complexity
int64 1
139
| fun_name
stringlengths 1
80
| code
stringlengths 101
62.2k
| commit_id
stringlengths 40
40
| ast_errors
stringlengths 0
3.11k
| ast_levels
int64 6
36
| file_name
stringlengths 5
79
| n_ast_nodes
int64 17
19.2k
| commit_message
stringlengths 3
15.3k
| d_id
int64 12
121k
| n_ast_errors
int64 0
9
| n_whitespaces
int64 4
10.8k
| token_counts
int64 5
3.06k
| vocab_size
int64 4
1.11k
| id
int64 20
338k
| n_words
int64 4
4.82k
| repo
stringlengths 3
22
| n_identifiers
int64 2
176
| path
stringlengths 7
134
| language
stringclasses 1
value | nloc
int64 1
413
| documentation
dict | url
stringlengths 31
59
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | __seqToRE | def __seqToRE(self, to_convert, directive):
to_convert = sorted(to_convert, key=len, reverse=True)
for value in to_convert:
if value != '':
break
else:
return ''
regex = '|'.join(re_escape(stuff) for stuff in to_convert)
regex = '(?P<%s>%s' % (directive, regex)
return '%s)' % regex
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 10 | _strptime.py | 113 | add python 3.10.4 for windows | 55,908 | 0 | 124 | 67 | 29 | 219,940 | 38 | XX-Net | 13 | python3.10.4/Lib/_strptime.py | Python | 10 | {
"docstring": "Convert a list to a regex string for matching a directive.\n\n Want possible matching values to be from longest to shortest. This\n prevents the possibility of a match occurring for a value that also\n a substring of a larger value that should have matched (e.g., 'abc'\n matching when 'abcdef' should have been the match).\n\n ",
"language": "en",
"n_whitespaces": 90,
"n_words": 54,
"vocab_size": 37
} | https://github.com/XX-net/XX-Net.git |
|
1 | node_id | def node_id(self):
node_id = self.worker.current_node_id
assert not node_id.is_nil()
return node_id
| 8ffe435173aee0f313f786e7301d05f608b6d5be | 8 | runtime_context.py | 39 | [core/docs] Update worker docstring (#28495)
Co-authored-by: Philipp Moritz <[email protected]> | 28,506 | 0 | 38 | 22 | 9 | 127,694 | 10 | ray | 5 | python/ray/runtime_context.py | Python | 4 | {
"docstring": "Get current node ID for this worker or driver.\n\n Node ID is the id of a node that your driver, task, or actor runs.\n\n Returns:\n A node id for this worker or driver.\n ",
"language": "en",
"n_whitespaces": 65,
"n_words": 33,
"vocab_size": 23
} | https://github.com/ray-project/ray.git |
|
1 | test_loading_configuration_from_packages | async def test_loading_configuration_from_packages(hass):
await config_util.async_process_ha_core_config(
hass,
{
"latitude": 39,
"longitude": -1,
"elevation": 500,
"name": "Huis",
CONF_UNIT_SYSTEM: CONF_UNIT_SYSTEM_METRIC,
"time_zone": "Europe/Madrid",
"external_url": "https://www.example.com",
"internal_url": "http://example.local",
"packages": {
"package_1": {"wake_on_lan": None},
"package_2": {
"light": {"platform": "hue"},
"media_extractor": None,
"sun": None,
},
},
},
)
# Empty packages not allowed
with pytest.raises(MultipleInvalid):
await config_util.async_process_ha_core_config(
hass,
{
"latitude": 39,
"longitude": -1,
"elevation": 500,
"name": "Huis",
CONF_UNIT_SYSTEM: CONF_UNIT_SYSTEM_METRIC,
"time_zone": "Europe/Madrid",
"packages": {"empty_package": None},
},
)
@patch("homeassistant.helpers.check_config.async_check_ha_config_file") | 8dc3ff72c6ff6f9591151759465ac5d8a20e2b2f | @patch("homeassistant.helpers.check_config.async_check_ha_config_file") | 17 | test_config.py | 264 | Cleanup config deprecation warning (#80251) | 88,164 | 1 | 469 | 136 | 45 | 289,015 | 70 | core | 10 | tests/test_config.py | Python | 35 | {
"docstring": "Test loading packages config onto hass object config.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/home-assistant/core.git |
1 | test_torchscript_bart_agent | def test_torchscript_bart_agent(self):
from parlai.scripts.torchscript import TorchScript
test_phrase = "Don't have a cow, man!" # From test_bart.py
with testing_utils.tempdir() as tmpdir:
scripted_model_file = os.path.join(tmpdir, 'scripted_model.pt')
# Export the BART model
export_opt = TorchScript.setup_args().parse_kwargs(
model='bart', scripted_model_file=scripted_model_file, no_cuda=True
)
TorchScript(export_opt).run()
# Test the scripted BART model
scripted_opt = ParlaiParser(True, True).parse_kwargs(
model='parlai.torchscript.agents:TorchScriptAgent',
model_file=scripted_model_file,
)
bart = create_agent(scripted_opt)
bart.observe({'text': test_phrase, 'episode_done': True})
act = bart.act()
self.assertEqual(act['text'], test_phrase)
| 73a395fd457d5f56463f4f72e5b65919db3f1f96 | 12 | test_torchscript.py | 217 | Add TorchScriptable transformer classifier and subword BPE tokenizer (#4566)
* Add torchscript classes for Transformer classifier and subword BPE tokenizer
* Add unit tests
* Remove debugging code
* Resolve comments
* Rerun autoformat.sh
* Update parlai/torchscript/tokenizer.py
Co-authored-by: Eric Smith <[email protected]>
Co-authored-by: Eric Smith <[email protected]> | 47,209 | 0 | 268 | 126 | 51 | 195,124 | 62 | ParlAI | 28 | tests/nightly/gpu/test_torchscript.py | Python | 17 | {
"docstring": "\n Test exporting a BART model to TorchScript and then testing it on sample data.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 14,
"vocab_size": 14
} | https://github.com/facebookresearch/ParlAI.git |
|
1 | set_context | def set_context(context=None, font_scale=1, rc=None):
context_object = plotting_context(context, font_scale, rc)
mpl.rcParams.update(context_object)
| 34662f4be5c364e7518f9c1118c9b362038ee5dd | 8 | rcmod.py | 53 | Convert docs to pydata-sphinx-theme and add new material (#2842)
* Do basic conversion of site to pydata_sphinx_theme
* Remove some pae structure customizations we no longer need
* Add some custom CSS
* Tweak a few more colors
* Remove vestigial div closing tag
* Reorganize release notes into hierarchical pages
* Rebuild full docs and fix some resulting issues
* Make release note doc refs absolute
* Convert homepage to use sphinx-design instead of hand-crafted html
* Remove original custom css
* Simplify header and put archive switcher in footer
* Streamline API docs for objects
* Play around with templates to fix shrinking content (not perfect yet)
* Improve use of horizontal space without sidebars
* Various tweaks
* Convert tutorial homepage source to native sphinx-design directives
* Move intro page into tutorial
* More tweaks
* Tweak theme colors and footer
* Remove reference to navbar version
* Note that error bar tutorial demonstrates new features as of v0.12
* Update layout customization for new theme features
* Various layout and CSS tweaks
* Narrow support guidance to StackOverflow
* Run all notebooks
* Adapt to new dropdown navbar in pydata theme
* Separate tutorial source and outputs
* Separate dostring source and outputs
* Add scale API template
* Update API docs
* Fix requirements
* Add new objects
* Point doc requirements at v0.10 RC for theme | 7,474 | 0 | 19 | 34 | 10 | 42,070 | 10 | seaborn | 9 | seaborn/rcmod.py | Python | 3 | {
"docstring": "\n Set the parameters that control the scaling of plot elements.\n\n This affects things like the size of the labels, lines, and other elements\n of the plot, but not the overall style. This is accomplished using the\n matplotlib rcParams system.\n\n The base context is \"notebook\", and the other contexts are \"paper\", \"talk\",\n and \"poster\", which are version of the notebook parameters scaled by different\n values. Font elements can also be scaled independently of (but relative to)\n the other values.\n\n See :func:`plotting_context` to get the parameter values.\n\n Parameters\n ----------\n context : dict, or one of {paper, notebook, talk, poster}\n A dictionary of parameters or the name of a preconfigured set.\n font_scale : float, optional\n Separate scaling factor to independently scale the size of the\n font elements.\n rc : dict, optional\n Parameter mappings to override the values in the preset seaborn\n context dictionaries. This only updates parameters that are\n considered part of the context definition.\n\n Examples\n --------\n\n .. include:: ../docstrings/set_context.rst\n\n ",
"language": "en",
"n_whitespaces": 254,
"n_words": 157,
"vocab_size": 101
} | https://github.com/mwaskom/seaborn.git |
|
5 | _process_sections | def _process_sections(cls, tree, sections, category, is_open):
seen = set()
for section in sections:
if section[-1] == "global": # Global categories get escalated to parent
continue
sect = section[0]
section_id = f"{category}|{sect}"
if sect not in seen:
seen.add(sect)
text = sect.replace("_", " ").title()
tree.insert(category, "end", section_id, text=text, open=is_open, tags="section")
if len(section) == 2:
opt = section[-1]
opt_id = f"{section_id}|{opt}"
opt_text = opt.replace("_", " ").title()
tree.insert(section_id, "end", opt_id, text=opt_text, open=is_open, tags="option")
| 8ab085fae0193bb507fd5ad582668d19d56bea3d | 15 | popup_configure.py | 256 | bugfix: gui - settings popup. Always reload config | 19,985 | 0 | 266 | 147 | 53 | 100,521 | 69 | faceswap | 22 | lib/gui/popup_configure.py | Python | 16 | {
"docstring": " Process the sections of a category's configuration.\n\n Creates a category's sections, then the sub options for that category\n\n Parameters\n ----------\n tree: :class:`tkinter.ttk.TreeView`\n The tree view to insert sections into\n sections: list\n The sections to insert into the Tree View\n category: str\n The category node that these sections sit in\n is_open: bool\n ``True`` if the node should be created in \"open\" mode. ``False`` if it should be\n closed.\n ",
"language": "en",
"n_whitespaces": 179,
"n_words": 67,
"vocab_size": 47
} | https://github.com/deepfakes/faceswap.git |
|
1 | corners_to_center_format | def corners_to_center_format(x):
x_transposed = x.T
x0, y0, x1, y1 = x_transposed[0], x_transposed[1], x_transposed[2], x_transposed[3]
b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)]
return np.stack(b, axis=-1)
# Copied from transformers.models.detr.feature_extraction_detr.masks_to_boxes | 1ac698744c4dbdf1495d303246d08ffacdf4f5b8 | 10 | feature_extraction_yolos.py | 119 | Add YOLOS (#16848)
* First draft
* Add YolosForObjectDetection
* Make forward pass work
* Add mid position embeddings
* Add interpolation of position encodings
* Add expected values
* Add YOLOS to tests
* Add integration test
* Support tiny model as well
* Support all models in conversion script
* Remove mid_pe_size attribute
* Make more tests pass
* Add model to README and fix config
* Add copied from statements
* Rename base_model_prefix to vit
* Add missing YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP
* Apply suggestions from code review
* Apply more suggestions from code review
* Convert remaining checkpoints
* Improve docstrings
* Add YolosFeatureExtractor
* Add feature extractor to docs
* Add corresponding tests
* Fix style
* Fix docs
* Apply suggestion from code review
* Fix bad rebase
* Fix some more bad rebase
* Fix missing character
* Improve docs and variable names
Co-authored-by: Niels Rogge <[email protected]> | 6,837 | 0 | 53 | 81 | 33 | 37,626 | 39 | transformers | 12 | src/transformers/models/yolos/feature_extraction_yolos.py | Python | 5 | {
"docstring": "\n Converts a NumPy array of bounding boxes of shape (number of bounding boxes, 4) of corners format (x_0, y_0, x_1,\n y_1) to center format (center_x, center_y, width, height).\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 28,
"vocab_size": 23
} | https://github.com/huggingface/transformers.git |
|
8 | get_attributes_and_values | def get_attributes_and_values(item_code):
item_cache = ItemVariantsCacheManager(item_code)
item_variants_data = item_cache.get_item_variants_data()
attributes = get_item_attributes(item_code)
attribute_list = [a.attribute for a in attributes]
valid_options = {}
for item_code, attribute, attribute_value in item_variants_data:
if attribute in attribute_list:
valid_options.setdefault(attribute, set()).add(attribute_value)
item_attribute_values = frappe.db.get_all(
"Item Attribute Value", ["parent", "attribute_value", "idx"], order_by="parent asc, idx asc"
)
ordered_attribute_value_map = frappe._dict()
for iv in item_attribute_values:
ordered_attribute_value_map.setdefault(iv.parent, []).append(iv.attribute_value)
# build attribute values in idx order
for attr in attributes:
valid_attribute_values = valid_options.get(attr.attribute, [])
ordered_values = ordered_attribute_value_map.get(attr.attribute, [])
attr["values"] = [v for v in ordered_values if v in valid_attribute_values]
return attributes
@frappe.whitelist(allow_guest=True) | 494bd9ef78313436f0424b918f200dab8fc7c20b | @frappe.whitelist(allow_guest=True) | 15 | utils.py | 290 | style: format code with black | 14,028 | 1 | 67 | 170 | 62 | 65,836 | 89 | erpnext | 33 | erpnext/e_commerce/variant_selector/utils.py | Python | 20 | {
"docstring": "Build a list of attributes and their possible values.\n\tThis will ignore the values upon selection of which there cannot exist one item.\n\t",
"language": "en",
"n_whitespaces": 21,
"n_words": 23,
"vocab_size": 22
} | https://github.com/frappe/erpnext.git |
3 | test_run | def test_run(self) -> Tuple[Dict, Dict]:
print(" | > Synthesizing test sentences.")
test_audios = {}
test_figures = {}
test_sentences = self.config.test_sentences
for idx, s_info in enumerate(test_sentences):
try:
aux_inputs = self.get_aux_input_from_test_sentences(s_info)
wav, alignment, _, _ = synthesis(
self,
aux_inputs["text"],
self.config,
"cuda" in str(next(self.parameters()).device),
ap,
speaker_id=aux_inputs["speaker_id"],
d_vector=aux_inputs["d_vector"],
style_wav=aux_inputs["style_wav"],
language_id=aux_inputs["language_id"],
language_name=aux_inputs["language_name"],
enable_eos_bos_chars=self.config.enable_eos_bos_chars,
use_griffin_lim=True,
do_trim_silence=False,
).values()
test_audios["{}-audio".format(idx)] = wav
test_figures["{}-alignment".format(idx)] = plot_alignment(alignment.T, output_fig=False)
except: # pylint: disable=bare-except
print(" !! Error creating Test Sentence -", idx)
return test_figures, test_audios
| ea965a5683c56a39570b4cc91e86cd2bb9799308 | 22 | vits.py | 304 | Update VITS for the new API | 77,125 | 0 | 482 | 190 | 63 | 262,100 | 73 | TTS | 36 | TTS/tts/models/vits.py | Python | 35 | {
"docstring": "Generic test run for `tts` models used by `Trainer`.\n\n You can override this for a different behaviour.\n\n Returns:\n Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard.\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 29,
"vocab_size": 27
} | https://github.com/coqui-ai/TTS.git |
|
8 | read_image_batch | def read_image_batch(filenames, with_metadata=False):
logger.trace("Requested batch: '%s'", filenames)
batch = [None for _ in range(len(filenames))]
if with_metadata:
meta = [None for _ in range(len(filenames))]
with futures.ThreadPoolExecutor() as executor:
images = {executor.submit(read_image, filename,
raise_error=True, with_metadata=with_metadata): idx
for idx, filename in enumerate(filenames)}
for future in futures.as_completed(images):
ret_idx = images[future]
if with_metadata:
batch[ret_idx], meta[ret_idx] = future.result()
else:
batch[ret_idx] = future.result()
batch = np.array(batch)
retval = (batch, meta) if with_metadata else batch
logger.trace("Returning images: (filenames: %s, batch shape: %s, with_metadata: %s)",
filenames, batch.shape, with_metadata)
return retval
| 2beceffad9b15c1fd78f06b9b272563321c5a41e | 15 | image.py | 269 | Data Augmentation update (#1263)
- lib.detected_face
- Subclass Masks for Landmark based masks
- Add training mask propery + methods to DetectedFace
- lib.training_training
- subclass TrainingDataGenerator for training and preview data
- Split cache into own module
- Reduce thread count to 1 to prevent image corruption + data re-use
- Process on largest model input/output size rather than stored image size
- Size and crop masks during caching stage
- Implement ring buffer for data flow
- Fix preview reload bug
- augmentation
- typing
- switch color aug order
- better initialization
- Fix warp + landmark warp to correctly apply at different image scales
- Slightly improved warp caching
- Don't store whether image is_preview. Handle all data as training images implicitly
- plugins.trainer: Typing and fixes to work with trainingdata refactor | 20,699 | 0 | 258 | 172 | 55 | 101,280 | 81 | faceswap | 28 | lib/image.py | Python | 20 | {
"docstring": " Load a batch of images from the given file locations.\n\n Leverages multi-threading to load multiple images from disk at the same time leading to vastly\n reduced image read times.\n\n Parameters\n ----------\n filenames: list\n A list of ``str`` full paths to the images to be loaded.\n with_metadata: bool, optional\n Only returns a value if the images loaded are extracted Faceswap faces. If ``True`` then\n returns the Faceswap metadata stored with in a Face images .png exif header.\n Default: ``False``\n\n Returns\n -------\n numpy.ndarray\n The batch of images in `BGR` channel order returned in the order of :attr:`filenames`\n\n Notes\n -----\n As the images are compiled into a batch, they must be all of the same dimensions.\n\n Example\n -------\n >>> image_filenames = [\"/path/to/image_1.png\", \"/path/to/image_2.png\", \"/path/to/image_3.png\"]\n >>> images = read_image_batch(image_filenames)\n ",
"language": "en",
"n_whitespaces": 212,
"n_words": 125,
"vocab_size": 87
} | https://github.com/deepfakes/faceswap.git |
|
3 | get_instance | def get_instance(self, value):
if value is None:
return None
elif isinstance(value, self.model):
return value
else: # assume instance ID
return self.model.objects.get(pk=value)
| 39f7886a6f8ee98db7e73ce33d94c06139f35bd8 | 12 | chooser.py | 69 | Split out common logic from get_value_data | 16,671 | 0 | 83 | 42 | 18 | 77,545 | 21 | wagtail | 8 | wagtail/admin/widgets/chooser.py | Python | 7 | {
"docstring": "\n Given a value passed to this widget for rendering (which may be None, an id, or a model\n instance), return a model instance or None\n ",
"language": "en",
"n_whitespaces": 47,
"n_words": 25,
"vocab_size": 21
} | https://github.com/wagtail/wagtail.git |
|
1 | test_change_view_save_as_new | def test_change_view_save_as_new(self):
change_dict_save_as_new = {
"_saveasnew": "Save as new",
"title": "Ikke fordømt",
"content": "<p>edited article</p>",
"date_0": "2008-03-18",
"date_1": "10:54:39",
"section": self.s1.pk,
}
article_change_url = reverse(
"admin:admin_views_article_change", args=(self.a1.pk,)
)
