z)%Z = (- (x * z))%Z). intro. exact (f_equal Zopp H5). exact (Zopp_mult_distr_l_reverse x z). cut ((- x * y)%Z = (- (x * y))%Z). intro. exact (f_equal Zopp H4). exact (Zopp_mult_distr_l_reverse x y). exact (Zlt_opp (- x * y) (- x * z) H2). exact (Zlt_reg_mult_l (- x) y z H1 H0). exact (Zlt_opp x 0 H). Qed. Lemma Zgt_not_eq : forall x y : Z, (x > y)%Z -> x <> y. (*QA*) Proof. intros. cut (y < x)%Z. intro. cut (y <> x). intro. red in |- *. intros. cut (y = x). intros. apply H1. assumption. exact (sym_eq H2). exact (Zorder.Zlt_not_eq y x H0). exact (Zgt_lt x y H). Qed. Lemma Zmult_resp_nonzero : forall x y : Z, x <> 0%Z -> y <> 0%Z -> (x * y)%Z <> 0%Z. Proof. intros x y Hx Hy Hxy. apply Hx. apply Zmult_integral_l with y; assumption. Qed. Lemma Zopp_app : forall y : Z, y <> 0%Z -> (- y)%Z <> 0%Z. Proof. intros. intro. apply H. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. rewrite H0. simpl in |- *. reflexivity. Qed. Lemma Zle_neq_Zlt : forall a b : Z, (a <= b)%Z -> b <> a -> (a < b)%Z. Proof. intros a b H H0. case (Z_le_lt_eq_dec _ _ H); trivial. intro; apply False_ind; apply H0; symmetry in |- *; assumption. Qed. Lemma not_Zle_lt : forall x y : Z, ~ (y <= x)%Z -> (x < y)%Z. Proof. intros; apply Zgt_lt; apply Znot_le_gt; assumption. Qed. Lemma not_Zlt : forall x y : Z, ~ (y < x)%Z -> (x <= y)%Z. Proof. intros x y H1 H2; apply H1; apply Zgt_lt; assumption. Qed. Lemma Zmult_absorb : forall x y z : Z, x <> 0%Z -> (x * y)%Z = (x * z)%Z -> y = z. (*QA*) Proof. intros. case (dec_eq y z). intro. assumption. intro. case (not_Zeq y z). assumption. intro. case (not_Zeq x 0). assumption. intro. apply False_ind. cut (x * y > x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zgt_not_eq (x * y) (x * z) H4). exact (Zlt_conv_mult_l x y z H3 H2). intro. apply False_ind. cut (x * y < x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zorder.Zlt_not_eq (x * y) (x * z) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x y z H4 H2). exact (Zlt_gt 0 x H3). intro. apply False_ind. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H4. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H3). apply False_ind. case (not_Zeq x 0). assumption. intro. cut (x * z > x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zgt_not_eq (x * z) (x * y) H4). exact (Zlt_conv_mult_l x z y H3 H2). intro. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x z y H4 H2). exact (Zlt_gt 0 x H3). Qed. Lemma Zlt_mult_mult : forall a b c d : Z, (0 < a)%Z -> (0 < d)%Z -> (a < b)%Z -> (c < d)%Z -> (a * c < b * d)%Z. Proof. intros. apply Zlt_trans with (a * d)%Z. apply Zlt_reg_mult_l. Flip. assumption. rewrite Zmult_comm. rewrite Zmult_comm with b d. apply Zlt_reg_mult_l. Flip. assumption. Qed. Lemma Zgt_mult_conv_absorb_l : forall a x y : Z, (a < 0)%Z -> (a * x > a * y)%Z -> (x < y)%Z. (*QC*) Proof. intros. case (dec_eq x y). intro. apply False_ind. rewrite H1 in H0. cut ((a * y)%Z = (a * y)%Z). change ((a * y)%Z <> (a * y)%Z) in |- *. apply Zgt_not_eq. assumption. trivial. intro. case (not_Zeq x y H1). trivial. intro. apply False_ind. cut (a * y > a * x)%Z. apply Zgt_asym with (m := (a * y)%Z) (n := (a * x)%Z). assumption. apply Zlt_conv_mult_l. assumption. assumption. Qed. Lemma Zgt_mult_reg_absorb_l : forall a x y : Z, (a > 0)%Z -> (a * x > a * y)%Z -> (x > y)%Z. (*QC*) Proof. intros. cut (- - a > - - (0))%Z. intro. cut (- a < - (0))%Z. simpl in |- *. intro. replace x with (- - x)%Z. replace y with (- - y)%Z. apply Zlt_opp. apply Zgt_mult_conv_absorb_l with (a := (- a)%Z) (x := (- x)%Z). assumption. rewrite Zmult_opp_opp. rewrite Zmult_opp_opp. assumption. apply Zopp_involutive. apply Zopp_involutive. apply Zgt_lt. apply Zlt_opp. apply Zgt_lt. assumption. simpl in |- *. rewrite Zopp_involutive. assumption. Qed. Lemma Zopp_Zlt : forall x y : Z, (y < x)%Z -> (- x < - y)%Z. Proof. intros x y Hyx. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. Flip. ring. ring. Qed. Lemma Zmin_cancel_Zlt : forall x y : Z, (- x < - y)%Z -> (y < x)%Z. Proof. intros. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. apply Zlt_gt. assumption. ring. ring. Qed. Lemma Zmult_cancel_Zle : forall a x y : Z, (a < 0)%Z -> (a * x <= a * y)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * x)). apply Zle_lt_trans with (m := (a * y)%Z). assumption. apply Zgt_lt. apply Zlt_conv_mult_l. assumption. apply Zgt_lt. assumption. Qed. Lemma Zlt_mult_cancel_l : forall x y z : Z, (0 < x)%Z -> (x * y < x * z)%Z -> (y < z)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with x. apply Zlt_gt. assumption. apply Zlt_gt. assumption. Qed. Lemma Zmin_cancel_Zle : forall x y : Z, (- x <= - y)%Z -> (y <= x)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. assumption. ring. ring. Qed. Lemma Zmult_resp_Zle : forall a x y : Z, (0 < a)%Z -> (a * y <= a * x)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * y)). apply Zle_lt_trans with (m := (a * x)%Z). assumption. apply Zlt_reg_mult_l. apply Zlt_gt. assumption. apply Zgt_lt. assumption. Qed. Lemma Zopp_Zle : forall x y : Z, (y <= x)%Z -> (- x <= - y)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. assumption. clear y H; ring. clear x H; ring. Qed. Lemma Zle_lt_eq_S : forall x y : Z, (x <= y)%Z -> (y < x + 1)%Z -> y = x. Proof. intros. case (Z_le_lt_eq_dec x y H). intro H1. apply False_ind. generalize (Zlt_le_succ x y H1). intro. apply (Zlt_not_le y (x + 1) H0). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. intro H1. symmetry in |- *. assumption. Qed. Lemma Zlt_le_eq_S : forall x y : Z, (x < y)%Z -> (y <= x + 1)%Z -> y = (x + 1)%Z. Proof. intros. case (Z_le_lt_eq_dec y (x + 1) H0). intro H1. apply False_ind. generalize (Zlt_le_succ x y H). intro. apply (Zlt_not_le y (x + 1) H1). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. trivial. Qed. Lemma double_not_equal_zero : forall c d : Z, ~ (c = 0%Z /\ d = 0%Z) -> c <> d \/ c <> 0%Z. Proof. intros. case (Z_zerop c). intro. rewrite e. left. apply sym_not_eq. intro. apply H; repeat split; assumption. intro; right; assumption. Qed. Lemma triple_not_equal_zero : forall a b c : Z, ~ (a = 0%Z /\ b = 0%Z /\ c = 0%Z) -> a <> 0%Z \/ b <> 0%Z \/ c <> 0%Z. Proof. intros a b c H; case (Z_zerop a); intro Ha; [ case (Z_zerop b); intro Hb; [ case (Z_zerop c); intro Hc; [ apply False_ind; apply H; repeat split | right; right ] | right; left ] | left ]; assumption. Qed. Lemma mediant_1 : forall m n m' n' : Z, (m' * n < m * n')%Z -> ((m + m') * n < m * (n + n'))%Z. Proof. intros. rewrite Zmult_plus_distr_r. rewrite Zmult_plus_distr_l. apply Zplus_lt_compat_l. assumption. Qed. Lemma mediant_2 : forall m n m' n' : Z, (m' * n < m * n')%Z -> (m' * (n + n') < (m + m') * n')%Z. Proof. intros. rewrite Zmult_plus_distr_l. rewrite Zmult_plus_distr_r. apply Zplus_lt_compat_r. assumption. Qed. Lemma mediant_3 : forall a b m n m' n' : Z, (0 <= a * m + b * n)%Z -> (0 <= a * m' + b * n')%Z -> (0 <= a * (m + m') + b * (n + n'))%Z. Proof. intros. replace (a * (m + m') + b * (n + n'))%Z with (a * m + b * n + (a * m' + b * n'))%Z. apply Zplus_le_0_compat. assumption. assumption. ring. Qed. Lemma fraction_lt_trans : forall a b c d e f : Z, (0 < b)%Z -> (0 < d)%Z -> (0 < f)%Z -> (a * d < c * b)%Z -> (c * f < e * d)%Z -> (a * f < e * b)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with d. Flip. apply Zgt_trans with (c * b * f)%Z. replace (d * (e * b))%Z with (b * (e * d))%Z. replace (c * b * f)%Z with (b * (c * f))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. replace (c * b * f)%Z with (f * (c * b))%Z. replace (d * (a * f))%Z with (f * (a * d))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. Qed. Lemma square_pos : forall a : Z, a <> 0%Z -> (0 < a * a)%Z. Proof. intros [| p| p]; intros; [ Falsum | constructor | constructor ]. Qed. Hint Resolve square_pos: zarith. (*###########################################################################*) (** Properties of positive numbers, mapping between Z and nat *) (*###########################################################################*) Definition Z2positive (z : Z) := match z with | Zpos p => p | Zneg p => p | Z0 => 1%positive end. Lemma ZL9 : forall p : positive, Z_of_nat (nat_of_P p) = Zpos p. (*QF*) Proof. intro. cut (exists h : nat, nat_of_P p = S h). intro. case H. intros. unfold Z_of_nat in |- *. rewrite H0. apply f_equal with (A := positive) (B := Z) (f := Zpos). cut (P_of_succ_nat (nat_of_P p) = P_of_succ_nat (S x)). intro. rewrite P_of_succ_nat_o_nat_of_P_eq_succ in H1. cut (Ppred (Psucc p) = Ppred (P_of_succ_nat (S x))). intro. rewrite Ppred_succ in H2. simpl in H2. rewrite Ppred_succ in H2. apply sym_eq. assumption. apply f_equal with (A := positive) (B := positive) (f := Ppred). assumption. apply f_equal with (f := P_of_succ_nat). assumption. apply ZL4. Qed. Coercion Z_of_nat : nat >-> Z. Lemma ZERO_lt_POS : forall p : positive, (0 < Zpos p)%Z. Proof. intros. constructor. Qed. Lemma POS_neq_ZERO : forall p : positive, Zpos p <> 0%Z. Proof. intros. apply sym_not_eq. apply Zorder.Zlt_not_eq. apply ZERO_lt_POS. Qed. Lemma NEG_neq_ZERO : forall p : positive, Zneg p <> 0%Z. Proof. intros. apply Zorder.Zlt_not_eq. unfold Zlt in |- *. constructor. Qed. Lemma POS_resp_eq : forall p0 p1 : positive, Zpos p0 = Zpos p1 -> p0 = p1. Proof. intros. injection H. trivial. Qed. Lemma nat_nat_pos : forall m n : nat, ((m + 1) * (n + 1) > 0)%Z. (*QF*) Proof. intros. apply Zlt_gt. cut (Z_of_nat m + 1 > 0)%Z. intro. cut (0 < Z_of_nat n + 1)%Z. intro. cut ((Z_of_nat m + 1) * 0 < (Z_of_nat m + 1) * (Z_of_nat n + 1))%Z. rewrite Zmult_0_r. intro. assumption. apply Zlt_reg_mult_l. assumption. assumption. change (0 < Zsucc (Z_of_nat n))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat n)%Z in |- *. apply Znat.inj_le. apply le_O_n. apply Zlt_gt. change (0 < Zsucc (Z_of_nat m))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat m)%Z in |- *. apply Znat.inj_le. apply le_O_n. Qed. Theorem S_predn : forall m : nat, m <> 0 -> S (pred m) = m. (*QF*) Proof. intros. case (O_or_S m). intro. case s. intros. rewrite <- e. rewrite <- pred_Sn with (n := x). trivial. intro. apply False_ind. apply H. apply sym_eq. assumption. Qed. Lemma absolu_1 : forall x : Z, Zabs_nat x = 0 -> x = 0%Z. (*QF*) Proof. intros. case (dec_eq x 0). intro. assumption. intro. apply False_ind. cut ((x < 0)%Z \/ (x > 0)%Z). intro. ElimCompare x 0%Z. intro. cut (x = 0%Z). assumption. cut ((x ?= 0)%Z = Datatypes.Eq -> x = 0%Z). intro. apply H3. assumption. apply proj1 with (B := x = 0%Z -> (x ?= 0)%Z = Datatypes.Eq). change ((x ?= 0)%Z = Datatypes.Eq <-> x = 0%Z) in |- *. apply Zcompare_Eq_iff_eq. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. change (x < 0)%Z in H2. cut (0 > x)%Z. intro. cut (exists p : positive, (0 + - x)%Z = Zpos p). simpl in |- *. intro. case H4. intros. cut (exists q : positive, x = Zneg q). intro. case H6. intros. rewrite H7. unfold Zabs_nat in |- *. generalize x1. exact ZL4. cut (x = (- Zpos x0)%Z). simpl in |- *. intro. exists x0. assumption. cut ((- - x)%Z = x). intro. rewrite <- H6. exact (f_equal Zopp H5). apply Zopp_involutive. apply Zcompare_Gt_spec. assumption. apply Zlt_gt. assumption. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. cut (exists p : positive, (x + - (0))%Z = Zpos p). simpl in |- *. rewrite Zplus_0_r. intro. case H3. intros. rewrite H4. unfold Zabs_nat in |- *. generalize x0. exact ZL4. apply Zcompare_Gt_spec. assumption. (***) cut ((x < 0)%Z \/ (0 < x)%Z). intro. apply or_ind with (A := (x < 0)%Z) (B := (0 < x)%Z) (P := (x < 0)%Z \/ (x > 0)%Z). intro. left. assumption. intro. right. apply Zlt_gt. assumption. assumption. apply not_Zeq. assumption. Qed. Lemma absolu_2 : forall x : Z, x <> 0%Z -> Zabs_nat x <> 0. (*QF*) Proof. intros. intro. apply H. apply absolu_1. assumption. Qed. Lemma absolu_inject_nat : forall n : nat, Zabs_nat (Z_of_nat n) = n. Proof. simple induction n; simpl in |- *. reflexivity. intros. apply nat_of_P_o_P_of_succ_nat_eq_succ. Qed. Lemma eq_inj : forall m n : nat, m = n :>Z -> m = n. Proof. intros. generalize (f_equal Zabs_nat H). intro. rewrite (absolu_inject_nat m) in H0. rewrite (absolu_inject_nat n) in H0. assumption. Qed. Lemma lt_inj : forall m n : nat, (m < n)%Z -> m < n. Proof. intros. omega. Qed. Lemma le_inj : forall m n : nat, (m <= n)%Z -> m <= n. Proof. intros. omega. Qed. Lemma inject_nat_S_inf : forall x : Z, (0 < x)%Z -> {n : nat | x = S n}. Proof. intros [| p| p] Hp; try discriminate Hp. exists (pred (nat_of_P p)). rewrite S_predn. symmetry in |- *; apply ZL9. clear Hp; apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma le_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x <= y)%Z -> Zabs_nat x <= Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; apply le_O_n || (try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end). simpl in |- *. apply le_inj. do 2 rewrite ZL9. assumption. Qed. Lemma lt_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x < y)%Z -> Zabs_nat x < Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; inversion Hxy; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end; simpl in |- *; apply lt_inj; repeat rewrite ZL9; assumption. Qed. Lemma absolu_plus : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> Zabs_nat (x + y) = Zabs_nat x + Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy; trivial; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end. rewrite <- BinInt.Zpos_plus_distr. unfold Zabs_nat in |- *. apply nat_of_P_plus_morphism. Qed. Lemma pred_absolu : forall x : Z, (0 < x)%Z -> pred (Zabs_nat x) = Zabs_nat (x - 1). Proof. intros x Hx. generalize (Z_lt_lt_S_eq_dec 0 x Hx); simpl in |- *; intros [H1| H1]; [ replace (Zabs_nat x) with (Zabs_nat (x - 1 + 1)); [ idtac | apply f_equal with Z; auto with zarith ]; rewrite absolu_plus; [ unfold Zabs_nat at 2, nat_of_P, Piter_op in |- *; omega | auto with zarith | intro; discriminate ] | rewrite <- H1; reflexivity ]. Qed. Definition pred_nat : forall (x : Z) (Hx : (0 < x)%Z), nat. intros [| px| px] Hx; try abstract (discriminate Hx). exact (pred (nat_of_P px)). Defined. Lemma pred_nat_equal : forall (x : Z) (Hx1 Hx2 : (0 < x)%Z), pred_nat x Hx1 = pred_nat x Hx2. Proof. intros [| px| px] Hx1 Hx2; try (discriminate Hx1); trivial. Qed. Let pred_nat_unfolded_subproof px : Pos.to_nat px <> 0. Proof. apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma pred_nat_unfolded : forall (x : Z) (Hx : (0 < x)%Z), x = S (pred_nat x Hx). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. symmetry in |- *; apply ZL9. clear Hx; apply pred_nat_unfolded_subproof. Qed. Lemma absolu_pred_nat : forall (m : Z) (Hm : (0 < m)%Z), S (pred_nat m Hm) = Zabs_nat m. Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. reflexivity. apply pred_nat_unfolded_subproof. Qed. Lemma pred_nat_absolu : forall (m : Z) (Hm : (0 < m)%Z), pred_nat m Hm = Zabs_nat (m - 1). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite <- pred_absolu; reflexivity || assumption. Qed. Lemma minus_pred_nat : forall (n m : Z) (Hn : (0 < n)%Z) (Hm : (0 < m)%Z) (Hnm : (0 < n - m)%Z), S (pred_nat n Hn) - S (pred_nat m Hm) = S (pred_nat (n - m) Hnm). Proof. intros. simpl in |- *. destruct n; try discriminate Hn. destruct m; try discriminate Hm. unfold pred_nat at 1 2 in |- *. rewrite minus_pred; try apply lt_O_nat_of_P. apply eq_inj. rewrite <- pred_nat_unfolded. rewrite Znat.inj_minus1. repeat rewrite ZL9. reflexivity. apply le_inj. apply Zlt_le_weak. repeat rewrite ZL9. apply Zlt_O_minus_lt. assumption. Qed. (*###########################################################################*) (** Properties of Zsgn *) (*###########################################################################*) Lemma Zsgn_1 : forall x : Z, {Zsgn x = 0%Z} + {Zsgn x = 1%Z} + {Zsgn x = (-1)%Z}. (*QF*) Proof. intros. case x. left. left. unfold Zsgn in |- *. reflexivity. intro. simpl in |- *. left. right. reflexivity. intro. right. simpl in |- *. reflexivity. Qed. Lemma Zsgn_2 : forall x : Z, Zsgn x = 0%Z -> x = 0%Z. (*QF*) Proof. intros [| p1| p1]; simpl in |- *; intro H; constructor || discriminate H. Qed. Lemma Zsgn_3 : forall x : Z, x <> 0%Z -> Zsgn x <> 0%Z. (*QF*) Proof. intro. case x. intros. apply False_ind. apply H. reflexivity. intros. simpl in |- *. discriminate. intros. simpl in |- *. discriminate. Qed. Theorem Zsgn_4 : forall a : Z, a = (Zsgn a * Zabs_nat a)%Z. (*QF*) Proof. intro. case a. simpl in |- *. reflexivity. intro. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite Zmult_1_l. symmetry in |- *. apply ZL9. intros. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite ZL9. constructor. Qed. Theorem Zsgn_5 : forall a b x y : Z, x <> 0%Z -> y <> 0%Z -> (Zsgn a * x)%Z = (Zsgn b * y)%Z -> (Zsgn a * y)%Z = (Zsgn b * x)%Z. (*QF*) Proof. intros a b x y H H0. case a. case b. simpl in |- *. trivial. intro. unfold Zsgn in |- *. intro. rewrite Zmult_1_l in H1. simpl in H1. apply False_ind. apply H0. symmetry in |- *. assumption. intro. unfold Zsgn in |- *. intro. apply False_ind. apply H0. apply Zopp_inj. simpl in |- *. transitivity (-1 * y)%Z. constructor. transitivity (0 * x)%Z. symmetry in |- *. assumption. simpl in |- *. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity y. rewrite Zmult_1_l. reflexivity. transitivity (Zsgn b * (Zsgn b * y))%Z. case (Zsgn_1 b). intro. case s. intro. apply False_ind. apply H. rewrite e in H1. change ((1 * x)%Z = 0%Z) in H1. rewrite Zmult_1_l in H1. assumption. intro. rewrite e. rewrite Zmult_1_l. rewrite Zmult_1_l. reflexivity. intro. rewrite e. ring. rewrite Zmult_1_l in H1. rewrite H1. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity (Zsgn b * (-1 * (Zsgn b * y)))%Z. case (Zsgn_1 b). intros. case s. intro. apply False_ind. apply H. apply Zopp_inj. transitivity (-1 * x)%Z. ring. unfold Zopp in |- *. rewrite e in H1. transitivity (0 * y)%Z. assumption. simpl in |- *. reflexivity. intro. rewrite e. ring. intro. rewrite e. ring. rewrite <- H1. ring. Qed. Lemma Zsgn_6 : forall x : Z, x = 0%Z -> Zsgn x = 0%Z. Proof. intros. rewrite H. simpl in |- *. reflexivity. Qed. Lemma Zsgn_7 : forall x : Z, (x > 0)%Z -> Zsgn x = 1%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). Flip. intros. simpl in |- *. reflexivity. intros. apply False_ind. apply (Zlt_irrefl (Zneg p)). apply Zlt_trans with 0%Z. constructor. Flip. Qed. Lemma Zsgn_7' : forall x : Z, (0 < x)%Z -> Zsgn x = 1%Z. Proof. intros; apply Zsgn_7; Flip. Qed. Lemma Zsgn_8 : forall x : Z, (x < 0)%Z -> Zsgn x = (-1)%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). assumption. intros. apply False_ind. apply (Zlt_irrefl 0). apply Zlt_trans with (Zpos p). constructor. assumption. intros. simpl in |- *. reflexivity. Qed. Lemma Zsgn_9 : forall x : Z, Zsgn x = 1%Z -> (0 < x)%Z. Proof. intro. case x. intro. apply False_ind. simpl in H. discriminate. intros. constructor. intros. apply False_ind. discriminate. Qed. Lemma Zsgn_10 : forall x : Z, Zsgn x = (-1)%Z -> (x < 0)%Z. Proof. intro. case x. intro. apply False_ind. discriminate. intros. apply False_ind. discriminate. intros. constructor. Qed. Lemma Zsgn_11 : forall x : Z, (Zsgn x < 0)%Z -> (x < 0)%Z. Proof. intros. apply Zsgn_10. case (Zsgn_1 x). intro. apply False_ind. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply (H0 e). intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. discriminate. trivial. Qed. Lemma Zsgn_12 : forall x : Z, (0 < Zsgn x)%Z -> (0 < x)%Z. Proof. intros. apply Zsgn_9. case (Zsgn_1 x). intro. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. generalize (sym_eq e). intro. apply False_ind. apply (H0 H1). trivial. intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply False_ind. discriminate. Qed. Lemma Zsgn_13 : forall x : Z, (0 <= Zsgn x)%Z -> (0 <= x)%Z. Proof. intros. case (Z_le_lt_eq_dec 0 (Zsgn x) H). intro. apply Zlt_le_weak. apply Zsgn_12. assumption. intro. assert (x = 0%Z). apply Zsgn_2. symmetry in |- *. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_14 : forall x : Z, (Zsgn x <= 0)%Z -> (x <= 0)%Z. Proof. intros. case (Z_le_lt_eq_dec (Zsgn x) 0 H). intro. apply Zlt_le_weak. apply Zsgn_11. assumption. intro. assert (x = 0%Z). apply Zsgn_2. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_15 : forall x y : Z, Zsgn (x * y) = (Zsgn x * Zsgn y)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; constructor. Qed. Lemma Zsgn_16 : forall x y : Z, Zsgn (x * y) = 1%Z -> {(0 < x)%Z /\ (0 < y)%Z} + {(x < 0)%Z /\ (y < 0)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_17 : forall x y : Z, Zsgn (x * y) = (-1)%Z -> {(0 < x)%Z /\ (y < 0)%Z} + {(x < 0)%Z /\ (0 < y)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_18 : forall x y : Z, Zsgn (x * y) = 0%Z -> {x = 0%Z} + {y = 0%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right | right ]; constructor. Qed. Lemma Zsgn_19 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 < x + y)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_12; assumption). Qed. Lemma Zsgn_20 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x + y < 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_11; assumption). Qed. Lemma Zsgn_21 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= x)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_22 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x <= 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_23 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= y)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_24 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (y <= 0)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_25 : forall x : Z, Zsgn (- x) = (- Zsgn x)%Z. Proof. intros [| p1| p1]; simpl in |- *; reflexivity. Qed. Lemma Zsgn_26 : forall x : Z, (0 < x)%Z -> (0 < Zsgn x)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Lemma Zsgn_27 : forall x : Z, (x < 0)%Z -> (Zsgn x < 0)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Hint Resolve Zsgn_1 Zsgn_2 Zsgn_3 Zsgn_4 Zsgn_5 Zsgn_6 Zsgn_7 Zsgn_7' Zsgn_8 Zsgn_9 Zsgn_10 Zsgn_11 Zsgn_12 Zsgn_13 Zsgn_14 Zsgn_15 Zsgn_16 Zsgn_17 Zsgn_18 Zsgn_19 Zsgn_20 Zsgn_21 Zsgn_22 Zsgn_23 Zsgn_24 Zsgn_25 Zsgn_26 Zsgn_27: zarith. (*###########################################################################*) (** Properties of Zabs *) (*###########################################################################*) Lemma Zabs_1 : forall z p : Z, (Zabs z < p)%Z -> (z < p)%Z /\ (- p < z)%Z. Proof. intros z p. case z. intros. simpl in H. split. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. assumption. intros. simpl in H. split. assumption. apply Zlt_trans with (m := 0%Z). apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. apply Zlt_trans with (m := Zpos p0). constructor. assumption. constructor. intros. simpl in H. split. apply Zlt_trans with (m := Zpos p0). constructor. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl;trivial. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (- Zneg p0)%Z. replace (- Zneg p0)%Z with (Zpos p0). apply Zlt_gt. assumption. symmetry in |- *. apply Zopp_neg. rewrite Zopp_mult_distr_l_reverse with (n := 1%Z). simpl in |- *. constructor. Qed. Lemma Zabs_2 : forall z p : Z, (Zabs z > p)%Z -> (z > p)%Z \/ (- p > z)%Z. Proof. intros z p. case z. intros. simpl in H. left. assumption. intros. simpl in H. left. assumption. intros. simpl in H. right. apply Zlt_gt. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (Zpos p0). assumption. reflexivity. Qed. Lemma Zabs_3 : forall z p : Z, (z < p)%Z /\ (- p < z)%Z -> (Zabs z < p)%Z. Proof. intros z p. case z. intro. simpl in |- *. elim H. intros. assumption. intros. elim H. intros. simpl in |- *. assumption. intros. elim H. intros. simpl in |- *. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * Zpos p0)%Z with (Zneg p0). replace (-1 * p)%Z with (- p)%Z. apply Zlt_gt. assumption. ring. simpl in |- *. reflexivity. Qed. Lemma Zabs_4 : forall z p : Z, (Zabs z < p)%Z -> (- p < z < p)%Z. Proof. intros. split. apply proj2 with (A := (z < p)%Z). apply Zabs_1. assumption. apply proj1 with (B := (- p < z)%Z). apply Zabs_1. assumption. Qed. Lemma Zabs_5 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z <= p)%Z. Proof. intros. split. replace (- p)%Z with (Zsucc (- Zsucc p)). apply Zlt_le_succ. apply proj2 with (A := (z < Zsucc p)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. unfold Zsucc in |- *. ring. apply Zlt_succ_le. apply proj1 with (B := (- Zsucc p < z)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. Qed. Lemma Zabs_6 : forall z p : Z, (Zabs z <= p)%Z -> (z <= p)%Z. Proof. intros. apply proj2 with (A := (- p <= z)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_7 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z)%Z. Proof. intros. apply proj1 with (B := (z <= p)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_8 : forall z p : Z, (- p <= z <= p)%Z -> (Zabs z <= p)%Z. Proof. intros. apply Zlt_succ_le. apply Zabs_3. elim H. intros. split. apply Zle_lt_succ. assumption. apply Zlt_le_trans with (m := (- p)%Z). apply Zgt_lt. apply Zlt_opp. apply Zlt_succ. assumption. Qed. Lemma Zabs_min : forall z : Z, Zabs z = Zabs (- z). Proof. intro. case z. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. Qed. Lemma Zabs_9 : forall z p : Z, (0 <= p)%Z -> (p < z)%Z \/ (z < - p)%Z -> (p < Zabs z)%Z. Proof. intros. case H0. intro. replace (Zabs z) with z. assumption. symmetry in |- *. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. assumption. intro. cut (Zabs z = (- z)%Z). intro. rewrite H2. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. rewrite Zabs_min. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. Qed. Lemma Zabs_10 : forall z : Z, (0 <= Zabs z)%Z. Proof. intro. case (Z_zerop z). intro. rewrite e. simpl in |- *. apply Zle_refl. intro. case (not_Zeq z 0 n). intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. right. assumption. intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. left. assumption. Qed. Lemma Zabs_11 : forall z : Z, z <> 0%Z -> (0 < Zabs z)%Z. Proof. intros. apply Zabs_9. apply Zle_refl. simpl in |- *. apply not_Zeq. intro. apply H. symmetry in |- *. assumption. Qed. Lemma Zabs_12 : forall z m : Z, (m < Zabs z)%Z -> {(m < z)%Z} + {(z < - m)%Z}. Proof. intros [| p| p] m; simpl in |- *; intros H; [ left | left | right; apply Zmin_cancel_Zlt; rewrite Zopp_involutive ]; assumption. Qed. Lemma Zabs_mult : forall z p : Z, Zabs (z * p) = (Zabs z * Zabs p)%Z. Proof. intros. case z. simpl in |- *. reflexivity. case p. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. case p. intro. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zabs_plus : forall z p : Z, (Zabs (z + p) <= Zabs z + Zabs p)%Z. Proof. intros. case z. simpl in |- *. apply Zle_refl. case p. intro. simpl in |- *. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 - Zneg p0)%Z. replace (Zpos p1 - Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (- (Zpos p0 + Zneg p0))%Z. replace (Zpos p1 - Zneg p0 + (Zpos p1 + Zneg p0))%Z with (2 * Zpos p1)%Z. replace (- (Zpos p0 + Zneg p0))%Z with 0%Z. apply Zmult_gt_0_le_0_compat. constructor. apply Zlt_le_weak. constructor. rewrite <- Zopp_neg with p0. ring. ring. ring. apply Zplus_le_compat. apply Zle_refl. apply Zlt_le_weak. constructor. case p. simpl in |- *. intro. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 + Zneg p0)%Z. replace (Zpos p1 + Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (Zneg p0 - Zpos p0)%Z. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with 0%Z. apply Zplus_le_reg_l with (Zpos p0). replace (Zpos p0 + (Zneg p0 - Zpos p0))%Z with (Zneg p0). simpl in |- *. apply Zlt_le_weak. constructor. ring. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with (Zpos p1 + Zneg p1 + (Zpos p0 + Zneg p0))%Z. replace 0%Z with (0 + 0)%Z. apply Zplus_eq_compat. rewrite <- Zopp_neg with p1. ring. rewrite <- Zopp_neg with p0. ring. simpl in |- *. constructor. ring. ring. apply Zplus_le_compat. apply Zlt_le_weak. constructor. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. Qed. Lemma Zabs_neg : forall z : Z, (z <= 0)%Z -> Zabs z = (- z)%Z. Proof. intro. case z. simpl in |- *. intro. reflexivity. intros. apply False_ind. apply H. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zle_Zabs: forall z, (z <= Zabs z)%Z. Proof. intros [|z|z]; simpl; auto with zarith; apply Zle_neg_pos. Qed. Hint Resolve Zabs_1 Zabs_2 Zabs_3 Zabs_4 Zabs_5 Zabs_6 Zabs_7 Zabs_8 Zabs_9 Zabs_10 Zabs_11 Zabs_12 Zabs_min Zabs_neg Zabs_mult Zabs_plus Zle_Zabs: zarith. (*###########################################################################*) (** Induction on Z *) (*###########################################################################*) Lemma Zind : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p. intro. intro. cut (forall q : Z, (p <= q)%Z -> exists k : nat, q = (p + k)%Z). intro. cut (forall k : nat, P (p + k)%Z). intro. intros. cut (exists k : nat, q = (p + Z_of_nat k)%Z). intro. case H4. intros. rewrite H5. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. ring_simplify (p + 0)%Z. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). ring_simplify (- p + (p + Z_of_nat k))%Z. apply Znat.inj_le. apply le_O_n. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (q - p)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (p <= q)%Z -> {k : nat | q = (p + k)%Z}). intro. cut (forall k : nat, F (p + k)%Z). intro. intros. cut {k : nat | q = (p + Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. rewrite Zplus_0_r. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). replace (- p + (p + Z_of_nat k))%Z with (Z_of_nat k). apply Znat.inj_le. apply le_O_n. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. apply Zplus_assoc_reverse. intros. cut {k : nat | (q - p)%Z = Z_of_nat k}. intro H2. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite e. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. unfold Zminus in |- *. apply Zplus_comm. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_down : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> {k : nat | q = (p - k)%Z}). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut {k : nat | q = (p - Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. unfold Zminus in |- *. unfold Zopp in |- *. rewrite Zplus_0_r; reflexivity. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. unfold Zminus in |- *; rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. unfold Zminus at 1 2 in |- *. rewrite Zplus_assoc_reverse. rewrite <- Zopp_plus_distr. reflexivity. intros. cut {k : nat | (p - q)%Z = Z_of_nat k}. intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- e. reflexivity. unfold Zminus in |- *. rewrite Zopp_plus_distr. rewrite Zplus_assoc. rewrite Zplus_opp_r. rewrite Zopp_involutive. reflexivity. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zind_down : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> exists k : nat, q = (p - k)%Z). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut (exists k : nat, q = (p - Z_of_nat k)%Z). intro. case H4. intros x e. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. ring. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. ring. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (p - q)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_wf : forall (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zrec with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zrec_wf2 : forall (q : Z) (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zrec_wf with (p := p). assumption. assumption. Qed. Lemma Zrec_wf_double : forall (P : Z -> Z -> Set) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zrec_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zrec_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. Lemma Zind_wf : forall (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zind with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zind_wf2 : forall (q : Z) (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zind_wf with (p := p). assumption. assumption. Qed. Lemma Zind_wf_double : forall (P : Z -> Z -> Prop) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zind_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zind_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. (*###########################################################################*) (** Properties of Zmax *) (*###########################################################################*) Definition Zmax (n m : Z) := (n + m - Zmin n m)%Z. Lemma ZmaxSS : forall n m : Z, (Zmax n m + 1)%Z = Zmax (n + 1) (m + 1). Proof. intros. unfold Zmax in |- *. replace (Zmin (n + 1) (m + 1)) with (Zmin n m + 1)%Z. ring. symmetry in |- *. change (Zmin (Zsucc n) (Zsucc m) = Zsucc (Zmin n m)) in |- *. symmetry in |- *. apply Zmin_SS. Qed. Lemma Zle_max_l : forall n m : Z, (n <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- n + Zmin n m)%Z). ring_simplify (- n + Zmin n m + n)%Z. ring_simplify (- n + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_r. Qed. Lemma Zle_max_r : forall n m : Z, (m <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- m + Zmin n m)%Z). ring_simplify (- m + Zmin n m + m)%Z. ring_simplify (- m + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_l. Qed. Lemma Zmin_or_informative : forall n m : Z, {Zmin n m = n} + {Zmin n m = m}. Proof. intros. case (Z_lt_ge_dec n m). unfold Zmin in |- *. unfold Zlt in |- *. intro z. rewrite z. left. reflexivity. intro. cut ({(n > m)%Z} + {n = m :>Z}). intro. case H. intros z0. unfold Zmin in |- *. unfold Zgt in z0. rewrite z0. right. reflexivity. intro. rewrite e. right. apply Zmin_n_n. cut ({(m < n)%Z} + {m = n :>Z}). intro. elim H. intro. left. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. apply Z_le_lt_eq_dec. apply Zge_le. assumption. Qed. Lemma Zmax_case : forall (n m : Z) (P : Z -> Set), P n -> P m -> P (Zmax n m). Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. cut ((n + m - n)%Z = m). intro. rewrite H1. assumption. ring. intro. rewrite e. cut ((n + m - m)%Z = n). intro. rewrite H1. assumption. ring. Qed. Lemma Zmax_or_informative : forall n m : Z, {Zmax n m = n} + {Zmax n m = m}. Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. right. ring. intro. rewrite e. left. ring. Qed. Lemma Zmax_n_n : forall n : Z, Zmax n n = n. Proof. intros. unfold Zmax in |- *. rewrite (Zmin_n_n n). ring. Qed. Hint Resolve ZmaxSS Zle_max_r Zle_max_l Zmax_n_n: zarith. (*###########################################################################*) (** Properties of Arity *) (*###########################################################################*) Lemma Zeven_S : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x + 1). Proof. exact Zeven.Zeven_Sn. Qed. Lemma Zeven_pred : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x - 1). Proof. exact Zeven.Zeven_pred. Qed. (* This lemma used to be useful since it was mentioned with an unnecessary premise `x>=0` as Z_modulo_2 in ZArith, but the ZArith version has been fixed. *) Definition Z_modulo_2_always : forall x : Z, {y : Z | x = (2 * y)%Z} + {y : Z | x = (2 * y + 1)%Z} := Zeven.Z_modulo_2. (*###########################################################################*) (** Properties of Zdiv *) (*###########################################################################*) Lemma Z_div_mod_eq_2 : forall a b : Z, (0 < b)%Z -> (b * (a / b))%Z = (a - a mod b)%Z. Proof. intros. apply Zplus_minus_eq. rewrite Zplus_comm. apply Z_div_mod_eq. Flip. Qed. Lemma Z_div_le : forall a b c : Z, (0 < c)%Z -> (b <= a)%Z -> (b / c <= a / c)%Z. Proof. intros. apply Zge_le. apply Z_div_ge; Flip; assumption. Qed. Lemma Z_div_nonneg : forall a b : Z, (0 < b)%Z -> (0 <= a)%Z -> (0 <= a / b)%Z. Proof. intros. apply Zge_le. apply Z_div_ge0; Flip; assumption. Qed. Lemma Z_div_neg : forall a b : Z, (0 < b)%Z -> (a < 0)%Z -> (a / b < 0)%Z. Proof. intros. rewrite (Z_div_mod_eq a b) in H0. elim (Z_mod_lt a b). intros H1 _. apply Znot_ge_lt. intro. apply (Zlt_not_le (b * (a / b) + a mod b) 0 H0). apply Zplus_le_0_compat. apply Zmult_le_0_compat. apply Zlt_le_weak; assumption. Flip. assumption. Flip. Flip. Qed. Hint Resolve Z_div_mod_eq_2 Z_div_le Z_div_nonneg Z_div_neg: zarith. (*###########################################################################*) (** Properties of Zpower *) (*###########################################################################*) Lemma Zpower_1 : forall a : Z, (a ^ 1)%Z = a. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; auto with zarith. Qed. Lemma Zpower_2 : forall a : Z, (a ^ 2)%Z = (a * a)%Z. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; ring. Qed. Hint Resolve Zpower_1 Zpower_2: zarith.
