title
stringlengths
5
65
summary
stringlengths
5
98.2k
context
stringlengths
9
121k
path
stringlengths
10
84
pandas.Index.is_all_dates
`pandas.Index.is_all_dates` Whether or not the index values only consist of dates.
Index.is_all_dates[source]# Whether or not the index values only consist of dates.
reference/api/pandas.Index.is_all_dates.html
How to manipulate textual data?
How to manipulate textual data? This tutorial uses the Titanic data set, stored as CSV. The data consists of the following data columns: PassengerId: Id of every passenger. Survived: Indication whether passenger survived. 0 for yes and 1 for no. Pclass: One out of the 3 ticket classes: Class 1, Class 2 and Class 3. Name: Name of passenger. Sex: Gender of passenger. Age: Age of passenger in years. SibSp: Number of siblings or spouses aboard. Parch: Number of parents or children aboard. Ticket: Ticket number of passenger. Fare: Indicating the fare. Cabin: Cabin number of passenger. Embarked: Port of embarkation. This tutorial uses the Titanic data set, stored as CSV. The data consists of the following data columns: PassengerId: Id of every passenger. Survived: Indication whether passenger survived. 0 for yes and 1 for no. Pclass: One out of the 3 ticket classes: Class 1, Class 2 and Class 3.
Data used for this tutorial: Titanic data This tutorial uses the Titanic data set, stored as CSV. The data consists of the following data columns: PassengerId: Id of every passenger. Survived: Indication whether passenger survived. 0 for yes and 1 for no. Pclass: One out of the 3 ticket classes: Class 1, Class 2 and Class 3. Name: Name of passenger. Sex: Gender of passenger. Age: Age of passenger in years. SibSp: Number of siblings or spouses aboard. Parch: Number of parents or children aboard. Ticket: Ticket number of passenger. Fare: Indicating the fare. Cabin: Cabin number of passenger. Embarked: Port of embarkation. To raw data In [2]: titanic = pd.read_csv("data/titanic.csv") In [3]: titanic.head() Out[3]: PassengerId Survived Pclass ... Fare Cabin Embarked 0 1 0 3 ... 7.2500 NaN S 1 2 1 1 ... 71.2833 C85 C 2 3 1 3 ... 7.9250 NaN S 3 4 1 1 ... 53.1000 C123 S 4 5 0 3 ... 8.0500 NaN S [5 rows x 12 columns] How to manipulate textual data?# Make all name characters lowercase. In [4]: titanic["Name"].str.lower() Out[4]: 0 braund, mr. owen harris 1 cumings, mrs. john bradley (florence briggs th... 2 heikkinen, miss. laina 3 futrelle, mrs. jacques heath (lily may peel) 4 allen, mr. william henry ... 886 montvila, rev. juozas 887 graham, miss. margaret edith 888 johnston, miss. catherine helen "carrie" 889 behr, mr. karl howell 890 dooley, mr. patrick Name: Name, Length: 891, dtype: object To make each of the strings in the Name column lowercase, select the Name column (see the tutorial on selection of data), add the str accessor and apply the lower method. As such, each of the strings is converted element-wise. Similar to datetime objects in the time series tutorial having a dt accessor, a number of specialized string methods are available when using the str accessor. These methods have in general matching names with the equivalent built-in string methods for single elements, but are applied element-wise (remember element-wise calculations?) on each of the values of the columns. Create a new column Surname that contains the surname of the passengers by extracting the part before the comma. In [5]: titanic["Name"].str.split(",") Out[5]: 0 [Braund, Mr. Owen Harris] 1 [Cumings, Mrs. John Bradley (Florence Briggs ... 2 [Heikkinen, Miss. Laina] 3 [Futrelle, Mrs. Jacques Heath (Lily May Peel)] 4 [Allen, Mr. William Henry] ... 886 [Montvila, Rev. Juozas] 887 [Graham, Miss. Margaret Edith] 888 [Johnston, Miss. Catherine Helen "Carrie"] 889 [Behr, Mr. Karl Howell] 890 [Dooley, Mr. Patrick] Name: Name, Length: 891, dtype: object Using the Series.str.split() method, each of the values is returned as a list of 2 elements. The first element is the part before the comma and the second element is the part after the comma. In [6]: titanic["Surname"] = titanic["Name"].str.split(",").str.get(0) In [7]: titanic["Surname"] Out[7]: 0 Braund 1 Cumings 2 Heikkinen 3 Futrelle 4 Allen ... 886 Montvila 887 Graham 888 Johnston 889 Behr 890 Dooley Name: Surname, Length: 891, dtype: object As we are only interested in the first part representing the surname (element 0), we can again use the str accessor and apply Series.str.get() to extract the relevant part. Indeed, these string functions can be concatenated to combine multiple functions at once! To user guideMore information on extracting parts of strings is available in the user guide section on splitting and replacing strings. Extract the passenger data about the countesses on board of the Titanic. In [8]: titanic["Name"].str.contains("Countess") Out[8]: 0 False 1 False 2 False 3 False 4 False ... 886 False 887 False 888 False 889 False 890 False Name: Name, Length: 891, dtype: bool In [9]: titanic[titanic["Name"].str.contains("Countess")] Out[9]: PassengerId Survived Pclass ... Cabin Embarked Surname 759 760 1 1 ... B77 S Rothes [1 rows x 13 columns] (Interested in her story? See Wikipedia!) The string method Series.str.contains() checks for each of the values in the column Name if the string contains the word Countess and returns for each of the values True (Countess is part of the name) or False (Countess is not part of the name). This output can be used to subselect the data using conditional (boolean) indexing introduced in the subsetting of data tutorial. As there was only one countess on the Titanic, we get one row as a result. Note More powerful extractions on strings are supported, as the Series.str.contains() and Series.str.extract() methods accept regular expressions, but out of scope of this tutorial. To user guideMore information on extracting parts of strings is available in the user guide section on string matching and extracting. Which passenger of the Titanic has the longest name? In [10]: titanic["Name"].str.len() Out[10]: 0 23 1 51 2 22 3 44 4 24 .. 886 21 887 28 888 40 889 21 890 19 Name: Name, Length: 891, dtype: int64 To get the longest name we first have to get the lengths of each of the names in the Name column. By using pandas string methods, the Series.str.len() function is applied to each of the names individually (element-wise). In [11]: titanic["Name"].str.len().idxmax() Out[11]: 307 Next, we need to get the corresponding location, preferably the index label, in the table for which the name length is the largest. The idxmax() method does exactly that. It is not a string method and is applied to integers, so no str is used. In [12]: titanic.loc[titanic["Name"].str.len().idxmax(), "Name"] Out[12]: 'Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)' Based on the index name of the row (307) and the column (Name), we can do a selection using the loc operator, introduced in the tutorial on subsetting. In the “Sex” column, replace values of “male” by “M” and values of “female” by “F”. In [13]: titanic["Sex_short"] = titanic["Sex"].replace({"male": "M", "female": "F"}) In [14]: titanic["Sex_short"] Out[14]: 0 M 1 F 2 F 3 F 4 M .. 886 M 887 F 888 F 889 M 890 M Name: Sex_short, Length: 891, dtype: object Whereas replace() is not a string method, it provides a convenient way to use mappings or vocabularies to translate certain values. It requires a dictionary to define the mapping {from : to}. Warning There is also a replace() method available to replace a specific set of characters. However, when having a mapping of multiple values, this would become: titanic["Sex_short"] = titanic["Sex"].str.replace("female", "F") titanic["Sex_short"] = titanic["Sex_short"].str.replace("male", "M") This would become cumbersome and easily lead to mistakes. Just think (or try out yourself) what would happen if those two statements are applied in the opposite order… REMEMBER String methods are available using the str accessor. String methods work element-wise and can be used for conditional indexing. The replace method is a convenient method to convert values according to a given dictionary. To user guideA full overview is provided in the user guide pages on working with text data.
getting_started/intro_tutorials/10_text_data.html
pandas.Index.putmask
`pandas.Index.putmask` Return a new Index of the values set with the mask.
final Index.putmask(mask, value)[source]# Return a new Index of the values set with the mask. Returns Index See also numpy.ndarray.putmaskChanges elements of an array based on conditional and input values.
reference/api/pandas.Index.putmask.html
pandas.Index.T
`pandas.Index.T` Return the transpose, which is by definition self.
property Index.T[source]# Return the transpose, which is by definition self.
reference/api/pandas.Index.T.html
pandas.tseries.offsets.Hour.normalize
pandas.tseries.offsets.Hour.normalize
Hour.normalize#
reference/api/pandas.tseries.offsets.Hour.normalize.html
pandas.Series.dt.components
`pandas.Series.dt.components` Return a Dataframe of the components of the Timedeltas. Examples ``` >>> s = pd.Series(pd.to_timedelta(np.arange(5), unit='s')) >>> s 0 0 days 00:00:00 1 0 days 00:00:01 2 0 days 00:00:02 3 0 days 00:00:03 4 0 days 00:00:04 dtype: timedelta64[ns] >>> s.dt.components days hours minutes seconds milliseconds microseconds nanoseconds 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 3 0 0 0 3 0 0 0 4 0 0 0 4 0 0 0 ```
Series.dt.components[source]# Return a Dataframe of the components of the Timedeltas. Returns DataFrame Examples >>> s = pd.Series(pd.to_timedelta(np.arange(5), unit='s')) >>> s 0 0 days 00:00:00 1 0 days 00:00:01 2 0 days 00:00:02 3 0 days 00:00:03 4 0 days 00:00:04 dtype: timedelta64[ns] >>> s.dt.components days hours minutes seconds milliseconds microseconds nanoseconds 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 3 0 0 0 3 0 0 0 4 0 0 0 4 0 0 0
reference/api/pandas.Series.dt.components.html
pandas.core.resample.Resampler.first
`pandas.core.resample.Resampler.first` Compute the first non-null entry of each column. ``` >>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[None, 5, 6], C=[1, 2, 3], ... D=['3/11/2000', '3/12/2000', '3/13/2000'])) >>> df['D'] = pd.to_datetime(df['D']) >>> df.groupby("A").first() B C D A 1 5.0 1 2000-03-11 3 6.0 3 2000-03-13 >>> df.groupby("A").first(min_count=2) B C D A 1 NaN 1.0 2000-03-11 3 NaN NaN NaT >>> df.groupby("A").first(numeric_only=True) B C A 1 5.0 1 3 6.0 3 ```
Resampler.first(numeric_only=_NoDefault.no_default, min_count=0, *args, **kwargs)[source]# Compute the first non-null entry of each column. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. min_countint, default -1The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA. Returns Series or DataFrameFirst non-null of values within each group. See also DataFrame.groupbyApply a function groupby to each row or column of a DataFrame. DataFrame.core.groupby.GroupBy.lastCompute the last non-null entry of each column. DataFrame.core.groupby.GroupBy.nthTake the nth row from each group. Examples >>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[None, 5, 6], C=[1, 2, 3], ... D=['3/11/2000', '3/12/2000', '3/13/2000'])) >>> df['D'] = pd.to_datetime(df['D']) >>> df.groupby("A").first() B C D A 1 5.0 1 2000-03-11 3 6.0 3 2000-03-13 >>> df.groupby("A").first(min_count=2) B C D A 1 NaN 1.0 2000-03-11 3 NaN NaN NaT >>> df.groupby("A").first(numeric_only=True) B C A 1 5.0 1 3 6.0 3
reference/api/pandas.core.resample.Resampler.first.html
pandas.DatetimeIndex.to_series
`pandas.DatetimeIndex.to_series` Create a Series with both index and values equal to the index keys.
DatetimeIndex.to_series(keep_tz=_NoDefault.no_default, index=None, name=None)[source]# Create a Series with both index and values equal to the index keys. Useful with map for returning an indexer based on an index. Parameters keep_tzoptional, defaults TrueReturn the data keeping the timezone. If keep_tz is True: If the timezone is not set, the resulting Series will have a datetime64[ns] dtype. Otherwise the Series will have an datetime64[ns, tz] dtype; the tz will be preserved. If keep_tz is False: Series will have a datetime64[ns] dtype. TZ aware objects will have the tz removed. Changed in version 1.0.0: The default value is now True. In a future version, this keyword will be removed entirely. Stop passing the argument to obtain the future behavior and silence the warning. indexIndex, optionalIndex of resulting Series. If None, defaults to original index. namestr, optionalName of resulting Series. If None, defaults to name of original index. Returns Series
reference/api/pandas.DatetimeIndex.to_series.html
pandas.Series.divmod
`pandas.Series.divmod` Return Integer division and modulo of series and other, element-wise (binary operator divmod). ``` >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divmod(b, fill_value=0) (a 1.0 b NaN c NaN d 0.0 e NaN dtype: float64, a 0.0 b NaN c NaN d 0.0 e NaN dtype: float64) ```
Series.divmod(other, level=None, fill_value=None, axis=0)[source]# Return Integer division and modulo of series and other, element-wise (binary operator divmod). Equivalent to divmod(series, other), but with support to substitute a fill_value for missing data in either one of the inputs. Parameters otherSeries or scalar value levelint or nameBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valueNone or float value, default None (NaN)Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. Returns 2-Tuple of SeriesThe result of the operation. See also Series.rdivmodReverse of the Integer division and modulo operator, see Python documentation for more details. Examples >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divmod(b, fill_value=0) (a 1.0 b NaN c NaN d 0.0 e NaN dtype: float64, a 0.0 b NaN c NaN d 0.0 e NaN dtype: float64)
reference/api/pandas.Series.divmod.html
pandas.api.indexers.BaseIndexer.get_window_bounds
`pandas.api.indexers.BaseIndexer.get_window_bounds` Computes the bounds of a window. number of values that will be aggregated over
BaseIndexer.get_window_bounds(num_values=0, min_periods=None, center=None, closed=None, step=None)[source]# Computes the bounds of a window. Parameters num_valuesint, default 0number of values that will be aggregated over window_sizeint, default 0the number of rows in a window min_periodsint, default Nonemin_periods passed from the top level rolling API centerbool, default Nonecenter passed from the top level rolling API closedstr, default Noneclosed passed from the top level rolling API stepint, default Nonestep passed from the top level rolling API .. versionadded:: 1.5 win_typestr, default Nonewin_type passed from the top level rolling API Returns A tuple of ndarray[int64]s, indicating the boundaries of each window
reference/api/pandas.api.indexers.BaseIndexer.get_window_bounds.html
pandas.Series.rename
`pandas.Series.rename` Alter Series index labels or name. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. ``` >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 ```
Series.rename(index=None, *, axis=None, copy=True, inplace=False, level=None, errors='ignore')[source]# Alter Series index labels or name. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. Alternatively, change Series.name with a scalar value. See the user guide for more. Parameters indexscalar, hashable sequence, dict-like or function optionalFunctions or dict-like are transformations to apply to the index. Scalar or hashable sequence-like will alter the Series.name attribute. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. copybool, default TrueAlso copy underlying data. inplacebool, default FalseWhether to return a new Series. If True the value of copy is ignored. levelint or level name, default NoneIn case of MultiIndex, only rename labels in the specified level. errors{‘ignore’, ‘raise’}, default ‘ignore’If ‘raise’, raise KeyError when a dict-like mapper or index contains labels that are not present in the index being transformed. If ‘ignore’, existing keys will be renamed and extra keys will be ignored. Returns Series or NoneSeries with index labels or name altered or None if inplace=True. See also DataFrame.renameCorresponding DataFrame method. Series.rename_axisSet the name of the axis. Examples >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64
reference/api/pandas.Series.rename.html
pandas.Timestamp.isoweekday
`pandas.Timestamp.isoweekday` Return the day of the week represented by the date. Monday == 1 … Sunday == 7.
Timestamp.isoweekday()# Return the day of the week represented by the date. Monday == 1 … Sunday == 7.
reference/api/pandas.Timestamp.isoweekday.html
pandas.tseries.offsets.BusinessMonthEnd.copy
`pandas.tseries.offsets.BusinessMonthEnd.copy` Return a copy of the frequency. Examples ``` >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False ```
BusinessMonthEnd.copy()# Return a copy of the frequency. Examples >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False
reference/api/pandas.tseries.offsets.BusinessMonthEnd.copy.html
API reference
API reference
This page gives an overview of all public pandas objects, functions and methods. All classes and functions exposed in pandas.* namespace are public. Some subpackages are public which include pandas.errors, pandas.plotting, and pandas.testing. Public functions in pandas.io and pandas.tseries submodules are mentioned in the documentation. pandas.api.types subpackage holds some public functions related to data types in pandas. Warning The pandas.core, pandas.compat, and pandas.util top-level modules are PRIVATE. Stable functionality in such modules is not guaranteed. Input/output Pickling Flat file Clipboard Excel JSON HTML XML Latex HDFStore: PyTables (HDF5) Feather Parquet ORC SAS SPSS SQL Google BigQuery STATA General functions Data manipulations Top-level missing data Top-level dealing with numeric data Top-level dealing with datetimelike data Top-level dealing with Interval data Top-level evaluation Hashing Importing from other DataFrame libraries Series Constructor Attributes Conversion Indexing, iteration Binary operator functions Function application, GroupBy & window Computations / descriptive stats Reindexing / selection / label manipulation Missing data handling Reshaping, sorting Combining / comparing / joining / merging Time Series-related Accessors Plotting Serialization / IO / conversion DataFrame Constructor Attributes and underlying data Conversion Indexing, iteration Binary operator functions Function application, GroupBy & window Computations / descriptive stats Reindexing / selection / label manipulation Missing data handling Reshaping, sorting, transposing Combining / comparing / joining / merging Time Series-related Flags Metadata Plotting Sparse accessor Serialization / IO / conversion pandas arrays, scalars, and data types Objects Utilities Index objects Index Numeric Index CategoricalIndex IntervalIndex MultiIndex DatetimeIndex TimedeltaIndex PeriodIndex Date offsets DateOffset BusinessDay BusinessHour CustomBusinessDay CustomBusinessHour MonthEnd MonthBegin BusinessMonthEnd BusinessMonthBegin CustomBusinessMonthEnd CustomBusinessMonthBegin SemiMonthEnd SemiMonthBegin Week WeekOfMonth LastWeekOfMonth BQuarterEnd BQuarterBegin QuarterEnd QuarterBegin BYearEnd BYearBegin YearEnd YearBegin FY5253 FY5253Quarter Easter Tick Day Hour Minute Second Milli Micro Nano Frequencies pandas.tseries.frequencies.to_offset Window Rolling window functions Weighted window functions Expanding window functions Exponentially-weighted window functions Window indexer GroupBy Indexing, iteration Function application Computations / descriptive stats Resampling Indexing, iteration Function application Upsampling Computations / descriptive stats Style Styler constructor Styler properties Style application Builtin styles Style export and import Plotting pandas.plotting.andrews_curves pandas.plotting.autocorrelation_plot pandas.plotting.bootstrap_plot pandas.plotting.boxplot pandas.plotting.deregister_matplotlib_converters pandas.plotting.lag_plot pandas.plotting.parallel_coordinates pandas.plotting.plot_params pandas.plotting.radviz pandas.plotting.register_matplotlib_converters pandas.plotting.scatter_matrix pandas.plotting.table Options and settings Working with options Extensions pandas.api.extensions.register_extension_dtype pandas.api.extensions.register_dataframe_accessor pandas.api.extensions.register_series_accessor pandas.api.extensions.register_index_accessor pandas.api.extensions.ExtensionDtype pandas.api.extensions.ExtensionArray pandas.arrays.PandasArray pandas.api.indexers.check_array_indexer Testing Assertion functions Exceptions and warnings Bug report function Test suite runner
reference/index.html
pandas.tseries.offsets.YearEnd.rollforward
`pandas.tseries.offsets.YearEnd.rollforward` Roll provided date forward to next offset only if not on offset.
YearEnd.rollforward()# Roll provided date forward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.YearEnd.rollforward.html
pandas.core.resample.Resampler.quantile
`pandas.core.resample.Resampler.quantile` Return value at the given quantile.
Resampler.quantile(q=0.5, **kwargs)[source]# Return value at the given quantile. Parameters qfloat or array-like, default 0.5 (50% quantile) Returns DataFrame or SeriesQuantile of values within each group. See also Series.quantileReturn a series, where the index is q and the values are the quantiles. DataFrame.quantileReturn a DataFrame, where the columns are the columns of self, and the values are the quantiles. DataFrameGroupBy.quantileReturn a DataFrame, where the coulmns are groupby columns, and the values are its quantiles.
reference/api/pandas.core.resample.Resampler.quantile.html
pandas.testing.assert_frame_equal
`pandas.testing.assert_frame_equal` Check that left and right DataFrame are equal. ``` >>> from pandas.testing import assert_frame_equal >>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) >>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]}) ```
pandas.testing.assert_frame_equal(left, right, check_dtype=True, check_index_type='equiv', check_column_type='equiv', check_frame_type=True, check_less_precise=_NoDefault.no_default, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_like=False, check_freq=True, check_flags=True, rtol=1e-05, atol=1e-08, obj='DataFrame')[source]# Check that left and right DataFrame are equal. This function is intended to compare two DataFrames and output any differences. It is mostly intended for use in unit tests. Additional parameters allow varying the strictness of the equality checks performed. Parameters leftDataFrameFirst DataFrame to compare. rightDataFrameSecond DataFrame to compare. check_dtypebool, default TrueWhether to check the DataFrame dtype is identical. check_index_typebool or {‘equiv’}, default ‘equiv’Whether to check the Index class, dtype and inferred_type are identical. check_column_typebool or {‘equiv’}, default ‘equiv’Whether to check the columns class, dtype and inferred_type are identical. Is passed as the exact argument of assert_index_equal(). check_frame_typebool, default TrueWhether to check the DataFrame class is identical. check_less_precisebool or int, default FalseSpecify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the ratio of the second number to the first number and check whether it is equivalent to 1 within the specified precision. Deprecated since version 1.1.0: Use rtol and atol instead to define relative/absolute tolerance, respectively. Similar to math.isclose(). check_namesbool, default TrueWhether to check that the names attribute for both the index and column attributes of the DataFrame is identical. by_blocksbool, default FalseSpecify how to compare internal data. If False, compare by columns. If True, compare by blocks. check_exactbool, default FalseWhether to compare number exactly. check_datetimelike_compatbool, default FalseCompare datetime-like which is comparable ignoring dtype. check_categoricalbool, default TrueWhether to compare internal Categorical exactly. check_likebool, default FalseIf True, ignore the order of index & columns. Note: index labels must match their respective rows (same as in columns) - same labels must be with the same data. check_freqbool, default TrueWhether to check the freq attribute on a DatetimeIndex or TimedeltaIndex. New in version 1.1.0. check_flagsbool, default TrueWhether to check the flags attribute. rtolfloat, default 1e-5Relative tolerance. Only used when check_exact is False. New in version 1.1.0. atolfloat, default 1e-8Absolute tolerance. Only used when check_exact is False. New in version 1.1.0. objstr, default ‘DataFrame’Specify object name being compared, internally used to show appropriate assertion message. See also assert_series_equalEquivalent method for asserting Series equality. DataFrame.equalsCheck DataFrame equality. Examples This example shows comparing two DataFrames that are equal but with columns of differing dtypes. >>> from pandas.testing import assert_frame_equal >>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) >>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]}) df1 equals itself. >>> assert_frame_equal(df1, df1) df1 differs from df2 as column ‘b’ is of a different type. >>> assert_frame_equal(df1, df2) Traceback (most recent call last): ... AssertionError: Attributes of DataFrame.iloc[:, 1] (column name="b") are different Attribute “dtype” are different [left]: int64 [right]: float64 Ignore differing dtypes in columns with check_dtype. >>> assert_frame_equal(df1, df2, check_dtype=False)
reference/api/pandas.testing.assert_frame_equal.html
pandas.tseries.offsets.YearEnd.n
pandas.tseries.offsets.YearEnd.n
YearEnd.n#
reference/api/pandas.tseries.offsets.YearEnd.n.html
pandas.UInt32Dtype
`pandas.UInt32Dtype` An ExtensionDtype for uint32 integer data.