# Add user can perform "Save as new".
article_count = Article.objects.count()
self.client.force_login(self.adduser)
post = self.client.post(article_change_url, change_dict_save_as_new)
self.assertRedirects(post, self.index_url)
self.assertEqual(Article.objects.count(), article_count + 1)
self.client.logout()
# Change user cannot perform "Save as new" (no 'add' permission).
article_count = Article.objects.count()
self.client.force_login(self.changeuser)
post = self.client.post(article_change_url, change_dict_save_as_new)
self.assertEqual(post.status_code, 403)
self.assertEqual(Article.objects.count(), article_count)
# User with both add and change permissions should be redirected to the
# change page for the newly created object.
article_count = Article.objects.count()
self.client.force_login(self.superuser)
post = self.client.post(article_change_url, change_dict_save_as_new)
self.assertEqual(Article.objects.count(), article_count + 1)
new_article = Article.objects.latest("id")
self.assertRedirects(
post, reverse("admin:admin_views_article_change", args=(new_article.pk,))
)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 12 | tests.py | 419 | Refs #33476 -- Reformatted code with Black. | 52,024 | 0 | 392 | 251 | 79 | 207,623 | 115 | django | 26 | tests/admin_views/tests.py | Python | 31 | {
"docstring": "\n 'Save as new' should raise PermissionDenied for users without the 'add'\n permission.\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 12,
"vocab_size": 12
} | https://github.com/django/django.git |
|
3 | estimated_run_time | def estimated_run_time(self):
if self.state and self.state_type == schemas.states.StateType.RUNNING:
return self.total_run_time + (pendulum.now() - self.state.timestamp)
else:
return self.total_run_time
| 29f4c75e3a605e29987e856204a2441b31f4a6df | 12 | orm_models.py | 77 | Repair imports as needed | 10,820 | 0 | 60 | 47 | 15 | 53,477 | 17 | prefect | 12 | src/prefect/orion/database/orm_models.py | Python | 5 | {
"docstring": "Total run time is incremented in the database whenever a RUNNING\n state is exited. To give up-to-date estimates, we estimate incremental\n run time for any runs currently in a RUNNING state.",
"language": "en",
"n_whitespaces": 44,
"n_words": 31,
"vocab_size": 25
} | https://github.com/PrefectHQ/prefect.git |
|
6 | from_rgs | def from_rgs(self, rgs, elements):
if len(rgs) != len(elements):
raise ValueError('mismatch in rgs and element lengths')
max_elem = max(rgs) + 1
partition = [[] for i in range(max_elem)]
j = 0
for i in rgs:
partition[i].append(elements[j])
j += 1
if not all(p for p in partition):
raise ValueError('some blocks of the partition were empty.')
return Partition(*partition)
| 498015021131af4dbb07eb110e5badaba8250c7b | 10 | partitions.py | 150 | Updated import locations | 47,604 | 0 | 155 | 92 | 42 | 196,104 | 55 | sympy | 16 | sympy/combinatorics/partitions.py | Python | 12 | {
"docstring": "\n Creates a set partition from a restricted growth string.\n\n Explanation\n ===========\n\n The indices given in rgs are assumed to be the index\n of the element as given in elements *as provided* (the\n elements are not sorted by this routine). Block numbering\n starts from 0. If any block was not referenced in ``rgs``\n an error will be raised.\n\n Examples\n ========\n\n >>> from sympy.combinatorics import Partition\n >>> Partition.from_rgs([0, 1, 2, 0, 1], list('abcde'))\n Partition({c}, {a, d}, {b, e})\n >>> Partition.from_rgs([0, 1, 2, 0, 1], list('cbead'))\n Partition({e}, {a, c}, {b, d})\n >>> a = Partition([1, 4], [2], [3, 5])\n >>> Partition.from_rgs(a.RGS, a.members)\n Partition({2}, {1, 4}, {3, 5})\n ",
"language": "en",
"n_whitespaces": 238,
"n_words": 104,
"vocab_size": 81
} | https://github.com/sympy/sympy.git |
|
2 | get_chunk | def get_chunk(self, size=None) -> pd.DataFrame:
if size is None:
size = self._chunksize
return self.read(nrows=size)
| e48c9c3973286e257f6da1966c91806d86b917e0 | 9 | sas_xport.py | 54 | TYP: more return annotations for io/* (#47524)
* TYP: more return annotations for io/*
* import future | 40,022 | 0 | 46 | 33 | 13 | 167,451 | 14 | pandas | 8 | pandas/io/sas/sas_xport.py | Python | 16 | {
"docstring": "\n Reads lines from Xport file and returns as dataframe\n\n Parameters\n ----------\n size : int, defaults to None\n Number of lines to read. If None, reads whole file.\n\n Returns\n -------\n DataFrame\n ",
"language": "en",
"n_whitespaces": 99,
"n_words": 30,
"vocab_size": 28
} | https://github.com/pandas-dev/pandas.git |
|
1 | iterate_graycode | def iterate_graycode(self, k):
unranked_code = GrayCode.unrank(self.superset_size,
(self.rank_gray + k) % self.cardinality)
return Subset.subset_from_bitlist(self.superset,
unranked_code)
| 498015021131af4dbb07eb110e5badaba8250c7b | 12 | subsets.py | 64 | Updated import locations | 47,707 | 0 | 114 | 41 | 14 | 196,207 | 14 | sympy | 12 | sympy/combinatorics/subsets.py | Python | 5 | {
"docstring": "\n Helper function used for prev_gray and next_gray.\n It performs ``k`` step overs to get the respective Gray codes.\n\n Examples\n ========\n\n >>> from sympy.combinatorics import Subset\n >>> a = Subset([1, 2, 3], [1, 2, 3, 4])\n >>> a.iterate_graycode(3).subset\n [1, 4]\n >>> a.iterate_graycode(-2).subset\n [1, 2, 4]\n\n See Also\n ========\n\n next_gray, prev_gray\n ",
"language": "en",
"n_whitespaces": 148,
"n_words": 49,
"vocab_size": 39
} | https://github.com/sympy/sympy.git |
|
6 | __getattr__ | def __getattr__(self, name):
if self._wrapped is empty:
self._setup(name)
val = getattr(self._wrapped, name)
# Special case some settings which require further modification.
# This is done here for performance reasons so the modified value is cached.
if name in {"MEDIA_URL", "STATIC_URL"} and val is not None:
val = self._add_script_prefix(val)
elif name == "SECRET_KEY" and not val:
raise ImproperlyConfigured("The SECRET_KEY setting must not be empty.")
self.__dict__[name] = val
return val
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 11 | __init__.py | 130 | Refs #33476 -- Reformatted code with Black. | 50,295 | 0 | 164 | 76 | 53 | 203,310 | 68 | django | 11 | django/conf/__init__.py | Python | 10 | {
"docstring": "Return the value of a setting and cache it in self.__dict__.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | https://github.com/django/django.git |
|
1 | test_escape_sequence_resulting_in_multiple_keypresses | def test_escape_sequence_resulting_in_multiple_keypresses(parser):
events = list(parser.feed("\x1b[2;4~"))
assert len(events) == 2
assert events[0].key == "escape"
assert events[1].key == "shift+insert"
| bfb962bacf274373e5706090cd854b6aa0857270 | 11 | test_xterm_parser.py | 75 | Backtracking unknown escape sequences, various tests for XTermParser | 44,334 | 0 | 32 | 42 | 13 | 183,781 | 17 | textual | 7 | tests/test_xterm_parser.py | Python | 5 | {
"docstring": "Some sequences are interpreted as more than 1 keypress",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/Textualize/textual.git |
|
3 | all_data | def all_data(request, data, data_missing):
if request.param == "data":
return data
elif request.param == "data_missing":
return data_missing
@pytest.fixture | d40c37192b3d38a3c9a0d248dc612ac9dd56e506 | @pytest.fixture | 8 | test_arrow.py | 56 | ENH/TST: Add BaseInterfaceTests tests for ArrowExtensionArray (#47377) | 39,962 | 1 | 39 | 28 | 14 | 167,274 | 17 | pandas | 7 | pandas/tests/extension/test_arrow.py | Python | 5 | {
"docstring": "Parametrized fixture returning 'data' or 'data_missing' integer arrays.\n\n Used to test dtype conversion with and without missing values.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 18,
"vocab_size": 18
} | https://github.com/pandas-dev/pandas.git |
4 | encode_maxrespcode | def encode_maxrespcode(self):
value = self.mrcode
if value < 128:
code = value
elif value > 31743:
code = 255
else:
exp = 0
value >>= 3
while value > 31:
exp += 1
value >>= 1
exp <<= 4
code = 0x80 | exp | (value & 0x0F)
self.mrcode = code
| 08b1f9d67c8e716fd44036a027bdc90dcb9fcfdf | 12 | igmpv3.py | 109 | E275 - Missing whitespace after keyword (#3711)
Co-authored-by: Alexander Aring <[email protected]>
Co-authored-by: Anmol Sarma <[email protected]>
Co-authored-by: antoine.torre <[email protected]>
Co-authored-by: Antoine Vacher <[email protected]>
Co-authored-by: Arnaud Ebalard <[email protected]>
Co-authored-by: atlowl <[email protected]>
Co-authored-by: Brian Bienvenu <[email protected]>
Co-authored-by: Chris Packham <[email protected]>
Co-authored-by: CQ <[email protected]>
Co-authored-by: Daniel Collins <[email protected]>
Co-authored-by: Federico Maggi <[email protected]>
Co-authored-by: Florian Maury <[email protected]>
Co-authored-by: _Frky <[email protected]>
Co-authored-by: g-mahieux <[email protected]>
Co-authored-by: gpotter2 <[email protected]>
Co-authored-by: Guillaume Valadon <[email protected]>
Co-authored-by: Hao Zheng <[email protected]>
Co-authored-by: Haresh Khandelwal <[email protected]>
Co-authored-by: Harri Hämäläinen <[email protected]>
Co-authored-by: hecke <[email protected]>
Co-authored-by: Jan Romann <[email protected]>
Co-authored-by: Jan Sebechlebsky <[email protected]>
Co-authored-by: jdiog0 <[email protected]>
Co-authored-by: jockque <[email protected]>
Co-authored-by: Julien Bedel <[email protected]>
Co-authored-by: Keith Scott <[email protected]>
Co-authored-by: Kfir Gollan <[email protected]>
Co-authored-by: Lars Munch <[email protected]>
Co-authored-by: ldp77 <[email protected]>
Co-authored-by: Leonard Crestez <[email protected]>
Co-authored-by: Marcel Patzlaff <[email protected]>
Co-authored-by: Martijn Thé <[email protected]>
Co-authored-by: Martine Lenders <[email protected]>
Co-authored-by: Michael Farrell <[email protected]>
Co-authored-by: Michał Mirosław <[email protected]>
Co-authored-by: mkaliszan <[email protected]>
Co-authored-by: mtury <[email protected]>
Co-authored-by: Neale Ranns <[email protected]>
Co-authored-by: Octavian Toader <[email protected]>
Co-authored-by: Peter Eisenlohr <[email protected]>
Co-authored-by: Phil <[email protected]>
Co-authored-by: Pierre Lalet <[email protected]>
Co-authored-by: Pierre Lorinquer <[email protected]>
Co-authored-by: piersoh <[email protected]>
Co-authored-by: plorinquer <[email protected]>
Co-authored-by: pvinci <[email protected]>
Co-authored-by: Rahul Jadhav <[email protected]>
Co-authored-by: Robin Jarry <[email protected]>
Co-authored-by: romain-perez <[email protected]>
Co-authored-by: rperez <rperez@debian>
Co-authored-by: Sabrina Dubroca <[email protected]>
Co-authored-by: Sebastian Baar <[email protected]>
Co-authored-by: sebastien mainand <[email protected]>
Co-authored-by: smehner1 <[email protected]>
Co-authored-by: speakinghedge <[email protected]>
Co-authored-by: Steven Van Acker <[email protected]>
Co-authored-by: Thomas Faivre <[email protected]>
Co-authored-by: Tran Tien Dat <[email protected]>
Co-authored-by: Wael Mahlous <[email protected]>
Co-authored-by: waeva <[email protected]>
Co-authored-by: Alexander Aring <[email protected]>
Co-authored-by: Anmol Sarma <[email protected]>
Co-authored-by: antoine.torre <[email protected]>
Co-authored-by: Antoine Vacher <[email protected]>
Co-authored-by: Arnaud Ebalard <[email protected]>
Co-authored-by: atlowl <[email protected]>
Co-authored-by: Brian Bienvenu <[email protected]>
Co-authored-by: Chris Packham <[email protected]>
Co-authored-by: CQ <[email protected]>
Co-authored-by: Daniel Collins <[email protected]>
Co-authored-by: Federico Maggi <[email protected]>
Co-authored-by: Florian Maury <[email protected]>
Co-authored-by: _Frky <[email protected]>
Co-authored-by: g-mahieux <[email protected]>
Co-authored-by: gpotter2 <[email protected]>
Co-authored-by: Guillaume Valadon <[email protected]>
Co-authored-by: Hao Zheng <[email protected]>
Co-authored-by: Haresh Khandelwal <[email protected]>
Co-authored-by: Harri Hämäläinen <[email protected]>
Co-authored-by: hecke <[email protected]>
Co-authored-by: Jan Romann <[email protected]>
Co-authored-by: Jan Sebechlebsky <[email protected]>
Co-authored-by: jdiog0 <[email protected]>
Co-authored-by: jockque <[email protected]>
Co-authored-by: Julien Bedel <[email protected]>
Co-authored-by: Keith Scott <[email protected]>
Co-authored-by: Kfir Gollan <[email protected]>
Co-authored-by: Lars Munch <[email protected]>
Co-authored-by: ldp77 <[email protected]>
Co-authored-by: Leonard Crestez <[email protected]>
Co-authored-by: Marcel Patzlaff <[email protected]>
Co-authored-by: Martijn Thé <[email protected]>
Co-authored-by: Martine Lenders <[email protected]>
Co-authored-by: Michael Farrell <[email protected]>
Co-authored-by: Michał Mirosław <[email protected]>
Co-authored-by: mkaliszan <[email protected]>
Co-authored-by: mtury <[email protected]>
Co-authored-by: Neale Ranns <[email protected]>
Co-authored-by: Octavian Toader <[email protected]>
Co-authored-by: Peter Eisenlohr <[email protected]>
Co-authored-by: Phil <[email protected]>
Co-authored-by: Pierre Lalet <[email protected]>
Co-authored-by: Pierre Lorinquer <[email protected]>
Co-authored-by: piersoh <[email protected]>
Co-authored-by: pvinci <[email protected]>
Co-authored-by: Rahul Jadhav <[email protected]>
Co-authored-by: Robin Jarry <[email protected]>
Co-authored-by: romain-perez <[email protected]>
Co-authored-by: rperez <rperez@debian>
Co-authored-by: Sabrina Dubroca <[email protected]>
Co-authored-by: Sebastian Baar <[email protected]>
Co-authored-by: sebastien mainand <[email protected]>
Co-authored-by: smehner1 <[email protected]>
Co-authored-by: Steven Van Acker <[email protected]>
Co-authored-by: Thomas Faivre <[email protected]>
Co-authored-by: Tran Tien Dat <[email protected]>
Co-authored-by: Wael Mahlous <[email protected]>
Co-authored-by: waeva <[email protected]> | 52,724 | 0 | 200 | 65 | 29 | 209,532 | 51 | scapy | 6 | scapy/contrib/igmpv3.py | Python | 15 | {
"docstring": "Encode and replace the mrcode value to its IGMPv3 encoded time value if needed, # noqa: E501\n as specified in rfc3376#section-4.1.1.\n\n If value < 128, return the value specified. If >= 128, encode as a floating # noqa: E501\n point value. Value can be 0 - 31744.\n ",
"language": "en",
"n_whitespaces": 77,
"n_words": 47,
"vocab_size": 37
} | https://github.com/secdev/scapy.git |
|
2 | show_tables | def show_tables():
# [START howto_elasticsearch_query]
es = ElasticsearchHook(elasticsearch_conn_id=CONN_ID)
# Handle ES conn with context manager
with es.get_conn() as es_conn:
tables = es_conn.execute('SHOW TABLES')
for table, *_ in tables:
print(f"table: {table}")
return True
# [END howto_elasticsearch_query]
with models.DAG(
DAG_ID,
schedule_interval="@once",
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example", "elasticsearch"],
) as dag:
execute_query = show_tables()
(
# TEST BODY
execute_query
)
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
test_run = get_test_run(dag)
| a801ea3927b8bf3ca154fea3774ebf2d90e74e50 | 13 | example_elasticsearch_query.py | 187 | es new system tests (#22811) | 9,105 | 0 | 158 | 45 | 63 | 47,416 | 78 | airflow | 27 | tests/system/providers/elasticsearch/example_elasticsearch_query.py | Python | 7 | {
"docstring": "\n show_tables queries elasticsearch to list available tables\n ",
"language": "en",
"n_whitespaces": 14,
"n_words": 7,
"vocab_size": 7
} | https://github.com/apache/airflow.git |
|
1 | test_category_match_in_app | def test_category_match_in_app(self):
from sentry.grouping.enhancer import Enhancements
enhancement = Enhancements.from_config_string(
,
)
event = make_event(
platform="native",
exception={
"values": [
{
"type": "Hello",
"stacktrace": {
"frames": [
{
"function": "foo",
"in_app": True,
},
{"function": "bar"},
]
},
}
]
},
)
manager = EventManager(event)
manager.normalize()
manager.get_data()["grouping_config"] = {
"enhancements": enhancement.dumps(),
"id": "mobile:2021-02-12",
}
event1 = manager.save(self.project.id)
assert event1.data["exception"]["values"][0]["stacktrace"]["frames"][0]["in_app"] is False
event = make_event(
platform="native",
exception={
"values": [
{
"type": "Hello",
"stacktrace": {
"frames": [
{
"function": "foo2",
"in_app": True,
},
{"function": "bar"},
]
},
}
]
},
)
manager = EventManager(event)
manager.normalize()
manager.get_data()["grouping_config"] = {
"enhancements": enhancement.dumps(),
"id": "mobile:2021-02-12",
}
event2 = manager.save(self.project.id)
assert event2.data["exception"]["values"][0]["stacktrace"]["frames"][0]["in_app"] is False
assert event1.group_id == event2.group_id
| 39cfdcb446e74732c67ce07d7dd8d8d5ace471b1 | 20 | test_event_manager.py | 492 | test(event_manager): Fix incorrect invocations of manager.save (#36615) | 19,067 | 0 | 1,085 | 277 | 51 | 94,332 | 109 | sentry | 24 | tests/sentry/event_manager/test_event_manager.py | Python | 64 | {
"docstring": "\n Regression test to ensure that grouping in-app enhancements work in\n principle.\n \n function:foo category=bar\n function:foo2 category=bar\n category:bar -app\n ",
"language": "en",
"n_whitespaces": 84,
"n_words": 17,
"vocab_size": 16
} | https://github.com/getsentry/sentry.git |
|
1 | test_curr_only_accuracy | def test_curr_only_accuracy(self):
_, test = testing_utils.eval_model(
opt={
'batchsize': 4,
'fp16': True,
'num_examples': 16,
'model_file': 'zoo:style_gen/curr_only_classifier/model',
'model': 'projects.style_gen.classifier:ClassifierAgent',
'classes_from_file': 'image_chat_personalities_file',
'task': 'style_gen:CurrUttOnlyStyle',
'wrapper_task': 'style_gen:LabeledBlendedSkillTalk',
},
skip_valid=True,
)
self.assertAlmostEqual(test['accuracy'], 0.4375, delta=0.0)
| 82df52b4431f3573ca2c93dd4bb3098992968acc | 12 | test_style_gen.py | 129 | [Style-Controlled Generation] Open-source a second style classifier (#4380)
* Add model to model list
* Curr only classifier download page
* Add test case
* Update version
* Update with some results
* Wording | 47,085 | 0 | 210 | 75 | 29 | 194,793 | 29 | ParlAI | 10 | tests/nightly/gpu/test_style_gen.py | Python | 15 | {
"docstring": "\n Test the accuracy of the classifier trained on current utterances only.\n\n The accuracy is low here because the task was labeled using a different\n classifier, zoo:style_gen/prev_curr_classifier/model.\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 26,
"vocab_size": 23
} | https://github.com/facebookresearch/ParlAI.git |
|
3 | highlighted_child | def highlighted_child(self) -> ListItem | None:
if self.index is None:
return None
elif 0 <= self.index < len(self.children):
return self.children[self.index]
| c57f6b90259c8193e3aa9c3453a02b4043873381 | 10 | _list_view.py | 67 | Fix click handler | 45,287 | 0 | 63 | 42 | 17 | 186,003 | 20 | textual | 6 | src/textual/widgets/_list_view.py | Python | 10 | {
"docstring": "Get the currently highlighted ListItem\n\n Returns:\n ListItem | None: The currently highlighted ListItem, or None if nothing is highlighted.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 19,
"vocab_size": 16
} | https://github.com/Textualize/textual.git |
|
8 | _expand_hint | def _expand_hint(expr, hint, deep=True, **hints):
hit = False
# XXX: Hack to support non-Basic args
# |
# V
if deep and getattr(expr, 'args', ()) and not expr.is_Atom:
sargs = []
for arg in expr.args:
arg, arghit = Expr._expand_hint(arg, hint, **hints)
hit |= arghit
sargs.append(arg)
if hit:
expr = expr.func(*sargs)
expr = expr._evaluate(expr)
if hasattr(expr, hint):
newexpr = getattr(expr, hint)(**hints)
if newexpr != expr:
return (newexpr, True)
return (expr, hit)
| 32e337616722ceae757c23ad1fe2f3465c629a47 | 13 | expr.py | 203 | Fix MatAdd.expand( ) not expanding completely | 48,749 | 0 | 297 | 128 | 52 | 197,943 | 70 | sympy | 18 | sympy/core/expr.py | Python | 16 | {
"docstring": "\n Helper for ``expand()``. Recursively calls ``expr._eval_expand_hint()``.\n\n Returns ``(expr, hit)``, where expr is the (possibly) expanded\n ``expr`` and ``hit`` is ``True`` if ``expr`` was truly expanded and\n ``False`` otherwise.\n ",
"language": "en",
"n_whitespaces": 65,
"n_words": 28,
"vocab_size": 24
} | https://github.com/sympy/sympy.git |
|
3 | get_extra_loggers | def get_extra_loggers(self) -> List[str]:
return (
[name.strip() for name in self.extra_loggers.split(",")]
if self.extra_loggers
else []
)
| a452d8b8917000774302411a7aeb949f7e326814 | 12 | settings.py | 64 | Strip logger name to prevent accidental spaces | 10,735 | 0 | 70 | 39 | 16 | 53,193 | 16 | prefect | 8 | src/prefect/utilities/settings.py | Python | 9 | {
"docstring": "\n Parse the `extra_loggers` CSV and trim whitespace from logger names\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 10,
"vocab_size": 10
} | https://github.com/PrefectHQ/prefect.git |
|
3 | forward | def forward(self, input_ids=None, attention_mask=None, **kwargs):
if input_ids is None:
raise ValueError("Input_ids cannot be None.")
