File size: 6,709 Bytes
db9c9bb
cea3572
db9c9bb
 
dd64f89
cea3572
 
 
 
 
 
 
 
db9c9bb
 
 
 
 
 
 
cea3572
db9c9bb
 
 
 
 
 
 
 
 
cea3572
db9c9bb
 
 
 
 
 
 
3ddae0f
 
cea3572
 
3ddae0f
 
db9c9bb
 
cea3572
 
db9c9bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea3572
db9c9bb
 
 
 
cea3572
db9c9bb
 
 
 
cea3572
db9c9bb
 
 
 
 
 
 
cea3572
db9c9bb
 
 
 
cea3572
db9c9bb
 
 
 
 
cea3572
 
db9c9bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea3572
db9c9bb
 
 
 
 
cea3572
 
db9c9bb
 
 
cea3572
3ddae0f
cea3572
 
 
 
 
3ddae0f
 
cea3572
3ddae0f
 
 
 
 
db9c9bb
 
 
 
 
cea3572
db9c9bb
 
 
 
 
 
cea3572
db9c9bb
 
3ddae0f
cea3572
3ddae0f
 
db9c9bb
6fbc12f
db9c9bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea3572
 
db9c9bb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from dataclasses import dataclass, field
from typing import Any, Dict, Optional

import datasets
from pie_modules.document.processing import token_based_document_to_text_based
from pytorch_ie.annotations import BinaryRelation, LabeledSpan
from pytorch_ie.core import Annotation, AnnotationList, annotation_field
from pytorch_ie.documents import (
    TextDocumentWithLabeledSpansAndBinaryRelations,
    TokenBasedDocument,
)

from pie_datasets import GeneratorBasedBuilder


@dataclass(eq=True, frozen=True)
class TokenRelation(Annotation):
    head_idx: int
    tail_idx: int
    label: str
    score: float = field(default=1.0, compare=False)


@dataclass(eq=True, frozen=True)
class TokenAttribute(Annotation):
    idx: int
    label: str


@dataclass
class TacredDocument(TokenBasedDocument):
    stanford_ner: AnnotationList[TokenAttribute] = annotation_field(target="tokens")
    stanford_pos: AnnotationList[TokenAttribute] = annotation_field(target="tokens")
    entities: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
    relations: AnnotationList[BinaryRelation] = annotation_field(target="entities")
    dependency_relations: AnnotationList[TokenRelation] = annotation_field(target="tokens")


@dataclass
class SimpleTacredDocument(TokenBasedDocument):
    labeled_spans: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
    binary_relations: AnnotationList[BinaryRelation] = annotation_field(target="labeled_spans")


def example_to_document(
    example: Dict[str, Any],
    relation_labels: datasets.ClassLabel,
    ner_labels: datasets.ClassLabel,
) -> TacredDocument:
    document = TacredDocument(
        tokens=tuple(example["token"]), id=example["id"], metadata=dict(doc_id=example["docid"])
    )

    for idx, (ner, pos) in enumerate(zip(example["stanford_ner"], example["stanford_pos"])):
        document.stanford_ner.append(TokenAttribute(idx=idx, label=ner))
        document.stanford_pos.append(TokenAttribute(idx=idx, label=pos))

    for tail_idx, (deprel_label, head_idx) in enumerate(
        zip(example["stanford_deprel"], example["stanford_head"])
    ):
        if head_idx >= 0:
            document.dependency_relations.append(
                TokenRelation(
                    head_idx=head_idx,
                    tail_idx=tail_idx,
                    label=deprel_label,
                )
            )

    head = LabeledSpan(
        start=example["subj_start"],
        end=example["subj_end"],
        label=ner_labels.int2str(example["subj_type"]),
    )
    tail = LabeledSpan(
        start=example["obj_start"],
        end=example["obj_end"],
        label=ner_labels.int2str(example["obj_type"]),
    )
    document.entities.append(head)
    document.entities.append(tail)