class pandas.UInt32Dtype[source]# An ExtensionDtype for uint32 integer data. Changed in version 1.0.0: Now uses pandas.NA as its missing value, rather than numpy.nan. Attributes None Methods None
reference/api/pandas.UInt32Dtype.html
pandas ecosystem
pandas ecosystem
Increasingly, packages are being built on top of pandas to address specific needs in data preparation, analysis and visualization. This is encouraging because it means pandas is not only helping users to handle their data tasks but also that it provides a better starting point for developers to build powerful and more focused data tools. The creation of libraries that complement pandas’ functionality also allows pandas development to remain focused around it’s original requirements. This is an inexhaustive list of projects that build on pandas in order to provide tools in the PyData space. For a list of projects that depend on pandas, see the Github network dependents for pandas or search pypi for pandas. We’d like to make it easier for users to find these projects, if you know of other substantial projects that you feel should be on this list, please let us know. Data cleaning and validation# Pyjanitor# Pyjanitor provides a clean API for cleaning data, using method chaining. Pandera# Pandera provides a flexible and expressive API for performing data validation on dataframes to make data processing pipelines more readable and robust. Dataframes contain information that pandera explicitly validates at runtime. This is useful in production-critical data pipelines or reproducible research settings. pandas-path# Since Python 3.4, pathlib has been included in the Python standard library. Path objects provide a simple and delightful way to interact with the file system. The pandas-path package enables the Path API for pandas through a custom accessor .path. Getting just the filenames from a series of full file paths is as simple as my_files.path.name. Other convenient operations like joining paths, replacing file extensions, and checking if files exist are also available. Statistics and machine learning# pandas-tfrecords# Easy saving pandas dataframe to tensorflow tfrecords format and reading tfrecords to pandas. Statsmodels# Statsmodels is the prominent Python “statistics and econometrics library” and it has a long-standing special relationship with pandas. Statsmodels provides powerful statistics, econometrics, analysis and modeling functionality that is out of pandas’ scope. Statsmodels leverages pandas objects as the underlying data container for computation. sklearn-pandas# Use pandas DataFrames in your scikit-learn ML pipeline. Featuretools# Featuretools is a Python library for automated feature engineering built on top of pandas. It excels at transforming temporal and relational datasets into feature matrices for machine learning using reusable feature engineering “primitives”. Users can contribute their own primitives in Python and share them with the rest of the community. Compose# Compose is a machine learning tool for labeling data and prediction engineering. It allows you to structure the labeling process by parameterizing prediction problems and transforming time-driven relational data into target values with cutoff times that can be used for supervised learning. STUMPY# STUMPY is a powerful and scalable Python library for modern time series analysis. At its core, STUMPY efficiently computes something called a matrix profile, which can be used for a wide variety of time series data mining tasks. Visualization# Pandas has its own Styler class for table visualization, and while pandas also has built-in support for data visualization through charts with matplotlib, there are a number of other pandas-compatible libraries. Altair# Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understanding your data and its meaning. Altair’s API is simple, friendly and consistent and built on top of the powerful Vega-Lite JSON specification. This elegant simplicity produces beautiful and effective visualizations with a minimal amount of code. Altair works with pandas DataFrames. Bokeh# Bokeh is a Python interactive visualization library for large datasets that natively uses the latest web technologies. Its goal is to provide elegant, concise construction of novel graphics in the style of Protovis/D3, while delivering high-performance interactivity over large data to thin clients. Pandas-Bokeh provides a high level API for Bokeh that can be loaded as a native pandas plotting backend via pd.set_option("plotting.backend", "pandas_bokeh") It is very similar to the matplotlib plotting backend, but provides interactive web-based charts and maps. Seaborn# Seaborn is a Python visualization library based on matplotlib. It provides a high-level, dataset-oriented interface for creating attractive statistical graphics. The plotting functions in seaborn understand pandas objects and leverage pandas grouping operations internally to support concise specification of complex visualizations. Seaborn also goes beyond matplotlib and pandas with the option to perform statistical estimation while plotting, aggregating across observations and visualizing the fit of statistical models to emphasize patterns in a dataset. plotnine# Hadley Wickham’s ggplot2 is a foundational exploratory visualization package for the R language. Based on “The Grammar of Graphics” it provides a powerful, declarative and extremely general way to generate bespoke plots of any kind of data. Various implementations to other languages are available. A good implementation for Python users is has2k1/plotnine. IPython vega# IPython Vega leverages Vega to create plots within Jupyter Notebook. Plotly# Plotly’s Python API enables interactive figures and web shareability. Maps, 2D, 3D, and live-streaming graphs are rendered with WebGL and D3.js. The library supports plotting directly from a pandas DataFrame and cloud-based collaboration. Users of matplotlib, ggplot for Python, and Seaborn can convert figures into interactive web-based plots. Plots can be drawn in IPython Notebooks , edited with R or MATLAB, modified in a GUI, or embedded in apps and dashboards. Plotly is free for unlimited sharing, and has offline, or on-premise accounts for private use. Lux# Lux is a Python library that facilitates fast and easy experimentation with data by automating the visual data exploration process. To use Lux, simply add an extra import alongside pandas: import lux import pandas as pd df = pd.read_csv("data.csv") df # discover interesting insights! By printing out a dataframe, Lux automatically recommends a set of visualizations that highlights interesting trends and patterns in the dataframe. Users can leverage any existing pandas commands without modifying their code, while being able to visualize their pandas data structures (e.g., DataFrame, Series, Index) at the same time. Lux also offers a powerful, intuitive language that allow users to create Altair, matplotlib, or Vega-Lite visualizations without having to think at the level of code. Qtpandas# Spun off from the main pandas library, the qtpandas library enables DataFrame visualization and manipulation in PyQt4 and PySide applications. D-Tale# D-Tale is a lightweight web client for visualizing pandas data structures. It provides a rich spreadsheet-style grid which acts as a wrapper for a lot of pandas functionality (query, sort, describe, corr…) so users can quickly manipulate their data. There is also an interactive chart-builder using Plotly Dash allowing users to build nice portable visualizations. D-Tale can be invoked with the following command import dtale dtale.show(df) D-Tale integrates seamlessly with Jupyter notebooks, Python terminals, Kaggle & Google Colab. Here are some demos of the grid. hvplot# hvPlot is a high-level plotting API for the PyData ecosystem built on HoloViews. It can be loaded as a native pandas plotting backend via pd.set_option("plotting.backend", "hvplot") IDE# IPython# IPython is an interactive command shell and distributed computing environment. IPython tab completion works with pandas methods and also attributes like DataFrame columns. Jupyter Notebook / Jupyter Lab# Jupyter Notebook is a web application for creating Jupyter notebooks. A Jupyter notebook is a JSON document containing an ordered list of input/output cells which can contain code, text, mathematics, plots and rich media. Jupyter notebooks can be converted to a number of open standard output formats (HTML, HTML presentation slides, LaTeX, PDF, ReStructuredText, Markdown, Python) through ‘Download As’ in the web interface and jupyter convert in a shell. pandas DataFrames implement _repr_html_ and _repr_latex methods which are utilized by Jupyter Notebook for displaying (abbreviated) HTML or LaTeX tables. LaTeX output is properly escaped. (Note: HTML tables may or may not be compatible with non-HTML Jupyter output formats.) See Options and Settings and Available Options for pandas display. settings. Quantopian/qgrid# qgrid is “an interactive grid for sorting and filtering DataFrames in IPython Notebook” built with SlickGrid. Spyder# Spyder is a cross-platform PyQt-based IDE combining the editing, analysis, debugging and profiling functionality of a software development tool with the data exploration, interactive execution, deep inspection and rich visualization capabilities of a scientific environment like MATLAB or Rstudio. Its Variable Explorer allows users to view, manipulate and edit pandas Index, Series, and DataFrame objects like a “spreadsheet”, including copying and modifying values, sorting, displaying a “heatmap”, converting data types and more. pandas objects can also be renamed, duplicated, new columns added, copied/pasted to/from the clipboard (as TSV), and saved/loaded to/from a file. Spyder can also import data from a variety of plain text and binary files or the clipboard into a new pandas DataFrame via a sophisticated import wizard. Most pandas classes, methods and data attributes can be autocompleted in Spyder’s Editor and IPython Console, and Spyder’s Help pane can retrieve and render Numpydoc documentation on pandas objects in rich text with Sphinx both automatically and on-demand. API# pandas-datareader# pandas-datareader is a remote data access library for pandas (PyPI:pandas-datareader). It is based on functionality that was located in pandas.io.data and pandas.io.wb but was split off in v0.19. See more in the pandas-datareader docs: The following data feeds are available: Google Finance Tiingo Morningstar IEX Robinhood Enigma Quandl FRED Fama/French World Bank OECD Eurostat TSP Fund Data Nasdaq Trader Symbol Definitions Stooq Index Data MOEX Data Quandl/Python# Quandl API for Python wraps the Quandl REST API to return pandas DataFrames with timeseries indexes. Pydatastream# PyDatastream is a Python interface to the Refinitiv Datastream (DWS) REST API to return indexed pandas DataFrames with financial data. This package requires valid credentials for this API (non free). pandaSDMX# pandaSDMX is a library to retrieve and acquire statistical data and metadata disseminated in SDMX 2.1, an ISO-standard widely used by institutions such as statistics offices, central banks, and international organisations. pandaSDMX can expose datasets and related structural metadata including data flows, code-lists, and data structure definitions as pandas Series or MultiIndexed DataFrames. fredapi# fredapi is a Python interface to the Federal Reserve Economic Data (FRED) provided by the Federal Reserve Bank of St. Louis. It works with both the FRED database and ALFRED database that contains point-in-time data (i.e. historic data revisions). fredapi provides a wrapper in Python to the FRED HTTP API, and also provides several convenient methods for parsing and analyzing point-in-time data from ALFRED. fredapi makes use of pandas and returns data in a Series or DataFrame. This module requires a FRED API key that you can obtain for free on the FRED website. dataframe_sql# dataframe_sql is a Python package that translates SQL syntax directly into operations on pandas DataFrames. This is useful when migrating from a database to using pandas or for users more comfortable with SQL looking for a way to interface with pandas. Domain specific# Geopandas# Geopandas extends pandas data objects to include geographic information which support geometric operations. If your work entails maps and geographical coordinates, and you love pandas, you should take a close look at Geopandas. staircase# staircase is a data analysis package, built upon pandas and numpy, for modelling and manipulation of mathematical step functions. It provides a rich variety of arithmetic operations, relational operations, logical operations, statistical operations and aggregations for step functions defined over real numbers, datetime and timedelta domains. xarray# xarray brings the labeled data power of pandas to the physical sciences by providing N-dimensional variants of the core pandas data structures. It aims to provide a pandas-like and pandas-compatible toolkit for analytics on multi- dimensional arrays, rather than the tabular data for which pandas excels. IO# BCPandas# BCPandas provides high performance writes from pandas to Microsoft SQL Server, far exceeding the performance of the native df.to_sql method. Internally, it uses Microsoft’s BCP utility, but the complexity is fully abstracted away from the end user. Rigorously tested, it is a complete replacement for df.to_sql. Deltalake# Deltalake python package lets you access tables stored in Delta Lake natively in Python without the need to use Spark or JVM. It provides the delta_table.to_pyarrow_table().to_pandas() method to convert any Delta table into Pandas dataframe. Out-of-core# Blaze# Blaze provides a standard API for doing computations with various in-memory and on-disk backends: NumPy, pandas, SQLAlchemy, MongoDB, PyTables, PySpark. Cylon# Cylon is a fast, scalable, distributed memory parallel runtime with a pandas like Python DataFrame API. ”Core Cylon” is implemented with C++ using Apache Arrow format to represent the data in-memory. Cylon DataFrame API implements most of the core operators of pandas such as merge, filter, join, concat, group-by, drop_duplicates, etc. These operators are designed to work across thousands of cores to scale applications. It can interoperate with pandas DataFrame by reading data from pandas or converting data to pandas so users can selectively scale parts of their pandas DataFrame applications. from pycylon import read_csv, DataFrame, CylonEnv from pycylon.net import MPIConfig # Initialize Cylon distributed environment config: MPIConfig = MPIConfig() env: CylonEnv = CylonEnv(config=config, distributed=True) df1: DataFrame = read_csv('/tmp/csv1.csv') df2: DataFrame = read_csv('/tmp/csv2.csv') # Using 1000s of cores across the cluster to compute the join df3: Table = df1.join(other=df2, on=[0], algorithm="hash", env=env) print(df3) Dask# Dask is a flexible parallel computing library for analytics. Dask provides a familiar DataFrame interface for out-of-core, parallel and distributed computing. Dask-ML# Dask-ML enables parallel and distributed machine learning using Dask alongside existing machine learning libraries like Scikit-Learn, XGBoost, and TensorFlow. Ibis# Ibis offers a standard way to write analytics code, that can be run in multiple engines. It helps in bridging the gap between local Python environments (like pandas) and remote storage and execution systems like Hadoop components (like HDFS, Impala, Hive, Spark) and SQL databases (Postgres, etc.). Koalas# Koalas provides a familiar pandas DataFrame interface on top of Apache Spark. It enables users to leverage multi-cores on one machine or a cluster of machines to speed up or scale their DataFrame code. Modin# The modin.pandas DataFrame is a parallel and distributed drop-in replacement for pandas. This means that you can use Modin with existing pandas code or write new code with the existing pandas API. Modin can leverage your entire machine or cluster to speed up and scale your pandas workloads, including traditionally time-consuming tasks like ingesting data (read_csv, read_excel, read_parquet, etc.). # import pandas as pd import modin.pandas as pd df = pd.read_csv("big.csv") # use all your cores! Odo# Odo provides a uniform API for moving data between different formats. It uses pandas own read_csv for CSV IO and leverages many existing packages such as PyTables, h5py, and pymongo to move data between non pandas formats. Its graph based approach is also extensible by end users for custom formats that may be too specific for the core of odo. Pandarallel# Pandarallel provides a simple way to parallelize your pandas operations on all your CPUs by changing only one line of code. If also displays progress bars. from pandarallel import pandarallel pandarallel.initialize(progress_bar=True) # df.apply(func) df.parallel_apply(func) Vaex# Increasingly, packages are being built on top of pandas to address specific needs in data preparation, analysis and visualization. Vaex is a Python library for Out-of-Core DataFrames (similar to pandas), to visualize and explore big tabular datasets. It can calculate statistics such as mean, sum, count, standard deviation etc, on an N-dimensional grid up to a billion (109) objects/rows per second. Visualization is done using histograms, density plots and 3d volume rendering, allowing interactive exploration of big data. Vaex uses memory mapping, zero memory copy policy and lazy computations for best performance (no memory wasted). vaex.from_pandas vaex.to_pandas_df Extension data types# pandas provides an interface for defining extension types to extend NumPy’s type system. The following libraries implement that interface to provide types not found in NumPy or pandas, which work well with pandas’ data containers. Cyberpandas# Cyberpandas provides an extension type for storing arrays of IP Addresses. These arrays can be stored inside pandas’ Series and DataFrame. Pandas-Genomics# Pandas-Genomics provides extension types, extension arrays, and extension accessors for working with genomics data Pint-Pandas# Pint-Pandas provides an extension type for storing numeric arrays with units. These arrays can be stored inside pandas’ Series and DataFrame. Operations between Series and DataFrame columns which use pint’s extension array are then units aware. Text Extensions for Pandas# Text Extensions for Pandas provides extension types to cover common data structures for representing natural language data, plus library integrations that convert the outputs of popular natural language processing libraries into Pandas DataFrames. Accessors# A directory of projects providing extension accessors. This is for users to discover new accessors and for library authors to coordinate on the namespace. Library Accessor Classes Description cyberpandas ip Series Provides common operations for working with IP addresses. pdvega vgplot Series, DataFrame Provides plotting functions from the Altair library. pandas-genomics genomics Series, DataFrame Provides common operations for quality control and analysis of genomics data. pandas_path path Index, Series Provides pathlib.Path functions for Series. pint-pandas pint Series, DataFrame Provides units support for numeric Series and DataFrames. composeml slice DataFrame Provides a generator for enhanced data slicing. datatest validate Series, DataFrame, Index Provides validation, differences, and acceptance managers. woodwork ww Series, DataFrame Provides physical, logical, and semantic data typing information for Series and DataFrames. staircase sc Series Provides methods for querying, aggregating and plotting step functions Development tools# pandas-stubs# While pandas repository is partially typed, the package itself doesn’t expose this information for external use. Install pandas-stubs to enable basic type coverage of pandas API. Learn more by reading through GH14468, GH26766, GH28142. See installation and usage instructions on the github page.
ecosystem.html
pandas.Series.plot.kde
`pandas.Series.plot.kde` Generate Kernel Density Estimate plot using Gaussian kernels. ``` >>> s = pd.Series([1, 2, 2.5, 3, 3.5, 4, 5]) >>> ax = s.plot.kde() ```
Series.plot.kde(bw_method=None, ind=None, **kwargs)[source]# Generate Kernel Density Estimate plot using Gaussian kernels. In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function (PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwidth determination. Parameters bw_methodstr, scalar or callable, optionalThe method used to calculate the estimator bandwidth. This can be ‘scott’, ‘silverman’, a scalar constant or a callable. If None (default), ‘scott’ is used. See scipy.stats.gaussian_kde for more information. indNumPy array or int, optionalEvaluation points for the estimated PDF. If None (default), 1000 equally spaced points are used. If ind is a NumPy array, the KDE is evaluated at the points passed. If ind is an integer, ind number of equally spaced points are used. **kwargsAdditional keyword arguments are documented in DataFrame.plot(). Returns matplotlib.axes.Axes or numpy.ndarray of them See also scipy.stats.gaussian_kdeRepresentation of a kernel-density estimate using Gaussian kernels. This is the function used internally to estimate the PDF. Examples Given a Series of points randomly sampled from an unknown distribution, estimate its PDF using KDE with automatic bandwidth determination and plot the results, evaluating them at 1000 equally spaced points (default): >>> s = pd.Series([1, 2, 2.5, 3, 3.5, 4, 5]) >>> ax = s.plot.kde() A scalar bandwidth can be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting: >>> ax = s.plot.kde(bw_method=0.3) >>> ax = s.plot.kde(bw_method=3) Finally, the ind parameter determines the evaluation points for the plot of the estimated PDF: >>> ax = s.plot.kde(ind=[1, 2, 3, 4, 5]) For DataFrame, it works in the same way: >>> df = pd.DataFrame({ ... 'x': [1, 2, 2.5, 3, 3.5, 4, 5], ... 'y': [4, 4, 4.5, 5, 5.5, 6, 6], ... }) >>> ax = df.plot.kde() A scalar bandwidth can be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting: >>> ax = df.plot.kde(bw_method=0.3) >>> ax = df.plot.kde(bw_method=3) Finally, the ind parameter determines the evaluation points for the plot of the estimated PDF: >>> ax = df.plot.kde(ind=[1, 2, 3, 4, 5, 6])
reference/api/pandas.Series.plot.kde.html
Package overview
Package overview pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real-world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis/manipulation tool available in any language. It is already well on its way toward this goal. pandas is well suited for many different kinds of data: Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet Ordered and unordered (not necessarily fixed-frequency) time series data. Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels
pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real-world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis/manipulation tool available in any language. It is already well on its way toward this goal. pandas is well suited for many different kinds of data: Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet Ordered and unordered (not necessarily fixed-frequency) time series data. Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels Any other form of observational / statistical data sets. The data need not be labeled at all to be placed into a pandas data structure The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries. Here are just a few of the things that pandas does well: Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects Intelligent label-based slicing, fancy indexing, and subsetting of large data sets Intuitive merging and joining data sets Flexible reshaping and pivoting of data sets Hierarchical labeling of axes (possible to have multiple labels per tick) Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format Time series-specific functionality: date range generation and frequency conversion, moving window statistics, date shifting, and lagging. Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks. Some other notes pandas is fast. Many of the low-level algorithmic bits have been extensively tweaked in Cython code. However, as with anything else generalization usually sacrifices performance. So if you focus on one feature for your application you may be able to create a faster specialized tool. pandas is a dependency of statsmodels, making it an important part of the statistical computing ecosystem in Python. pandas has been used extensively in production in financial applications. Data structures# Dimensions Name Description 1 Series 1D labeled homogeneously-typed array 2 DataFrame General 2D labeled, size-mutable tabular structure with potentially heterogeneously-typed column Why more than one data structure?# The best way to think about the pandas data structures is as flexible containers for lower dimensional data. For example, DataFrame is a container for Series, and Series is a container for scalars. We would like to be able to insert and remove objects from these containers in a dictionary-like fashion. Also, we would like sensible default behaviors for the common API functions which take into account the typical orientation of time series and cross-sectional data sets. When using the N-dimensional array (ndarrays) to store 2- and 3-dimensional data, a burden is placed on the user to consider the orientation of the data set when writing functions; axes are considered more or less equivalent (except when C- or Fortran-contiguousness matters for performance). In pandas, the axes are intended to lend more semantic meaning to the data; i.e., for a particular data set, there is likely to be a “right” way to orient the data. The goal, then, is to reduce the amount of mental effort required to code up data transformations in downstream functions. For example, with tabular data (DataFrame) it is more semantically helpful to think of the index (the rows) and the columns rather than axis 0 and axis 1. Iterating through the columns of the DataFrame thus results in more readable code: for col in df.columns: series = df[col] # do something with series Mutability and copying of data# All pandas data structures are value-mutable (the values they contain can be altered) but not always size-mutable. The length of a Series cannot be changed, but, for example, columns can be inserted into a DataFrame. However, the vast majority of methods produce new objects and leave the input data untouched. In general we like to favor immutability where sensible. Getting support# The first stop for pandas issues and ideas is the Github Issue Tracker. If you have a general question, pandas community experts can answer through Stack Overflow. Community# pandas is actively supported today by a community of like-minded individuals around the world who contribute their valuable time and energy to help make open source pandas possible. Thanks to all of our contributors. If you’re interested in contributing, please visit the contributing guide. pandas is a NumFOCUS sponsored project. This will help ensure the success of the development of pandas as a world-class open-source project and makes it possible to donate to the project. Project governance# The governance process that pandas project has used informally since its inception in 2008 is formalized in Project Governance documents. The documents clarify how decisions are made and how the various elements of our community interact, including the relationship between open source collaborative development and work that may be funded by for-profit or non-profit entities. Wes McKinney is the Benevolent Dictator for Life (BDFL). Development team# The list of the Core Team members and more detailed information can be found on the people’s page of the governance repo. Institutional partners# The information about current institutional partners can be found on pandas website page. License# BSD 3-Clause License Copyright (c) 2008-2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team All rights reserved. Copyright (c) 2011-2022, Open source contributors. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
getting_started/overview.html
pandas.tseries.offsets.DateOffset.is_anchored
`pandas.tseries.offsets.DateOffset.is_anchored` Return boolean whether the frequency is a unit frequency (n=1). ``` >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False ```
DateOffset.is_anchored()# Return boolean whether the frequency is a unit frequency (n=1). Examples >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False
reference/api/pandas.tseries.offsets.DateOffset.is_anchored.html
pandas.tseries.offsets.SemiMonthEnd.day_of_month
pandas.tseries.offsets.SemiMonthEnd.day_of_month
SemiMonthEnd.day_of_month#
reference/api/pandas.tseries.offsets.SemiMonthEnd.day_of_month.html
pandas.DatetimeIndex.tz
`pandas.DatetimeIndex.tz` Return the timezone. Returns None when the array is tz-naive.