(* This program is free software; you can redistribute it and/or *) (* modify it under the terms of the GNU Lesser General Public License *) (* as published by the Free Software Foundation; either version 2.1 *) (* of the License, or (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public *) (* License along with this program; if not, write to the Free *) (* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *) (* 02110-1301 USA *) (** This file includes random facts about Integers (and natural numbers) which are not found in the standard library. Some of the lemma here are not used in the QArith developement but are rather useful. *) Require Export ZArith. Require Export ZArithRing. Tactic Notation "ElimCompare" constr(c) constr(d) := elim_compare c d. Ltac Flip := apply Zgt_lt || apply Zlt_gt || apply Zle_ge || apply Zge_le; assumption. Ltac Falsum := try intro; apply False_ind; repeat match goal with | id1:(~ ?X1) |- ?X2 => (apply id1; assumption || reflexivity) || clear id1 end. Ltac Step_l a := match goal with | |- (?X1 < ?X2)%Z => replace X1 with a; [ idtac | try ring ] end. Ltac Step_r a := match goal with | |- (?X1 < ?X2)%Z => replace X2 with a; [ idtac | try ring ] end. Ltac CaseEq formula := generalize (refl_equal formula); pattern formula at -1 in |- *; case formula. Lemma pair_1 : forall (A B : Set) (H : A * B), H = pair (fst H) (snd H). Proof. intros. case H. intros. simpl in |- *. reflexivity. Qed. Lemma pair_2 : forall (A B : Set) (H1 H2 : A * B), fst H1 = fst H2 -> snd H1 = snd H2 -> H1 = H2. Proof. intros A B H1 H2. case H1. case H2. simpl in |- *. intros. rewrite H. rewrite H0. reflexivity. Qed. Section projection. Variable A : Set. Variable P : A -> Prop. Definition projP1 (H : sig P) := let (x, h) := H in x. Definition projP2 (H : sig P) := let (x, h) as H return (P (projP1 H)) := H in h. End projection. (*###########################################################################*) (* Declaring some realtions on natural numbers for stepl and stepr tactics. *) (*###########################################################################*) Lemma le_stepl: forall x y z, le x y -> x=z -> le z y. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma le_stepr: forall x y z, le x y -> y=z -> le x z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma lt_stepl: forall x y z, lt x y -> x=z -> lt z y. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma lt_stepr: forall x y z, lt x y -> y=z -> lt x z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma neq_stepl:forall (x y z:nat), x<>y -> x=z -> z<>y. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma neq_stepr:forall (x y z:nat), x<>y -> y=z -> x<>z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step le_stepl. Declare Right Step le_stepr. Declare Left Step lt_stepl. Declare Right Step lt_stepr. Declare Left Step neq_stepl. Declare Right Step neq_stepr. (*###########################################################################*) (** Some random facts about natural numbers, positive numbers and integers *) (*###########################################################################*) Lemma not_O_S : forall n : nat, n <> 0 -> {p : nat | n = S p}. Proof. intros [| np] Hn; [ exists 0; apply False_ind; apply Hn | exists np ]; reflexivity. Qed. Lemma lt_minus_neq : forall m n : nat, m < n -> n - m <> 0. Proof. intros. omega. Qed. Lemma lt_minus_eq_0 : forall m n : nat, m < n -> m - n = 0. Proof. intros. omega. Qed. Lemma le_plus_Sn_1_SSn : forall n : nat, S n + 1 <= S (S n). Proof. intros. omega. Qed. Lemma le_plus_O_l : forall p q : nat, p + q <= 0 -> p = 0. Proof. intros; omega. Qed. Lemma le_plus_O_r : forall p q : nat, p + q <= 0 -> q = 0. Proof. intros; omega. Qed. Lemma minus_pred : forall m n : nat, 0 < n -> pred m - pred n = m - n. Proof. intros. omega. Qed. (*###########################################################################*) (* Declaring some realtions on integers for stepl and stepr tactics. *) (*###########################################################################*) Lemma Zle_stepl: forall x y z, (x<=y)%Z -> x=z -> (z<=y)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zle_stepr: forall x y z, (x<=y)%Z -> y=z -> (x<=z)%Z. Proof. intros x y z H_le H_eq; subst z; trivial. Qed. Lemma Zlt_stepl: forall x y z, (x<y)%Z -> x=z -> (z<y)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zlt_stepr: forall x y z, (x<y)%Z -> y=z -> (x<z)%Z. Proof. intros x y z H_lt H_eq; subst z; trivial. Qed. Lemma Zneq_stepl:forall (x y z:Z), (x<>y)%Z -> x=z -> (z<>y)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Lemma Zneq_stepr:forall (x y z:Z), (x<>y)%Z -> y=z -> (x<>z)%Z. Proof. intros x y z H_lt H_eq; subst; assumption. Qed. Declare Left Step Zle_stepl. Declare Right Step Zle_stepr. Declare Left Step Zlt_stepl. Declare Right Step Zlt_stepr. Declare Left Step Zneq_stepl. Declare Right Step Zneq_stepr. (*###########################################################################*) (** Informative case analysis *) (*###########################################################################*) Lemma Zlt_cotrans : forall x y : Z, (x < y)%Z -> forall z : Z, {(x < z)%Z} + {(z < y)%Z}. Proof. intros. case (Z_lt_ge_dec x z). intro. left. assumption. intro. right. apply Zle_lt_trans with (m := x). apply Zge_le. assumption. assumption. Qed. Lemma Zlt_cotrans_pos : forall x y : Z, (0 < x + y)%Z -> {(0 < x)%Z} + {(0 < y)%Z}. Proof. intros. case (Zlt_cotrans 0 (x + y) H x). intro. left. assumption. intro. right. apply Zplus_lt_reg_l with (p := x). rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_cotrans_neg : forall x y : Z, (x + y < 0)%Z -> {(x < 0)%Z} + {(y < 0)%Z}. Proof. intros x y H; case (Zlt_cotrans (x + y) 0 H x); intro Hxy; [ right; apply Zplus_lt_reg_l with (p := x); rewrite Zplus_0_r | left ]; assumption. Qed. Lemma not_Zeq_inf : forall x y : Z, x <> y -> {(x < y)%Z} + {(y < x)%Z}. Proof. intros. case Z_lt_ge_dec with x y. intro. left. assumption. intro H0. generalize (Zge_le _ _ H0). intro. case (Z_le_lt_eq_dec _ _ H1). intro. right. assumption. intro. apply False_rec. apply H. symmetry in |- *. assumption. Qed. Lemma Z_dec : forall x y : Z, {(x < y)%Z} + {(x > y)%Z} + {x = y}. Proof. intros. case (Z_lt_ge_dec x y). intro H. left. left. assumption. intro H. generalize (Zge_le _ _ H). intro H0. case (Z_le_lt_eq_dec y x H0). intro H1. left. right. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. Qed. Lemma Z_dec' : forall x y : Z, {(x < y)%Z} + {(y < x)%Z} + {x = y}. Proof. intros x y. case (Z_eq_dec x y); intro H; [ right; assumption | left; apply (not_Zeq_inf _ _ H) ]. Qed. Lemma Z_lt_le_dec : forall x y : Z, {(x < y)%Z} + {(y <= x)%Z}. Proof. intros. case (Z_lt_ge_dec x y). intro. left. assumption. intro. right. apply Zge_le. assumption. Qed. Lemma Z_le_lt_dec : forall x y : Z, {(x <= y)%Z} + {(y < x)%Z}. Proof. intros; case (Z_lt_le_dec y x); [ right | left ]; assumption. Qed. Lemma Z_lt_lt_S_eq_dec : forall x y : Z, (x < y)%Z -> {(x + 1 < y)%Z} + {(x + 1)%Z = y}. Proof. intros. generalize (Zlt_le_succ _ _ H). unfold Zsucc in |- *. apply Z_le_lt_eq_dec. Qed. Lemma quadro_leq_inf : forall a b c d : Z, {(c <= a)%Z /\ (d <= b)%Z} + {~ ((c <= a)%Z /\ (d <= b)%Z)}. Proof. intros. case (Z_lt_le_dec a c). intro z. right. intro. elim H. intros. generalize z. apply Zle_not_lt. assumption. intro. case (Z_lt_le_dec b d). intro z0. right. intro. elim H. intros. generalize z0. apply Zle_not_lt. assumption. intro. left. split. assumption. assumption. Qed. (*###########################################################################*) (** General auxiliary lemmata *) (*###########################################################################*) Lemma Zminus_eq : forall x y : Z, (x - y)%Z = 0%Z -> x = y. Proof. intros. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. unfold Zminus in H. rewrite Zplus_comm. assumption. Qed. Lemma Zlt_minus : forall a b : Z, (b < a)%Z -> (0 < a - b)%Z. Proof. intros a b. intros. apply Zplus_lt_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zle_minus : forall a b : Z, (b <= a)%Z -> (0 <= a - b)%Z. Proof. intros a b. intros. apply Zplus_le_reg_l with b. unfold Zminus in |- *. rewrite (Zplus_comm a). rewrite (Zplus_assoc b (- b)). rewrite Zplus_opp_r. simpl in |- *. rewrite <- Zplus_0_r_reverse. assumption. Qed. Lemma Zlt_plus_plus : forall m n p q : Z, (m < n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. apply Zlt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_lt_compat_l. assumption. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zgt_plus_plus : forall m n p q : Z, (m > n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. intros. apply Zgt_trans with (m := (n + p)%Z). rewrite Zplus_comm. rewrite Zplus_comm with (n := n). apply Zplus_gt_compat_l. assumption. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zle_lt_plus_plus : forall m n p q : Z, (m <= n)%Z -> (p < q)%Z -> (m + p < n + q)%Z. Proof. intros. case (Zle_lt_or_eq m n). assumption. intro. apply Zlt_plus_plus. assumption. assumption. intro. rewrite H1. apply Zplus_lt_compat_l. assumption. Qed. Lemma Zge_gt_plus_plus : forall m n p q : Z, (m >= n)%Z -> (p > q)%Z -> (m + p > n + q)%Z. Proof. intros. case (Zle_lt_or_eq n m). apply Zge_le. assumption. intro. apply Zgt_plus_plus. apply Zlt_gt. assumption. assumption. intro. rewrite H1. apply Zplus_gt_compat_l. assumption. Qed. Lemma Zgt_ge_plus_plus : forall m n p q : Z, (m > n)%Z -> (p >= q)%Z -> (m + p > n + q)%Z. Proof. intros. rewrite Zplus_comm. replace (n + q)%Z with (q + n)%Z. apply Zge_gt_plus_plus. assumption. assumption. apply Zplus_comm. Qed. Lemma Zlt_resp_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x + y)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zlt_plus_plus; assumption. Qed. Lemma Zle_resp_neg : forall x y : Z, (x <= 0)%Z -> (y <= 0)%Z -> (x + y <= 0)%Z. Proof. intros. rewrite <- Zplus_0_r with 0%Z. apply Zplus_le_compat; assumption. Qed. Lemma Zlt_pos_opp : forall x : Z, (0 < x)%Z -> (- x < 0)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zlt_neg_opp : forall x : Z, (x < 0)%Z -> (0 < - x)%Z. Proof. intros. apply Zplus_lt_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_neg_opp : forall x : Z, (x <= 0)%Z -> (0 <= - x)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zle_pos_opp : forall x : Z, (0 <= x)%Z -> (- x <= 0)%Z. Proof. intros. apply Zplus_le_reg_l with x. rewrite Zplus_opp_r. rewrite Zplus_0_r. assumption. Qed. Lemma Zge_opp : forall x y : Z, (x <= y)%Z -> (- x >= - y)%Z. Proof. intros. apply Zle_ge. apply Zplus_le_reg_l with (p := (x + y)%Z). ring_simplify (x + y + - y)%Z (x + y + - x)%Z. assumption. Qed. (* Omega can't solve this *) Lemma Zmult_pos_pos : forall x y : Z, (0 < x)%Z -> (0 < y)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_neg : forall x y : Z, (x < 0)%Z -> (y < 0)%Z -> (0 < x * y)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_neg_pos : forall x y : Z, (x < 0)%Z -> (0 < y)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Lemma Zmult_pos_neg : forall x y : Z, (0 < x)%Z -> (y < 0)%Z -> (x * y < 0)%Z. Proof. intros [| px| px] [| py| py] Hx Hy; trivial || constructor. Qed. Hint Resolve Zmult_pos_pos Zmult_neg_neg Zmult_neg_pos Zmult_pos_neg: zarith. Lemma Zle_reg_mult_l : forall x y a : Z, (0 < a)%Z -> (x <= y)%Z -> (a * x <= a * y)%Z. Proof. intros. apply Zplus_le_reg_l with (p := (- a * x)%Z). ring_simplify (- a * x + a * x)%Z. replace (- a * x + a * y)%Z with ((y - x) * a)%Z. apply Zmult_gt_0_le_0_compat. apply Zlt_gt. assumption. unfold Zminus in |- *. apply Zle_left. assumption. ring. Qed. Lemma Zsimpl_plus_l_dep : forall x y m n : Z, (x + m)%Z = (y + n)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite <- H0 in H. assumption. Qed. Lemma Zsimpl_plus_r_dep : forall x y m n : Z, (m + x)%Z = (n + y)%Z -> x = y -> m = n. Proof. intros. apply Zplus_reg_l with x. rewrite Zplus_comm. rewrite Zplus_comm with x n. rewrite <- H0 in H. assumption. Qed. Lemma Zmult_simpl : forall n m p q : Z, n = m -> p = q -> (n * p)%Z = (m * q)%Z. Proof. intros. rewrite H. rewrite H0. reflexivity. Qed. Lemma Zsimpl_mult_l : forall n m p : Z, n <> 0%Z -> (n * m)%Z = (n * p)%Z -> m = p. Proof. intros. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + p)%Z with 0%Z. apply Zmult_integral_l with (n := n). assumption. replace ((- p + m) * n)%Z with (n * m + - (n * p))%Z. apply Zegal_left. assumption. ring. ring. Qed. Lemma Zlt_reg_mult_l : forall x y z : Z, (x > 0)%Z -> (y < z)%Z -> (x * y < x * z)%Z. (*QA*) Proof. intros. case (Zcompare_Gt_spec x 0). unfold Zgt in H. assumption. intros. cut (x = Zpos x0). intro. rewrite H2. unfold Zlt in H0. unfold Zlt in |- *. cut ((Zpos x0 * y ?= Zpos x0 * z)%Z = (y ?= z)%Z). intro. exact (trans_eq H3 H0). apply Zcompare_mult_compat. cut (x = (x + - (0))%Z). intro. exact (trans_eq H2 H1). simpl in |- *. apply (sym_eq (A:=Z)). exact (Zplus_0_r x). Qed. Lemma Zlt_opp : forall x y : Z, (x < y)%Z -> (- x > - y)%Z. (*QA*) Proof. intros. red in |- *. apply sym_eq. cut (Datatypes.Gt = (y ?= x)%Z). intro. cut ((y ?= x)%Z = (- x ?= - y)%Z). intro. exact (trans_eq H0 H1). exact (Zcompare_opp y x). apply sym_eq. exact (Zlt_gt x y H). Qed. Lemma Zlt_conv_mult_l : forall x y z : Z, (x < 0)%Z -> (y < z)%Z -> (x * y > x * z)%Z. (*QA*) Proof. intros. cut (- x > 0)%Z. intro. cut (- x * y < - x * z)%Z. intro. cut (- (- x * y) > - (- x * z))%Z. intro. cut (- - (x * y) > - - (x * z))%Z. intro. cut ((- - (x * y))%Z = (x * y)%Z). intro. rewrite H5 in H4. cut ((- - (x * z))%Z = (x * z)%Z). intro. rewrite H6 in H4. assumption. exact (Zopp_involutive (x * z)). exact (Zopp_involutive (x * y)). cut ((- (- x * y))%Z = (- - (x * y))%Z). intro. rewrite H4 in H3. cut ((- (- x * z))%Z = (- - (x * z))%Z). intro. rewrite H5 in H3. assumption. cut ((- x * z)%Z = (- (x * z))%Z). intro. exact (f_equal Zopp H5). exact (Zopp_mult_distr_l_reverse x z). cut ((- x * y)%Z = (- (x * y))%Z). intro. exact (f_equal Zopp H4). exact (Zopp_mult_distr_l_reverse x y). exact (Zlt_opp (- x * y) (- x * z) H2). exact (Zlt_reg_mult_l (- x) y z H1 H0). exact (Zlt_opp x 0 H). Qed. Lemma Zgt_not_eq : forall x y : Z, (x > y)%Z -> x <> y. (*QA*) Proof. intros. cut (y < x)%Z. intro. cut (y <> x). intro. red in |- *. intros. cut (y = x). intros. apply H1. assumption. exact (sym_eq H2). exact (Zorder.Zlt_not_eq y x H0). exact (Zgt_lt x y H). Qed. Lemma Zmult_resp_nonzero : forall x y : Z, x <> 0%Z -> y <> 0%Z -> (x * y)%Z <> 0%Z. Proof. intros x y Hx Hy Hxy. apply Hx. apply Zmult_integral_l with y; assumption. Qed. Lemma Zopp_app : forall y : Z, y <> 0%Z -> (- y)%Z <> 0%Z. Proof. intros. intro. apply H. apply Zplus_reg_l with (- y)%Z. rewrite Zplus_opp_l. rewrite H0. simpl in |- *. reflexivity. Qed. Lemma Zle_neq_Zlt : forall a b : Z, (a <= b)%Z -> b <> a -> (a < b)%Z. Proof. intros a b H H0. case (Z_le_lt_eq_dec _ _ H); trivial. intro; apply False_ind; apply H0; symmetry in |- *; assumption. Qed. Lemma not_Zle_lt : forall x y : Z, ~ (y <= x)%Z -> (x < y)%Z. Proof. intros; apply Zgt_lt; apply Znot_le_gt; assumption. Qed. Lemma not_Zlt : forall x y : Z, ~ (y < x)%Z -> (x <= y)%Z. Proof. intros x y H1 H2; apply H1; apply Zgt_lt; assumption. Qed. Lemma Zmult_absorb : forall x y z : Z, x <> 0%Z -> (x * y)%Z = (x * z)%Z -> y = z. (*QA*) Proof. intros. case (dec_eq y z). intro. assumption. intro. case (not_Zeq y z). assumption. intro. case (not_Zeq x 0). assumption. intro. apply False_ind. cut (x * y > x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zgt_not_eq (x * y) (x * z) H4). exact (Zlt_conv_mult_l x y z H3 H2). intro. apply False_ind. cut (x * y < x * z)%Z. intro. cut ((x * y)%Z <> (x * z)%Z). intro. apply H5. assumption. exact (Zorder.Zlt_not_eq (x * y) (x * z) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x y z H4 H2). exact (Zlt_gt 0 x H3). intro. apply False_ind. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H4. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H3). apply False_ind. case (not_Zeq x 0). assumption. intro. cut (x * z > x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zgt_not_eq (x * z) (x * y) H4). exact (Zlt_conv_mult_l x z y H3 H2). intro. cut (x * z < x * y)%Z. intro. cut ((x * z)%Z <> (x * y)%Z). intro. apply H5. apply (sym_eq (A:=Z)). assumption. exact (Zorder.Zlt_not_eq (x * z) (x * y) H4). cut (x > 0)%Z. intro. exact (Zlt_reg_mult_l x z y H4 H2). exact (Zlt_gt 0 x H3). Qed. Lemma Zlt_mult_mult : forall a b c d : Z, (0 < a)%Z -> (0 < d)%Z -> (a < b)%Z -> (c < d)%Z -> (a * c < b * d)%Z. Proof. intros. apply Zlt_trans with (a * d)%Z. apply Zlt_reg_mult_l. Flip. assumption. rewrite Zmult_comm. rewrite Zmult_comm with b d. apply Zlt_reg_mult_l. Flip. assumption. Qed. Lemma Zgt_mult_conv_absorb_l : forall a x y : Z, (a < 0)%Z -> (a * x > a * y)%Z -> (x < y)%Z. (*QC*) Proof. intros. case (dec_eq x y). intro. apply False_ind. rewrite H1 in H0. cut ((a * y)%Z = (a * y)%Z). change ((a * y)%Z <> (a * y)%Z) in |- *. apply Zgt_not_eq. assumption. trivial. intro. case (not_Zeq x y H1). trivial. intro. apply False_ind. cut (a * y > a * x)%Z. apply Zgt_asym with (m := (a * y)%Z) (n := (a * x)%Z). assumption. apply Zlt_conv_mult_l. assumption. assumption. Qed. Lemma Zgt_mult_reg_absorb_l : forall a x y : Z, (a > 0)%Z -> (a * x > a * y)%Z -> (x > y)%Z. (*QC*) Proof. intros. cut (- - a > - - (0))%Z. intro. cut (- a < - (0))%Z. simpl in |- *. intro. replace x with (- - x)%Z. replace y with (- - y)%Z. apply Zlt_opp. apply Zgt_mult_conv_absorb_l with (a := (- a)%Z) (x := (- x)%Z). assumption. rewrite Zmult_opp_opp. rewrite Zmult_opp_opp. assumption. apply Zopp_involutive. apply Zopp_involutive. apply Zgt_lt. apply Zlt_opp. apply Zgt_lt. assumption. simpl in |- *. rewrite Zopp_involutive. assumption. Qed. Lemma Zopp_Zlt : forall x y : Z, (y < x)%Z -> (- x < - y)%Z. Proof. intros x y Hyx. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. Flip. ring. ring. Qed. Lemma Zmin_cancel_Zlt : forall x y : Z, (- x < - y)%Z -> (y < x)%Z. Proof. intros. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. apply Zlt_gt. assumption. ring. ring. Qed. Lemma Zmult_cancel_Zle : forall a x y : Z, (a < 0)%Z -> (a * x <= a * y)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * x)). apply Zle_lt_trans with (m := (a * y)%Z). assumption. apply Zgt_lt. apply Zlt_conv_mult_l. assumption. apply Zgt_lt. assumption. Qed. Lemma Zlt_mult_cancel_l : forall x y z : Z, (0 < x)%Z -> (x * y < x * z)%Z -> (y < z)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with x. apply Zlt_gt. assumption. apply Zlt_gt. assumption. Qed. Lemma Zmin_cancel_Zle : forall x y : Z, (- x <= - y)%Z -> (y <= x)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * y)%Z with (- y)%Z. replace (-1 * x)%Z with (- x)%Z. assumption. ring. ring. Qed. Lemma Zmult_resp_Zle : forall a x y : Z, (0 < a)%Z -> (a * y <= a * x)%Z -> (y <= x)%Z. Proof. intros. case (Z_le_gt_dec y x). trivial. intro. apply False_ind. apply (Zlt_irrefl (a * y)). apply Zle_lt_trans with (m := (a * x)%Z). assumption. apply Zlt_reg_mult_l. apply Zlt_gt. assumption. apply Zgt_lt. assumption. Qed. Lemma Zopp_Zle : forall x y : Z, (y <= x)%Z -> (- x <= - y)%Z. Proof. intros. apply Zmult_cancel_Zle with (a := (-1)%Z). constructor. replace (-1 * - y)%Z with y. replace (-1 * - x)%Z with x. assumption. clear y H; ring. clear x H; ring. Qed. Lemma Zle_lt_eq_S : forall x y : Z, (x <= y)%Z -> (y < x + 1)%Z -> y = x. Proof. intros. case (Z_le_lt_eq_dec x y H). intro H1. apply False_ind. generalize (Zlt_le_succ x y H1). intro. apply (Zlt_not_le y (x + 1) H0). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. intro H1. symmetry in |- *. assumption. Qed. Lemma Zlt_le_eq_S : forall x y : Z, (x < y)%Z -> (y <= x + 1)%Z -> y = (x + 1)%Z. Proof. intros. case (Z_le_lt_eq_dec y (x + 1) H0). intro H1. apply False_ind. generalize (Zlt_le_succ x y H). intro. apply (Zlt_not_le y (x + 1) H1). replace (x + 1)%Z with (Zsucc x). assumption. reflexivity. trivial. Qed. Lemma double_not_equal_zero : forall c d : Z, ~ (c = 0%Z /\ d = 0%Z) -> c <> d \/ c <> 0%Z. Proof. intros. case (Z_zerop c). intro. rewrite e. left. apply sym_not_eq. intro. apply H; repeat split; assumption. intro; right; assumption. Qed. Lemma triple_not_equal_zero : forall a b c : Z, ~ (a = 0%Z /\ b = 0%Z /\ c = 0%Z) -> a <> 0%Z \/ b <> 0%Z \/ c <> 0%Z. Proof. intros a b c H; case (Z_zerop a); intro Ha; [ case (Z_zerop b); intro Hb; [ case (Z_zerop c); intro Hc; [ apply False_ind; apply H; repeat split | right; right ] | right; left ] | left ]; assumption. Qed. Lemma mediant_1 : forall m n m' n' : Z, (m' * n < m * n')%Z -> ((m + m') * n < m * (n + n'))%Z. Proof. intros. rewrite Zmult_plus_distr_r. rewrite Zmult_plus_distr_l. apply Zplus_lt_compat_l. assumption. Qed. Lemma mediant_2 : forall m n m' n' : Z, (m' * n < m * n')%Z -> (m' * (n + n') < (m + m') * n')%Z. Proof. intros. rewrite Zmult_plus_distr_l. rewrite Zmult_plus_distr_r. apply Zplus_lt_compat_r. assumption. Qed. Lemma mediant_3 : forall a b m n m' n' : Z, (0 <= a * m + b * n)%Z -> (0 <= a * m' + b * n')%Z -> (0 <= a * (m + m') + b * (n + n'))%Z. Proof. intros. replace (a * (m + m') + b * (n + n'))%Z with (a * m + b * n + (a * m' + b * n'))%Z. apply Zplus_le_0_compat. assumption. assumption. ring. Qed. Lemma fraction_lt_trans : forall a b c d e f : Z, (0 < b)%Z -> (0 < d)%Z -> (0 < f)%Z -> (a * d < c * b)%Z -> (c * f < e * d)%Z -> (a * f < e * b)%Z. Proof. intros. apply Zgt_lt. apply Zgt_mult_reg_absorb_l with d. Flip. apply Zgt_trans with (c * b * f)%Z. replace (d * (e * b))%Z with (b * (e * d))%Z. replace (c * b * f)%Z with (b * (c * f))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. replace (c * b * f)%Z with (f * (c * b))%Z. replace (d * (a * f))%Z with (f * (a * d))%Z. apply Zlt_gt. apply Zlt_reg_mult_l. Flip. assumption. ring. ring. Qed. Lemma square_pos : forall a : Z, a <> 0%Z -> (0 < a * a)%Z. Proof. intros [| p| p]; intros; [ Falsum | constructor | constructor ]. Qed. Hint Resolve square_pos: zarith. (*###########################################################################*) (** Properties of positive numbers, mapping between Z and nat *) (*###########################################################################*) Definition Z2positive (z : Z) := match z with | Zpos p => p | Zneg p => p | Z0 => 1%positive end. Lemma ZL9 : forall p : positive, Z_of_nat (nat_of_P p) = Zpos p. (*QF*) Proof. intro. cut (exists h : nat, nat_of_P p = S h). intro. case H. intros. unfold Z_of_nat in |- *. rewrite H0. apply f_equal with (A := positive) (B := Z) (f := Zpos). cut (P_of_succ_nat (nat_of_P p) = P_of_succ_nat (S x)). intro. rewrite P_of_succ_nat_o_nat_of_P_eq_succ in H1. cut (Ppred (Psucc p) = Ppred (P_of_succ_nat (S x))). intro. rewrite Ppred_succ in H2. simpl in H2. rewrite Ppred_succ in H2. apply sym_eq. assumption. apply f_equal with (A := positive) (B := positive) (f := Ppred). assumption. apply f_equal with (f := P_of_succ_nat). assumption. apply ZL4. Qed. Coercion Z_of_nat : nat >-> Z. Lemma ZERO_lt_POS : forall p : positive, (0 < Zpos p)%Z. Proof. intros. constructor. Qed. Lemma POS_neq_ZERO : forall p : positive, Zpos p <> 0%Z. Proof. intros. apply sym_not_eq. apply Zorder.Zlt_not_eq. apply ZERO_lt_POS. Qed. Lemma NEG_neq_ZERO : forall p : positive, Zneg p <> 0%Z. Proof. intros. apply Zorder.Zlt_not_eq. unfold Zlt in |- *. constructor. Qed. Lemma POS_resp_eq : forall p0 p1 : positive, Zpos p0 = Zpos p1 -> p0 = p1. Proof. intros. injection H. trivial. Qed. Lemma nat_nat_pos : forall m n : nat, ((m + 1) * (n + 1) > 0)%Z. (*QF*) Proof. intros. apply Zlt_gt. cut (Z_of_nat m + 1 > 0)%Z. intro. cut (0 < Z_of_nat n + 1)%Z. intro. cut ((Z_of_nat m + 1) * 0 < (Z_of_nat m + 1) * (Z_of_nat n + 1))%Z. rewrite Zmult_0_r. intro. assumption. apply Zlt_reg_mult_l. assumption. assumption. change (0 < Zsucc (Z_of_nat n))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat n)%Z in |- *. apply Znat.inj_le. apply le_O_n. apply Zlt_gt. change (0 < Zsucc (Z_of_nat m))%Z in |- *. apply Zle_lt_succ. change (Z_of_nat 0 <= Z_of_nat m)%Z in |- *. apply Znat.inj_le. apply le_O_n. Qed. Theorem S_predn : forall m : nat, m <> 0 -> S (pred m) = m. (*QF*) Proof. intros. case (O_or_S m). intro. case s. intros. rewrite <- e. rewrite <- pred_Sn with (n := x). trivial. intro. apply False_ind. apply H. apply sym_eq. assumption. Qed. Lemma absolu_1 : forall x : Z, Zabs_nat x = 0 -> x = 0%Z. (*QF*) Proof. intros. case (dec_eq x 0). intro. assumption. intro. apply False_ind. cut ((x < 0)%Z \/ (x > 0)%Z). intro. ElimCompare x 0%Z. intro. cut (x = 0%Z). assumption. cut ((x ?= 0)%Z = Datatypes.Eq -> x = 0%Z). intro. apply H3. assumption. apply proj1 with (B := x = 0%Z -> (x ?= 0)%Z = Datatypes.Eq). change ((x ?= 0)%Z = Datatypes.Eq <-> x = 0%Z) in |- *. apply Zcompare_Eq_iff_eq. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. change (x < 0)%Z in H2. cut (0 > x)%Z. intro. cut (exists p : positive, (0 + - x)%Z = Zpos p). simpl in |- *. intro. case H4. intros. cut (exists q : positive, x = Zneg q). intro. case H6. intros. rewrite H7. unfold Zabs_nat in |- *. generalize x1. exact ZL4. cut (x = (- Zpos x0)%Z). simpl in |- *. intro. exists x0. assumption. cut ((- - x)%Z = x). intro. rewrite <- H6. exact (f_equal Zopp H5). apply Zopp_involutive. apply Zcompare_Gt_spec. assumption. apply Zlt_gt. assumption. (***) intro. cut (exists h : nat, Zabs_nat x = S h). intro. case H3. rewrite H. exact O_S. cut (exists p : positive, (x + - (0))%Z = Zpos p). simpl in |- *. rewrite Zplus_0_r. intro. case H3. intros. rewrite H4. unfold Zabs_nat in |- *. generalize x0. exact ZL4. apply Zcompare_Gt_spec. assumption. (***) cut ((x < 0)%Z \/ (0 < x)%Z). intro. apply or_ind with (A := (x < 0)%Z) (B := (0 < x)%Z) (P := (x < 0)%Z \/ (x > 0)%Z). intro. left. assumption. intro. right. apply Zlt_gt. assumption. assumption. apply not_Zeq. assumption. Qed. Lemma absolu_2 : forall x : Z, x <> 0%Z -> Zabs_nat x <> 0. (*QF*) Proof. intros. intro. apply H. apply absolu_1. assumption. Qed. Lemma absolu_inject_nat : forall n : nat, Zabs_nat (Z_of_nat n) = n. Proof. simple induction n; simpl in |- *. reflexivity. intros. apply nat_of_P_o_P_of_succ_nat_eq_succ. Qed. Lemma eq_inj : forall m n : nat, m = n :>Z -> m = n. Proof. intros. generalize (f_equal Zabs_nat H). intro. rewrite (absolu_inject_nat m) in H0. rewrite (absolu_inject_nat n) in H0. assumption. Qed. Lemma lt_inj : forall m n : nat, (m < n)%Z -> m < n. Proof. intros. omega. Qed. Lemma le_inj : forall m n : nat, (m <= n)%Z -> m <= n. Proof. intros. omega. Qed. Lemma inject_nat_S_inf : forall x : Z, (0 < x)%Z -> {n : nat | x = S n}. Proof. intros [| p| p] Hp; try discriminate Hp. exists (pred (nat_of_P p)). rewrite S_predn. symmetry in |- *; apply ZL9. clear Hp; apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma le_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x <= y)%Z -> Zabs_nat x <= Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; apply le_O_n || (try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end). simpl in |- *. apply le_inj. do 2 rewrite ZL9. assumption. Qed. Lemma lt_absolu : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> (x < y)%Z -> Zabs_nat x < Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy Hxy; inversion Hxy; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end; simpl in |- *; apply lt_inj; repeat rewrite ZL9; assumption. Qed. Lemma absolu_plus : forall x y : Z, (0 <= x)%Z -> (0 <= y)%Z -> Zabs_nat (x + y) = Zabs_nat x + Zabs_nat y. Proof. intros [| x| x] [| y| y] Hx Hy; trivial; try match goal with | id1:(0 <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= 0)%Z |- _ => apply False_ind; apply id1; constructor | id1:(Zpos _ <= Zneg _)%Z |- _ => apply False_ind; apply id1; constructor end. rewrite <- BinInt.Zpos_plus_distr. unfold Zabs_nat in |- *. apply nat_of_P_plus_morphism. Qed. Lemma pred_absolu : forall x : Z, (0 < x)%Z -> pred (Zabs_nat x) = Zabs_nat (x - 1). Proof. intros x Hx. generalize (Z_lt_lt_S_eq_dec 0 x Hx); simpl in |- *; intros [H1| H1]; [ replace (Zabs_nat x) with (Zabs_nat (x - 1 + 1)); [ idtac | apply f_equal with Z; auto with zarith ]; rewrite absolu_plus; [ unfold Zabs_nat at 2, nat_of_P, Piter_op in |- *; omega | auto with zarith | intro; discriminate ] | rewrite <- H1; reflexivity ]. Qed. Definition pred_nat : forall (x : Z) (Hx : (0 < x)%Z), nat. intros [| px| px] Hx; try abstract (discriminate Hx). exact (pred (nat_of_P px)). Defined. Lemma pred_nat_equal : forall (x : Z) (Hx1 Hx2 : (0 < x)%Z), pred_nat x Hx1 = pred_nat x Hx2. Proof. intros [| px| px] Hx1 Hx2; try (discriminate Hx1); trivial. Qed. Let pred_nat_unfolded_subproof px : Pos.to_nat px <> 0. Proof. apply sym_not_equal; apply lt_O_neq; apply lt_O_nat_of_P. Qed. Lemma pred_nat_unfolded : forall (x : Z) (Hx : (0 < x)%Z), x = S (pred_nat x Hx). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. symmetry in |- *; apply ZL9. clear Hx; apply pred_nat_unfolded_subproof. Qed. Lemma absolu_pred_nat : forall (m : Z) (Hm : (0 < m)%Z), S (pred_nat m Hm) = Zabs_nat m. Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite S_predn. reflexivity. apply pred_nat_unfolded_subproof. Qed. Lemma pred_nat_absolu : forall (m : Z) (Hm : (0 < m)%Z), pred_nat m Hm = Zabs_nat (m - 1). Proof. intros [| px| px] Hx; try discriminate Hx. unfold pred_nat in |- *. rewrite <- pred_absolu; reflexivity || assumption. Qed. Lemma minus_pred_nat : forall (n m : Z) (Hn : (0 < n)%Z) (Hm : (0 < m)%Z) (Hnm : (0 < n - m)%Z), S (pred_nat n Hn) - S (pred_nat m Hm) = S (pred_nat (n - m) Hnm). Proof. intros. simpl in |- *. destruct n; try discriminate Hn. destruct m; try discriminate Hm. unfold pred_nat at 1 2 in |- *. rewrite minus_pred; try apply lt_O_nat_of_P. apply eq_inj. rewrite <- pred_nat_unfolded. rewrite Znat.inj_minus1. repeat rewrite ZL9. reflexivity. apply le_inj. apply Zlt_le_weak. repeat rewrite ZL9. apply Zlt_O_minus_lt. assumption. Qed. (*###########################################################################*) (** Properties of Zsgn *) (*###########################################################################*) Lemma Zsgn_1 : forall x : Z, {Zsgn x = 0%Z} + {Zsgn x = 1%Z} + {Zsgn x = (-1)%Z}. (*QF*) Proof. intros. case x. left. left. unfold Zsgn in |- *. reflexivity. intro. simpl in |- *. left. right. reflexivity. intro. right. simpl in |- *. reflexivity. Qed. Lemma Zsgn_2 : forall x : Z, Zsgn x = 0%Z -> x = 0%Z. (*QF*) Proof. intros [| p1| p1]; simpl in |- *; intro H; constructor || discriminate H. Qed. Lemma Zsgn_3 : forall x : Z, x <> 0%Z -> Zsgn x <> 0%Z. (*QF*) Proof. intro. case x. intros. apply False_ind. apply H. reflexivity. intros. simpl in |- *. discriminate. intros. simpl in |- *. discriminate. Qed. Theorem Zsgn_4 : forall a : Z, a = (Zsgn a * Zabs_nat a)%Z. (*QF*) Proof. intro. case a. simpl in |- *. reflexivity. intro. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite Zmult_1_l. symmetry in |- *. apply ZL9. intros. unfold Zsgn in |- *. unfold Zabs_nat in |- *. rewrite ZL9. constructor. Qed. Theorem Zsgn_5 : forall a b x y : Z, x <> 0%Z -> y <> 0%Z -> (Zsgn a * x)%Z = (Zsgn b * y)%Z -> (Zsgn a * y)%Z = (Zsgn b * x)%Z. (*QF*) Proof. intros a b x y H H0. case a. case b. simpl in |- *. trivial. intro. unfold Zsgn in |- *. intro. rewrite Zmult_1_l in H1. simpl in H1. apply False_ind. apply H0. symmetry in |- *. assumption. intro. unfold Zsgn in |- *. intro. apply False_ind. apply H0. apply Zopp_inj. simpl in |- *. transitivity (-1 * y)%Z. constructor. transitivity (0 * x)%Z. symmetry in |- *. assumption. simpl in |- *. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity y. rewrite Zmult_1_l. reflexivity. transitivity (Zsgn b * (Zsgn b * y))%Z. case (Zsgn_1 b). intro. case s. intro. apply False_ind. apply H. rewrite e in H1. change ((1 * x)%Z = 0%Z) in H1. rewrite Zmult_1_l in H1. assumption. intro. rewrite e. rewrite Zmult_1_l. rewrite Zmult_1_l. reflexivity. intro. rewrite e. ring. rewrite Zmult_1_l in H1. rewrite H1. reflexivity. intro. unfold Zsgn at 1 in |- *. unfold Zsgn at 2 in |- *. intro. transitivity (Zsgn b * (-1 * (Zsgn b * y)))%Z. case (Zsgn_1 b). intros. case s. intro. apply False_ind. apply H. apply Zopp_inj. transitivity (-1 * x)%Z. ring. unfold Zopp in |- *. rewrite e in H1. transitivity (0 * y)%Z. assumption. simpl in |- *. reflexivity. intro. rewrite e. ring. intro. rewrite e. ring. rewrite <- H1. ring. Qed. Lemma Zsgn_6 : forall x : Z, x = 0%Z -> Zsgn x = 0%Z. Proof. intros. rewrite H. simpl in |- *. reflexivity. Qed. Lemma Zsgn_7 : forall x : Z, (x > 0)%Z -> Zsgn x = 1%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). Flip. intros. simpl in |- *. reflexivity. intros. apply False_ind. apply (Zlt_irrefl (Zneg p)). apply Zlt_trans with 0%Z. constructor. Flip. Qed. Lemma Zsgn_7' : forall x : Z, (0 < x)%Z -> Zsgn x = 1%Z. Proof. intros; apply Zsgn_7; Flip. Qed. Lemma Zsgn_8 : forall x : Z, (x < 0)%Z -> Zsgn x = (-1)%Z. Proof. intro. case x. intro. apply False_ind. apply (Zlt_irrefl 0). assumption. intros. apply False_ind. apply (Zlt_irrefl 0). apply Zlt_trans with (Zpos p). constructor. assumption. intros. simpl in |- *. reflexivity. Qed. Lemma Zsgn_9 : forall x : Z, Zsgn x = 1%Z -> (0 < x)%Z. Proof. intro. case x. intro. apply False_ind. simpl in H. discriminate. intros. constructor. intros. apply False_ind. discriminate. Qed. Lemma Zsgn_10 : forall x : Z, Zsgn x = (-1)%Z -> (x < 0)%Z. Proof. intro. case x. intro. apply False_ind. discriminate. intros. apply False_ind. discriminate. intros. constructor. Qed. Lemma Zsgn_11 : forall x : Z, (Zsgn x < 0)%Z -> (x < 0)%Z. Proof. intros. apply Zsgn_10. case (Zsgn_1 x). intro. apply False_ind. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply (H0 e). intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. discriminate. trivial. Qed. Lemma Zsgn_12 : forall x : Z, (0 < Zsgn x)%Z -> (0 < x)%Z. Proof. intros. apply Zsgn_9. case (Zsgn_1 x). intro. case s. intro. generalize (Zorder.Zlt_not_eq _ _ H). intro. generalize (sym_eq e). intro. apply False_ind. apply (H0 H1). trivial. intro. rewrite e in H. generalize (Zorder.Zlt_not_eq _ _ H). intro. apply False_ind. discriminate. Qed. Lemma Zsgn_13 : forall x : Z, (0 <= Zsgn x)%Z -> (0 <= x)%Z. Proof. intros. case (Z_le_lt_eq_dec 0 (Zsgn x) H). intro. apply Zlt_le_weak. apply Zsgn_12. assumption. intro. assert (x = 0%Z). apply Zsgn_2. symmetry in |- *. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_14 : forall x : Z, (Zsgn x <= 0)%Z -> (x <= 0)%Z. Proof. intros. case (Z_le_lt_eq_dec (Zsgn x) 0 H). intro. apply Zlt_le_weak. apply Zsgn_11. assumption. intro. assert (x = 0%Z). apply Zsgn_2. assumption. rewrite H0. apply Zle_refl. Qed. Lemma Zsgn_15 : forall x y : Z, Zsgn (x * y) = (Zsgn x * Zsgn y)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; constructor. Qed. Lemma Zsgn_16 : forall x y : Z, Zsgn (x * y) = 1%Z -> {(0 < x)%Z /\ (0 < y)%Z} + {(x < 0)%Z /\ (y < 0)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_17 : forall x y : Z, Zsgn (x * y) = (-1)%Z -> {(0 < x)%Z /\ (y < 0)%Z} + {(x < 0)%Z /\ (0 < y)%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right ]; repeat split. Qed. Lemma Zsgn_18 : forall x y : Z, Zsgn (x * y) = 0%Z -> {x = 0%Z} + {y = 0%Z}. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; try discriminate H; [ left | right | right ]; constructor. Qed. Lemma Zsgn_19 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 < x + y)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_12; assumption). Qed. Lemma Zsgn_20 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x + y < 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intro H; discriminate H || (constructor || apply Zsgn_11; assumption). Qed. Lemma Zsgn_21 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= x)%Z. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_22 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (x <= 0)%Z. Proof. Proof. intros [y| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_23 : forall x y : Z, (0 < Zsgn x + Zsgn y)%Z -> (0 <= y)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_24 : forall x y : Z, (Zsgn x + Zsgn y < 0)%Z -> (y <= 0)%Z. Proof. intros [[| p2| p2]| p1 [| p2| p2]| p1 [| p2| p2]]; simpl in |- *; intros H H0; discriminate H || discriminate H0. Qed. Lemma Zsgn_25 : forall x : Z, Zsgn (- x) = (- Zsgn x)%Z. Proof. intros [| p1| p1]; simpl in |- *; reflexivity. Qed. Lemma Zsgn_26 : forall x : Z, (0 < x)%Z -> (0 < Zsgn x)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Lemma Zsgn_27 : forall x : Z, (x < 0)%Z -> (Zsgn x < 0)%Z. Proof. intros [| p| p] Hp; trivial. Qed. Hint Resolve Zsgn_1 Zsgn_2 Zsgn_3 Zsgn_4 Zsgn_5 Zsgn_6 Zsgn_7 Zsgn_7' Zsgn_8 Zsgn_9 Zsgn_10 Zsgn_11 Zsgn_12 Zsgn_13 Zsgn_14 Zsgn_15 Zsgn_16 Zsgn_17 Zsgn_18 Zsgn_19 Zsgn_20 Zsgn_21 Zsgn_22 Zsgn_23 Zsgn_24 Zsgn_25 Zsgn_26 Zsgn_27: zarith. (*###########################################################################*) (** Properties of Zabs *) (*###########################################################################*) Lemma Zabs_1 : forall z p : Z, (Zabs z < p)%Z -> (z < p)%Z /\ (- p < z)%Z. Proof. intros z p. case z. intros. simpl in H. split. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. assumption. intros. simpl in H. split. assumption. apply Zlt_trans with (m := 0%Z). apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl; trivial. ring_simplify (-1 * - p)%Z (-1 * 0)%Z. apply Zlt_gt. apply Zlt_trans with (m := Zpos p0). constructor. assumption. constructor. intros. simpl in H. split. apply Zlt_trans with (m := Zpos p0). constructor. assumption. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). replace (-1)%Z with (Zpred 0). apply Zlt_pred. simpl;trivial. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (- Zneg p0)%Z. replace (- Zneg p0)%Z with (Zpos p0). apply Zlt_gt. assumption. symmetry in |- *. apply Zopp_neg. rewrite Zopp_mult_distr_l_reverse with (n := 1%Z). simpl in |- *. constructor. Qed. Lemma Zabs_2 : forall z p : Z, (Zabs z > p)%Z -> (z > p)%Z \/ (- p > z)%Z. Proof. intros z p. case z. intros. simpl in H. left. assumption. intros. simpl in H. left. assumption. intros. simpl in H. right. apply Zlt_gt. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. ring_simplify (-1 * - p)%Z. replace (-1 * Zneg p0)%Z with (Zpos p0). assumption. reflexivity. Qed. Lemma Zabs_3 : forall z p : Z, (z < p)%Z /\ (- p < z)%Z -> (Zabs z < p)%Z. Proof. intros z p. case z. intro. simpl in |- *. elim H. intros. assumption. intros. elim H. intros. simpl in |- *. assumption. intros. elim H. intros. simpl in |- *. apply Zgt_mult_conv_absorb_l with (a := (-1)%Z). constructor. replace (-1 * Zpos p0)%Z with (Zneg p0). replace (-1 * p)%Z with (- p)%Z. apply Zlt_gt. assumption. ring. simpl in |- *. reflexivity. Qed. Lemma Zabs_4 : forall z p : Z, (Zabs z < p)%Z -> (- p < z < p)%Z. Proof. intros. split. apply proj2 with (A := (z < p)%Z). apply Zabs_1. assumption. apply proj1 with (B := (- p < z)%Z). apply Zabs_1. assumption. Qed. Lemma Zabs_5 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z <= p)%Z. Proof. intros. split. replace (- p)%Z with (Zsucc (- Zsucc p)). apply Zlt_le_succ. apply proj2 with (A := (z < Zsucc p)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. unfold Zsucc in |- *. ring. apply Zlt_succ_le. apply proj1 with (B := (- Zsucc p < z)%Z). apply Zabs_1. apply Zle_lt_succ. assumption. Qed. Lemma Zabs_6 : forall z p : Z, (Zabs z <= p)%Z -> (z <= p)%Z. Proof. intros. apply proj2 with (A := (- p <= z)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_7 : forall z p : Z, (Zabs z <= p)%Z -> (- p <= z)%Z. Proof. intros. apply proj1 with (B := (z <= p)%Z). apply Zabs_5. assumption. Qed. Lemma Zabs_8 : forall z p : Z, (- p <= z <= p)%Z -> (Zabs z <= p)%Z. Proof. intros. apply Zlt_succ_le. apply Zabs_3. elim H. intros. split. apply Zle_lt_succ. assumption. apply Zlt_le_trans with (m := (- p)%Z). apply Zgt_lt. apply Zlt_opp. apply Zlt_succ. assumption. Qed. Lemma Zabs_min : forall z : Z, Zabs z = Zabs (- z). Proof. intro. case z. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. intro. simpl in |- *. reflexivity. Qed. Lemma Zabs_9 : forall z p : Z, (0 <= p)%Z -> (p < z)%Z \/ (z < - p)%Z -> (p < Zabs z)%Z. Proof. intros. case H0. intro. replace (Zabs z) with z. assumption. symmetry in |- *. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. assumption. intro. cut (Zabs z = (- z)%Z). intro. rewrite H2. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. rewrite Zabs_min. apply Zabs_eq. apply Zlt_le_weak. apply Zle_lt_trans with (m := p). assumption. apply Zmin_cancel_Zlt. ring_simplify (- - z)%Z. assumption. Qed. Lemma Zabs_10 : forall z : Z, (0 <= Zabs z)%Z. Proof. intro. case (Z_zerop z). intro. rewrite e. simpl in |- *. apply Zle_refl. intro. case (not_Zeq z 0 n). intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. right. assumption. intro. apply Zlt_le_weak. apply Zabs_9. apply Zle_refl. simpl in |- *. left. assumption. Qed. Lemma Zabs_11 : forall z : Z, z <> 0%Z -> (0 < Zabs z)%Z. Proof. intros. apply Zabs_9. apply Zle_refl. simpl in |- *. apply not_Zeq. intro. apply H. symmetry in |- *. assumption. Qed. Lemma Zabs_12 : forall z m : Z, (m < Zabs z)%Z -> {(m < z)%Z} + {(z < - m)%Z}. Proof. intros [| p| p] m; simpl in |- *; intros H; [ left | left | right; apply Zmin_cancel_Zlt; rewrite Zopp_involutive ]; assumption. Qed. Lemma Zabs_mult : forall z p : Z, Zabs (z * p) = (Zabs z * Zabs p)%Z. Proof. intros. case z. simpl in |- *. reflexivity. case p. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. case p. intro. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zabs_plus : forall z p : Z, (Zabs (z + p) <= Zabs z + Zabs p)%Z. Proof. intros. case z. simpl in |- *. apply Zle_refl. case p. intro. simpl in |- *. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 - Zneg p0)%Z. replace (Zpos p1 - Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (- (Zpos p0 + Zneg p0))%Z. replace (Zpos p1 - Zneg p0 + (Zpos p1 + Zneg p0))%Z with (2 * Zpos p1)%Z. replace (- (Zpos p0 + Zneg p0))%Z with 0%Z. apply Zmult_gt_0_le_0_compat. constructor. apply Zlt_le_weak. constructor. rewrite <- Zopp_neg with p0. ring. ring. ring. apply Zplus_le_compat. apply Zle_refl. apply Zlt_le_weak. constructor. case p. simpl in |- *. intro. apply Zle_refl. intros. unfold Zabs at 2 in |- *. unfold Zabs at 2 in |- *. apply Zabs_8. split. apply Zplus_le_reg_l with (Zpos p1 + Zneg p0)%Z. replace (Zpos p1 + Zneg p0 + - (Zpos p1 + Zpos p0))%Z with (Zneg p0 - Zpos p0)%Z. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with 0%Z. apply Zplus_le_reg_l with (Zpos p0). replace (Zpos p0 + (Zneg p0 - Zpos p0))%Z with (Zneg p0). simpl in |- *. apply Zlt_le_weak. constructor. ring. replace (Zpos p1 + Zneg p0 + (Zneg p1 + Zpos p0))%Z with (Zpos p1 + Zneg p1 + (Zpos p0 + Zneg p0))%Z. replace 0%Z with (0 + 0)%Z. apply Zplus_eq_compat. rewrite <- Zopp_neg with p1. ring. rewrite <- Zopp_neg with p0. ring. simpl in |- *. constructor. ring. ring. apply Zplus_le_compat. apply Zlt_le_weak. constructor. apply Zle_refl. intros. simpl in |- *. apply Zle_refl. Qed. Lemma Zabs_neg : forall z : Z, (z <= 0)%Z -> Zabs z = (- z)%Z. Proof. intro. case z. simpl in |- *. intro. reflexivity. intros. apply False_ind. apply H. simpl in |- *. reflexivity. intros. simpl in |- *. reflexivity. Qed. Lemma Zle_Zabs: forall z, (z <= Zabs z)%Z. Proof. intros [|z|z]; simpl; auto with zarith; apply Zle_neg_pos. Qed. Hint Resolve Zabs_1 Zabs_2 Zabs_3 Zabs_4 Zabs_5 Zabs_6 Zabs_7 Zabs_8 Zabs_9 Zabs_10 Zabs_11 Zabs_12 Zabs_min Zabs_neg Zabs_mult Zabs_plus Zle_Zabs: zarith. (*###########################################################################*) (** Induction on Z *) (*###########################################################################*) Lemma Zind : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p. intro. intro. cut (forall q : Z, (p <= q)%Z -> exists k : nat, q = (p + k)%Z). intro. cut (forall k : nat, P (p + k)%Z). intro. intros. cut (exists k : nat, q = (p + Z_of_nat k)%Z). intro. case H4. intros. rewrite H5. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. ring_simplify (p + 0)%Z. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). ring_simplify (- p + (p + Z_of_nat k))%Z. apply Znat.inj_le. apply le_O_n. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (q - p)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (p <= q)%Z -> P q -> P (q + 1)%Z) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (p <= q)%Z -> {k : nat | q = (p + k)%Z}). intro. cut (forall k : nat, F (p + k)%Z). intro. intros. cut {k : nat | q = (p + Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. rewrite Zplus_0_r. assumption. replace (p + Z_of_nat (S k))%Z with (p + k + 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (Z_of_nat 0). replace (- p + (p + Z_of_nat k))%Z with (Z_of_nat k). apply Znat.inj_le. apply le_O_n. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. apply Zplus_assoc_reverse. intros. cut {k : nat | (q - p)%Z = Z_of_nat k}. intro H2. case H2. intro k. intros. exists k. apply Zplus_reg_l with (n := (- p)%Z). replace (- p + q)%Z with (q - p)%Z. rewrite e. rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. unfold Zminus in |- *. apply Zplus_comm. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_down : forall (P : Z -> Set) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> {k : nat | q = (p - k)%Z}). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut {k : nat | q = (p - Z_of_nat k)%Z}. intro. case H4. intros. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. unfold Zminus in |- *. unfold Zopp in |- *. rewrite Zplus_0_r; reflexivity. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. unfold Zminus in |- *; rewrite Zplus_assoc; rewrite Zplus_opp_l; reflexivity. rewrite Zplus_opp_l; reflexivity. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. unfold Zminus at 1 2 in |- *. rewrite Zplus_assoc_reverse. rewrite <- Zopp_plus_distr. reflexivity. intros. cut {k : nat | (p - q)%Z = Z_of_nat k}. intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- e. reflexivity. unfold Zminus in |- *. rewrite Zopp_plus_distr. rewrite Zplus_assoc. rewrite Zplus_opp_r. rewrite Zopp_involutive. reflexivity. apply Z_of_nat_complete_inf. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zind_down : forall (P : Z -> Prop) (p : Z), P p -> (forall q : Z, (q <= p)%Z -> P q -> P (q - 1)%Z) -> forall q : Z, (q <= p)%Z -> P q. Proof. intros F p. intro. intro. cut (forall q : Z, (q <= p)%Z -> exists k : nat, q = (p - k)%Z). intro. cut (forall k : nat, F (p - k)%Z). intro. intros. cut (exists k : nat, q = (p - Z_of_nat k)%Z). intro. case H4. intros x e. rewrite e. apply H2. apply H1. assumption. intro. induction k as [| k Hreck]. simpl in |- *. replace (p - 0)%Z with p. assumption. ring. replace (p - Z_of_nat (S k))%Z with (p - k - 1)%Z. apply H0. apply Zplus_le_reg_l with (p := (- p)%Z). replace (- p + p)%Z with (- Z_of_nat 0)%Z. replace (- p + (p - Z_of_nat k))%Z with (- Z_of_nat k)%Z. apply Zge_le. apply Zge_opp. apply Znat.inj_le. apply le_O_n. ring. ring_simplify; auto with arith. assumption. rewrite (Znat.inj_S k). unfold Zsucc in |- *. ring. intros. cut (exists k : nat, (p - q)%Z = Z_of_nat k). intro. case H2. intro k. intros. exists k. apply Zopp_inj. apply Zplus_reg_l with (n := p). replace (p + - (p - Z_of_nat k))%Z with (Z_of_nat k). rewrite <- H3. ring. ring. apply Z_of_nat_complete. unfold Zminus in |- *. apply Zle_left. assumption. Qed. Lemma Zrec_wf : forall (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zrec with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zrec_wf2 : forall (q : Z) (P : Z -> Set) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zrec_wf with (p := p). assumption. assumption. Qed. Lemma Zrec_wf_double : forall (P : Z -> Z -> Set) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zrec_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zrec_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. Lemma Zind_wf : forall (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> forall q : Z, (p <= q)%Z -> P q. Proof. intros P p WF_ind_step q Hq. cut (forall x : Z, (p <= x)%Z -> forall y : Z, (p <= y < x)%Z -> P y). intro. apply (H (Zsucc q)). apply Zle_le_succ. assumption. split; [ assumption | exact (Zlt_succ q) ]. intros x0 Hx0; generalize Hx0; pattern x0 in |- *. apply Zind with (p := p). intros. absurd (p <= p)%Z. apply Zgt_not_le. apply Zgt_le_trans with (m := y). apply Zlt_gt. elim H. intros. assumption. elim H. intros. assumption. apply Zle_refl. intros. apply WF_ind_step. intros. apply (H0 H). split. elim H2. intros. assumption. apply Zlt_le_trans with y. elim H2. intros. assumption. apply Zgt_succ_le. apply Zlt_gt. elim H1. intros. unfold Zsucc in |- *. assumption. assumption. Qed. Lemma Zind_wf2 : forall (q : Z) (P : Z -> Prop) (p : Z), (forall q : Z, (forall r : Z, (p <= r < q)%Z -> P r) -> P q) -> (p <= q)%Z -> P q. Proof. intros. apply Zind_wf with (p := p). assumption. assumption. Qed. Lemma Zind_wf_double : forall (P : Z -> Z -> Prop) (p0 q0 : Z), (forall n m : Z, (forall p q : Z, (q0 <= q)%Z -> (p0 <= p < n)%Z -> P p q) -> (forall p : Z, (q0 <= p < m)%Z -> P n p) -> P n m) -> forall p q : Z, (q0 <= q)%Z -> (p0 <= p)%Z -> P p q. Proof. intros P p0 q0 Hrec p. intros. generalize q H. pattern p in |- *. apply Zind_wf with (p := p0). intros p1 H1. intros. pattern q1 in |- *. apply Zind_wf with (p := q0). intros q2 H3. apply Hrec. intros. apply H1. assumption. assumption. intros. apply H3. assumption. assumption. assumption. Qed. (*###########################################################################*) (** Properties of Zmax *) (*###########################################################################*) Definition Zmax (n m : Z) := (n + m - Zmin n m)%Z. Lemma ZmaxSS : forall n m : Z, (Zmax n m + 1)%Z = Zmax (n + 1) (m + 1). Proof. intros. unfold Zmax in |- *. replace (Zmin (n + 1) (m + 1)) with (Zmin n m + 1)%Z. ring. symmetry in |- *. change (Zmin (Zsucc n) (Zsucc m) = Zsucc (Zmin n m)) in |- *. symmetry in |- *. apply Zmin_SS. Qed. Lemma Zle_max_l : forall n m : Z, (n <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- n + Zmin n m)%Z). ring_simplify (- n + Zmin n m + n)%Z. ring_simplify (- n + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_r. Qed. Lemma Zle_max_r : forall n m : Z, (m <= Zmax n m)%Z. Proof. intros. unfold Zmax in |- *. apply Zplus_le_reg_l with (p := (- m + Zmin n m)%Z). ring_simplify (- m + Zmin n m + m)%Z. ring_simplify (- m + Zmin n m + (n + m - Zmin n m))%Z. apply Zle_min_l. Qed. Lemma Zmin_or_informative : forall n m : Z, {Zmin n m = n} + {Zmin n m = m}. Proof. intros. case (Z_lt_ge_dec n m). unfold Zmin in |- *. unfold Zlt in |- *. intro z. rewrite z. left. reflexivity. intro. cut ({(n > m)%Z} + {n = m :>Z}). intro. case H. intros z0. unfold Zmin in |- *. unfold Zgt in z0. rewrite z0. right. reflexivity. intro. rewrite e. right. apply Zmin_n_n. cut ({(m < n)%Z} + {m = n :>Z}). intro. elim H. intro. left. apply Zlt_gt. assumption. intro. right. symmetry in |- *. assumption. apply Z_le_lt_eq_dec. apply Zge_le. assumption. Qed. Lemma Zmax_case : forall (n m : Z) (P : Z -> Set), P n -> P m -> P (Zmax n m). Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. cut ((n + m - n)%Z = m). intro. rewrite H1. assumption. ring. intro. rewrite e. cut ((n + m - m)%Z = n). intro. rewrite H1. assumption. ring. Qed. Lemma Zmax_or_informative : forall n m : Z, {Zmax n m = n} + {Zmax n m = m}. Proof. intros. unfold Zmax in |- *. case Zmin_or_informative with (n := n) (m := m). intro. rewrite e. right. ring. intro. rewrite e. left. ring. Qed. Lemma Zmax_n_n : forall n : Z, Zmax n n = n. Proof. intros. unfold Zmax in |- *. rewrite (Zmin_n_n n). ring. Qed. Hint Resolve ZmaxSS Zle_max_r Zle_max_l Zmax_n_n: zarith. (*###########################################################################*) (** Properties of Arity *) (*###########################################################################*) Lemma Zeven_S : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x + 1). Proof. exact Zeven.Zeven_Sn. Qed. Lemma Zeven_pred : forall x : Z, Zeven.Zodd x -> Zeven.Zeven (x - 1). Proof. exact Zeven.Zeven_pred. Qed. (* This lemma used to be useful since it was mentioned with an unnecessary premise `x>=0` as Z_modulo_2 in ZArith, but the ZArith version has been fixed. *) Definition Z_modulo_2_always : forall x : Z, {y : Z | x = (2 * y)%Z} + {y : Z | x = (2 * y + 1)%Z} := Zeven.Z_modulo_2. (*###########################################################################*) (** Properties of Zdiv *) (*###########################################################################*) Lemma Z_div_mod_eq_2 : forall a b : Z, (0 < b)%Z -> (b * (a / b))%Z = (a - a mod b)%Z. Proof. intros. apply Zplus_minus_eq. rewrite Zplus_comm. apply Z_div_mod_eq. Flip. Qed. Lemma Z_div_le : forall a b c : Z, (0 < c)%Z -> (b <= a)%Z -> (b / c <= a / c)%Z. Proof. intros. apply Zge_le. apply Z_div_ge; Flip; assumption. Qed. Lemma Z_div_nonneg : forall a b : Z, (0 < b)%Z -> (0 <= a)%Z -> (0 <= a / b)%Z. Proof. intros. apply Zge_le. apply Z_div_ge0; Flip; assumption. Qed. Lemma Z_div_neg : forall a b : Z, (0 < b)%Z -> (a < 0)%Z -> (a / b < 0)%Z. Proof. intros. rewrite (Z_div_mod_eq a b) in H0. elim (Z_mod_lt a b). intros H1 _. apply Znot_ge_lt. intro. apply (Zlt_not_le (b * (a / b) + a mod b) 0 H0). apply Zplus_le_0_compat. apply Zmult_le_0_compat. apply Zlt_le_weak; assumption. Flip. assumption. Flip. Flip. Qed. Hint Resolve Z_div_mod_eq_2 Z_div_le Z_div_nonneg Z_div_neg: zarith. (*###########################################################################*) (** Properties of Zpower *) (*###########################################################################*) Lemma Zpower_1 : forall a : Z, (a ^ 1)%Z = a. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; auto with zarith. Qed. Lemma Zpower_2 : forall a : Z, (a ^ 2)%Z = (a * a)%Z. Proof. intros; unfold Zpower in |- *; unfold Zpower_pos in |- *; simpl in |- *; ring. Qed. Hint Resolve Zpower_1 Zpower_2: zarith.
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: blk_mem_gen_v8_3_5.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_3 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_3 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_3 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_3 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_3 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_3 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_3 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_3 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_3 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_3 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_3 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_3 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_3 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_3 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_3 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_3 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_3 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_3 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (blk_mem_gen_v8_3_5) which is // declared/implemented further down in this file. //***************************************************************************** module blk_mem_gen_v8_3_5_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module blk_mem_gen_v8_3_5_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module blk_mem_gen_v8_3_5_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_3_5" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_3_5_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="zynquplus"?"virtex7":(C_FAMILY=="kintexuplus"?"virtex7":(C_FAMILY=="virtexuplus"?"virtex7":(C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; // To match RTL : In RTL, write enable of the primitive is tied to all 1's and // the enable of the primitive is ANDing of wea(0) and ena. so eventually, the // write operation depends on both enable and write enable. So, the below code // which is actually doing the write operation only on enable ignoring the wea // is removed to be in consistent with RTL. // To Fix CR855535 (The fix to this CR is reverted to match RTL) //assign wea_i = (HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 1 && ENA == 1) ? 'b1 :(HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 0) ? WEA : (HAS_A_WRITE && ena_i && C_USE_ECC == 0) ? WEA : 'b0; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin // Modified for Implementing CR_859399 current_contents[0] = !(current_contents[30]); current_contents[1] = !(current_contents[62]); /*current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]);*/ end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** blk_mem_gen_v8_3_5_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_3_5 #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "", parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, output rsta_busy, output rstb_busy, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; reg RSTA_BUSY = 0; reg RSTB_BUSY = 0; // Declaration of internal signals to avoid warnings #927399 wire CLKA; wire RSTA; wire ENA; wire REGCEA; wire CLKB; wire RSTB; wire ENB; wire REGCEB; wire INJECTSBITERR; wire INJECTDBITERR; wire S_ACLK; wire S_ARESETN; wire S_AXI_AWVALID; wire S_AXI_WLAST; wire S_AXI_WVALID; wire S_AXI_BREADY; wire S_AXI_ARVALID; wire S_AXI_RREADY; wire S_AXI_INJECTSBITERR; wire S_AXI_INJECTDBITERR; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign rsta_busy = RSTA_BUSY; assign rstb_busy = RSTB_BUSY; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; // Safety logic related signals reg [4:0] RSTA_SHFT_REG = 0; reg POR_A = 0; reg [4:0] RSTB_SHFT_REG = 0; reg POR_B = 0; reg ENA_dly = 0; reg ENA_dly_D = 0; reg ENB_dly = 0; reg ENB_dly_D = 0; wire RSTA_I_SAFE; wire RSTB_I_SAFE; wire ENA_I_SAFE; wire ENB_I_SAFE; reg ram_rstram_a_busy = 0; reg ram_rstreg_a_busy = 0; reg ram_rstram_b_busy = 0; reg ram_rstreg_b_busy = 0; reg ENA_dly_reg = 0; reg ENB_dly_reg = 0; reg ENA_dly_reg_D = 0; reg ENB_dly_reg_D = 0; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate //************************************************************************** // NO SAFETY LOGIC //************************************************************************** generate if (C_EN_SAFETY_CKT == 0) begin : NO_SAFETY_CKT_GEN assign ENA_I_SAFE = ena_in; assign ENB_I_SAFE = ENB; assign RSTA_I_SAFE = rsta_in; assign RSTB_I_SAFE = RSTB; end endgenerate //*************************************************************************** // SAFETY LOGIC // Power-ON Reset Generation //*************************************************************************** generate if (C_EN_SAFETY_CKT == 1) begin always @(posedge clka) RSTA_SHFT_REG <= #FLOP_DELAY {RSTA_SHFT_REG[3:0],1'b1} ; always @(posedge clka) POR_A <= #FLOP_DELAY RSTA_SHFT_REG[4] ^ RSTA_SHFT_REG[0]; always @(posedge clkb) RSTB_SHFT_REG <= #FLOP_DELAY {RSTB_SHFT_REG[3:0],1'b1} ; always @(posedge clkb) POR_B <= #FLOP_DELAY RSTB_SHFT_REG[4] ^ RSTB_SHFT_REG[0]; assign RSTA_I_SAFE = rsta_in | POR_A; assign RSTB_I_SAFE = (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) ? 1'b0 : (RSTB | POR_B); end endgenerate //----------------------------------------------------------------------------- // -- RSTA/B_BUSY Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && (C_EN_SAFETY_CKT == 1)) begin : RSTA_BUSY_NO_REG always @(*) ram_rstram_a_busy = RSTA_I_SAFE | ENA_dly | ENA_dly_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstram_a_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0 && C_EN_SAFETY_CKT == 1) begin : RSTA_BUSY_WITH_REG always @(*) ram_rstreg_a_busy = RSTA_I_SAFE | ENA_dly_reg | ENA_dly_reg_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstreg_a_busy; end endgenerate generate if ( (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) && C_EN_SAFETY_CKT == 1) begin : SPRAM_RST_BUSY always @(*) RSTB_BUSY = 1'b0; end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && (C_MEM_TYPE != 0 && C_MEM_TYPE != 3) && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_NO_REG always @(*) ram_rstram_b_busy = RSTB_I_SAFE | ENB_dly | ENB_dly_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstram_b_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_WITH_REG always @(*) ram_rstreg_b_busy = RSTB_I_SAFE | ENB_dly_reg | ENB_dly_reg_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstreg_b_busy; end endgenerate //----------------------------------------------------------------------------- // -- ENA/ENB Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && C_EN_SAFETY_CKT == 1) begin : ENA_NO_REG always @(posedge clka) begin ENA_dly <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_D <= #FLOP_DELAY ENA_dly; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_D | ena_in); end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0) && C_EN_SAFETY_CKT == 1) begin : ENA_WITH_REG always @(posedge clka) begin ENA_dly_reg <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_reg_D <= #FLOP_DELAY ENA_dly_reg; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_reg_D | ena_in); end endgenerate generate if (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) begin : SPRAM_ENB assign ENB_I_SAFE = 1'b0; end endgenerate generate if ((C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : ENB_NO_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_D <= #FLOP_DELAY ENB_dly; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_D | ENB); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1)begin : ENB_WITH_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly_reg <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_reg_D <= #FLOP_DELAY ENB_dly_reg; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_reg_D | ENB); end endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_3 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: blk_mem_gen_v8_3_5.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_3 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_3 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_3 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_3 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_3 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_3 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_3 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_3 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_3 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_3 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_3 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_3 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_3 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_3 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_3 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_3 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_3 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_3 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (blk_mem_gen_v8_3_5) which is // declared/implemented further down in this file. //***************************************************************************** module blk_mem_gen_v8_3_5_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module blk_mem_gen_v8_3_5_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module blk_mem_gen_v8_3_5_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_3_5" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_3_5_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="zynquplus"?"virtex7":(C_FAMILY=="kintexuplus"?"virtex7":(C_FAMILY=="virtexuplus"?"virtex7":(C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; // To match RTL : In RTL, write enable of the primitive is tied to all 1's and // the enable of the primitive is ANDing of wea(0) and ena. so eventually, the // write operation depends on both enable and write enable. So, the below code // which is actually doing the write operation only on enable ignoring the wea // is removed to be in consistent with RTL. // To Fix CR855535 (The fix to this CR is reverted to match RTL) //assign wea_i = (HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 1 && ENA == 1) ? 'b1 :(HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 0) ? WEA : (HAS_A_WRITE && ena_i && C_USE_ECC == 0) ? WEA : 'b0; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin // Modified for Implementing CR_859399 current_contents[0] = !(current_contents[30]); current_contents[1] = !(current_contents[62]); /*current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]);*/ end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** blk_mem_gen_v8_3_5_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_3_5 #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "", parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, output rsta_busy, output rstb_busy, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; reg RSTA_BUSY = 0; reg RSTB_BUSY = 0; // Declaration of internal signals to avoid warnings #927399 wire CLKA; wire RSTA; wire ENA; wire REGCEA; wire CLKB; wire RSTB; wire ENB; wire REGCEB; wire INJECTSBITERR; wire INJECTDBITERR; wire S_ACLK; wire S_ARESETN; wire S_AXI_AWVALID; wire S_AXI_WLAST; wire S_AXI_WVALID; wire S_AXI_BREADY; wire S_AXI_ARVALID; wire S_AXI_RREADY; wire S_AXI_INJECTSBITERR; wire S_AXI_INJECTDBITERR; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign rsta_busy = RSTA_BUSY; assign rstb_busy = RSTB_BUSY; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; // Safety logic related signals reg [4:0] RSTA_SHFT_REG = 0; reg POR_A = 0; reg [4:0] RSTB_SHFT_REG = 0; reg POR_B = 0; reg ENA_dly = 0; reg ENA_dly_D = 0; reg ENB_dly = 0; reg ENB_dly_D = 0; wire RSTA_I_SAFE; wire RSTB_I_SAFE; wire ENA_I_SAFE; wire ENB_I_SAFE; reg ram_rstram_a_busy = 0; reg ram_rstreg_a_busy = 0; reg ram_rstram_b_busy = 0; reg ram_rstreg_b_busy = 0; reg ENA_dly_reg = 0; reg ENB_dly_reg = 0; reg ENA_dly_reg_D = 0; reg ENB_dly_reg_D = 0; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate //************************************************************************** // NO SAFETY LOGIC //************************************************************************** generate if (C_EN_SAFETY_CKT == 0) begin : NO_SAFETY_CKT_GEN assign ENA_I_SAFE = ena_in; assign ENB_I_SAFE = ENB; assign RSTA_I_SAFE = rsta_in; assign RSTB_I_SAFE = RSTB; end endgenerate //*************************************************************************** // SAFETY LOGIC // Power-ON Reset Generation //*************************************************************************** generate if (C_EN_SAFETY_CKT == 1) begin always @(posedge clka) RSTA_SHFT_REG <= #FLOP_DELAY {RSTA_SHFT_REG[3:0],1'b1} ; always @(posedge clka) POR_A <= #FLOP_DELAY RSTA_SHFT_REG[4] ^ RSTA_SHFT_REG[0]; always @(posedge clkb) RSTB_SHFT_REG <= #FLOP_DELAY {RSTB_SHFT_REG[3:0],1'b1} ; always @(posedge clkb) POR_B <= #FLOP_DELAY RSTB_SHFT_REG[4] ^ RSTB_SHFT_REG[0]; assign RSTA_I_SAFE = rsta_in | POR_A; assign RSTB_I_SAFE = (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) ? 1'b0 : (RSTB | POR_B); end endgenerate //----------------------------------------------------------------------------- // -- RSTA/B_BUSY Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && (C_EN_SAFETY_CKT == 1)) begin : RSTA_BUSY_NO_REG always @(*) ram_rstram_a_busy = RSTA_I_SAFE | ENA_dly | ENA_dly_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstram_a_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0 && C_EN_SAFETY_CKT == 1) begin : RSTA_BUSY_WITH_REG always @(*) ram_rstreg_a_busy = RSTA_I_SAFE | ENA_dly_reg | ENA_dly_reg_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstreg_a_busy; end endgenerate generate if ( (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) && C_EN_SAFETY_CKT == 1) begin : SPRAM_RST_BUSY always @(*) RSTB_BUSY = 1'b0; end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && (C_MEM_TYPE != 0 && C_MEM_TYPE != 3) && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_NO_REG always @(*) ram_rstram_b_busy = RSTB_I_SAFE | ENB_dly | ENB_dly_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstram_b_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_WITH_REG always @(*) ram_rstreg_b_busy = RSTB_I_SAFE | ENB_dly_reg | ENB_dly_reg_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstreg_b_busy; end endgenerate //----------------------------------------------------------------------------- // -- ENA/ENB Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && C_EN_SAFETY_CKT == 1) begin : ENA_NO_REG always @(posedge clka) begin ENA_dly <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_D <= #FLOP_DELAY ENA_dly; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_D | ena_in); end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0) && C_EN_SAFETY_CKT == 1) begin : ENA_WITH_REG always @(posedge clka) begin ENA_dly_reg <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_reg_D <= #FLOP_DELAY ENA_dly_reg; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_reg_D | ena_in); end endgenerate generate if (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) begin : SPRAM_ENB assign ENB_I_SAFE = 1'b0; end endgenerate generate if ((C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : ENB_NO_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_D <= #FLOP_DELAY ENB_dly; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_D | ENB); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1)begin : ENB_WITH_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly_reg <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_reg_D <= #FLOP_DELAY ENB_dly_reg; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_reg_D | ENB); end endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_3 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: blk_mem_gen_v8_3_5.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_3 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_3 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_3 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_3 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_3 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_3 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_3 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_3 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_3 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_3 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_3 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_3 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_3 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_3 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_3 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_3 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_3 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_3 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (blk_mem_gen_v8_3_5) which is // declared/implemented further down in this file. //***************************************************************************** module blk_mem_gen_v8_3_5_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module blk_mem_gen_v8_3_5_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module blk_mem_gen_v8_3_5_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_3_5" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_3_5_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="zynquplus"?"virtex7":(C_FAMILY=="kintexuplus"?"virtex7":(C_FAMILY=="virtexuplus"?"virtex7":(C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; // To match RTL : In RTL, write enable of the primitive is tied to all 1's and // the enable of the primitive is ANDing of wea(0) and ena. so eventually, the // write operation depends on both enable and write enable. So, the below code // which is actually doing the write operation only on enable ignoring the wea // is removed to be in consistent with RTL. // To Fix CR855535 (The fix to this CR is reverted to match RTL) //assign wea_i = (HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 1 && ENA == 1) ? 'b1 :(HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 0) ? WEA : (HAS_A_WRITE && ena_i && C_USE_ECC == 0) ? WEA : 'b0; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin // Modified for Implementing CR_859399 current_contents[0] = !(current_contents[30]); current_contents[1] = !(current_contents[62]); /*current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]);*/ end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** blk_mem_gen_v8_3_5_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_3_5 #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "", parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, output rsta_busy, output rstb_busy, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; reg RSTA_BUSY = 0; reg RSTB_BUSY = 0; // Declaration of internal signals to avoid warnings #927399 wire CLKA; wire RSTA; wire ENA; wire REGCEA; wire CLKB; wire RSTB; wire ENB; wire REGCEB; wire INJECTSBITERR; wire INJECTDBITERR; wire S_ACLK; wire S_ARESETN; wire S_AXI_AWVALID; wire S_AXI_WLAST; wire S_AXI_WVALID; wire S_AXI_BREADY; wire S_AXI_ARVALID; wire S_AXI_RREADY; wire S_AXI_INJECTSBITERR; wire S_AXI_INJECTDBITERR; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign rsta_busy = RSTA_BUSY; assign rstb_busy = RSTB_BUSY; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; // Safety logic related signals reg [4:0] RSTA_SHFT_REG = 0; reg POR_A = 0; reg [4:0] RSTB_SHFT_REG = 0; reg POR_B = 0; reg ENA_dly = 0; reg ENA_dly_D = 0; reg ENB_dly = 0; reg ENB_dly_D = 0; wire RSTA_I_SAFE; wire RSTB_I_SAFE; wire ENA_I_SAFE; wire ENB_I_SAFE; reg ram_rstram_a_busy = 0; reg ram_rstreg_a_busy = 0; reg ram_rstram_b_busy = 0; reg ram_rstreg_b_busy = 0; reg ENA_dly_reg = 0; reg ENB_dly_reg = 0; reg ENA_dly_reg_D = 0; reg ENB_dly_reg_D = 0; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate //************************************************************************** // NO SAFETY LOGIC //************************************************************************** generate if (C_EN_SAFETY_CKT == 0) begin : NO_SAFETY_CKT_GEN assign ENA_I_SAFE = ena_in; assign ENB_I_SAFE = ENB; assign RSTA_I_SAFE = rsta_in; assign RSTB_I_SAFE = RSTB; end endgenerate //*************************************************************************** // SAFETY LOGIC // Power-ON Reset Generation //*************************************************************************** generate if (C_EN_SAFETY_CKT == 1) begin always @(posedge clka) RSTA_SHFT_REG <= #FLOP_DELAY {RSTA_SHFT_REG[3:0],1'b1} ; always @(posedge clka) POR_A <= #FLOP_DELAY RSTA_SHFT_REG[4] ^ RSTA_SHFT_REG[0]; always @(posedge clkb) RSTB_SHFT_REG <= #FLOP_DELAY {RSTB_SHFT_REG[3:0],1'b1} ; always @(posedge clkb) POR_B <= #FLOP_DELAY RSTB_SHFT_REG[4] ^ RSTB_SHFT_REG[0]; assign RSTA_I_SAFE = rsta_in | POR_A; assign RSTB_I_SAFE = (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) ? 1'b0 : (RSTB | POR_B); end endgenerate //----------------------------------------------------------------------------- // -- RSTA/B_BUSY Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && (C_EN_SAFETY_CKT == 1)) begin : RSTA_BUSY_NO_REG always @(*) ram_rstram_a_busy = RSTA_I_SAFE | ENA_dly | ENA_dly_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstram_a_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0 && C_EN_SAFETY_CKT == 1) begin : RSTA_BUSY_WITH_REG always @(*) ram_rstreg_a_busy = RSTA_I_SAFE | ENA_dly_reg | ENA_dly_reg_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstreg_a_busy; end endgenerate generate if ( (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) && C_EN_SAFETY_CKT == 1) begin : SPRAM_RST_BUSY always @(*) RSTB_BUSY = 1'b0; end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && (C_MEM_TYPE != 0 && C_MEM_TYPE != 3) && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_NO_REG always @(*) ram_rstram_b_busy = RSTB_I_SAFE | ENB_dly | ENB_dly_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstram_b_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_WITH_REG always @(*) ram_rstreg_b_busy = RSTB_I_SAFE | ENB_dly_reg | ENB_dly_reg_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstreg_b_busy; end endgenerate //----------------------------------------------------------------------------- // -- ENA/ENB Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && C_EN_SAFETY_CKT == 1) begin : ENA_NO_REG always @(posedge clka) begin ENA_dly <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_D <= #FLOP_DELAY ENA_dly; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_D | ena_in); end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0) && C_EN_SAFETY_CKT == 1) begin : ENA_WITH_REG always @(posedge clka) begin ENA_dly_reg <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_reg_D <= #FLOP_DELAY ENA_dly_reg; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_reg_D | ena_in); end endgenerate generate if (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) begin : SPRAM_ENB assign ENB_I_SAFE = 1'b0; end endgenerate generate if ((C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : ENB_NO_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_D <= #FLOP_DELAY ENB_dly; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_D | ENB); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1)begin : ENB_WITH_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly_reg <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_reg_D <= #FLOP_DELAY ENB_dly_reg; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_reg_D | ENB); end endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_3 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: blk_mem_gen_v8_3_5.