inputs_embeds = self.d_model**0.5 * self.embed_tokens(input_ids)
inputs_embed_pos = self.encoder_embed_positions(input_ids.shape)
hidden_states = inputs_embeds + inputs_embed_pos
hidden_states = self.encoder_layernorm_embedding(hidden_states)
encoder_input = self.encoder_dropout(hidden_states)
if attention_mask is None:
attention_mask = paddle.cast(
input_ids == self.pad_token_id,
dtype=paddle.get_default_dtype()).unsqueeze([1, 2]) * -1e4
attention_mask.stop_gradient = True
encoder_output = self.encoder(encoder_input, src_mask=attention_mask)
return encoder_output
| b0c35d5e1ff02a634fa26392b60d3885c2c78677 | 16 | modeling.py | 203 | Fix the attention mask for fp16 (#1585) | 118,056 | 0 | 189 | 130 | 39 | 322,099 | 56 | PaddleNLP | 26 | paddlenlp/transformers/mbart/modeling.py | Python | 15 | {
"docstring": "\n The MBartEncoder forward method, overrides the `__call__()` special method.\n\n Args:\n input_ids (Tensor, optional):\n See :class:`MBartModel`.\n attention_mask (Tensor, optional):\n See :class:`MBartModel`.\n\n Returns:\n Tensor: Returns tensor `encoder_output`, which is the output at the last layer of the model.\n Its data type should be float32 and has a shape of [batch_size, sequence_length, hidden_size].\n\n ",
"language": "en",
"n_whitespaces": 153,
"n_words": 50,
"vocab_size": 42
} | https://github.com/PaddlePaddle/PaddleNLP.git |
|
1 | sparsemax_bisect | def sparsemax_bisect(X, dim=-1, n_iter=50, ensure_sum_one=True):
return SparsemaxBisectFunction.apply(X, dim, n_iter, ensure_sum_one)
| 20a8a6fdb516e543d4598c852063ba0fb407f3ba | 7 | root_finding.py | 47 | Removes dependency on entmax from PyPI, adds entmax source to utils (#1778)
* Removes dependency on entmax from PyPi, add entmax source code into utils instead.
* Removes build status and image from README
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fix python formatting in docs for pre-commit.
* Removes __main__ from test_losses.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update entmax imports.
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
Co-authored-by: Daniel Treiman <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> | 957 | 0 | 16 | 32 | 10 | 6,299 | 10 | ludwig | 7 | ludwig/utils/entmax/root_finding.py | Python | 2 | {
"docstring": "sparsemax: normalizing sparse transform (a la softmax), via bisection.\n\n Solves the projection:\n\n min_p ||x - p||_2 s.t. p >= 0, sum(p) == 1.\n\n Parameters\n ----------\n X : torch.Tensor\n The input tensor.\n\n dim : int\n The dimension along which to apply sparsemax.\n\n n_iter : int\n Number of bisection iterations. For float32, 24 iterations should\n suffice for machine precision.\n\n ensure_sum_one : bool,\n Whether to divide the result by its sum. If false, the result might\n sum to close but not exactly 1, which might cause downstream problems.\n\n Note: This function does not yet support normalizing along anything except\n the last dimension. Please use transposing and views to achieve more\n general behavior.\n\n Returns\n -------\n P : torch tensor, same shape as X\n The projection result, such that P.sum(dim=dim) == 1 elementwise.\n ",
"language": "en",
"n_whitespaces": 231,
"n_words": 128,
"vocab_size": 107
} | https://github.com/ludwig-ai/ludwig.git |
|
1 | test_missing_fields_old | def test_missing_fields_old(self) -> None:
expected_topic = "Unknown Policy (Unknown ID)"
expected_message = .strip()
self.check_webhook(
"incident_default_fields_old",
expected_topic,
expected_message,
content_type="application/json",
)
| bfd9fc86223c2446e8b38d2cdd5876caed50bfda | 9 | tests.py | 57 | integration: Fix integration with newrelic.
Newrelic updated the payload that's sent via the webhook incoming call
causing a bug in the newrelic webhook endpoint.
This fixes the bug by updating the endpoint to respect the new format
of the payload as well as the old format. This should be updated once
the old format is EOLed.
Fixes #22338. | 17,836 | 0 | 90 | 32 | 18 | 84,423 | 19 | zulip | 7 | zerver/webhooks/newrelic/tests.py | Python | 14 | {
"docstring": "\n[Incident](https://alerts.newrelic.com) **opened** for condition: **Unknown condition** at <time:2020-11-11 22:32:11.151000+00:00>\n``` quote\nNo details.\n```\n",
"language": "en",
"n_whitespaces": 10,
"n_words": 14,
"vocab_size": 13
} | https://github.com/zulip/zulip.git |
|
1 | test_process_form_extras | def test_process_form_extras():
# Testing parameters set in both `Extra` and custom fields.
mock_form = mock.Mock()
mock_form.data = {
"conn_type": "test",
"conn_id": "extras_test",
"extra": '{"param1": "param1_val"}',
"extra__test__custom_field": "custom_field_val",
}
cmv = ConnectionModelView()
cmv.extra_fields = ["extra__test__custom_field"] # Custom field
cmv.process_form(form=mock_form, is_created=True)
assert json.loads(mock_form.extra.data) == {
"extra__test__custom_field": "custom_field_val",
"param1": "param1_val",
}
# Testing parameters set in `Extra` field only.
mock_form = mock.Mock()
mock_form.data = {
"conn_type": "test2",
"conn_id": "extras_test2",
"extra": '{"param2": "param2_val"}',
}
cmv = ConnectionModelView()
cmv.process_form(form=mock_form, is_created=True)
assert json.loads(mock_form.extra.data) == {"param2": "param2_val"}
# Testing parameters set in custom fields only.
mock_form = mock.Mock()
mock_form.data = {
"conn_type": "test3",
"conn_id": "extras_test3",
"extra__test3__custom_field": "custom_field_val3",
}
cmv = ConnectionModelView()
cmv.extra_fields = ["extra__test3__custom_field"] # Custom field
cmv.process_form(form=mock_form, is_created=True)
assert json.loads(mock_form.extra.data) == {"extra__test3__custom_field": "custom_field_val3"}
# Testing parameters set in both extra and custom fields (cunnection updates).
mock_form = mock.Mock()
mock_form.data = {
"conn_type": "test4",
"conn_id": "extras_test4",
"extra": '{"extra__test4__custom_field": "custom_field_val3"}',
"extra__test4__custom_field": "custom_field_val4",
}
cmv = ConnectionModelView()
cmv.extra_fields = ["extra__test4__custom_field"] # Custom field
cmv.process_form(form=mock_form, is_created=True)
assert json.loads(mock_form.extra.data) == {"extra__test4__custom_field": "custom_field_val4"}
| 44df1420582b358594c8d7344865811cff02956c | 10 | test_views_connection.py | 510 | fix: Update custom connection field processing (#20883)
* fix: Update custom connection field processing
Fixes issue where custom connectionfields are not updated because `extra` field is in form and has previous values, overriding custom field values.
Adds portion of connection form tests to test functionality. | 8,180 | 0 | 375 | 275 | 67 | 44,155 | 161 | airflow | 14 | tests/www/views/test_views_connection.py | Python | 45 | {
"docstring": "\n Test the handling of connection parameters set with the classic `Extra` field as well as custom fields.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 17,
"vocab_size": 15
} | https://github.com/apache/airflow.git |
|
15 | data | def data(self, data=None, offset=None, size=None, shape=None, as_memoryview=False):
offset = offset or (0, 0)
size = size or (self.width - offset[0], self.height - offset[1])
shape = shape or size
if any(x <= 0 for x in size):
raise ValueError("Offset too big for this raster.")
if size[0] > self.width or size[1] > self.height:
raise ValueError("Size is larger than raster.")
# Create ctypes type array generator
ctypes_array = GDAL_TO_CTYPES[self.datatype()] * (shape[0] * shape[1])
if data is None:
# Set read mode
access_flag = 0
# Prepare empty ctypes array
data_array = ctypes_array()
else:
# Set write mode
access_flag = 1
# Instantiate ctypes array holding the input data
if isinstance(data, (bytes, memoryview)) or (
numpy and isinstance(data, numpy.ndarray)
):
data_array = ctypes_array.from_buffer_copy(data)
else:
data_array = ctypes_array(*data)
# Access band
capi.band_io(
self._ptr,
access_flag,
offset[0],
offset[1],
size[0],
size[1],
byref(data_array),
shape[0],
shape[1],
self.datatype(),
0,
0,
)
# Return data as numpy array if possible, otherwise as list
if data is None:
if as_memoryview:
return memoryview(data_array)
elif numpy:
# reshape() needs a reshape parameter with the height first.
return numpy.frombuffer(
data_array, dtype=numpy.dtype(data_array)
).reshape(tuple(reversed(size)))
else:
return list(data_array)
else:
self._flush()
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 17 | band.py | 460 | Refs #33476 -- Reformatted code with Black. | 50,604 | 0 | 740 | 299 | 118 | 203,999 | 181 | django | 33 | django/contrib/gis/gdal/raster/band.py | Python | 45 | {
"docstring": "\n Read or writes pixel values for this band. Blocks of data can\n be accessed by specifying the width, height and offset of the\n desired block. The same specification can be used to update\n parts of a raster by providing an array of values.\n\n Allowed input data types are bytes, memoryview, list, tuple, and array.\n ",
"language": "en",
"n_whitespaces": 97,
"n_words": 54,
"vocab_size": 45
} | https://github.com/django/django.git |
|
1 | get_all_holiday_exchange_short_names | def get_all_holiday_exchange_short_names() -> pd.DataFrame:
exchange_short_names = mcal.calendar_registry.get_calendar_names()
df = pd.DataFrame(exchange_short_names, columns=["short_name"])
return df
@log_start_end(log=logger) | 7e4a657333c8b7bb1ebdcb7a4c8f06e8dc0d66f6 | @log_start_end(log=logger) | 11 | pandas_market_cal_model.py | 71 | Addition of exchange holiday functionality under stocks/th (#3486)
* Addition of exchange holiday calendars using PandasMarketCalendar
* website update for holidays functionality
* Disable pylint too many attributes
* Changes to not show index for dataframe and include metavar
* Setting of default value for holidays
* Merge + black linter
* test fix
Co-authored-by: james <[email protected]>
Co-authored-by: Jeroen Bouma <[email protected]> | 86,066 | 1 | 25 | 34 | 12 | 286,857 | 14 | OpenBBTerminal | 12 | openbb_terminal/stocks/tradinghours/pandas_market_cal_model.py | Python | 11 | {
"docstring": "Get all holiday exchanges short names.\n\n Returns\n -------\n pd.DataFrame\n All available exchanges with holiday data (short names)\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 17,
"vocab_size": 15
} | https://github.com/OpenBB-finance/OpenBBTerminal.git |
1 | _tupleize_axis_indexer | def _tupleize_axis_indexer(self, key) -> tuple:
new_key = [slice(None)] * self.ndim
# error: Invalid index type "Optional[Any]" for "List[slice]"; expected
# type "SupportsIndex"
new_key[self.axis] = key # type:ignore[index]
return tuple(new_key)
| ab42f85f192ab054a18f94825ced1bb4c1ab7d3f | 10 | indexing.py | 60 | REF: implement LocationIndexer._tupleize_axis_indexer (#45378) | 39,447 | 0 | 72 | 35 | 25 | 163,504 | 29 | pandas | 8 | pandas/core/indexing.py | Python | 7 | {
"docstring": "\n If we have an axis, adapt the given key to be axis-independent.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 12
} | https://github.com/pandas-dev/pandas.git |
|
5 | _broadcasting_select_mhlo | def _broadcasting_select_mhlo(which, x, y):
which_type, x_type, y_type = (
ir.RankedTensorType(v.type) for v in (which, x, y))
out_shape = list(lax_internal.broadcast_shapes(
tuple(which_type.shape), tuple(x_type.shape), tuple(y_type.shape)))
bcast_dims = lambda shape: mlir.dense_int_elements(
range(len(out_shape) - len(shape), len(out_shape)))
if which_type.shape != out_shape:
which = mhlo.BroadcastInDimOp(
ir.RankedTensorType.get(out_shape, which_type.element_type), which,
bcast_dims(which_type.shape))
if x_type.shape != out_shape:
x = mhlo.BroadcastInDimOp(
ir.RankedTensorType.get(out_shape, x_type.element_type), x,
bcast_dims(x_type.shape))
if y_type.shape != out_shape:
y = mhlo.BroadcastInDimOp(
ir.RankedTensorType.get(out_shape, y_type.element_type), y,
bcast_dims(y_type.shape))
return mhlo.SelectOp(which, x, y).result
| bc658e74567ffa941b31f4e89463dc713d2ecbf4 | 14 | linalg.py | 316 | [MHLO] Add direct MHLO lowerings for most linear algebra kernels.
PiperOrigin-RevId: 439927594 | 26,747 | 0 | 140 | 211 | 50 | 120,043 | 68 | jax | 28 | jax/_src/lax/linalg.py | Python | 20 | {
"docstring": "Wrapper around XLA `Select` that broadcasts its arguments.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/google/jax.git |
|
2 | list_to_tuple | def list_to_tuple(maybe_list):
if isinstance(maybe_list, list):
return tuple(maybe_list)
return maybe_list
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 9 | training_utils.py | 36 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 80,856 | 0 | 25 | 21 | 8 | 271,833 | 9 | keras | 5 | keras/engine/training_utils.py | Python | 4 | {
"docstring": "Datasets will stack the list of tensor, so switch them to tuples.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | https://github.com/keras-team/keras.git |
|
2 | collect_extra_binaries | def collect_extra_binaries(self):
binaries = []
# Applicable only to Windows.
if not compat.is_win:
return []
# OpenGL: EGL/GLES via ANGLE, software OpenGL renderer.
binaries += self._collect_all_or_none(['libEGL.dll', 'libGLESv2.dll'], ['d3dcompiler_??.dll'])
binaries += self._collect_all_or_none(['opengl32sw.dll'])
# Include ICU files, if they exist.
# See the "Deployment approach" section in ``PyInstaller/utils/hooks/qt.py``.
binaries += self._collect_all_or_none(['icudt??.dll', 'icuin??.dll', 'icuuc??.dll'])
return binaries
# Collect additional shared libraries required for SSL support in QtNetwork, if they are available.
# Applicable only to Windows. See issue #3520, #4048. | d789a7daa7712716c89259b987349917a89aece7 | 10 | __init__.py | 117 | hookutils: reorganize the Qt hook utilities
Reorganize the Qt module information to provide information necessary
to deal with variations between different python Qt bindings (PySide2,
PyQt5, PySide6, and PyQt6). Replace the existing table-like dictionary
with list of entries, which is easier to format and document. From this
list, we now generate two dictionaries; one that maps Qt module (shared
library) names to the module info entries (the same role as the old
dictionary), and one that maps python module names to the module info
entries. The latter is necessary to accommodate python modules that do
not have corresponding Qt shared libraries (header-only Qt modules,
such as QtAxContainer; or statically-linked module, such as QSci), but
we still need to provide information about plugins or translation
files.