property DatetimeIndex.tz[source]# Return the timezone. Returns datetime.tzinfo, pytz.tzinfo.BaseTZInfo, dateutil.tz.tz.tzfile, or NoneReturns None when the array is tz-naive.
reference/api/pandas.DatetimeIndex.tz.html
Date offsets
DateOffset# DateOffset Standard kind of date increment used for a date range. Properties# DateOffset.freqstr Return a string representing the frequency. DateOffset.kwds Return a dict of extra parameters for the offset. DateOffset.name Return a string representing the base frequency. DateOffset.nanos DateOffset.normalize DateOffset.rule_code DateOffset.n DateOffset.is_month_start Return boolean whether a timestamp occurs on the month start. DateOffset.is_month_end Return boolean whether a timestamp occurs on the month end. Methods# DateOffset.apply DateOffset.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. DateOffset.copy Return a copy of the frequency. DateOffset.isAnchored DateOffset.onOffset DateOffset.is_anchored Return boolean whether the frequency is a unit frequency (n=1). DateOffset.is_on_offset Return boolean whether a timestamp intersects with this frequency. DateOffset.__call__(*args, **kwargs) Call self as a function. DateOffset.is_month_start Return boolean whether a timestamp occurs on the month start. DateOffset.is_month_end Return boolean whether a timestamp occurs on the month end. DateOffset.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. DateOffset.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. DateOffset.is_year_start Return boolean whether a timestamp occurs on the year start. DateOffset.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessDay# BusinessDay DateOffset subclass representing possibly n business days. Alias: BDay alias of pandas._libs.tslibs.offsets.BusinessDay Properties# BusinessDay.freqstr Return a string representing the frequency. BusinessDay.kwds Return a dict of extra parameters for the offset. BusinessDay.name Return a string representing the base frequency. BusinessDay.nanos BusinessDay.normalize BusinessDay.rule_code BusinessDay.n BusinessDay.weekmask BusinessDay.holidays BusinessDay.calendar Methods# BusinessDay.apply BusinessDay.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessDay.copy Return a copy of the frequency. BusinessDay.isAnchored BusinessDay.onOffset BusinessDay.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessDay.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessDay.__call__(*args, **kwargs) Call self as a function. BusinessDay.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessDay.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessDay.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessDay.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessDay.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessDay.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessHour# BusinessHour DateOffset subclass representing possibly n business hours. Properties# BusinessHour.freqstr Return a string representing the frequency. BusinessHour.kwds Return a dict of extra parameters for the offset. BusinessHour.name Return a string representing the base frequency. BusinessHour.nanos BusinessHour.normalize BusinessHour.rule_code BusinessHour.n BusinessHour.start BusinessHour.end BusinessHour.weekmask BusinessHour.holidays BusinessHour.calendar Methods# BusinessHour.apply BusinessHour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessHour.copy Return a copy of the frequency. BusinessHour.isAnchored BusinessHour.onOffset BusinessHour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessHour.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessHour.__call__(*args, **kwargs) Call self as a function. BusinessHour.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessHour.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessHour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessHour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessHour.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessHour.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessDay# CustomBusinessDay DateOffset subclass representing custom business days excluding holidays. Alias: CDay alias of pandas._libs.tslibs.offsets.CustomBusinessDay Properties# CustomBusinessDay.freqstr Return a string representing the frequency. CustomBusinessDay.kwds Return a dict of extra parameters for the offset. CustomBusinessDay.name Return a string representing the base frequency. CustomBusinessDay.nanos CustomBusinessDay.normalize CustomBusinessDay.rule_code CustomBusinessDay.n CustomBusinessDay.weekmask CustomBusinessDay.calendar CustomBusinessDay.holidays Methods# CustomBusinessDay.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessDay.apply CustomBusinessDay.copy Return a copy of the frequency. CustomBusinessDay.isAnchored CustomBusinessDay.onOffset CustomBusinessDay.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessDay.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessDay.__call__(*args, **kwargs) Call self as a function. CustomBusinessDay.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessDay.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessDay.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessDay.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessDay.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessDay.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessHour# CustomBusinessHour DateOffset subclass representing possibly n custom business days. Properties# CustomBusinessHour.freqstr Return a string representing the frequency. CustomBusinessHour.kwds Return a dict of extra parameters for the offset. CustomBusinessHour.name Return a string representing the base frequency. CustomBusinessHour.nanos CustomBusinessHour.normalize CustomBusinessHour.rule_code CustomBusinessHour.n CustomBusinessHour.weekmask CustomBusinessHour.calendar CustomBusinessHour.holidays CustomBusinessHour.start CustomBusinessHour.end Methods# CustomBusinessHour.apply CustomBusinessHour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessHour.copy Return a copy of the frequency. CustomBusinessHour.isAnchored CustomBusinessHour.onOffset CustomBusinessHour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessHour.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessHour.__call__(*args, **kwargs) Call self as a function. CustomBusinessHour.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessHour.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessHour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessHour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessHour.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessHour.is_year_end Return boolean whether a timestamp occurs on the year end. MonthEnd# MonthEnd DateOffset of one month end. Properties# MonthEnd.freqstr Return a string representing the frequency. MonthEnd.kwds Return a dict of extra parameters for the offset. MonthEnd.name Return a string representing the base frequency. MonthEnd.nanos MonthEnd.normalize MonthEnd.rule_code MonthEnd.n Methods# MonthEnd.apply MonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. MonthEnd.copy Return a copy of the frequency. MonthEnd.isAnchored MonthEnd.onOffset MonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). MonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. MonthEnd.__call__(*args, **kwargs) Call self as a function. MonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. MonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. MonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. MonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. MonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. MonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. MonthBegin# MonthBegin DateOffset of one month at beginning. Properties# MonthBegin.freqstr Return a string representing the frequency. MonthBegin.kwds Return a dict of extra parameters for the offset. MonthBegin.name Return a string representing the base frequency. MonthBegin.nanos MonthBegin.normalize MonthBegin.rule_code MonthBegin.n Methods# MonthBegin.apply MonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. MonthBegin.copy Return a copy of the frequency. MonthBegin.isAnchored MonthBegin.onOffset MonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). MonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. MonthBegin.__call__(*args, **kwargs) Call self as a function. MonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. MonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. MonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. MonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. MonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. MonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessMonthEnd# BusinessMonthEnd DateOffset increments between the last business day of the month. Alias: BMonthEnd alias of pandas._libs.tslibs.offsets.BusinessMonthEnd Properties# BusinessMonthEnd.freqstr Return a string representing the frequency. BusinessMonthEnd.kwds Return a dict of extra parameters for the offset. BusinessMonthEnd.name Return a string representing the base frequency. BusinessMonthEnd.nanos BusinessMonthEnd.normalize BusinessMonthEnd.rule_code BusinessMonthEnd.n Methods# BusinessMonthEnd.apply BusinessMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessMonthEnd.copy Return a copy of the frequency. BusinessMonthEnd.isAnchored BusinessMonthEnd.onOffset BusinessMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessMonthEnd.__call__(*args, **kwargs) Call self as a function. BusinessMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessMonthBegin# BusinessMonthBegin DateOffset of one month at the first business day. Alias: BMonthBegin alias of pandas._libs.tslibs.offsets.BusinessMonthBegin Properties# BusinessMonthBegin.freqstr Return a string representing the frequency. BusinessMonthBegin.kwds Return a dict of extra parameters for the offset. BusinessMonthBegin.name Return a string representing the base frequency. BusinessMonthBegin.nanos BusinessMonthBegin.normalize BusinessMonthBegin.rule_code BusinessMonthBegin.n Methods# BusinessMonthBegin.apply BusinessMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessMonthBegin.copy Return a copy of the frequency. BusinessMonthBegin.isAnchored BusinessMonthBegin.onOffset BusinessMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessMonthBegin.__call__(*args, **kwargs) Call self as a function. BusinessMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessMonthEnd# CustomBusinessMonthEnd Attributes Alias: CBMonthEnd alias of pandas._libs.tslibs.offsets.CustomBusinessMonthEnd Properties# CustomBusinessMonthEnd.freqstr Return a string representing the frequency. CustomBusinessMonthEnd.kwds Return a dict of extra parameters for the offset. CustomBusinessMonthEnd.m_offset CustomBusinessMonthEnd.name Return a string representing the base frequency. CustomBusinessMonthEnd.nanos CustomBusinessMonthEnd.normalize CustomBusinessMonthEnd.rule_code CustomBusinessMonthEnd.n CustomBusinessMonthEnd.weekmask CustomBusinessMonthEnd.calendar CustomBusinessMonthEnd.holidays Methods# CustomBusinessMonthEnd.apply CustomBusinessMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessMonthEnd.copy Return a copy of the frequency. CustomBusinessMonthEnd.isAnchored CustomBusinessMonthEnd.onOffset CustomBusinessMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessMonthEnd.__call__(*args, **kwargs) Call self as a function. CustomBusinessMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessMonthBegin# CustomBusinessMonthBegin Attributes Alias: CBMonthBegin alias of pandas._libs.tslibs.offsets.CustomBusinessMonthBegin Properties# CustomBusinessMonthBegin.freqstr Return a string representing the frequency. CustomBusinessMonthBegin.kwds Return a dict of extra parameters for the offset. CustomBusinessMonthBegin.m_offset CustomBusinessMonthBegin.name Return a string representing the base frequency. CustomBusinessMonthBegin.nanos CustomBusinessMonthBegin.normalize CustomBusinessMonthBegin.rule_code CustomBusinessMonthBegin.n CustomBusinessMonthBegin.weekmask CustomBusinessMonthBegin.calendar CustomBusinessMonthBegin.holidays Methods# CustomBusinessMonthBegin.apply CustomBusinessMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessMonthBegin.copy Return a copy of the frequency. CustomBusinessMonthBegin.isAnchored CustomBusinessMonthBegin.onOffset CustomBusinessMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessMonthBegin.__call__(*args, ...) Call self as a function. CustomBusinessMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. SemiMonthEnd# SemiMonthEnd Two DateOffset's per month repeating on the last day of the month & day_of_month. Properties# SemiMonthEnd.freqstr Return a string representing the frequency. SemiMonthEnd.kwds Return a dict of extra parameters for the offset. SemiMonthEnd.name Return a string representing the base frequency. SemiMonthEnd.nanos SemiMonthEnd.normalize SemiMonthEnd.rule_code SemiMonthEnd.n SemiMonthEnd.day_of_month Methods# SemiMonthEnd.apply SemiMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. SemiMonthEnd.copy Return a copy of the frequency. SemiMonthEnd.isAnchored SemiMonthEnd.onOffset SemiMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). SemiMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. SemiMonthEnd.__call__(*args, **kwargs) Call self as a function. SemiMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. SemiMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. SemiMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. SemiMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. SemiMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. SemiMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. SemiMonthBegin# SemiMonthBegin Two DateOffset's per month repeating on the first day of the month & day_of_month. Properties# SemiMonthBegin.freqstr Return a string representing the frequency. SemiMonthBegin.kwds Return a dict of extra parameters for the offset. SemiMonthBegin.name Return a string representing the base frequency. SemiMonthBegin.nanos SemiMonthBegin.normalize SemiMonthBegin.rule_code SemiMonthBegin.n SemiMonthBegin.day_of_month Methods# SemiMonthBegin.apply SemiMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. SemiMonthBegin.copy Return a copy of the frequency. SemiMonthBegin.isAnchored SemiMonthBegin.onOffset SemiMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). SemiMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. SemiMonthBegin.__call__(*args, **kwargs) Call self as a function. SemiMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. SemiMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. SemiMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. SemiMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. SemiMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. SemiMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. Week# Week Weekly offset. Properties# Week.freqstr Return a string representing the frequency. Week.kwds Return a dict of extra parameters for the offset. Week.name Return a string representing the base frequency. Week.nanos Week.normalize Week.rule_code Week.n Week.weekday Methods# Week.apply Week.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Week.copy Return a copy of the frequency. Week.isAnchored Week.onOffset Week.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Week.is_on_offset Return boolean whether a timestamp intersects with this frequency. Week.__call__(*args, **kwargs) Call self as a function. Week.is_month_start Return boolean whether a timestamp occurs on the month start. Week.is_month_end Return boolean whether a timestamp occurs on the month end. Week.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Week.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Week.is_year_start Return boolean whether a timestamp occurs on the year start. Week.is_year_end Return boolean whether a timestamp occurs on the year end. WeekOfMonth# WeekOfMonth Describes monthly dates like "the Tuesday of the 2nd week of each month". Properties# WeekOfMonth.freqstr Return a string representing the frequency. WeekOfMonth.kwds Return a dict of extra parameters for the offset. WeekOfMonth.name Return a string representing the base frequency. WeekOfMonth.nanos WeekOfMonth.normalize WeekOfMonth.rule_code WeekOfMonth.n WeekOfMonth.week Methods# WeekOfMonth.apply WeekOfMonth.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. WeekOfMonth.copy Return a copy of the frequency. WeekOfMonth.isAnchored WeekOfMonth.onOffset WeekOfMonth.is_anchored Return boolean whether the frequency is a unit frequency (n=1). WeekOfMonth.is_on_offset Return boolean whether a timestamp intersects with this frequency. WeekOfMonth.__call__(*args, **kwargs) Call self as a function. WeekOfMonth.weekday WeekOfMonth.is_month_start Return boolean whether a timestamp occurs on the month start. WeekOfMonth.is_month_end Return boolean whether a timestamp occurs on the month end. WeekOfMonth.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. WeekOfMonth.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. WeekOfMonth.is_year_start Return boolean whether a timestamp occurs on the year start. WeekOfMonth.is_year_end Return boolean whether a timestamp occurs on the year end. LastWeekOfMonth# LastWeekOfMonth Describes monthly dates in last week of month. Properties# LastWeekOfMonth.freqstr Return a string representing the frequency. LastWeekOfMonth.kwds Return a dict of extra parameters for the offset. LastWeekOfMonth.name Return a string representing the base frequency. LastWeekOfMonth.nanos LastWeekOfMonth.normalize LastWeekOfMonth.rule_code LastWeekOfMonth.n LastWeekOfMonth.weekday LastWeekOfMonth.week Methods# LastWeekOfMonth.apply LastWeekOfMonth.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. LastWeekOfMonth.copy Return a copy of the frequency. LastWeekOfMonth.isAnchored LastWeekOfMonth.onOffset LastWeekOfMonth.is_anchored Return boolean whether the frequency is a unit frequency (n=1). LastWeekOfMonth.is_on_offset Return boolean whether a timestamp intersects with this frequency. LastWeekOfMonth.__call__(*args, **kwargs) Call self as a function. LastWeekOfMonth.is_month_start Return boolean whether a timestamp occurs on the month start. LastWeekOfMonth.is_month_end Return boolean whether a timestamp occurs on the month end. LastWeekOfMonth.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. LastWeekOfMonth.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. LastWeekOfMonth.is_year_start Return boolean whether a timestamp occurs on the year start. LastWeekOfMonth.is_year_end Return boolean whether a timestamp occurs on the year end. BQuarterEnd# BQuarterEnd DateOffset increments between the last business day of each Quarter. Properties# BQuarterEnd.freqstr Return a string representing the frequency. BQuarterEnd.kwds Return a dict of extra parameters for the offset. BQuarterEnd.name Return a string representing the base frequency. BQuarterEnd.nanos BQuarterEnd.normalize BQuarterEnd.rule_code BQuarterEnd.n BQuarterEnd.startingMonth Methods# BQuarterEnd.apply BQuarterEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BQuarterEnd.copy Return a copy of the frequency. BQuarterEnd.isAnchored BQuarterEnd.onOffset BQuarterEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BQuarterEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BQuarterEnd.__call__(*args, **kwargs) Call self as a function. BQuarterEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BQuarterEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BQuarterEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BQuarterEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BQuarterEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BQuarterEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BQuarterBegin# BQuarterBegin DateOffset increments between the first business day of each Quarter. Properties# BQuarterBegin.freqstr Return a string representing the frequency. BQuarterBegin.kwds Return a dict of extra parameters for the offset. BQuarterBegin.name Return a string representing the base frequency. BQuarterBegin.nanos BQuarterBegin.normalize BQuarterBegin.rule_code BQuarterBegin.n BQuarterBegin.startingMonth Methods# BQuarterBegin.apply BQuarterBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BQuarterBegin.copy Return a copy of the frequency. BQuarterBegin.isAnchored BQuarterBegin.onOffset BQuarterBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BQuarterBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BQuarterBegin.__call__(*args, **kwargs) Call self as a function. BQuarterBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BQuarterBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BQuarterBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BQuarterBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BQuarterBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BQuarterBegin.is_year_end Return boolean whether a timestamp occurs on the year end. QuarterEnd# QuarterEnd DateOffset increments between Quarter end dates. Properties# QuarterEnd.freqstr Return a string representing the frequency. QuarterEnd.kwds Return a dict of extra parameters for the offset. QuarterEnd.name Return a string representing the base frequency. QuarterEnd.nanos QuarterEnd.normalize QuarterEnd.rule_code QuarterEnd.n QuarterEnd.startingMonth Methods# QuarterEnd.apply QuarterEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. QuarterEnd.copy Return a copy of the frequency. QuarterEnd.isAnchored QuarterEnd.onOffset QuarterEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). QuarterEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. QuarterEnd.__call__(*args, **kwargs) Call self as a function. QuarterEnd.is_month_start Return boolean whether a timestamp occurs on the month start. QuarterEnd.is_month_end Return boolean whether a timestamp occurs on the month end. QuarterEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. QuarterEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. QuarterEnd.is_year_start Return boolean whether a timestamp occurs on the year start. QuarterEnd.is_year_end Return boolean whether a timestamp occurs on the year end. QuarterBegin# QuarterBegin DateOffset increments between Quarter start dates. Properties# QuarterBegin.freqstr Return a string representing the frequency. QuarterBegin.kwds Return a dict of extra parameters for the offset. QuarterBegin.name Return a string representing the base frequency. QuarterBegin.nanos QuarterBegin.normalize QuarterBegin.rule_code QuarterBegin.n QuarterBegin.startingMonth Methods# QuarterBegin.apply QuarterBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. QuarterBegin.copy Return a copy of the frequency. QuarterBegin.isAnchored QuarterBegin.onOffset QuarterBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). QuarterBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. QuarterBegin.__call__(*args, **kwargs) Call self as a function. QuarterBegin.is_month_start Return boolean whether a timestamp occurs on the month start. QuarterBegin.is_month_end Return boolean whether a timestamp occurs on the month end. QuarterBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. QuarterBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. QuarterBegin.is_year_start Return boolean whether a timestamp occurs on the year start. QuarterBegin.is_year_end Return boolean whether a timestamp occurs on the year end. BYearEnd# BYearEnd DateOffset increments between the last business day of the year. Properties# BYearEnd.freqstr Return a string representing the frequency. BYearEnd.kwds Return a dict of extra parameters for the offset. BYearEnd.name Return a string representing the base frequency. BYearEnd.nanos BYearEnd.normalize BYearEnd.rule_code BYearEnd.n BYearEnd.month Methods# BYearEnd.apply BYearEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BYearEnd.copy Return a copy of the frequency. BYearEnd.isAnchored BYearEnd.onOffset BYearEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BYearEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BYearEnd.__call__(*args, **kwargs) Call self as a function. BYearEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BYearEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BYearEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BYearEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BYearEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BYearEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BYearBegin# BYearBegin DateOffset increments between the first business day of the year. Properties# BYearBegin.freqstr Return a string representing the frequency. BYearBegin.kwds Return a dict of extra parameters for the offset. BYearBegin.name Return a string representing the base frequency. BYearBegin.nanos BYearBegin.normalize BYearBegin.rule_code BYearBegin.n BYearBegin.month Methods# BYearBegin.apply BYearBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BYearBegin.copy Return a copy of the frequency. BYearBegin.isAnchored BYearBegin.onOffset BYearBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BYearBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BYearBegin.__call__(*args, **kwargs) Call self as a function. BYearBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BYearBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BYearBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BYearBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BYearBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BYearBegin.is_year_end Return boolean whether a timestamp occurs on the year end. YearEnd# YearEnd DateOffset increments between calendar year ends. Properties# YearEnd.freqstr Return a string representing the frequency. YearEnd.kwds Return a dict of extra parameters for the offset. YearEnd.name Return a string representing the base frequency. YearEnd.nanos YearEnd.normalize YearEnd.rule_code YearEnd.n YearEnd.month Methods# YearEnd.apply YearEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. YearEnd.copy Return a copy of the frequency. YearEnd.isAnchored YearEnd.onOffset YearEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). YearEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. YearEnd.