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_3 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_3 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_3 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_3 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_3 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_3 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_3 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_3 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_3 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_3 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_3 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_3 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_3 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_3 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_3 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_3 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_3 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_3 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (blk_mem_gen_v8_3_5) which is // declared/implemented further down in this file. //***************************************************************************** module blk_mem_gen_v8_3_5_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module blk_mem_gen_v8_3_5_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module blk_mem_gen_v8_3_5_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_3_5" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_3_5_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="zynquplus"?"virtex7":(C_FAMILY=="kintexuplus"?"virtex7":(C_FAMILY=="virtexuplus"?"virtex7":(C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; // To match RTL : In RTL, write enable of the primitive is tied to all 1's and // the enable of the primitive is ANDing of wea(0) and ena. so eventually, the // write operation depends on both enable and write enable. So, the below code // which is actually doing the write operation only on enable ignoring the wea // is removed to be in consistent with RTL. // To Fix CR855535 (The fix to this CR is reverted to match RTL) //assign wea_i = (HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 1 && ENA == 1) ? 'b1 :(HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 0) ? WEA : (HAS_A_WRITE && ena_i && C_USE_ECC == 0) ? WEA : 'b0; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin // Modified for Implementing CR_859399 current_contents[0] = !(current_contents[30]); current_contents[1] = !(current_contents[62]); /*current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]);*/ end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** blk_mem_gen_v8_3_5_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_3_5 #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "", parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, output rsta_busy, output rstb_busy, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; reg RSTA_BUSY = 0; reg RSTB_BUSY = 0; // Declaration of internal signals to avoid warnings #927399 wire CLKA; wire RSTA; wire ENA; wire REGCEA; wire CLKB; wire RSTB; wire ENB; wire REGCEB; wire INJECTSBITERR; wire INJECTDBITERR; wire S_ACLK; wire S_ARESETN; wire S_AXI_AWVALID; wire S_AXI_WLAST; wire S_AXI_WVALID; wire S_AXI_BREADY; wire S_AXI_ARVALID; wire S_AXI_RREADY; wire S_AXI_INJECTSBITERR; wire S_AXI_INJECTDBITERR; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign rsta_busy = RSTA_BUSY; assign rstb_busy = RSTB_BUSY; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; // Safety logic related signals reg [4:0] RSTA_SHFT_REG = 0; reg POR_A = 0; reg [4:0] RSTB_SHFT_REG = 0; reg POR_B = 0; reg ENA_dly = 0; reg ENA_dly_D = 0; reg ENB_dly = 0; reg ENB_dly_D = 0; wire RSTA_I_SAFE; wire RSTB_I_SAFE; wire ENA_I_SAFE; wire ENB_I_SAFE; reg ram_rstram_a_busy = 0; reg ram_rstreg_a_busy = 0; reg ram_rstram_b_busy = 0; reg ram_rstreg_b_busy = 0; reg ENA_dly_reg = 0; reg ENB_dly_reg = 0; reg ENA_dly_reg_D = 0; reg ENB_dly_reg_D = 0; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate //************************************************************************** // NO SAFETY LOGIC //************************************************************************** generate if (C_EN_SAFETY_CKT == 0) begin : NO_SAFETY_CKT_GEN assign ENA_I_SAFE = ena_in; assign ENB_I_SAFE = ENB; assign RSTA_I_SAFE = rsta_in; assign RSTB_I_SAFE = RSTB; end endgenerate //*************************************************************************** // SAFETY LOGIC // Power-ON Reset Generation //*************************************************************************** generate if (C_EN_SAFETY_CKT == 1) begin always @(posedge clka) RSTA_SHFT_REG <= #FLOP_DELAY {RSTA_SHFT_REG[3:0],1'b1} ; always @(posedge clka) POR_A <= #FLOP_DELAY RSTA_SHFT_REG[4] ^ RSTA_SHFT_REG[0]; always @(posedge clkb) RSTB_SHFT_REG <= #FLOP_DELAY {RSTB_SHFT_REG[3:0],1'b1} ; always @(posedge clkb) POR_B <= #FLOP_DELAY RSTB_SHFT_REG[4] ^ RSTB_SHFT_REG[0]; assign RSTA_I_SAFE = rsta_in | POR_A; assign RSTB_I_SAFE = (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) ? 1'b0 : (RSTB | POR_B); end endgenerate //----------------------------------------------------------------------------- // -- RSTA/B_BUSY Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && (C_EN_SAFETY_CKT == 1)) begin : RSTA_BUSY_NO_REG always @(*) ram_rstram_a_busy = RSTA_I_SAFE | ENA_dly | ENA_dly_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstram_a_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0 && C_EN_SAFETY_CKT == 1) begin : RSTA_BUSY_WITH_REG always @(*) ram_rstreg_a_busy = RSTA_I_SAFE | ENA_dly_reg | ENA_dly_reg_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstreg_a_busy; end endgenerate generate if ( (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) && C_EN_SAFETY_CKT == 1) begin : SPRAM_RST_BUSY always @(*) RSTB_BUSY = 1'b0; end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && (C_MEM_TYPE != 0 && C_MEM_TYPE != 3) && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_NO_REG always @(*) ram_rstram_b_busy = RSTB_I_SAFE | ENB_dly | ENB_dly_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstram_b_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_WITH_REG always @(*) ram_rstreg_b_busy = RSTB_I_SAFE | ENB_dly_reg | ENB_dly_reg_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstreg_b_busy; end endgenerate //----------------------------------------------------------------------------- // -- ENA/ENB Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && C_EN_SAFETY_CKT == 1) begin : ENA_NO_REG always @(posedge clka) begin ENA_dly <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_D <= #FLOP_DELAY ENA_dly; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_D | ena_in); end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0) && C_EN_SAFETY_CKT == 1) begin : ENA_WITH_REG always @(posedge clka) begin ENA_dly_reg <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_reg_D <= #FLOP_DELAY ENA_dly_reg; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_reg_D | ena_in); end endgenerate generate if (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) begin : SPRAM_ENB assign ENB_I_SAFE = 1'b0; end endgenerate generate if ((C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : ENB_NO_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_D <= #FLOP_DELAY ENB_dly; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_D | ENB); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1)begin : ENB_WITH_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly_reg <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_reg_D <= #FLOP_DELAY ENB_dly_reg; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_reg_D | ENB); end endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_3 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: blk_mem_gen_v8_3_5.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_3 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_3 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_3 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_3 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_3 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_3 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_3 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_3 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_3 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_3 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_3 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_3 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_3 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_3 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_3 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_3 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_3 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_3 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_3 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_3 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_3 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_3 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_3 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_3 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_3 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_3 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_3 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_3 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (blk_mem_gen_v8_3_5) which is // declared/implemented further down in this file. //***************************************************************************** module blk_mem_gen_v8_3_5_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module blk_mem_gen_v8_3_5_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module blk_mem_gen_v8_3_5_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_3_5" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_3_5_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="zynquplus"?"virtex7":(C_FAMILY=="kintexuplus"?"virtex7":(C_FAMILY=="virtexuplus"?"virtex7":(C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY))))))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; // To match RTL : In RTL, write enable of the primitive is tied to all 1's and // the enable of the primitive is ANDing of wea(0) and ena. so eventually, the // write operation depends on both enable and write enable. So, the below code // which is actually doing the write operation only on enable ignoring the wea // is removed to be in consistent with RTL. // To Fix CR855535 (The fix to this CR is reverted to match RTL) //assign wea_i = (HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 1 && ENA == 1) ? 'b1 :(HAS_A_WRITE == 1 && C_MEM_TYPE == 1 &&C_USE_ECC == 1 && C_HAS_ENA == 0) ? WEA : (HAS_A_WRITE && ena_i && C_USE_ECC == 0) ? WEA : 'b0; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin // Modified for Implementing CR_859399 current_contents[0] = !(current_contents[30]); current_contents[1] = !(current_contents[62]); /*current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]);*/ end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B blk_mem_gen_v8_3_5_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** blk_mem_gen_v8_3_5_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_3_5 #(parameter C_CORENAME = "blk_mem_gen_v8_3_5", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_USE_URAM = 0, parameter C_EN_RDADDRA_CHG = 0, parameter C_EN_RDADDRB_CHG = 0, parameter C_EN_DEEPSLEEP_PIN = 0, parameter C_EN_SHUTDOWN_PIN = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "", parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, input deepsleep, input shutdown, output rsta_busy, output rstb_busy, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; reg RSTA_BUSY = 0; reg RSTB_BUSY = 0; // Declaration of internal signals to avoid warnings #927399 wire CLKA; wire RSTA; wire ENA; wire REGCEA; wire CLKB; wire RSTB; wire ENB; wire REGCEB; wire INJECTSBITERR; wire INJECTDBITERR; wire S_ACLK; wire S_ARESETN; wire S_AXI_AWVALID; wire S_AXI_WLAST; wire S_AXI_WVALID; wire S_AXI_BREADY; wire S_AXI_ARVALID; wire S_AXI_RREADY; wire S_AXI_INJECTSBITERR; wire S_AXI_INJECTDBITERR; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign rsta_busy = RSTA_BUSY; assign rstb_busy = RSTB_BUSY; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; // Safety logic related signals reg [4:0] RSTA_SHFT_REG = 0; reg POR_A = 0; reg [4:0] RSTB_SHFT_REG = 0; reg POR_B = 0; reg ENA_dly = 0; reg ENA_dly_D = 0; reg ENB_dly = 0; reg ENB_dly_D = 0; wire RSTA_I_SAFE; wire RSTB_I_SAFE; wire ENA_I_SAFE; wire ENB_I_SAFE; reg ram_rstram_a_busy = 0; reg ram_rstreg_a_busy = 0; reg ram_rstram_b_busy = 0; reg ram_rstreg_b_busy = 0; reg ENA_dly_reg = 0; reg ENB_dly_reg = 0; reg ENA_dly_reg_D = 0; reg ENB_dly_reg_D = 0; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate //************************************************************************** // NO SAFETY LOGIC //************************************************************************** generate if (C_EN_SAFETY_CKT == 0) begin : NO_SAFETY_CKT_GEN assign ENA_I_SAFE = ena_in; assign ENB_I_SAFE = ENB; assign RSTA_I_SAFE = rsta_in; assign RSTB_I_SAFE = RSTB; end endgenerate //*************************************************************************** // SAFETY LOGIC // Power-ON Reset Generation //*************************************************************************** generate if (C_EN_SAFETY_CKT == 1) begin always @(posedge clka) RSTA_SHFT_REG <= #FLOP_DELAY {RSTA_SHFT_REG[3:0],1'b1} ; always @(posedge clka) POR_A <= #FLOP_DELAY RSTA_SHFT_REG[4] ^ RSTA_SHFT_REG[0]; always @(posedge clkb) RSTB_SHFT_REG <= #FLOP_DELAY {RSTB_SHFT_REG[3:0],1'b1} ; always @(posedge clkb) POR_B <= #FLOP_DELAY RSTB_SHFT_REG[4] ^ RSTB_SHFT_REG[0]; assign RSTA_I_SAFE = rsta_in | POR_A; assign RSTB_I_SAFE = (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) ? 1'b0 : (RSTB | POR_B); end endgenerate //----------------------------------------------------------------------------- // -- RSTA/B_BUSY Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && (C_EN_SAFETY_CKT == 1)) begin : RSTA_BUSY_NO_REG always @(*) ram_rstram_a_busy = RSTA_I_SAFE | ENA_dly | ENA_dly_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstram_a_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0 && C_EN_SAFETY_CKT == 1) begin : RSTA_BUSY_WITH_REG always @(*) ram_rstreg_a_busy = RSTA_I_SAFE | ENA_dly_reg | ENA_dly_reg_D; always @(posedge clka) RSTA_BUSY <= #FLOP_DELAY ram_rstreg_a_busy; end endgenerate generate if ( (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) && C_EN_SAFETY_CKT == 1) begin : SPRAM_RST_BUSY always @(*) RSTB_BUSY = 1'b0; end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && (C_MEM_TYPE != 0 && C_MEM_TYPE != 3) && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_NO_REG always @(*) ram_rstram_b_busy = RSTB_I_SAFE | ENB_dly | ENB_dly_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstram_b_busy; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : RSTB_BUSY_WITH_REG always @(*) ram_rstreg_b_busy = RSTB_I_SAFE | ENB_dly_reg | ENB_dly_reg_D; always @(posedge clkb) RSTB_BUSY <= #FLOP_DELAY ram_rstreg_b_busy; end endgenerate //----------------------------------------------------------------------------- // -- ENA/ENB Generation //----------------------------------------------------------------------------- generate if ((C_HAS_MEM_OUTPUT_REGS_A==0 || (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==1)) && C_EN_SAFETY_CKT == 1) begin : ENA_NO_REG always @(posedge clka) begin ENA_dly <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_D <= #FLOP_DELAY ENA_dly; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_D | ena_in); end endgenerate generate if ( (C_HAS_MEM_OUTPUT_REGS_A==1 && C_RSTRAM_A==0) && C_EN_SAFETY_CKT == 1) begin : ENA_WITH_REG always @(posedge clka) begin ENA_dly_reg <= #FLOP_DELAY RSTA_I_SAFE; ENA_dly_reg_D <= #FLOP_DELAY ENA_dly_reg; end assign ENA_I_SAFE = (C_HAS_ENA == 0)? 1'b1 : (ENA_dly_reg_D | ena_in); end endgenerate generate if (C_MEM_TYPE == 0 || C_MEM_TYPE == 3) begin : SPRAM_ENB assign ENB_I_SAFE = 1'b0; end endgenerate generate if ((C_HAS_MEM_OUTPUT_REGS_B==0 || (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==1)) && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1) begin : ENB_NO_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_D <= #FLOP_DELAY ENB_dly; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_D | ENB); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B==1 && C_RSTRAM_B==0 && C_MEM_TYPE != 0 && C_MEM_TYPE != 3 && C_EN_SAFETY_CKT == 1)begin : ENB_WITH_REG always @(posedge clkb) begin : PROC_ENB_GEN ENB_dly_reg <= #FLOP_DELAY RSTB_I_SAFE; ENB_dly_reg_D <= #FLOP_DELAY ENB_dly_reg; end assign ENB_I_SAFE = (C_HAS_ENB == 0)? 1'b1 : (ENB_dly_reg_D | ENB); end endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (CLKA), .RSTA (RSTA_I_SAFE),//(rsta_in), .ENA (ENA_I_SAFE),//(ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB_I_SAFE),//(RSTB), .ENB (ENB_I_SAFE),//(ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_3 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_3 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); blk_mem_gen_v8_3_5_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_3_5_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
Require Import TestSuite.admit. (** [not tac] is equivalent to [fail tac "succeeds"] if [tac] succeeds, and is equivalent to [idtac] if [tac] fails *) Tactic Notation "not" tactic3(tac) := (tryif tac then fail 0 tac "succeeds" else idtac); (* error if the tactic solved all goals *) []. (** Test if a tactic succeeds, but always roll-back the results *) Tactic Notation "test" tactic3(tac) := tryif not tac then fail 0 tac "fails" else idtac. Goal Set. Proof. not fail. not not idtac. not fail 0. (** Would be nice if we could get [not fail 1] to pass, maybe *) not not admit. not not test admit. not progress test admit. (* test grouping *) not (not idtac; fail). assert True. all:not fail. 2:not fail. all:admit. Defined. Goal Set. Proof. test idtac. test try fail. test admit. test match goal with |- Set => idtac end. test (idtac; match goal with |- Set => idtac end). (* test grouping *) first [ (test idtac; fail); fail 1 | idtac ]. try test fail. try test test fail. test test idtac. test test admit. Fail test fail. test (idtac; []). test (assert True; [|]). (* would be nice, perhaps, if we could catch [fail 1] and not just [fail 0] this *) try ((test fail); fail 1). assert True. all:test idtac. all:test admit. 2:test admit. all:admit. Defined.
Require Import TestSuite.admit. (** [not tac] is equivalent to [fail tac "succeeds"] if [tac] succeeds, and is equivalent to [idtac] if [tac] fails *) Tactic Notation "not" tactic3(tac) := (tryif tac then fail 0 tac "succeeds" else idtac); (* error if the tactic solved all goals *) []. (** Test if a tactic succeeds, but always roll-back the results *) Tactic Notation "test" tactic3(tac) := tryif not tac then fail 0 tac "fails" else idtac. Goal Set. Proof. not fail. not not idtac. not fail 0. (** Would be nice if we could get [not fail 1] to pass, maybe *) not not admit. not not test admit. not progress test admit. (* test grouping *) not (not idtac; fail). assert True. all:not fail. 2:not fail. all:admit. Defined. Goal Set. Proof. test idtac. test try fail. test admit. test match goal with |- Set => idtac end. test (idtac; match goal with |- Set => idtac end). (* test grouping *) first [ (test idtac; fail); fail 1 | idtac ]. try test fail. try test test fail. test test idtac. test test admit. Fail test fail. test (idtac; []). test (assert True; [|]). (* would be nice, perhaps, if we could catch [fail 1] and not just [fail 0] this *) try ((test fail); fail 1). assert True. all:test idtac. all:test admit. 2:test admit. all:admit. Defined.
Require Import TestSuite.admit. (** [not tac] is equivalent to [fail tac "succeeds"] if [tac] succeeds, and is equivalent to [idtac] if [tac] fails *) Tactic Notation "not" tactic3(tac) := (tryif tac then fail 0 tac "succeeds" else idtac); (* error if the tactic solved all goals *) []. (** Test if a tactic succeeds, but always roll-back the results *) Tactic Notation "test" tactic3(tac) := tryif not tac then fail 0 tac "fails" else idtac. Goal Set. Proof. not fail. not not idtac. not fail 0. (** Would be nice if we could get [not fail 1] to pass, maybe *) not not admit. not not test admit. not progress test admit. (* test grouping *) not (not idtac; fail). assert True. all:not fail. 2:not fail. all:admit. Defined. Goal Set. Proof. test idtac. test try fail. test admit. test match goal with |- Set => idtac end. test (idtac; match goal with |- Set => idtac end). (* test grouping *) first [ (test idtac; fail); fail 1 | idtac ]. try test fail. try test test fail. test test idtac. test test admit. Fail test fail. test (idtac; []). test (assert True; [|]). (* would be nice, perhaps, if we could catch [fail 1] and not just [fail 0] this *) try ((test fail); fail 1). assert True. all:test idtac. all:test admit. 2:test admit. all:admit. Defined.
Require Import TestSuite.admit. (** [not tac] is equivalent to [fail tac "succeeds"] if [tac] succeeds, and is equivalent to [idtac] if [tac] fails *) Tactic Notation "not" tactic3(tac) := (tryif tac then fail 0 tac "succeeds" else idtac); (* error if the tactic solved all goals *) []. (** Test if a tactic succeeds, but always roll-back the results *) Tactic Notation "test" tactic3(tac) := tryif not tac then fail 0 tac "fails" else idtac. Goal Set. Proof. not fail. not not idtac. not fail 0. (** Would be nice if we could get [not fail 1] to pass, maybe *) not not admit. not not test admit. not progress test admit. (* test grouping *) not (not idtac; fail). assert True. all:not fail. 2:not fail. all:admit. Defined. Goal Set. Proof. test idtac. test try fail. test admit. test match goal with |- Set => idtac end. test (idtac; match goal with |- Set => idtac end). (* test grouping *) first [ (test idtac; fail); fail 1 | idtac ]. try test fail. try test test fail. test test idtac. test test admit. Fail test fail. test (idtac; []). test (assert True; [|]). (* would be nice, perhaps, if we could catch [fail 1] and not just [fail 0] this *) try ((test fail); fail 1). assert True. all:test idtac. all:test admit. 2:test admit. all:admit. Defined.
// -- (c) Copyright 2008 - 2014 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: This is a generic n-deep SRL instantiation // Verilog-standard: Verilog 2001 // $Revision: // $Date: // //----------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_data_fifo_v2_1_ndeep_srl # ( parameter C_FAMILY = "rtl", // FPGA Family parameter C_A_WIDTH = 1 // Address Width (>= 1) ) ( input wire CLK, // Clock input wire [C_A_WIDTH-1:0] A, // Address input wire CE, // Clock Enable input wire D, // Input Data output wire Q // Output Data ); localparam integer P_SRLASIZE = 5; localparam integer P_SRLDEPTH = 32; localparam integer P_NUMSRLS = (C_A_WIDTH>P_SRLASIZE) ? (2**(C_A_WIDTH-P_SRLASIZE)) : 1; localparam integer P_SHIFT_DEPTH = 2**C_A_WIDTH; wire [P_NUMSRLS:0] d_i; wire [P_NUMSRLS-1:0] q_i; wire [(C_A_WIDTH>P_SRLASIZE) ? (C_A_WIDTH-1) : (P_SRLASIZE-1) : 0] a_i; genvar i; // Instantiate SRLs in carry chain format assign d_i[0] = D; assign a_i = A; generate if (C_FAMILY == "rtl") begin : gen_rtl_shifter if (C_A_WIDTH <= P_SRLASIZE) begin : gen_inferred_srl reg [P_SRLDEPTH-1:0] shift_reg = {P_SRLDEPTH{1'b0}}; always @(posedge CLK) if (CE) shift_reg <= {shift_reg[P_SRLDEPTH-2:0], D}; assign Q = shift_reg[a_i]; end else begin : gen_logic_shifter // Very wasteful reg [P_SHIFT_DEPTH-1:0] shift_reg = {P_SHIFT_DEPTH{1'b0}}; always @(posedge CLK) if (CE) shift_reg <= {shift_reg[P_SHIFT_DEPTH-2:0], D}; assign Q = shift_reg[a_i]; end end else begin : gen_primitive_shifter for (i=0;i<P_NUMSRLS;i=i+1) begin : gen_srls SRLC32E srl_inst ( .CLK (CLK), .A (a_i[P_SRLASIZE-1:0]), .CE (CE), .D (d_i[i]), .Q (q_i[i]), .Q31 (d_i[i+1]) ); end if (C_A_WIDTH>P_SRLASIZE) begin : gen_srl_mux generic_baseblocks_v2_1_nto1_mux # ( .C_RATIO (2**(C_A_WIDTH-P_SRLASIZE)), .C_SEL_WIDTH (C_A_WIDTH-P_SRLASIZE), .C_DATAOUT_WIDTH (1), .C_ONEHOT (0) ) srl_q_mux_inst ( .SEL_ONEHOT ({2**(C_A_WIDTH-P_SRLASIZE){1'b0}}), .SEL (a_i[C_A_WIDTH-1:P_SRLASIZE]), .IN (q_i), .OUT (Q) ); end else begin : gen_no_srl_mux assign Q = q_i[0]; end end endgenerate endmodule `default_nettype wire
// -- (c) Copyright 2008 - 2014 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: This is a generic n-deep SRL instantiation // Verilog-standard: Verilog 2001 // $Revision: // $Date: // //----------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_data_fifo_v2_1_ndeep_srl # ( parameter C_FAMILY = "rtl", // FPGA Family parameter C_A_WIDTH = 1 // Address Width (>= 1) ) ( input wire CLK, // Clock input wire [C_A_WIDTH-1:0] A, // Address input wire CE, // Clock Enable input wire D, // Input Data output wire Q // Output Data ); localparam integer P_SRLASIZE = 5; localparam integer P_SRLDEPTH = 32; localparam integer P_NUMSRLS = (C_A_WIDTH>P_SRLASIZE) ? (2**(C_A_WIDTH-P_SRLASIZE)) : 1; localparam integer P_SHIFT_DEPTH = 2**C_A_WIDTH; wire [P_NUMSRLS:0] d_i; wire [P_NUMSRLS-1:0] q_i; wire [(C_A_WIDTH>P_SRLASIZE) ? (C_A_WIDTH-1) : (P_SRLASIZE-1) : 0] a_i; genvar i; // Instantiate SRLs in carry chain format assign d_i[0] = D; assign a_i = A; generate if (C_FAMILY == "rtl") begin : gen_rtl_shifter if (C_A_WIDTH <= P_SRLASIZE) begin : gen_inferred_srl reg [P_SRLDEPTH-1:0] shift_reg = {P_SRLDEPTH{1'b0}}; always @(posedge CLK) if (CE) shift_reg <= {shift_reg[P_SRLDEPTH-2:0], D}; assign Q = shift_reg[a_i]; end else begin : gen_logic_shifter // Very wasteful reg [P_SHIFT_DEPTH-1:0] shift_reg = {P_SHIFT_DEPTH{1'b0}}; always @(posedge CLK) if (CE) shift_reg <= {shift_reg[P_SHIFT_DEPTH-2:0], D}; assign Q = shift_reg[a_i]; end end else begin : gen_primitive_shifter for (i=0;i<P_NUMSRLS;i=i+1) begin : gen_srls SRLC32E srl_inst ( .CLK (CLK), .A (a_i[P_SRLASIZE-1:0]), .CE (CE), .D (d_i[i]), .Q (q_i[i]), .Q31 (d_i[i+1]) ); end if (C_A_WIDTH>P_SRLASIZE) begin : gen_srl_mux generic_baseblocks_v2_1_nto1_mux # ( .C_RATIO (2**(C_A_WIDTH-P_SRLASIZE)), .C_SEL_WIDTH (C_A_WIDTH-P_SRLASIZE), .C_DATAOUT_WIDTH (1), .C_ONEHOT (0) ) srl_q_mux_inst ( .SEL_ONEHOT ({2**(C_A_WIDTH-P_SRLASIZE){1'b0}}), .SEL (a_i[C_A_WIDTH-1:P_SRLASIZE]), .IN (q_i), .OUT (Q) ); end else begin : gen_no_srl_mux assign Q = q_i[0]; end end endgenerate endmodule `default_nettype wire
// -- (c) Copyright 2008 - 2014 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: This is a generic n-deep SRL instantiation // Verilog-standard: Verilog 2001 // $Revision: // $Date: // //----------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_data_fifo_v2_1_ndeep_srl # ( parameter C_FAMILY = "rtl", // FPGA Family parameter C_A_WIDTH = 1 // Address Width (>= 1) ) ( input wire CLK, // Clock input wire [C_A_WIDTH-1:0] A, // Address input wire CE, // Clock Enable input wire D, // Input Data output wire Q // Output Data ); localparam integer P_SRLASIZE = 5; localparam integer P_SRLDEPTH = 32; localparam integer P_NUMSRLS = (C_A_WIDTH>P_SRLASIZE) ? (2**(C_A_WIDTH-P_SRLASIZE)) : 1; localparam integer P_SHIFT_DEPTH = 2**C_A_WIDTH; wire [P_NUMSRLS:0] d_i; wire [P_NUMSRLS-1:0] q_i; wire [(C_A_WIDTH>P_SRLASIZE) ? (C_A_WIDTH-1) : (P_SRLASIZE-1) : 0] a_i; genvar i; // Instantiate SRLs in carry chain format assign d_i[0] = D; assign a_i = A; generate if (C_FAMILY == "rtl") begin : gen_rtl_shifter if (C_A_WIDTH <= P_SRLASIZE) begin : gen_inferred_srl reg [P_SRLDEPTH-1:0] shift_reg = {P_SRLDEPTH{1'b0}}; always @(posedge CLK) if (CE) shift_reg <= {shift_reg[P_SRLDEPTH-2:0], D}; assign Q = shift_reg[a_i]; end else begin : gen_logic_shifter // Very wasteful reg [P_SHIFT_DEPTH-1:0] shift_reg = {P_SHIFT_DEPTH{1'b0}}; always @(posedge CLK) if (CE) shift_reg <= {shift_reg[P_SHIFT_DEPTH-2:0], D}; assign Q = shift_reg[a_i]; end end else begin : gen_primitive_shifter for (i=0;i<P_NUMSRLS;i=i+1) begin : gen_srls SRLC32E srl_inst ( .CLK (CLK), .A (a_i[P_SRLASIZE-1:0]), .CE (CE), .D (d_i[i]), .Q (q_i[i]), .Q31 (d_i[i+1]) ); end if (C_A_WIDTH>P_SRLASIZE) begin : gen_srl_mux generic_baseblocks_v2_1_nto1_mux # ( .C_RATIO (2**(C_A_WIDTH-P_SRLASIZE)), .C_SEL_WIDTH (C_A_WIDTH-P_SRLASIZE), .C_DATAOUT_WIDTH (1), .C_ONEHOT (0) ) srl_q_mux_inst ( .SEL_ONEHOT ({2**(C_A_WIDTH-P_SRLASIZE){1'b0}}), .SEL (a_i[C_A_WIDTH-1:P_SRLASIZE]), .IN (q_i), .OUT (Q) ); end else begin : gen_no_srl_mux assign Q = q_i[0]; end end endgenerate endmodule `default_nettype wire
// -- (c) Copyright 2008 - 2014 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: This is a generic n-deep SRL instantiation // Verilog-standard: Verilog 2001 // $Revision: // $Date: // //----------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_data_fifo_v2_1_ndeep_srl # ( parameter C_FAMILY = "rtl", // FPGA Family parameter C_A_WIDTH = 1 // Address Width (>= 1) ) ( input wire CLK, // Clock input wire [C_A_WIDTH-1:0] A, // Address input wire CE, // Clock Enable input wire D, // Input Data output wire Q // Output Data ); localparam integer P_SRLASIZE = 5; localparam integer P_SRLDEPTH = 32; localparam integer P_NUMSRLS = (C_A_WIDTH>P_SRLASIZE) ? (2**(C_A_WIDTH-P_SRLASIZE)) : 1; localparam integer P_SHIFT_DEPTH = 2**C_A_WIDTH; wire [P_NUMSRLS:0] d_i; wire [P_NUMSRLS-1:0] q_i; wire [(C_A_WIDTH>P_SRLASIZE) ? (C_A_WIDTH-1) : (P_SRLASIZE-1) : 0] a_i; genvar i; // Instantiate SRLs in carry chain format assign d_i[0] = D; assign a_i = A; generate if (C_FAMILY == "rtl") begin : gen_rtl_shifter if (C_A_WIDTH <= P_SRLASIZE) begin : gen_inferred_srl reg [P_SRLDEPTH-1:0] shift_reg = {P_SRLDEPTH{1'b0}}; always @(posedge CLK) if (CE) shift_reg <= {shift_reg[P_SRLDEPTH-2:0], D}; assign Q = shift_reg[a_i]; end else begin : gen_logic_shifter // Very wasteful reg [P_SHIFT_DEPTH-1:0] shift_reg = {P_SHIFT_DEPTH{1'b0}}; always @(posedge CLK) if (CE) shift_reg <= {shift_reg[P_SHIFT_DEPTH-2:0], D}; assign Q = shift_reg[a_i]; end end else begin : gen_primitive_shifter for (i=0;i<P_NUMSRLS;i=i+1) begin : gen_srls SRLC32E srl_inst ( .CLK (CLK), .A (a_i[P_SRLASIZE-1:0]), .CE (CE), .D (d_i[i]), .Q (q_i[i]), .Q31 (d_i[i+1]) ); end if (C_A_WIDTH>P_SRLASIZE) begin : gen_srl_mux generic_baseblocks_v2_1_nto1_mux # ( .C_RATIO (2**(C_A_WIDTH-P_SRLASIZE)), .C_SEL_WIDTH (C_A_WIDTH-P_SRLASIZE), .C_DATAOUT_WIDTH (1), .C_ONEHOT (0) ) srl_q_mux_inst ( .SEL_ONEHOT ({2**(C_A_WIDTH-P_SRLASIZE){1'b0}}), .SEL (a_i[C_A_WIDTH-1:P_SRLASIZE]), .IN (q_i), .OUT (Q) ); end else begin : gen_no_srl_mux assign Q = q_i[0]; end end endgenerate endmodule `default_nettype wire
/////////////////////////////////////////////////////////////////////////////// // // File name: axi_protocol_converter_v2_1_b2s.v // // Description: // To handle AXI4 transactions to external memory on Virtex-6 architectures // requires a bridge to convert the AXI4 transactions to the memory // controller(MC) user interface. The MC user interface has bidirectional // data path and supports data width of 256/128/64/32 bits. // The bridge is designed to allow AXI4 IP masters to communicate with // the MC user interface. // // // Specifications: // AXI4 Slave Side: // Configurable data width of 32, 64, 128, 256 // Read acceptance depth is: // Write acceptance depth is: // // Structure: // axi_protocol_converter_v2_1_b2s // WRITE_BUNDLE // aw_channel_0 // cmd_translator_0 // rd_cmd_fsm_0 // w_channel_0 // b_channel_0 // READ_BUNDLE // ar_channel_0 // cmd_translator_0 // rd_cmd_fsm_0 // r_channel_0 // /////////////////////////////////////////////////////////////////////////////// `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_protocol_converter_v2_1_b2s #( parameter C_S_AXI_PROTOCOL = 0, // Width of all master and slave ID signals. // Range: >= 1. parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 30, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_WRITE = 1, parameter integer C_AXI_SUPPORTS_READ = 1 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // AXI Slave Interface // Slave Interface System Signals input wire aclk , input wire aresetn , // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid , input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr , input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [2:0] s_axi_awsize , input wire [1:0] s_axi_awburst , input wire [2:0] s_axi_awprot , input wire s_axi_awvalid , output wire s_axi_awready , // Slave Interface Write Data Ports input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata , input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb , input wire s_axi_wlast , input wire s_axi_wvalid , output wire s_axi_wready , // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid , output wire [1:0] s_axi_bresp , output wire s_axi_bvalid , input wire s_axi_bready , // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid , input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr , input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [2:0] s_axi_arsize , input wire [1:0] s_axi_arburst , input wire [2:0] s_axi_arprot , input wire s_axi_arvalid , output wire s_axi_arready , // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid , output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata , output wire [1:0] s_axi_rresp , output wire s_axi_rlast , output wire s_axi_rvalid , input wire s_axi_rready , // Slave Interface Write Address Ports output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr , output wire [2:0] m_axi_awprot , output wire m_axi_awvalid , input wire m_axi_awready , // Slave Interface Write Data Ports output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata , output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb , output wire m_axi_wvalid , input wire m_axi_wready , // Slave Interface Write Response Ports input wire [1:0] m_axi_bresp , input wire m_axi_bvalid , output wire m_axi_bready , // Slave Interface Read Address Ports output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr , output wire [2:0] m_axi_arprot , output wire m_axi_arvalid , input wire m_axi_arready , // Slave Interface Read Data Ports input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata , input wire [1:0] m_axi_rresp , input wire m_axi_rvalid , output wire m_axi_rready ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL reg areset_d1; always @(posedge aclk) areset_d1 <= ~aresetn; // AW/W/B channel internal communication wire b_push; wire [C_AXI_ID_WIDTH-1:0] b_awid; wire [7:0] b_awlen; wire b_full; wire [C_AXI_ID_WIDTH-1:0] si_rs_awid; wire [C_AXI_ADDR_WIDTH-1:0] si_rs_awaddr; wire [8-1:0] si_rs_awlen; wire [3-1:0] si_rs_awsize; wire [2-1:0] si_rs_awburst; wire [3-1:0] si_rs_awprot; wire si_rs_awvalid; wire si_rs_awready; wire [C_AXI_DATA_WIDTH-1:0] si_rs_wdata; wire [C_AXI_DATA_WIDTH/8-1:0] si_rs_wstrb; wire si_rs_wlast; wire si_rs_wvalid; wire si_rs_wready; wire [C_AXI_ID_WIDTH-1:0] si_rs_bid; wire [2-1:0] si_rs_bresp; wire si_rs_bvalid; wire si_rs_bready; wire [C_AXI_ID_WIDTH-1:0] si_rs_arid; wire [C_AXI_ADDR_WIDTH-1:0] si_rs_araddr; wire [8-1:0] si_rs_arlen; wire [3-1:0] si_rs_arsize; wire [2-1:0] si_rs_arburst; wire [3-1:0] si_rs_arprot; wire si_rs_arvalid; wire si_rs_arready; wire [C_AXI_ID_WIDTH-1:0] si_rs_rid; wire [C_AXI_DATA_WIDTH-1:0] si_rs_rdata; wire [2-1:0] si_rs_rresp; wire si_rs_rlast; wire si_rs_rvalid; wire si_rs_rready; wire [C_AXI_ADDR_WIDTH-1:0] rs_mi_awaddr; wire rs_mi_awvalid; wire rs_mi_awready; wire [C_AXI_DATA_WIDTH-1:0] rs_mi_wdata; wire [C_AXI_DATA_WIDTH/8-1:0] rs_mi_wstrb; wire rs_mi_wvalid; wire rs_mi_wready; wire [2-1:0] rs_mi_bresp; wire rs_mi_bvalid; wire rs_mi_bready; wire [C_AXI_ADDR_WIDTH-1:0] rs_mi_araddr; wire rs_mi_arvalid; wire rs_mi_arready; wire [C_AXI_DATA_WIDTH-1:0] rs_mi_rdata; wire [2-1:0] rs_mi_rresp; wire rs_mi_rvalid; wire rs_mi_rready; axi_register_slice_v2_1_axi_register_slice #( .C_AXI_PROTOCOL ( C_S_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( 0 ) , .C_AXI_AWUSER_WIDTH ( 1 ) , .C_AXI_ARUSER_WIDTH ( 1 ) , .C_AXI_WUSER_WIDTH ( 1 ) , .C_AXI_RUSER_WIDTH ( 1 ) , .C_AXI_BUSER_WIDTH ( 1 ) , .C_REG_CONFIG_AW ( 1 ) , .C_REG_CONFIG_AR ( 1 ) , .C_REG_CONFIG_W ( 0 ) , .C_REG_CONFIG_R ( 1 ) , .C_REG_CONFIG_B ( 1 ) ) SI_REG ( .aresetn ( aresetn ) , .aclk ( aclk ) , .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( {((C_S_AXI_PROTOCOL == 1) ? 2 : 1){1'b0}} ) , .s_axi_awcache ( 4'h0 ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( 4'h0 ) , .s_axi_awuser ( 1'b0 ) , .s_axi_awvalid ( s_axi_awvalid ) , .s_axi_awready ( s_axi_awready ) , .s_axi_awregion ( 4'h0 ) , .s_axi_wid ( {C_AXI_ID_WIDTH{1'b0}} ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( 1'b0 ) , .s_axi_wvalid ( s_axi_wvalid ) , .s_axi_wready ( s_axi_wready ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( ) , .s_axi_bvalid ( s_axi_bvalid ) , .s_axi_bready ( s_axi_bready ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( {((C_S_AXI_PROTOCOL == 1) ? 2 : 1){1'b0}} ) , .s_axi_arcache ( 4'h0 ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( 4'h0 ) , .s_axi_aruser ( 1'b0 ) , .s_axi_arvalid ( s_axi_arvalid ) , .s_axi_arready ( s_axi_arready ) , .s_axi_arregion ( 4'h0 ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( ) , .s_axi_rvalid ( s_axi_rvalid ) , .s_axi_rready ( s_axi_rready ) , .m_axi_awid ( si_rs_awid ) , .m_axi_awaddr ( si_rs_awaddr ) , .m_axi_awlen ( si_rs_awlen[((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] ) , .m_axi_awsize ( si_rs_awsize ) , .m_axi_awburst ( si_rs_awburst ) , .m_axi_awlock ( ) , .m_axi_awcache ( ) , .m_axi_awprot ( si_rs_awprot ) , .m_axi_awqos ( ) , .m_axi_awuser ( ) , .m_axi_awvalid ( si_rs_awvalid ) , .m_axi_awready ( si_rs_awready ) , .m_axi_awregion ( ) , .m_axi_wid ( ) , .m_axi_wdata ( si_rs_wdata ) , .m_axi_wstrb ( si_rs_wstrb ) , .m_axi_wlast ( si_rs_wlast ) , .m_axi_wuser ( ) , .m_axi_wvalid ( si_rs_wvalid ) , .m_axi_wready ( si_rs_wready ) , .m_axi_bid ( si_rs_bid ) , .m_axi_bresp ( si_rs_bresp ) , .m_axi_buser ( 1'b0 ) , .m_axi_bvalid ( si_rs_bvalid ) , .m_axi_bready ( si_rs_bready ) , .m_axi_arid ( si_rs_arid ) , .m_axi_araddr ( si_rs_araddr ) , .m_axi_arlen ( si_rs_arlen[((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] ) , .m_axi_arsize ( si_rs_arsize ) , .m_axi_arburst ( si_rs_arburst ) , .m_axi_arlock ( ) , .m_axi_arcache ( ) , .m_axi_arprot ( si_rs_arprot ) , .m_axi_arqos ( ) , .m_axi_aruser ( ) , .m_axi_arvalid ( si_rs_arvalid ) , .m_axi_arready ( si_rs_arready ) , .m_axi_arregion ( ) , .m_axi_rid ( si_rs_rid ) , .m_axi_rdata ( si_rs_rdata ) , .m_axi_rresp ( si_rs_rresp ) , .m_axi_rlast ( si_rs_rlast ) , .m_axi_ruser ( 1'b0 ) , .m_axi_rvalid ( si_rs_rvalid ) , .m_axi_rready ( si_rs_rready ) ); generate if (C_AXI_SUPPORTS_WRITE == 1) begin : WR axi_protocol_converter_v2_1_b2s_aw_channel # ( .C_ID_WIDTH ( C_AXI_ID_WIDTH ), .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) aw_channel_0 ( .clk ( aclk ) , .reset ( areset_d1 ) , .s_awid ( si_rs_awid ) , .s_awaddr ( si_rs_awaddr ) , .s_awlen ( (C_S_AXI_PROTOCOL == 1) ? {4'h0,si_rs_awlen[3:0]} : si_rs_awlen), .s_awsize ( si_rs_awsize ) , .s_awburst ( si_rs_awburst ) , .s_awvalid ( si_rs_awvalid ) , .s_awready ( si_rs_awready ) , .m_awvalid ( rs_mi_awvalid ) , .m_awaddr ( rs_mi_awaddr ) , .m_awready ( rs_mi_awready ) , .b_push ( b_push ) , .b_awid ( b_awid ) , .b_awlen ( b_awlen ) , .b_full ( b_full ) ); axi_protocol_converter_v2_1_b2s_b_channel # ( .C_ID_WIDTH ( C_AXI_ID_WIDTH ) ) b_channel_0 ( .clk ( aclk ) , .reset ( areset_d1 ) , .s_bid ( si_rs_bid ) , .s_bresp ( si_rs_bresp ) , .s_bvalid ( si_rs_bvalid ) , .s_bready ( si_rs_bready ) , .m_bready ( rs_mi_bready ) , .m_bvalid ( rs_mi_bvalid ) , .m_bresp ( rs_mi_bresp ) , .b_push ( b_push ) , .b_awid ( b_awid ) , .b_awlen ( b_awlen ) , .b_full ( b_full ) , .b_resp_rdy ( si_rs_awready ) ); assign rs_mi_wdata = si_rs_wdata; assign rs_mi_wstrb = si_rs_wstrb; assign rs_mi_wvalid = si_rs_wvalid; assign si_rs_wready = rs_mi_wready; end else begin : NO_WR assign rs_mi_awaddr = {C_AXI_ADDR_WIDTH{1'b0}}; assign rs_mi_awvalid = 1'b0; assign si_rs_awready = 1'b0; assign rs_mi_wdata = {C_AXI_DATA_WIDTH{1'b0}}; assign rs_mi_wstrb = {C_AXI_DATA_WIDTH/8{1'b0}}; assign rs_mi_wvalid = 1'b0; assign si_rs_wready = 1'b0; assign rs_mi_bready = 1'b0; assign si_rs_bvalid = 1'b0; assign si_rs_bresp = 2'b00; assign si_rs_bid = {C_AXI_ID_WIDTH{1'b0}}; end endgenerate // AR/R channel communication wire r_push ; wire [C_AXI_ID_WIDTH-1:0] r_arid ; wire r_rlast ; wire r_full ; generate if (C_AXI_SUPPORTS_READ == 1) begin : RD axi_protocol_converter_v2_1_b2s_ar_channel # ( .C_ID_WIDTH ( C_AXI_ID_WIDTH ), .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) ar_channel_0 ( .clk ( aclk ) , .reset ( areset_d1 ) , .s_arid ( si_rs_arid ) , .s_araddr ( si_rs_araddr ) , .s_arlen ( (C_S_AXI_PROTOCOL == 1) ? {4'h0,si_rs_arlen[3:0]} : si_rs_arlen), .s_arsize ( si_rs_arsize ) , .s_arburst ( si_rs_arburst ) , .s_arvalid ( si_rs_arvalid ) , .s_arready ( si_rs_arready ) , .m_arvalid ( rs_mi_arvalid ) , .m_araddr ( rs_mi_araddr ) , .m_arready ( rs_mi_arready ) , .r_push ( r_push ) , .r_arid ( r_arid ) , .r_rlast ( r_rlast ) , .r_full ( r_full ) ); axi_protocol_converter_v2_1_b2s_r_channel # ( .C_ID_WIDTH ( C_AXI_ID_WIDTH ), .C_DATA_WIDTH ( C_AXI_DATA_WIDTH ) ) r_channel_0 ( .clk ( aclk ) , .reset ( areset_d1 ) , .s_rid ( si_rs_rid ) , .s_rdata ( si_rs_rdata ) , .s_rresp ( si_rs_rresp ) , .s_rlast ( si_rs_rlast ) , .s_rvalid ( si_rs_rvalid ) , .s_rready ( si_rs_rready ) , .m_rvalid ( rs_mi_rvalid ) , .m_rready ( rs_mi_rready ) , .m_rdata ( rs_mi_rdata ) , .m_rresp ( rs_mi_rresp ) , .r_push ( r_push ) , .r_full ( r_full ) , .r_arid ( r_arid ) , .r_rlast ( r_rlast ) ); end else begin : NO_RD assign rs_mi_araddr = {C_AXI_ADDR_WIDTH{1'b0}}; assign rs_mi_arvalid = 1'b0; assign si_rs_arready = 1'b0; assign si_rs_rlast = 1'b1; assign si_rs_rdata = {C_AXI_DATA_WIDTH{1'b0}}; assign si_rs_rvalid = 1'b0; assign si_rs_rresp = 2'b00; assign si_rs_rid = {C_AXI_ID_WIDTH{1'b0}}; assign rs_mi_rready = 1'b0; end endgenerate axi_register_slice_v2_1_axi_register_slice #( .C_AXI_PROTOCOL ( 2 ) , .C_AXI_ID_WIDTH ( 1 ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( 0 ) , .C_AXI_AWUSER_WIDTH ( 1 ) , .C_AXI_ARUSER_WIDTH ( 1 ) , .C_AXI_WUSER_WIDTH ( 1 ) , .C_AXI_RUSER_WIDTH ( 1 ) , .C_AXI_BUSER_WIDTH ( 1 ) , .C_REG_CONFIG_AW ( 0 ) , .C_REG_CONFIG_AR ( 0 ) , .C_REG_CONFIG_W ( 0 ) , .C_REG_CONFIG_R ( 0 ) , .C_REG_CONFIG_B ( 0 ) ) MI_REG ( .aresetn ( aresetn ) , .aclk ( aclk ) , .s_axi_awid ( 1'b0 ) , .s_axi_awaddr ( rs_mi_awaddr ) , .s_axi_awlen ( 8'h00 ) , .s_axi_awsize ( 3'b000 ) , .s_axi_awburst ( 2'b01 ) , .s_axi_awlock ( 1'b0 ) , .s_axi_awcache ( 4'h0 ) , .s_axi_awprot ( si_rs_awprot ) , .s_axi_awqos ( 4'h0 ) , .s_axi_awuser ( 1'b0 ) , .s_axi_awvalid ( rs_mi_awvalid ) , .s_axi_awready ( rs_mi_awready ) , .s_axi_awregion ( 4'h0 ) , .s_axi_wid ( 1'b0 ) , .s_axi_wdata ( rs_mi_wdata ) , .s_axi_wstrb ( rs_mi_wstrb ) , .s_axi_wlast ( 1'b1 ) , .s_axi_wuser ( 1'b0 ) , .s_axi_wvalid ( rs_mi_wvalid ) , .s_axi_wready ( rs_mi_wready ) , .s_axi_bid ( ) , .s_axi_bresp ( rs_mi_bresp ) , .s_axi_buser ( ) , .s_axi_bvalid ( rs_mi_bvalid ) , .s_axi_bready ( rs_mi_bready ) , .s_axi_arid ( 1'b0 ) , .s_axi_araddr ( rs_mi_araddr ) , .s_axi_arlen ( 8'h00 ) , .s_axi_arsize ( 3'b000 ) , .s_axi_arburst ( 2'b01 ) , .s_axi_arlock ( 1'b0 ) , .s_axi_arcache ( 4'h0 ) , .s_axi_arprot ( si_rs_arprot ) , .s_axi_arqos ( 4'h0 ) , .s_axi_aruser ( 1'b0 ) , .s_axi_arvalid ( rs_mi_arvalid ) , .s_axi_arready ( rs_mi_arready ) , .s_axi_arregion ( 4'h0 ) , .s_axi_rid ( ) , .s_axi_rdata ( rs_mi_rdata ) , .s_axi_rresp ( rs_mi_rresp ) , .s_axi_rlast ( ) , .s_axi_ruser ( ) , .s_axi_rvalid ( rs_mi_rvalid ) , .s_axi_rready ( rs_mi_rready ) , .m_axi_awid ( ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( ) , .m_axi_awsize ( ) , .m_axi_awburst ( ) , .m_axi_awlock ( ) , .m_axi_awcache ( ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( ) , .m_axi_awuser ( ) , .m_axi_awvalid ( m_axi_awvalid ) , .m_axi_awready ( m_axi_awready ) , .m_axi_awregion ( ) , .m_axi_wid ( ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( ) , .m_axi_wuser ( ) , .m_axi_wvalid ( m_axi_wvalid ) , .m_axi_wready ( m_axi_wready ) , .m_axi_bid ( 1'b0 ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( 1'b0 ) , .m_axi_bvalid ( m_axi_bvalid ) , .m_axi_bready ( m_axi_bready ) , .m_axi_arid ( ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( ) , .m_axi_arsize ( ) , .m_axi_arburst ( ) , .m_axi_arlock ( ) , .m_axi_arcache ( ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( ) , .m_axi_aruser ( ) , .m_axi_arvalid ( m_axi_arvalid ) , .m_axi_arready ( m_axi_arready ) , .m_axi_arregion ( ) , .m_axi_rid ( 1'b0 ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( 1'b1 ) , .m_axi_ruser ( 1'b0 ) , .m_axi_rvalid ( m_axi_rvalid ) , .m_axi_rready ( m_axi_rready ) ); endmodule `default_nettype wire