The new information list is based on manual inspection of source code
for Qt 5.15 and 6.3, and should provide comprehensive information about
all plugin names and translation file basenames.
In addition, most of the helper functions, which take a reference to
the `QtLibraryInfo` class as their first argument, have been turned
into methods of the `QtLibraryInfo` class. The corresponding hooks
have also been adjusted. | 77,569 | 0 | 171 | 61 | 55 | 264,030 | 77 | pyinstaller | 6 | PyInstaller/utils/hooks/qt/__init__.py | Python | 8 | {
"docstring": "\n Collect extra binaries/DLLs required by Qt. These include ANGLE DLLs, OpenGL software renderer DLL, and ICU\n DLLs. Applicable only on Windows (on other OSes, empty list is returned).\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 28,
"vocab_size": 28
} | https://github.com/pyinstaller/pyinstaller.git |
|
4 | __make_attention_mask | def __make_attention_mask(self) -> None:
# Make masks for shift case
if self.shift_size > 0:
height, width = self.input_resolution # type: int, int
mask: torch.Tensor = torch.zeros(height, width, device=self.window_attention.tau.device)
height_slices: Tuple = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
width_slices: Tuple = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
counter: int = 0
for height_slice in height_slices:
for width_slice in width_slices:
mask[height_slice, width_slice] = counter
counter += 1
mask_windows: torch.Tensor = unfold(mask[None, None], self.window_size)
mask_windows: torch.Tensor = mask_windows.reshape(-1, self.window_size * self.window_size)
attention_mask: Optional[torch.Tensor] = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attention_mask: Optional[torch.Tensor] = attention_mask.masked_fill(attention_mask != 0, float(-100.0))
attention_mask: Optional[torch.Tensor] = attention_mask.masked_fill(attention_mask == 0, float(0.0))
else:
attention_mask: Optional[torch.Tensor] = None
# Save mask
self.register_buffer("attention_mask", attention_mask)
| 90dc74c450a0ec671af0e7f73d6b4a7b5396a7af | 14 | swin_transformer_v2.py | 420 | Add code from https://github.com/ChristophReich1996/Swin-Transformer-V2 and change docstring style to match timm | 119,894 | 0 | 474 | 279 | 69 | 331,749 | 108 | pytorch-image-models | 31 | timm/models/swin_transformer_v2.py | Python | 24 | {
"docstring": " Method generates the attention mask used in shift case. ",
"language": "en",
"n_whitespaces": 10,
"n_words": 9,
"vocab_size": 9
} | https://github.com/huggingface/pytorch-image-models.git |
|
1 | test_valid_zero_ops_doesnt_require_backend_dispatch_key | def test_valid_zero_ops_doesnt_require_backend_dispatch_key(self) -> None:
yaml_str =
# External codegen on a yaml file with no operators is effectively a no-op,
# so there's no reason to parse the backend
self.assert_success_from_gen_backend_stubs(yaml_str)
| bb5b4cceb6f737448eaaa6817cd773b6f4b0e77d | 7 | test_gen_backend_stubs.py | 32 | Revert "Revert D32498569: allow external backend codegen to toggle whether to generate out= and inplace kernels" (#69950)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69950
This reverts commit f6cad53443704dfe5a20cc62bee14d91e3bffcaa.
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D33113545
Pulled By: bdhirsh
fbshipit-source-id: d6590294662588d36c09662dea65919ad4e1e288 | 21,486 | 0 | 58 | 16 | 27 | 102,171 | 30 | pytorch | 4 | tools/test/test_gen_backend_stubs.py | Python | 6 | {
"docstring": "\\\nbackend: BAD_XLA\ncpp_namespace: torch_xla\nsupported:",
"language": "en",
"n_whitespaces": 2,
"n_words": 6,
"vocab_size": 6
} | https://github.com/pytorch/pytorch.git |
|
1 | test_worker_disable_ll_hls | async def test_worker_disable_ll_hls(hass):
stream_settings = StreamSettings(
ll_hls=True,
min_segment_duration=TARGET_SEGMENT_DURATION_NON_LL_HLS
- SEGMENT_DURATION_ADJUSTER,
part_target_duration=TARGET_SEGMENT_DURATION_NON_LL_HLS,
hls_advance_part_limit=3,
hls_part_timeout=TARGET_SEGMENT_DURATION_NON_LL_HLS,
orientation=1,
)
py_av = MockPyAv()
py_av.container.format.name = "hls"
await async_decode_stream(
hass,
PacketSequence(TEST_SEQUENCE_LENGTH),
py_av=py_av,
stream_settings=stream_settings,
)
assert stream_settings.ll_hls is False
| 852b0caf5be4bba0dcaaf5f6a38221d1590c4ed9 | 10 | test_worker.py | 117 | Add orientation transforms to stream (#77439) | 104,561 | 0 | 133 | 76 | 29 | 305,777 | 32 | core | 20 | tests/components/stream/test_worker.py | Python | 19 | {
"docstring": "Test that the worker disables ll-hls for hls inputs.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/home-assistant/core.git |
|
1 | update_company_monthly_sales | def update_company_monthly_sales(company):
import json
from frappe.utils.goal import get_monthly_results
filter_str = "company = {0} and status != 'Draft' and docstatus=1".format(
frappe.db.escape(company)
)
month_to_value_dict = get_monthly_results(
"Sales Invoice", "base_grand_total", "posting_date", filter_str, "sum"
)
frappe.db.set_value("Company", company, "sales_monthly_history", json.dumps(month_to_value_dict))
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 11 | company.py | 111 | style: format code with black | 14,538 | 0 | 25 | 64 | 30 | 67,473 | 35 | erpnext | 14 | erpnext/setup/doctype/company/company.py | Python | 10 | {
"docstring": "Cache past year monthly sales of every company based on sales invoices",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | https://github.com/frappe/erpnext.git |
|
4 | newer_pairwise | def newer_pairwise (sources, targets):
if len(sources) != len(targets):
raise ValueError("'sources' and 'targets' must be same length")
# build a pair of lists (sources, targets) where source is newer
n_sources = []
n_targets = []
for i in range(len(sources)):
if newer(sources[i], targets[i]):
n_sources.append(sources[i])
n_targets.append(targets[i])
return (n_sources, n_targets)
# newer_pairwise ()
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 12 | dep_util.py | 132 | add python 3.10.4 for windows | 56,774 | 0 | 106 | 81 | 43 | 222,842 | 49 | XX-Net | 11 | python3.10.4/Lib/distutils/dep_util.py | Python | 10 | {
"docstring": "Walk two filename lists in parallel, testing if each source is newer\n than its corresponding target. Return a pair of lists (sources,\n targets) where source is newer than target, according to the semantics\n of 'newer()'.\n ",
"language": "en",
"n_whitespaces": 48,
"n_words": 35,
"vocab_size": 29
} | https://github.com/XX-net/XX-Net.git |
|
1 | mean | def mean(self, axis=None, dtype=None, keepdims=False, split_every=None, out=None):
from dask.array.reductions import mean
return mean(
self,
axis=axis,
dtype=dtype,
keepdims=keepdims,
split_every=split_every,
out=out,
)
| 2820bae493a49cb1d0a6e376985c5473b8f04fa8 | 8 | core.py | 83 | Don't include docs in ``Array`` methods, just refer to module docs (#9244)
Co-authored-by: James Bourbeau <[email protected]> | 36,740 | 0 | 114 | 60 | 20 | 156,730 | 20 | dask | 10 | dask/array/core.py | Python | 10 | {
"docstring": "Returns the average of the array elements along given axis.\n\n Refer to :func:`dask.array.mean` for full documentation.\n\n See Also\n --------\n dask.array.mean : equivalent function\n ",
"language": "en",
"n_whitespaces": 58,
"n_words": 23,
"vocab_size": 22
} | https://github.com/dask/dask.git |
|
1 | test_filter_on_load | async def test_filter_on_load(hass, hass_storage):
hass_storage[er.STORAGE_KEY] = {
"version": er.STORAGE_VERSION_MAJOR,
"minor_version": 1,
"data": {
"entities": [
{
"entity_id": "test.named",
"platform": "super_platform",
"unique_id": "with-name",
"name": "registry override",
},
# This entity's name should be None
{
"entity_id": "test.no_name",
"platform": "super_platform",
"unique_id": "without-name",
},
{
"entity_id": "test.disabled_user",
"platform": "super_platform",
"unique_id": "disabled-user",
"disabled_by": "user", # We store the string representation
},
{
"entity_id": "test.disabled_hass",
"platform": "super_platform",
"unique_id": "disabled-hass",
"disabled_by": "hass", # We store the string representation
},
# This entry should have the entity_category reset to None
{
"entity_id": "test.system_entity",
"platform": "super_platform",
"unique_id": "system-entity",
"entity_category": "system",
},
]
},
}
await er.async_load(hass)
registry = er.async_get(hass)
assert len(registry.entities) == 5
assert set(registry.entities.keys()) == {
"test.disabled_hass",
"test.disabled_user",
"test.named",
"test.no_name",
"test.system_entity",
}
entry_with_name = registry.async_get_or_create(
"test", "super_platform", "with-name"
)
entry_without_name = registry.async_get_or_create(
"test", "super_platform", "without-name"
)
assert entry_with_name.name == "registry override"
assert entry_without_name.name is None
assert not entry_with_name.disabled
entry_disabled_hass = registry.async_get_or_create(
"test", "super_platform", "disabled-hass"
)
entry_disabled_user = registry.async_get_or_create(
"test", "super_platform", "disabled-user"
)
assert entry_disabled_hass.disabled
assert entry_disabled_hass.disabled_by is er.RegistryEntryDisabler.HASS
assert entry_disabled_user.disabled
assert entry_disabled_user.disabled_by is er.RegistryEntryDisabler.USER
entry_system_category = registry.async_get_or_create(
"test", "system_entity", "system-entity"
)
assert entry_system_category.entity_category is None
| 4e32bf2ac910e38695a1b9bf9b610c717db97998 | 14 | test_entity_registry.py | 535 | Drop old migration code from entity registry (#78278) | 106,309 | 0 | 919 | 305 | 92 | 307,538 | 178 | core | 26 | tests/helpers/test_entity_registry.py | Python | 77 | {
"docstring": "Test we transform some data when loading from storage.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/home-assistant/core.git |
|
1 | read | def read(self) -> TOMLDocument:
with open(self._path, encoding="utf-8", newline="") as f:
return loads(f.read())
| 8faa74cdc9da20cfdcc69f5ec29b91112c95b4c9 | 12 | toml_file.py | 64 | Update tomlkit==0.9.2
Used:
python -m invoke vendoring.update --package=tomlkit | 4,068 | 0 | 37 | 35 | 12 | 21,835 | 12 | pipenv | 9 | pipenv/vendor/tomlkit/toml_file.py | Python | 4 | {
"docstring": "Read the file content as a :class:`tomlkit.toml_document.TOMLDocument`.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | https://github.com/pypa/pipenv.git |
|
2 | load_pascal_annotation | def load_pascal_annotation(index, pascal_root):
classes = ('__background__', # always index 0
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor')
class_to_ind = dict(zip(classes, xrange(21)))
filename = osp.join(pascal_root, 'Annotations', index + '.xml')
# print 'Loading: {}'.format(filename)
| cc4d0564756ca067516f71718a3d135996525909 | 12 | pascal_multilabel_datalayers.py | 153 | Balanced joint maximum mean discrepancy for deep transfer learning | 12,009 | 0 | 161 | 317 | 41 | 60,201 | 45 | transferlearning | 11 | code/deep/BJMMD/caffe/examples/pycaffe/layers/pascal_multilabel_datalayers.py | Python | 33 | {
"docstring": "\n This code is borrowed from Ross Girshick's FAST-RCNN code\n (https://github.com/rbgirshick/fast-rcnn).\n It parses the PASCAL .xml metadata files.\n See publication for further details: (http://arxiv.org/abs/1504.08083).\n\n Thanks Ross!\n\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 25,
"vocab_size": 24
} | https://github.com/jindongwang/transferlearning.git |
|
2 | test_target_exists_force | def test_target_exists_force(file, source):
new_name = source.parent / "new_name.txt"
new_name.write_text("existing file")
try:
file.rename(name=str(new_name), source=str(source), force=True)
assert new_name.exists()
assert not source.exists()
assert new_name.read_text() == "Source content"
finally:
new_name.unlink()
| a35b29b2651bf33c5d5b45e64bc7765ffde4aff4 | 12 | test_rename.py | 127 | Add some funtional tests
Add functional tests for the following:
- file.readlink
- file.replace
- file.symlink
Remove unit tests for file.replace as they are duplicated in the added
functional test | 54,193 | 0 | 76 | 73 | 24 | 215,826 | 26 | salt | 13 | tests/pytests/functional/states/file/test_rename.py | Python | 10 | {
"docstring": "\n Test file.rename when there is an existing file with the new name and\n force=True\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 14,
"vocab_size": 14
} | https://github.com/saltstack/salt.git |
|
3 | cast_column | def cast_column(column, backend):
values = backend.df_engine.compute(column.drop_duplicates())
if strings_utils.values_are_pandas_numbers(values):
# If numbers, convert to float so it can be converted to bool
column = column.astype(float).astype(bool)
elif strings_utils.values_are_pandas_bools(values):
# If booleans, manually assign boolean values
column = backend.df_engine.map_objects(
column, lambda x: x.lower() in strings_utils.PANDAS_TRUE_STRS
).astype(bool)
else:
# If neither numbers or booleans, they are strings (objects)
column = column.astype(object)
return column
| 48731ae5ca98d4a1e92374af30f060408f14d91a | 17 | binary_feature.py | 152 | Fix postprocessing on binary feature columns with number dtype (#2189)
* Fixes binary postprocessing for number dtype
* ensure calibration work retained
* cleanup
* removed script postprocessing caveat
* added ray/dask test
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* adds mock.patch behavior
* allow type inference for visualization
* add pytest mark distributed
* removed mock.patch call
* add try/finally clause like test_ray.py
* increasing epochs to 2 as workaround
* increased number of samples and add back mock.patch
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> | 1,116 | 0 | 193 | 91 | 46 | 7,086 | 59 | ludwig | 18 | ludwig/features/binary_feature.py | Python | 11 | {
"docstring": "Cast column of dtype object to bool.\n\n Unchecked casting to boolean when given a column of dtype object converts all non-empty cells to True. We check\n the values of the column directly and manually determine the best dtype to use.\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 40,
"vocab_size": 28
} | https://github.com/ludwig-ai/ludwig.git |
|
2 | enter | def enter(self, *path):
return Meta(self._meta, path=self._path + [str(p) for p in path])
| 522d6f27c28dc5fd4d996ed605865c42fbda0da8 | 12 | meta.py | 52 | ref: replace legacy compat.map with list comprehensions (#36372) | 18,968 | 0 | 26 | 33 | 12 | 93,031 | 12 | sentry | 8 | src/sentry/utils/meta.py | Python | 2 | {
"docstring": "\n Enters into sub meta data at the specified path. This always returns a\n new ``Meta`` object, regardless whether the path already exists.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 22,
"vocab_size": 21
} | https://github.com/getsentry/sentry.git |
|
1 | _get_support_mask | def _get_support_mask(self):
n_features = len(self.feature_names)
mask = np.zeros(n_features, dtype=bool)
mask[np.asarray(self.feat_list_idx)] = True
return mask
| 388616b6247ca4ea8de4e2f340d6206aee523541 | 10 | feature_set_selector.py | 67 | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | 43,623 | 0 | 49 | 41 | 11 | 181,854 | 14 | tpot | 12 | tpot/builtins/feature_set_selector.py | Python | 5 | {
"docstring": "\n Get the boolean mask indicating which features are selected\n Returns\n -------\n support : boolean array of shape [# input features]\n An element is True iff its corresponding feature is selected for\n retention.\n ",
"language": "en",
"n_whitespaces": 90,
"n_words": 32,
"vocab_size": 29
} | https://github.com/EpistasisLab/tpot.git |
|
1 | test_do_not_render_html | def test_do_not_render_html(self):
value = {
"first_row_is_table_header": False,
"first_col_is_header": False,
"data": [
["<p><strong>Test</strong></p>", None, None],
[None, None, None],
[None, None, None],
],
}
expected =
block = TableBlock()
result = block.render(value)
self.assertHTMLEqual(result, expected)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 11 | tests.py | 113 | Reformat with black | 16,056 | 0 | 171 | 71 | 23 | 73,589 | 32 | wagtail | 9 | wagtail/contrib/table_block/tests.py | Python | 22 | {
"docstring": "\n Ensure that raw html doesn't render\n by default.\n \n <table>\n <tbody>\n <tr><td><p><strong>Test</strong></p></td><td></td><td></td></tr>\n <tr><td></td><td></td><td></td></tr>\n <tr><td></td><td></td><td></td></tr>\n </tbody>\n </table>\n ",
"language": "en",
"n_whitespaces": 154,
"n_words": 15,
"vocab_size": 14
} | https://github.com/wagtail/wagtail.git |
|
4 | path_up | def path_up(url, count):
urlutils.ensure_valid(url)
url = url.adjusted(QUrl.UrlFormattingOption.RemoveFragment | QUrl.UrlFormattingOption.RemoveQuery)
path = url.path(QUrl.ComponentFormattingOption.FullyEncoded)
if not path or path == '/':
raise Error("Can't go up!")