__call__(*args, **kwargs) Call self as a function. YearEnd.is_month_start Return boolean whether a timestamp occurs on the month start. YearEnd.is_month_end Return boolean whether a timestamp occurs on the month end. YearEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. YearEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. YearEnd.is_year_start Return boolean whether a timestamp occurs on the year start. YearEnd.is_year_end Return boolean whether a timestamp occurs on the year end. YearBegin# YearBegin DateOffset increments between calendar year begin dates. Properties# YearBegin.freqstr Return a string representing the frequency. YearBegin.kwds Return a dict of extra parameters for the offset. YearBegin.name Return a string representing the base frequency. YearBegin.nanos YearBegin.normalize YearBegin.rule_code YearBegin.n YearBegin.month Methods# YearBegin.apply YearBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. YearBegin.copy Return a copy of the frequency. YearBegin.isAnchored YearBegin.onOffset YearBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). YearBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. YearBegin.__call__(*args, **kwargs) Call self as a function. YearBegin.is_month_start Return boolean whether a timestamp occurs on the month start. YearBegin.is_month_end Return boolean whether a timestamp occurs on the month end. YearBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. YearBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. YearBegin.is_year_start Return boolean whether a timestamp occurs on the year start. YearBegin.is_year_end Return boolean whether a timestamp occurs on the year end. FY5253# FY5253 Describes 52-53 week fiscal year. Properties# FY5253.freqstr Return a string representing the frequency. FY5253.kwds Return a dict of extra parameters for the offset. FY5253.name Return a string representing the base frequency. FY5253.nanos FY5253.normalize FY5253.rule_code FY5253.n FY5253.startingMonth FY5253.variation FY5253.weekday Methods# FY5253.apply FY5253.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. FY5253.copy Return a copy of the frequency. FY5253.get_rule_code_suffix FY5253.get_year_end FY5253.isAnchored FY5253.onOffset FY5253.is_anchored Return boolean whether the frequency is a unit frequency (n=1). FY5253.is_on_offset Return boolean whether a timestamp intersects with this frequency. FY5253.__call__(*args, **kwargs) Call self as a function. FY5253.is_month_start Return boolean whether a timestamp occurs on the month start. FY5253.is_month_end Return boolean whether a timestamp occurs on the month end. FY5253.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. FY5253.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. FY5253.is_year_start Return boolean whether a timestamp occurs on the year start. FY5253.is_year_end Return boolean whether a timestamp occurs on the year end. FY5253Quarter# FY5253Quarter DateOffset increments between business quarter dates for 52-53 week fiscal year. Properties# FY5253Quarter.freqstr Return a string representing the frequency. FY5253Quarter.kwds Return a dict of extra parameters for the offset. FY5253Quarter.name Return a string representing the base frequency. FY5253Quarter.nanos FY5253Quarter.normalize FY5253Quarter.rule_code FY5253Quarter.n FY5253Quarter.qtr_with_extra_week FY5253Quarter.startingMonth FY5253Quarter.variation FY5253Quarter.weekday Methods# FY5253Quarter.apply FY5253Quarter.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. FY5253Quarter.copy Return a copy of the frequency. FY5253Quarter.get_rule_code_suffix FY5253Quarter.get_weeks FY5253Quarter.isAnchored FY5253Quarter.onOffset FY5253Quarter.is_anchored Return boolean whether the frequency is a unit frequency (n=1). FY5253Quarter.is_on_offset Return boolean whether a timestamp intersects with this frequency. FY5253Quarter.year_has_extra_week FY5253Quarter.__call__(*args, **kwargs) Call self as a function. FY5253Quarter.is_month_start Return boolean whether a timestamp occurs on the month start. FY5253Quarter.is_month_end Return boolean whether a timestamp occurs on the month end. FY5253Quarter.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. FY5253Quarter.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. FY5253Quarter.is_year_start Return boolean whether a timestamp occurs on the year start. FY5253Quarter.is_year_end Return boolean whether a timestamp occurs on the year end. Easter# Easter DateOffset for the Easter holiday using logic defined in dateutil. Properties# Easter.freqstr Return a string representing the frequency. Easter.kwds Return a dict of extra parameters for the offset. Easter.name Return a string representing the base frequency. Easter.nanos Easter.normalize Easter.rule_code Easter.n Methods# Easter.apply Easter.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Easter.copy Return a copy of the frequency. Easter.isAnchored Easter.onOffset Easter.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Easter.is_on_offset Return boolean whether a timestamp intersects with this frequency. Easter.__call__(*args, **kwargs) Call self as a function. Easter.is_month_start Return boolean whether a timestamp occurs on the month start. Easter.is_month_end Return boolean whether a timestamp occurs on the month end. Easter.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Easter.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Easter.is_year_start Return boolean whether a timestamp occurs on the year start. Easter.is_year_end Return boolean whether a timestamp occurs on the year end. Tick# Tick Attributes Properties# Tick.delta Tick.freqstr Return a string representing the frequency. Tick.kwds Return a dict of extra parameters for the offset. Tick.name Return a string representing the base frequency. Tick.nanos Return an integer of the total number of nanoseconds. Tick.normalize Tick.rule_code Tick.n Methods# Tick.copy Return a copy of the frequency. Tick.isAnchored Tick.onOffset Tick.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Tick.is_on_offset Return boolean whether a timestamp intersects with this frequency. Tick.__call__(*args, **kwargs) Call self as a function. Tick.apply Tick.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Tick.is_month_start Return boolean whether a timestamp occurs on the month start. Tick.is_month_end Return boolean whether a timestamp occurs on the month end. Tick.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Tick.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Tick.is_year_start Return boolean whether a timestamp occurs on the year start. Tick.is_year_end Return boolean whether a timestamp occurs on the year end. Day# Day Attributes Properties# Day.delta Day.freqstr Return a string representing the frequency. Day.kwds Return a dict of extra parameters for the offset. Day.name Return a string representing the base frequency. Day.nanos Return an integer of the total number of nanoseconds. Day.normalize Day.rule_code Day.n Methods# Day.copy Return a copy of the frequency. Day.isAnchored Day.onOffset Day.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Day.is_on_offset Return boolean whether a timestamp intersects with this frequency. Day.__call__(*args, **kwargs) Call self as a function. Day.apply Day.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Day.is_month_start Return boolean whether a timestamp occurs on the month start. Day.is_month_end Return boolean whether a timestamp occurs on the month end. Day.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Day.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Day.is_year_start Return boolean whether a timestamp occurs on the year start. Day.is_year_end Return boolean whether a timestamp occurs on the year end. Hour# Hour Attributes Properties# Hour.delta Hour.freqstr Return a string representing the frequency. Hour.kwds Return a dict of extra parameters for the offset. Hour.name Return a string representing the base frequency. Hour.nanos Return an integer of the total number of nanoseconds. Hour.normalize Hour.rule_code Hour.n Methods# Hour.copy Return a copy of the frequency. Hour.isAnchored Hour.onOffset Hour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Hour.is_on_offset Return boolean whether a timestamp intersects with this frequency. Hour.__call__(*args, **kwargs) Call self as a function. Hour.apply Hour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Hour.is_month_start Return boolean whether a timestamp occurs on the month start. Hour.is_month_end Return boolean whether a timestamp occurs on the month end. Hour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Hour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Hour.is_year_start Return boolean whether a timestamp occurs on the year start. Hour.is_year_end Return boolean whether a timestamp occurs on the year end. Minute# Minute Attributes Properties# Minute.delta Minute.freqstr Return a string representing the frequency. Minute.kwds Return a dict of extra parameters for the offset. Minute.name Return a string representing the base frequency. Minute.nanos Return an integer of the total number of nanoseconds. Minute.normalize Minute.rule_code Minute.n Methods# Minute.copy Return a copy of the frequency. Minute.isAnchored Minute.onOffset Minute.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Minute.is_on_offset Return boolean whether a timestamp intersects with this frequency. Minute.__call__(*args, **kwargs) Call self as a function. Minute.apply Minute.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Minute.is_month_start Return boolean whether a timestamp occurs on the month start. Minute.is_month_end Return boolean whether a timestamp occurs on the month end. Minute.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Minute.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Minute.is_year_start Return boolean whether a timestamp occurs on the year start. Minute.is_year_end Return boolean whether a timestamp occurs on the year end. Second# Second Attributes Properties# Second.delta Second.freqstr Return a string representing the frequency. Second.kwds Return a dict of extra parameters for the offset. Second.name Return a string representing the base frequency. Second.nanos Return an integer of the total number of nanoseconds. Second.normalize Second.rule_code Second.n Methods# Second.copy Return a copy of the frequency. Second.isAnchored Second.onOffset Second.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Second.is_on_offset Return boolean whether a timestamp intersects with this frequency. Second.__call__(*args, **kwargs) Call self as a function. Second.apply Second.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Second.is_month_start Return boolean whether a timestamp occurs on the month start. Second.is_month_end Return boolean whether a timestamp occurs on the month end. Second.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Second.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Second.is_year_start Return boolean whether a timestamp occurs on the year start. Second.is_year_end Return boolean whether a timestamp occurs on the year end. Milli# Milli Attributes Properties# Milli.delta Milli.freqstr Return a string representing the frequency. Milli.kwds Return a dict of extra parameters for the offset. Milli.name Return a string representing the base frequency. Milli.nanos Return an integer of the total number of nanoseconds. Milli.normalize Milli.rule_code Milli.n Methods# Milli.copy Return a copy of the frequency. Milli.isAnchored Milli.onOffset Milli.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Milli.is_on_offset Return boolean whether a timestamp intersects with this frequency. Milli.__call__(*args, **kwargs) Call self as a function. Milli.apply Milli.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Milli.is_month_start Return boolean whether a timestamp occurs on the month start. Milli.is_month_end Return boolean whether a timestamp occurs on the month end. Milli.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Milli.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Milli.is_year_start Return boolean whether a timestamp occurs on the year start. Milli.is_year_end Return boolean whether a timestamp occurs on the year end. Micro# Micro Attributes Properties# Micro.delta Micro.freqstr Return a string representing the frequency. Micro.kwds Return a dict of extra parameters for the offset. Micro.name Return a string representing the base frequency. Micro.nanos Return an integer of the total number of nanoseconds. Micro.normalize Micro.rule_code Micro.n Methods# Micro.copy Return a copy of the frequency. Micro.isAnchored Micro.onOffset Micro.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Micro.is_on_offset Return boolean whether a timestamp intersects with this frequency. Micro.__call__(*args, **kwargs) Call self as a function. Micro.apply Micro.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Micro.is_month_start Return boolean whether a timestamp occurs on the month start. Micro.is_month_end Return boolean whether a timestamp occurs on the month end. Micro.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Micro.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Micro.is_year_start Return boolean whether a timestamp occurs on the year start. Micro.is_year_end Return boolean whether a timestamp occurs on the year end. Nano# Nano Attributes Properties# Nano.delta Nano.freqstr Return a string representing the frequency. Nano.kwds Return a dict of extra parameters for the offset. Nano.name Return a string representing the base frequency. Nano.nanos Return an integer of the total number of nanoseconds. Nano.normalize Nano.rule_code Nano.n Methods# Nano.copy Return a copy of the frequency. Nano.isAnchored Nano.onOffset Nano.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Nano.is_on_offset Return boolean whether a timestamp intersects with this frequency. Nano.__call__(*args, **kwargs) Call self as a function. Nano.apply Nano.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Nano.is_month_start Return boolean whether a timestamp occurs on the month start. Nano.is_month_end Return boolean whether a timestamp occurs on the month end. Nano.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Nano.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Nano.is_year_start Return boolean whether a timestamp occurs on the year start. Nano.is_year_end Return boolean whether a timestamp occurs on the year end. Frequencies# to_offset Return DateOffset object from string or datetime.timedelta object.
reference/offset_frequency.html
null
pandas.Index.get_level_values
`pandas.Index.get_level_values` Return an Index of values for requested level. ``` >>> idx = pd.Index(list('abc')) >>> idx Index(['a', 'b', 'c'], dtype='object') ```
Index.get_level_values(level)[source]# Return an Index of values for requested level. This is primarily useful to get an individual level of values from a MultiIndex, but is provided on Index as well for compatibility. Parameters levelint or strIt is either the integer position or the name of the level. Returns IndexCalling object, as there is only one level in the Index. See also MultiIndex.get_level_valuesGet values for a level of a MultiIndex. Notes For Index, level should be 0, since there are no multiple levels. Examples >>> idx = pd.Index(list('abc')) >>> idx Index(['a', 'b', 'c'], dtype='object') Get level values by supplying level as integer: >>> idx.get_level_values(0) Index(['a', 'b', 'c'], dtype='object')
reference/api/pandas.Index.get_level_values.html
pandas.Series.kurtosis
`pandas.Series.kurtosis` Return unbiased kurtosis over requested axis.
Series.kurtosis(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)[source]# Return unbiased kurtosis over requested axis. Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1. Parameters axis{index (0)}Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. skipnabool, default TrueExclude NA/null values when computing the result. levelint or level name, default NoneIf the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead. numeric_onlybool, default NoneInclude only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas. **kwargsAdditional keyword arguments to be passed to the function. Returns scalar or Series (if level specified)
reference/api/pandas.Series.kurtosis.html
pandas.Series.sem
`pandas.Series.sem` Return unbiased standard error of the mean over requested axis.
Series.sem(axis=None, skipna=True, level=None, ddof=1, numeric_only=None, **kwargs)[source]# Return unbiased standard error of the mean over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters axis{index (0)}For Series this parameter is unused and defaults to 0. skipnabool, default TrueExclude NA/null values. If an entire row/column is NA, the result will be NA. levelint or level name, default NoneIf the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead. ddofint, default 1Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_onlybool, default NoneInclude only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas. Returns scalar or Series (if level specified)
reference/api/pandas.Series.sem.html
pandas.tseries.offsets.LastWeekOfMonth.rule_code
pandas.tseries.offsets.LastWeekOfMonth.rule_code
LastWeekOfMonth.rule_code#
reference/api/pandas.tseries.offsets.LastWeekOfMonth.rule_code.html
pandas.tseries.offsets.CustomBusinessHour
`pandas.tseries.offsets.CustomBusinessHour` DateOffset subclass representing possibly n custom business days. ``` >>> ts = pd.Timestamp(2022, 8, 5, 16) >>> ts + pd.offsets.CustomBusinessHour() Timestamp('2022-08-08 09:00:00') ```
class pandas.tseries.offsets.CustomBusinessHour# DateOffset subclass representing possibly n custom business days. Parameters nint, default 1The number of months represented. normalizebool, default FalseNormalize start/end dates to midnight before generating date range. weekmaskstr, Default ‘Mon Tue Wed Thu Fri’Weekmask of valid business days, passed to numpy.busdaycalendar. startstr, default “09:00”Start time of your custom business hour in 24h format. endstr, default: “17:00”End time of your custom business hour in 24h format. Examples >>> ts = pd.Timestamp(2022, 8, 5, 16) >>> ts + pd.offsets.CustomBusinessHour() Timestamp('2022-08-08 09:00:00') Attributes base Returns a copy of the calling offset object with n=1 and all other attributes equal. freqstr Return a string representing the frequency. kwds Return a dict of extra parameters for the offset. name Return a string representing the base frequency. next_bday Used for moving to next business day. offset Alias for self._offset. calendar end holidays n nanos normalize rule_code start weekmask Methods __call__(*args, **kwargs) Call self as a function. apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. copy Return a copy of the frequency. is_anchored Return boolean whether the frequency is a unit frequency (n=1). is_month_end Return boolean whether a timestamp occurs on the month end. is_month_start Return boolean whether a timestamp occurs on the month start. is_on_offset Return boolean whether a timestamp intersects with this frequency. is_quarter_end Return boolean whether a timestamp occurs on the quarter end. is_quarter_start Return boolean whether a timestamp occurs on the quarter start. is_year_end Return boolean whether a timestamp occurs on the year end. is_year_start Return boolean whether a timestamp occurs on the year start. rollback(other) Roll provided date backward to next offset only if not on offset. rollforward(other) Roll provided date forward to next offset only if not on offset. apply isAnchored onOffset
reference/api/pandas.tseries.offsets.CustomBusinessHour.html
pandas.DataFrame.rename
`pandas.DataFrame.rename` Alter axes labels. ``` >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 ```
DataFrame.rename(mapper=None, *, index=None, columns=None, axis=None, copy=None, inplace=False, level=None, errors='ignore')[source]# Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. See the user guide for more. Parameters mapperdict-like or functionDict-like or function transformations to apply to that axis’ values. Use either mapper and axis to specify the axis to target with mapper, or index and columns. indexdict-like or functionAlternative to specifying axis (mapper, axis=0 is equivalent to index=mapper). columnsdict-like or functionAlternative to specifying axis (mapper, axis=1 is equivalent to columns=mapper). axis{0 or ‘index’, 1 or ‘columns’}, default 0Axis to target with mapper. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). The default is ‘index’. copybool, default TrueAlso copy underlying data. inplacebool, default FalseWhether to modify the DataFrame rather than creating a new one. If True then value of copy is ignored. levelint or level name, default NoneIn case of a MultiIndex, only rename labels in the specified level. errors{‘ignore’, ‘raise’}, default ‘ignore’If ‘raise’, raise a KeyError when a dict-like mapper, index, or columns contains labels that are not present in the Index being transformed. If ‘ignore’, existing keys will be renamed and extra keys will be ignored. Returns DataFrame or NoneDataFrame with the renamed axis labels or None if inplace=True. Raises KeyErrorIf any of the labels is not found in the selected axis and “errors=’raise’”. See also DataFrame.rename_axisSet the name of the axis. Examples DataFrame.rename supports two calling conventions (index=index_mapper, columns=columns_mapper, ...) (mapper, axis={'index', 'columns'}, ...) We highly recommend using keyword arguments to clarify your intent. Rename columns using a mapping: >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 Rename index using a mapping: >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 Cast index labels to a different type: >>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object') >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis Using axis-style parameters: >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6
reference/api/pandas.DataFrame.rename.html
pandas.tseries.offsets.MonthBegin.copy
`pandas.tseries.offsets.MonthBegin.copy` Return a copy of the frequency. ``` >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False ```
MonthBegin.copy()# Return a copy of the frequency. Examples >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False
reference/api/pandas.tseries.offsets.MonthBegin.copy.html
Python Module Index
p   p pandas
py-modindex.html
null
pandas.api.extensions.ExtensionArray.shape
`pandas.api.extensions.ExtensionArray.shape` Return a tuple of the array dimensions.
property ExtensionArray.shape[source]# Return a tuple of the array dimensions.
reference/api/pandas.api.extensions.ExtensionArray.shape.html
pandas.Series.between_time
`pandas.Series.between_time` Select values between particular times of the day (e.g., 9:00-9:30 AM). ``` >>> i = pd.date_range('2018-04-09', periods=4, freq='1D20min') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 00:00:00 1 2018-04-10 00:20:00 2 2018-04-11 00:40:00 3 2018-04-12 01:00:00 4 ```
Series.between_time(start_time, end_time, include_start=_NoDefault.no_default, include_end=_NoDefault.no_default, inclusive=None, axis=None)[source]# Select values between particular times of the day (e.g., 9:00-9:30 AM). By setting start_time to be later than end_time, you can get the times that are not between the two times. Parameters start_timedatetime.time or strInitial time as a time filter limit. end_timedatetime.time or strEnd time as a time filter limit. include_startbool, default TrueWhether the start time needs to be included in the result. Deprecated since version 1.4.0: Arguments include_start and include_end have been deprecated to standardize boundary inputs. Use inclusive instead, to set each bound as closed or open. include_endbool, default TrueWhether the end time needs to be included in the result. Deprecated since version 1.4.0: Arguments include_start and include_end have been deprecated to standardize boundary inputs. Use inclusive instead, to set each bound as closed or open. inclusive{“both”, “neither”, “left”, “right”}, default “both”Include boundaries; whether to set each bound as closed or open. axis{0 or ‘index’, 1 or ‘columns’}, default 0Determine range time on index or columns value. For Series this parameter is unused and defaults to 0. Returns Series or DataFrameData from the original object filtered to the specified dates range. Raises TypeErrorIf the index is not a DatetimeIndex See also at_timeSelect values at a particular time of the day. firstSelect initial periods of time series based on a date offset. lastSelect final periods of time series based on a date offset. DatetimeIndex.indexer_between_timeGet just the index locations for values between particular times of the day. Examples >>> i = pd.date_range('2018-04-09', periods=4, freq='1D20min') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 00:00:00 1 2018-04-10 00:20:00 2 2018-04-11 00:40:00 3 2018-04-12 01:00:00 4 >>> ts.between_time('0:15', '0:45') A 2018-04-10 00:20:00 2 2018-04-11 00:40:00 3 You get the times that are not between two times by setting start_time later than end_time: >>> ts.between_time('0:45', '0:15') A 2018-04-09 00:00:00 1 2018-04-12 01:00:00 4
reference/api/pandas.Series.between_time.html
pandas.errors.SettingWithCopyError
`pandas.errors.SettingWithCopyError` Exception raised when trying to set on a copied slice from a DataFrame. ``` >>> pd.options.mode.chained_assignment = 'raise' >>> df = pd.DataFrame({'A': [1, 1, 1, 2, 2]}, columns=['A']) >>> df.loc[0:3]['A'] = 'a' ... # SettingWithCopyError: A value is trying to be set on a copy of a... ```
exception pandas.errors.SettingWithCopyError[source]# Exception raised when trying to set on a copied slice from a DataFrame. The mode.chained_assignment needs to be set to set to ‘raise.’ This can happen unintentionally when chained indexing. For more information on eveluation order, see the user guide. For more information on view vs. copy, see the user guide. Examples >>> pd.options.mode.chained_assignment = 'raise' >>> df = pd.DataFrame({'A': [1, 1, 1, 2, 2]}, columns=['A']) >>> df.loc[0:3]['A'] = 'a' ... # SettingWithCopyError: A value is trying to be set on a copy of a...