    relation_str = relation_labels.int2str(example["relation"])
    relation = BinaryRelation(head=head, tail=tail, label=relation_str)
    document.relations.append(relation)

    return document


def _entity_to_dict(
    entity: LabeledSpan, key_prefix: str = "", labels: Optional[datasets.ClassLabel] = None
) -> Dict[str, Any]:
    return {
        f"{key_prefix}start": entity.start,
        f"{key_prefix}end": entity.end,
        f"{key_prefix}type": labels.str2int(entity.label) if labels is not None else entity.label,
    }


def document_to_example(
    document: TacredDocument,
    ner_labels: Optional[datasets.ClassLabel] = None,
    relation_labels: Optional[datasets.ClassLabel] = None,
) -> Dict[str, Any]:
    token = list(document.tokens)
    stanford_ner_dict = {ner.idx: ner.label for ner in document.stanford_ner}
    stanford_pos_dict = {pos.idx: pos.label for pos in document.stanford_pos}
    stanford_ner = [stanford_ner_dict[idx] for idx in range(len(token))]
    stanford_pos = [stanford_pos_dict[idx] for idx in range(len(token))]

    stanford_deprel = ["ROOT"] * len(document.tokens)
    stanford_head = [-1] * len(document.tokens)
    for dep_rel in document.dependency_relations:
        stanford_deprel[dep_rel.tail_idx] = dep_rel.label
        stanford_head[dep_rel.tail_idx] = dep_rel.head_idx

    rel = document.relations[0]
    obj: LabeledSpan = rel.tail
    subj: LabeledSpan = rel.head
    return {
        "id": document.id,
        "docid": document.metadata["doc_id"],
        "relation": rel.label if relation_labels is None else relation_labels.str2int(rel.label),
        "token": token,
        "stanford_ner": stanford_ner,
        "stanford_pos": stanford_pos,
        "stanford_deprel": stanford_deprel,
        "stanford_head": stanford_head,
        **_entity_to_dict(obj, key_prefix="obj_", labels=ner_labels),
        **_entity_to_dict(subj, key_prefix="subj_", labels=ner_labels),
    }


def convert_to_text_document_with_labeled_spans_and_binary_relations(
    document: TacredDocument,
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
    doc_simplified = document.as_type(
        SimpleTacredDocument,
        field_mapping={"entities": "labeled_spans", "relations": "binary_relations"},
    )
    result = token_based_document_to_text_based(
        doc_simplified,
        result_document_type=TextDocumentWithLabeledSpansAndBinaryRelations,
        join_tokens_with=" ",
    )
    return result


class TacredConfig(datasets.BuilderConfig):
    """BuilderConfig for Tacred."""

    def __init__(self, **kwargs):
        """BuilderConfig for Tacred.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(**kwargs)


class Tacred(GeneratorBasedBuilder):
    DOCUMENT_TYPE = TacredDocument

    DOCUMENT_CONVERTERS = {
        TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations,
    }

    BASE_DATASET_PATH = "DFKI-SLT/tacred"
    BASE_DATASET_REVISION = "c801dc186b40a532c5820b4662570390da90431b"

    BUILDER_CONFIGS = [
        TacredConfig(
            name="original", version=datasets.Version("1.1.0"), description="The original TACRED."
        ),
        TacredConfig(
            name="revisited",
            version=datasets.Version("1.1.0"),
            description="The revised TACRED (corrected labels in dev and test split).",
        ),
        TacredConfig(
            name="re-tacred",
            version=datasets.Version("1.1.0"),
            description="Relabeled TACRED (corrected labels for all splits and pruned)",
        ),
    ]

    def _generate_document_kwargs(self, dataset):
        return {
            "ner_labels": dataset.features["subj_type"],
            "relation_labels": dataset.features["relation"],
        }

    def _generate_document(self, example, **kwargs):
        return example_to_document(example, **kwargs)