for _i in range(0, min(count, path.count('/'))):
path = posixpath.join(path, posixpath.pardir)
path = posixpath.normpath(path)
url.setPath(path, QUrl.ParsingMode.StrictMode)
return url
| 0877fb0d78635692e481c8bde224fac5ad0dd430 | 12 | navigate.py | 180 | Run scripts/dev/rewrite_enums.py | 117,525 | 0 | 81 | 111 | 32 | 321,095 | 40 | qutebrowser | 24 | qutebrowser/browser/navigate.py | Python | 11 | {
"docstring": "Helper method for :navigate when `where' is up.\n\n Args:\n url: The current url.\n count: The number of levels to go up in the url.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 24,
"vocab_size": 22
} | https://github.com/qutebrowser/qutebrowser.git |
|
3 | _smooth_amount_callback | def _smooth_amount_callback(self, *args) -> None:
try:
smooth_amount = self.vars["smoothgraph"].get()
except tk.TclError:
# Don't update when there is no value in the variable
return
logger.debug("Updating graph smooth_amount: (new_value: %s, args: %s)",
smooth_amount, args)
for graph in self.subnotebook.children.values():
graph.calcs.set_smooth_amount(smooth_amount)
| dab823a3eb7a5257cb1e0818ee10ed234d3de97f | 12 | display_command.py | 105 | Typing - lib.gui.display_command | 21,281 | 0 | 136 | 62 | 35 | 101,899 | 37 | faceswap | 16 | lib/gui/display_command.py | Python | 10 | {
"docstring": " Update each graph's smooth amount on variable change ",
"language": "en",
"n_whitespaces": 9,
"n_words": 8,
"vocab_size": 8
} | https://github.com/deepfakes/faceswap.git |
|
2 | set_pattern | def set_pattern(self, val):
if len(val) > 5000: # avoid crash on huge search terms (#5973)
log.completion.warning(f"Trimming {len(val)}-char pattern to 5000")
val = val[:5000]
self._pattern = val
val = re.sub(r' +', r' ', val) # See #1919
val = re.escape(val)
val = val.replace(r'\ ', '.*')
rx = QRegularExpression(val, QRegularExpression.PatternOption.CaseInsensitiveOption)
qtutils.ensure_valid(rx)
self.setFilterRegularExpression(rx)
self.invalidate()
sortcol = 0
self.sort(sortcol)
| 0877fb0d78635692e481c8bde224fac5ad0dd430 | 13 | listcategory.py | 188 | Run scripts/dev/rewrite_enums.py | 117,601 | 0 | 163 | 108 | 43 | 321,240 | 55 | qutebrowser | 22 | qutebrowser/completion/models/listcategory.py | Python | 14 | {
"docstring": "Setter for pattern.\n\n Args:\n val: The value to set.\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 9,
"vocab_size": 9
} | https://github.com/qutebrowser/qutebrowser.git |
|
1 | test_generic_relations_with_related_query_name | def test_generic_relations_with_related_query_name(self):
bookmark = Bookmark.objects.create(name="djangoproject")
tag = FunkyTag.objects.create(content_object=bookmark, name="django")
tag_url = reverse("admin:admin_views_funkytag_change", args=(tag.id,))
should_contain = '<li>Funky tag: <a href="%s">django' % tag_url
response = self.client.get(
reverse("admin:admin_views_bookmark_delete", args=(bookmark.pk,))
)
self.assertContains(response, should_contain)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 13 | tests.py | 141 | Refs #33476 -- Reformatted code with Black. | 52,066 | 0 | 96 | 84 | 24 | 207,716 | 29 | django | 20 | tests/admin_views/tests.py | Python | 9 | {
"docstring": "\n If a deleted object has GenericForeignKey with\n GenericRelation(related_query_name='...') pointing to it, those objects\n should be listed for deletion.\n ",
"language": "en",
"n_whitespaces": 47,
"n_words": 18,
"vocab_size": 18
} | https://github.com/django/django.git |
|
3 | parsed_paths | def parsed_paths(self) -> List[str]:
res_paths: List[str] = []
paths = self.parser.existing_paths
for directory in paths:
for filename in paths[directory]:
res_paths.append(os.path.join(directory, filename))
return res_paths
| 7d9e9a49005de7961e84d2a7c608db57dbab3046 | 14 | augeasparser.py | 89 | Add typing to certbot.apache (#9071)
* Add typing to certbot.apache
Co-authored-by: Adrien Ferrand <[email protected]> | 45,535 | 0 | 84 | 57 | 20 | 186,624 | 23 | certbot | 14 | certbot-apache/certbot_apache/_internal/augeasparser.py | Python | 16 | {
"docstring": "\n Returns a list of file paths that have currently been parsed into the parser\n tree. The returned list may include paths with wildcard characters, for\n example: ['/etc/apache2/conf.d/*.load']\n\n This is typically called on the root node of the ParserNode tree.\n\n :returns: list of file paths of files that have been parsed\n ",
"language": "en",
"n_whitespaces": 93,
"n_words": 50,
"vocab_size": 35
} | https://github.com/certbot/certbot.git |
|
2 | ids | def ids(self) -> Tuple[str, ...]:
return tuple(
sorted(set([cast(str, p.get("id")) for p in self._patterns]) - set([None]))
)
| a322d6d5f2f85c2da6cded4fcd6143d41b5a9e96 | 18 | span_ruler.py | 79 | Add SpanRuler component (#9880)
* Add SpanRuler component
Add a `SpanRuler` component similar to `EntityRuler` that saves a list
of matched spans to `Doc.spans[spans_key]`. The matches from the token
and phrase matchers are deduplicated and sorted before assignment but
are not otherwise filtered.
* Update spacy/pipeline/span_ruler.py
Co-authored-by: Sofie Van Landeghem <[email protected]>
* Fix cast
* Add self.key property
* Use number of patterns as length
* Remove patterns kwarg from init
* Update spacy/tests/pipeline/test_span_ruler.py
Co-authored-by: Sofie Van Landeghem <[email protected]>
* Add options for spans filter and setting to ents
* Add `spans_filter` option as a registered function'
* Make `spans_key` optional and if `None`, set to `doc.ents` instead of
`doc.spans[spans_key]`.
* Update and generalize tests
* Add test for setting doc.ents, fix key property type
* Fix typing
* Allow independent doc.spans and doc.ents
* If `spans_key` is set, set `doc.spans` with `spans_filter`.
* If `annotate_ents` is set, set `doc.ents` with `ents_fitler`.
* Use `util.filter_spans` by default as `ents_filter`.
* Use a custom warning if the filter does not work for `doc.ents`.
* Enable use of SpanC.id in Span
* Support id in SpanRuler as Span.id
* Update types
* `id` can only be provided as string (already by `PatternType`
definition)
* Update all uses of Span.id/ent_id in Doc
* Rename Span id kwarg to span_id
* Update types and docs
* Add ents filter to mimic EntityRuler overwrite_ents
* Refactor `ents_filter` to take `entities, spans` args for more
filtering options
* Give registered filters more descriptive names
* Allow registered `filter_spans` filter
(`spacy.first_longest_spans_filter.v1`) to take any number of
`Iterable[Span]` objects as args so it can be used for spans filter
or ents filter
* Implement future entity ruler as span ruler
Implement a compatible `entity_ruler` as `future_entity_ruler` using
`SpanRuler` as the underlying component:
* Add `sort_key` and `sort_reverse` to allow the sorting behavior to be
customized. (Necessary for the same sorting/filtering as in
`EntityRuler`.)
* Implement `overwrite_overlapping_ents_filter` and
`preserve_existing_ents_filter` to support
`EntityRuler.overwrite_ents` settings.
* Add `remove_by_id` to support `EntityRuler.remove` functionality.
* Refactor `entity_ruler` tests to parametrize all tests to test both
`entity_ruler` and `future_entity_ruler`
* Implement `SpanRuler.token_patterns` and `SpanRuler.phrase_patterns`
properties.
Additional changes:
* Move all config settings to top-level attributes to avoid duplicating
settings in the config vs. `span_ruler/cfg`. (Also avoids a lot of
casting.)
* Format
* Fix filter make method name
* Refactor to use same error for removing by label or ID
* Also provide existing spans to spans filter
* Support ids property
* Remove token_patterns and phrase_patterns
* Update docstrings
* Add span ruler docs
* Fix types
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <[email protected]>
* Move sorting into filters
* Check for all tokens in seen tokens in entity ruler filters
* Remove registered sort key
* Set Token.ent_id in a backwards-compatible way in Doc.set_ents
* Remove sort options from API docs
* Update docstrings
* Rename entity ruler filters
* Fix and parameterize scoring
* Add id to Span API docs
* Fix typo in API docs
* Include explicit labeled=True for scorer
Co-authored-by: Sofie Van Landeghem <[email protected]> | 24,383 | 0 | 48 | 49 | 16 | 111,340 | 16 | spaCy | 11 | spacy/pipeline/span_ruler.py | Python | 10 | {
"docstring": "All IDs present in the match patterns.\n\n RETURNS (set): The string IDs.\n\n DOCS: https://spacy.io/api/spanruler#ids\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 14,
"vocab_size": 14
} | https://github.com/explosion/spaCy.git |
|
6 | __call__ | def __call__(self, checkpoint):
if not self.runner:
return
if checkpoint.storage == Checkpoint.PERSISTENT and checkpoint.value:
checkpoint_path = checkpoint.value
logger.debug(
"Trial %s: Deleting checkpoint %s", self.trial_id, checkpoint_path
)
# TODO(ujvl): Batch remote deletes.
# We first delete the remote checkpoint. If it is on the same
# node as the driver, it will also remove the local copy.
ray.get(self.runner.delete_checkpoint.remote(checkpoint_path))
# Delete local copy, if any exists.
if os.path.exists(checkpoint_path):
try:
checkpoint_dir = TrainableUtil.find_checkpoint_dir(checkpoint_path)
shutil.rmtree(checkpoint_dir)
except FileNotFoundError:
logger.debug("Local checkpoint dir not found during deletion.")
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 15 | trial.py | 162 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 29,818 | 0 | 312 | 95 | 63 | 132,826 | 79 | ray | 25 | python/ray/tune/trial.py | Python | 15 | {
"docstring": "Requests checkpoint deletion asynchronously.\n\n Args:\n checkpoint (Checkpoint): Checkpoint to delete.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 10,
"vocab_size": 9
} | https://github.com/ray-project/ray.git |
|
1 | test_unread_counts | def test_unread_counts(self) -> None:
# Check that our own messages don't increase the unread count.
self.helper.send(self.room_id, "hello", tok=self.tok)
self._check_unread_count(0)
# Join the new user and check that this doesn't increase the unread count.
self.helper.join(room=self.room_id, user=self.user2, tok=self.tok2)
self._check_unread_count(0)
# Check that the new user sending a message increases our unread count.
res = self.helper.send(self.room_id, "hello", tok=self.tok2)
self._check_unread_count(1)
# Send a read receipt to tell the server we've read the latest event.
body = json.dumps({"m.read": res["event_id"]}).encode("utf8")
channel = self.make_request(
"POST",
"/rooms/%s/read_markers" % self.room_id,
body,
access_token=self.tok,
)
self.assertEqual(channel.code, 200, channel.json_body)
# Check that the unread counter is back to 0.
self._check_unread_count(0)
# Check that hidden read receipts don't break unread counts
res = self.helper.send(self.room_id, "hello", tok=self.tok2)
self._check_unread_count(1)
# Send a read receipt to tell the server we've read the latest event.
body = json.dumps({ReadReceiptEventFields.MSC2285_HIDDEN: True}).encode("utf8")
channel = self.make_request(
"POST",
"/rooms/%s/receipt/m.read/%s" % (self.room_id, res["event_id"]),
body,
access_token=self.tok,
)
self.assertEqual(channel.code, 200, channel.json_body)
# Check that the unread counter is back to 0.
self._check_unread_count(0)
# Check that room name changes increase the unread counter.
self.helper.send_state(
self.room_id,
"m.room.name",
{"name": "my super room"},
tok=self.tok2,
)
self._check_unread_count(1)
# Check that room topic changes increase the unread counter.
self.helper.send_state(
self.room_id,
"m.room.topic",
{"topic": "welcome!!!"},
tok=self.tok2,
)
self._check_unread_count(2)
# Check that encrypted messages increase the unread counter.
self.helper.send_event(self.room_id, EventTypes.Encrypted, {}, tok=self.tok2)
self._check_unread_count(3)
# Check that custom events with a body increase the unread counter.
self.helper.send_event(
self.room_id,
"org.matrix.custom_type",
{"body": "hello"},
tok=self.tok2,
)
self._check_unread_count(4)
# Check that edits don't increase the unread counter.
self.helper.send_event(
room_id=self.room_id,
type=EventTypes.Message,
content={
"body": "hello",
"msgtype": "m.text",
"m.relates_to": {"rel_type": RelationTypes.REPLACE},
},
tok=self.tok2,
)
self._check_unread_count(4)
# Check that notices don't increase the unread counter.
self.helper.send_event(
room_id=self.room_id,
type=EventTypes.Message,
content={"body": "hello", "msgtype": "m.notice"},
tok=self.tok2,
)
self._check_unread_count(4)
# Check that tombstone events changes increase the unread counter.
self.helper.send_state(
self.room_id,
EventTypes.Tombstone,
{"replacement_room": "!someroom:test"},
tok=self.tok2,
)
self._check_unread_count(5)
| 64c73c6ac88a740ee480a0ad1f9afc8596bccfa4 | 14 | test_sync.py | 815 | Add type hints to `tests/rest/client` (#12066) | 71,305 | 0 | 1,076 | 498 | 121 | 246,626 | 290 | synapse | 35 | tests/rest/client/test_sync.py | Python | 76 | {
"docstring": "Tests that /sync returns the right value for the unread count (MSC2654).",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | https://github.com/matrix-org/synapse.git |
|
3 | get_tail | def get_tail(self, n=10, raw=True, output=False, include_latest=False):
self.writeout_cache()
if not include_latest:
n += 1
# cursor/line/entry
this_cur = list(
self._run_sql(
"WHERE session == ? ORDER BY line DESC LIMIT ? ",
(self.session_number, n),
raw=raw,
output=output,
)
)
other_cur = list(
self._run_sql(
"WHERE session != ? ORDER BY session DESC, line DESC LIMIT ?",
(self.session_number, n),
raw=raw,
output=output,
)
)
everything = this_cur + other_cur
everything = everything[:n]
if not include_latest:
return list(everything)[:0:-1]
return list(everything)[::-1]
| dc5bcc1c50892a5128fcf128af28887226144927 | 12 | history.py | 198 | This fixed the mixing of multiple history seen in #13631
It forces get_tail to put the current session last in the returned
results. | 52,478 | 0 | 344 | 128 | 44 | 208,719 | 73 | ipython | 13 | IPython/core/history.py | Python | 25 | {
"docstring": "Get the last n lines from the history database.\n\n Most recent entry last.\n\n Completion will be reordered so that that the last ones are when\n possible from current session.\n\n Parameters\n ----------\n n : int\n The number of lines to get\n raw, output : bool\n See :meth:`get_range`\n include_latest : bool\n If False (default), n+1 lines are fetched, and the latest one\n is discarded. This is intended to be used where the function\n is called by a user command, which it should not return.\n\n Returns\n -------\n Tuples as :meth:`get_range`\n ",
"language": "en",
"n_whitespaces": 226,
"n_words": 87,
"vocab_size": 68
} | https://github.com/ipython/ipython.git |
|
4 | _discover_all_airflow_builtin_providers_from_local_sources | def _discover_all_airflow_builtin_providers_from_local_sources(self) -> None:
try:
import airflow.providers
except ImportError:
log.info("You have no providers installed.")