reference/api/pandas.errors.SettingWithCopyError.html
pandas.tseries.offsets.BusinessMonthBegin.is_quarter_end
`pandas.tseries.offsets.BusinessMonthBegin.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
BusinessMonthBegin.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.BusinessMonthBegin.is_quarter_end.html
pandas.DatetimeIndex.round
`pandas.DatetimeIndex.round` Perform round operation on the data to the specified freq. The frequency level to round the index to. Must be a fixed frequency like ‘S’ (second) not ‘ME’ (month end). See frequency aliases for a list of possible freq values. ``` >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq='T') >>> rng.round('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) ```
DatetimeIndex.round(*args, **kwargs)[source]# Perform round operation on the data to the specified freq. Parameters freqstr or OffsetThe frequency level to round the index to. Must be a fixed frequency like ‘S’ (second) not ‘ME’ (month end). See frequency aliases for a list of possible freq values. ambiguous‘infer’, bool-ndarray, ‘NaT’, default ‘raise’Only relevant for DatetimeIndex: ‘infer’ will attempt to infer fall dst-transition hours based on order bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) ‘NaT’ will return NaT where there are ambiguous times ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times. nonexistent‘shift_forward’, ‘shift_backward’, ‘NaT’, timedelta, default ‘raise’A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. ‘shift_forward’ will shift the nonexistent time forward to the closest existing time ‘shift_backward’ will shift the nonexistent time backward to the closest existing time ‘NaT’ will return NaT where there are nonexistent times timedelta objects will shift nonexistent times by the timedelta ‘raise’ will raise an NonExistentTimeError if there are nonexistent times. Returns DatetimeIndex, TimedeltaIndex, or SeriesIndex of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the same index for a Series. Raises ValueError if the freq cannot be converted. Notes If the timestamps have a timezone, rounding will take place relative to the local (“wall”) time and re-localized to the same timezone. When rounding near daylight savings time, use nonexistent and ambiguous to control the re-localization behavior. Examples DatetimeIndex >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq='T') >>> rng.round('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) Series >>> pd.Series(rng).dt.round("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] When rounding near a daylight savings time transition, use ambiguous or nonexistent to control how the timestamp should be re-localized. >>> rng_tz = pd.DatetimeIndex(["2021-10-31 03:30:00"], tz="Europe/Amsterdam") >>> rng_tz.floor("2H", ambiguous=False) DatetimeIndex(['2021-10-31 02:00:00+01:00'], dtype='datetime64[ns, Europe/Amsterdam]', freq=None) >>> rng_tz.floor("2H", ambiguous=True) DatetimeIndex(['2021-10-31 02:00:00+02:00'], dtype='datetime64[ns, Europe/Amsterdam]', freq=None)
reference/api/pandas.DatetimeIndex.round.html
pandas.merge_ordered
`pandas.merge_ordered` Perform a merge for ordered data with optional filling/interpolation. Designed for ordered data like time series data. Optionally perform group-wise merge (see examples). ``` >>> df1 = pd.DataFrame( ... { ... "key": ["a", "c", "e", "a", "c", "e"], ... "lvalue": [1, 2, 3, 1, 2, 3], ... "group": ["a", "a", "a", "b", "b", "b"] ... } ... ) >>> df1 key lvalue group 0 a 1 a 1 c 2 a 2 e 3 a 3 a 1 b 4 c 2 b 5 e 3 b ```
pandas.merge_ordered(left, right, on=None, left_on=None, right_on=None, left_by=None, right_by=None, fill_method=None, suffixes=('_x', '_y'), how='outer')[source]# Perform a merge for ordered data with optional filling/interpolation. Designed for ordered data like time series data. Optionally perform group-wise merge (see examples). Parameters leftDataFrame rightDataFrame onlabel or listField names to join on. Must be found in both DataFrames. left_onlabel or list, or array-likeField names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns. right_onlabel or list, or array-likeField names to join on in right DataFrame or vector/list of vectors per left_on docs. left_bycolumn name or list of column namesGroup left DataFrame by group columns and merge piece by piece with right DataFrame. right_bycolumn name or list of column namesGroup right DataFrame by group columns and merge piece by piece with left DataFrame. fill_method{‘ffill’, None}, default NoneInterpolation method for data. suffixeslist-like, default is (“_x”, “_y”)A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in left and right respectively. Pass a value of None instead of a string to indicate that the column name from left or right should be left as-is, with no suffix. At least one of the values must not be None. Changed in version 0.25.0. how{‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘outer’ left: use only keys from left frame (SQL: left outer join) right: use only keys from right frame (SQL: right outer join) outer: use union of keys from both frames (SQL: full outer join) inner: use intersection of keys from both frames (SQL: inner join). Returns DataFrameThe merged DataFrame output type will the be same as ‘left’, if it is a subclass of DataFrame. See also mergeMerge with a database-style join. merge_asofMerge on nearest keys. Examples >>> df1 = pd.DataFrame( ... { ... "key": ["a", "c", "e", "a", "c", "e"], ... "lvalue": [1, 2, 3, 1, 2, 3], ... "group": ["a", "a", "a", "b", "b", "b"] ... } ... ) >>> df1 key lvalue group 0 a 1 a 1 c 2 a 2 e 3 a 3 a 1 b 4 c 2 b 5 e 3 b >>> df2 = pd.DataFrame({"key": ["b", "c", "d"], "rvalue": [1, 2, 3]}) >>> df2 key rvalue 0 b 1 1 c 2 2 d 3 >>> merge_ordered(df1, df2, fill_method="ffill", left_by="group") key lvalue group rvalue 0 a 1 a NaN 1 b 1 a 1.0 2 c 2 a 2.0 3 d 2 a 3.0 4 e 3 a 3.0 5 a 1 b NaN 6 b 1 b 1.0 7 c 2 b 2.0 8 d 2 b 3.0 9 e 3 b 3.0
reference/api/pandas.merge_ordered.html
pandas.tseries.offsets.CustomBusinessMonthEnd.is_year_end
`pandas.tseries.offsets.CustomBusinessMonthEnd.is_year_end` Return boolean whether a timestamp occurs on the year end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False ```
CustomBusinessMonthEnd.is_year_end()# Return boolean whether a timestamp occurs on the year end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.is_year_end.html
Contributing to the code base
Contributing to the code base Table of Contents: Code standards Pre-commit Optional dependencies Backwards compatibility
Table of Contents: Code standards Pre-commit Optional dependencies Backwards compatibility Type hints Style guidelines pandas-specific types Validating type hints Testing type hints in code using pandas Testing with continuous integration Test-driven development Writing tests Using pytest Test structure Preferred pytest idioms Testing a warning Testing an exception Testing involving files Testing involving network connectivity Example Using hypothesis Running the test suite Running the performance test suite Documenting your code Code standards# Writing good code is not just about what you write. It is also about how you write it. During Continuous Integration testing, several tools will be run to check your code for stylistic errors. Generating any warnings will cause the test to fail. Thus, good style is a requirement for submitting code to pandas. There is a tool in pandas to help contributors verify their changes before contributing them to the project: ./ci/code_checks.sh The script validates the doctests, formatting in docstrings, and imported modules. It is possible to run the checks independently by using the parameters docstring, code, and doctests (e.g. ./ci/code_checks.sh doctests). In addition, because a lot of people use our library, it is important that we do not make sudden changes to the code that could have the potential to break a lot of user code as a result, that is, we need it to be as backwards compatible as possible to avoid mass breakages. In addition to ./ci/code_checks.sh, some extra checks (including static type checking) are run by pre-commit - see here for how to run them. Pre-commit# Additionally, Continuous Integration will run code formatting checks like black, flake8 (including a pandas-dev-flaker plugin), isort, and cpplint and more using pre-commit hooks Any warnings from these checks will cause the Continuous Integration to fail; therefore, it is helpful to run the check yourself before submitting code. This can be done by installing pre-commit: pip install pre-commit and then running: pre-commit install from the root of the pandas repository. Now all of the styling checks will be run each time you commit changes without your needing to run each one manually. In addition, using pre-commit will also allow you to more easily remain up-to-date with our code checks as they change. Note that if needed, you can skip these checks with git commit --no-verify. If you don’t want to use pre-commit as part of your workflow, you can still use it to run its checks with: pre-commit run --files <files you have modified> without needing to have done pre-commit install beforehand. If you want to run checks on all recently committed files on upstream/main you can use: pre-commit run --from-ref=upstream/main --to-ref=HEAD --all-files without needing to have done pre-commit install beforehand. Note You may want to periodically run pre-commit gc, to clean up repos which are no longer used. Note If you have conflicting installations of virtualenv, then you may get an error - see here. Also, due to a bug in virtualenv, you may run into issues if you’re using conda. To solve this, you can downgrade virtualenv to version 20.0.33. Optional dependencies# Optional dependencies (e.g. matplotlib) should be imported with the private helper pandas.compat._optional.import_optional_dependency. This ensures a consistent error message when the dependency is not met. All methods using an optional dependency should include a test asserting that an ImportError is raised when the optional dependency is not found. This test should be skipped if the library is present. All optional dependencies should be documented in Optional dependencies and the minimum required version should be set in the pandas.compat._optional.VERSIONS dict. Backwards compatibility# Please try to maintain backward compatibility. pandas has lots of users with lots of existing code, so don’t break it if at all possible. If you think breakage is required, clearly state why as part of the pull request. Also, be careful when changing method signatures and add deprecation warnings where needed. Also, add the deprecated sphinx directive to the deprecated functions or methods. If a function with the same arguments as the one being deprecated exist, you can use the pandas.util._decorators.deprecate: from pandas.util._decorators import deprecate deprecate('old_func', 'new_func', '1.1.0') Otherwise, you need to do it manually: import warnings from pandas.util._exceptions import find_stack_level def old_func(): """Summary of the function. .. deprecated:: 1.1.0 Use new_func instead. """ warnings.warn( 'Use new_func instead.', FutureWarning, stacklevel=find_stack_level(), ) new_func() def new_func(): pass You’ll also need to Write a new test that asserts a warning is issued when calling with the deprecated argument Update all of pandas existing tests and code to use the new argument See Testing a warning for more. Type hints# pandas strongly encourages the use of PEP 484 style type hints. New development should contain type hints and pull requests to annotate existing code are accepted as well! Style guidelines# Type imports should follow the from typing import ... convention. Some types do not need to be imported since PEP 585 some builtin constructs, such as list and tuple, can directly be used for type annotations. So rather than import typing primes: typing.List[int] = [] You should write primes: list[int] = [] Optional should be avoided in favor of the shorter | None, so instead of from typing import Union maybe_primes: list[Union[int, None]] = [] or from typing import Optional maybe_primes: list[Optional[int]] = [] You should write from __future__ import annotations # noqa: F404 maybe_primes: list[int | None] = [] In some cases in the code base classes may define class variables that shadow builtins. This causes an issue as described in Mypy 1775. The defensive solution here is to create an unambiguous alias of the builtin and use that without your annotation. For example, if you come across a definition like class SomeClass1: str = None The appropriate way to annotate this would be as follows str_type = str class SomeClass2: str: str_type = None In some cases you may be tempted to use cast from the typing module when you know better than the analyzer. This occurs particularly when using custom inference functions. For example from typing import cast from pandas.core.dtypes.common import is_number def cannot_infer_bad(obj: Union[str, int, float]): if is_number(obj): ... else: # Reasonably only str objects would reach this but... obj = cast(str, obj) # Mypy complains without this! return obj.upper() The limitation here is that while a human can reasonably understand that is_number would catch the int and float types mypy cannot make that same inference just yet (see mypy #5206. While the above works, the use of cast is strongly discouraged. Where applicable a refactor of the code to appease static analysis is preferable def cannot_infer_good(obj: Union[str, int, float]): if isinstance(obj, str): return obj.upper() else: ... With custom types and inference this is not always possible so exceptions are made, but every effort should be exhausted to avoid cast before going down such paths. pandas-specific types# Commonly used types specific to pandas will appear in pandas._typing and you should use these where applicable. This module is private for now but ultimately this should be exposed to third party libraries who want to implement type checking against pandas. For example, quite a few functions in pandas accept a dtype argument. This can be expressed as a string like "object", a numpy.dtype like np.int64 or even a pandas ExtensionDtype like pd.CategoricalDtype. Rather than burden the user with having to constantly annotate all of those options, this can simply be imported and reused from the pandas._typing module from pandas._typing import Dtype def as_type(dtype: Dtype) -> ...: ... This module will ultimately house types for repeatedly used concepts like “path-like”, “array-like”, “numeric”, etc… and can also hold aliases for commonly appearing parameters like axis. Development of this module is active so be sure to refer to the source for the most up to date list of available types. Validating type hints# pandas uses mypy and pyright to statically analyze the code base and type hints. After making any change you can ensure your type hints are correct by running # the following might fail if the installed pandas version does not correspond to your local git version pre-commit run --hook-stage manual --all-files # if the above fails due to stubtest SKIP=stubtest pre-commit run --hook-stage manual --all-files in your activated python environment. A recent version of numpy (>=1.22.0) is required for type validation. Testing type hints in code using pandas# Warning Pandas is not yet a py.typed library (PEP 561)! The primary purpose of locally declaring pandas as a py.typed library is to test and improve the pandas-builtin type annotations. Until pandas becomes a py.typed library, it is possible to easily experiment with the type annotations shipped with pandas by creating an empty file named “py.typed” in the pandas installation folder: python -c "import pandas; import pathlib; (pathlib.Path(pandas.__path__[0]) / 'py.typed').touch()" The existence of the py.typed file signals to type checkers that pandas is already a py.typed library. This makes type checkers aware of the type annotations shipped with pandas. Testing with continuous integration# The pandas test suite will run automatically on GitHub Actions continuous integration services, once your pull request is submitted. However, if you wish to run the test suite on a branch prior to submitting the pull request, then the continuous integration services need to be hooked to your GitHub repository. Instructions are here for GitHub Actions. A pull-request will be considered for merging when you have an all ‘green’ build. If any tests are failing, then you will get a red ‘X’, where you can click through to see the individual failed tests. This is an example of a green build. Test-driven development# pandas is serious about testing and strongly encourages contributors to embrace test-driven development (TDD). This development process “relies on the repetition of a very short development cycle: first the developer writes an (initially failing) automated test case that defines a desired improvement or new function, then produces the minimum amount of code to pass that test.” So, before actually writing any code, you should write your tests. Often the test can be taken from the original GitHub issue. However, it is always worth considering additional use cases and writing corresponding tests. Adding tests is one of the most common requests after code is pushed to pandas. Therefore, it is worth getting in the habit of writing tests ahead of time so this is never an issue. Writing tests# All tests should go into the tests subdirectory of the specific package. This folder contains many current examples of tests, and we suggest looking to these for inspiration. Ideally, there should be one, and only one, obvious place for a test to reside. Until we reach that ideal, these are some rules of thumb for where a test should be located. Does your test depend only on code in pd._libs.tslibs? This test likely belongs in one of: tests.tslibs Note No file in tests.tslibs should import from any pandas modules outside of pd._libs.tslibs tests.scalar tests.tseries.offsets Does your test depend only on code in pd._libs? This test likely belongs in one of: tests.libs tests.groupby.test_libgroupby Is your test for an arithmetic or comparison method? This test likely belongs in one of: tests.arithmetic Note These are intended for tests that can be shared to test the behavior of DataFrame/Series/Index/ExtensionArray using the box_with_array fixture. tests.frame.test_arithmetic tests.series.test_arithmetic Is your test for a reduction method (min, max, sum, prod, …)? This test likely belongs in one of: tests.reductions Note These are intended for tests that can be shared to test the behavior of DataFrame/Series/Index/ExtensionArray. tests.frame.test_reductions tests.series.test_reductions tests.test_nanops Is your test for an indexing method? This is the most difficult case for deciding where a test belongs, because there are many of these tests, and many of them test more than one method (e.g. both Series.__getitem__ and Series.loc.__getitem__) Is the test specifically testing an Index method (e.g. Index.get_loc, Index.get_indexer)? This test likely belongs in one of: tests.indexes.test_indexing tests.indexes.fooindex.test_indexing Within that files there should be a method-specific test class e.g. TestGetLoc. In most cases, neither Series nor DataFrame objects should be needed in these tests. Is the test for a Series or DataFrame indexing method other than __getitem__ or __setitem__, e.g. xs, where, take, mask, lookup, or insert? This test likely belongs in one of: tests.frame.indexing.test_methodname tests.series.indexing.test_methodname Is the test for any of loc, iloc, at, or iat? This test likely belongs in one of: tests.indexing.test_loc tests.indexing.test_iloc tests.indexing.test_at tests.indexing.test_iat Within the appropriate file, test classes correspond to either types of indexers (e.g. TestLocBooleanMask) or major use cases (e.g. TestLocSetitemWithExpansion). See the note in section D) about tests that test multiple indexing methods. Is the test for Series.__getitem__, Series.__setitem__, DataFrame.__getitem__, or DataFrame.__setitem__? This test likely belongs in one of: tests.series.test_getitem tests.series.test_setitem tests.frame.test_getitem tests.frame.test_setitem If many cases such a test may test multiple similar methods, e.g. import pandas as pd import pandas._testing as tm def test_getitem_listlike_of_ints(): ser = pd.Series(range(5)) result = ser[[3, 4]] expected = pd.Series([2, 3]) tm.assert_series_equal(result, expected) result = ser.loc[[3, 4]] tm.assert_series_equal(result, expected) In cases like this, the test location should be based on the underlying method being tested. Or in the case of a test for a bugfix, the location of the actual bug. So in this example, we know that Series.__getitem__ calls Series.loc.__getitem__, so this is really a test for loc.__getitem__. So this test belongs in tests.indexing.test_loc. Is your test for a DataFrame or Series method? Is the method a plotting method? This test likely belongs in one of: tests.plotting Is the method an IO method? This test likely belongs in one of: tests.io Otherwise This test likely belongs in one of: tests.series.methods.test_mymethod tests.frame.methods.test_mymethod Note If a test can be shared between DataFrame/Series using the frame_or_series fixture, by convention it goes in the tests.frame file. Is your test for an Index method, not depending on Series/DataFrame? This test likely belongs in one of: tests.indexes Is your test for one of the pandas-provided ExtensionArrays (Categorical, DatetimeArray, TimedeltaArray, PeriodArray, IntervalArray, PandasArray, FloatArray, BoolArray, StringArray)? This test likely belongs in one of: tests.arrays Is your test for all ExtensionArray subclasses (the “EA Interface”)? This test likely belongs in one of: tests.extension Using pytest# Test structure# pandas existing test structure is mostly class-based, meaning that you will typically find tests wrapped in a class. class TestReallyCoolFeature: def test_cool_feature_aspect(self): pass We prefer a more functional style using the pytest framework, which offers a richer testing framework that will facilitate testing and developing. Thus, instead of writing test classes, we will write test functions like this: def test_really_cool_feature(): pass Preferred pytest idioms# Functional tests named def test_* and only take arguments that are either fixtures or parameters. Use a bare assert for testing scalars and truth-testing Use tm.assert_series_equal(result, expected) and tm.assert_frame_equal(result, expected) for comparing Series and DataFrame results respectively. Use @pytest.mark.parameterize when testing multiple cases. Use pytest.mark.xfail when a test case is expected to fail. Use pytest.mark.skip when a test case is never expected to pass. Use pytest.param when a test case needs a particular mark. Use @pytest.fixture if multiple tests can share a setup object. Warning Do not use pytest.xfail (which is different than pytest.mark.xfail) since it immediately stops the test and does not check if the test will fail. If this is the behavior you desire, use pytest.skip instead. If a test is known to fail but the manner in which it fails is not meant to be captured, use pytest.mark.xfail It is common to use this method for a test that exhibits buggy behavior or a non-implemented feature. If the failing test has flaky behavior, use the argument strict=False. This will make it so pytest does not fail if the test happens to pass. Prefer the decorator @pytest.mark.xfail and the argument pytest.param over usage within a test so that the test is appropriately marked during the collection phase of pytest. For xfailing a test that involves multiple parameters, a fixture, or a combination of these, it is only possible to xfail during the testing phase. To do so, use the request fixture: def test_xfail(request): mark = pytest.mark.xfail(raises=TypeError, reason="Indicate why here") request.node.add_marker(mark) xfail is not to be used for tests involving failure due to invalid user arguments. For these tests, we need to verify the correct exception type and error message is being raised, using pytest.raises instead. Testing a warning# Use tm.assert_produces_warning as a context manager to check that a block of code raises a warning. with tm.assert_produces_warning(DeprecationWarning): pd.deprecated_function() If a warning should specifically not happen in a block of code, pass False into the context manager. with tm.assert_produces_warning(False): pd.no_warning_function() If you have a test that would emit a warning, but you aren’t actually testing the warning itself (say because it’s going to be removed in the future, or because we’re matching a 3rd-party library’s behavior), then use pytest.mark.filterwarnings to ignore the error. @pytest.mark.filterwarnings("ignore:msg:category") def test_thing(self): pass If you need finer-grained control, you can use Python’s warnings module to control whether a warning is ignored or raised at different places within a single test. with warnings.catch_warnings(): warnings.simplefilter("ignore", FutureWarning) Testing an exception# Use pytest.raises as a context manager with the specific exception subclass (i.e. never use Exception) and the exception message in match. with pytest.raises(ValueError, match="an error"): raise ValueError("an error") Testing involving files# The tm.ensure_clean context manager creates a temporary file for testing, with a generated filename (or your filename if provided), that is automatically deleted when the context block is exited. with tm.ensure_clean('my_file_path') as path: # do something with the path Testing involving network connectivity# It is highly discouraged to add a test that connects to the internet due to flakiness of network connections and lack of ownership of the server that is being connected to. If network connectivity is absolutely required, use the tm.network decorator. @tm.network # noqa def test_network(): result = package.call_to_internet() If the test requires data from a specific website, specify check_before_test=True and the site in the decorator. @tm.network("https://www.somespecificsite.com", check_before_test=True) def test_network(): result = pd.read_html("https://www.somespecificsite.com") Example# Here is an example of a self-contained set of tests in a file pandas/tests/test_cool_feature.py that illustrate multiple features that we like to use. Please remember to add the Github Issue Number as a comment to a new test. import pytest import numpy as np import pandas as pd @pytest.mark.parametrize('dtype', ['int8', 'int16', 'int32', 'int64']) def test_dtypes(dtype): assert str(np.dtype(dtype)) == dtype @pytest.mark.parametrize( 'dtype', ['float32', pytest.param('int16', marks=pytest.mark.skip), pytest.param('int32', marks=pytest.mark.xfail( reason='to show how it works'))]) def test_mark(dtype): assert str(np.dtype(dtype)) == 'float32' @pytest.fixture def series(): return pd.Series([1, 2, 3]) @pytest.fixture(params=['int8', 'int16', 'int32', 'int64']) def dtype(request): return request.param def test_series(series, dtype): # GH <issue_number> result = series.astype(dtype) assert result.dtype == dtype expected = pd.Series([1, 2, 3], dtype=dtype) tm.assert_series_equal(result, expected) A test run of this yields ((pandas) bash-3.2$ pytest test_cool_feature.py -v =========================== test session starts =========================== platform darwin -- Python 3.6.2, pytest-3.6.0, py-1.4.31, pluggy-0.4.0 collected 11 items tester.py::test_dtypes[int8] PASSED tester.py::test_dtypes[int16] PASSED tester.py::test_dtypes[int32] PASSED tester.py::test_dtypes[int64] PASSED tester.py::test_mark[float32] PASSED tester.py::test_mark[int16] SKIPPED tester.py::test_mark[int32] xfail tester.py::test_series[int8] PASSED tester.py::test_series[int16] PASSED tester.py::test_series[int32] PASSED tester.py::test_series[int64] PASSED Tests that we have parametrized are now accessible via the test name, for example we could run these with -k int8 to sub-select only those tests which match int8. ((pandas) bash-3.2$ pytest test_cool_feature.py -v -k int8 =========================== test session starts =========================== platform darwin -- Python 3.6.2, pytest-3.6.0, py-1.4.31, pluggy-0.4.0 collected 11 items test_cool_feature.py::test_dtypes[int8] PASSED test_cool_feature.py::test_series[int8] PASSED Using hypothesis# Hypothesis is a library for property-based testing. Instead of explicitly parametrizing a test, you can describe all valid inputs and let Hypothesis try to find a failing input. Even better, no matter how many random examples it tries, Hypothesis always reports a single minimal counterexample to your assertions - often an example that you would never have thought to test. See Getting Started with Hypothesis for more of an introduction, then refer to the Hypothesis documentation for details. import json from hypothesis import given, strategies as st any_json_value = st.deferred(lambda: st.one_of( st.none(), st.booleans(), st.floats(allow_nan=False), st.text(), st.lists(any_json_value), st.dictionaries(st.text(), any_json_value) )) @given(value=any_json_value) def test_json_roundtrip(value): result = json.loads(json.dumps(value)) assert value == result This test shows off several useful features of Hypothesis, as well as demonstrating a good use-case: checking properties that should hold over a large or complicated domain of inputs. To keep the pandas test suite running quickly, parametrized tests are preferred if the inputs or logic are simple, with Hypothesis tests reserved for cases with complex logic or where there are too many combinations of options or subtle interactions to test (or think of!) all of them. Running the test suite# The tests can then be run directly inside your Git clone (without having to install pandas) by typing: pytest pandas Often it is worth running only a subset of tests first around your changes before running the entire suite. The easiest way to do this is with: pytest pandas/path/to/test.py -k regex_matching_test_name Or with one of the following constructs: pytest pandas/tests/[test-module].py pytest pandas/tests/[test-module].py::[TestClass] pytest pandas/tests/[test-module].py::[TestClass]::[test_method] Using pytest-xdist, one can speed up local testing on multicore machines. To use this feature, you will need to install pytest-xdist via: pip install pytest-xdist Two scripts are provided to assist with this. These scripts distribute testing across 4 threads. On Unix variants, one can type: test_fast.sh On Windows, one can type: test_fast.bat This can significantly reduce the time it takes to locally run tests before submitting a pull request. For more, see the pytest documentation. Furthermore one can run pd.test() with an imported pandas to run tests similarly. Running the performance test suite# Performance matters and it is worth considering whether your code has introduced performance regressions. pandas is in the process of migrating to asv benchmarks to enable easy monitoring of the performance of critical pandas operations. These benchmarks are all found in the pandas/asv_bench directory, and the test results can be found here. To use all features of asv, you will need either conda or virtualenv. For more details please check the asv installation webpage. To install asv: pip install git+https://github.com/airspeed-velocity/asv If you need to run a benchmark, change your directory to asv_bench/ and run: asv continuous -f 1.1 upstream/main HEAD You can replace HEAD with the name of the branch you are working on, and report benchmarks that changed by more than 10%. The command uses conda by default for creating the benchmark environments. If you want to use virtualenv instead, write: asv continuous -f 1.1 -E virtualenv upstream/main HEAD The -E virtualenv option should be added to all asv commands that run benchmarks. The default value is defined in asv.conf.json. Running the full benchmark suite can be an all-day process, depending on your hardware and its resource utilization. However, usually it is sufficient to paste only a subset of the results into the pull request to show that the committed changes do not cause unexpected performance regressions. You can run specific benchmarks using the -b flag, which takes a regular expression. For example, this will only run benchmarks from a pandas/asv_bench/benchmarks/groupby.py file: asv continuous -f 1.1 upstream/main HEAD -b ^groupby If you want to only run a specific group of benchmarks from a file, you can do it using . as a separator. For example: asv continuous -f 1.1 upstream/main HEAD -b groupby.GroupByMethods will only run the GroupByMethods benchmark defined in groupby.py. You can also run the benchmark suite using the version of pandas already installed in your current Python environment. This can be useful if you do not have virtualenv or conda, or are using the setup.py develop approach discussed above; for the in-place build you need to set PYTHONPATH, e.g. PYTHONPATH="$PWD/.." asv [remaining arguments]. You can run benchmarks using an existing Python environment by: asv run -e -E existing or, to use a specific Python interpreter,: asv run -e -E existing:python3.6 This will display stderr from the benchmarks, and use your local python that comes from your $PATH. Information on how to write a benchmark and how to use asv can be found in the asv documentation. Documenting your code# Changes should be reflected in the release notes located in doc/source/whatsnew/vx.y.z.rst. This file contains an ongoing change log for each release. Add an entry to this file to document your fix, enhancement or (unavoidable) breaking change. Make sure to include the GitHub issue number when adding your entry (using :issue:`1234` where 1234 is the issue/pull request number). Your entry should be written using full sentences and proper grammar. When mentioning parts of the API, use a Sphinx :func:, :meth:, or :class: directive as appropriate. Not all public API functions and methods have a documentation page; ideally links would only be added if they resolve. You can usually find similar examples by checking the release notes for one of the previous versions. If your code is a bugfix, add your entry to the relevant bugfix section. Avoid adding to the Other section; only in rare cases should entries go there. Being as concise as possible, the description of the bug should include how the user may encounter it and an indication of the bug itself, e.g. “produces incorrect results” or “incorrectly raises”. It may be necessary to also indicate the new behavior. If your code is an enhancement, it is most likely necessary to add usage examples to the existing documentation. This can be done following the section regarding documentation. Further, to let users know when this feature was added, the versionadded directive is used. The sphinx syntax for that is: .. versionadded:: 1.1.0 This will put the text New in version 1.1.0 wherever you put the sphinx directive. This should also be put in the docstring when adding a new function or method (example) or a new keyword argument (example).
