UDA-QA / README.md
qinchuanhui's picture
Update README.md
9234e36 verified
|
raw
history blame
6.78 kB
---
license: cc-by-sa-4.0
task_categories:
- question-answering
- table-question-answering
- text-generation
language:
- en
tags:
- croissant
pretty_name: UDA-QA
size_categories:
- 10K<n<100K
config_names:
- feta
- nq
- paper_text
- paper_tab
- fin
- tat
dataset_info:
- config_name: feta
features:
- name: doc_name
dtype: string
- name: q_uid
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
- name: doc_url
dtype: string
- config_name: nq
features:
- name: doc_name
dtype: string
- name: q_uid
dtype: string
- name: question
dtype: string
- name: short_answer
dtype: string
- name: long_answer
dtype: string
- name: doc_url
dtype: string
- config_name: paper_text
features:
- name: doc_name
dtype: string
- name: q_uid
dtype: string
- name: question
dtype: string
- name: answer_1
dtype: string
- name: answer_2
dtype: string
- name: answer_3
dtype: string
- config_name: paper_tab
features:
- name: doc_name
dtype: string
- name: q_uid
dtype: string
- name: question
dtype: string
- name: answer_1
dtype: string
- name: answer_2
dtype: string
- name: answer_3
dtype: string
- config_name: fin
features:
- name: doc_name
dtype: string
- name: q_uid
dtype: string
- name: question
dtype: string
- name: answer_1
dtype: string
- name: answer_2
dtype: string
# - config_name: tat
# features:
# - name: doc_name
# dtype: string
# - name: q_uid
# dtype: string
# - name: question
# dtype: string
# - name: answer
# - name: answer_scale
# dtype: string
# - name: answer_type
# dtype: string
configs:
- config_name: feta
data_files:
- split: test
path: feta/test*
- config_name: nq
data_files:
- split: test
path: nq/test*
- config_name: paper_text
data_files:
- split: test
path: paper_text/test*
- config_name: paper_tab
data_files:
- split: test
path: paper_tab/test*
- config_name: fin
data_files:
- split: test
path: fin/test*
- config_name: tat
data_files:
- split: test
path: tat/test*
---
# Dataset Card for Dataset Name
UDA is a benchmark suite for Retrieval Augmented Generation (RAG) in real-world document analysis, which involves 2965 documents and 29590 expert-annotated Q&A pairs.
It includes six sub-datasets across three pivotal domains: finance, academia, and knowledge bases.
Each data item within UDA is structured as a triplet: document-question-answer pair.
The documents are retained in their original file formats without parsing or segmentation, to mirror the authenticity of real-world applications.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** Yulong Hui, Tsinghua University
- **Language(s) (NLP):** English
- **License:** CC-BY-SA-4.0
- **Repository:** https://github.com/qinchuanhui/UDA-Benchmark
## Uses
### Direct Use
Question-answering tasks on complete unstructured documents.
After loading the dataset, you should also **download the sourc document files from the folder `src_doc_files`**.
### Extended Use
Evaluate the effectiveness of retrieval strategies using the evidence provided in the `extended_qa_info` folder.
Directly assess the performance of LLMs in numerical reasoning and table reasoning, using the evidence in the `extended_qa_info` folder as context.
Assess the effectiveness of parsing strategies on unstructured PDF documents.
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
Field Name | Field Value | Description| Example
--- | --- | ---|---
doc_name | string | name of the source document | 1912.01214
q_uid | string | unique id of the question | 9a05a5f4351db75da371f7ac12eb0b03607c4b87
question | string | raised question | which datasets did they experiment with?
answer <br />or answer_1, answer_2 <br />or short_answer, long_answer | string | ground truth answer/answers | Europarl, MultiUN
**Additional Notes:** Some sub-datasets may have multiple ground_truth answers, where the answers are organized as `answer_1`, `answer_2` (in fin, paper_tab and paper_text) or `short_answer`, `long_answer` (in nq); In sub-dataset tat, the answer is organized as a sequence, due to the involvement of the multi-span Q&A type.
## Dataset Creation
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
We collect the Q&A labels from the open-released datasets (i.e., source datasets), which are all annotated by human participants.
Then we conduct a series of essential constructing actions, including source-document identification, categorization, filtering, data transformation.
#### Who are the source data producers?
[1]CHEN, Z., CHEN, W., SMILEY, C., SHAH, S., BOROVA, I., LANGDON, D., MOUSSA, R., BEANE, M., HUANG, T.-H., ROUTLEDGE, B., ET AL. Finqa: A dataset of numerical reasoning over financial data. arXiv preprint arXiv:2109.00122 (2021).
[2]ZHU, F., LEI, W., FENG, F., WANG, C., ZHANG, H., AND CHUA, T.-S. Towards complex document understanding by discrete reasoning. In Proceedings of the 30th ACM International Conference on Multimedia (2022), pp. 4857–4866.
[3]DASIGI, P., LO, K., BELTAGY, I., COHAN, A., SMITH, N. A., AND GARDNER, M. A dataset of information-seeking questions and answers anchored in research papers. arXiv preprint arXiv:2105.03011 (2021).
[4]NAN, L., HSIEH, C., MAO, Z., LIN, X. V., VERMA, N., ZHANG, R., KRYS ́ CIN ́ SKI, W., SCHOELKOPF, H., KONG, R., TANG, X., ET AL. Fetaqa: Free-form table question answering. Transactions of the Association for Computational Linguistics 10 (2022), 35–49.
[5]KWIATKOWSKI, T., PALOMAKI, J., REDFIELD, O., COLLINS, M., PARIKH, A., ALBERTI, C., EPSTEIN, D., POLOSUKHIN, I., DEVLIN, J., LEE, K., ET AL. Natural questions: a benchmark for question answering research. Transactions of the Association for Computational Linguistics 7 (2019), 453–466.
## Considerations for Using the Data
#### Personal and Sensitive Information
The dataset doesn't contain data that might be considered personal, sensitive, or private. The source of data are public available reports, papers and wikipedia pages.
<!-- ## Citation [optional] -->
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
<!-- **BibTeX:** -->
## Dataset Card Contact
[email protected]