return
try:
for path in airflow.providers.__path__: # type: ignore[attr-defined]
self._add_provider_info_from_local_source_files_on_path(path)
except Exception as e:
log.warning("Error when loading 'provider.yaml' files from airflow sources: %s", e)
| 2fdc23333909096d427171002582e2906f8bbc0a | 11 | providers_manager.py | 96 | Fix remaining mypy issues in "core" Airflow (#20795)
Co-authored-by: Josh Fell <[email protected]>
Co-authored-by: Tzu-ping Chung <[email protected]>
Co-authored-by: Jarek Potiuk <[email protected]> | 8,082 | 0 | 144 | 54 | 36 | 43,879 | 38 | airflow | 13 | airflow/providers_manager.py | Python | 19 | {
"docstring": "\n Finds all built-in airflow providers if airflow is run from the local sources.\n It finds `provider.yaml` files for all such providers and registers the providers using those.\n\n This 'provider.yaml' scanning takes precedence over scanning packages installed\n in case you have both sources and packages installed, the providers will be loaded from\n the \"airflow\" sources rather than from the packages.\n ",
"language": "en",
"n_whitespaces": 102,
"n_words": 59,
"vocab_size": 44
} | https://github.com/apache/airflow.git |
|
3 | fit | def fit(self, X, y=None):
self._validate_params()
X = self._validate_data(X, ensure_min_samples=2, estimator="MinCovDet")
random_state = check_random_state(self.random_state)
n_samples, n_features = X.shape
# check that the empirical covariance is full rank
if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features:
warnings.warn(
"The covariance matrix associated to your dataset is not full rank"
)
# compute and store raw estimates
raw_location, raw_covariance, raw_support, raw_dist = fast_mcd(
X,
support_fraction=self.support_fraction,
cov_computation_method=self._nonrobust_covariance,
random_state=random_state,
)
if self.assume_centered:
raw_location = np.zeros(n_features)
raw_covariance = self._nonrobust_covariance(
X[raw_support], assume_centered=True
)
# get precision matrix in an optimized way
precision = linalg.pinvh(raw_covariance)
raw_dist = np.sum(np.dot(X, precision) * X, 1)
self.raw_location_ = raw_location
self.raw_covariance_ = raw_covariance
self.raw_support_ = raw_support
self.location_ = raw_location
self.support_ = raw_support
self.dist_ = raw_dist
# obtain consistency at normal models
self.correct_covariance(X)
# re-weight estimator
self.reweight_covariance(X)
return self
| 47dd54f727f09a47e84fb4cb53d33f9b0f239edb | 15 | _robust_covariance.py | 331 | MAINT validate parameter in `EmpiricalCovariance`, `MinCovDet`, and `EllipticEnvelope` (#23842)
Co-authored-by: Jérémie du Boisberranger <[email protected]> | 76,285 | 0 | 439 | 211 | 90 | 260,489 | 123 | scikit-learn | 41 | sklearn/covariance/_robust_covariance.py | Python | 31 | {
"docstring": "Fit a Minimum Covariance Determinant with the FastMCD algorithm.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n y : Ignored\n Not used, present for API consistency by convention.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n ",
"language": "en",
"n_whitespaces": 154,
"n_words": 54,
"vocab_size": 44
} | https://github.com/scikit-learn/scikit-learn.git |
|
4 | from_pandas | def from_pandas(cls, df, return_dims=False):
num_splits = GpuCount.get()
put_func = cls._partition_class.put
# For now, we default to row partitioning
pandas_dfs = split_result_of_axis_func_pandas(0, num_splits, df)
keys = [
put_func(cls._get_gpu_managers()[i], pandas_dfs[i])
for i in range(num_splits)
]
keys = RayWrapper.materialize(keys)
parts = cls._create_partitions(keys, cls._get_gpu_managers()).reshape(
(num_splits, 1)
)
if not return_dims:
return parts
else:
row_lengths = [len(df.index) for df in pandas_dfs]
col_widths = [
len(df.columns)
] # single value since we only have row partitions
return parts, row_lengths, col_widths
| 1dc16415333bf2428ee2b1f4d31ff94e66b9a0a6 | 13 | partition_manager.py | 206 | REFACTOR-#5009: use RayWrapper.materialize instead of ray.get (#5010)
Signed-off-by: Myachev <[email protected]> | 36,049 | 0 | 262 | 132 | 56 | 154,526 | 74 | modin | 26 | modin/core/execution/ray/implementations/cudf_on_ray/partitioning/partition_manager.py | Python | 20 | {
"docstring": "\n Create partitions from ``pandas.DataFrame/pandas.Series``.\n\n Parameters\n ----------\n df : pandas.DataFrame/pandas.Series\n A ``pandas.DataFrame`` to add.\n return_dims : boolean, default: False\n Is return dimensions or not.\n\n Returns\n -------\n list or tuple\n List of partitions in case `return_dims` == False,\n tuple (partitions, row lengths, col widths) in other case.\n ",
"language": "en",
"n_whitespaces": 153,
"n_words": 45,
"vocab_size": 40
} | https://github.com/modin-project/modin.git |
|
3 | _crossover | def _crossover(candidate):
sample_index1 = np.random.choice(len(candidate))
sample_index2 = np.random.choice(len(candidate))
sample_1 = candidate[sample_index1]
sample_2 = candidate[sample_index2]
cross_index = int(len(sample_1) * np.random.uniform(low=0.3, high=0.7))
logger.info(
LOGGING_PREFIX + "Perform crossover between %sth and %sth at index=%s",
sample_index1,
sample_index2,
cross_index,
)
next_gen = []
for i in range(len(sample_1)):
sample = sample_2[i] if i > cross_index else sample_1[i]
next_gen.append(sample)
return next_gen
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 12 | genetic_searcher.py | 190 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 29,658 | 0 | 197 | 125 | 43 | 132,059 | 54 | ray | 23 | python/ray/tune/automl/genetic_searcher.py | Python | 17 | {
"docstring": "Perform crossover action to candidates.\n\n For example, new gene = 60% sample_1 + 40% sample_2.\n\n Args:\n candidate: List of candidate genes (encodings).\n\n Examples:\n >>> # Genes that represent 3 parameters\n >>> gene1 = np.array([[0, 0, 1], [0, 1], [1, 0]])\n >>> gene2 = np.array([[0, 1, 0], [1, 0], [0, 1]])\n >>> new_gene = _crossover([gene1, gene2])\n >>> # new_gene could be the first [n=1] parameters of\n >>> # gene1 + the rest of gene2\n >>> # in which case:\n >>> # new_gene[0] = gene1[0]\n >>> # new_gene[1] = gene2[1]\n >>> # new_gene[2] = gene1[1]\n\n Returns:\n New gene (encoding)\n ",
"language": "en",
"n_whitespaces": 270,
"n_words": 97,
"vocab_size": 62
} | https://github.com/ray-project/ray.git |
|
6 | get_latest_device_activity | def get_latest_device_activity(self, device_id, activity_types):
if device_id not in self._latest_activities:
return None
latest_device_activities = self._latest_activities[device_id]
latest_activity = None
for activity_type in activity_types:
if activity_type in latest_device_activities:
if (
latest_activity is not None
and latest_device_activities[activity_type].activity_start_time
<= latest_activity.activity_start_time
):
continue
latest_activity = latest_device_activities[activity_type]
return latest_activity
| dadcc5ebcbcf951ff677568b281c5897d990c8ae | 14 | activity.py | 106 | spelling: components/august (#64232)
Co-authored-by: Josh Soref <[email protected]> | 108,496 | 0 | 227 | 69 | 28 | 309,801 | 42 | core | 9 | homeassistant/components/august/activity.py | Python | 15 | {
"docstring": "Return latest activity that is one of the activity_types.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/home-assistant/core.git |
|
1 | upnp_factory_mock | def upnp_factory_mock() -> Iterable[Mock]:
with patch(
"homeassistant.components.dlna_dms.dms.UpnpFactory",
autospec=True,
spec_set=True,
) as upnp_factory:
upnp_device = create_autospec(UpnpDevice, instance=True)
upnp_device.name = MOCK_DEVICE_NAME
upnp_device.udn = MOCK_DEVICE_UDN
upnp_device.device_url = MOCK_DEVICE_LOCATION
upnp_device.device_type = MOCK_DEVICE_TYPE
upnp_device.available = True
upnp_device.parent_device = None
upnp_device.root_device = upnp_device
upnp_device.all_devices = [upnp_device]
upnp_device.services = {
"urn:schemas-upnp-org:service:ContentDirectory:1": create_autospec(
UpnpService,
instance=True,
service_type="urn:schemas-upnp-org:service:ContentDirectory:1",
service_id="urn:upnp-org:serviceId:ContentDirectory",
),
"urn:schemas-upnp-org:service:ConnectionManager:1": create_autospec(
UpnpService,
instance=True,
service_type="urn:schemas-upnp-org:service:ConnectionManager:1",
service_id="urn:upnp-org:serviceId:ConnectionManager",
),
}
seal(upnp_device)
upnp_factory_instance = upnp_factory.return_value
upnp_factory_instance.async_create_device.return_value = upnp_device
yield upnp_factory_instance
@pytest.fixture | b19bf9b147f4321e89d1f7f01e68337f2102f460 | @pytest.fixture | 14 | conftest.py | 241 | Add dlna_dms integration to support DLNA Digital Media Servers (#66437) | 91,545 | 1 | 366 | 143 | 50 | 292,459 | 68 | core | 33 | tests/components/dlna_dms/conftest.py | Python | 34 | {
"docstring": "Mock the UpnpFactory class to construct DMS-style UPnP devices.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/home-assistant/core.git |
3 | _setup | def _setup(self, name=None):
settings_module = os.environ.get(ENVIRONMENT_VARIABLE)
if not settings_module:
desc = ("setting %s" % name) if name else "settings"
raise ImproperlyConfigured(
"Requested %s, but settings are not configured. "
"You must either define the environment variable %s "
"or call settings.configure() before accessing settings."
% (desc, ENVIRONMENT_VARIABLE)
)
self._wrapped = Settings(settings_module)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 12 | __init__.py | 99 | Refs #33476 -- Reformatted code with Black. | 50,300 | 0 | 172 | 56 | 45 | 203,320 | 51 | django | 12 | django/conf/__init__.py | Python | 11 | {
"docstring": "\n Load the settings module pointed to by the environment variable. This\n is used the first time settings are needed, if the user hasn't\n configured settings manually.\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 26,
"vocab_size": 21
} | https://github.com/django/django.git |
|
1 | transform_vector | def transform_vector(self, vector):
return Vector(
(vector.x + self.offset[0]) * self.scale[0],
(vector.y + self.offset[1]) * self.scale[1],
)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 12 | image_operations.py | 78 | Reformat with black | 16,345 | 0 | 59 | 52 | 14 | 75,054 | 16 | wagtail | 8 | wagtail/images/image_operations.py | Python | 5 | {
"docstring": "\n Transforms the given vector into the coordinate space of the final image.\n\n Use this to find out where a point on the source image would end up in the\n final image after cropping/resizing has been performed.\n\n Returns a new vector.\n ",
"language": "en",
"n_whitespaces": 76,
"n_words": 40,
"vocab_size": 33
} | https://github.com/wagtail/wagtail.git |
|
1 | test_kbinsdiscretizer_effect_sample_weight | def test_kbinsdiscretizer_effect_sample_weight():
X = np.array([[-2], [-1], [1], [3], [500], [1000]])
# add a large number of bins such that each sample with a non-null weight
# will be used as bin edge
est = KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="quantile")
est.fit(X, sample_weight=[1, 1, 1, 1, 0, 0])
assert_allclose(est.bin_edges_[0], [-2, -1, 1, 3])
assert_allclose(est.transform(X), [[0.0], [1.0], [2.0], [2.0], [2.0], [2.0]])
| 1f3c1be77a5b15d6bc1a5bfd9eb64315928679b1 | 11 | test_discretization.py | 194 | ENH add support for sample_weight in KBinsDiscretizer with strategy="quantile" (#24935)
Co-authored-by: seladus <[email protected]>
Co-authored-by: Seladus <[email protected]>
Co-authored-by: Guillaume Lemaitre <[email protected]> | 76,979 | 0 | 80 | 145 | 48 | 261,762 | 56 | scikit-learn | 14 | sklearn/preprocessing/tests/test_discretization.py | Python | 6 | {
"docstring": "Check the impact of `sample_weight` one computed quantiles.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/scikit-learn/scikit-learn.git |
|
3 | _predict_recursive | def _predict_recursive(self, X, x_squared_norms, sample_weight, cluster_node):
if cluster_node.left is None:
# This cluster has no subcluster. Labels are just the label of the cluster.
return np.full(X.shape[0], cluster_node.label, dtype=np.int32)
# Determine if data points belong to the left or right subcluster
centers = np.vstack((cluster_node.left.center, cluster_node.right.center))
if hasattr(self, "_X_mean"):
centers += self._X_mean
cluster_labels = _labels_inertia_threadpool_limit(
X,
sample_weight,
x_squared_norms,
centers,
self._n_threads,
return_inertia=False,
)
mask = cluster_labels == 0
# Compute the labels for each subset of the data points.
labels = np.full(X.shape[0], -1, dtype=np.int32)
labels[mask] = self._predict_recursive(
X[mask], x_squared_norms[mask], sample_weight[mask], cluster_node.left
)
labels[~mask] = self._predict_recursive(
X[~mask], x_squared_norms[~mask], sample_weight[~mask], cluster_node.right
)
return labels
| 0822851f5cb17827939a7d7b4f8c84f43184ae89 | 11 | _bisect_k_means.py | 272 | FEA Bisecting K-Means (#20031)
Co-authored-by: Gael Varoquaux <[email protected]>
Co-authored-by: Tom Dupré la Tour <[email protected]>
Co-authored-by: Julien Jerphanion <[email protected]>
Co-authored-by: Jérémie du Boisberranger <[email protected]> | 75,897 | 0 | 325 | 186 | 70 | 259,752 | 99 | scikit-learn | 25 | sklearn/cluster/_bisect_k_means.py | Python | 23 | {
"docstring": "Predict recursively by going down the hierarchical tree.\n\n Parameters\n ----------\n X : {ndarray, csr_matrix} of shape (n_samples, n_features)\n The data points, currently assigned to `cluster_node`, to predict between\n the subclusters of this node.\n\n x_squared_norms : ndarray of shape (n_samples,)\n Squared euclidean norm of each data point.\n\n sample_weight : ndarray of shape (n_samples,)\n The weights for each observation in X.\n\n cluster_node : _BisectingTree node object\n The cluster node of the hierarchical tree.\n\n Returns\n -------\n labels : ndarray of shape (n_samples,)\n Index of the cluster each sample belongs to.\n ",
"language": "en",
"n_whitespaces": 223,
"n_words": 87,
"vocab_size": 56
} | https://github.com/scikit-learn/scikit-learn.git |
|
1 | test_get | def test_get(self):
# Generate signature
signature = generate_signature(self.image.id, "fill-800x600")
# Get the image
response = self.client.get(
reverse(
"wagtailimages_serve", args=(signature, self.image.id, "fill-800x600")
)
)
# Check response
self.assertEqual(response.status_code, 200)
self.assertTrue(response.streaming)
self.assertEqual(response["Content-Type"], "image/png")
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 14 | tests.py | 127 | Reformat with black | 16,397 | 0 | 138 | 74 | 24 | 75,348 | 31 | wagtail | 15 | wagtail/images/tests/tests.py | Python | 10 | {
"docstring": "\n Test a valid GET request to the view\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 8,
"vocab_size": 8
} | https://github.com/wagtail/wagtail.git |
|
2 | set_temp_hold | def set_temp_hold(self, temp):
if self.hvac_mode in (HVACMode.HEAT, HVACMode.COOL):
heat_temp = temp
cool_temp = temp
else:
delta = self.thermostat["settings"]["heatCoolMinDelta"] / 10.0
heat_temp = temp - delta
cool_temp = temp + delta
self.set_auto_temp_hold(heat_temp, cool_temp)
| 7b1d5fb10af9cf71fae27f9e1020e18bd1fc2510 | 13 | climate.py | 102 | Use climate enums in ecobee (#70632) | 97,614 | 0 | 115 | 64 | 21 | 298,672 | 32 | core | 12 | homeassistant/components/ecobee/climate.py | Python | 9 | {
"docstring": "Set temperature hold in modes other than auto.\n\n Ecobee API: It is good practice to set the heat and cool hold\n temperatures to be the same, if the thermostat is in either heat, cool,\n auxHeatOnly, or off mode. If the thermostat is in auto mode, an\n additional rule is required. The cool hold temperature must be greater\n than the heat hold temperature by at least the amount in the\n heatCoolMinDelta property.\n https://www.ecobee.com/home/developer/api/examples/ex5.shtml\n ",
"language": "en",
"n_whitespaces": 128,
"n_words": 72,
"vocab_size": 49
} | https://github.com/home-assistant/core.git |
|
1 | test_archiving_interrupted | def test_archiving_interrupted(self) -> None:
expired_msg_ids = self._make_expired_zulip_messages(7)
expired_usermsg_ids = self._get_usermessage_ids(expired_msg_ids)
# Insert an exception near the end of the archiving process of a chunk:
with mock.patch(
"zerver.lib.retention.delete_messages", side_effect=Exception("delete_messages error")
):
with self.assertRaisesRegex(Exception, r"^delete_messages error$"):
# Specify large chunk_size to ensure things happen in a single batch
archive_messages(chunk_size=1000)
# Archiving code has been executed, but because we got an exception, things should have been rolled back:
self._verify_archive_data([], [])
self.assertEqual(
set(Message.objects.filter(id__in=expired_msg_ids).values_list("id", flat=True)),
set(expired_msg_ids),
)
self.assertEqual(
set(
UserMessage.objects.filter(id__in=expired_usermsg_ids).values_list(
"id", flat=True
)
),
set(expired_usermsg_ids),
)
| 033d2615f6614b06c8268fe60c6ee2a37892c204 | 16 | test_retention.py | 223 | ruff: Fix B017 `assertRaises(Exception):` should be considered evil.
Signed-off-by: Anders Kaseorg <[email protected]> | 17,912 | 0 | 377 | 132 | 68 | 85,040 | 81 | zulip | 23 | zerver/tests/test_retention.py | Python | 23 | {
"docstring": "Check that queries get rolled back to a consistent state\n if archiving gets interrupted in the middle of processing a chunk.",
"language": "en",
"n_whitespaces": 27,
"n_words": 21,
"vocab_size": 20
} | https://github.com/zulip/zulip.git |
|
1 | test_unknown_sequence_followed_by_known_sequence | def test_unknown_sequence_followed_by_known_sequence(parser):
unknown_sequence = "\x1b[?"
known_sequence = "\x1b[8~" # key = 'end'
sequence = unknown_sequence + known_sequence
events = parser.feed(sequence)
assert next(events).key == "escape"
assert next(events).key == "["
assert next(events).key == "?"
assert next(events).key == "end"
with pytest.raises(StopIteration):
next(events)
| bfb962bacf274373e5706090cd854b6aa0857270 | 9 | test_xterm_parser.py | 137 | Backtracking unknown escape sequences, various tests for XTermParser | 44,340 | 0 | 77 | 73 | 24 | 183,789 | 39 | textual | 12 | tests/test_xterm_parser.py | Python | 11 | {
"docstring": " When we feed the parser an unknown sequence followed by a known\n sequence. The characters in the unknown sequence are delivered as keys,\n and the known escape sequence that follows is delivered as expected.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 34,
"vocab_size": 26
} | https://github.com/Textualize/textual.git |
|
3 | write_to_directory | def write_to_directory(self, metric_info_dir, pretty_print=False):
with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), "w", encoding="utf-8") as f:
json.dump(asdict(self), f, indent=4 if pretty_print else None)
if self.license:
with open(os.path.join(metric_info_dir, config.LICENSE_FILENAME), "w", encoding="utf-8") as f:
f.write(self.license)
| 98f2f1390d558d54faa84ae9d2c503d624c7a9ef | 15 | info.py | 154 | Pretty print dataset info files (#4116)
* Pass indent to `json.dumps`
* Minor fix
* Pretty print GH dataset infos
* Style
* Revert "Pretty print GH dataset infos"
This reverts commit cf0523d4c9c176271cad44cd0d9dd595d233e817.
* Add pretty print option | 21,931 | 0 | 86 | 94 | 21 | 104,689 | 28 | datasets | 19 | src/datasets/info.py | Python | 6 | {
"docstring": "Write `MetricInfo` as JSON to `metric_info_dir`.\n Also save the license separately in LICENCE.\n If `pretty_print` is True, the JSON will be pretty-printed with the indent level of 4.\n ",
"language": "en",
"n_whitespaces": 49,
"n_words": 28,
"vocab_size": 25
} | https://github.com/huggingface/datasets.git |
|
4 | axvline | def axvline(self, x=0, ymin=0, ymax=1, **kwargs):
self._check_no_units([ymin, ymax], ['ymin', 'ymax'])
if "transform" in kwargs:
raise ValueError("'transform' is not allowed as a keyword "
"argument; axvline generates its own transform.")
xmin, xmax = self.get_xbound()
# Strip away the units for comparison with non-unitized bounds.
xx, = self._process_unit_info([("x", x)], kwargs)
scalex = (xx < xmin) or (xx > xmax)
trans = self.get_xaxis_transform(which='grid')
l = mlines.Line2D([x, x], [ymin, ymax], transform=trans, **kwargs)
self.add_line(l)
if scalex:
self._request_autoscale_view("x")
return l
| 383de519505964ed879c40b23ef36e90c17ebe0d | 11 | _axes.py | 227 | [Doc] fix more spelling and grammar | 24,055 | 0 | 208 | 139 | 66 | 110,316 | 74 | matplotlib | 23 | lib/matplotlib/axes/_axes.py | Python | 14 | {
"docstring": "\n Add a vertical line across the Axes.\n\n Parameters\n ----------\n x : float, default: 0\n x position in data coordinates of the vertical line.\n\n ymin : float, default: 0\n Should be between 0 and 1, 0 being the bottom of the plot, 1 the\n top of the plot.\n\n ymax : float, default: 1\n Should be between 0 and 1, 0 being the bottom of the plot, 1 the\n top of the plot.\n\n Returns\n -------\n `~matplotlib.lines.Line2D`\n\n Other Parameters\n ----------------\n **kwargs\n Valid keyword arguments are `.Line2D` properties, except for\n 'transform':\n\n %(Line2D:kwdoc)s\n\n See Also\n --------\n vlines : Add vertical lines in data coordinates.\n axvspan : Add a vertical span (rectangle) across the axis.\n axline : Add a line with an arbitrary slope.\n\n Examples\n --------\n * draw a thick red vline at *x* = 0 that spans the yrange::\n\n >>> axvline(linewidth=4, color='r')\n\n * draw a default vline at *x* = 1 that spans the yrange::\n\n >>> axvline(x=1)\n\n * draw a default vline at *x* = .5 that spans the middle half of\n the yrange::\n\n >>> axvline(x=.5, ymin=0.25, ymax=0.75)\n ",
"language": "en",
"n_whitespaces": 465,
"n_words": 173,
"vocab_size": 87
} | https://github.com/matplotlib/matplotlib.git |
|
1 | update | def update(self, props):
return self._update_props(
props, "{cls.__name__!r} object has no property {prop_name!r}")
| d69be2554cf6d1ac711bf433b1d6f176e3290d4f | 8 | artist.py | 30 | Clarify error message for bad keyword arguments.