development/contributing_codebase.html
pandas.tseries.offsets.YearEnd.normalize
pandas.tseries.offsets.YearEnd.normalize
YearEnd.normalize#
reference/api/pandas.tseries.offsets.YearEnd.normalize.html
pandas.tseries.offsets.CustomBusinessMonthEnd
`pandas.tseries.offsets.CustomBusinessMonthEnd` Attributes base
class pandas.tseries.offsets.CustomBusinessMonthEnd# Attributes base Returns a copy of the calling offset object with n=1 and all other attributes equal. cbday_roll Define default roll function to be called in apply method. freqstr Return a string representing the frequency. kwds Return a dict of extra parameters for the offset. month_roll Define default roll function to be called in apply method. name Return a string representing the base frequency. offset Alias for self._offset. calendar holidays m_offset n nanos normalize rule_code weekmask Methods __call__(*args, **kwargs) Call self as a function. apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. copy Return a copy of the frequency. is_anchored Return boolean whether the frequency is a unit frequency (n=1). is_month_end Return boolean whether a timestamp occurs on the month end. is_month_start Return boolean whether a timestamp occurs on the month start. is_on_offset Return boolean whether a timestamp intersects with this frequency. is_quarter_end Return boolean whether a timestamp occurs on the quarter end. is_quarter_start Return boolean whether a timestamp occurs on the quarter start. is_year_end Return boolean whether a timestamp occurs on the year end. is_year_start Return boolean whether a timestamp occurs on the year start. rollback Roll provided date backward to next offset only if not on offset. rollforward Roll provided date forward to next offset only if not on offset. apply isAnchored onOffset
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.html
pandas.core.groupby.GroupBy.head
`pandas.core.groupby.GroupBy.head` Return first n rows of each group. ``` >>> df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], ... columns=['A', 'B']) >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(-1) A B 0 1 2 ```
final GroupBy.head(n=5)[source]# Return first n rows of each group. Similar to .apply(lambda x: x.head(n)), but it returns a subset of rows from the original DataFrame with original index and order preserved (as_index flag is ignored). Parameters nintIf positive: number of entries to include from start of each group. If negative: number of entries to exclude from end of each group. Returns Series or DataFrameSubset of original Series or DataFrame as determined by n. See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame. Examples >>> df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], ... columns=['A', 'B']) >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(-1) A B 0 1 2
reference/api/pandas.core.groupby.GroupBy.head.html
pandas.Series.str.islower
`pandas.Series.str.islower` Check whether all characters in each string are lowercase. This is equivalent to running the Python string method str.islower() for each element of the Series/Index. If a string has zero characters, False is returned for that check. ``` >>> s1 = pd.Series(['one', 'one1', '1', '']) ```
Series.str.islower()[source]# Check whether all characters in each string are lowercase. This is equivalent to running the Python string method str.islower() for each element of the Series/Index. If a string has zero characters, False is returned for that check. Returns Series or Index of boolSeries or Index of boolean values with the same length as the original Series/Index. See also Series.str.isalphaCheck whether all characters are alphabetic. Series.str.isnumericCheck whether all characters are numeric. Series.str.isalnumCheck whether all characters are alphanumeric. Series.str.isdigitCheck whether all characters are digits. Series.str.isdecimalCheck whether all characters are decimal. Series.str.isspaceCheck whether all characters are whitespace. Series.str.islowerCheck whether all characters are lowercase. Series.str.isupperCheck whether all characters are uppercase. Series.str.istitleCheck whether all characters are titlecase. Examples Checks for Alphabetic and Numeric Characters >>> s1 = pd.Series(['one', 'one1', '1', '']) >>> s1.str.isalpha() 0 True 1 False 2 False 3 False dtype: bool >>> s1.str.isnumeric() 0 False 1 False 2 True 3 False dtype: bool >>> s1.str.isalnum() 0 True 1 True 2 True 3 False dtype: bool Note that checks against characters mixed with any additional punctuation or whitespace will evaluate to false for an alphanumeric check. >>> s2 = pd.Series(['A B', '1.5', '3,000']) >>> s2.str.isalnum() 0 False 1 False 2 False dtype: bool More Detailed Checks for Numeric Characters There are several different but overlapping sets of numeric characters that can be checked for. >>> s3 = pd.Series(['23', '³', '⅕', '']) The s3.str.isdecimal method checks for characters used to form numbers in base 10. >>> s3.str.isdecimal() 0 True 1 False 2 False 3 False dtype: bool The s.str.isdigit method is the same as s3.str.isdecimal but also includes special digits, like superscripted and subscripted digits in unicode. >>> s3.str.isdigit() 0 True 1 True 2 False 3 False dtype: bool The s.str.isnumeric method is the same as s3.str.isdigit but also includes other characters that can represent quantities such as unicode fractions. >>> s3.str.isnumeric() 0 True 1 True 2 True 3 False dtype: bool Checks for Whitespace >>> s4 = pd.Series([' ', '\t\r\n ', '']) >>> s4.str.isspace() 0 True 1 True 2 False dtype: bool Checks for Character Case >>> s5 = pd.Series(['leopard', 'Golden Eagle', 'SNAKE', '']) >>> s5.str.islower() 0 True 1 False 2 False 3 False dtype: bool >>> s5.str.isupper() 0 False 1 False 2 True 3 False dtype: bool The s5.str.istitle method checks for whether all words are in title case (whether only the first letter of each word is capitalized). Words are assumed to be as any sequence of non-numeric characters separated by whitespace characters. >>> s5.str.istitle() 0 False 1 True 2 False 3 False dtype: bool
reference/api/pandas.Series.str.islower.html
pandas.DataFrame.value_counts
`pandas.DataFrame.value_counts` Return a Series containing counts of unique rows in the DataFrame. ``` >>> df = pd.DataFrame({'num_legs': [2, 4, 4, 6], ... 'num_wings': [2, 0, 0, 0]}, ... index=['falcon', 'dog', 'cat', 'ant']) >>> df num_legs num_wings falcon 2 2 dog 4 0 cat 4 0 ant 6 0 ```
DataFrame.value_counts(subset=None, normalize=False, sort=True, ascending=False, dropna=True)[source]# Return a Series containing counts of unique rows in the DataFrame. New in version 1.1.0. Parameters subsetlist-like, optionalColumns to use when counting unique combinations. normalizebool, default FalseReturn proportions rather than frequencies. sortbool, default TrueSort by frequencies. ascendingbool, default FalseSort in ascending order. dropnabool, default TrueDon’t include counts of rows that contain NA values. New in version 1.3.0. Returns Series See also Series.value_countsEquivalent method on Series. Notes The returned Series will have a MultiIndex with one level per input column. By default, rows that contain any NA values are omitted from the result. By default, the resulting Series will be in descending order so that the first element is the most frequently-occurring row. Examples >>> df = pd.DataFrame({'num_legs': [2, 4, 4, 6], ... 'num_wings': [2, 0, 0, 0]}, ... index=['falcon', 'dog', 'cat', 'ant']) >>> df num_legs num_wings falcon 2 2 dog 4 0 cat 4 0 ant 6 0 >>> df.value_counts() num_legs num_wings 4 0 2 2 2 1 6 0 1 dtype: int64 >>> df.value_counts(sort=False) num_legs num_wings 2 2 1 4 0 2 6 0 1 dtype: int64 >>> df.value_counts(ascending=True) num_legs num_wings 2 2 1 6 0 1 4 0 2 dtype: int64 >>> df.value_counts(normalize=True) num_legs num_wings 4 0 0.50 2 2 0.25 6 0 0.25 dtype: float64 With dropna set to False we can also count rows with NA values. >>> df = pd.DataFrame({'first_name': ['John', 'Anne', 'John', 'Beth'], ... 'middle_name': ['Smith', pd.NA, pd.NA, 'Louise']}) >>> df first_name middle_name 0 John Smith 1 Anne <NA> 2 John <NA> 3 Beth Louise >>> df.value_counts() first_name middle_name Beth Louise 1 John Smith 1 dtype: int64 >>> df.value_counts(dropna=False) first_name middle_name Anne NaN 1 Beth Louise 1 John Smith 1 NaN 1 dtype: int64
reference/api/pandas.DataFrame.value_counts.html
pandas.tseries.offsets.SemiMonthBegin.is_anchored
`pandas.tseries.offsets.SemiMonthBegin.is_anchored` Return boolean whether the frequency is a unit frequency (n=1). ``` >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False ```
SemiMonthBegin.is_anchored()# Return boolean whether the frequency is a unit frequency (n=1). Examples >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False
reference/api/pandas.tseries.offsets.SemiMonthBegin.is_anchored.html
pandas.Series.iteritems
`pandas.Series.iteritems` Lazily iterate over (index, value) tuples.
Series.iteritems()[source]# Lazily iterate over (index, value) tuples. Deprecated since version 1.5.0: iteritems is deprecated and will be removed in a future version. Use .items instead. This method returns an iterable tuple (index, value). This is convenient if you want to create a lazy iterator. Returns iterableIterable of tuples containing the (index, value) pairs from a Series. See also Series.itemsRecommended alternative. DataFrame.itemsIterate over (column name, Series) pairs. DataFrame.iterrowsIterate over DataFrame rows as (index, Series) pairs.
reference/api/pandas.Series.iteritems.html
pandas.DataFrame.to_sql
`pandas.DataFrame.to_sql` Write records stored in a DataFrame to a SQL database. ``` >>> from sqlalchemy import create_engine >>> engine = create_engine('sqlite://', echo=False) ```
DataFrame.to_sql(name, con, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None, method=None)[source]# Write records stored in a DataFrame to a SQL database. Databases supported by SQLAlchemy [1] are supported. Tables can be newly created, appended to, or overwritten. Parameters namestrName of SQL table. consqlalchemy.engine.(Engine or Connection) or sqlite3.ConnectionUsing SQLAlchemy makes it possible to use any DB supported by that library. Legacy support is provided for sqlite3.Connection objects. The user is responsible for engine disposal and connection closure for the SQLAlchemy connectable See here. schemastr, optionalSpecify the schema (if database flavor supports this). If None, use default schema. if_exists{‘fail’, ‘replace’, ‘append’}, default ‘fail’How to behave if the table already exists. fail: Raise a ValueError. replace: Drop the table before inserting new values. append: Insert new values to the existing table. indexbool, default TrueWrite DataFrame index as a column. Uses index_label as the column name in the table. index_labelstr or sequence, default NoneColumn label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksizeint, optionalSpecify the number of rows in each batch to be written at a time. By default, all rows will be written at once. dtypedict or scalar, optionalSpecifying the datatype for columns. If a dictionary is used, the keys should be the column names and the values should be the SQLAlchemy types or strings for the sqlite3 legacy mode. If a scalar is provided, it will be applied to all columns. method{None, ‘multi’, callable}, optionalControls the SQL insertion clause used: None : Uses standard SQL INSERT clause (one per row). ‘multi’: Pass multiple values in a single INSERT clause. callable with signature (pd_table, conn, keys, data_iter). Details and a sample callable implementation can be found in the section insert method. Returns None or intNumber of rows affected by to_sql. None is returned if the callable passed into method does not return an integer number of rows. The number of returned rows affected is the sum of the rowcount attribute of sqlite3.Cursor or SQLAlchemy connectable which may not reflect the exact number of written rows as stipulated in the sqlite3 or SQLAlchemy. New in version 1.4.0. Raises ValueErrorWhen the table already exists and if_exists is ‘fail’ (the default). See also read_sqlRead a DataFrame from a table. Notes Timezone aware datetime columns will be written as Timestamp with timezone type with SQLAlchemy if supported by the database. Otherwise, the datetimes will be stored as timezone unaware timestamps local to the original timezone. References 1 https://docs.sqlalchemy.org 2 https://www.python.org/dev/peps/pep-0249/ Examples Create an in-memory SQLite database. >>> from sqlalchemy import create_engine >>> engine = create_engine('sqlite://', echo=False) Create a table from scratch with 3 rows. >>> df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']}) >>> df name 0 User 1 1 User 2 2 User 3 >>> df.to_sql('users', con=engine) 3 >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3')] An sqlalchemy.engine.Connection can also be passed to con: >>> with engine.begin() as connection: ... df1 = pd.DataFrame({'name' : ['User 4', 'User 5']}) ... df1.to_sql('users', con=connection, if_exists='append') 2 This is allowed to support operations that require that the same DBAPI connection is used for the entire operation. >>> df2 = pd.DataFrame({'name' : ['User 6', 'User 7']}) >>> df2.to_sql('users', con=engine, if_exists='append') 2 >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3'), (0, 'User 4'), (1, 'User 5'), (0, 'User 6'), (1, 'User 7')] Overwrite the table with just df2. >>> df2.to_sql('users', con=engine, if_exists='replace', ... index_label='id') 2 >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 6'), (1, 'User 7')] Specify the dtype (especially useful for integers with missing values). Notice that while pandas is forced to store the data as floating point, the database supports nullable integers. When fetching the data with Python, we get back integer scalars. >>> df = pd.DataFrame({"A": [1, None, 2]}) >>> df A 0 1.0 1 NaN 2 2.0 >>> from sqlalchemy.types import Integer >>> df.to_sql('integers', con=engine, index=False, ... dtype={"A": Integer()}) 3 >>> engine.execute("SELECT * FROM integers").fetchall() [(1,), (None,), (2,)]
reference/api/pandas.DataFrame.to_sql.html
pandas.api.extensions.ExtensionDtype.is_dtype
`pandas.api.extensions.ExtensionDtype.is_dtype` Check if we match ‘dtype’. The object to check.
classmethod ExtensionDtype.is_dtype(dtype)[source]# Check if we match ‘dtype’. Parameters dtypeobjectThe object to check. Returns bool Notes The default implementation is True if cls.construct_from_string(dtype) is an instance of cls. dtype is an object and is an instance of cls dtype has a dtype attribute, and any of the above conditions is true for dtype.dtype.
reference/api/pandas.api.extensions.ExtensionDtype.is_dtype.html
pandas.tseries.offsets.Second.rule_code
pandas.tseries.offsets.Second.rule_code
Second.rule_code#
reference/api/pandas.tseries.offsets.Second.rule_code.html
pandas.tseries.offsets.BQuarterBegin.apply_index
`pandas.tseries.offsets.BQuarterBegin.apply_index` Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead.
BQuarterBegin.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.BQuarterBegin.apply_index.html
pandas.core.window.rolling.Window.std
`pandas.core.window.rolling.Window.std` Calculate the rolling weighted window standard deviation.
Window.std(ddof=1, numeric_only=False, *args, **kwargs)[source]# Calculate the rolling weighted window standard deviation. New in version 1.0.0. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. **kwargsKeyword arguments to configure the SciPy weighted window type. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.rollingCalling rolling with Series data. pandas.DataFrame.rollingCalling rolling with DataFrames. pandas.Series.stdAggregating std for Series. pandas.DataFrame.stdAggregating std for DataFrame.
reference/api/pandas.core.window.rolling.Window.std.html
pandas.DatetimeIndex.is_quarter_end
`pandas.DatetimeIndex.is_quarter_end` Indicator for whether the date is the last day of a quarter. ``` >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_end=df.dates.dt.is_quarter_end) dates quarter is_quarter_end 0 2017-03-30 1 False 1 2017-03-31 1 True 2 2017-04-01 2 False 3 2017-04-02 2 False ```
property DatetimeIndex.is_quarter_end[source]# Indicator for whether the date is the last day of a quarter. Returns is_quarter_endSeries or DatetimeIndexThe same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See also quarterReturn the quarter of the date. is_quarter_startSimilar property indicating the quarter start. Examples This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex. >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_end=df.dates.dt.is_quarter_end) dates quarter is_quarter_end 0 2017-03-30 1 False 1 2017-03-31 1 True 2 2017-04-01 2 False 3 2017-04-02 2 False >>> idx = pd.date_range('2017-03-30', periods=4) >>> idx DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'], dtype='datetime64[ns]', freq='D') >>> idx.is_quarter_end array([False, True, False, False])
reference/api/pandas.DatetimeIndex.is_quarter_end.html
pandas.Series.quantile
`pandas.Series.quantile` Return value at the given quantile. ``` >>> s = pd.Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64 ```
Series.quantile(q=0.5, interpolation='linear')[source]# Return value at the given quantile. Parameters qfloat or array-like, default 0.5 (50% quantile)The quantile(s) to compute, which can lie in range: 0 <= q <= 1. interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j: linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j. lower: i. higher: j. nearest: i or j whichever is nearest. midpoint: (i + j) / 2. Returns float or SeriesIf q is an array, a Series will be returned where the index is q and the values are the quantiles, otherwise a float will be returned. See also core.window.Rolling.quantileCalculate the rolling quantile. numpy.percentileReturns the q-th percentile(s) of the array elements. Examples >>> s = pd.Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64
reference/api/pandas.Series.quantile.html
pandas.DataFrame.reindex_like
`pandas.DataFrame.reindex_like` Return an object with matching indices as other object. ``` >>> df1 = pd.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', ... 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D')) ```
DataFrame.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)[source]# Return an object with matching indices as other object. Conform the object to the same index on all axes. Optional filling logic, placing NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False. Parameters otherObject of the same data typeIts row and column indices are used to define the new indices of this object. method{None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index. None (default): don’t fill gaps pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use next valid observation to fill gap nearest: use nearest valid observations to fill gap. copybool, default TrueReturn a new object, even if the passed indexes are the same. limitint, default NoneMaximum number of consecutive labels to fill for inexact matches. toleranceoptionalMaximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation abs(index[indexer] - target) <= tolerance. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type. Returns Series or DataFrameSame type as caller, but with changed indices on each axis. See also DataFrame.set_indexSet row labels. DataFrame.reset_indexRemove row labels or move them to new columns. DataFrame.reindexChange to new indices or expand indices. Notes Same as calling .reindex(index=other.index, columns=other.columns,...). Examples >>> df1 = pd.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', ... 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D')) >>> df1 temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium >>> df2 = pd.DataFrame([[28, 'low'], ... [30, 'low'], ... [35.1, 'medium']], ... columns=['temp_celsius', 'windspeed'], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15'])) >>> df2 temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium >>> df2.reindex_like(df1) temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN NaN 2014-02-15 35.1 NaN medium
reference/api/pandas.DataFrame.reindex_like.html
pandas.tseries.offsets.WeekOfMonth.rule_code
pandas.tseries.offsets.WeekOfMonth.rule_code
WeekOfMonth.rule_code#
reference/api/pandas.tseries.offsets.WeekOfMonth.rule_code.html
pandas.Series.to_period
`pandas.Series.to_period` Convert Series from DatetimeIndex to PeriodIndex.
Series.to_period(freq=None, copy=True)[source]# Convert Series from DatetimeIndex to PeriodIndex. Parameters freqstr, default NoneFrequency associated with the PeriodIndex. copybool, default TrueWhether or not to return a copy. Returns SeriesSeries with index converted to PeriodIndex.
reference/api/pandas.Series.to_period.html
pandas.tseries.offsets.CustomBusinessHour.is_on_offset
`pandas.tseries.offsets.CustomBusinessHour.is_on_offset` Return boolean whether a timestamp intersects with this frequency. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True ```
CustomBusinessHour.is_on_offset()# Return boolean whether a timestamp intersects with this frequency. Parameters dtdatetime.datetimeTimestamp to check intersections with frequency. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True >>> ts = pd.Timestamp(2022, 8, 6) >>> ts.day_name() 'Saturday' >>> freq = pd.offsets.BusinessDay(1) >>> freq.is_on_offset(ts) False
reference/api/pandas.tseries.offsets.CustomBusinessHour.is_on_offset.html
pandas.api.types.is_int64_dtype
`pandas.api.types.is_int64_dtype` Check whether the provided array or dtype is of the int64 dtype. ``` >>> is_int64_dtype(str) False >>> is_int64_dtype(np.int32) False >>> is_int64_dtype(np.int64) True >>> is_int64_dtype('int8') False >>> is_int64_dtype('Int8') False >>> is_int64_dtype(pd.Int64Dtype) True >>> is_int64_dtype(float) False >>> is_int64_dtype(np.uint64) # unsigned False >>> is_int64_dtype(np.array(['a', 'b'])) False >>> is_int64_dtype(np.array([1, 2], dtype=np.int64)) True >>> is_int64_dtype(pd.Index([1, 2.])) # float False >>> is_int64_dtype(np.array([1, 2], dtype=np.uint32)) # unsigned False ```
pandas.api.types.is_int64_dtype(arr_or_dtype)[source]# Check whether the provided array or dtype is of the int64 dtype. Parameters arr_or_dtypearray-like or dtypeThe array or dtype to check. Returns booleanWhether or not the array or dtype is of the int64 dtype. Notes Depending on system architecture, the return value of is_int64_dtype( int) will be True if the OS uses 64-bit integers and False if the OS uses 32-bit integers. Examples >>> is_int64_dtype(str) False >>> is_int64_dtype(np.int32) False >>> is_int64_dtype(np.int64) True >>> is_int64_dtype('int8') False >>> is_int64_dtype('Int8') False >>> is_int64_dtype(pd.Int64Dtype) True >>> is_int64_dtype(float) False >>> is_int64_dtype(np.uint64) # unsigned False >>> is_int64_dtype(np.array(['a', 'b'])) False >>> is_int64_dtype(np.array([1, 2], dtype=np.int64)) True >>> is_int64_dtype(pd.Index([1, 2.])) # float False >>> is_int64_dtype(np.array([1, 2], dtype=np.uint32)) # unsigned False
reference/api/pandas.api.types.is_int64_dtype.html
pandas.IntervalIndex.set_closed
`pandas.IntervalIndex.set_closed` Return an identical IntervalArray closed on the specified side. ``` >>> index = pd.arrays.IntervalArray.from_breaks(range(4)) >>> index <IntervalArray> [(0, 1], (1, 2], (2, 3]] Length: 3, dtype: interval[int64, right] >>> index.set_closed('both') <IntervalArray> [[0, 1], [1, 2], [2, 3]] Length: 3, dtype: interval[int64, both] ```
IntervalIndex.set_closed(*args, **kwargs)[source]# Return an identical IntervalArray closed on the specified side. Parameters closed{‘left’, ‘right’, ‘both’, ‘neither’}Whether the intervals are closed on the left-side, right-side, both or neither. Returns new_indexIntervalArray Examples >>> index = pd.arrays.IntervalArray.from_breaks(range(4)) >>> index <IntervalArray> [(0, 1], (1, 2], (2, 3]] Length: 3, dtype: interval[int64, right] >>> index.set_closed('both') <IntervalArray> [[0, 1], [1, 2], [2, 3]] Length: 3, dtype: interval[int64, both]
reference/api/pandas.IntervalIndex.set_closed.html
General functions
Data manipulations# melt(frame[, id_vars, value_vars, var_name, ...]) Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. pivot(data, *[, index, columns, values]) Return reshaped DataFrame organized by given index / column values. pivot_table(data[, values, index, columns, ...]) Create a spreadsheet-style pivot table as a DataFrame. crosstab(index, columns[, values, rownames, ...]) Compute a simple cross tabulation of two (or more) factors. cut(x, bins[, right, labels, retbins, ...]) Bin values into discrete intervals. qcut(x, q[, labels, retbins, precision, ...]) Quantile-based discretization function. merge(left, right[, how, on, left_on, ...]) Merge DataFrame or named Series objects with a database-style join. merge_ordered(left, right[, on, left_on, ...]) Perform a merge for ordered data with optional filling/interpolation. merge_asof(left, right[, on, left_on, ...]) Perform a merge by key distance. concat(objs, *[, axis, join, ignore_index, ...]) Concatenate pandas objects along a particular axis. get_dummies(data[, prefix, prefix_sep, ...]) Convert categorical variable into dummy/indicator variables. from_dummies(data[, sep, default_category]) Create a categorical DataFrame from a DataFrame of dummy variables. factorize(values[, sort, na_sentinel, ...]) Encode the object as an enumerated type or categorical variable. unique(values) Return unique values based on a hash table. wide_to_long(df, stubnames, i, j[, sep, suffix]) Unpivot a DataFrame from wide to long format. Top-level missing data# isna(obj) Detect missing values for an array-like object. isnull(obj) Detect missing values for an array-like object. notna(obj) Detect non-missing values for an array-like object. notnull(obj) Detect non-missing values for an array-like object. Top-level dealing with numeric data# to_numeric(arg[, errors, downcast]) Convert argument to a numeric type. Top-level dealing with datetimelike data# to_datetime(arg[, errors, dayfirst, ...]) Convert argument to datetime. to_timedelta(arg[, unit, errors]) Convert argument to timedelta. date_range([start, end, periods, freq, tz, ...]) Return a fixed frequency DatetimeIndex. bdate_range([start, end, periods, freq, tz, ...]) Return a fixed frequency DatetimeIndex with business day as the default. period_range([start, end, periods, freq, name]) Return a fixed frequency PeriodIndex. timedelta_range([start, end, periods, freq, ...]) Return a fixed frequency TimedeltaIndex with day as the default. infer_freq(index[, warn]) Infer the most likely frequency given the input index. Top-level dealing with Interval data# interval_range([start, end, periods, freq, ...]) Return a fixed frequency IntervalIndex. Top-level evaluation# eval(expr[, parser, engine, truediv, ...]) Evaluate a Python expression as a string using various backends. Hashing# util.hash_array(vals[, encoding, hash_key, ...]) Given a 1d array, return an array of deterministic integers. util.hash_pandas_object(obj[, index, ...]) Return a data hash of the Index/Series/DataFrame. Importing from other DataFrame libraries# api.interchange.from_dataframe(df[, allow_copy]) Build a pd.DataFrame from any DataFrame supporting the interchange protocol.