/////////////////////////////////////////////////////////////////////////////// // // File name: axi_protocol_converter_v2_1_b2s.v // // Description: // To handle AXI4 transactions to external memory on Virtex-6 architectures // requires a bridge to convert the AXI4 transactions to the memory // controller(MC) user interface. The MC user interface has bidirectional // data path and supports data width of 256/128/64/32 bits. // The bridge is designed to allow AXI4 IP masters to communicate with // the MC user interface. // // // Specifications: // AXI4 Slave Side: // Configurable data width of 32, 64, 128, 256 // Read acceptance depth is: // Write acceptance depth is: // // Structure: // axi_protocol_converter_v2_1_b2s // WRITE_BUNDLE // aw_channel_0 // cmd_translator_0 // rd_cmd_fsm_0 // w_channel_0 // b_channel_0 // READ_BUNDLE // ar_channel_0 // cmd_translator_0 // rd_cmd_fsm_0 // r_channel_0 // /////////////////////////////////////////////////////////////////////////////// `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_protocol_converter_v2_1_b2s #( parameter C_S_AXI_PROTOCOL = 0, // Width of all master and slave ID signals. // Range: >= 1. parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 30, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_WRITE = 1, parameter integer C_AXI_SUPPORTS_READ = 1 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // AXI Slave Interface // Slave Interface System Signals input wire aclk , input wire aresetn , // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid , input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr , input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [2:0] s_axi_awsize , input wire [1:0] s_axi_awburst , input wire [2:0] s_axi_awprot , input wire s_axi_awvalid , output wire s_axi_awready , // Slave Interface Write Data Ports input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata , input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb , input wire s_axi_wlast , input wire s_axi_wvalid , output wire s_axi_wready , // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid , output wire [1:0] s_axi_bresp , output wire s_axi_bvalid , input wire s_axi_bready , // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid , input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr , input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [2:0] s_axi_arsize , input wire [1:0] s_axi_arburst , input wire [2:0] s_axi_arprot , input wire s_axi_arvalid , output wire s_axi_arready , // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid , output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata , output wire [1:0] s_axi_rresp , output wire s_axi_rlast , output wire s_axi_rvalid , input wire s_axi_rready , // Slave Interface Write Address Ports output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr , output wire [2:0] m_axi_awprot , output wire m_axi_awvalid , input wire m_axi_awready , // Slave Interface Write Data Ports output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata , output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb , output wire m_axi_wvalid , input wire m_axi_wready , // Slave Interface Write Response Ports input wire [1:0] m_axi_bresp , input wire m_axi_bvalid , output wire m_axi_bready , // Slave Interface Read Address Ports output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr , output wire [2:0] m_axi_arprot , output wire m_axi_arvalid , input wire m_axi_arready , // Slave Interface Read Data Ports input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata , input wire [1:0] m_axi_rresp , input wire m_axi_rvalid , output wire m_axi_rready ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL reg areset_d1; always @(posedge aclk) areset_d1 <= ~aresetn; // AW/W/B channel internal communication wire b_push; wire [C_AXI_ID_WIDTH-1:0] b_awid; wire [7:0] b_awlen; wire b_full; wire [C_AXI_ID_WIDTH-1:0] si_rs_awid; wire [C_AXI_ADDR_WIDTH-1:0] si_rs_awaddr; wire [8-1:0] si_rs_awlen; wire [3-1:0] si_rs_awsize; wire [2-1:0] si_rs_awburst; wire [3-1:0] si_rs_awprot; wire si_rs_awvalid; wire si_rs_awready; wire [C_AXI_DATA_WIDTH-1:0] si_rs_wdata; wire [C_AXI_DATA_WIDTH/8-1:0] si_rs_wstrb; wire si_rs_wlast; wire si_rs_wvalid; wire si_rs_wready; wire [C_AXI_ID_WIDTH-1:0] si_rs_bid; wire [2-1:0] si_rs_bresp; wire si_rs_bvalid; wire si_rs_bready; wire [C_AXI_ID_WIDTH-1:0] si_rs_arid; wire [C_AXI_ADDR_WIDTH-1:0] si_rs_araddr; wire [8-1:0] si_rs_arlen; wire [3-1:0] si_rs_arsize; wire [2-1:0] si_rs_arburst; wire [3-1:0] si_rs_arprot; wire si_rs_arvalid; wire si_rs_arready; wire [C_AXI_ID_WIDTH-1:0] si_rs_rid; wire [C_AXI_DATA_WIDTH-1:0] si_rs_rdata; wire [2-1:0] si_rs_rresp; wire si_rs_rlast; wire si_rs_rvalid; wire si_rs_rready; wire [C_AXI_ADDR_WIDTH-1:0] rs_mi_awaddr; wire rs_mi_awvalid; wire rs_mi_awready; wire [C_AXI_DATA_WIDTH-1:0] rs_mi_wdata; wire [C_AXI_DATA_WIDTH/8-1:0] rs_mi_wstrb; wire rs_mi_wvalid; wire rs_mi_wready; wire [2-1:0] rs_mi_bresp; wire rs_mi_bvalid; wire rs_mi_bready; wire [C_AXI_ADDR_WIDTH-1:0] rs_mi_araddr; wire rs_mi_arvalid; wire rs_mi_arready; wire [C_AXI_DATA_WIDTH-1:0] rs_mi_rdata; wire [2-1:0] rs_mi_rresp; wire rs_mi_rvalid; wire rs_mi_rready; axi_register_slice_v2_1_axi_register_slice #( .C_AXI_PROTOCOL ( C_S_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( 0 ) , .C_AXI_AWUSER_WIDTH ( 1 ) , .C_AXI_ARUSER_WIDTH ( 1 ) , .C_AXI_WUSER_WIDTH ( 1 ) , .C_AXI_RUSER_WIDTH ( 1 ) , .C_AXI_BUSER_WIDTH ( 1 ) , .C_REG_CONFIG_AW ( 1 ) , .C_REG_CONFIG_AR ( 1 ) , .C_REG_CONFIG_W ( 0 ) , .C_REG_CONFIG_R ( 1 ) , .C_REG_CONFIG_B ( 1 ) ) SI_REG ( .aresetn ( aresetn ) , .aclk ( aclk ) , .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( {((C_S_AXI_PROTOCOL == 1) ? 2 : 1){1'b0}} ) , .s_axi_awcache ( 4'h0 ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( 4'h0 ) , .s_axi_awuser ( 1'b0 ) , .s_axi_awvalid ( s_axi_awvalid ) , .s_axi_awready ( s_axi_awready ) , .s_axi_awregion ( 4'h0 ) , .s_axi_wid ( {C_AXI_ID_WIDTH{1'b0}} ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( 1'b0 ) , .s_axi_wvalid ( s_axi_wvalid ) , .s_axi_wready ( s_axi_wready ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( ) , .s_axi_bvalid ( s_axi_bvalid ) , .s_axi_bready ( s_axi_bready ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( {((C_S_AXI_PROTOCOL == 1) ? 2 : 1){1'b0}} ) , .s_axi_arcache ( 4'h0 ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( 4'h0 ) , .s_axi_aruser ( 1'b0 ) , .s_axi_arvalid ( s_axi_arvalid ) , .s_axi_arready ( s_axi_arready ) , .s_axi_arregion ( 4'h0 ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( ) , .s_axi_rvalid ( s_axi_rvalid ) , .s_axi_rready ( s_axi_rready ) , .m_axi_awid ( si_rs_awid ) , .m_axi_awaddr ( si_rs_awaddr ) , .m_axi_awlen ( si_rs_awlen[((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] ) , .m_axi_awsize ( si_rs_awsize ) , .m_axi_awburst ( si_rs_awburst ) , .m_axi_awlock ( ) , .m_axi_awcache ( ) , .m_axi_awprot ( si_rs_awprot ) , .m_axi_awqos ( ) , .m_axi_awuser ( ) , .m_axi_awvalid ( si_rs_awvalid ) , .m_axi_awready ( si_rs_awready ) , .m_axi_awregion ( ) , .m_axi_wid ( ) , .m_axi_wdata ( si_rs_wdata ) , .m_axi_wstrb ( si_rs_wstrb ) , .m_axi_wlast ( si_rs_wlast ) , .m_axi_wuser ( ) , .m_axi_wvalid ( si_rs_wvalid ) , .m_axi_wready ( si_rs_wready ) , .m_axi_bid ( si_rs_bid ) , .m_axi_bresp ( si_rs_bresp ) , .m_axi_buser ( 1'b0 ) , .m_axi_bvalid ( si_rs_bvalid ) , .m_axi_bready ( si_rs_bready ) , .m_axi_arid ( si_rs_arid ) , .m_axi_araddr ( si_rs_araddr ) , .m_axi_arlen ( si_rs_arlen[((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] ) , .m_axi_arsize ( si_rs_arsize ) , .m_axi_arburst ( si_rs_arburst ) , .m_axi_arlock ( ) , .m_axi_arcache ( ) , .m_axi_arprot ( si_rs_arprot ) , .m_axi_arqos ( ) , .m_axi_aruser ( ) , .m_axi_arvalid ( si_rs_arvalid ) , .m_axi_arready ( si_rs_arready ) , .m_axi_arregion ( ) , .m_axi_rid ( si_rs_rid ) , .m_axi_rdata ( si_rs_rdata ) , .m_axi_rresp ( si_rs_rresp ) , .m_axi_rlast ( si_rs_rlast ) , .m_axi_ruser ( 1'b0 ) , .m_axi_rvalid ( si_rs_rvalid ) , .m_axi_rready ( si_rs_rready ) ); generate if (C_AXI_SUPPORTS_WRITE == 1) begin : WR axi_protocol_converter_v2_1_b2s_aw_channel # ( .C_ID_WIDTH ( C_AXI_ID_WIDTH ), .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) aw_channel_0 ( .clk ( aclk ) , .reset ( areset_d1 ) , .s_awid ( si_rs_awid ) , .s_awaddr ( si_rs_awaddr ) , .s_awlen ( (C_S_AXI_PROTOCOL == 1) ? {4'h0,si_rs_awlen[3:0]} : si_rs_awlen), .s_awsize ( si_rs_awsize ) , .s_awburst ( si_rs_awburst ) , .s_awvalid ( si_rs_awvalid ) , .s_awready ( si_rs_awready ) , .m_awvalid ( rs_mi_awvalid ) , .m_awaddr ( rs_mi_awaddr ) , .m_awready ( rs_mi_awready ) , .b_push ( b_push ) , .b_awid ( b_awid ) , .b_awlen ( b_awlen ) , .b_full ( b_full ) ); axi_protocol_converter_v2_1_b2s_b_channel # ( .C_ID_WIDTH ( C_AXI_ID_WIDTH ) ) b_channel_0 ( .clk ( aclk ) , .reset ( areset_d1 ) , .s_bid ( si_rs_bid ) , .s_bresp ( si_rs_bresp ) , .s_bvalid ( si_rs_bvalid ) , .s_bready ( si_rs_bready ) , .m_bready ( rs_mi_bready ) , .m_bvalid ( rs_mi_bvalid ) , .m_bresp ( rs_mi_bresp ) , .b_push ( b_push ) , .b_awid ( b_awid ) , .b_awlen ( b_awlen ) , .b_full ( b_full ) , .b_resp_rdy ( si_rs_awready ) ); assign rs_mi_wdata = si_rs_wdata; assign rs_mi_wstrb = si_rs_wstrb; assign rs_mi_wvalid = si_rs_wvalid; assign si_rs_wready = rs_mi_wready; end else begin : NO_WR assign rs_mi_awaddr = {C_AXI_ADDR_WIDTH{1'b0}}; assign rs_mi_awvalid = 1'b0; assign si_rs_awready = 1'b0; assign rs_mi_wdata = {C_AXI_DATA_WIDTH{1'b0}}; assign rs_mi_wstrb = {C_AXI_DATA_WIDTH/8{1'b0}}; assign rs_mi_wvalid = 1'b0; assign si_rs_wready = 1'b0; assign rs_mi_bready = 1'b0; assign si_rs_bvalid = 1'b0; assign si_rs_bresp = 2'b00; assign si_rs_bid = {C_AXI_ID_WIDTH{1'b0}}; end endgenerate // AR/R channel communication wire r_push ; wire [C_AXI_ID_WIDTH-1:0] r_arid ; wire r_rlast ; wire r_full ; generate if (C_AXI_SUPPORTS_READ == 1) begin : RD axi_protocol_converter_v2_1_b2s_ar_channel # ( .C_ID_WIDTH ( C_AXI_ID_WIDTH ), .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) ar_channel_0 ( .clk ( aclk ) , .reset ( areset_d1 ) , .s_arid ( si_rs_arid ) , .s_araddr ( si_rs_araddr ) , .s_arlen ( (C_S_AXI_PROTOCOL == 1) ? {4'h0,si_rs_arlen[3:0]} : si_rs_arlen), .s_arsize ( si_rs_arsize ) , .s_arburst ( si_rs_arburst ) , .s_arvalid ( si_rs_arvalid ) , .s_arready ( si_rs_arready ) , .m_arvalid ( rs_mi_arvalid ) , .m_araddr ( rs_mi_araddr ) , .m_arready ( rs_mi_arready ) , .r_push ( r_push ) , .r_arid ( r_arid ) , .r_rlast ( r_rlast ) , .r_full ( r_full ) ); axi_protocol_converter_v2_1_b2s_r_channel # ( .C_ID_WIDTH ( C_AXI_ID_WIDTH ), .C_DATA_WIDTH ( C_AXI_DATA_WIDTH ) ) r_channel_0 ( .clk ( aclk ) , .reset ( areset_d1 ) , .s_rid ( si_rs_rid ) , .s_rdata ( si_rs_rdata ) , .s_rresp ( si_rs_rresp ) , .s_rlast ( si_rs_rlast ) , .s_rvalid ( si_rs_rvalid ) , .s_rready ( si_rs_rready ) , .m_rvalid ( rs_mi_rvalid ) , .m_rready ( rs_mi_rready ) , .m_rdata ( rs_mi_rdata ) , .m_rresp ( rs_mi_rresp ) , .r_push ( r_push ) , .r_full ( r_full ) , .r_arid ( r_arid ) , .r_rlast ( r_rlast ) ); end else begin : NO_RD assign rs_mi_araddr = {C_AXI_ADDR_WIDTH{1'b0}}; assign rs_mi_arvalid = 1'b0; assign si_rs_arready = 1'b0; assign si_rs_rlast = 1'b1; assign si_rs_rdata = {C_AXI_DATA_WIDTH{1'b0}}; assign si_rs_rvalid = 1'b0; assign si_rs_rresp = 2'b00; assign si_rs_rid = {C_AXI_ID_WIDTH{1'b0}}; assign rs_mi_rready = 1'b0; end endgenerate axi_register_slice_v2_1_axi_register_slice #( .C_AXI_PROTOCOL ( 2 ) , .C_AXI_ID_WIDTH ( 1 ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( 0 ) , .C_AXI_AWUSER_WIDTH ( 1 ) , .C_AXI_ARUSER_WIDTH ( 1 ) , .C_AXI_WUSER_WIDTH ( 1 ) , .C_AXI_RUSER_WIDTH ( 1 ) , .C_AXI_BUSER_WIDTH ( 1 ) , .C_REG_CONFIG_AW ( 0 ) , .C_REG_CONFIG_AR ( 0 ) , .C_REG_CONFIG_W ( 0 ) , .C_REG_CONFIG_R ( 0 ) , .C_REG_CONFIG_B ( 0 ) ) MI_REG ( .aresetn ( aresetn ) , .aclk ( aclk ) , .s_axi_awid ( 1'b0 ) , .s_axi_awaddr ( rs_mi_awaddr ) , .s_axi_awlen ( 8'h00 ) , .s_axi_awsize ( 3'b000 ) , .s_axi_awburst ( 2'b01 ) , .s_axi_awlock ( 1'b0 ) , .s_axi_awcache ( 4'h0 ) , .s_axi_awprot ( si_rs_awprot ) , .s_axi_awqos ( 4'h0 ) , .s_axi_awuser ( 1'b0 ) , .s_axi_awvalid ( rs_mi_awvalid ) , .s_axi_awready ( rs_mi_awready ) , .s_axi_awregion ( 4'h0 ) , .s_axi_wid ( 1'b0 ) , .s_axi_wdata ( rs_mi_wdata ) , .s_axi_wstrb ( rs_mi_wstrb ) , .s_axi_wlast ( 1'b1 ) , .s_axi_wuser ( 1'b0 ) , .s_axi_wvalid ( rs_mi_wvalid ) , .s_axi_wready ( rs_mi_wready ) , .s_axi_bid ( ) , .s_axi_bresp ( rs_mi_bresp ) , .s_axi_buser ( ) , .s_axi_bvalid ( rs_mi_bvalid ) , .s_axi_bready ( rs_mi_bready ) , .s_axi_arid ( 1'b0 ) , .s_axi_araddr ( rs_mi_araddr ) , .s_axi_arlen ( 8'h00 ) , .s_axi_arsize ( 3'b000 ) , .s_axi_arburst ( 2'b01 ) , .s_axi_arlock ( 1'b0 ) , .s_axi_arcache ( 4'h0 ) , .s_axi_arprot ( si_rs_arprot ) , .s_axi_arqos ( 4'h0 ) , .s_axi_aruser ( 1'b0 ) , .s_axi_arvalid ( rs_mi_arvalid ) , .s_axi_arready ( rs_mi_arready ) , .s_axi_arregion ( 4'h0 ) , .s_axi_rid ( ) , .s_axi_rdata ( rs_mi_rdata ) , .s_axi_rresp ( rs_mi_rresp ) , .s_axi_rlast ( ) , .s_axi_ruser ( ) , .s_axi_rvalid ( rs_mi_rvalid ) , .s_axi_rready ( rs_mi_rready ) , .m_axi_awid ( ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( ) , .m_axi_awsize ( ) , .m_axi_awburst ( ) , .m_axi_awlock ( ) , .m_axi_awcache ( ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( ) , .m_axi_awuser ( ) , .m_axi_awvalid ( m_axi_awvalid ) , .m_axi_awready ( m_axi_awready ) , .m_axi_awregion ( ) , .m_axi_wid ( ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( ) , .m_axi_wuser ( ) , .m_axi_wvalid ( m_axi_wvalid ) , .m_axi_wready ( m_axi_wready ) , .m_axi_bid ( 1'b0 ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( 1'b0 ) , .m_axi_bvalid ( m_axi_bvalid ) , .m_axi_bready ( m_axi_bready ) , .m_axi_arid ( ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( ) , .m_axi_arsize ( ) , .m_axi_arburst ( ) , .m_axi_arlock ( ) , .m_axi_arcache ( ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( ) , .m_axi_aruser ( ) , .m_axi_arvalid ( m_axi_arvalid ) , .m_axi_arready ( m_axi_arready ) , .m_axi_arregion ( ) , .m_axi_rid ( 1'b0 ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( 1'b1 ) , .m_axi_ruser ( 1'b0 ) , .m_axi_rvalid ( m_axi_rvalid ) , .m_axi_rready ( m_axi_rready ) ); endmodule `default_nettype wire
/////////////////////////////////////////////////////////////////////////////// // // File name: axi_protocol_converter_v2_1_b2s.v // // Description: // To handle AXI4 transactions to external memory on Virtex-6 architectures // requires a bridge to convert the AXI4 transactions to the memory // controller(MC) user interface. The MC user interface has bidirectional // data path and supports data width of 256/128/64/32 bits. // The bridge is designed to allow AXI4 IP masters to communicate with // the MC user interface. // // // Specifications: // AXI4 Slave Side: // Configurable data width of 32, 64, 128, 256 // Read acceptance depth is: // Write acceptance depth is: // // Structure: // axi_protocol_converter_v2_1_b2s // WRITE_BUNDLE // aw_channel_0 // cmd_translator_0 // rd_cmd_fsm_0 // w_channel_0 // b_channel_0 // READ_BUNDLE // ar_channel_0 // cmd_translator_0 // rd_cmd_fsm_0 // r_channel_0 // /////////////////////////////////////////////////////////////////////////////// `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_protocol_converter_v2_1_b2s #( parameter C_S_AXI_PROTOCOL = 0, // Width of all master and slave ID signals. // Range: >= 1. parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 30, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_WRITE = 1, parameter integer C_AXI_SUPPORTS_READ = 1 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // AXI Slave Interface // Slave Interface System Signals input wire aclk , input wire aresetn , // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid , input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr , input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [2:0] s_axi_awsize , input wire [1:0] s_axi_awburst , input wire [2:0] s_axi_awprot , input wire s_axi_awvalid , output wire s_axi_awready , // Slave Interface Write Data Ports input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata , input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb , input wire s_axi_wlast , input wire s_axi_wvalid , output wire s_axi_wready , // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid , output wire [1:0] s_axi_bresp , output wire s_axi_bvalid , input wire s_axi_bready , // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid , input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr , input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [2:0] s_axi_arsize , input wire [1:0] s_axi_arburst , input wire [2:0] s_axi_arprot , input wire s_axi_arvalid , output wire s_axi_arready , // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid , output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata , output wire [1:0] s_axi_rresp , output wire s_axi_rlast , output wire s_axi_rvalid , input wire s_axi_rready , // Slave Interface Write Address Ports output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr , output wire [2:0] m_axi_awprot , output wire m_axi_awvalid , input wire m_axi_awready , // Slave Interface Write Data Ports output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata , output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb , output wire m_axi_wvalid , input wire m_axi_wready , // Slave Interface Write Response Ports input wire [1:0] m_axi_bresp , input wire m_axi_bvalid , output wire m_axi_bready , // Slave Interface Read Address Ports output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr , output wire [2:0] m_axi_arprot , output wire m_axi_arvalid , input wire m_axi_arready , // Slave Interface Read Data Ports input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata , input wire [1:0] m_axi_rresp , input wire m_axi_rvalid , output wire m_axi_rready ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL reg areset_d1; always @(posedge aclk) areset_d1 <= ~aresetn; // AW/W/B channel internal communication wire b_push; wire [C_AXI_ID_WIDTH-1:0] b_awid; wire [7:0] b_awlen; wire b_full; wire [C_AXI_ID_WIDTH-1:0] si_rs_awid; wire [C_AXI_ADDR_WIDTH-1:0] si_rs_awaddr; wire [8-1:0] si_rs_awlen; wire [3-1:0] si_rs_awsize; wire [2-1:0] si_rs_awburst; wire [3-1:0] si_rs_awprot; wire si_rs_awvalid; wire si_rs_awready; wire [C_AXI_DATA_WIDTH-1:0] si_rs_wdata; wire [C_AXI_DATA_WIDTH/8-1:0] si_rs_wstrb; wire si_rs_wlast; wire si_rs_wvalid; wire si_rs_wready; wire [C_AXI_ID_WIDTH-1:0] si_rs_bid; wire [2-1:0] si_rs_bresp; wire si_rs_bvalid; wire si_rs_bready; wire [C_AXI_ID_WIDTH-1:0] si_rs_arid; wire [C_AXI_ADDR_WIDTH-1:0] si_rs_araddr; wire [8-1:0] si_rs_arlen; wire [3-1:0] si_rs_arsize; wire [2-1:0] si_rs_arburst; wire [3-1:0] si_rs_arprot; wire si_rs_arvalid; wire si_rs_arready; wire [C_AXI_ID_WIDTH-1:0] si_rs_rid; wire [C_AXI_DATA_WIDTH-1:0] si_rs_rdata; wire [2-1:0] si_rs_rresp; wire si_rs_rlast; wire si_rs_rvalid; wire si_rs_rready; wire [C_AXI_ADDR_WIDTH-1:0] rs_mi_awaddr; wire rs_mi_awvalid; wire rs_mi_awready; wire [C_AXI_DATA_WIDTH-1:0] rs_mi_wdata; wire [C_AXI_DATA_WIDTH/8-1:0] rs_mi_wstrb; wire rs_mi_wvalid; wire rs_mi_wready; wire [2-1:0] rs_mi_bresp; wire rs_mi_bvalid; wire rs_mi_bready; wire [C_AXI_ADDR_WIDTH-1:0] rs_mi_araddr; wire rs_mi_arvalid; wire rs_mi_arready; wire [C_AXI_DATA_WIDTH-1:0] rs_mi_rdata; wire [2-1:0] rs_mi_rresp; wire rs_mi_rvalid; wire rs_mi_rready; axi_register_slice_v2_1_axi_register_slice #( .C_AXI_PROTOCOL ( C_S_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( 0 ) , .C_AXI_AWUSER_WIDTH ( 1 ) , .C_AXI_ARUSER_WIDTH ( 1 ) , .C_AXI_WUSER_WIDTH ( 1 ) , .C_AXI_RUSER_WIDTH ( 1 ) , .C_AXI_BUSER_WIDTH ( 1 ) , .C_REG_CONFIG_AW ( 1 ) , .C_REG_CONFIG_AR ( 1 ) , .C_REG_CONFIG_W ( 0 ) , .C_REG_CONFIG_R ( 1 ) , .C_REG_CONFIG_B ( 1 ) ) SI_REG ( .aresetn ( aresetn ) , .aclk ( aclk ) , .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( {((C_S_AXI_PROTOCOL == 1) ? 2 : 1){1'b0}} ) , .s_axi_awcache ( 4'h0 ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( 4'h0 ) , .s_axi_awuser ( 1'b0 ) , .s_axi_awvalid ( s_axi_awvalid ) , .s_axi_awready ( s_axi_awready ) , .s_axi_awregion ( 4'h0 ) , .s_axi_wid ( {C_AXI_ID_WIDTH{1'b0}} ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( 1'b0 ) , .s_axi_wvalid ( s_axi_wvalid ) , .s_axi_wready ( s_axi_wready ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( ) , .s_axi_bvalid ( s_axi_bvalid ) , .s_axi_bready ( s_axi_bready ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( {((C_S_AXI_PROTOCOL == 1) ? 2 : 1){1'b0}} ) , .s_axi_arcache ( 4'h0 ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( 4'h0 ) , .s_axi_aruser ( 1'b0 ) , .s_axi_arvalid ( s_axi_arvalid ) , .s_axi_arready ( s_axi_arready ) , .s_axi_arregion ( 4'h0 ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( ) , .s_axi_rvalid ( s_axi_rvalid ) , .s_axi_rready ( s_axi_rready ) , .m_axi_awid ( si_rs_awid ) , .m_axi_awaddr ( si_rs_awaddr ) , .m_axi_awlen ( si_rs_awlen[((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] ) , .m_axi_awsize ( si_rs_awsize ) , .m_axi_awburst ( si_rs_awburst ) , .m_axi_awlock ( ) , .m_axi_awcache ( ) , .m_axi_awprot ( si_rs_awprot ) , .m_axi_awqos ( ) , .m_axi_awuser ( ) , .m_axi_awvalid ( si_rs_awvalid ) , .m_axi_awready ( si_rs_awready ) , .m_axi_awregion ( ) , .m_axi_wid ( ) , .m_axi_wdata ( si_rs_wdata ) , .m_axi_wstrb ( si_rs_wstrb ) , .m_axi_wlast ( si_rs_wlast ) , .m_axi_wuser ( ) , .m_axi_wvalid ( si_rs_wvalid ) , .m_axi_wready ( si_rs_wready ) , .m_axi_bid ( si_rs_bid ) , .m_axi_bresp ( si_rs_bresp ) , .m_axi_buser ( 1'b0 ) , .m_axi_bvalid ( si_rs_bvalid ) , .m_axi_bready ( si_rs_bready ) , .m_axi_arid ( si_rs_arid ) , .m_axi_araddr ( si_rs_araddr ) , .m_axi_arlen ( si_rs_arlen[((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] ) , .m_axi_arsize ( si_rs_arsize ) , .m_axi_arburst ( si_rs_arburst ) , .m_axi_arlock ( ) , .m_axi_arcache ( ) , .m_axi_arprot ( si_rs_arprot ) , .m_axi_arqos ( ) , .m_axi_aruser ( ) , .m_axi_arvalid ( si_rs_arvalid ) , .m_axi_arready ( si_rs_arready ) , .m_axi_arregion ( ) , .m_axi_rid ( si_rs_rid ) , .m_axi_rdata ( si_rs_rdata ) , .m_axi_rresp ( si_rs_rresp ) , .m_axi_rlast ( si_rs_rlast ) , .m_axi_ruser ( 1'b0 ) , .m_axi_rvalid ( si_rs_rvalid ) , .m_axi_rready ( si_rs_rready ) ); generate if (C_AXI_SUPPORTS_WRITE == 1) begin : WR axi_protocol_converter_v2_1_b2s_aw_channel # ( .C_ID_WIDTH ( C_AXI_ID_WIDTH ), .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) aw_channel_0 ( .clk ( aclk ) , .reset ( areset_d1 ) , .s_awid ( si_rs_awid ) , .s_awaddr ( si_rs_awaddr ) , .s_awlen ( (C_S_AXI_PROTOCOL == 1) ? {4'h0,si_rs_awlen[3:0]} : si_rs_awlen), .s_awsize ( si_rs_awsize ) , .s_awburst ( si_rs_awburst ) , .s_awvalid ( si_rs_awvalid ) , .s_awready ( si_rs_awready ) , .m_awvalid ( rs_mi_awvalid ) , .m_awaddr ( rs_mi_awaddr ) , .m_awready ( rs_mi_awready ) , .b_push ( b_push ) , .b_awid ( b_awid ) , .b_awlen ( b_awlen ) , .b_full ( b_full ) ); axi_protocol_converter_v2_1_b2s_b_channel # ( .C_ID_WIDTH ( C_AXI_ID_WIDTH ) ) b_channel_0 ( .clk ( aclk ) , .reset ( areset_d1 ) , .s_bid ( si_rs_bid ) , .s_bresp ( si_rs_bresp ) , .s_bvalid ( si_rs_bvalid ) , .s_bready ( si_rs_bready ) , .m_bready ( rs_mi_bready ) , .m_bvalid ( rs_mi_bvalid ) , .m_bresp ( rs_mi_bresp ) , .b_push ( b_push ) , .b_awid ( b_awid ) , .b_awlen ( b_awlen ) , .b_full ( b_full ) , .b_resp_rdy ( si_rs_awready ) ); assign rs_mi_wdata = si_rs_wdata; assign rs_mi_wstrb = si_rs_wstrb; assign rs_mi_wvalid = si_rs_wvalid; assign si_rs_wready = rs_mi_wready; end else begin : NO_WR assign rs_mi_awaddr = {C_AXI_ADDR_WIDTH{1'b0}}; assign rs_mi_awvalid = 1'b0; assign si_rs_awready = 1'b0; assign rs_mi_wdata = {C_AXI_DATA_WIDTH{1'b0}}; assign rs_mi_wstrb = {C_AXI_DATA_WIDTH/8{1'b0}}; assign rs_mi_wvalid = 1'b0; assign si_rs_wready = 1'b0; assign rs_mi_bready = 1'b0; assign si_rs_bvalid = 1'b0; assign si_rs_bresp = 2'b00; assign si_rs_bid = {C_AXI_ID_WIDTH{1'b0}}; end endgenerate // AR/R channel communication wire r_push ; wire [C_AXI_ID_WIDTH-1:0] r_arid ; wire r_rlast ; wire r_full ; generate if (C_AXI_SUPPORTS_READ == 1) begin : RD axi_protocol_converter_v2_1_b2s_ar_channel # ( .C_ID_WIDTH ( C_AXI_ID_WIDTH ), .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) ar_channel_0 ( .clk ( aclk ) , .reset ( areset_d1 ) , .s_arid ( si_rs_arid ) , .s_araddr ( si_rs_araddr ) , .s_arlen ( (C_S_AXI_PROTOCOL == 1) ? {4'h0,si_rs_arlen[3:0]} : si_rs_arlen), .s_arsize ( si_rs_arsize ) , .s_arburst ( si_rs_arburst ) , .s_arvalid ( si_rs_arvalid ) , .s_arready ( si_rs_arready ) , .m_arvalid ( rs_mi_arvalid ) , .m_araddr ( rs_mi_araddr ) , .m_arready ( rs_mi_arready ) , .r_push ( r_push ) , .r_arid ( r_arid ) , .r_rlast ( r_rlast ) , .r_full ( r_full ) ); axi_protocol_converter_v2_1_b2s_r_channel # ( .C_ID_WIDTH ( C_AXI_ID_WIDTH ), .C_DATA_WIDTH ( C_AXI_DATA_WIDTH ) ) r_channel_0 ( .clk ( aclk ) , .reset ( areset_d1 ) , .s_rid ( si_rs_rid ) , .s_rdata ( si_rs_rdata ) , .s_rresp ( si_rs_rresp ) , .s_rlast ( si_rs_rlast ) , .s_rvalid ( si_rs_rvalid ) , .s_rready ( si_rs_rready ) , .m_rvalid ( rs_mi_rvalid ) , .m_rready ( rs_mi_rready ) , .m_rdata ( rs_mi_rdata ) , .m_rresp ( rs_mi_rresp ) , .r_push ( r_push ) , .r_full ( r_full ) , .r_arid ( r_arid ) , .r_rlast ( r_rlast ) ); end else begin : NO_RD assign rs_mi_araddr = {C_AXI_ADDR_WIDTH{1'b0}}; assign rs_mi_arvalid = 1'b0; assign si_rs_arready = 1'b0; assign si_rs_rlast = 1'b1; assign si_rs_rdata = {C_AXI_DATA_WIDTH{1'b0}}; assign si_rs_rvalid = 1'b0; assign si_rs_rresp = 2'b00; assign si_rs_rid = {C_AXI_ID_WIDTH{1'b0}}; assign rs_mi_rready = 1'b0; end endgenerate axi_register_slice_v2_1_axi_register_slice #( .C_AXI_PROTOCOL ( 2 ) , .C_AXI_ID_WIDTH ( 1 ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( 0 ) , .C_AXI_AWUSER_WIDTH ( 1 ) , .C_AXI_ARUSER_WIDTH ( 1 ) , .C_AXI_WUSER_WIDTH ( 1 ) , .C_AXI_RUSER_WIDTH ( 1 ) , .C_AXI_BUSER_WIDTH ( 1 ) , .C_REG_CONFIG_AW ( 0 ) , .C_REG_CONFIG_AR ( 0 ) , .C_REG_CONFIG_W ( 0 ) , .C_REG_CONFIG_R ( 0 ) , .C_REG_CONFIG_B ( 0 ) ) MI_REG ( .aresetn ( aresetn ) , .aclk ( aclk ) , .s_axi_awid ( 1'b0 ) , .s_axi_awaddr ( rs_mi_awaddr ) , .s_axi_awlen ( 8'h00 ) , .s_axi_awsize ( 3'b000 ) , .s_axi_awburst ( 2'b01 ) , .s_axi_awlock ( 1'b0 ) , .s_axi_awcache ( 4'h0 ) , .s_axi_awprot ( si_rs_awprot ) , .s_axi_awqos ( 4'h0 ) , .s_axi_awuser ( 1'b0 ) , .s_axi_awvalid ( rs_mi_awvalid ) , .s_axi_awready ( rs_mi_awready ) , .s_axi_awregion ( 4'h0 ) , .s_axi_wid ( 1'b0 ) , .s_axi_wdata ( rs_mi_wdata ) , .s_axi_wstrb ( rs_mi_wstrb ) , .s_axi_wlast ( 1'b1 ) , .s_axi_wuser ( 1'b0 ) , .s_axi_wvalid ( rs_mi_wvalid ) , .s_axi_wready ( rs_mi_wready ) , .s_axi_bid ( ) , .s_axi_bresp ( rs_mi_bresp ) , .s_axi_buser ( ) , .s_axi_bvalid ( rs_mi_bvalid ) , .s_axi_bready ( rs_mi_bready ) , .s_axi_arid ( 1'b0 ) , .s_axi_araddr ( rs_mi_araddr ) , .s_axi_arlen ( 8'h00 ) , .s_axi_arsize ( 3'b000 ) , .s_axi_arburst ( 2'b01 ) , .s_axi_arlock ( 1'b0 ) , .s_axi_arcache ( 4'h0 ) , .s_axi_arprot ( si_rs_arprot ) , .s_axi_arqos ( 4'h0 ) , .s_axi_aruser ( 1'b0 ) , .s_axi_arvalid ( rs_mi_arvalid ) , .s_axi_arready ( rs_mi_arready ) , .s_axi_arregion ( 4'h0 ) , .s_axi_rid ( ) , .s_axi_rdata ( rs_mi_rdata ) , .s_axi_rresp ( rs_mi_rresp ) , .s_axi_rlast ( ) , .s_axi_ruser ( ) , .s_axi_rvalid ( rs_mi_rvalid ) , .s_axi_rready ( rs_mi_rready ) , .m_axi_awid ( ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( ) , .m_axi_awsize ( ) , .m_axi_awburst ( ) , .m_axi_awlock ( ) , .m_axi_awcache ( ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( ) , .m_axi_awuser ( ) , .m_axi_awvalid ( m_axi_awvalid ) , .m_axi_awready ( m_axi_awready ) , .m_axi_awregion ( ) , .m_axi_wid ( ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( ) , .m_axi_wuser ( ) , .m_axi_wvalid ( m_axi_wvalid ) , .m_axi_wready ( m_axi_wready ) , .m_axi_bid ( 1'b0 ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( 1'b0 ) , .m_axi_bvalid ( m_axi_bvalid ) , .m_axi_bready ( m_axi_bready ) , .m_axi_arid ( ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( ) , .m_axi_arsize ( ) , .m_axi_arburst ( ) , .m_axi_arlock ( ) , .m_axi_arcache ( ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( ) , .m_axi_aruser ( ) , .m_axi_arvalid ( m_axi_arvalid ) , .m_axi_arready ( m_axi_arready ) , .m_axi_arregion ( ) , .m_axi_rid ( 1'b0 ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( 1'b1 ) , .m_axi_ruser ( 1'b0 ) , .m_axi_rvalid ( m_axi_rvalid ) , .m_axi_rready ( m_axi_rready ) ); endmodule `default_nettype wire
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 03/15/2016 01:13:48 PM // Design Name: // Module Name: Add_Subt // Project Name: // Target Devices: // Tool Versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Add_Subt #(parameter SWR=26) ( input wire clk, input wire rst, input wire load_i,//Reg load input input wire Add_Sub_op_i, input wire [SWR-1:0] Data_A_i, input wire [SWR-1:0] PreData_B_i, ///////////////////////////////////////////////////////////// output wire [SWR-1:0] Data_Result_o, //output wire [SWR-1:0] P_o, //output wire [SWR-1:1] Cn_o, output wire FSM_C_o ); wire [SWR-1:0] Data_B; wire [SWR:0] S_to_D; wire [SWR-1:0] P_to_D; wire [SWR-1:1] C_to_D; wire Co_to_D; //wire Co_to_gate; /* /////////////////////////////////////////7 genvar j; for (j=0; j<SWR; j=j+1)begin assign Data_B[j] = PreData_B_i[j] ^ Add_Sub_op_i; end Full_Adder_PG #(.SWR(SWR)) AS_Module( .clk(clk), .rst(rst), .Op_A_i(Data_A_i), .Op_B_i(Data_B), .C_i(Add_Sub_op_i), //Carry in .S_o(S_to_D), // Solution out .Cn_o(C_to_D), .C_o(Co_to_gate), //Carry out .P_o(P_o) //Propagate (for LZA) );*/ add_sub_carry_out #(.W(SWR)) Sgf_AS ( .op_mode(Add_Sub_op_i), .Data_A(Data_A_i), .Data_B(PreData_B_i), .Data_S(S_to_D) ); assign Co_to_D = S_to_D[SWR] & ~Add_Sub_op_i; RegisterAdd #(.W(SWR)) Add_Subt_Result( .clk (clk), .rst (rst), .load (load_i), .D (S_to_D[SWR-1:0]), .Q (Data_Result_o) ); /*RegisterAdd #(.W(SWR)) P_Result( .clk (clk), .rst (rst), .load (load_i), .D (P_to_D), .Q (P_o) );*/ /*RegisterAdd #(.W(SWR-1)) C_Result( .clk (clk), .rst (rst), .load (load_i), .D (C_to_D), .Q (Cn_o) );*/ RegisterAdd #(.W(1)) Add_overflow_Result( .clk (clk), .rst (rst), .load (load_i), .D (S_to_D[SWR]), .Q (FSM_C_o) ); endmodule
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Filename: trace_buffer.v // Description: Trace port buffer //----------------------------------------------------------------------------- // Structure: This section shows the hierarchical structure of // pss_wrapper. // // --processing_system7 // | // --trace_buffer //----------------------------------------------------------------------------- module processing_system7_v5_5_trace_buffer # ( parameter integer FIFO_SIZE = 128, parameter integer USE_TRACE_DATA_EDGE_DETECTOR = 0, parameter integer C_DELAY_CLKS = 12 ) ( input wire TRACE_CLK, input wire RST, input wire TRACE_VALID_IN, input wire [3:0] TRACE_ATID_IN, input wire [31:0] TRACE_DATA_IN, output wire TRACE_VALID_OUT, output wire [3:0] TRACE_ATID_OUT, output wire [31:0] TRACE_DATA_OUT ); //------------------------------------------------------------ // Architecture section //------------------------------------------------------------ // function called clogb2 that returns an integer which has the // value of the ceiling of the log base 2. function integer clogb2 (input integer bit_depth); integer i; integer temp_log; begin temp_log = 0; for(i=bit_depth; i > 0; i = i>>1) clogb2 = temp_log; temp_log=temp_log+1; end endfunction localparam DEPTH = clogb2(FIFO_SIZE-1); wire [31:0] reset_zeros; reg [31:0] trace_pedge; // write enable for FIFO reg [31:0] ti; reg [31:0] tom; reg [3:0] atid; reg [31:0] trace_fifo [FIFO_SIZE-1:0];//Memory reg [4:0] dly_ctr; reg [DEPTH-1:0] fifo_wp; reg [DEPTH-1:0] fifo_rp; reg fifo_re; wire fifo_empty; wire fifo_full; reg fifo_full_reg; assign reset_zeros = 32'h0; // Pipeline Stage for Traceport ATID ports always @(posedge TRACE_CLK) begin // process pedge_ti // rising clock edge if((RST == 1'b1)) begin atid <= reset_zeros; end else begin atid <= TRACE_ATID_IN; end end assign TRACE_ATID_OUT = atid; ///////////////////////////////////////////// // Generate FIFO data based on TRACE_VALID_IN ///////////////////////////////////////////// generate if (USE_TRACE_DATA_EDGE_DETECTOR == 0) begin : gen_no_data_edge_detector ///////////////////////////////////////////// // memory update process // Update memory when positive edge detected and FIFO not full always @(posedge TRACE_CLK) begin if (TRACE_VALID_IN == 1'b1 && fifo_full_reg != 1'b1) begin trace_fifo[fifo_wp] <= TRACE_DATA_IN; end end // fifo write pointer always @(posedge TRACE_CLK) begin // process if(RST == 1'b1) begin fifo_wp <= {DEPTH{1'b0}}; end else if(TRACE_VALID_IN ) begin if(fifo_wp == (FIFO_SIZE - 1)) begin if (fifo_empty) begin fifo_wp <= {DEPTH{1'b0}}; end end else begin fifo_wp <= fifo_wp + 1; end end end ///////////////////////////////////////////// // Generate FIFO data based on data edge ///////////////////////////////////////////// end else begin : gen_data_edge_detector ///////////////////////////////////////////// // purpose: check for pos edge on any trace input always @(posedge TRACE_CLK) begin // process pedge_ti // rising clock edge if((RST == 1'b1)) begin ti <= reset_zeros; trace_pedge <= reset_zeros; end else begin ti <= TRACE_DATA_IN; trace_pedge <= (~ti & TRACE_DATA_IN); //trace_pedge <= ((~ti ^ TRACE_DATA_IN)) & ~ti; // posedge only end end // memory update process // Update memory when positive edge detected and FIFO not full always @(posedge TRACE_CLK) begin if(|(trace_pedge) == 1'b1 && fifo_full_reg != 1'b1) begin trace_fifo[fifo_wp] <= trace_pedge; end end // fifo write pointer always @(posedge TRACE_CLK) begin // process if(RST == 1'b1) begin fifo_wp <= {DEPTH{1'b0}}; end else if(|(trace_pedge) == 1'b1) begin if(fifo_wp == (FIFO_SIZE - 1)) begin if (fifo_empty) begin fifo_wp <= {DEPTH{1'b0}}; end end else begin fifo_wp <= fifo_wp + 1; end end end end endgenerate always @(posedge TRACE_CLK) begin tom <= trace_fifo[fifo_rp] ; end // // fifo write pointer // always @(posedge TRACE_CLK) begin // // process // if(RST == 1'b1) begin // fifo_wp <= {DEPTH{1'b0}}; // end // else if(|(trace_pedge) == 1'b1) begin // if(fifo_wp == (FIFO_SIZE - 1)) begin // fifo_wp <= {DEPTH{1'b0}}; // end // else begin // fifo_wp <= fifo_wp + 1; // end // end // end // fifo read pointer update always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin fifo_rp <= {DEPTH{1'b0}}; fifo_re <= 1'b0; end else if(fifo_empty != 1'b1 && dly_ctr == 5'b00000 && fifo_re == 1'b0) begin fifo_re <= 1'b1; if(fifo_rp == (FIFO_SIZE - 1)) begin fifo_rp <= {DEPTH{1'b0}}; end else begin fifo_rp <= fifo_rp + 1; end end else begin fifo_re <= 1'b0; end end // delay counter update always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin dly_ctr <= 5'h0; end else if (fifo_re == 1'b1) begin dly_ctr <= C_DELAY_CLKS-1; end else if(dly_ctr != 5'h0) begin dly_ctr <= dly_ctr - 1; end end // fifo empty update assign fifo_empty = (fifo_wp == fifo_rp) ? 1'b1 : 1'b0; // fifo full update assign fifo_full = (fifo_wp == FIFO_SIZE-1)? 1'b1 : 1'b0; always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin fifo_full_reg <= 1'b0; end else if (fifo_empty) begin fifo_full_reg <= 1'b0; end else begin fifo_full_reg <= fifo_full; end end // always @(posedge TRACE_CLK) begin // if(RST == 1'b1) begin // fifo_full_reg <= 1'b0; // end // else if ((fifo_wp == FIFO_SIZE-1) && (|(trace_pedge) == 1'b1)) begin // fifo_full_reg <= 1'b1; // end // else begin // fifo_full_reg <= 1'b0; // end // end // assign TRACE_DATA_OUT = tom; assign TRACE_VALID_OUT = fifo_re; endmodule