`plot([], [], foo=42)` previously emitted
```
'Line2D' object has no property 'foo'
```
which refers to the Matplotlib-specific concept of "properties". It now
instead emits
```
Line2D.set() got an unexpected keyword argument 'foo'
```
which is modeled after the standard error message for unknown keyword
arguments.
(To maximize backcompat, the implementation goes through a new
_internal_update, which does *not* error when the same prop is passed
under different aliases. This could be changed later, but is not the
goal of this PR.) | 22,841 | 0 | 37 | 17 | 12 | 107,629 | 12 | matplotlib | 4 | lib/matplotlib/artist.py | Python | 3 | {
"docstring": "\n Update this artist's properties from the dict *props*.\n\n Parameters\n ----------\n props : dict\n ",
"language": "en",
"n_whitespaces": 49,
"n_words": 13,
"vocab_size": 12
} | https://github.com/matplotlib/matplotlib.git |
|
12 | remove | def remove(name=None, pkgs=None, **kwargs):
targets = salt.utils.args.split_input(pkgs) if pkgs else [name]
if not targets:
return {}
if pkgs:
log.debug("Removing these fileset(s)/rpm package(s) %s: %s", name, targets)
errors = []
# Get a list of the currently installed pkgs.
old = list_pkgs()
# Remove the fileset or rpm package(s)
for target in targets:
cmd = ""
out = {}
try:
named, versionpkg, rpmpkg = _check_pkg(target)
except CommandExecutionError as exc:
if exc.info:
errors.append(exc.info["errors"])
continue
if rpmpkg:
# assume use dnf or yum
cmdflags = "-y remove"
libpathenv = {"LIBPATH": "/opt/freeware/lib:/usr/lib"}
if pathlib.Path("/opt/freeware/bin/dnf").is_file():
cmdexe = "/opt/freeware/bin/dnf"
cmd = "{} {} {}".format(cmdexe, cmdflags, target)
out = __salt__["cmd.run_all"](
cmd,
python_shell=False,
env=libpathenv,
ignore_retcode=True,
)
elif pathlib.Path("/opt/freeware/bin/yum").is_file():
cmdexe = "/opt/freeware/bin/yum"
cmd = "{} {} {}".format(cmdexe, cmdflags, target)
out = __salt__["cmd.run_all"](
cmd,
python_shell=False,
env=libpathenv,
ignore_retcode=True,
)
elif pathlib.Path("/usr/bin/yum").is_file():
cmdexe = "/usr/bin/yum"
cmd = "{} {} {}".format(cmdexe, cmdflags, target)
out = __salt__["cmd.run_all"](
cmd,
python_shell=False,
env=libpathenv,
ignore_retcode=True,
)
else:
cmdexe = "/usr/bin/rpm"
cmdflags = "-e"
cmd = "{} {} {}".format(cmdexe, cmdflags, target)
out = __salt__["cmd.run_all"](cmd, python_shell=False)
else:
cmd = ["/usr/sbin/installp", "-u", named]
out = __salt__["cmd.run_all"](cmd, python_shell=False)
log.debug("result of removal command %s, returned result %s", cmd, out)
# Get a list of the packages after the uninstall
__context__.pop("pkg.list_pkgs", None)
new = list_pkgs()
ret = salt.utils.data.compare_dicts(old, new)
if errors:
raise CommandExecutionError(
"Problems encountered removing filesets(s)/package(s)",
info={"changes": ret, "errors": errors},
)
return ret
| fae5bc757ad0f1716483ce7ae180b451545c2058 | 16 | aixpkg.py | 648 | Updated to remove use of f-strings, and review comments | 53,843 | 0 | 979 | 385 | 123 | 215,126 | 220 | salt | 42 | salt/modules/aixpkg.py | Python | 65 | {
"docstring": "\n Remove specified fileset(s)/rpm package(s).\n\n name\n The name of the fileset or rpm package to be deleted.\n\n .. versionchanged:: 3005\n\n preference to install rpm packages are to use in the following order:\n /opt/freeware/bin/dnf\n /opt/freeware/bin/yum\n /usr/bin/yum\n /usr/bin/rpm\n\n pkgs\n A list of filesets and/or rpm packages to delete.\n Must be passed as a python list. The ``name`` parameter will be\n ignored if this option is passed.\n\n\n Returns a list containing the removed packages.\n\n CLI Example:\n\n .. code-block:: bash\n\n salt '*' pkg.remove <fileset/rpm package name>\n salt '*' pkg.remove tcsh\n salt '*' pkg.remove xlC.rte\n salt '*' pkg.remove Firefox.base.adt\n salt '*' pkg.remove pkgs='[\"foo\", \"bar\"]'\n ",
"language": "en",
"n_whitespaces": 237,
"n_words": 98,
"vocab_size": 69
} | https://github.com/saltstack/salt.git |
|
2 | codes | def codes(self):
if not self.known:
msg = (
"`df.column.cat.codes` with unknown categories is not "
"supported. Please use `column.cat.as_known()` or "
"`df.categorize()` beforehand to ensure known categories"
)
raise AttributeNotImplementedError(msg)
return self._property_map("codes")
| ecbab9d7cb52a2d96cb1b8dc397a87811e6f8059 | 11 | categorical.py | 61 | Add ``AttributeNotImplementedError`` for properties so IPython glob search works (#9231) | 36,714 | 0 | 132 | 31 | 30 | 156,683 | 32 | dask | 6 | dask/dataframe/categorical.py | Python | 9 | {
"docstring": "The codes of this categorical.\n\n If categories are unknown, an error is raised",
"language": "en",
"n_whitespaces": 19,
"n_words": 13,
"vocab_size": 13
} | https://github.com/dask/dask.git |
|
3 | get_local_ffmpeg | def get_local_ffmpeg() -> Optional[Path]:
ffmpeg_path = Path(get_spotdl_path()) / ("ffmpeg" + (".exe" if platform.system() == "Windows" else ""))
if ffmpeg_path.is_file():
return ffmpeg_path
return None
| e96e8ed7ec7e7cdffceaeb2c42e0396d4e3a8906 | 14 | ffmpeg.py | 86 | fixed local path creation on *nix machines | 5,524 | 0 | 42 | 47 | 20 | 30,374 | 23 | spotify-downloader | 8 | spotdl/utils/ffmpeg.py | Python | 11 | {
"docstring": "\n Get local ffmpeg binary path.\n\n ### Returns\n - Path to ffmpeg binary or None if not found.\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 17,
"vocab_size": 15
} | https://github.com/spotDL/spotify-downloader.git |
|
6 | get_date_list | def get_date_list(self, queryset, date_type=None, ordering="ASC"):
date_field = self.get_date_field()
allow_empty = self.get_allow_empty()
if date_type is None:
date_type = self.get_date_list_period()
if self.uses_datetime_field:
date_list = queryset.datetimes(date_field, date_type, ordering)
else:
date_list = queryset.dates(date_field, date_type, ordering)
if date_list is not None and not date_list and not allow_empty:
raise Http404(
_("No %(verbose_name_plural)s available")
% {
"verbose_name_plural": queryset.model._meta.verbose_name_plural,
}
)
return date_list
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 15 | dates.py | 175 | Refs #33476 -- Reformatted code with Black. | 51,761 | 0 | 230 | 108 | 38 | 206,860 | 55 | django | 19 | django/views/generic/dates.py | Python | 17 | {
"docstring": "\n Get a date list by calling `queryset.dates/datetimes()`, checking\n along the way for empty lists that aren't allowed.\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 17,
"vocab_size": 17
} | https://github.com/django/django.git |
|
1 | test_fetch_lfw_people_internal_cropping | def test_fetch_lfw_people_internal_cropping():
# If cropping was not done properly and we don't resize the images, the images would
# have their original size (250x250) and the image would not fit in the NumPy array
# pre-allocated based on `slice_` parameter.
slice_ = (slice(70, 195), slice(78, 172))
lfw = fetch_lfw_people(
data_home=SCIKIT_LEARN_DATA,
min_faces_per_person=3,
download_if_missing=False,
resize=None,
slice_=slice_,
)
assert lfw.images[0].shape == (
slice_[0].stop - slice_[0].start,
slice_[1].stop - slice_[1].start,
)
| 3714c900fc6ddcc87ad4486a41e0d1a4324d7209 | 10 | test_lfw.py | 129 | FIX crop properly the image in fetch_lfw_people (#24951)
Co-authored-by: Jérémie du Boisberranger <[email protected]> | 76,869 | 0 | 142 | 87 | 55 | 261,573 | 66 | scikit-learn | 14 | sklearn/datasets/tests/test_lfw.py | Python | 13 | {
"docstring": "Check that we properly crop the images.\n\n Non-regression test for:\n https://github.com/scikit-learn/scikit-learn/issues/24942\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 11,
"vocab_size": 11
} | https://github.com/scikit-learn/scikit-learn.git |
|
10 | prepopulated_fields_js | def prepopulated_fields_js(context):
prepopulated_fields = []
if "adminform" in context:
prepopulated_fields.extend(context["adminform"].prepopulated_fields)
if "inline_admin_formsets" in context:
for inline_admin_formset in context["inline_admin_formsets"]:
for inline_admin_form in inline_admin_formset:
if inline_admin_form.original is None:
prepopulated_fields.extend(inline_admin_form.prepopulated_fields)
prepopulated_fields_json = []
for field in prepopulated_fields:
prepopulated_fields_json.append(
{
"id": "#%s" % field["field"].auto_id,
"name": field["field"].name,
"dependency_ids": [
"#%s" % dependency.auto_id for dependency in field["dependencies"]
],
"dependency_list": [
dependency.name for dependency in field["dependencies"]
],
"maxLength": field["field"].field.max_length or 50,
"allowUnicode": getattr(field["field"].field, "allow_unicode", False),
}
)
context.update(
{
"prepopulated_fields": prepopulated_fields,
"prepopulated_fields_json": json.dumps(prepopulated_fields_json),
}
)
return context
@register.tag(name="prepopulated_fields_js") | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | @register.tag(name="prepopulated_fields_js") | 16 | admin_modify.py | 322 | Refs #33476 -- Reformatted code with Black. | 50,414 | 1 | 396 | 178 | 57 | 203,504 | 81 | django | 20 | django/contrib/admin/templatetags/admin_modify.py | Python | 32 | {
"docstring": "\n Create a list of prepopulated_fields that should render JavaScript for\n the prepopulated fields for both the admin form and inlines.\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 20,
"vocab_size": 18
} | https://github.com/django/django.git |
4 | _split_multiext | def _split_multiext(name, min=3, max=4, count=2):
extension = ''
for i, sfx in enumerate(reversed(_suffixes(name))):
if i >= count:
break
if min <= len(sfx) <= max:
extension = '%s%s' % (sfx, extension)
name = name.rstrip(sfx)
else:
# Stop on the first invalid extension
break
return name, extension
| 8ebca4a6a3a9836ce515a4dc60044c52465ef170 | 12 | urls.py | 126 | fetch_file - properly split files with multi-part file extensions (#75257) | 79,494 | 0 | 133 | 77 | 37 | 268,366 | 45 | ansible | 13 | lib/ansible/module_utils/urls.py | Python | 11 | {
"docstring": "Split a multi-part extension from a file name.\n\n Returns '([name minus extension], extension)'.\n\n Define the valid extension length (including the '.') with 'min' and 'max',\n 'count' sets the number of extensions, counting from the end, to evaluate.\n Evaluation stops on the first file extension that is outside the min and max range.\n\n If no valid extensions are found, the original ``name`` is returned\n and ``extension`` is empty.\n\n :arg name: File name or path.\n :kwarg min: Minimum length of a valid file extension.\n :kwarg max: Maximum length of a valid file extension.\n :kwarg count: Number of suffixes from the end to evaluate.\n\n ",
"language": "en",
"n_whitespaces": 134,
"n_words": 101,
"vocab_size": 67
} | https://github.com/ansible/ansible.git |
|
1 | test_upload_file_publish | def test_upload_file_publish(self):
file_upload = ContentFile(b"A new file", name="published-file.txt")
post_data = {
"title": "New file",
"slug": "new-file",
"file_field": file_upload,
"action-publish": "Publish",
}
response = self.client.post(
reverse("wagtailadmin_pages:edit", args=[self.file_page.id]), post_data
)
# Should be redirected to explorer
self.assertRedirects(
response, reverse("wagtailadmin_explore", args=[self.root_page.id])
)
# Check the new file exists
file_page = FilePage.objects.get()
self.assertEqual(file_page.file_field.name, file_upload.name)
self.assertTrue(os.path.exists(file_page.file_field.path))
self.assertEqual(file_page.file_field.read(), b"A new file")
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 14 | test_edit_page.py | 234 | Reformat with black | 15,695 | 0 | 219 | 138 | 46 | 71,596 | 55 | wagtail | 25 | wagtail/admin/tests/pages/test_edit_page.py | Python | 18 | {
"docstring": "\n Check that file uploads work when directly publishing\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 8,
"vocab_size": 8
} | https://github.com/wagtail/wagtail.git |
|
5 | __eq__ | def __eq__(self, other):
if isinstance(other, str):
try:
other = GEOSGeometry.from_ewkt(other)
except (ValueError, GEOSException):
return False
return (
isinstance(other, GEOSGeometry)
and self.srid == other.srid
and self.equals_exact(other)
)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 12 | geometry.py | 93 | Refs #33476 -- Reformatted code with Black. | 50,623 | 0 | 139 | 59 | 23 | 204,045 | 26 | django | 11 | django/contrib/gis/geos/geometry.py | Python | 11 | {
"docstring": "\n Equivalence testing, a Geometry may be compared with another Geometry\n or an EWKT representation.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 14,
"vocab_size": 13
} | https://github.com/django/django.git |
|
2 | id_for_label | def id_for_label(self):
widget = self.field.widget
id_ = widget.attrs.get("id") or self.auto_id
return widget.id_for_label(id_)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 10 | boundfield.py | 59 | Refs #33476 -- Reformatted code with Black. | 51,284 | 0 | 40 | 34 | 11 | 205,923 | 12 | django | 8 | django/forms/boundfield.py | Python | 4 | {
"docstring": "\n Wrapper around the field widget's `id_for_label` method.\n Useful, for example, for focusing on this field regardless of whether\n it has a single widget or a MultiWidget.\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 26,
"vocab_size": 23
} | https://github.com/django/django.git |
|
6 | decode_predictions | def decode_predictions(preds, top=5):
global CLASS_INDEX
if len(preds.shape) != 2 or preds.shape[1] != 1000:
raise ValueError(
"`decode_predictions` expects "
"a batch of predictions "
"(i.e. a 2D array of shape (samples, 1000)). "
"Found array with shape: " + str(preds.shape)
)
if CLASS_INDEX is None:
fpath = data_utils.get_file(
"imagenet_class_index.json",
CLASS_INDEX_PATH,
cache_subdir="models",
file_hash="c2c37ea517e94d9795004a39431a14cb",
)
with open(fpath) as f:
CLASS_INDEX = json.load(f)
results = []
for pred in preds:
top_indices = pred.argsort()[-top:][::-1]
result = [tuple(CLASS_INDEX[str(i)]) + (pred[i],) for i in top_indices]
result.sort(key=lambda x: x[2], reverse=True)
results.append(result)
return results
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 15 | imagenet_utils.py | 271 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 80,052 | 0 | 268 | 164 | 66 | 269,382 | 85 | keras | 30 | keras/applications/imagenet_utils.py | Python | 25 | {
"docstring": "Decodes the prediction of an ImageNet model.\n\n Args:\n preds: Numpy array encoding a batch of predictions.\n top: Integer, how many top-guesses to return. Defaults to 5.\n\n Returns:\n A list of lists of top class prediction tuples\n `(class_name, class_description, score)`.\n One list of tuples per sample in batch input.\n\n Raises:\n ValueError: In case of invalid shape of the `pred` array\n (must be 2D).\n ",
"language": "en",
"n_whitespaces": 111,
"n_words": 62,
"vocab_size": 49
} | https://github.com/keras-team/keras.git |
|
1 | handle_expect_100 | def handle_expect_100(self):
self.send_response_only(HTTPStatus.CONTINUE)
self.end_headers()
return True
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 8 | server.py | 38 | add python 3.10.4 for windows | 54,971 | 0 | 34 | 21 | 6 | 217,864 | 6 | XX-Net | 6 | python3.10.4/Lib/http/server.py | Python | 4 | {
"docstring": "Decide what to do with an \"Expect: 100-continue\" header.\n\n If the client is expecting a 100 Continue response, we must\n respond with either a 100 Continue or a final response before\n waiting for the request body. The default is to always respond\n with a 100 Continue. You can behave differently (for example,\n reject unauthorized requests) by overriding this method.\n\n This method should either return True (possibly after sending\n a 100 Continue response) or send an error response and return\n False.\n\n ",
"language": "en",
"n_whitespaces": 143,
"n_words": 80,
"vocab_size": 60
} | https://github.com/XX-net/XX-Net.git |
|
4 | paginator_number | def paginator_number(cl, i):
if i == cl.paginator.ELLIPSIS:
return format_html("{} ", cl.paginator.ELLIPSIS)
elif i == cl.page_num:
return format_html('<span class="this-page">{}</span> ', i)
else:
return format_html(
'<a href="{}"{}>{}</a> ',
cl.get_query_string({PAGE_VAR: i}),
mark_safe(' class="end"' if i == cl.paginator.num_pages else ""),
i,
)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 16 | admin_list.py | 128 | Refs #33476 -- Reformatted code with Black. | 50,406 | 0 | 122 | 78 | 30 | 203,487 | 38 | django | 11 | django/contrib/admin/templatetags/admin_list.py | Python | 12 | {
"docstring": "\n Generate an individual page index link in a paginated list.\n ",
"language": "en",
"n_whitespaces": 17,
"n_words": 10,
"vocab_size": 10
} | https://github.com/django/django.git |
|
4 | test_thumbnail_repeated_thumbnail | def test_thumbnail_repeated_thumbnail(self) -> None:
self._test_thumbnail(
"scale", self.test_image.expected_scaled, self.test_image.expected_found
)
if not self.test_image.expected_found:
return
# Fetching again should work, without re-requesting the image from the
# remote.
params = "?width=32&height=32&method=scale"
channel = make_request(
self.reactor,
FakeSite(self.thumbnail_resource, self.reactor),
"GET",
self.media_id + params,
shorthand=False,
await_result=False,
)
self.pump()
self.assertEqual(channel.code, 200)
if self.test_image.expected_scaled:
self.assertEqual(
channel.result["body"],
self.test_image.expected_scaled,
channel.result["body"],
)