reference/general_functions.html
null
pandas.errors.NullFrequencyError
`pandas.errors.NullFrequencyError` Exception raised when a freq cannot be null.
exception pandas.errors.NullFrequencyError[source]# Exception raised when a freq cannot be null. Particularly DatetimeIndex.shift, TimedeltaIndex.shift, PeriodIndex.shift.
reference/api/pandas.errors.NullFrequencyError.html
pandas.Timestamp.tz
`pandas.Timestamp.tz` Alias for tzinfo. ``` >>> ts = pd.Timestamp(1584226800, unit='s', tz='Europe/Stockholm') >>> ts.tz <DstTzInfo 'Europe/Stockholm' CET+1:00:00 STD> ```
property Timestamp.tz# Alias for tzinfo. Examples >>> ts = pd.Timestamp(1584226800, unit='s', tz='Europe/Stockholm') >>> ts.tz <DstTzInfo 'Europe/Stockholm' CET+1:00:00 STD>
reference/api/pandas.Timestamp.tz.html
pandas.test
`pandas.test` Run the pandas test suite using pytest. By default, runs with the marks –skip-slow, –skip-network, –skip-db
pandas.test(extra_args=None)[source]# Run the pandas test suite using pytest. By default, runs with the marks –skip-slow, –skip-network, –skip-db Parameters extra_argslist[str], default NoneExtra marks to run the tests.
reference/api/pandas.test.html
pandas.core.resample.Resampler.interpolate
`pandas.core.resample.Resampler.interpolate` Interpolate values according to different methods. ``` >>> s = pd.Series([0, 1, np.nan, 3]) >>> s 0 0.0 1 1.0 2 NaN 3 3.0 dtype: float64 >>> s.interpolate() 0 0.0 1 1.0 2 2.0 3 3.0 dtype: float64 ```
Resampler.interpolate(method='linear', *, axis=0, limit=None, inplace=False, limit_direction='forward', limit_area=None, downcast=None, **kwargs)[source]# Interpolate values according to different methods. Fill NaN values using an interpolation method. Please note that only method='linear' is supported for DataFrame/Series with a MultiIndex. Parameters methodstr, default ‘linear’Interpolation technique to use. One of: ‘linear’: Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. ‘time’: Works on daily and higher resolution data to interpolate given length of interval. ‘index’, ‘values’: use the actual numerical values of the index. ‘pad’: Fill in NaNs using existing values. ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘spline’, ‘barycentric’, ‘polynomial’: Passed to scipy.interpolate.interp1d. These methods use the numerical values of the index. Both ‘polynomial’ and ‘spline’ require that you also specify an order (int), e.g. df.interpolate(method='polynomial', order=5). ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’, ‘akima’, ‘cubicspline’: Wrappers around the SciPy interpolation methods of similar names. See Notes. ‘from_derivatives’: Refers to scipy.interpolate.BPoly.from_derivatives which replaces ‘piecewise_polynomial’ interpolation method in scipy 0.18. axis{{0 or ‘index’, 1 or ‘columns’, None}}, default NoneAxis to interpolate along. For Series this parameter is unused and defaults to 0. limitint, optionalMaximum number of consecutive NaNs to fill. Must be greater than 0. inplacebool, default FalseUpdate the data in place if possible. limit_direction{{‘forward’, ‘backward’, ‘both’}}, OptionalConsecutive NaNs will be filled in this direction. If limit is specified: If ‘method’ is ‘pad’ or ‘ffill’, ‘limit_direction’ must be ‘forward’. If ‘method’ is ‘backfill’ or ‘bfill’, ‘limit_direction’ must be ‘backwards’. If ‘limit’ is not specified: If ‘method’ is ‘backfill’ or ‘bfill’, the default is ‘backward’ else the default is ‘forward’ Changed in version 1.1.0: raises ValueError if limit_direction is ‘forward’ or ‘both’ and method is ‘backfill’ or ‘bfill’. raises ValueError if limit_direction is ‘backward’ or ‘both’ and method is ‘pad’ or ‘ffill’. limit_area{{None, ‘inside’, ‘outside’}}, default NoneIf limit is specified, consecutive NaNs will be filled with this restriction. None: No fill restriction. ‘inside’: Only fill NaNs surrounded by valid values (interpolate). ‘outside’: Only fill NaNs outside valid values (extrapolate). downcastoptional, ‘infer’ or None, defaults to NoneDowncast dtypes if possible. ``**kwargs``optionalKeyword arguments to pass on to the interpolating function. Returns Series or DataFrame or NoneReturns the same object type as the caller, interpolated at some or all NaN values or None if inplace=True. See also fillnaFill missing values using different methods. scipy.interpolate.Akima1DInterpolatorPiecewise cubic polynomials (Akima interpolator). scipy.interpolate.BPoly.from_derivativesPiecewise polynomial in the Bernstein basis. scipy.interpolate.interp1dInterpolate a 1-D function. scipy.interpolate.KroghInterpolatorInterpolate polynomial (Krogh interpolator). scipy.interpolate.PchipInterpolatorPCHIP 1-d monotonic cubic interpolation. scipy.interpolate.CubicSplineCubic spline data interpolator. Notes The ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’ and ‘akima’ methods are wrappers around the respective SciPy implementations of similar names. These use the actual numerical values of the index. For more information on their behavior, see the SciPy documentation. Examples Filling in NaN in a Series via linear interpolation. >>> s = pd.Series([0, 1, np.nan, 3]) >>> s 0 0.0 1 1.0 2 NaN 3 3.0 dtype: float64 >>> s.interpolate() 0 0.0 1 1.0 2 2.0 3 3.0 dtype: float64 Filling in NaN in a Series by padding, but filling at most two consecutive NaN at a time. >>> s = pd.Series([np.nan, "single_one", np.nan, ... "fill_two_more", np.nan, np.nan, np.nan, ... 4.71, np.nan]) >>> s 0 NaN 1 single_one 2 NaN 3 fill_two_more 4 NaN 5 NaN 6 NaN 7 4.71 8 NaN dtype: object >>> s.interpolate(method='pad', limit=2) 0 NaN 1 single_one 2 single_one 3 fill_two_more 4 fill_two_more 5 fill_two_more 6 NaN 7 4.71 8 4.71 dtype: object Filling in NaN in a Series via polynomial interpolation or splines: Both ‘polynomial’ and ‘spline’ methods require that you also specify an order (int). >>> s = pd.Series([0, 2, np.nan, 8]) >>> s.interpolate(method='polynomial', order=2) 0 0.000000 1 2.000000 2 4.666667 3 8.000000 dtype: float64 Fill the DataFrame forward (that is, going down) along each column using linear interpolation. Note how the last entry in column ‘a’ is interpolated differently, because there is no entry after it to use for interpolation. Note how the first entry in column ‘b’ remains NaN, because there is no entry before it to use for interpolation. >>> df = pd.DataFrame([(0.0, np.nan, -1.0, 1.0), ... (np.nan, 2.0, np.nan, np.nan), ... (2.0, 3.0, np.nan, 9.0), ... (np.nan, 4.0, -4.0, 16.0)], ... columns=list('abcd')) >>> df a b c d 0 0.0 NaN -1.0 1.0 1 NaN 2.0 NaN NaN 2 2.0 3.0 NaN 9.0 3 NaN 4.0 -4.0 16.0 >>> df.interpolate(method='linear', limit_direction='forward', axis=0) a b c d 0 0.0 NaN -1.0 1.0 1 1.0 2.0 -2.0 5.0 2 2.0 3.0 -3.0 9.0 3 2.0 4.0 -4.0 16.0 Using polynomial interpolation. >>> df['d'].interpolate(method='polynomial', order=2) 0 1.0 1 4.0 2 9.0 3 16.0 Name: d, dtype: float64
reference/api/pandas.core.resample.Resampler.interpolate.html
pandas.melt
`pandas.melt` Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. ``` >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 ```
pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None, ignore_index=True)[source]# Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’. Parameters id_varstuple, list, or ndarray, optionalColumn(s) to use as identifier variables. value_varstuple, list, or ndarray, optionalColumn(s) to unpivot. If not specified, uses all columns that are not set as id_vars. var_namescalarName to use for the ‘variable’ column. If None it uses frame.columns.name or ‘variable’. value_namescalar, default ‘value’Name to use for the ‘value’ column. col_levelint or str, optionalIf columns are a MultiIndex then use this level to melt. ignore_indexbool, default TrueIf True, original index is ignored. If False, the original index is retained. Index labels will be repeated as necessary. New in version 1.1.0. Returns DataFrameUnpivoted DataFrame. See also DataFrame.meltIdentical method. pivot_tableCreate a spreadsheet-style pivot table as a DataFrame. DataFrame.pivotReturn reshaped DataFrame organized by given index / column values. DataFrame.explodeExplode a DataFrame from list-like columns to long format. Notes Reference the user guide for more examples. Examples >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> pd.melt(df, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> pd.melt(df, id_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of ‘variable’ and ‘value’ columns can be customized: >>> pd.melt(df, id_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 Original index values can be kept around: >>> pd.melt(df, id_vars=['A'], value_vars=['B', 'C'], ignore_index=False) A variable value 0 a B 1 1 b B 3 2 c B 5 0 a C 2 1 b C 4 2 c C 6 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> pd.melt(df, col_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> pd.melt(df, id_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5
reference/api/pandas.melt.html
pandas.tseries.offsets.BusinessMonthEnd.copy
`pandas.tseries.offsets.BusinessMonthEnd.copy` Return a copy of the frequency. ``` >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False ```
BusinessMonthEnd.copy()# Return a copy of the frequency. Examples >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False
reference/api/pandas.tseries.offsets.BusinessMonthEnd.copy.html
pandas.TimedeltaIndex.seconds
`pandas.TimedeltaIndex.seconds` Number of seconds (>= 0 and less than 1 day) for each element.
property TimedeltaIndex.seconds[source]# Number of seconds (>= 0 and less than 1 day) for each element.
reference/api/pandas.TimedeltaIndex.seconds.html
pandas.TimedeltaIndex.to_series
`pandas.TimedeltaIndex.to_series` Create a Series with both index and values equal to the index keys. Useful with map for returning an indexer based on an index. ``` >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') ```
TimedeltaIndex.to_series(index=None, name=None)[source]# Create a Series with both index and values equal to the index keys. Useful with map for returning an indexer based on an index. Parameters indexIndex, optionalIndex of resulting Series. If None, defaults to original index. namestr, optionalName of resulting Series. If None, defaults to name of original index. Returns SeriesThe dtype will be based on the type of the Index values. See also Index.to_frameConvert an Index to a DataFrame. Series.to_frameConvert Series to DataFrame. Examples >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') By default, the original Index and original name is reused. >>> idx.to_series() animal Ant Ant Bear Bear Cow Cow Name: animal, dtype: object To enforce a new Index, specify new labels to index: >>> idx.to_series(index=[0, 1, 2]) 0 Ant 1 Bear 2 Cow Name: animal, dtype: object To override the name of the resulting column, specify name: >>> idx.to_series(name='zoo') animal Ant Ant Bear Bear Cow Cow Name: zoo, dtype: object
reference/api/pandas.TimedeltaIndex.to_series.html
pandas.DataFrame.itertuples
`pandas.DataFrame.itertuples` Iterate over DataFrame rows as namedtuples. If True, return the index as the first element of the tuple. ``` >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2) ```
DataFrame.itertuples(index=True, name='Pandas')[source]# Iterate over DataFrame rows as namedtuples. Parameters indexbool, default TrueIf True, return the index as the first element of the tuple. namestr or None, default “Pandas”The name of the returned namedtuples or None to return regular tuples. Returns iteratorAn object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values. See also DataFrame.iterrowsIterate over DataFrame rows as (index, Series) pairs. DataFrame.itemsIterate over (column name, Series) pairs. Notes The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. Examples >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2) By setting the index parameter to False we can remove the index as the first element of the tuple: >>> for row in df.itertuples(index=False): ... print(row) ... Pandas(num_legs=4, num_wings=0) Pandas(num_legs=2, num_wings=2) With the name parameter set we set a custom name for the yielded namedtuples: >>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2)
reference/api/pandas.DataFrame.itertuples.html
pandas.DataFrame.lt
`pandas.DataFrame.lt` Get Less than of dataframe and other, element-wise (binary operator lt). ``` >>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300 ```
DataFrame.lt(other, axis='columns', level=None)[source]# Get Less than of dataframe and other, element-wise (binary operator lt). Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators. Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison. Parameters otherscalar, sequence, Series, or DataFrameAny single or multiple element data structure, or list-like object. axis{0 or ‘index’, 1 or ‘columns’}, default ‘columns’Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). levelint or labelBroadcast across a level, matching Index values on the passed MultiIndex level. Returns DataFrame of boolResult of the comparison. See also DataFrame.eqCompare DataFrames for equality elementwise. DataFrame.neCompare DataFrames for inequality elementwise. DataFrame.leCompare DataFrames for less than inequality or equality elementwise. DataFrame.ltCompare DataFrames for strictly less than inequality elementwise. DataFrame.geCompare DataFrames for greater than inequality or equality elementwise. DataFrame.gtCompare DataFrames for strictly greater than inequality elementwise. Notes Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN). Examples >>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300 Comparison with a scalar, using either the operator or method: >>> df == 100 cost revenue A False True B False False C True False >>> df.eq(100) cost revenue A False True B False False C True False When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast: >>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True Use the method to control the broadcast axis: >>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True When comparing to an arbitrary sequence, the number of columns must match the number elements in other: >>> df == [250, 100] cost revenue A True True B False False C False False Use the method to control the axis: >>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False Compare to a DataFrame of different shape. >>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150 >>> df.gt(other) cost revenue A False False B False False C False True D False False Compare to a MultiIndex by level. >>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225 >>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
reference/api/pandas.DataFrame.lt.html
pandas.tseries.offsets.FY5253.variation
pandas.tseries.offsets.FY5253.variation
FY5253.variation#
reference/api/pandas.tseries.offsets.FY5253.variation.html
pandas.Series.drop_duplicates
`pandas.Series.drop_duplicates` Return Series with duplicate values removed. ``` >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'], ... name='animal') >>> s 0 lama 1 cow 2 lama 3 beetle 4 lama 5 hippo Name: animal, dtype: object ```
Series.drop_duplicates(*, keep='first', inplace=False)[source]# Return Series with duplicate values removed. Parameters keep{‘first’, ‘last’, False}, default ‘first’Method to handle dropping duplicates: ‘first’ : Drop duplicates except for the first occurrence. ‘last’ : Drop duplicates except for the last occurrence. False : Drop all duplicates. inplacebool, default FalseIf True, performs operation inplace and returns None. Returns Series or NoneSeries with duplicates dropped or None if inplace=True. See also Index.drop_duplicatesEquivalent method on Index. DataFrame.drop_duplicatesEquivalent method on DataFrame. Series.duplicatedRelated method on Series, indicating duplicate Series values. Series.uniqueReturn unique values as an array. Examples Generate a Series with duplicated entries. >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'], ... name='animal') >>> s 0 lama 1 cow 2 lama 3 beetle 4 lama 5 hippo Name: animal, dtype: object With the ‘keep’ parameter, the selection behaviour of duplicated values can be changed. The value ‘first’ keeps the first occurrence for each set of duplicated entries. The default value of keep is ‘first’. >>> s.drop_duplicates() 0 lama 1 cow 3 beetle 5 hippo Name: animal, dtype: object The value ‘last’ for parameter ‘keep’ keeps the last occurrence for each set of duplicated entries. >>> s.drop_duplicates(keep='last') 1 cow 3 beetle 4 lama 5 hippo Name: animal, dtype: object The value False for parameter ‘keep’ discards all sets of duplicated entries. Setting the value of ‘inplace’ to True performs the operation inplace and returns None. >>> s.drop_duplicates(keep=False, inplace=True) >>> s 1 cow 3 beetle 5 hippo Name: animal, dtype: object
reference/api/pandas.Series.drop_duplicates.html
pandas.tseries.offsets.QuarterBegin.startingMonth
pandas.tseries.offsets.QuarterBegin.startingMonth
QuarterBegin.startingMonth#
reference/api/pandas.tseries.offsets.QuarterBegin.startingMonth.html
pandas.io.formats.style.Styler.format_index
`pandas.io.formats.style.Styler.format_index` Format the text display value of index labels or column headers. New in version 1.4.0. ``` >>> df = pd.DataFrame([[1, 2, 3]], columns=[2.0, np.nan, 4.0]) >>> df.style.format_index(axis=1, na_rep='MISS', precision=3) 2.000 MISS 4.000 0 1 2 3 ```
Styler.format_index(formatter=None, axis=0, level=None, na_rep=None, precision=None, decimal='.', thousands=None, escape=None, hyperlinks=None)[source]# Format the text display value of index labels or column headers. New in version 1.4.0. Parameters formatterstr, callable, dict or NoneObject to define how values are displayed. See notes. axis{0, “index”, 1, “columns”}Whether to apply the formatter to the index or column headers. levelint, str, listThe level(s) over which to apply the generic formatter. na_repstr, optionalRepresentation for missing values. If na_rep is None, no special formatting is applied. precisionint, optionalFloating point precision to use for display purposes, if not determined by the specified formatter. decimalstr, default “.”Character used as decimal separator for floats, complex and integers. thousandsstr, optional, default NoneCharacter used as thousands separator for floats, complex and integers. escapestr, optionalUse ‘html’ to replace the characters &, <, >, ', and " in cell display string with HTML-safe sequences. Use ‘latex’ to replace the characters &, %, $, #, _, {, }, ~, ^, and \ in the cell display string with LaTeX-safe sequences. Escaping is done before formatter. hyperlinks{“html”, “latex”}, optionalConvert string patterns containing https://, http://, ftp:// or www. to HTML <a> tags as clickable URL hyperlinks if “html”, or LaTeX href commands if “latex”. Returns selfStyler See also Styler.formatFormat the text display value of data cells. Notes This method assigns a formatting function, formatter, to each level label in the DataFrame’s index or column headers. If formatter is None, then the default formatter is used. If a callable then that function should take a label value as input and return a displayable representation, such as a string. If formatter is given as a string this is assumed to be a valid Python format specification and is wrapped to a callable as string.format(x). If a dict is given, keys should correspond to MultiIndex level numbers or names, and values should be string or callable, as above. The default formatter currently expresses floats and complex numbers with the pandas display precision unless using the precision argument here. The default formatter does not adjust the representation of missing values unless the na_rep argument is used. The level argument defines which levels of a MultiIndex to apply the method to. If the formatter argument is given in dict form but does not include all levels within the level argument then these unspecified levels will have the default formatter applied. Any levels in the formatter dict specifically excluded from the level argument will be ignored. When using a formatter string the dtypes must be compatible, otherwise a ValueError will be raised. Warning Styler.format_index is ignored when using the output format Styler.to_excel, since Excel and Python have inherrently different formatting structures. However, it is possible to use the number-format pseudo CSS attribute to force Excel permissible formatting. See documentation for Styler.format. Examples Using na_rep and precision with the default formatter >>> df = pd.DataFrame([[1, 2, 3]], columns=[2.0, np.nan, 4.0]) >>> df.style.format_index(axis=1, na_rep='MISS', precision=3) 2.000 MISS 4.000 0 1 2 3 Using a formatter specification on consistent dtypes in a level >>> df.style.format_index('{:.2f}', axis=1, na_rep='MISS') 2.00 MISS 4.00 0 1 2 3 Using the default formatter for unspecified levels >>> df = pd.DataFrame([[1, 2, 3]], ... columns=pd.MultiIndex.from_arrays([["a", "a", "b"],[2, np.nan, 4]])) >>> df.style.format_index({0: lambda v: upper(v)}, axis=1, precision=1) ... A B 2.0 nan 4.0 0 1 2 3 Using a callable formatter function. >>> func = lambda s: 'STRING' if isinstance(s, str) else 'FLOAT' >>> df.style.format_index(func, axis=1, na_rep='MISS') ... STRING STRING FLOAT MISS FLOAT 0 1 2 3 Using a formatter with HTML escape and na_rep. >>> df = pd.DataFrame([[1, 2, 3]], columns=['"A"', 'A&B', None]) >>> s = df.style.format_index('$ {0}', axis=1, escape="html", na_rep="NA") ... <th .. >$ &#34;A&#34;</th> <th .. >$ A&amp;B</th> <th .. >NA</td> ... Using a formatter with LaTeX escape. >>> df = pd.DataFrame([[1, 2, 3]], columns=["123", "~", "$%#"]) >>> df.style.format_index("\\textbf{{{}}}", escape="latex", axis=1).to_latex() ... \begin{tabular}{lrrr} {} & {\textbf{123}} & {\textbf{\textasciitilde }} & {\textbf{\$\%\#}} \\ 0 & 1 & 2 & 3 \\ \end{tabular}
reference/api/pandas.io.formats.style.Styler.format_index.html
pandas.tseries.offsets.DateOffset.is_anchored
`pandas.tseries.offsets.DateOffset.is_anchored` Return boolean whether the frequency is a unit frequency (n=1). Examples ``` >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False ```
DateOffset.is_anchored()# Return boolean whether the frequency is a unit frequency (n=1). Examples >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False
reference/api/pandas.tseries.offsets.DateOffset.is_anchored.html
pandas.Timestamp.dayofyear
`pandas.Timestamp.dayofyear` Return the day of the year. ``` >>> ts = pd.Timestamp(2020, 3, 14) >>> ts.day_of_year 74 ```
Timestamp.dayofyear# Return the day of the year. Examples >>> ts = pd.Timestamp(2020, 3, 14) >>> ts.day_of_year 74
reference/api/pandas.Timestamp.dayofyear.html
pandas.tseries.offsets.Minute.apply
pandas.tseries.offsets.Minute.apply
Minute.apply()#
reference/api/pandas.tseries.offsets.Minute.apply.html
pandas.Period.end_time
`pandas.Period.end_time` Get the Timestamp for the end of the period.