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Filename: trace_buffer.v // Description: Trace port buffer //----------------------------------------------------------------------------- // Structure: This section shows the hierarchical structure of // pss_wrapper. // // --processing_system7 // | // --trace_buffer //----------------------------------------------------------------------------- module processing_system7_v5_5_trace_buffer # ( parameter integer FIFO_SIZE = 128, parameter integer USE_TRACE_DATA_EDGE_DETECTOR = 0, parameter integer C_DELAY_CLKS = 12 ) ( input wire TRACE_CLK, input wire RST, input wire TRACE_VALID_IN, input wire [3:0] TRACE_ATID_IN, input wire [31:0] TRACE_DATA_IN, output wire TRACE_VALID_OUT, output wire [3:0] TRACE_ATID_OUT, output wire [31:0] TRACE_DATA_OUT ); //------------------------------------------------------------ // Architecture section //------------------------------------------------------------ // function called clogb2 that returns an integer which has the // value of the ceiling of the log base 2. function integer clogb2 (input integer bit_depth); integer i; integer temp_log; begin temp_log = 0; for(i=bit_depth; i > 0; i = i>>1) clogb2 = temp_log; temp_log=temp_log+1; end endfunction localparam DEPTH = clogb2(FIFO_SIZE-1); wire [31:0] reset_zeros; reg [31:0] trace_pedge; // write enable for FIFO reg [31:0] ti; reg [31:0] tom; reg [3:0] atid; reg [31:0] trace_fifo [FIFO_SIZE-1:0];//Memory reg [4:0] dly_ctr; reg [DEPTH-1:0] fifo_wp; reg [DEPTH-1:0] fifo_rp; reg fifo_re; wire fifo_empty; wire fifo_full; reg fifo_full_reg; assign reset_zeros = 32'h0; // Pipeline Stage for Traceport ATID ports always @(posedge TRACE_CLK) begin // process pedge_ti // rising clock edge if((RST == 1'b1)) begin atid <= reset_zeros; end else begin atid <= TRACE_ATID_IN; end end assign TRACE_ATID_OUT = atid; ///////////////////////////////////////////// // Generate FIFO data based on TRACE_VALID_IN ///////////////////////////////////////////// generate if (USE_TRACE_DATA_EDGE_DETECTOR == 0) begin : gen_no_data_edge_detector ///////////////////////////////////////////// // memory update process // Update memory when positive edge detected and FIFO not full always @(posedge TRACE_CLK) begin if (TRACE_VALID_IN == 1'b1 && fifo_full_reg != 1'b1) begin trace_fifo[fifo_wp] <= TRACE_DATA_IN; end end // fifo write pointer always @(posedge TRACE_CLK) begin // process if(RST == 1'b1) begin fifo_wp <= {DEPTH{1'b0}}; end else if(TRACE_VALID_IN ) begin if(fifo_wp == (FIFO_SIZE - 1)) begin if (fifo_empty) begin fifo_wp <= {DEPTH{1'b0}}; end end else begin fifo_wp <= fifo_wp + 1; end end end ///////////////////////////////////////////// // Generate FIFO data based on data edge ///////////////////////////////////////////// end else begin : gen_data_edge_detector ///////////////////////////////////////////// // purpose: check for pos edge on any trace input always @(posedge TRACE_CLK) begin // process pedge_ti // rising clock edge if((RST == 1'b1)) begin ti <= reset_zeros; trace_pedge <= reset_zeros; end else begin ti <= TRACE_DATA_IN; trace_pedge <= (~ti & TRACE_DATA_IN); //trace_pedge <= ((~ti ^ TRACE_DATA_IN)) & ~ti; // posedge only end end // memory update process // Update memory when positive edge detected and FIFO not full always @(posedge TRACE_CLK) begin if(|(trace_pedge) == 1'b1 && fifo_full_reg != 1'b1) begin trace_fifo[fifo_wp] <= trace_pedge; end end // fifo write pointer always @(posedge TRACE_CLK) begin // process if(RST == 1'b1) begin fifo_wp <= {DEPTH{1'b0}}; end else if(|(trace_pedge) == 1'b1) begin if(fifo_wp == (FIFO_SIZE - 1)) begin if (fifo_empty) begin fifo_wp <= {DEPTH{1'b0}}; end end else begin fifo_wp <= fifo_wp + 1; end end end end endgenerate always @(posedge TRACE_CLK) begin tom <= trace_fifo[fifo_rp] ; end // // fifo write pointer // always @(posedge TRACE_CLK) begin // // process // if(RST == 1'b1) begin // fifo_wp <= {DEPTH{1'b0}}; // end // else if(|(trace_pedge) == 1'b1) begin // if(fifo_wp == (FIFO_SIZE - 1)) begin // fifo_wp <= {DEPTH{1'b0}}; // end // else begin // fifo_wp <= fifo_wp + 1; // end // end // end // fifo read pointer update always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin fifo_rp <= {DEPTH{1'b0}}; fifo_re <= 1'b0; end else if(fifo_empty != 1'b1 && dly_ctr == 5'b00000 && fifo_re == 1'b0) begin fifo_re <= 1'b1; if(fifo_rp == (FIFO_SIZE - 1)) begin fifo_rp <= {DEPTH{1'b0}}; end else begin fifo_rp <= fifo_rp + 1; end end else begin fifo_re <= 1'b0; end end // delay counter update always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin dly_ctr <= 5'h0; end else if (fifo_re == 1'b1) begin dly_ctr <= C_DELAY_CLKS-1; end else if(dly_ctr != 5'h0) begin dly_ctr <= dly_ctr - 1; end end // fifo empty update assign fifo_empty = (fifo_wp == fifo_rp) ? 1'b1 : 1'b0; // fifo full update assign fifo_full = (fifo_wp == FIFO_SIZE-1)? 1'b1 : 1'b0; always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin fifo_full_reg <= 1'b0; end else if (fifo_empty) begin fifo_full_reg <= 1'b0; end else begin fifo_full_reg <= fifo_full; end end // always @(posedge TRACE_CLK) begin // if(RST == 1'b1) begin // fifo_full_reg <= 1'b0; // end // else if ((fifo_wp == FIFO_SIZE-1) && (|(trace_pedge) == 1'b1)) begin // fifo_full_reg <= 1'b1; // end // else begin // fifo_full_reg <= 1'b0; // end // end // assign TRACE_DATA_OUT = tom; assign TRACE_VALID_OUT = fifo_re; endmodule
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Filename: trace_buffer.v // Description: Trace port buffer //----------------------------------------------------------------------------- // Structure: This section shows the hierarchical structure of // pss_wrapper. // // --processing_system7 // | // --trace_buffer //----------------------------------------------------------------------------- module processing_system7_v5_5_trace_buffer # ( parameter integer FIFO_SIZE = 128, parameter integer USE_TRACE_DATA_EDGE_DETECTOR = 0, parameter integer C_DELAY_CLKS = 12 ) ( input wire TRACE_CLK, input wire RST, input wire TRACE_VALID_IN, input wire [3:0] TRACE_ATID_IN, input wire [31:0] TRACE_DATA_IN, output wire TRACE_VALID_OUT, output wire [3:0] TRACE_ATID_OUT, output wire [31:0] TRACE_DATA_OUT ); //------------------------------------------------------------ // Architecture section //------------------------------------------------------------ // function called clogb2 that returns an integer which has the // value of the ceiling of the log base 2. function integer clogb2 (input integer bit_depth); integer i; integer temp_log; begin temp_log = 0; for(i=bit_depth; i > 0; i = i>>1) clogb2 = temp_log; temp_log=temp_log+1; end endfunction localparam DEPTH = clogb2(FIFO_SIZE-1); wire [31:0] reset_zeros; reg [31:0] trace_pedge; // write enable for FIFO reg [31:0] ti; reg [31:0] tom; reg [3:0] atid; reg [31:0] trace_fifo [FIFO_SIZE-1:0];//Memory reg [4:0] dly_ctr; reg [DEPTH-1:0] fifo_wp; reg [DEPTH-1:0] fifo_rp; reg fifo_re; wire fifo_empty; wire fifo_full; reg fifo_full_reg; assign reset_zeros = 32'h0; // Pipeline Stage for Traceport ATID ports always @(posedge TRACE_CLK) begin // process pedge_ti // rising clock edge if((RST == 1'b1)) begin atid <= reset_zeros; end else begin atid <= TRACE_ATID_IN; end end assign TRACE_ATID_OUT = atid; ///////////////////////////////////////////// // Generate FIFO data based on TRACE_VALID_IN ///////////////////////////////////////////// generate if (USE_TRACE_DATA_EDGE_DETECTOR == 0) begin : gen_no_data_edge_detector ///////////////////////////////////////////// // memory update process // Update memory when positive edge detected and FIFO not full always @(posedge TRACE_CLK) begin if (TRACE_VALID_IN == 1'b1 && fifo_full_reg != 1'b1) begin trace_fifo[fifo_wp] <= TRACE_DATA_IN; end end // fifo write pointer always @(posedge TRACE_CLK) begin // process if(RST == 1'b1) begin fifo_wp <= {DEPTH{1'b0}}; end else if(TRACE_VALID_IN ) begin if(fifo_wp == (FIFO_SIZE - 1)) begin if (fifo_empty) begin fifo_wp <= {DEPTH{1'b0}}; end end else begin fifo_wp <= fifo_wp + 1; end end end ///////////////////////////////////////////// // Generate FIFO data based on data edge ///////////////////////////////////////////// end else begin : gen_data_edge_detector ///////////////////////////////////////////// // purpose: check for pos edge on any trace input always @(posedge TRACE_CLK) begin // process pedge_ti // rising clock edge if((RST == 1'b1)) begin ti <= reset_zeros; trace_pedge <= reset_zeros; end else begin ti <= TRACE_DATA_IN; trace_pedge <= (~ti & TRACE_DATA_IN); //trace_pedge <= ((~ti ^ TRACE_DATA_IN)) & ~ti; // posedge only end end // memory update process // Update memory when positive edge detected and FIFO not full always @(posedge TRACE_CLK) begin if(|(trace_pedge) == 1'b1 && fifo_full_reg != 1'b1) begin trace_fifo[fifo_wp] <= trace_pedge; end end // fifo write pointer always @(posedge TRACE_CLK) begin // process if(RST == 1'b1) begin fifo_wp <= {DEPTH{1'b0}}; end else if(|(trace_pedge) == 1'b1) begin if(fifo_wp == (FIFO_SIZE - 1)) begin if (fifo_empty) begin fifo_wp <= {DEPTH{1'b0}}; end end else begin fifo_wp <= fifo_wp + 1; end end end end endgenerate always @(posedge TRACE_CLK) begin tom <= trace_fifo[fifo_rp] ; end // // fifo write pointer // always @(posedge TRACE_CLK) begin // // process // if(RST == 1'b1) begin // fifo_wp <= {DEPTH{1'b0}}; // end // else if(|(trace_pedge) == 1'b1) begin // if(fifo_wp == (FIFO_SIZE - 1)) begin // fifo_wp <= {DEPTH{1'b0}}; // end // else begin // fifo_wp <= fifo_wp + 1; // end // end // end // fifo read pointer update always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin fifo_rp <= {DEPTH{1'b0}}; fifo_re <= 1'b0; end else if(fifo_empty != 1'b1 && dly_ctr == 5'b00000 && fifo_re == 1'b0) begin fifo_re <= 1'b1; if(fifo_rp == (FIFO_SIZE - 1)) begin fifo_rp <= {DEPTH{1'b0}}; end else begin fifo_rp <= fifo_rp + 1; end end else begin fifo_re <= 1'b0; end end // delay counter update always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin dly_ctr <= 5'h0; end else if (fifo_re == 1'b1) begin dly_ctr <= C_DELAY_CLKS-1; end else if(dly_ctr != 5'h0) begin dly_ctr <= dly_ctr - 1; end end // fifo empty update assign fifo_empty = (fifo_wp == fifo_rp) ? 1'b1 : 1'b0; // fifo full update assign fifo_full = (fifo_wp == FIFO_SIZE-1)? 1'b1 : 1'b0; always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin fifo_full_reg <= 1'b0; end else if (fifo_empty) begin fifo_full_reg <= 1'b0; end else begin fifo_full_reg <= fifo_full; end end // always @(posedge TRACE_CLK) begin // if(RST == 1'b1) begin // fifo_full_reg <= 1'b0; // end // else if ((fifo_wp == FIFO_SIZE-1) && (|(trace_pedge) == 1'b1)) begin // fifo_full_reg <= 1'b1; // end // else begin // fifo_full_reg <= 1'b0; // end // end // assign TRACE_DATA_OUT = tom; assign TRACE_VALID_OUT = fifo_re; endmodule
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Filename: trace_buffer.v // Description: Trace port buffer //----------------------------------------------------------------------------- // Structure: This section shows the hierarchical structure of // pss_wrapper. // // --processing_system7 // | // --trace_buffer //----------------------------------------------------------------------------- module processing_system7_v5_5_trace_buffer # ( parameter integer FIFO_SIZE = 128, parameter integer USE_TRACE_DATA_EDGE_DETECTOR = 0, parameter integer C_DELAY_CLKS = 12 ) ( input wire TRACE_CLK, input wire RST, input wire TRACE_VALID_IN, input wire [3:0] TRACE_ATID_IN, input wire [31:0] TRACE_DATA_IN, output wire TRACE_VALID_OUT, output wire [3:0] TRACE_ATID_OUT, output wire [31:0] TRACE_DATA_OUT ); //------------------------------------------------------------ // Architecture section //------------------------------------------------------------ // function called clogb2 that returns an integer which has the // value of the ceiling of the log base 2. function integer clogb2 (input integer bit_depth); integer i; integer temp_log; begin temp_log = 0; for(i=bit_depth; i > 0; i = i>>1) clogb2 = temp_log; temp_log=temp_log+1; end endfunction localparam DEPTH = clogb2(FIFO_SIZE-1); wire [31:0] reset_zeros; reg [31:0] trace_pedge; // write enable for FIFO reg [31:0] ti; reg [31:0] tom; reg [3:0] atid; reg [31:0] trace_fifo [FIFO_SIZE-1:0];//Memory reg [4:0] dly_ctr; reg [DEPTH-1:0] fifo_wp; reg [DEPTH-1:0] fifo_rp; reg fifo_re; wire fifo_empty; wire fifo_full; reg fifo_full_reg; assign reset_zeros = 32'h0; // Pipeline Stage for Traceport ATID ports always @(posedge TRACE_CLK) begin // process pedge_ti // rising clock edge if((RST == 1'b1)) begin atid <= reset_zeros; end else begin atid <= TRACE_ATID_IN; end end assign TRACE_ATID_OUT = atid; ///////////////////////////////////////////// // Generate FIFO data based on TRACE_VALID_IN ///////////////////////////////////////////// generate if (USE_TRACE_DATA_EDGE_DETECTOR == 0) begin : gen_no_data_edge_detector ///////////////////////////////////////////// // memory update process // Update memory when positive edge detected and FIFO not full always @(posedge TRACE_CLK) begin if (TRACE_VALID_IN == 1'b1 && fifo_full_reg != 1'b1) begin trace_fifo[fifo_wp] <= TRACE_DATA_IN; end end // fifo write pointer always @(posedge TRACE_CLK) begin // process if(RST == 1'b1) begin fifo_wp <= {DEPTH{1'b0}}; end else if(TRACE_VALID_IN ) begin if(fifo_wp == (FIFO_SIZE - 1)) begin if (fifo_empty) begin fifo_wp <= {DEPTH{1'b0}}; end end else begin fifo_wp <= fifo_wp + 1; end end end ///////////////////////////////////////////// // Generate FIFO data based on data edge ///////////////////////////////////////////// end else begin : gen_data_edge_detector ///////////////////////////////////////////// // purpose: check for pos edge on any trace input always @(posedge TRACE_CLK) begin // process pedge_ti // rising clock edge if((RST == 1'b1)) begin ti <= reset_zeros; trace_pedge <= reset_zeros; end else begin ti <= TRACE_DATA_IN; trace_pedge <= (~ti & TRACE_DATA_IN); //trace_pedge <= ((~ti ^ TRACE_DATA_IN)) & ~ti; // posedge only end end // memory update process // Update memory when positive edge detected and FIFO not full always @(posedge TRACE_CLK) begin if(|(trace_pedge) == 1'b1 && fifo_full_reg != 1'b1) begin trace_fifo[fifo_wp] <= trace_pedge; end end // fifo write pointer always @(posedge TRACE_CLK) begin // process if(RST == 1'b1) begin fifo_wp <= {DEPTH{1'b0}}; end else if(|(trace_pedge) == 1'b1) begin if(fifo_wp == (FIFO_SIZE - 1)) begin if (fifo_empty) begin fifo_wp <= {DEPTH{1'b0}}; end end else begin fifo_wp <= fifo_wp + 1; end end end end endgenerate always @(posedge TRACE_CLK) begin tom <= trace_fifo[fifo_rp] ; end // // fifo write pointer // always @(posedge TRACE_CLK) begin // // process // if(RST == 1'b1) begin // fifo_wp <= {DEPTH{1'b0}}; // end // else if(|(trace_pedge) == 1'b1) begin // if(fifo_wp == (FIFO_SIZE - 1)) begin // fifo_wp <= {DEPTH{1'b0}}; // end // else begin // fifo_wp <= fifo_wp + 1; // end // end // end // fifo read pointer update always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin fifo_rp <= {DEPTH{1'b0}}; fifo_re <= 1'b0; end else if(fifo_empty != 1'b1 && dly_ctr == 5'b00000 && fifo_re == 1'b0) begin fifo_re <= 1'b1; if(fifo_rp == (FIFO_SIZE - 1)) begin fifo_rp <= {DEPTH{1'b0}}; end else begin fifo_rp <= fifo_rp + 1; end end else begin fifo_re <= 1'b0; end end // delay counter update always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin dly_ctr <= 5'h0; end else if (fifo_re == 1'b1) begin dly_ctr <= C_DELAY_CLKS-1; end else if(dly_ctr != 5'h0) begin dly_ctr <= dly_ctr - 1; end end // fifo empty update assign fifo_empty = (fifo_wp == fifo_rp) ? 1'b1 : 1'b0; // fifo full update assign fifo_full = (fifo_wp == FIFO_SIZE-1)? 1'b1 : 1'b0; always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin fifo_full_reg <= 1'b0; end else if (fifo_empty) begin fifo_full_reg <= 1'b0; end else begin fifo_full_reg <= fifo_full; end end // always @(posedge TRACE_CLK) begin // if(RST == 1'b1) begin // fifo_full_reg <= 1'b0; // end // else if ((fifo_wp == FIFO_SIZE-1) && (|(trace_pedge) == 1'b1)) begin // fifo_full_reg <= 1'b1; // end // else begin // fifo_full_reg <= 1'b0; // end // end // assign TRACE_DATA_OUT = tom; assign TRACE_VALID_OUT = fifo_re; endmodule
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Filename: trace_buffer.v // Description: Trace port buffer //----------------------------------------------------------------------------- // Structure: This section shows the hierarchical structure of // pss_wrapper. // // --processing_system7 // | // --trace_buffer //----------------------------------------------------------------------------- module processing_system7_v5_5_trace_buffer # ( parameter integer FIFO_SIZE = 128, parameter integer USE_TRACE_DATA_EDGE_DETECTOR = 0, parameter integer C_DELAY_CLKS = 12 ) ( input wire TRACE_CLK, input wire RST, input wire TRACE_VALID_IN, input wire [3:0] TRACE_ATID_IN, input wire [31:0] TRACE_DATA_IN, output wire TRACE_VALID_OUT, output wire [3:0] TRACE_ATID_OUT, output wire [31:0] TRACE_DATA_OUT ); //------------------------------------------------------------ // Architecture section //------------------------------------------------------------ // function called clogb2 that returns an integer which has the // value of the ceiling of the log base 2. function integer clogb2 (input integer bit_depth); integer i; integer temp_log; begin temp_log = 0; for(i=bit_depth; i > 0; i = i>>1) clogb2 = temp_log; temp_log=temp_log+1; end endfunction localparam DEPTH = clogb2(FIFO_SIZE-1); wire [31:0] reset_zeros; reg [31:0] trace_pedge; // write enable for FIFO reg [31:0] ti; reg [31:0] tom; reg [3:0] atid; reg [31:0] trace_fifo [FIFO_SIZE-1:0];//Memory reg [4:0] dly_ctr; reg [DEPTH-1:0] fifo_wp; reg [DEPTH-1:0] fifo_rp; reg fifo_re; wire fifo_empty; wire fifo_full; reg fifo_full_reg; assign reset_zeros = 32'h0; // Pipeline Stage for Traceport ATID ports always @(posedge TRACE_CLK) begin // process pedge_ti // rising clock edge if((RST == 1'b1)) begin atid <= reset_zeros; end else begin atid <= TRACE_ATID_IN; end end assign TRACE_ATID_OUT = atid; ///////////////////////////////////////////// // Generate FIFO data based on TRACE_VALID_IN ///////////////////////////////////////////// generate if (USE_TRACE_DATA_EDGE_DETECTOR == 0) begin : gen_no_data_edge_detector ///////////////////////////////////////////// // memory update process // Update memory when positive edge detected and FIFO not full always @(posedge TRACE_CLK) begin if (TRACE_VALID_IN == 1'b1 && fifo_full_reg != 1'b1) begin trace_fifo[fifo_wp] <= TRACE_DATA_IN; end end // fifo write pointer always @(posedge TRACE_CLK) begin // process if(RST == 1'b1) begin fifo_wp <= {DEPTH{1'b0}}; end else if(TRACE_VALID_IN ) begin if(fifo_wp == (FIFO_SIZE - 1)) begin if (fifo_empty) begin fifo_wp <= {DEPTH{1'b0}}; end end else begin fifo_wp <= fifo_wp + 1; end end end ///////////////////////////////////////////// // Generate FIFO data based on data edge ///////////////////////////////////////////// end else begin : gen_data_edge_detector ///////////////////////////////////////////// // purpose: check for pos edge on any trace input always @(posedge TRACE_CLK) begin // process pedge_ti // rising clock edge if((RST == 1'b1)) begin ti <= reset_zeros; trace_pedge <= reset_zeros; end else begin ti <= TRACE_DATA_IN; trace_pedge <= (~ti & TRACE_DATA_IN); //trace_pedge <= ((~ti ^ TRACE_DATA_IN)) & ~ti; // posedge only end end // memory update process // Update memory when positive edge detected and FIFO not full always @(posedge TRACE_CLK) begin if(|(trace_pedge) == 1'b1 && fifo_full_reg != 1'b1) begin trace_fifo[fifo_wp] <= trace_pedge; end end // fifo write pointer always @(posedge TRACE_CLK) begin // process if(RST == 1'b1) begin fifo_wp <= {DEPTH{1'b0}}; end else if(|(trace_pedge) == 1'b1) begin if(fifo_wp == (FIFO_SIZE - 1)) begin if (fifo_empty) begin fifo_wp <= {DEPTH{1'b0}}; end end else begin fifo_wp <= fifo_wp + 1; end end end end endgenerate always @(posedge TRACE_CLK) begin tom <= trace_fifo[fifo_rp] ; end // // fifo write pointer // always @(posedge TRACE_CLK) begin // // process // if(RST == 1'b1) begin // fifo_wp <= {DEPTH{1'b0}}; // end // else if(|(trace_pedge) == 1'b1) begin // if(fifo_wp == (FIFO_SIZE - 1)) begin // fifo_wp <= {DEPTH{1'b0}}; // end // else begin // fifo_wp <= fifo_wp + 1; // end // end // end // fifo read pointer update always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin fifo_rp <= {DEPTH{1'b0}}; fifo_re <= 1'b0; end else if(fifo_empty != 1'b1 && dly_ctr == 5'b00000 && fifo_re == 1'b0) begin fifo_re <= 1'b1; if(fifo_rp == (FIFO_SIZE - 1)) begin fifo_rp <= {DEPTH{1'b0}}; end else begin fifo_rp <= fifo_rp + 1; end end else begin fifo_re <= 1'b0; end end // delay counter update always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin dly_ctr <= 5'h0; end else if (fifo_re == 1'b1) begin dly_ctr <= C_DELAY_CLKS-1; end else if(dly_ctr != 5'h0) begin dly_ctr <= dly_ctr - 1; end end // fifo empty update assign fifo_empty = (fifo_wp == fifo_rp) ? 1'b1 : 1'b0; // fifo full update assign fifo_full = (fifo_wp == FIFO_SIZE-1)? 1'b1 : 1'b0; always @(posedge TRACE_CLK) begin if(RST == 1'b1) begin fifo_full_reg <= 1'b0; end else if (fifo_empty) begin fifo_full_reg <= 1'b0; end else begin fifo_full_reg <= fifo_full; end end // always @(posedge TRACE_CLK) begin // if(RST == 1'b1) begin // fifo_full_reg <= 1'b0; // end // else if ((fifo_wp == FIFO_SIZE-1) && (|(trace_pedge) == 1'b1)) begin // fifo_full_reg <= 1'b1; // end // else begin // fifo_full_reg <= 1'b0; // end // end // assign TRACE_DATA_OUT = tom; assign TRACE_VALID_OUT = fifo_re; endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Register Slice // Generic single-channel AXI pipeline register on forward and/or reverse signal path // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // axic_register_slice // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module axi_register_slice_v2_1_axic_register_slice # ( parameter C_FAMILY = "virtex6", parameter C_DATA_WIDTH = 32, parameter C_REG_CONFIG = 32'h00000000 // C_REG_CONFIG: // 0 => BYPASS = The channel is just wired through the module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule // reg_slice
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Register Slice // Generic single-channel AXI pipeline register on forward and/or reverse signal path // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // axic_register_slice // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module axi_register_slice_v2_1_axic_register_slice # ( parameter C_FAMILY = "virtex6", parameter C_DATA_WIDTH = 32, parameter C_REG_CONFIG = 32'h00000000 // C_REG_CONFIG: // 0 => BYPASS = The channel is just wired through the module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule // reg_slice
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Register Slice // Generic single-channel AXI pipeline register on forward and/or reverse signal path // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // axic_register_slice // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module axi_register_slice_v2_1_axic_register_slice # ( parameter C_FAMILY = "virtex6", parameter C_DATA_WIDTH = 32, parameter C_REG_CONFIG = 32'h00000000 // C_REG_CONFIG: // 0 => BYPASS = The channel is just wired through the module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule // reg_slice
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Register Slice // Generic single-channel AXI pipeline register on forward and/or reverse signal path // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // axic_register_slice // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module axi_register_slice_v2_1_axic_register_slice # ( parameter C_FAMILY = "virtex6", parameter C_DATA_WIDTH = 32, parameter C_REG_CONFIG = 32'h00000000 // C_REG_CONFIG: // 0 => BYPASS = The channel is just wired through the module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule // reg_slice
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Register Slice // Generic single-channel AXI pipeline register on forward and/or reverse signal path // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // axic_register_slice // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module axi_register_slice_v2_1_axic_register_slice # ( parameter C_FAMILY = "virtex6", parameter C_DATA_WIDTH = 32, parameter C_REG_CONFIG = 32'h00000000 // C_REG_CONFIG: // 0 => BYPASS = The channel is just wired through the module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule // reg_slice
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Register Slice // Generic single-channel AXI pipeline register on forward and/or reverse signal path // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // axic_register_slice // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module axi_register_slice_v2_1_axic_register_slice # ( parameter C_FAMILY = "virtex6", parameter C_DATA_WIDTH = 32, parameter C_REG_CONFIG = 32'h00000000 // C_REG_CONFIG: // 0 => BYPASS = The channel is just wired through the module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule // reg_slice
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Register Slice // Generic single-channel AXI pipeline register on forward and/or reverse signal path // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // axic_register_slice // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module axi_register_slice_v2_1_axic_register_slice # ( parameter C_FAMILY = "virtex6", parameter C_DATA_WIDTH = 32, parameter C_REG_CONFIG = 32'h00000000 // C_REG_CONFIG: // 0 => BYPASS = The channel is just wired through the module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => RESERVED (all outputs driven to 0). // 5 => RESERVED (all outputs driven to 0). // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); (* use_clock_enable = "yes" *) generate //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 0 // Bypass mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 1 (or 8) // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG == 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else begin s_ready_i <= M_READY | ~m_valid_i | (s_ready_i & ~S_VALID); end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= S_VALID | ~s_ready_i | (m_valid_i & ~M_READY); end if (M_READY | ~m_valid_i) begin m_payload_i <= s_ready_i ? S_PAYLOAD_DATA : skid_buffer; end if (s_ready_i) begin skid_buffer <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 2 // Only FWD mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000002) begin reg [C_DATA_WIDTH-1:0] storage_data; wire s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg aresetn_d = 1'b0; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 1'b0; end else begin aresetn_d <= ~ARESET; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data; // M_Valid set to high when we have a completed transfer on slave side // Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK) begin if (~aresetn_d) m_valid_i <= 1'b0; else if (S_VALID) // Always set m_valid_i when slave side is valid m_valid_i <= 1'b1; else if (M_READY) // Clear (or keep) when no slave side is valid but master side is ready m_valid_i <= 1'b0; end // always @ (posedge ACLK) // Slave Ready is either when Master side drives M_Ready or we have space in our storage data assign s_ready_i = (M_READY | ~m_valid_i) & aresetn_d; end // if (C_REG_CONFIG == 2) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 3 // Only REV mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000003) begin reg [C_DATA_WIDTH-1:0] storage_data; reg s_ready_i; //local signal of output reg has_valid_storage_i; reg has_valid_storage; reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // Save payload data whenever we have a transaction on the slave side always @(posedge ACLK) begin if (S_VALID & s_ready_i) storage_data <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = has_valid_storage?storage_data:S_PAYLOAD_DATA; // Need to determine when we need to save a payload // Need a combinatorial signals since it will also effect S_READY always @ * begin // Set the value if we have a slave transaction but master side is not ready if (S_VALID & s_ready_i & ~M_READY) has_valid_storage_i = 1'b1; // Clear the value if it's set and Master side completes the transaction but we don't have a new slave side // transaction else if ( (has_valid_storage == 1) && (M_READY == 1) && ( (S_VALID == 0) || (s_ready_i == 0))) has_valid_storage_i = 1'b0; else has_valid_storage_i = has_valid_storage; end // always @ * always @(posedge ACLK) begin if (~aresetn_d[0]) has_valid_storage <= 1'b0; else has_valid_storage <= has_valid_storage_i; end // S_READY is either clocked M_READY or that we have room in local storage always @(posedge ACLK) begin if (~aresetn_d[0]) s_ready_i <= 1'b0; else s_ready_i <= M_READY | ~has_valid_storage_i; end // assign local signal to its output signal assign S_READY = s_ready_i; // M_READY is either combinatorial S_READY or that we have valid data in local storage assign M_VALID = (S_VALID | has_valid_storage) & aresetn_d[1]; end // if (C_REG_CONFIG == 3) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 4 or 5 is NO LONGER SUPPORTED // //////////////////////////////////////////////////////////////////// else if ((C_REG_CONFIG == 32'h00000004) || (C_REG_CONFIG == 32'h00000005)) begin // synthesis translate_off initial begin $display ("ERROR: For axi_register_slice, C_REG_CONFIG = 4 or 5 is RESERVED."); end // synthesis translate_on assign M_PAYLOAD_DATA = 0; assign M_VALID = 1'b0; assign S_READY = 1'b0; end //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 6 // INPUTS mode // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000006) begin reg [1:0] state; reg [1:0] next_state; localparam [1:0] ZERO = 2'b00, ONE = 2'b01, TWO = 2'b11; reg [C_DATA_WIDTH-1:0] storage_data1; reg [C_DATA_WIDTH-1:0] storage_data2; reg s_valid_d; reg s_ready_d; reg m_ready_d; reg m_valid_d; reg load_s2; reg sel_s2; wire new_access; wire access_done; wire s_ready_i; //local signal of output reg s_ready_ii; reg m_valid_i; //local signal of output reg [1:0] aresetn_d = 2'b00; // Reset delay register always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign s_ready_i = s_ready_ii & aresetn_d[1]; // Registrate input control signals always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_valid_d <= 1'b0; s_ready_d <= 1'b0; m_ready_d <= 1'b0; end else begin s_valid_d <= S_VALID; s_ready_d <= s_ready_i; m_ready_d <= M_READY; end end // always @ (posedge ACLK) // Load storage1 with slave side payload data when slave side ready is high always @(posedge ACLK) begin if (s_ready_i) storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with storage data always @(posedge ACLK) begin if (load_s2) storage_data2 <= storage_data1; end always @(posedge ACLK) begin if (~aresetn_d[0]) m_valid_d <= 1'b0; else m_valid_d <= m_valid_i; end // Local help signals assign new_access = s_ready_d & s_valid_d; assign access_done = m_ready_d & m_valid_d; // State Machine for handling output signals always @* begin next_state = state; // Stay in the same state unless we need to move to another state load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 0; case (state) // No transaction stored locally ZERO: begin load_s2 = 0; sel_s2 = 0; m_valid_i = 0; s_ready_ii = 1; if (new_access) begin next_state = ONE; // Got one so move to ONE load_s2 = 1; m_valid_i = 0; end else begin next_state = next_state; load_s2 = load_s2; m_valid_i = m_valid_i; end end // case: ZERO // One transaction stored locally ONE: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 1; if (~new_access & access_done) begin next_state = ZERO; // Read out one so move to ZERO m_valid_i = 0; end else if (new_access & ~access_done) begin next_state = TWO; // Got another one so move to TWO s_ready_ii = 0; end else if (new_access & access_done) begin load_s2 = 1; sel_s2 = 0; end else begin load_s2 = load_s2; sel_s2 = sel_s2; end end // case: ONE // TWO transaction stored locally TWO: begin load_s2 = 0; sel_s2 = 1; m_valid_i = 1; s_ready_ii = 0; if (access_done) begin next_state = ONE; // Read out one so move to ONE s_ready_ii = 1; load_s2 = 1; sel_s2 = 0; end else begin next_state = next_state; s_ready_ii = s_ready_ii; load_s2 = load_s2; sel_s2 = sel_s2; end end // case: TWO endcase // case (state) end // always @ * // State Machine for handling output signals always @(posedge ACLK) begin if (~aresetn_d[0]) state <= ZERO; else state <= next_state; // Stay in the same state unless we need to move to another state end // Master Payload mux assign M_PAYLOAD_DATA = sel_s2?storage_data2:storage_data1; end // if (C_REG_CONFIG == 6) //////////////////////////////////////////////////////////////////// // // C_REG_CONFIG = 7 // Light-weight mode. // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000007) begin reg [C_DATA_WIDTH-1:0] m_payload_i; reg s_ready_i; reg m_valid_i; assign S_READY = s_ready_i; assign M_VALID = m_valid_i; assign M_PAYLOAD_DATA = m_payload_i; reg [1:0] aresetn_d = 2'b00; // Reset delay shifter always @(posedge ACLK) begin if (ARESET) begin aresetn_d <= 2'b00; end else begin aresetn_d <= {aresetn_d[0], ~ARESET}; end end always @(posedge ACLK) begin if (~aresetn_d[0]) begin s_ready_i <= 1'b0; end else if (~aresetn_d[1]) begin s_ready_i <= 1'b1; end else begin s_ready_i <= m_valid_i ? M_READY : ~S_VALID; end if (~aresetn_d[1]) begin m_valid_i <= 1'b0; end else begin m_valid_i <= s_ready_i ? S_VALID : ~M_READY; end if (~m_valid_i) begin m_payload_i <= S_PAYLOAD_DATA; end end end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule // reg_slice
// megafunction wizard: %FIFO% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: scfifo // ============================================================ // File Name: fifo_1kx16.v // Megafunction Name(s): // scfifo // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 5.1 Build 213 01/19/2006 SP 1 SJ Web Edition // ************************************************************ //Copyright (C) 1991-2006 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. // synopsys translate_off `timescale 1 ps / 1 ps // synopsys translate_on module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; wire [9:0] sub_wire0; wire sub_wire1; wire sub_wire2; wire [15:0] sub_wire3; wire sub_wire4; wire [9:0] usedw = sub_wire0[9:0]; wire empty = sub_wire1; wire almost_empty = sub_wire2; wire [15:0] q = sub_wire3[15:0]; wire full = sub_wire4; scfifo scfifo_component ( .rdreq (rdreq), .aclr (aclr), .clock (clock), .wrreq (wrreq), .data (data), .usedw (sub_wire0), .empty (sub_wire1), .almost_empty (sub_wire2), .q (sub_wire3), .full (sub_wire4) // synopsys translate_off , .sclr (), .almost_full () // synopsys translate_on ); defparam scfifo_component.add_ram_output_register = "OFF", scfifo_component.almost_empty_value = 504, scfifo_component.intended_device_family = "Cyclone", scfifo_component.lpm_hint = "RAM_BLOCK_TYPE=M4K", scfifo_component.lpm_numwords = 1024, scfifo_component.lpm_showahead = "OFF", scfifo_component.lpm_type = "scfifo", scfifo_component.lpm_width = 16, scfifo_component.lpm_widthu = 10, scfifo_component.overflow_checking = "ON", scfifo_component.underflow_checking = "ON", scfifo_component.use_eab = "ON"; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: PRIVATE: AlmostEmpty NUMERIC "1" // Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "504" // Retrieval info: PRIVATE: AlmostFull NUMERIC "0" // Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1" // Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0" // Retrieval info: PRIVATE: Clock NUMERIC "0" // Retrieval info: PRIVATE: Depth NUMERIC "1024" // Retrieval info: PRIVATE: Empty NUMERIC "1" // Retrieval info: PRIVATE: Full NUMERIC "1" // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0" // Retrieval info: PRIVATE: LegacyRREQ NUMERIC "1" // Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0" // Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "0" // Retrieval info: PRIVATE: Optimize NUMERIC "2" // Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "2" // Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "0" // Retrieval info: PRIVATE: UsedW NUMERIC "1" // Retrieval info: PRIVATE: Width NUMERIC "16" // Retrieval info: PRIVATE: dc_aclr NUMERIC "0" // Retrieval info: PRIVATE: rsEmpty NUMERIC "1" // Retrieval info: PRIVATE: rsFull NUMERIC "0" // Retrieval info: PRIVATE: rsUsedW NUMERIC "0" // Retrieval info: PRIVATE: sc_aclr NUMERIC "1" // Retrieval info: PRIVATE: sc_sclr NUMERIC "0" // Retrieval info: PRIVATE: wsEmpty NUMERIC "0" // Retrieval info: PRIVATE: wsFull NUMERIC "1" // Retrieval info: PRIVATE: wsUsedW NUMERIC "0" // Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF" // Retrieval info: CONSTANT: ALMOST_EMPTY_VALUE NUMERIC "504" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: CONSTANT: LPM_HINT STRING "RAM_BLOCK_TYPE=M4K" // Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "1024" // Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "OFF" // Retrieval info: CONSTANT: LPM_TYPE STRING "scfifo" // Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "16" // Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "10" // Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "ON" // Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "ON" // Retrieval info: CONSTANT: USE_EAB STRING "ON" // Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT NODEFVAL aclr // Retrieval info: USED_PORT: almost_empty 0 0 0 0 OUTPUT NODEFVAL almost_empty // Retrieval info: USED_PORT: clock 0 0 0 0 INPUT NODEFVAL clock // Retrieval info: USED_PORT: data 0 0 16 0 INPUT NODEFVAL data[15..0] // Retrieval info: USED_PORT: empty 0 0 0 0 OUTPUT NODEFVAL empty // Retrieval info: USED_PORT: full 0 0 0 0 OUTPUT NODEFVAL full // Retrieval info: USED_PORT: q 0 0 16 0 OUTPUT NODEFVAL q[15..0] // Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq // Retrieval info: USED_PORT: usedw 0 0 10 0 OUTPUT NODEFVAL usedw[9..0] // Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq // Retrieval info: CONNECT: @data 0 0 16 0 data 0 0 16 0 // Retrieval info: CONNECT: q 0 0 16 0 @q 0 0 16 0 // Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0 // Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0 // Retrieval info: CONNECT: @clock 0 0 0 0 clock 0 0 0 0 // Retrieval info: CONNECT: full 0 0 0 0 @full 0 0 0 0 // Retrieval info: CONNECT: empty 0 0 0 0 @empty 0 0 0 0 // Retrieval info: CONNECT: usedw 0 0 10 0 @usedw 0 0 10 0 // Retrieval info: CONNECT: almost_empty 0 0 0 0 @almost_empty 0 0 0 0 // Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0 // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.inc TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.cmp TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.bsf TRUE FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_inst.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_bb.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_waveforms.html FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_wave*.jpg FALSE