# Deleting the thumbnail on disk then re-requesting it should work as
# Synapse should regenerate missing thumbnails.
origin, media_id = self.media_id.split("/")
info = self.get_success(self.store.get_cached_remote_media(origin, media_id))
file_id = info["filesystem_id"]
thumbnail_dir = self.media_repo.filepaths.remote_media_thumbnail_dir(
origin, file_id
)
shutil.rmtree(thumbnail_dir, ignore_errors=True)
channel = make_request(
self.reactor,
FakeSite(self.thumbnail_resource, self.reactor),
"GET",
self.media_id + params,
shorthand=False,
await_result=False,
)
self.pump()
self.assertEqual(channel.code, 200)
if self.test_image.expected_scaled:
self.assertEqual(
channel.result["body"],
self.test_image.expected_scaled,
channel.result["body"],
)
| 32c828d0f760492711a98b11376e229d795fd1b3 | 11 | test_media_storage.py | 414 | Add type hints to `tests/rest`. (#12208)
Co-authored-by: Patrick Cloke <[email protected]> | 71,705 | 0 | 586 | 263 | 68 | 247,511 | 112 | synapse | 33 | tests/rest/media/v1/test_media_storage.py | Python | 49 | {
"docstring": "Test that fetching the same thumbnail works, and deleting the on disk\n thumbnail regenerates it.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 15,
"vocab_size": 13
} | https://github.com/matrix-org/synapse.git |
|
4 | _check_readonly_fields | def _check_readonly_fields(self, obj):
if obj.readonly_fields == ():
return []
elif not isinstance(obj.readonly_fields, (list, tuple)):
return must_be(
"a list or tuple", option="readonly_fields", obj=obj, id="admin.E034"
)
else:
return list(
chain.from_iterable(
self._check_readonly_fields_item(
obj, field_name, "readonly_fields[%d]" % index
)
for index, field_name in enumerate(obj.readonly_fields)
)
)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 16 | checks.py | 137 | Refs #33476 -- Reformatted code with Black. | 50,315 | 0 | 250 | 85 | 37 | 203,341 | 42 | django | 16 | django/contrib/admin/checks.py | Python | 16 | {
"docstring": "Check that readonly_fields refers to proper attribute or field.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/django/django.git |
|
5 | semilogy | def semilogy(self, *args, **kwargs):
d = {k: v for k, v in kwargs.items()
if k in ['base', 'subs', 'nonpositive',
'basey', 'subsy', 'nonposy']}
self.set_yscale('log', **d)
return self.plot(
*args, **{k: v for k, v in kwargs.items() if k not in d})
| 383de519505964ed879c40b23ef36e90c17ebe0d | 12 | _axes.py | 139 | [Doc] fix more spelling and grammar | 24,062 | 0 | 111 | 84 | 27 | 110,323 | 39 | matplotlib | 10 | lib/matplotlib/axes/_axes.py | Python | 7 | {
"docstring": "\n Make a plot with log scaling on the y-axis.\n\n Call signatures::\n\n semilogy([x], y, [fmt], data=None, **kwargs)\n semilogy([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)\n\n This is just a thin wrapper around `.plot` which additionally changes\n the y-axis to log scaling. All the concepts and parameters of plot can\n be used here as well.\n\n The additional parameters *base*, *subs*, and *nonpositive* control the\n y-axis properties. They are just forwarded to `.Axes.set_yscale`.\n\n Parameters\n ----------\n base : float, default: 10\n Base of the y logarithm.\n\n subs : array-like, optional\n The location of the minor yticks. If *None*, reasonable locations\n are automatically chosen depending on the number of decades in the\n plot. See `.Axes.set_yscale` for details.\n\n nonpositive : {'mask', 'clip'}, default: 'mask'\n Non-positive values in y can be masked as invalid, or clipped to a\n very small positive number.\n\n **kwargs\n All parameters supported by `.plot`.\n\n Returns\n -------\n list of `.Line2D`\n Objects representing the plotted data.\n ",
"language": "en",
"n_whitespaces": 381,
"n_words": 151,
"vocab_size": 112
} | https://github.com/matplotlib/matplotlib.git |
|
1 | test_upgrade_org_config_no_source_code_provider | def test_upgrade_org_config_no_source_code_provider(self):
with self.tasks():
self.assert_setup_flow()
project_id = self.project.id
org = self.organization
data = {
"project_mappings": [[project_id, "Qme9NXBpguaRxcXssZ1NWHVaM98MAL6PHDXUs1jPrgiM8H"]]
}
integration = Integration.objects.get(provider=self.provider.key)
installation = integration.get_installation(org.id)
responses.add(
responses.GET,
"https://api.vercel.com/v1/projects/%s"
% "Qme9NXBpguaRxcXssZ1NWHVaM98MAL6PHDXUs1jPrgiM8H",
json={},
)
with pytest.raises(ValidationError):
installation.update_organization_config(data)
| 284e980df0018f8baee659999268bdd4c7d08255 | 11 | test_integration.py | 174 | ref: replace self.assertRaises with pytest.raises (#35685)
* add flake8 plugin to detect assertRaises
* ref: replace self.assertRaises with pytest.raises
* non-sed fixes | 18,763 | 0 | 188 | 101 | 29 | 91,382 | 34 | sentry | 26 | tests/sentry/integrations/vercel/test_integration.py | Python | 18 | {
"docstring": "Test that the function doesn't progress if the Vercel project hasn't been connected to a Git repository",
"language": "en",
"n_whitespaces": 16,
"n_words": 17,
"vocab_size": 16
} | https://github.com/getsentry/sentry.git |
|
5 | _get_coeff_exp | def _get_coeff_exp(expr, x):
from sympy.simplify import powsimp
(c, m) = expand_power_base(powsimp(expr)).as_coeff_mul(x)
if not m:
return c, S.Zero
[m] = m
if m.is_Pow:
if m.base != x:
raise _CoeffExpValueError('expr not of form a*x**b')
return c, m.exp
elif m == x:
return c, S.One
else:
raise _CoeffExpValueError('expr not of form a*x**b: %s' % expr)
| f757f3daae6e11ea0cfb7dadc133274d8d74315f | 12 | meijerint.py | 148 | Reordered imports 2 | 48,173 | 0 | 122 | 90 | 37 | 196,786 | 52 | sympy | 17 | sympy/integrals/meijerint.py | Python | 14 | {
"docstring": "\n When expr is known to be of the form c*x**b, with c and/or b possibly 1,\n return c, b.\n\n Examples\n ========\n\n >>> from sympy.abc import x, a, b\n >>> from sympy.integrals.meijerint import _get_coeff_exp\n >>> _get_coeff_exp(a*x**b, x)\n (a, b)\n >>> _get_coeff_exp(x, x)\n (1, 1)\n >>> _get_coeff_exp(2*x, x)\n (2, 1)\n >>> _get_coeff_exp(x**3, x)\n (1, 3)\n ",
"language": "en",
"n_whitespaces": 99,
"n_words": 53,
"vocab_size": 40
} | https://github.com/sympy/sympy.git |
|
2 | process | def process(self) -> None:
logger.debug("Starting Conversion")
# queue_manager.debug_monitor(5)
try:
self._convert_images()
self._disk_io.save_thread.join()
queue_manager.terminate_queues()
finalize(self._images.count,
self._predictor.faces_count,
self._predictor.verify_output)
logger.debug("Completed Conversion")
except MemoryError as err:
msg = ("Faceswap ran out of RAM running convert. Conversion is very system RAM "
"heavy, so this can happen in certain circumstances when you have a lot of "
"cpus but not enough RAM to support them all."
"\nYou should lower the number of processes in use by either setting the "
"'singleprocess' flag (-sp) or lowering the number of parallel jobs (-j).")
raise FaceswapError(msg) from err
| 1022651eb8a7741014f5d2ec7cbfe882120dfa5f | 12 | convert.py | 150 | Bugfix: convert - Gif Writer
- Fix non-launch error on Gif Writer
- convert plugins - linting
- convert/fs_media/preview/queue_manager - typing
- Change convert items from dict to Dataclass | 20,804 | 0 | 313 | 82 | 77 | 101,389 | 89 | faceswap | 20 | scripts/convert.py | Python | 26 | {
"docstring": " The entry point for triggering the Conversion Process.\n\n Should only be called from :class:`lib.cli.launcher.ScriptExecutor`\n\n Raises\n ------\n FaceswapError\n Error raised if the process runs out of memory\n ",
"language": "en",
"n_whitespaces": 74,
"n_words": 26,
"vocab_size": 25
} | https://github.com/deepfakes/faceswap.git |
|
5 | _oas | def _oas(X, *, assume_centered=False):
# for only one feature, the result is the same whatever the shrinkage
if len(X.shape) == 2 and X.shape[1] == 1:
if not assume_centered:
X = X - X.mean()
return np.atleast_2d((X**2).mean()), 0.0
n_samples, n_features = X.shape
emp_cov = empirical_covariance(X, assume_centered=assume_centered)
mu = np.trace(emp_cov) / n_features
# formula from Chen et al.'s **implementation**
alpha = np.mean(emp_cov**2)
num = alpha + mu**2
den = (n_samples + 1.0) * (alpha - (mu**2) / n_features)
shrinkage = 1.0 if den == 0 else min(num / den, 1.0)
shrunk_cov = (1.0 - shrinkage) * emp_cov
shrunk_cov.flat[:: n_features + 1] += shrinkage * mu
return shrunk_cov, shrinkage
###############################################################################
# Public API
# ShrunkCovariance estimator
| a4d470838fe0cc31ba838594e4c8b0ff15be91f8 | 14 | _shrunk_covariance.py | 266 | MAINT Parameters validation for `covariance.oas` (#24904)
Co-authored-by: Guillaume Lemaitre <[email protected]>
Co-authored-by: jeremiedbb <[email protected]> | 77,005 | 0 | 176 | 176 | 75 | 261,801 | 112 | scikit-learn | 21 | sklearn/covariance/_shrunk_covariance.py | Python | 15 | {
"docstring": "Estimate covariance with the Oracle Approximating Shrinkage algorithm.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/scikit-learn/scikit-learn.git |
|
5 | ledoit_wolf | def ledoit_wolf(X, *, assume_centered=False, block_size=1000):
X = check_array(X)
# for only one feature, the result is the same whatever the shrinkage
if len(X.shape) == 2 and X.shape[1] == 1:
if not assume_centered:
X = X - X.mean()
return np.atleast_2d((X**2).mean()), 0.0
if X.ndim == 1:
X = np.reshape(X, (1, -1))
warnings.warn(
"Only one sample available. You may want to reshape your data array"
)
n_features = X.size
else:
_, n_features = X.shape
# get Ledoit-Wolf shrinkage
shrinkage = ledoit_wolf_shrinkage(
X, assume_centered=assume_centered, block_size=block_size
)
emp_cov = empirical_covariance(X, assume_centered=assume_centered)
mu = np.sum(np.trace(emp_cov)) / n_features
shrunk_cov = (1.0 - shrinkage) * emp_cov
shrunk_cov.flat[:: n_features + 1] += shrinkage * mu
return shrunk_cov, shrinkage
| 1fc86b6aacd89da44a3b4e8abf7c3e2ba4336ffe | 14 | _shrunk_covariance.py | 284 | MNT Update black to stable version (#22474) | 75,444 | 0 | 229 | 182 | 76 | 258,820 | 109 | scikit-learn | 26 | sklearn/covariance/_shrunk_covariance.py | Python | 22 | {
"docstring": "Estimates the shrunk Ledoit-Wolf covariance matrix.\n\n Read more in the :ref:`User Guide <shrunk_covariance>`.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Data from which to compute the covariance estimate\n\n assume_centered : bool, default=False\n If True, data will not be centered before computation.\n Useful to work with data whose mean is significantly equal to\n zero but is not exactly zero.\n If False, data will be centered before computation.\n\n block_size : int, default=1000\n Size of blocks into which the covariance matrix will be split.\n This is purely a memory optimization and does not affect results.\n\n Returns\n -------\n shrunk_cov : ndarray of shape (n_features, n_features)\n Shrunk covariance.\n\n shrinkage : float\n Coefficient in the convex combination used for the computation\n of the shrunk estimate.\n\n Notes\n -----\n The regularized (shrunk) covariance is:\n\n (1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)\n\n where mu = trace(cov) / n_features\n ",
"language": "en",
"n_whitespaces": 263,
"n_words": 145,
"vocab_size": 104
} | https://github.com/scikit-learn/scikit-learn.git |
|
1 | create_pax_global_header | def create_pax_global_header(cls, pax_headers):
return cls._create_pax_generic_header(pax_headers, XGLTYPE, "utf8")
| c69d55f7c82d5ae2cce542bcfb98d043ca4836a0 | 8 | tarfile.py | 32 | Vendor in pip 22.1.2 | 3,872 | 0 | 21 | 19 | 7 | 21,486 | 7 | pipenv | 5 | pipenv/patched/notpip/_vendor/distlib/_backport/tarfile.py | Python | 2 | {
"docstring": "Return the object as a pax global header block sequence.\n ",
"language": "en",
"n_whitespaces": 17,
"n_words": 10,
"vocab_size": 10
} | https://github.com/pypa/pipenv.git |
|
7 | adapt | def adapt(self, data, batch_size=None, steps=None):
_disallow_inside_tf_function("adapt")
if not version_utils.should_use_v2():
raise RuntimeError("`adapt` is only supported in tensorflow v2.")
if not self._is_compiled:
self.compile() # Compile with defaults.
if self.built:
self.reset_state()
data_handler = data_adapter.DataHandler(
data,
batch_size=batch_size,
steps_per_epoch=steps,
epochs=1,
steps_per_execution=self._steps_per_execution,
distribute=False,
)
self._adapt_function = self.make_adapt_function()
for _, iterator in data_handler.enumerate_epochs():
with data_handler.catch_stop_iteration():
for _ in data_handler.steps():
self._adapt_function(iterator)
if data_handler.should_sync:
context.async_wait()
self.finalize_state()
self._is_adapted = True
| 3613c3defc39c236fb1592c4f7ba1a9cc887343a | 15 | base_preprocessing_layer.py | 241 | Remove pylint comments.
PiperOrigin-RevId: 452353044 | 82,685 | 0 | 324 | 147 | 49 | 278,703 | 60 | keras | 32 | keras/engine/base_preprocessing_layer.py | Python | 25 | {
"docstring": "Fits the state of the preprocessing layer to the data being passed.\n\n After calling `adapt` on a layer, a preprocessing layer's state will not\n update during training. In order to make preprocessing layers efficient\n in any distribution context, they are kept constant with respect to any\n compiled `tf.Graph`s that call the layer. This does not affect the layer\n use when adapting each layer only once, but if you adapt a layer\n multiple times you will need to take care to re-compile any compiled\n functions as follows:\n\n * If you are adding a preprocessing layer to a `keras.Model`, you need\n to call `model.compile` after each subsequent call to `adapt`.\n * If you are calling a preprocessing layer inside\n `tf.data.Dataset.map`, you should call `map` again on the input\n `tf.data.Dataset` after each `adapt`.\n * If you are using a `tf.function` directly which calls a preprocessing\n layer, you need to call `tf.function` again on your callable after\n each subsequent call to `adapt`.\n\n `tf.keras.Model` example with multiple adapts:\n\n >>> layer = tf.keras.layers.Normalization(\n ... axis=None)\n >>> layer.adapt([0, 2])\n >>> model = tf.keras.Sequential(layer)\n >>> model.predict([0, 1, 2])\n array([-1., 0., 1.], dtype=float32)\n >>> layer.adapt([-1, 1])\n >>> model.compile() # This is needed to re-compile model.predict!\n >>> model.predict([0, 1, 2])\n array([0., 1., 2.], dtype=float32)\n\n `tf.data.Dataset` example with multiple adapts:\n\n >>> layer = tf.keras.layers.Normalization(\n ... axis=None)\n >>> layer.adapt([0, 2])\n >>> input_ds = tf.data.Dataset.range(3)\n >>> normalized_ds = input_ds.map(layer)\n >>> list(normalized_ds.as_numpy_iterator())\n [array([-1.], dtype=float32),\n array([0.], dtype=float32),\n array([1.], dtype=float32)]\n >>> layer.adapt([-1, 1])\n >>> normalized_ds = input_ds.map(layer) # Re-map over the input dataset.\n >>> list(normalized_ds.as_numpy_iterator())\n [array([0.], dtype=float32),\n array([1.], dtype=float32),\n array([2.], dtype=float32)]\n\n `adapt()` is meant only as a single machine utility to compute layer\n state. To analyze a dataset that cannot fit on a single machine, see\n [Tensorflow Transform](\n https://www.tensorflow.org/tfx/transform/get_started)\n for a multi-machine, map-reduce solution.\n\n Arguments:\n data: The data to train on. It can be passed either as a tf.data\n Dataset, or as a numpy array.\n batch_size: Integer or `None`.\n Number of samples per state update. If unspecified,\n `batch_size` will default to 32. Do not specify the\n `batch_size` if your data is in the form of datasets,\n generators, or `keras.utils.Sequence` instances (since they\n generate batches).\n steps: Integer or `None`.\n Total number of steps (batches of samples)\n When training with input tensors such as\n TensorFlow data tensors, the default `None` is equal to\n the number of samples in your dataset divided by\n the batch size, or 1 if that cannot be determined. If x is a\n `tf.data` dataset, and 'steps' is None, the epoch will run until\n the input dataset is exhausted. When passing an infinitely\n repeating dataset, you must specify the `steps` argument. This\n argument is not supported with array inputs.\n ",
"language": "en",
"n_whitespaces": 1065,
"n_words": 434,
"vocab_size": 227
} | https://github.com/keras-team/keras.git |
|
2 | test_loadtxt_float_conversion | def test_loadtxt_float_conversion():
strings = [
'0.9999999999999999',
'9876543210.123456',
'5.43215432154321e+300',
'0.901',
'0.333',
]
txt = TextIO('\n'.join(strings))
res = np.loadtxt(txt)
expected = np.array([float(s) for s in strings])
assert_equal(res, expected)
| 66a61b03658f3c9f312505dcf7eab07e4cf91ac6 | 11 | test_io.py | 108 | Port over tests from npreadtext test suite
- Add test for parsing scientific notation.
- Add multiple-char comment test.
- Port over tests for structured dtypes.
- Add tests for exceptions on skiprows/max_rows.
- port over ndmin tests.
- Make structured data reusable, add unpack tests.
- Port over delimiter tests.
- Port over maxrows test w/ various dtypes.
- Port over test of exception msg on parse failure.
- Port over test for converters w/neg indices.
- Port over usecols tests
- Port over unicode tests.
- Port over more converter tests.
- Port over test for large rows.
- Port over test for string-len discovery.
- Port over float conversion accuracy test.
- Port over bool test.
- Add test for implicit float->int conversion.
- Port over complex parsing tests.
- Port over tests for reading from generator.
- Port over object cleanup test.
- Port over bytes incompat test.
- Port over converters tests.
Co-authored-by: Warren Weckesser <[email protected]>
Co-authored-by: Sebastian Berg <[email protected]> | 38,418 | 0 | 82 | 61 | 23 | 159,757 | 26 | numpy | 13 | numpy/lib/tests/test_io.py | Python | 12 | {
"docstring": "\n Some tests that the conversion to float64 works as accurately as the Python\n built-in `float` function. In a naive version of the float parser, these\n strings resulted in values that were off by an ULP or two.\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 37,
"vocab_size": 33
} | https://github.com/numpy/numpy.git |