Period.end_time# Get the Timestamp for the end of the period. Returns Timestamp See also Period.start_timeReturn the start Timestamp. Period.dayofyearReturn the day of year. Period.daysinmonthReturn the days in that month. Period.dayofweekReturn the day of the week.
reference/api/pandas.Period.end_time.html
pandas.tseries.offsets.FY5253Quarter.base
`pandas.tseries.offsets.FY5253Quarter.base` Returns a copy of the calling offset object with n=1 and all other attributes equal.
FY5253Quarter.base# Returns a copy of the calling offset object with n=1 and all other attributes equal.
reference/api/pandas.tseries.offsets.FY5253Quarter.base.html
pandas.core.groupby.DataFrameGroupBy.size
`pandas.core.groupby.DataFrameGroupBy.size` Compute group sizes.
DataFrameGroupBy.size()[source]# Compute group sizes. Returns DataFrame or SeriesNumber of rows in each group as a Series if as_index is True or a DataFrame if as_index is False. See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame.
reference/api/pandas.core.groupby.DataFrameGroupBy.size.html
pandas.tseries.offsets.LastWeekOfMonth
`pandas.tseries.offsets.LastWeekOfMonth` Describes monthly dates in last week of month. For example “the last Tuesday of each month”. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> ts + pd.offsets.LastWeekOfMonth() Timestamp('2022-01-31 00:00:00') ```
class pandas.tseries.offsets.LastWeekOfMonth# Describes monthly dates in last week of month. For example “the last Tuesday of each month”. Parameters nint, default 1 weekdayint {0, 1, …, 6}, default 0A specific integer for the day of the week. 0 is Monday 1 is Tuesday 2 is Wednesday 3 is Thursday 4 is Friday 5 is Saturday 6 is Sunday. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> ts + pd.offsets.LastWeekOfMonth() Timestamp('2022-01-31 00:00:00') Attributes base Returns a copy of the calling offset object with n=1 and all other attributes equal. freqstr Return a string representing the frequency. kwds Return a dict of extra parameters for the offset. name Return a string representing the base frequency. n nanos normalize rule_code week weekday Methods __call__(*args, **kwargs) Call self as a function. apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. copy Return a copy of the frequency. is_anchored Return boolean whether the frequency is a unit frequency (n=1). is_month_end Return boolean whether a timestamp occurs on the month end. is_month_start Return boolean whether a timestamp occurs on the month start. is_on_offset Return boolean whether a timestamp intersects with this frequency. is_quarter_end Return boolean whether a timestamp occurs on the quarter end. is_quarter_start Return boolean whether a timestamp occurs on the quarter start. is_year_end Return boolean whether a timestamp occurs on the year end. is_year_start Return boolean whether a timestamp occurs on the year start. rollback Roll provided date backward to next offset only if not on offset. rollforward Roll provided date forward to next offset only if not on offset. apply isAnchored onOffset
reference/api/pandas.tseries.offsets.LastWeekOfMonth.html
pandas.tseries.offsets.Nano.name
`pandas.tseries.offsets.Nano.name` Return a string representing the base frequency. ``` >>> pd.offsets.Hour().name 'H' ```
Nano.name# Return a string representing the base frequency. Examples >>> pd.offsets.Hour().name 'H' >>> pd.offsets.Hour(5).name 'H'
reference/api/pandas.tseries.offsets.Nano.name.html
pandas.tseries.offsets.YearBegin.rollforward
`pandas.tseries.offsets.YearBegin.rollforward` Roll provided date forward to next offset only if not on offset.
YearBegin.rollforward()# Roll provided date forward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.YearBegin.rollforward.html
pandas.tseries.offsets.Day.kwds
`pandas.tseries.offsets.Day.kwds` Return a dict of extra parameters for the offset. ``` >>> pd.DateOffset(5).kwds {} ```
Day.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.Day.kwds.html
pandas.Index.array
`pandas.Index.array` The ExtensionArray of the data backing this Series or Index. An ExtensionArray of the values stored within. For extension types, this is the actual array. For NumPy native types, this is a thin (no copy) wrapper around numpy.ndarray. ``` >>> pd.Series([1, 2, 3]).array <PandasArray> [1, 2, 3] Length: 3, dtype: int64 ```
Index.array[source]# The ExtensionArray of the data backing this Series or Index. Returns ExtensionArrayAn ExtensionArray of the values stored within. For extension types, this is the actual array. For NumPy native types, this is a thin (no copy) wrapper around numpy.ndarray. .array differs .values which may require converting the data to a different form. See also Index.to_numpySimilar method that always returns a NumPy array. Series.to_numpySimilar method that always returns a NumPy array. Notes This table lays out the different array types for each extension dtype within pandas. dtype array type category Categorical period PeriodArray interval IntervalArray IntegerNA IntegerArray string StringArray boolean BooleanArray datetime64[ns, tz] DatetimeArray For any 3rd-party extension types, the array type will be an ExtensionArray. For all remaining dtypes .array will be a arrays.NumpyExtensionArray wrapping the actual ndarray stored within. If you absolutely need a NumPy array (possibly with copying / coercing data), then use Series.to_numpy() instead. Examples For regular NumPy types like int, and float, a PandasArray is returned. >>> pd.Series([1, 2, 3]).array <PandasArray> [1, 2, 3] Length: 3, dtype: int64 For extension types, like Categorical, the actual ExtensionArray is returned >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a'])) >>> ser.array ['a', 'b', 'a'] Categories (2, object): ['a', 'b']
reference/api/pandas.Index.array.html
pandas.DataFrame.to_hdf
`pandas.DataFrame.to_hdf` Write the contained data to an HDF5 file using HDFStore. ``` >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, ... index=['a', 'b', 'c']) >>> df.to_hdf('data.h5', key='df', mode='w') ```
DataFrame.to_hdf(path_or_buf, key, mode='a', complevel=None, complib=None, append=False, format=None, index=True, min_itemsize=None, nan_rep=None, dropna=None, data_columns=None, errors='strict', encoding='UTF-8')[source]# Write the contained data to an HDF5 file using HDFStore. Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and contents of a file with no outside information. One HDF file can hold a mix of related objects which can be accessed as a group or as individual objects. In order to add another DataFrame or Series to an existing HDF file please use append mode and a different a key. Warning One can store a subclass of DataFrame or Series to HDF5, but the type of the subclass is lost upon storing. For more information see the user guide. Parameters path_or_bufstr or pandas.HDFStoreFile path or HDFStore object. keystrIdentifier for the group in the store. mode{‘a’, ‘w’, ‘r+’}, default ‘a’Mode to open file: ‘w’: write, a new file is created (an existing file with the same name would be deleted). ‘a’: append, an existing file is opened for reading and writing, and if the file does not exist it is created. ‘r+’: similar to ‘a’, but the file must already exist. complevel{0-9}, default NoneSpecifies a compression level for data. A value of 0 or None disables compression. complib{‘zlib’, ‘lzo’, ‘bzip2’, ‘blosc’}, default ‘zlib’Specifies the compression library to be used. As of v0.20.2 these additional compressors for Blosc are supported (default if no compressor specified: ‘blosc:blosclz’): {‘blosc:blosclz’, ‘blosc:lz4’, ‘blosc:lz4hc’, ‘blosc:snappy’, ‘blosc:zlib’, ‘blosc:zstd’}. Specifying a compression library which is not available issues a ValueError. appendbool, default FalseFor Table formats, append the input data to the existing. format{‘fixed’, ‘table’, None}, default ‘fixed’Possible values: ‘fixed’: Fixed format. Fast writing/reading. Not-appendable, nor searchable. ‘table’: Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data. If None, pd.get_option(‘io.hdf.default_format’) is checked, followed by fallback to “fixed”. indexbool, default TrueWrite DataFrame index as a column. min_itemsizedict or int, optionalMap column names to minimum string sizes for columns. nan_repAny, optionalHow to represent null values as str. Not allowed with append=True. dropnabool, default False, optionalRemove missing values. data_columnslist of columns or True, optionalList of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See Query via data columns. for more information. Applicable only to format=’table’. errorsstr, default ‘strict’Specifies how encoding and decoding errors are to be handled. See the errors argument for open() for a full list of options. encodingstr, default “UTF-8” See also read_hdfRead from HDF file. DataFrame.to_orcWrite a DataFrame to the binary orc format. DataFrame.to_parquetWrite a DataFrame to the binary parquet format. DataFrame.to_sqlWrite to a SQL table. DataFrame.to_featherWrite out feather-format for DataFrames. DataFrame.to_csvWrite out to a csv file. Examples >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, ... index=['a', 'b', 'c']) >>> df.to_hdf('data.h5', key='df', mode='w') We can add another object to the same file: >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_hdf('data.h5', key='s') Reading from HDF file: >>> pd.read_hdf('data.h5', 'df') A B a 1 4 b 2 5 c 3 6 >>> pd.read_hdf('data.h5', 's') 0 1 1 2 2 3 3 4 dtype: int64
reference/api/pandas.DataFrame.to_hdf.html
pandas.DataFrame.isetitem
`pandas.DataFrame.isetitem` Set the given value in the column with position ‘loc’.
DataFrame.isetitem(loc, value)[source]# Set the given value in the column with position ‘loc’. This is a positional analogue to __setitem__. Parameters locint or sequence of ints valuescalar or arraylike Notes Unlike frame.iloc[:, i] = value, frame.isetitem(loc, value) will _never_ try to set the values in place, but will always insert a new array. In cases where frame.columns is unique, this is equivalent to frame[frame.columns[i]] = value.
reference/api/pandas.DataFrame.isetitem.html
pandas.DataFrame.iteritems
`pandas.DataFrame.iteritems` Iterate over (column name, Series) pairs.
DataFrame.iteritems()[source]# Iterate over (column name, Series) pairs. Deprecated since version 1.5.0: iteritems is deprecated and will be removed in a future version. Use .items instead. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Yields labelobjectThe column names for the DataFrame being iterated over. contentSeriesThe column entries belonging to each label, as a Series. See also DataFrame.iterRecommended alternative. DataFrame.iterrowsIterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuplesIterate over DataFrame rows as namedtuples of the values.
reference/api/pandas.DataFrame.iteritems.html
pandas.tseries.offsets.QuarterEnd.apply_index
`pandas.tseries.offsets.QuarterEnd.apply_index` Vectorized apply of DateOffset to DatetimeIndex.
QuarterEnd.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.QuarterEnd.apply_index.html
pandas.api.types.is_interval_dtype
`pandas.api.types.is_interval_dtype` Check whether an array-like or dtype is of the Interval dtype. ``` >>> is_interval_dtype(object) False >>> is_interval_dtype(IntervalDtype()) True >>> is_interval_dtype([1, 2, 3]) False >>> >>> interval = pd.Interval(1, 2, closed="right") >>> is_interval_dtype(interval) False >>> is_interval_dtype(pd.IntervalIndex([interval])) True ```
pandas.api.types.is_interval_dtype(arr_or_dtype)[source]# Check whether an array-like or dtype is of the Interval dtype. Parameters arr_or_dtypearray-like or dtypeThe array-like or dtype to check. Returns booleanWhether or not the array-like or dtype is of the Interval dtype. Examples >>> is_interval_dtype(object) False >>> is_interval_dtype(IntervalDtype()) True >>> is_interval_dtype([1, 2, 3]) False >>> >>> interval = pd.Interval(1, 2, closed="right") >>> is_interval_dtype(interval) False >>> is_interval_dtype(pd.IntervalIndex([interval])) True
reference/api/pandas.api.types.is_interval_dtype.html
pandas.isnull
`pandas.isnull` Detect missing values for an array-like object. ``` >>> pd.isna('dog') False ```
pandas.isnull(obj)[source]# Detect missing values for an array-like object. This function takes a scalar or array-like object and indicates whether values are missing (NaN in numeric arrays, None or NaN in object arrays, NaT in datetimelike). Parameters objscalar or array-likeObject to check for null or missing values. Returns bool or array-like of boolFor scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is missing. See also notnaBoolean inverse of pandas.isna. Series.isnaDetect missing values in a Series. DataFrame.isnaDetect missing values in a DataFrame. Index.isnaDetect missing values in an Index. Examples Scalar arguments (including strings) result in a scalar boolean. >>> pd.isna('dog') False >>> pd.isna(pd.NA) True >>> pd.isna(np.nan) True ndarrays result in an ndarray of booleans. >>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]]) >>> array array([[ 1., nan, 3.], [ 4., 5., nan]]) >>> pd.isna(array) array([[False, True, False], [False, False, True]]) For indexes, an ndarray of booleans is returned. >>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None, ... "2017-07-08"]) >>> index DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'], dtype='datetime64[ns]', freq=None) >>> pd.isna(index) array([False, False, True, False]) For Series and DataFrame, the same type is returned, containing booleans. >>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df 0 1 2 0 ant bee cat 1 dog None fly >>> pd.isna(df) 0 1 2 0 False False False 1 False True False >>> pd.isna(df[1]) 0 False 1 True Name: 1, dtype: bool
reference/api/pandas.isnull.html
pandas.DataFrame.add
`pandas.DataFrame.add` Get Addition of dataframe and other, element-wise (binary operator add). Equivalent to dataframe + other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, radd. ``` >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 ```
DataFrame.add(other, axis='columns', level=None, fill_value=None)[source]# Get Addition of dataframe and other, element-wise (binary operator add). Equivalent to dataframe + other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, radd. Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **. Parameters otherscalar, sequence, Series, dict or DataFrameAny single or multiple element data structure, or list-like object. axis{0 or ‘index’, 1 or ‘columns’}Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on. levelint or labelBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valuefloat or None, default NoneFill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. Returns DataFrameResult of the arithmetic operation. See also DataFrame.addAdd DataFrames. DataFrame.subSubtract DataFrames. DataFrame.mulMultiply DataFrames. DataFrame.divDivide DataFrames (float division). DataFrame.truedivDivide DataFrames (float division). DataFrame.floordivDivide DataFrames (integer division). DataFrame.modCalculate modulo (remainder after division). DataFrame.powCalculate exponential power. Notes Mismatched indices will be unioned together. Examples >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
reference/api/pandas.DataFrame.add.html
pandas.tseries.offsets.Minute.apply
pandas.tseries.offsets.Minute.apply
Minute.apply()#
reference/api/pandas.tseries.offsets.Minute.apply.html
Window
Window
Rolling objects are returned by .rolling calls: pandas.DataFrame.rolling(), pandas.Series.rolling(), etc. Expanding objects are returned by .expanding calls: pandas.DataFrame.expanding(), pandas.Series.expanding(), etc. ExponentialMovingWindow objects are returned by .ewm calls: pandas.DataFrame.ewm(), pandas.Series.ewm(), etc. Rolling window functions# Rolling.count([numeric_only]) Calculate the rolling count of non NaN observations. Rolling.sum([numeric_only, engine, ...]) Calculate the rolling sum. Rolling.mean([numeric_only, engine, ...]) Calculate the rolling mean. Rolling.median([numeric_only, engine, ...]) Calculate the rolling median. Rolling.var([ddof, numeric_only, engine, ...]) Calculate the rolling variance. Rolling.std([ddof, numeric_only, engine, ...]) Calculate the rolling standard deviation. Rolling.min([numeric_only, engine, ...]) Calculate the rolling minimum. Rolling.max([numeric_only, engine, ...]) Calculate the rolling maximum. Rolling.corr([other, pairwise, ddof, ...]) Calculate the rolling correlation. Rolling.cov([other, pairwise, ddof, ...]) Calculate the rolling sample covariance. Rolling.skew([numeric_only]) Calculate the rolling unbiased skewness. Rolling.kurt([numeric_only]) Calculate the rolling Fisher's definition of kurtosis without bias. Rolling.apply(func[, raw, engine, ...]) Calculate the rolling custom aggregation function. Rolling.aggregate(func, *args, **kwargs) Aggregate using one or more operations over the specified axis. Rolling.quantile(quantile[, interpolation, ...]) Calculate the rolling quantile. Rolling.sem([ddof, numeric_only]) Calculate the rolling standard error of mean. Rolling.rank([method, ascending, pct, ...]) Calculate the rolling rank. Weighted window functions# Window.mean([numeric_only]) Calculate the rolling weighted window mean. Window.sum([numeric_only]) Calculate the rolling weighted window sum. Window.var([ddof, numeric_only]) Calculate the rolling weighted window variance. Window.std([ddof, numeric_only]) Calculate the rolling weighted window standard deviation. Expanding window functions# Expanding.count([numeric_only]) Calculate the expanding count of non NaN observations. Expanding.sum([numeric_only, engine, ...]) Calculate the expanding sum. Expanding.mean([numeric_only, engine, ...]) Calculate the expanding mean. Expanding.median([numeric_only, engine, ...]) Calculate the expanding median. Expanding.var([ddof, numeric_only, engine, ...]) Calculate the expanding variance. Expanding.std([ddof, numeric_only, engine, ...]) Calculate the expanding standard deviation. Expanding.min([numeric_only, engine, ...]) Calculate the expanding minimum. Expanding.max([numeric_only, engine, ...]) Calculate the expanding maximum. Expanding.corr([other, pairwise, ddof, ...]) Calculate the expanding correlation. Expanding.cov([other, pairwise, ddof, ...]) Calculate the expanding sample covariance. Expanding.skew([numeric_only]) Calculate the expanding unbiased skewness. Expanding.kurt([numeric_only]) Calculate the expanding Fisher's definition of kurtosis without bias. Expanding.apply(func[, raw, engine, ...]) Calculate the expanding custom aggregation function. Expanding.aggregate(func, *args, **kwargs) Aggregate using one or more operations over the specified axis. Expanding.quantile(quantile[, ...]) Calculate the expanding quantile. Expanding.sem([ddof, numeric_only]) Calculate the expanding standard error of mean. Expanding.rank([method, ascending, pct, ...]) Calculate the expanding rank. Exponentially-weighted window functions# ExponentialMovingWindow.mean([numeric_only, ...]) Calculate the ewm (exponential weighted moment) mean. ExponentialMovingWindow.sum([numeric_only, ...]) Calculate the ewm (exponential weighted moment) sum. ExponentialMovingWindow.std([bias, numeric_only]) Calculate the ewm (exponential weighted moment) standard deviation. ExponentialMovingWindow.var([bias, numeric_only]) Calculate the ewm (exponential weighted moment) variance. ExponentialMovingWindow.corr([other, ...]) Calculate the ewm (exponential weighted moment) sample correlation. ExponentialMovingWindow.cov([other, ...]) Calculate the ewm (exponential weighted moment) sample covariance. Window indexer# Base class for defining custom window boundaries. api.indexers.BaseIndexer([index_array, ...]) Base class for window bounds calculations. api.indexers.FixedForwardWindowIndexer([...]) Creates window boundaries for fixed-length windows that include the current row. api.indexers.VariableOffsetWindowIndexer([...]) Calculate window boundaries based on a non-fixed offset such as a BusinessDay.
reference/window.html
pandas.io.formats.style.Styler.template_html_table
pandas.io.formats.style.Styler.template_html_table
Styler.template_html_table = <Template 'html_table.tpl'>#
reference/api/pandas.io.formats.style.Styler.template_html_table.html
pandas.tseries.offsets.SemiMonthEnd.is_year_start
`pandas.tseries.offsets.SemiMonthEnd.is_year_start` Return boolean whether a timestamp occurs on the year start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
SemiMonthEnd.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.SemiMonthEnd.is_year_start.html
pandas.DataFrame.convert_dtypes
`pandas.DataFrame.convert_dtypes` Convert columns to best possible dtypes using dtypes supporting pd.NA. ``` >>> df = pd.DataFrame( ... { ... "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")), ... "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")), ... "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")), ... "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")), ... "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")), ... "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")), ... } ... ) ```
DataFrame.convert_dtypes(infer_objects=True, convert_string=True, convert_integer=True, convert_boolean=True, convert_floating=True)[source]# Convert columns to best possible dtypes using dtypes supporting pd.NA. New in version 1.0.0. Parameters infer_objectsbool, default TrueWhether object dtypes should be converted to the best possible types. convert_stringbool, default TrueWhether object dtypes should be converted to StringDtype(). convert_integerbool, default TrueWhether, if possible, conversion can be done to integer extension types. convert_booleanbool, defaults TrueWhether object dtypes should be converted to BooleanDtypes(). convert_floatingbool, defaults TrueWhether, if possible, conversion can be done to floating extension types. If convert_integer is also True, preference will be give to integer dtypes if the floats can be faithfully casted to integers. New in version 1.2.0. Returns Series or DataFrameCopy of input object with new dtype. See also infer_objectsInfer dtypes of objects. to_datetimeConvert argument to datetime. to_timedeltaConvert argument to timedelta. to_numericConvert argument to a numeric type. Notes By default, convert_dtypes will attempt to convert a Series (or each Series in a DataFrame) to dtypes that support pd.NA. By using the options convert_string, convert_integer, convert_boolean and convert_boolean, it is possible to turn off individual conversions to StringDtype, the integer extension types, BooleanDtype or floating extension types, respectively. For object-dtyped columns, if infer_objects is True, use the inference rules as during normal Series/DataFrame construction. Then, if possible, convert to StringDtype, BooleanDtype or an appropriate integer or floating extension type, otherwise leave as object. If the dtype is integer, convert to an appropriate integer extension type. If the dtype is numeric, and consists of all integers, convert to an appropriate integer extension type. Otherwise, convert to an appropriate floating extension type. Changed in version 1.2: Starting with pandas 1.2, this method also converts float columns to the nullable floating extension type. In the future, as new dtypes are added that support pd.NA, the results of this method will change to support those new dtypes. Examples >>> df = pd.DataFrame( ... { ... "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")), ... "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")), ... "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")), ... "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")), ... "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")), ... "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")), ... } ... ) Start with a DataFrame with default dtypes. >>> df a b c d e f 0 1 x True h 10.0 NaN 1 2 y False i NaN 100.5 2 3 z NaN NaN 20.0 200.0 >>> df.dtypes a int32 b object c object d object e float64 f float64 dtype: object Convert the DataFrame to use best possible dtypes. >>> dfn = df.convert_dtypes() >>> dfn a b c d e f 0 1 x True h 10 <NA> 1 2 y False i <NA> 100.5 2 3 z <NA> <NA> 20 200.0 >>> dfn.dtypes a Int32 b string c boolean d string e Int64 f Float64 dtype: object Start with a Series of strings and missing data represented by np.nan. >>> s = pd.Series(["a", "b", np.nan]) >>> s 0 a 1 b 2 NaN dtype: object Obtain a Series with dtype StringDtype. >>> s.convert_dtypes() 0 a 1 b 2 <NA> dtype: string
reference/api/pandas.DataFrame.convert_dtypes.html