// megafunction wizard: %FIFO% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: scfifo // ============================================================ // File Name: fifo_1kx16.v // Megafunction Name(s): // scfifo // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 5.1 Build 213 01/19/2006 SP 1 SJ Web Edition // ************************************************************ //Copyright (C) 1991-2006 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. // synopsys translate_off `timescale 1 ps / 1 ps // synopsys translate_on module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; wire [9:0] sub_wire0; wire sub_wire1; wire sub_wire2; wire [15:0] sub_wire3; wire sub_wire4; wire [9:0] usedw = sub_wire0[9:0]; wire empty = sub_wire1; wire almost_empty = sub_wire2; wire [15:0] q = sub_wire3[15:0]; wire full = sub_wire4; scfifo scfifo_component ( .rdreq (rdreq), .aclr (aclr), .clock (clock), .wrreq (wrreq), .data (data), .usedw (sub_wire0), .empty (sub_wire1), .almost_empty (sub_wire2), .q (sub_wire3), .full (sub_wire4) // synopsys translate_off , .sclr (), .almost_full () // synopsys translate_on ); defparam scfifo_component.add_ram_output_register = "OFF", scfifo_component.almost_empty_value = 504, scfifo_component.intended_device_family = "Cyclone", scfifo_component.lpm_hint = "RAM_BLOCK_TYPE=M4K", scfifo_component.lpm_numwords = 1024, scfifo_component.lpm_showahead = "OFF", scfifo_component.lpm_type = "scfifo", scfifo_component.lpm_width = 16, scfifo_component.lpm_widthu = 10, scfifo_component.overflow_checking = "ON", scfifo_component.underflow_checking = "ON", scfifo_component.use_eab = "ON"; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: PRIVATE: AlmostEmpty NUMERIC "1" // Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "504" // Retrieval info: PRIVATE: AlmostFull NUMERIC "0" // Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1" // Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0" // Retrieval info: PRIVATE: Clock NUMERIC "0" // Retrieval info: PRIVATE: Depth NUMERIC "1024" // Retrieval info: PRIVATE: Empty NUMERIC "1" // Retrieval info: PRIVATE: Full NUMERIC "1" // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0" // Retrieval info: PRIVATE: LegacyRREQ NUMERIC "1" // Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0" // Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "0" // Retrieval info: PRIVATE: Optimize NUMERIC "2" // Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "2" // Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "0" // Retrieval info: PRIVATE: UsedW NUMERIC "1" // Retrieval info: PRIVATE: Width NUMERIC "16" // Retrieval info: PRIVATE: dc_aclr NUMERIC "0" // Retrieval info: PRIVATE: rsEmpty NUMERIC "1" // Retrieval info: PRIVATE: rsFull NUMERIC "0" // Retrieval info: PRIVATE: rsUsedW NUMERIC "0" // Retrieval info: PRIVATE: sc_aclr NUMERIC "1" // Retrieval info: PRIVATE: sc_sclr NUMERIC "0" // Retrieval info: PRIVATE: wsEmpty NUMERIC "0" // Retrieval info: PRIVATE: wsFull NUMERIC "1" // Retrieval info: PRIVATE: wsUsedW NUMERIC "0" // Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF" // Retrieval info: CONSTANT: ALMOST_EMPTY_VALUE NUMERIC "504" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: CONSTANT: LPM_HINT STRING "RAM_BLOCK_TYPE=M4K" // Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "1024" // Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "OFF" // Retrieval info: CONSTANT: LPM_TYPE STRING "scfifo" // Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "16" // Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "10" // Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "ON" // Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "ON" // Retrieval info: CONSTANT: USE_EAB STRING "ON" // Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT NODEFVAL aclr // Retrieval info: USED_PORT: almost_empty 0 0 0 0 OUTPUT NODEFVAL almost_empty // Retrieval info: USED_PORT: clock 0 0 0 0 INPUT NODEFVAL clock // Retrieval info: USED_PORT: data 0 0 16 0 INPUT NODEFVAL data[15..0] // Retrieval info: USED_PORT: empty 0 0 0 0 OUTPUT NODEFVAL empty // Retrieval info: USED_PORT: full 0 0 0 0 OUTPUT NODEFVAL full // Retrieval info: USED_PORT: q 0 0 16 0 OUTPUT NODEFVAL q[15..0] // Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq // Retrieval info: USED_PORT: usedw 0 0 10 0 OUTPUT NODEFVAL usedw[9..0] // Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq // Retrieval info: CONNECT: @data 0 0 16 0 data 0 0 16 0 // Retrieval info: CONNECT: q 0 0 16 0 @q 0 0 16 0 // Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0 // Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0 // Retrieval info: CONNECT: @clock 0 0 0 0 clock 0 0 0 0 // Retrieval info: CONNECT: full 0 0 0 0 @full 0 0 0 0 // Retrieval info: CONNECT: empty 0 0 0 0 @empty 0 0 0 0 // Retrieval info: CONNECT: usedw 0 0 10 0 @usedw 0 0 10 0 // Retrieval info: CONNECT: almost_empty 0 0 0 0 @almost_empty 0 0 0 0 // Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0 // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.inc TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.cmp TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.bsf TRUE FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_inst.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_bb.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_waveforms.html FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_wave*.jpg FALSE
// megafunction wizard: %FIFO% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: scfifo // ============================================================ // File Name: fifo_1kx16.v // Megafunction Name(s): // scfifo // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 5.1 Build 213 01/19/2006 SP 1 SJ Web Edition // ************************************************************ //Copyright (C) 1991-2006 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. // synopsys translate_off `timescale 1 ps / 1 ps // synopsys translate_on module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; wire [9:0] sub_wire0; wire sub_wire1; wire sub_wire2; wire [15:0] sub_wire3; wire sub_wire4; wire [9:0] usedw = sub_wire0[9:0]; wire empty = sub_wire1; wire almost_empty = sub_wire2; wire [15:0] q = sub_wire3[15:0]; wire full = sub_wire4; scfifo scfifo_component ( .rdreq (rdreq), .aclr (aclr), .clock (clock), .wrreq (wrreq), .data (data), .usedw (sub_wire0), .empty (sub_wire1), .almost_empty (sub_wire2), .q (sub_wire3), .full (sub_wire4) // synopsys translate_off , .sclr (), .almost_full () // synopsys translate_on ); defparam scfifo_component.add_ram_output_register = "OFF", scfifo_component.almost_empty_value = 504, scfifo_component.intended_device_family = "Cyclone", scfifo_component.lpm_hint = "RAM_BLOCK_TYPE=M4K", scfifo_component.lpm_numwords = 1024, scfifo_component.lpm_showahead = "OFF", scfifo_component.lpm_type = "scfifo", scfifo_component.lpm_width = 16, scfifo_component.lpm_widthu = 10, scfifo_component.overflow_checking = "ON", scfifo_component.underflow_checking = "ON", scfifo_component.use_eab = "ON"; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: PRIVATE: AlmostEmpty NUMERIC "1" // Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "504" // Retrieval info: PRIVATE: AlmostFull NUMERIC "0" // Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1" // Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0" // Retrieval info: PRIVATE: Clock NUMERIC "0" // Retrieval info: PRIVATE: Depth NUMERIC "1024" // Retrieval info: PRIVATE: Empty NUMERIC "1" // Retrieval info: PRIVATE: Full NUMERIC "1" // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0" // Retrieval info: PRIVATE: LegacyRREQ NUMERIC "1" // Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0" // Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "0" // Retrieval info: PRIVATE: Optimize NUMERIC "2" // Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "2" // Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "0" // Retrieval info: PRIVATE: UsedW NUMERIC "1" // Retrieval info: PRIVATE: Width NUMERIC "16" // Retrieval info: PRIVATE: dc_aclr NUMERIC "0" // Retrieval info: PRIVATE: rsEmpty NUMERIC "1" // Retrieval info: PRIVATE: rsFull NUMERIC "0" // Retrieval info: PRIVATE: rsUsedW NUMERIC "0" // Retrieval info: PRIVATE: sc_aclr NUMERIC "1" // Retrieval info: PRIVATE: sc_sclr NUMERIC "0" // Retrieval info: PRIVATE: wsEmpty NUMERIC "0" // Retrieval info: PRIVATE: wsFull NUMERIC "1" // Retrieval info: PRIVATE: wsUsedW NUMERIC "0" // Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF" // Retrieval info: CONSTANT: ALMOST_EMPTY_VALUE NUMERIC "504" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: CONSTANT: LPM_HINT STRING "RAM_BLOCK_TYPE=M4K" // Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "1024" // Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "OFF" // Retrieval info: CONSTANT: LPM_TYPE STRING "scfifo" // Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "16" // Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "10" // Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "ON" // Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "ON" // Retrieval info: CONSTANT: USE_EAB STRING "ON" // Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT NODEFVAL aclr // Retrieval info: USED_PORT: almost_empty 0 0 0 0 OUTPUT NODEFVAL almost_empty // Retrieval info: USED_PORT: clock 0 0 0 0 INPUT NODEFVAL clock // Retrieval info: USED_PORT: data 0 0 16 0 INPUT NODEFVAL data[15..0] // Retrieval info: USED_PORT: empty 0 0 0 0 OUTPUT NODEFVAL empty // Retrieval info: USED_PORT: full 0 0 0 0 OUTPUT NODEFVAL full // Retrieval info: USED_PORT: q 0 0 16 0 OUTPUT NODEFVAL q[15..0] // Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq // Retrieval info: USED_PORT: usedw 0 0 10 0 OUTPUT NODEFVAL usedw[9..0] // Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq // Retrieval info: CONNECT: @data 0 0 16 0 data 0 0 16 0 // Retrieval info: CONNECT: q 0 0 16 0 @q 0 0 16 0 // Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0 // Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0 // Retrieval info: CONNECT: @clock 0 0 0 0 clock 0 0 0 0 // Retrieval info: CONNECT: full 0 0 0 0 @full 0 0 0 0 // Retrieval info: CONNECT: empty 0 0 0 0 @empty 0 0 0 0 // Retrieval info: CONNECT: usedw 0 0 10 0 @usedw 0 0 10 0 // Retrieval info: CONNECT: almost_empty 0 0 0 0 @almost_empty 0 0 0 0 // Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0 // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.inc TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.cmp TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.bsf TRUE FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_inst.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_bb.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_waveforms.html FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_wave*.jpg FALSE
// megafunction wizard: %FIFO% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: scfifo // ============================================================ // File Name: fifo_1kx16.v // Megafunction Name(s): // scfifo // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 5.1 Build 213 01/19/2006 SP 1 SJ Web Edition // ************************************************************ //Copyright (C) 1991-2006 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. // synopsys translate_off `timescale 1 ps / 1 ps // synopsys translate_on module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; wire [9:0] sub_wire0; wire sub_wire1; wire sub_wire2; wire [15:0] sub_wire3; wire sub_wire4; wire [9:0] usedw = sub_wire0[9:0]; wire empty = sub_wire1; wire almost_empty = sub_wire2; wire [15:0] q = sub_wire3[15:0]; wire full = sub_wire4; scfifo scfifo_component ( .rdreq (rdreq), .aclr (aclr), .clock (clock), .wrreq (wrreq), .data (data), .usedw (sub_wire0), .empty (sub_wire1), .almost_empty (sub_wire2), .q (sub_wire3), .full (sub_wire4) // synopsys translate_off , .sclr (), .almost_full () // synopsys translate_on ); defparam scfifo_component.add_ram_output_register = "OFF", scfifo_component.almost_empty_value = 504, scfifo_component.intended_device_family = "Cyclone", scfifo_component.lpm_hint = "RAM_BLOCK_TYPE=M4K", scfifo_component.lpm_numwords = 1024, scfifo_component.lpm_showahead = "OFF", scfifo_component.lpm_type = "scfifo", scfifo_component.lpm_width = 16, scfifo_component.lpm_widthu = 10, scfifo_component.overflow_checking = "ON", scfifo_component.underflow_checking = "ON", scfifo_component.use_eab = "ON"; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: PRIVATE: AlmostEmpty NUMERIC "1" // Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "504" // Retrieval info: PRIVATE: AlmostFull NUMERIC "0" // Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1" // Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0" // Retrieval info: PRIVATE: Clock NUMERIC "0" // Retrieval info: PRIVATE: Depth NUMERIC "1024" // Retrieval info: PRIVATE: Empty NUMERIC "1" // Retrieval info: PRIVATE: Full NUMERIC "1" // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0" // Retrieval info: PRIVATE: LegacyRREQ NUMERIC "1" // Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0" // Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "0" // Retrieval info: PRIVATE: Optimize NUMERIC "2" // Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "2" // Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "0" // Retrieval info: PRIVATE: UsedW NUMERIC "1" // Retrieval info: PRIVATE: Width NUMERIC "16" // Retrieval info: PRIVATE: dc_aclr NUMERIC "0" // Retrieval info: PRIVATE: rsEmpty NUMERIC "1" // Retrieval info: PRIVATE: rsFull NUMERIC "0" // Retrieval info: PRIVATE: rsUsedW NUMERIC "0" // Retrieval info: PRIVATE: sc_aclr NUMERIC "1" // Retrieval info: PRIVATE: sc_sclr NUMERIC "0" // Retrieval info: PRIVATE: wsEmpty NUMERIC "0" // Retrieval info: PRIVATE: wsFull NUMERIC "1" // Retrieval info: PRIVATE: wsUsedW NUMERIC "0" // Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF" // Retrieval info: CONSTANT: ALMOST_EMPTY_VALUE NUMERIC "504" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: CONSTANT: LPM_HINT STRING "RAM_BLOCK_TYPE=M4K" // Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "1024" // Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "OFF" // Retrieval info: CONSTANT: LPM_TYPE STRING "scfifo" // Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "16" // Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "10" // Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "ON" // Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "ON" // Retrieval info: CONSTANT: USE_EAB STRING "ON" // Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT NODEFVAL aclr // Retrieval info: USED_PORT: almost_empty 0 0 0 0 OUTPUT NODEFVAL almost_empty // Retrieval info: USED_PORT: clock 0 0 0 0 INPUT NODEFVAL clock // Retrieval info: USED_PORT: data 0 0 16 0 INPUT NODEFVAL data[15..0] // Retrieval info: USED_PORT: empty 0 0 0 0 OUTPUT NODEFVAL empty // Retrieval info: USED_PORT: full 0 0 0 0 OUTPUT NODEFVAL full // Retrieval info: USED_PORT: q 0 0 16 0 OUTPUT NODEFVAL q[15..0] // Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq // Retrieval info: USED_PORT: usedw 0 0 10 0 OUTPUT NODEFVAL usedw[9..0] // Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq // Retrieval info: CONNECT: @data 0 0 16 0 data 0 0 16 0 // Retrieval info: CONNECT: q 0 0 16 0 @q 0 0 16 0 // Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0 // Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0 // Retrieval info: CONNECT: @clock 0 0 0 0 clock 0 0 0 0 // Retrieval info: CONNECT: full 0 0 0 0 @full 0 0 0 0 // Retrieval info: CONNECT: empty 0 0 0 0 @empty 0 0 0 0 // Retrieval info: CONNECT: usedw 0 0 10 0 @usedw 0 0 10 0 // Retrieval info: CONNECT: almost_empty 0 0 0 0 @almost_empty 0 0 0 0 // Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0 // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.inc TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.cmp TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16.bsf TRUE FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_inst.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_bb.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_waveforms.html FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_1kx16_wave*.jpg FALSE
// -*- verilog -*- // // USRP - Universal Software Radio Peripheral // // Copyright (C) 2006 Martin Dudok van Heel // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA // `include "config.vh" `include "../../../firmware/include/fpga_regs_common.v" `include "../../../firmware/include/fpga_regs_standard.v" // Clock, enable, and reset controls for whole system // Modified version to enable multi_usrp synchronisation module master_control_multi ( input master_clk, input usbclk, input wire [6:0] serial_addr, input wire [31:0] serial_data, input wire serial_strobe, input wire rx_slave_sync, output tx_bus_reset, output rx_bus_reset, output wire tx_dsp_reset, output wire rx_dsp_reset, output wire enable_tx, output wire enable_rx, output wire sync_rx, output wire [7:0] interp_rate, output wire [7:0] decim_rate, output tx_sample_strobe, output strobe_interp, output rx_sample_strobe, output strobe_decim, input tx_empty, input wire [15:0] debug_0,input wire [15:0] debug_1,input wire [15:0] debug_2,input wire [15:0] debug_3, output wire [15:0] reg_0, output wire [15:0] reg_1, output wire [15:0] reg_2, output wire [15:0] reg_3 ); wire [15:0] reg_1_std; master_control master_control_standard ( .master_clk(master_clk),.usbclk(usbclk), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe), .tx_bus_reset(tx_bus_reset),.rx_bus_reset(rx_bus_reset), .tx_dsp_reset(tx_dsp_reset),.rx_dsp_reset(rx_dsp_reset), .enable_tx(enable_tx),.enable_rx(enable_rx), .interp_rate(interp_rate),.decim_rate(decim_rate), .tx_sample_strobe(tx_sample_strobe),.strobe_interp(strobe_interp), .rx_sample_strobe(rx_sample_strobe),.strobe_decim(strobe_decim), .tx_empty(tx_empty), .debug_0(debug_0),.debug_1(debug_1), .debug_2(debug_2),.debug_3(debug_3), .reg_0(reg_0),.reg_1(reg_1_std),.reg_2(reg_2),.reg_3(reg_3) ); // FIXME need a separate reset for all control settings // Master/slave Controls assignments wire [7:0] rx_master_slave_controls; setting_reg_masked #(`FR_RX_MASTER_SLAVE) sr_rx_mstr_slv_ctrl(.clock(master_clk),.reset(1'b0),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),.out(rx_master_slave_controls)); assign sync_rx = rx_master_slave_controls[`bitnoFR_RX_SYNC] | (rx_master_slave_controls[`bitnoFR_RX_SYNC_SLAVE] & rx_slave_sync); //sync if we are told by master_control or if we get a hardware slave sync //TODO There can be a one sample difference between master and slave sync. // Maybe use a register for sync_rx which uses the (neg or pos) edge of master_clock and/or rx_slave_sync to trigger // Or even use a seperate sync_rx_out and sync_rx_internal (which lags behind) //TODO make output pin not hardwired assign reg_1 ={(rx_master_slave_controls[`bitnoFR_RX_SYNC_MASTER])? sync_rx:reg_1_std[15],reg_1_std[14:0]}; endmodule // master_control
// -*- verilog -*- // // USRP - Universal Software Radio Peripheral // // Copyright (C) 2006 Martin Dudok van Heel // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA // `include "config.vh" `include "../../../firmware/include/fpga_regs_common.v" `include "../../../firmware/include/fpga_regs_standard.v" // Clock, enable, and reset controls for whole system // Modified version to enable multi_usrp synchronisation module master_control_multi ( input master_clk, input usbclk, input wire [6:0] serial_addr, input wire [31:0] serial_data, input wire serial_strobe, input wire rx_slave_sync, output tx_bus_reset, output rx_bus_reset, output wire tx_dsp_reset, output wire rx_dsp_reset, output wire enable_tx, output wire enable_rx, output wire sync_rx, output wire [7:0] interp_rate, output wire [7:0] decim_rate, output tx_sample_strobe, output strobe_interp, output rx_sample_strobe, output strobe_decim, input tx_empty, input wire [15:0] debug_0,input wire [15:0] debug_1,input wire [15:0] debug_2,input wire [15:0] debug_3, output wire [15:0] reg_0, output wire [15:0] reg_1, output wire [15:0] reg_2, output wire [15:0] reg_3 ); wire [15:0] reg_1_std; master_control master_control_standard ( .master_clk(master_clk),.usbclk(usbclk), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe), .tx_bus_reset(tx_bus_reset),.rx_bus_reset(rx_bus_reset), .tx_dsp_reset(tx_dsp_reset),.rx_dsp_reset(rx_dsp_reset), .enable_tx(enable_tx),.enable_rx(enable_rx), .interp_rate(interp_rate),.decim_rate(decim_rate), .tx_sample_strobe(tx_sample_strobe),.strobe_interp(strobe_interp), .rx_sample_strobe(rx_sample_strobe),.strobe_decim(strobe_decim), .tx_empty(tx_empty), .debug_0(debug_0),.debug_1(debug_1), .debug_2(debug_2),.debug_3(debug_3), .reg_0(reg_0),.reg_1(reg_1_std),.reg_2(reg_2),.reg_3(reg_3) ); // FIXME need a separate reset for all control settings // Master/slave Controls assignments wire [7:0] rx_master_slave_controls; setting_reg_masked #(`FR_RX_MASTER_SLAVE) sr_rx_mstr_slv_ctrl(.clock(master_clk),.reset(1'b0),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),.out(rx_master_slave_controls)); assign sync_rx = rx_master_slave_controls[`bitnoFR_RX_SYNC] | (rx_master_slave_controls[`bitnoFR_RX_SYNC_SLAVE] & rx_slave_sync); //sync if we are told by master_control or if we get a hardware slave sync //TODO There can be a one sample difference between master and slave sync. // Maybe use a register for sync_rx which uses the (neg or pos) edge of master_clock and/or rx_slave_sync to trigger // Or even use a seperate sync_rx_out and sync_rx_internal (which lags behind) //TODO make output pin not hardwired assign reg_1 ={(rx_master_slave_controls[`bitnoFR_RX_SYNC_MASTER])? sync_rx:reg_1_std[15],reg_1_std[14:0]}; endmodule // master_control
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (clk); input clk; reg [0:0] d1; reg [2:0] d3; reg [7:0] d8; wire [0:0] q1; wire [2:0] q3; wire [7:0] q8; // verilator lint_off UNOPTFLAT reg ena; // verilator lint_on UNOPTFLAT condff #(12) condff (.clk(clk), .sen(1'b0), .ena(ena), .d({d8,d3,d1}), .q({q8,q3,q1})); integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin //$write("%x %x %x %x\n", cyc, q8, q3, q1); cyc <= cyc + 1; if (cyc==1) begin d1 <= 1'b1; d3<=3'h1; d8<=8'h11; ena <= 1'b1; end if (cyc==2) begin d1 <= 1'b0; d3<=3'h2; d8<=8'h33; ena <= 1'b0; end if (cyc==3) begin d1 <= 1'b1; d3<=3'h3; d8<=8'h44; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==4) begin d1 <= 1'b1; d3<=3'h4; d8<=8'h77; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==5) begin d1 <= 1'b1; d3<=3'h0; d8<=8'h88; ena <= 1'b1; if (q8 != 8'h44) $stop; end if (cyc==6) begin if (q8 != 8'h77) $stop; end if (cyc==7) begin if (q8 != 8'h88) $stop; end // if (cyc==20) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule module condff (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output [WIDTH-1:0] q; condffimp #(.WIDTH(WIDTH)) imp (.clk(clk), .sen(sen), .ena(ena), .d(d), .q(q)); endmodule module condffimp (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output reg [WIDTH-1:0] q; wire gatedclk; clockgate clockgate (.clk(clk), .sen(sen), .ena(ena), .gatedclk(gatedclk)); always @(posedge gatedclk) begin if (gatedclk === 1'bX) begin q <= {WIDTH{1'bX}}; end else begin q <= d; end end endmodule module clockgate (clk, sen, ena, gatedclk); input clk; input sen; input ena; output gatedclk; reg ena_b; wire gatedclk = clk & ena_b; // verilator lint_off COMBDLY always @(clk or ena or sen) begin if (~clk) begin ena_b <= ena | sen; end else begin if ((clk^sen)===1'bX) ena_b <= 1'bX; end end // verilator lint_on COMBDLY endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (clk); input clk; reg [0:0] d1; reg [2:0] d3; reg [7:0] d8; wire [0:0] q1; wire [2:0] q3; wire [7:0] q8; // verilator lint_off UNOPTFLAT reg ena; // verilator lint_on UNOPTFLAT condff #(12) condff (.clk(clk), .sen(1'b0), .ena(ena), .d({d8,d3,d1}), .q({q8,q3,q1})); integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin //$write("%x %x %x %x\n", cyc, q8, q3, q1); cyc <= cyc + 1; if (cyc==1) begin d1 <= 1'b1; d3<=3'h1; d8<=8'h11; ena <= 1'b1; end if (cyc==2) begin d1 <= 1'b0; d3<=3'h2; d8<=8'h33; ena <= 1'b0; end if (cyc==3) begin d1 <= 1'b1; d3<=3'h3; d8<=8'h44; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==4) begin d1 <= 1'b1; d3<=3'h4; d8<=8'h77; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==5) begin d1 <= 1'b1; d3<=3'h0; d8<=8'h88; ena <= 1'b1; if (q8 != 8'h44) $stop; end if (cyc==6) begin if (q8 != 8'h77) $stop; end if (cyc==7) begin if (q8 != 8'h88) $stop; end // if (cyc==20) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule module condff (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output [WIDTH-1:0] q; condffimp #(.WIDTH(WIDTH)) imp (.clk(clk), .sen(sen), .ena(ena), .d(d), .q(q)); endmodule module condffimp (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output reg [WIDTH-1:0] q; wire gatedclk; clockgate clockgate (.clk(clk), .sen(sen), .ena(ena), .gatedclk(gatedclk)); always @(posedge gatedclk) begin if (gatedclk === 1'bX) begin q <= {WIDTH{1'bX}}; end else begin q <= d; end end endmodule module clockgate (clk, sen, ena, gatedclk); input clk; input sen; input ena; output gatedclk; reg ena_b; wire gatedclk = clk & ena_b; // verilator lint_off COMBDLY always @(clk or ena or sen) begin if (~clk) begin ena_b <= ena | sen; end else begin if ((clk^sen)===1'bX) ena_b <= 1'bX; end end // verilator lint_on COMBDLY endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (clk); input clk; reg [0:0] d1; reg [2:0] d3; reg [7:0] d8; wire [0:0] q1; wire [2:0] q3; wire [7:0] q8; // verilator lint_off UNOPTFLAT reg ena; // verilator lint_on UNOPTFLAT condff #(12) condff (.clk(clk), .sen(1'b0), .ena(ena), .d({d8,d3,d1}), .q({q8,q3,q1})); integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin //$write("%x %x %x %x\n", cyc, q8, q3, q1); cyc <= cyc + 1; if (cyc==1) begin d1 <= 1'b1; d3<=3'h1; d8<=8'h11; ena <= 1'b1; end if (cyc==2) begin d1 <= 1'b0; d3<=3'h2; d8<=8'h33; ena <= 1'b0; end if (cyc==3) begin d1 <= 1'b1; d3<=3'h3; d8<=8'h44; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==4) begin d1 <= 1'b1; d3<=3'h4; d8<=8'h77; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==5) begin d1 <= 1'b1; d3<=3'h0; d8<=8'h88; ena <= 1'b1; if (q8 != 8'h44) $stop; end if (cyc==6) begin if (q8 != 8'h77) $stop; end if (cyc==7) begin if (q8 != 8'h88) $stop; end // if (cyc==20) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule module condff (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output [WIDTH-1:0] q; condffimp #(.WIDTH(WIDTH)) imp (.clk(clk), .sen(sen), .ena(ena), .d(d), .q(q)); endmodule module condffimp (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output reg [WIDTH-1:0] q; wire gatedclk; clockgate clockgate (.clk(clk), .sen(sen), .ena(ena), .gatedclk(gatedclk)); always @(posedge gatedclk) begin if (gatedclk === 1'bX) begin q <= {WIDTH{1'bX}}; end else begin q <= d; end end endmodule module clockgate (clk, sen, ena, gatedclk); input clk; input sen; input ena; output gatedclk; reg ena_b; wire gatedclk = clk & ena_b; // verilator lint_off COMBDLY always @(clk or ena or sen) begin if (~clk) begin ena_b <= ena | sen; end else begin if ((clk^sen)===1'bX) ena_b <= 1'bX; end end // verilator lint_on COMBDLY endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (clk); input clk; reg [0:0] d1; reg [2:0] d3; reg [7:0] d8; wire [0:0] q1; wire [2:0] q3; wire [7:0] q8; // verilator lint_off UNOPTFLAT reg ena; // verilator lint_on UNOPTFLAT condff #(12) condff (.clk(clk), .sen(1'b0), .ena(ena), .d({d8,d3,d1}), .q({q8,q3,q1})); integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin //$write("%x %x %x %x\n", cyc, q8, q3, q1); cyc <= cyc + 1; if (cyc==1) begin d1 <= 1'b1; d3<=3'h1; d8<=8'h11; ena <= 1'b1; end if (cyc==2) begin d1 <= 1'b0; d3<=3'h2; d8<=8'h33; ena <= 1'b0; end if (cyc==3) begin d1 <= 1'b1; d3<=3'h3; d8<=8'h44; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==4) begin d1 <= 1'b1; d3<=3'h4; d8<=8'h77; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==5) begin d1 <= 1'b1; d3<=3'h0; d8<=8'h88; ena <= 1'b1; if (q8 != 8'h44) $stop; end if (cyc==6) begin if (q8 != 8'h77) $stop; end if (cyc==7) begin if (q8 != 8'h88) $stop; end // if (cyc==20) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule module condff (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output [WIDTH-1:0] q; condffimp #(.WIDTH(WIDTH)) imp (.clk(clk), .sen(sen), .ena(ena), .d(d), .q(q)); endmodule module condffimp (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output reg [WIDTH-1:0] q; wire gatedclk; clockgate clockgate (.clk(clk), .sen(sen), .ena(ena), .gatedclk(gatedclk)); always @(posedge gatedclk) begin if (gatedclk === 1'bX) begin q <= {WIDTH{1'bX}}; end else begin q <= d; end end endmodule module clockgate (clk, sen, ena, gatedclk); input clk; input sen; input ena; output gatedclk; reg ena_b; wire gatedclk = clk & ena_b; // verilator lint_off COMBDLY always @(clk or ena or sen) begin if (~clk) begin ena_b <= ena | sen; end else begin if ((clk^sen)===1'bX) ena_b <= 1'bX; end end // verilator lint_on COMBDLY endmodule
// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2005 by Wilson Snyder. module t (clk); input clk; reg [0:0] d1; reg [2:0] d3; reg [7:0] d8; wire [0:0] q1; wire [2:0] q3; wire [7:0] q8; // verilator lint_off UNOPTFLAT reg ena; // verilator lint_on UNOPTFLAT condff #(12) condff (.clk(clk), .sen(1'b0), .ena(ena), .d({d8,d3,d1}), .q({q8,q3,q1})); integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin //$write("%x %x %x %x\n", cyc, q8, q3, q1); cyc <= cyc + 1; if (cyc==1) begin d1 <= 1'b1; d3<=3'h1; d8<=8'h11; ena <= 1'b1; end if (cyc==2) begin d1 <= 1'b0; d3<=3'h2; d8<=8'h33; ena <= 1'b0; end if (cyc==3) begin d1 <= 1'b1; d3<=3'h3; d8<=8'h44; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==4) begin d1 <= 1'b1; d3<=3'h4; d8<=8'h77; ena <= 1'b1; if (q8 != 8'h11) $stop; end if (cyc==5) begin d1 <= 1'b1; d3<=3'h0; d8<=8'h88; ena <= 1'b1; if (q8 != 8'h44) $stop; end if (cyc==6) begin if (q8 != 8'h77) $stop; end if (cyc==7) begin if (q8 != 8'h88) $stop; end // if (cyc==20) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule module condff (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output [WIDTH-1:0] q; condffimp #(.WIDTH(WIDTH)) imp (.clk(clk), .sen(sen), .ena(ena), .d(d), .q(q)); endmodule module condffimp (clk, sen, ena, d, q); parameter WIDTH = 1; input clk; input sen; input ena; input [WIDTH-1:0] d; output reg [WIDTH-1:0] q; wire gatedclk; clockgate clockgate (.clk(clk), .sen(sen), .ena(ena), .gatedclk(gatedclk)); always @(posedge gatedclk) begin if (gatedclk === 1'bX) begin q <= {WIDTH{1'bX}}; end else begin q <= d; end end endmodule module clockgate (clk, sen, ena, gatedclk); input clk; input sen; input ena; output gatedclk; reg ena_b; wire gatedclk = clk & ena_b; // verilator lint_off COMBDLY always @(clk or ena or sen) begin if (~clk) begin ena_b <= ena | sen; end else begin if ((clk^sen)===1'bX) ena_b <= 1'bX; end end // verilator lint_on COMBDLY endmodule
// megafunction wizard: %FIFO%VBB% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: dcfifo // ============================================================ // File Name: fifo_4kx16_dc.v // Megafunction Name(s): // dcfifo // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 5.1 Build 213 01/19/2006 SP 1 SJ Web Edition // ************************************************************ //Copyright (C) 1991-2006 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. module fifo_4kx16_dc ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [15:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [15:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: PRIVATE: AlmostEmpty NUMERIC "0" // Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "-1" // Retrieval info: PRIVATE: AlmostFull NUMERIC "0" // Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1" // Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0" // Retrieval info: PRIVATE: Clock NUMERIC "4" // Retrieval info: PRIVATE: Depth NUMERIC "4096" // Retrieval info: PRIVATE: Empty NUMERIC "1" // Retrieval info: PRIVATE: Full NUMERIC "1" // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0" // Retrieval info: PRIVATE: LegacyRREQ NUMERIC "0" // Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0" // Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: Optimize NUMERIC "2" // Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0" // Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: UsedW NUMERIC "1" // Retrieval info: PRIVATE: Width NUMERIC "16" // Retrieval info: PRIVATE: dc_aclr NUMERIC "1" // Retrieval info: PRIVATE: rsEmpty NUMERIC "1" // Retrieval info: PRIVATE: rsFull NUMERIC "0" // Retrieval info: PRIVATE: rsUsedW NUMERIC "1" // Retrieval info: PRIVATE: sc_aclr NUMERIC "0" // Retrieval info: PRIVATE: sc_sclr NUMERIC "0" // Retrieval info: PRIVATE: wsEmpty NUMERIC "0" // Retrieval info: PRIVATE: wsFull NUMERIC "1" // Retrieval info: PRIVATE: wsUsedW NUMERIC "1" // Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF" // Retrieval info: CONSTANT: CLOCKS_ARE_SYNCHRONIZED STRING "FALSE" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "4096" // Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "ON" // Retrieval info: CONSTANT: LPM_TYPE STRING "dcfifo" // Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "16" // Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "12" // Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: USE_EAB STRING "ON" // Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT GND aclr // Retrieval info: USED_PORT: data 0 0 16 0 INPUT NODEFVAL data[15..0] // Retrieval info: USED_PORT: q 0 0 16 0 OUTPUT NODEFVAL q[15..0] // Retrieval info: USED_PORT: rdclk 0 0 0 0 INPUT NODEFVAL rdclk // Retrieval info: USED_PORT: rdempty 0 0 0 0 OUTPUT NODEFVAL rdempty // Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq // Retrieval info: USED_PORT: rdusedw 0 0 12 0 OUTPUT NODEFVAL rdusedw[11..0] // Retrieval info: USED_PORT: wrclk 0 0 0 0 INPUT NODEFVAL wrclk // Retrieval info: USED_PORT: wrfull 0 0 0 0 OUTPUT NODEFVAL wrfull // Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq // Retrieval info: USED_PORT: wrusedw 0 0 12 0 OUTPUT NODEFVAL wrusedw[11..0] // Retrieval info: CONNECT: @data 0 0 16 0 data 0 0 16 0 // Retrieval info: CONNECT: q 0 0 16 0 @q 0 0 16 0 // Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0 // Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0 // Retrieval info: CONNECT: @rdclk 0 0 0 0 rdclk 0 0 0 0 // Retrieval info: CONNECT: @wrclk 0 0 0 0 wrclk 0 0 0 0 // Retrieval info: CONNECT: rdempty 0 0 0 0 @rdempty 0 0 0 0 // Retrieval info: CONNECT: rdusedw 0 0 12 0 @rdusedw 0 0 12 0 // Retrieval info: CONNECT: wrfull 0 0 0 0 @wrfull 0 0 0 0 // Retrieval info: CONNECT: wrusedw 0 0 12 0 @wrusedw 0 0 12 0 // Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0 // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.inc TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.cmp TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.bsf TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_inst.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_bb.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_waveforms.html FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_wave*.jpg FALSE
