tacred / tacred.py
ArneBinder's picture
pie-datasets 0.6.0
dd64f89
raw
history blame
6.71 kB
from dataclasses import dataclass, field
from typing import Any, Dict, Optional
import datasets
from pie_modules.document.processing import token_based_document_to_text_based
from pytorch_ie.annotations import BinaryRelation, LabeledSpan
from pytorch_ie.core import Annotation, AnnotationList, annotation_field
from pytorch_ie.documents import (
TextDocumentWithLabeledSpansAndBinaryRelations,
TokenBasedDocument,
)
from pie_datasets import GeneratorBasedBuilder
@dataclass(eq=True, frozen=True)
class TokenRelation(Annotation):
head_idx: int
tail_idx: int
label: str
score: float = field(default=1.0, compare=False)
@dataclass(eq=True, frozen=True)
class TokenAttribute(Annotation):
idx: int
label: str
@dataclass
class TacredDocument(TokenBasedDocument):
stanford_ner: AnnotationList[TokenAttribute] = annotation_field(target="tokens")
stanford_pos: AnnotationList[TokenAttribute] = annotation_field(target="tokens")
entities: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
relations: AnnotationList[BinaryRelation] = annotation_field(target="entities")
dependency_relations: AnnotationList[TokenRelation] = annotation_field(target="tokens")
@dataclass
class SimpleTacredDocument(TokenBasedDocument):
labeled_spans: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
binary_relations: AnnotationList[BinaryRelation] = annotation_field(target="labeled_spans")
def example_to_document(
example: Dict[str, Any],
relation_labels: datasets.ClassLabel,
ner_labels: datasets.ClassLabel,
) -> TacredDocument:
document = TacredDocument(
tokens=tuple(example["token"]), id=example["id"], metadata=dict(doc_id=example["docid"])
)
for idx, (ner, pos) in enumerate(zip(example["stanford_ner"], example["stanford_pos"])):
document.stanford_ner.append(TokenAttribute(idx=idx, label=ner))
document.stanford_pos.append(TokenAttribute(idx=idx, label=pos))
for tail_idx, (deprel_label, head_idx) in enumerate(
zip(example["stanford_deprel"], example["stanford_head"])
):
if head_idx >= 0:
document.dependency_relations.append(
TokenRelation(
head_idx=head_idx,
tail_idx=tail_idx,
label=deprel_label,
)
)
head = LabeledSpan(
start=example["subj_start"],
end=example["subj_end"],
label=ner_labels.int2str(example["subj_type"]),
)
tail = LabeledSpan(
start=example["obj_start"],
end=example["obj_end"],
label=ner_labels.int2str(example["obj_type"]),
)
document.entities.append(head)
document.entities.append(tail)
relation_str = relation_labels.int2str(example["relation"])
relation = BinaryRelation(head=head, tail=tail, label=relation_str)
document.relations.append(relation)
return document
def _entity_to_dict(
entity: LabeledSpan, key_prefix: str = "", labels: Optional[datasets.ClassLabel] = None
) -> Dict[str, Any]:
return {
f"{key_prefix}start": entity.start,
f"{key_prefix}end": entity.end,
f"{key_prefix}type": labels.str2int(entity.label) if labels is not None else entity.label,
}
def document_to_example(
document: TacredDocument,
ner_labels: Optional[datasets.ClassLabel] = None,
relation_labels: Optional[datasets.ClassLabel] = None,
) -> Dict[str, Any]:
token = list(document.tokens)
stanford_ner_dict = {ner.idx: ner.label for ner in document.stanford_ner}
stanford_pos_dict = {pos.idx: pos.label for pos in document.stanford_pos}
stanford_ner = [stanford_ner_dict[idx] for idx in range(len(token))]
stanford_pos = [stanford_pos_dict[idx] for idx in range(len(token))]
stanford_deprel = ["ROOT"] * len(document.tokens)
stanford_head = [-1] * len(document.tokens)
for dep_rel in document.dependency_relations:
stanford_deprel[dep_rel.tail_idx] = dep_rel.label
stanford_head[dep_rel.tail_idx] = dep_rel.head_idx
rel = document.relations[0]
obj: LabeledSpan = rel.tail
subj: LabeledSpan = rel.head
return {
"id": document.id,
"docid": document.metadata["doc_id"],
"relation": rel.label if relation_labels is None else relation_labels.str2int(rel.label),
"token": token,
"stanford_ner": stanford_ner,
"stanford_pos": stanford_pos,
"stanford_deprel": stanford_deprel,
"stanford_head": stanford_head,
**_entity_to_dict(obj, key_prefix="obj_", labels=ner_labels),
**_entity_to_dict(subj, key_prefix="subj_", labels=ner_labels),
}
def convert_to_text_document_with_labeled_spans_and_binary_relations(
document: TacredDocument,
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
doc_simplified = document.as_type(
SimpleTacredDocument,
field_mapping={"entities": "labeled_spans", "relations": "binary_relations"},
)
result = token_based_document_to_text_based(
doc_simplified,
result_document_type=TextDocumentWithLabeledSpansAndBinaryRelations,
join_tokens_with=" ",
)
return result
class TacredConfig(datasets.BuilderConfig):
"""BuilderConfig for Tacred."""
def __init__(self, **kwargs):
"""BuilderConfig for Tacred.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(**kwargs)
class Tacred(GeneratorBasedBuilder):
DOCUMENT_TYPE = TacredDocument
DOCUMENT_CONVERTERS = {
TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations,
}
BASE_DATASET_PATH = "DFKI-SLT/tacred"
BASE_DATASET_REVISION = "c801dc186b40a532c5820b4662570390da90431b"
BUILDER_CONFIGS = [
TacredConfig(
name="original", version=datasets.Version("1.1.0"), description="The original TACRED."
),
TacredConfig(
name="revisited",
version=datasets.Version("1.1.0"),
description="The revised TACRED (corrected labels in dev and test split).",
),
TacredConfig(
name="re-tacred",
version=datasets.Version("1.1.0"),
description="Relabeled TACRED (corrected labels for all splits and pruned)",
),
]
def _generate_document_kwargs(self, dataset):
return {
"ner_labels": dataset.features["subj_type"],
"relation_labels": dataset.features["relation"],
}
def _generate_document(self, example, **kwargs):
return example_to_document(example, **kwargs)