Datasets:
metadata
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- fa
license:
- cc-by-nc-sa-4.0
multilinguality:
- fa
- en
size_categories:
- 1K<n<10K
source_datasets:
- extended
task_categories:
- translation
task_ids: []
Dataset Card for PersiNLU (Machine Translation)
Table of Contents
- Dataset Card for PersiNLU (Machine Translation)
Dataset Description
- Homepage: Github
- Repository: Github
- Paper: Arxiv
- Leaderboard:
- Point of Contact: [email protected]
Dataset Summary
A Persian translation dataset (English -> Persian).
Supported Tasks and Leaderboards
[More Information Needed]
Languages
The text dataset is in Persian (fa
) and English (en
).
Dataset Structure
Data Instances
Here is an example from the dataset:
{
"source": "how toil to raise funds, propagate reforms, initiate institutions!",
"targets": ["چه زحمتها که بکشد تا منابع مالی را تامین کند اصطلاحات را ترویج کند نهادهایی به راه اندازد."],
"category": "mizan_dev_en_fa"
}
Data Fields
source
: the input sentences, in English.targets
: the list of gold target translations in Persian.category
: the source from which the dataset is mined.
Data Splits
The train/de/test split contains 1,621,666/2,138/48,360 samples.
Dataset Creation
Curation Rationale
For details, check the corresponding draft.
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
CC BY-NC-SA 4.0 License
Citation Information
@article{huggingface:dataset,
title = {ParsiNLU: A Suite of Language Understanding Challenges for Persian},
authors = {Khashabi, Daniel and Cohan, Arman and Shakeri, Siamak and Hosseini, Pedram and Pezeshkpour, Pouya and Alikhani, Malihe and Aminnaseri, Moin and Bitaab, Marzieh and Brahman, Faeze and Ghazarian, Sarik and others},
year={2020}
journal = {arXiv e-prints},
eprint = {2012.06154},
}
Contributions
Thanks to @danyaljj for adding this dataset.