// megafunction wizard: %FIFO%VBB% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: dcfifo // ============================================================ // File Name: fifo_4kx16_dc.v // Megafunction Name(s): // dcfifo // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 5.1 Build 213 01/19/2006 SP 1 SJ Web Edition // ************************************************************ //Copyright (C) 1991-2006 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. module fifo_4kx16_dc ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [15:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [15:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: PRIVATE: AlmostEmpty NUMERIC "0" // Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "-1" // Retrieval info: PRIVATE: AlmostFull NUMERIC "0" // Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1" // Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0" // Retrieval info: PRIVATE: Clock NUMERIC "4" // Retrieval info: PRIVATE: Depth NUMERIC "4096" // Retrieval info: PRIVATE: Empty NUMERIC "1" // Retrieval info: PRIVATE: Full NUMERIC "1" // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0" // Retrieval info: PRIVATE: LegacyRREQ NUMERIC "0" // Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0" // Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: Optimize NUMERIC "2" // Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0" // Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: UsedW NUMERIC "1" // Retrieval info: PRIVATE: Width NUMERIC "16" // Retrieval info: PRIVATE: dc_aclr NUMERIC "1" // Retrieval info: PRIVATE: rsEmpty NUMERIC "1" // Retrieval info: PRIVATE: rsFull NUMERIC "0" // Retrieval info: PRIVATE: rsUsedW NUMERIC "1" // Retrieval info: PRIVATE: sc_aclr NUMERIC "0" // Retrieval info: PRIVATE: sc_sclr NUMERIC "0" // Retrieval info: PRIVATE: wsEmpty NUMERIC "0" // Retrieval info: PRIVATE: wsFull NUMERIC "1" // Retrieval info: PRIVATE: wsUsedW NUMERIC "1" // Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF" // Retrieval info: CONSTANT: CLOCKS_ARE_SYNCHRONIZED STRING "FALSE" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "4096" // Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "ON" // Retrieval info: CONSTANT: LPM_TYPE STRING "dcfifo" // Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "16" // Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "12" // Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: USE_EAB STRING "ON" // Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT GND aclr // Retrieval info: USED_PORT: data 0 0 16 0 INPUT NODEFVAL data[15..0] // Retrieval info: USED_PORT: q 0 0 16 0 OUTPUT NODEFVAL q[15..0] // Retrieval info: USED_PORT: rdclk 0 0 0 0 INPUT NODEFVAL rdclk // Retrieval info: USED_PORT: rdempty 0 0 0 0 OUTPUT NODEFVAL rdempty // Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq // Retrieval info: USED_PORT: rdusedw 0 0 12 0 OUTPUT NODEFVAL rdusedw[11..0] // Retrieval info: USED_PORT: wrclk 0 0 0 0 INPUT NODEFVAL wrclk // Retrieval info: USED_PORT: wrfull 0 0 0 0 OUTPUT NODEFVAL wrfull // Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq // Retrieval info: USED_PORT: wrusedw 0 0 12 0 OUTPUT NODEFVAL wrusedw[11..0] // Retrieval info: CONNECT: @data 0 0 16 0 data 0 0 16 0 // Retrieval info: CONNECT: q 0 0 16 0 @q 0 0 16 0 // Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0 // Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0 // Retrieval info: CONNECT: @rdclk 0 0 0 0 rdclk 0 0 0 0 // Retrieval info: CONNECT: @wrclk 0 0 0 0 wrclk 0 0 0 0 // Retrieval info: CONNECT: rdempty 0 0 0 0 @rdempty 0 0 0 0 // Retrieval info: CONNECT: rdusedw 0 0 12 0 @rdusedw 0 0 12 0 // Retrieval info: CONNECT: wrfull 0 0 0 0 @wrfull 0 0 0 0 // Retrieval info: CONNECT: wrusedw 0 0 12 0 @wrusedw 0 0 12 0 // Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0 // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.inc TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.cmp TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.bsf TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_inst.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_bb.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_waveforms.html FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_wave*.jpg FALSE
// megafunction wizard: %FIFO%VBB% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: dcfifo // ============================================================ // File Name: fifo_4kx16_dc.v // Megafunction Name(s): // dcfifo // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 5.1 Build 213 01/19/2006 SP 1 SJ Web Edition // ************************************************************ //Copyright (C) 1991-2006 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. module fifo_4kx16_dc ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [15:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [15:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: PRIVATE: AlmostEmpty NUMERIC "0" // Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "-1" // Retrieval info: PRIVATE: AlmostFull NUMERIC "0" // Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1" // Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0" // Retrieval info: PRIVATE: Clock NUMERIC "4" // Retrieval info: PRIVATE: Depth NUMERIC "4096" // Retrieval info: PRIVATE: Empty NUMERIC "1" // Retrieval info: PRIVATE: Full NUMERIC "1" // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0" // Retrieval info: PRIVATE: LegacyRREQ NUMERIC "0" // Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0" // Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: Optimize NUMERIC "2" // Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0" // Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: UsedW NUMERIC "1" // Retrieval info: PRIVATE: Width NUMERIC "16" // Retrieval info: PRIVATE: dc_aclr NUMERIC "1" // Retrieval info: PRIVATE: rsEmpty NUMERIC "1" // Retrieval info: PRIVATE: rsFull NUMERIC "0" // Retrieval info: PRIVATE: rsUsedW NUMERIC "1" // Retrieval info: PRIVATE: sc_aclr NUMERIC "0" // Retrieval info: PRIVATE: sc_sclr NUMERIC "0" // Retrieval info: PRIVATE: wsEmpty NUMERIC "0" // Retrieval info: PRIVATE: wsFull NUMERIC "1" // Retrieval info: PRIVATE: wsUsedW NUMERIC "1" // Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF" // Retrieval info: CONSTANT: CLOCKS_ARE_SYNCHRONIZED STRING "FALSE" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "4096" // Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "ON" // Retrieval info: CONSTANT: LPM_TYPE STRING "dcfifo" // Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "16" // Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "12" // Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: USE_EAB STRING "ON" // Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT GND aclr // Retrieval info: USED_PORT: data 0 0 16 0 INPUT NODEFVAL data[15..0] // Retrieval info: USED_PORT: q 0 0 16 0 OUTPUT NODEFVAL q[15..0] // Retrieval info: USED_PORT: rdclk 0 0 0 0 INPUT NODEFVAL rdclk // Retrieval info: USED_PORT: rdempty 0 0 0 0 OUTPUT NODEFVAL rdempty // Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq // Retrieval info: USED_PORT: rdusedw 0 0 12 0 OUTPUT NODEFVAL rdusedw[11..0] // Retrieval info: USED_PORT: wrclk 0 0 0 0 INPUT NODEFVAL wrclk // Retrieval info: USED_PORT: wrfull 0 0 0 0 OUTPUT NODEFVAL wrfull // Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq // Retrieval info: USED_PORT: wrusedw 0 0 12 0 OUTPUT NODEFVAL wrusedw[11..0] // Retrieval info: CONNECT: @data 0 0 16 0 data 0 0 16 0 // Retrieval info: CONNECT: q 0 0 16 0 @q 0 0 16 0 // Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0 // Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0 // Retrieval info: CONNECT: @rdclk 0 0 0 0 rdclk 0 0 0 0 // Retrieval info: CONNECT: @wrclk 0 0 0 0 wrclk 0 0 0 0 // Retrieval info: CONNECT: rdempty 0 0 0 0 @rdempty 0 0 0 0 // Retrieval info: CONNECT: rdusedw 0 0 12 0 @rdusedw 0 0 12 0 // Retrieval info: CONNECT: wrfull 0 0 0 0 @wrfull 0 0 0 0 // Retrieval info: CONNECT: wrusedw 0 0 12 0 @wrusedw 0 0 12 0 // Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0 // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.inc TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.cmp TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.bsf TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_inst.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_bb.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_waveforms.html FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_wave*.jpg FALSE
// megafunction wizard: %FIFO%VBB% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: dcfifo // ============================================================ // File Name: fifo_4kx16_dc.v // Megafunction Name(s): // dcfifo // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 5.1 Build 213 01/19/2006 SP 1 SJ Web Edition // ************************************************************ //Copyright (C) 1991-2006 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. module fifo_4kx16_dc ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [15:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [15:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: PRIVATE: AlmostEmpty NUMERIC "0" // Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "-1" // Retrieval info: PRIVATE: AlmostFull NUMERIC "0" // Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1" // Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0" // Retrieval info: PRIVATE: Clock NUMERIC "4" // Retrieval info: PRIVATE: Depth NUMERIC "4096" // Retrieval info: PRIVATE: Empty NUMERIC "1" // Retrieval info: PRIVATE: Full NUMERIC "1" // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0" // Retrieval info: PRIVATE: LegacyRREQ NUMERIC "0" // Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0" // Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: Optimize NUMERIC "2" // Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0" // Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: UsedW NUMERIC "1" // Retrieval info: PRIVATE: Width NUMERIC "16" // Retrieval info: PRIVATE: dc_aclr NUMERIC "1" // Retrieval info: PRIVATE: rsEmpty NUMERIC "1" // Retrieval info: PRIVATE: rsFull NUMERIC "0" // Retrieval info: PRIVATE: rsUsedW NUMERIC "1" // Retrieval info: PRIVATE: sc_aclr NUMERIC "0" // Retrieval info: PRIVATE: sc_sclr NUMERIC "0" // Retrieval info: PRIVATE: wsEmpty NUMERIC "0" // Retrieval info: PRIVATE: wsFull NUMERIC "1" // Retrieval info: PRIVATE: wsUsedW NUMERIC "1" // Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF" // Retrieval info: CONSTANT: CLOCKS_ARE_SYNCHRONIZED STRING "FALSE" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "4096" // Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "ON" // Retrieval info: CONSTANT: LPM_TYPE STRING "dcfifo" // Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "16" // Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "12" // Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: USE_EAB STRING "ON" // Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT GND aclr // Retrieval info: USED_PORT: data 0 0 16 0 INPUT NODEFVAL data[15..0] // Retrieval info: USED_PORT: q 0 0 16 0 OUTPUT NODEFVAL q[15..0] // Retrieval info: USED_PORT: rdclk 0 0 0 0 INPUT NODEFVAL rdclk // Retrieval info: USED_PORT: rdempty 0 0 0 0 OUTPUT NODEFVAL rdempty // Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq // Retrieval info: USED_PORT: rdusedw 0 0 12 0 OUTPUT NODEFVAL rdusedw[11..0] // Retrieval info: USED_PORT: wrclk 0 0 0 0 INPUT NODEFVAL wrclk // Retrieval info: USED_PORT: wrfull 0 0 0 0 OUTPUT NODEFVAL wrfull // Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq // Retrieval info: USED_PORT: wrusedw 0 0 12 0 OUTPUT NODEFVAL wrusedw[11..0] // Retrieval info: CONNECT: @data 0 0 16 0 data 0 0 16 0 // Retrieval info: CONNECT: q 0 0 16 0 @q 0 0 16 0 // Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0 // Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0 // Retrieval info: CONNECT: @rdclk 0 0 0 0 rdclk 0 0 0 0 // Retrieval info: CONNECT: @wrclk 0 0 0 0 wrclk 0 0 0 0 // Retrieval info: CONNECT: rdempty 0 0 0 0 @rdempty 0 0 0 0 // Retrieval info: CONNECT: rdusedw 0 0 12 0 @rdusedw 0 0 12 0 // Retrieval info: CONNECT: wrfull 0 0 0 0 @wrfull 0 0 0 0 // Retrieval info: CONNECT: wrusedw 0 0 12 0 @wrusedw 0 0 12 0 // Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0 // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.inc TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.cmp TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.bsf TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_inst.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_bb.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_waveforms.html FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_wave*.jpg FALSE
// megafunction wizard: %FIFO%VBB% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: dcfifo // ============================================================ // File Name: fifo_4kx16_dc.v // Megafunction Name(s): // dcfifo // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 5.1 Build 213 01/19/2006 SP 1 SJ Web Edition // ************************************************************ //Copyright (C) 1991-2006 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. module fifo_4kx16_dc ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [15:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [15:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: PRIVATE: AlmostEmpty NUMERIC "0" // Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "-1" // Retrieval info: PRIVATE: AlmostFull NUMERIC "0" // Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1" // Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0" // Retrieval info: PRIVATE: Clock NUMERIC "4" // Retrieval info: PRIVATE: Depth NUMERIC "4096" // Retrieval info: PRIVATE: Empty NUMERIC "1" // Retrieval info: PRIVATE: Full NUMERIC "1" // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0" // Retrieval info: PRIVATE: LegacyRREQ NUMERIC "0" // Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0" // Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: Optimize NUMERIC "2" // Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0" // Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: UsedW NUMERIC "1" // Retrieval info: PRIVATE: Width NUMERIC "16" // Retrieval info: PRIVATE: dc_aclr NUMERIC "1" // Retrieval info: PRIVATE: rsEmpty NUMERIC "1" // Retrieval info: PRIVATE: rsFull NUMERIC "0" // Retrieval info: PRIVATE: rsUsedW NUMERIC "1" // Retrieval info: PRIVATE: sc_aclr NUMERIC "0" // Retrieval info: PRIVATE: sc_sclr NUMERIC "0" // Retrieval info: PRIVATE: wsEmpty NUMERIC "0" // Retrieval info: PRIVATE: wsFull NUMERIC "1" // Retrieval info: PRIVATE: wsUsedW NUMERIC "1" // Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF" // Retrieval info: CONSTANT: CLOCKS_ARE_SYNCHRONIZED STRING "FALSE" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "4096" // Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "ON" // Retrieval info: CONSTANT: LPM_TYPE STRING "dcfifo" // Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "16" // Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "12" // Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: USE_EAB STRING "ON" // Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT GND aclr // Retrieval info: USED_PORT: data 0 0 16 0 INPUT NODEFVAL data[15..0] // Retrieval info: USED_PORT: q 0 0 16 0 OUTPUT NODEFVAL q[15..0] // Retrieval info: USED_PORT: rdclk 0 0 0 0 INPUT NODEFVAL rdclk // Retrieval info: USED_PORT: rdempty 0 0 0 0 OUTPUT NODEFVAL rdempty // Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq // Retrieval info: USED_PORT: rdusedw 0 0 12 0 OUTPUT NODEFVAL rdusedw[11..0] // Retrieval info: USED_PORT: wrclk 0 0 0 0 INPUT NODEFVAL wrclk // Retrieval info: USED_PORT: wrfull 0 0 0 0 OUTPUT NODEFVAL wrfull // Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq // Retrieval info: USED_PORT: wrusedw 0 0 12 0 OUTPUT NODEFVAL wrusedw[11..0] // Retrieval info: CONNECT: @data 0 0 16 0 data 0 0 16 0 // Retrieval info: CONNECT: q 0 0 16 0 @q 0 0 16 0 // Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0 // Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0 // Retrieval info: CONNECT: @rdclk 0 0 0 0 rdclk 0 0 0 0 // Retrieval info: CONNECT: @wrclk 0 0 0 0 wrclk 0 0 0 0 // Retrieval info: CONNECT: rdempty 0 0 0 0 @rdempty 0 0 0 0 // Retrieval info: CONNECT: rdusedw 0 0 12 0 @rdusedw 0 0 12 0 // Retrieval info: CONNECT: wrfull 0 0 0 0 @wrfull 0 0 0 0 // Retrieval info: CONNECT: wrusedw 0 0 12 0 @wrusedw 0 0 12 0 // Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0 // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.inc TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.cmp TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc.bsf TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_inst.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_bb.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_waveforms.html FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4kx16_dc_wave*.jpg FALSE
/////////////////////////////////////////////////////////////////////////////// // // File name: axi_protocol_converter_v2_1_b2s_wrap_cmd.v // /////////////////////////////////////////////////////////////////////////////// `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_protocol_converter_v2_1_b2s_wrap_cmd # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// // Width of AxADDR // Range: 32. parameter integer C_AXI_ADDR_WIDTH = 32 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire clk , input wire reset , input wire [C_AXI_ADDR_WIDTH-1:0] axaddr , input wire [7:0] axlen , input wire [2:0] axsize , // axhandshake = axvalid & axready input wire axhandshake , output wire [C_AXI_ADDR_WIDTH-1:0] cmd_byte_addr , // Connections to/from fsm module // signal to increment to the next mc transaction input wire next , // signal to the fsm there is another transaction required output reg next_pending ); //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// reg sel_first; wire [11:0] axaddr_i; wire [3:0] axlen_i; reg [11:0] wrap_boundary_axaddr; reg [3:0] axaddr_offset; reg [3:0] wrap_second_len; reg [11:0] wrap_boundary_axaddr_r; reg [3:0] axaddr_offset_r; reg [3:0] wrap_second_len_r; reg [4:0] axlen_cnt; reg [4:0] wrap_cnt_r; wire [4:0] wrap_cnt; reg [11:0] axaddr_wrap; reg next_pending_r; localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// generate if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_wrap[11:0]}; end else begin : ADDR_4K assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_wrap[11:0]; end endgenerate assign axaddr_i = axaddr[11:0]; assign axlen_i = axlen[3:0]; // Mask bits based on transaction length to get wrap boundary low address // Offset used to calculate the length of each transaction always @( * ) begin if(axhandshake) begin wrap_boundary_axaddr = axaddr_i & ~(axlen_i << axsize[1:0]); axaddr_offset = axaddr_i[axsize[1:0] +: 4] & axlen_i; end else begin wrap_boundary_axaddr = wrap_boundary_axaddr_r; axaddr_offset = axaddr_offset_r; end end // case (axsize[1:0]) // 2'b00 : axaddr_offset = axaddr_i[4:0] & axlen_i; // 2'b01 : axaddr_offset = axaddr_i[5:1] & axlen_i; // 2'b10 : axaddr_offset = axaddr_i[6:2] & axlen_i; // 2'b11 : axaddr_offset = axaddr_i[7:3] & axlen_i; // default : axaddr_offset = axaddr_i[7:3] & axlen_i; // endcase // The first and the second command from the wrap transaction could // be of odd length or even length with address offset. This will be // an issue with BL8, extra transactions have to be issued. // Rounding up the length to account for extra transactions. always @( * ) begin if(axhandshake) begin wrap_second_len = (axaddr_offset >0) ? axaddr_offset - 1 : 0; end else begin wrap_second_len = wrap_second_len_r; end end // registering to be used in the combo logic. always @(posedge clk) begin wrap_boundary_axaddr_r <= wrap_boundary_axaddr; axaddr_offset_r <= axaddr_offset; wrap_second_len_r <= wrap_second_len; end // determining if extra data is required for even offsets // wrap_cnt used to switch the address for first and second transaction. assign wrap_cnt = {1'b0, wrap_second_len + {3'b000, (|axaddr_offset)}}; always @(posedge clk) wrap_cnt_r <= wrap_cnt; always @(posedge clk) begin if (axhandshake) begin axaddr_wrap <= axaddr[11:0]; end if(next)begin if(axlen_cnt == wrap_cnt_r) begin axaddr_wrap <= wrap_boundary_axaddr_r; end else begin axaddr_wrap <= axaddr_wrap + (1 << axsize[1:0]); end end end // Even numbber of transactions with offset, inc len by 2 for BL8 always @(posedge clk) begin if (axhandshake)begin axlen_cnt <= axlen_i; next_pending_r <= axlen_i >= 1; end else if (next) begin if (axlen_cnt > 1) begin axlen_cnt <= axlen_cnt - 1; next_pending_r <= (axlen_cnt - 1) >= 1; end else begin axlen_cnt <= 5'd0; next_pending_r <= 1'b0; end end end always @( * ) begin if (axhandshake)begin next_pending = axlen_i >= 1; end else if (next) begin if (axlen_cnt > 1) begin next_pending = (axlen_cnt - 1) >= 1; end else begin next_pending = 1'b0; end end else begin next_pending = next_pending_r; end end // last and ignore signals to data channel. These signals are used for // BL8 to ignore and insert data for even len transactions with offset // and odd len transactions // For odd len transactions with no offset the last read is ignored and // last write is masked // For odd len transactions with offset the first read is ignored and // first write is masked // For even len transactions with offset the last & first read is ignored and // last& first write is masked // For even len transactions no ingnores or masks. // Indicates if we are on the first transaction of a mc translation with more // than 1 transaction. always @(posedge clk) begin if (reset | axhandshake) begin sel_first <= 1'b1; end else if (next) begin sel_first <= 1'b0; end end endmodule `default_nettype wire
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: Write Channel for ATC // // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // w_atc // //-------------------------------------------------------------------------- `timescale 1ps/1ps module processing_system7_v5_5_w_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_DATA_WIDTH = 64, // Width of all DATA signals on SI and MI side of checker. // Range: 64. parameter integer C_AXI_WUSER_WIDTH = 1 // Width of AWUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface (In) input wire cmd_w_valid, input wire cmd_w_check, input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, output wire cmd_w_ready, // Command Interface (Out) output wire cmd_b_push, output wire cmd_b_error, output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id, input wire cmd_b_full, // Slave Interface Write Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID, input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Detecttion. wire any_strb_deasserted; wire incoming_strb_issue; reg first_word; reg strb_issue; // Data flow. wire data_pop; wire cmd_b_push_blocked; reg cmd_b_push_i; ///////////////////////////////////////////////////////////////////////////// // Detect error: // // Detect and accumulate error when a transaction shall be scanned for // potential issues. // Accumulation of error is restarted for each ne transaction. // ///////////////////////////////////////////////////////////////////////////// // Check stobe information assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} ); assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted; // Keep track of first word in a transaction. always @ (posedge ACLK) begin if (ARESET) begin first_word <= 1'b1; end else if ( data_pop ) begin first_word <= S_AXI_WLAST; end end // Keep track of error status. always @ (posedge ACLK) begin if (ARESET) begin strb_issue <= 1'b0; cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}}; end else if ( data_pop ) begin if ( first_word ) begin strb_issue <= incoming_strb_issue; end else begin strb_issue <= incoming_strb_issue | strb_issue; end cmd_b_id <= cmd_w_id; end end assign cmd_b_error = strb_issue; ///////////////////////////////////////////////////////////////////////////// // Control command queue to B: // // Push command to B queue when all data for the transaction has flowed // through. // Delay pipelined command until there is room in the Queue. // ///////////////////////////////////////////////////////////////////////////// // Detect when data is popped. assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Push command when last word in transfered (pipelined). always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_i <= 1'b0; end else begin cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked; end end // Detect if pipelined push is blocked. assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full; // Assign output. assign cmd_b_push = cmd_b_push_i & ~cmd_b_full; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full or there is no valid command information // from AW. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Return ready with push back. assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // End of burst. assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST; ///////////////////////////////////////////////////////////////////////////// // Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: Write Channel for ATC // // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // w_atc // //-------------------------------------------------------------------------- `timescale 1ps/1ps module processing_system7_v5_5_w_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_DATA_WIDTH = 64, // Width of all DATA signals on SI and MI side of checker. // Range: 64. parameter integer C_AXI_WUSER_WIDTH = 1 // Width of AWUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface (In) input wire cmd_w_valid, input wire cmd_w_check, input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, output wire cmd_w_ready, // Command Interface (Out) output wire cmd_b_push, output wire cmd_b_error, output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id, input wire cmd_b_full, // Slave Interface Write Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID, input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Detecttion. wire any_strb_deasserted; wire incoming_strb_issue; reg first_word; reg strb_issue; // Data flow. wire data_pop; wire cmd_b_push_blocked; reg cmd_b_push_i; ///////////////////////////////////////////////////////////////////////////// // Detect error: // // Detect and accumulate error when a transaction shall be scanned for // potential issues. // Accumulation of error is restarted for each ne transaction. // ///////////////////////////////////////////////////////////////////////////// // Check stobe information assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} ); assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted; // Keep track of first word in a transaction. always @ (posedge ACLK) begin if (ARESET) begin first_word <= 1'b1; end else if ( data_pop ) begin first_word <= S_AXI_WLAST; end end // Keep track of error status. always @ (posedge ACLK) begin if (ARESET) begin strb_issue <= 1'b0; cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}}; end else if ( data_pop ) begin if ( first_word ) begin strb_issue <= incoming_strb_issue; end else begin strb_issue <= incoming_strb_issue | strb_issue; end cmd_b_id <= cmd_w_id; end end assign cmd_b_error = strb_issue; ///////////////////////////////////////////////////////////////////////////// // Control command queue to B: // // Push command to B queue when all data for the transaction has flowed // through. // Delay pipelined command until there is room in the Queue. // ///////////////////////////////////////////////////////////////////////////// // Detect when data is popped. assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Push command when last word in transfered (pipelined). always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_i <= 1'b0; end else begin cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked; end end // Detect if pipelined push is blocked. assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full; // Assign output. assign cmd_b_push = cmd_b_push_i & ~cmd_b_full; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full or there is no valid command information // from AW. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Return ready with push back. assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // End of burst. assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST; ///////////////////////////////////////////////////////////////////////////// // Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: Write Channel for ATC // // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // w_atc // //-------------------------------------------------------------------------- `timescale 1ps/1ps module processing_system7_v5_5_w_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_DATA_WIDTH = 64, // Width of all DATA signals on SI and MI side of checker. // Range: 64. parameter integer C_AXI_WUSER_WIDTH = 1 // Width of AWUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface (In) input wire cmd_w_valid, input wire cmd_w_check, input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, output wire cmd_w_ready, // Command Interface (Out) output wire cmd_b_push, output wire cmd_b_error, output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id, input wire cmd_b_full, // Slave Interface Write Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID, input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Detecttion. wire any_strb_deasserted; wire incoming_strb_issue; reg first_word; reg strb_issue; // Data flow. wire data_pop; wire cmd_b_push_blocked; reg cmd_b_push_i; ///////////////////////////////////////////////////////////////////////////// // Detect error: // // Detect and accumulate error when a transaction shall be scanned for // potential issues. // Accumulation of error is restarted for each ne transaction. // ///////////////////////////////////////////////////////////////////////////// // Check stobe information assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} ); assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted; // Keep track of first word in a transaction. always @ (posedge ACLK) begin if (ARESET) begin first_word <= 1'b1; end else if ( data_pop ) begin first_word <= S_AXI_WLAST; end end // Keep track of error status. always @ (posedge ACLK) begin if (ARESET) begin strb_issue <= 1'b0; cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}}; end else if ( data_pop ) begin if ( first_word ) begin strb_issue <= incoming_strb_issue; end else begin strb_issue <= incoming_strb_issue | strb_issue; end cmd_b_id <= cmd_w_id; end end assign cmd_b_error = strb_issue; ///////////////////////////////////////////////////////////////////////////// // Control command queue to B: // // Push command to B queue when all data for the transaction has flowed // through. // Delay pipelined command until there is room in the Queue. // ///////////////////////////////////////////////////////////////////////////// // Detect when data is popped. assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Push command when last word in transfered (pipelined). always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_i <= 1'b0; end else begin cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked; end end // Detect if pipelined push is blocked. assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full; // Assign output. assign cmd_b_push = cmd_b_push_i & ~cmd_b_full; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full or there is no valid command information // from AW. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Return ready with push back. assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // End of burst. assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST; ///////////////////////////////////////////////////////////////////////////// // Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: Write Channel for ATC // // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // w_atc // //-------------------------------------------------------------------------- `timescale 1ps/1ps module processing_system7_v5_5_w_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_DATA_WIDTH = 64, // Width of all DATA signals on SI and MI side of checker. // Range: 64. parameter integer C_AXI_WUSER_WIDTH = 1 // Width of AWUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface (In) input wire cmd_w_valid, input wire cmd_w_check, input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, output wire cmd_w_ready, // Command Interface (Out) output wire cmd_b_push, output wire cmd_b_error, output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id, input wire cmd_b_full, // Slave Interface Write Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID, input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Detecttion. wire any_strb_deasserted; wire incoming_strb_issue; reg first_word; reg strb_issue; // Data flow. wire data_pop; wire cmd_b_push_blocked; reg cmd_b_push_i; ///////////////////////////////////////////////////////////////////////////// // Detect error: // // Detect and accumulate error when a transaction shall be scanned for // potential issues. // Accumulation of error is restarted for each ne transaction. // ///////////////////////////////////////////////////////////////////////////// // Check stobe information assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} ); assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted; // Keep track of first word in a transaction. always @ (posedge ACLK) begin if (ARESET) begin first_word <= 1'b1; end else if ( data_pop ) begin first_word <= S_AXI_WLAST; end end // Keep track of error status. always @ (posedge ACLK) begin if (ARESET) begin strb_issue <= 1'b0; cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}}; end else if ( data_pop ) begin if ( first_word ) begin strb_issue <= incoming_strb_issue; end else begin strb_issue <= incoming_strb_issue | strb_issue; end cmd_b_id <= cmd_w_id; end end assign cmd_b_error = strb_issue; ///////////////////////////////////////////////////////////////////////////// // Control command queue to B: // // Push command to B queue when all data for the transaction has flowed // through. // Delay pipelined command until there is room in the Queue. // ///////////////////////////////////////////////////////////////////////////// // Detect when data is popped. assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Push command when last word in transfered (pipelined). always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_i <= 1'b0; end else begin cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked; end end // Detect if pipelined push is blocked. assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full; // Assign output. assign cmd_b_push = cmd_b_push_i & ~cmd_b_full; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full or there is no valid command information // from AW. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Return ready with push back. assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // End of burst. assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST; ///////////////////////////////////////////////////////////////////////////// // Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: Write Channel for ATC // // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // w_atc // //-------------------------------------------------------------------------- `timescale 1ps/1ps module processing_system7_v5_5_w_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_DATA_WIDTH = 64, // Width of all DATA signals on SI and MI side of checker. // Range: 64. parameter integer C_AXI_WUSER_WIDTH = 1 // Width of AWUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface (In) input wire cmd_w_valid, input wire cmd_w_check, input wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, output wire cmd_w_ready, // Command Interface (Out) output wire cmd_b_push, output wire cmd_b_error, output reg [C_AXI_ID_WIDTH-1:0] cmd_b_id, input wire cmd_b_full, // Slave Interface Write Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID, input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Detecttion. wire any_strb_deasserted; wire incoming_strb_issue; reg first_word; reg strb_issue; // Data flow. wire data_pop; wire cmd_b_push_blocked; reg cmd_b_push_i; ///////////////////////////////////////////////////////////////////////////// // Detect error: // // Detect and accumulate error when a transaction shall be scanned for // potential issues. // Accumulation of error is restarted for each ne transaction. // ///////////////////////////////////////////////////////////////////////////// // Check stobe information assign any_strb_deasserted = ( S_AXI_WSTRB != {C_AXI_DATA_WIDTH/8{1'b1}} ); assign incoming_strb_issue = cmd_w_valid & S_AXI_WVALID & cmd_w_check & any_strb_deasserted; // Keep track of first word in a transaction. always @ (posedge ACLK) begin if (ARESET) begin first_word <= 1'b1; end else if ( data_pop ) begin first_word <= S_AXI_WLAST; end end // Keep track of error status. always @ (posedge ACLK) begin if (ARESET) begin strb_issue <= 1'b0; cmd_b_id <= {C_AXI_ID_WIDTH{1'b0}}; end else if ( data_pop ) begin if ( first_word ) begin strb_issue <= incoming_strb_issue; end else begin strb_issue <= incoming_strb_issue | strb_issue; end cmd_b_id <= cmd_w_id; end end assign cmd_b_error = strb_issue; ///////////////////////////////////////////////////////////////////////////// // Control command queue to B: // // Push command to B queue when all data for the transaction has flowed // through. // Delay pipelined command until there is room in the Queue. // ///////////////////////////////////////////////////////////////////////////// // Detect when data is popped. assign data_pop = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Push command when last word in transfered (pipelined). always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_i <= 1'b0; end else begin cmd_b_push_i <= ( S_AXI_WLAST & data_pop ) | cmd_b_push_blocked; end end // Detect if pipelined push is blocked. assign cmd_b_push_blocked = cmd_b_push_i & cmd_b_full; // Assign output. assign cmd_b_push = cmd_b_push_i & ~cmd_b_full; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full or there is no valid command information // from AW. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_WVALID = S_AXI_WVALID & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // Return ready with push back. assign S_AXI_WREADY = M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked; // End of burst. assign cmd_w_ready = S_AXI_WVALID & M_AXI_WREADY & cmd_w_valid & ~cmd_b_full & ~cmd_b_push_blocked & S_AXI_WLAST; ///////////////////////////////////////////////////////////////////////////// // Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_WID = S_AXI_WID; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_WLAST = S_AXI_WLAST; assign M_AXI_WUSER = S_AXI_WUSER; endmodule
//----------------------------------------------------------------------------- // The way that we connect things in low-frequency simulation mode. In this // case just pass everything through to the ARM, which can bit-bang this // (because it is so slow). // // Jonathan Westhues, April 2006 //----------------------------------------------------------------------------- module lo_simulate( pck0, ck_1356meg, ck_1356megb, pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, adc_d, adc_clk, ssp_frame, ssp_din, ssp_dout, ssp_clk, cross_hi, cross_lo, dbg, divisor ); input pck0, ck_1356meg, ck_1356megb; output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; input [7:0] adc_d; output adc_clk; input ssp_dout; output ssp_frame, ssp_din, ssp_clk; input cross_hi, cross_lo; output dbg; input [7:0] divisor; // No logic, straight through. assign pwr_oe3 = 1'b0; assign pwr_oe1 = ssp_dout; assign pwr_oe2 = ssp_dout; assign pwr_oe4 = ssp_dout; assign ssp_clk = cross_lo; assign pwr_lo = 1'b0; assign pwr_hi = 1'b0; assign dbg = ssp_frame; // Divide the clock to be used for the ADC reg [7:0] pck_divider; reg clk_state; always @(posedge pck0) begin if(pck_divider == divisor[7:0]) begin pck_divider <= 8'd0; clk_state = !clk_state; end else begin pck_divider <= pck_divider + 1; end end assign adc_clk = ~clk_state; // Toggle the output with hysteresis // Set to high if the ADC value is above 200 // Set to low if the ADC value is below 64 reg is_high; reg is_low; reg output_state; always @(posedge pck0) begin if((pck_divider == 8'd7) && !clk_state) begin is_high = (adc_d >= 8'd200); is_low = (adc_d <= 8'd64); end end always @(posedge is_high or posedge is_low) begin if(is_high) output_state <= 1'd1; else if(is_low) output_state <= 1'd0; end assign ssp_frame = output_state; endmodule