content
stringlengths
0
894k
type
stringclasses
2 values
from __future__ import division from __future__ import print_function from __future__ import absolute_import import numpy as np from numpy import array, arange, float32, uint8 from numpy.random import rand import os import sys import time from BVchunker import * from BVchunker.ND2Reader import ReadFromND2Vid from BVchunker.TIFReader import ReadFrom2DTIFVid from BVchunker.OMETIFReader import ReadFromOMETIFVid from BVchunker.PIMSReader import ReadFromPIMSVid import pandas as pd import argparse import apache_beam as beam from apache_beam.io import ReadFromText from apache_beam.io import WriteToText from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.options.pipeline_options import SetupOptions parser = argparse.ArgumentParser() parser.add_argument('--input', type=str, default='inputFolder/') parser.add_argument('--output', type=str, default='outputFolder/') known_args, pipeline_args = parser.parse_known_args() pipeline_args.extend([ '--runner=DirectRunner', '--setup_file=./setup.py', '--max_num_workers=1' ]) pipeline_options = PipelineOptions(pipeline_args) class ReduceVideosStats(beam.PTransform): def __init__(self, kind, output): super(ReduceVideosStats, self).__init__() self.kind = kind self.output = output def expand(self, pvalue): return ( pvalue | 'strip chunk keys' >> beam.ParDo(stripChunks()) | 'recombine video' >> beam.CombinePerKey(combineStats()) | 'to JSON' >> beam.ParDo(toJSON()) | 'WriteFullOutput' >> WriteToText( self.output, shard_name_template='', file_name_suffix='--'+self.kind+'.txt')) with beam.Pipeline(options=pipeline_options) as pipeline: testPIMS = ( pipeline | 'Read PIMS' >> ReadFromPIMSVid( os.path.join(known_args.input, '**.*')) | 'PIMS Pipeline' >> ReduceVideosStats('pims', known_args.output)) testND2 = ( pipeline | 'Read ND2' >> ReadFromND2Vid( os.path.join(known_args.input, '**.nd2')) | 'ND2 Pipeline' >> ReduceVideosStats('nd2', known_args.output)) test2DTIF = ( pipeline | 'Read 2D TIF' >> ReadFrom2DTIFVid( os.path.join(known_args.input, '**.tif')) | '2D TIF Pipeline' >> ReduceVideosStats('tif', known_args.output)) testOMETIF = ( pipeline | 'Read OME TIF' >> ReadFrom2DTIFVid( os.path.join(known_args.input, '**.ome.tif')) | 'OME TIF Pipeline' >> ReduceVideosStats('ome.tif', known_args.output))
python
"""Tests for the models of the careers app.""" from django.test import TestCase from django.utils.text import slugify from mixer.backend.django import mixer class CareerPositionTestCase(TestCase): """Tests for the ``CareerPosition`` model.""" longMessage = True def test_model(self): instance = mixer.blend( 'careers.CareerPosition', title='Career 1', position=1) self.assertTrue(instance.pk, msg='Should be able to save the obj') def test_str(self): testTitle = 'Test Career' instance = mixer.blend( 'careers.CareerPosition', title=testTitle, position=1) self.assertEqual(str(instance), testTitle, msg='Should return title') def test_slug(self): testTitle = 'test title' instance = mixer.blend( 'careers.CareerPosition', title=testTitle, position=1) slug_value = slugify( u'{} {}'.format(instance.pk, testTitle)) self.assertEqual( instance.slug(), slug_value, msg=( 'slug_value should match instance.slug()'))
python
import json from app.main.model.database import User from sanic.log import logger from bson import ObjectId, json_util from ..service.blacklist_service import save_token from ..util.response import * class Auth: @staticmethod async def login_user(data): try: # fetch the user data user = await User.find_one({'email': data.get('email')}) if user: if user.check_password(data.get('password')): auth_token = User.encode_auth_token(str(user.pk)) if auth_token: return response_message(SUCCESS, token=auth_token.decode()) return response_message(UNKNOWN_ERROR) return response_message(PASSWORD_INCORRECT) return response_message(USER_NOT_EXIST) except Exception as e: logger.exception(e) return response_message(EAGAIN) @staticmethod async def logout_user(data): auth_token = data if auth_token: payload = await User.decode_auth_token(auth_token) if not isinstance(payload, str): # mark the token as blacklisted return await save_token(token=auth_token) return response_message(TOKEN_ILLEGAL, payload) return response_message(TOKEN_REQUIRED) @staticmethod async def get_logged_in_user(token): if token: payload = await User.decode_auth_token(token) if not isinstance(payload, str): user = await User.find_one({'_id': ObjectId(payload['sub'])}) if user: return response_message(SUCCESS, user_id=str(user.pk), email=user.email, username=user.name, roles=user.roles, registered_on=user.registered_on.timestamp() * 1000, avatar=user.avatar, introduction=user.introduction, region=user.region ) return response_message(USER_NOT_EXIST) return response_message(TOKEN_ILLEGAL, payload) return response_message(TOKEN_REQUIRED) @staticmethod async def is_user_authenticated(token): ret = await Auth.get_logged_in_user(token) if ret['code'] == SUCCESS.code: return True return False
python
#! /usr/bin/env python # -*- coding: utf-8 -*- # Author: Hamilton Kibbe <[email protected]> import pytest from ..gerber_statements import * from ..cam import FileSettings def test_Statement_smoketest(): stmt = Statement("Test") assert stmt.type == "Test" stmt.to_metric() assert "units=metric" in str(stmt) stmt.to_inch() assert "units=inch" in str(stmt) stmt.to_metric() stmt.offset(1, 1) assert "type=Test" in str(stmt) def test_FSParamStmt_factory(): """ Test FSParamStruct factory """ stmt = {"param": "FS", "zero": "L", "notation": "A", "x": "27"} fs = FSParamStmt.from_dict(stmt) assert fs.param == "FS" assert fs.zero_suppression == "leading" assert fs.notation == "absolute" assert fs.format == (2, 7) stmt = {"param": "FS", "zero": "T", "notation": "I", "x": "27"} fs = FSParamStmt.from_dict(stmt) assert fs.param == "FS" assert fs.zero_suppression == "trailing" assert fs.notation == "incremental" assert fs.format == (2, 7) def test_FSParamStmt(): """ Test FSParamStmt initialization """ param = "FS" zeros = "trailing" notation = "absolute" fmt = (2, 5) stmt = FSParamStmt(param, zeros, notation, fmt) assert stmt.param == param assert stmt.zero_suppression == zeros assert stmt.notation == notation assert stmt.format == fmt def test_FSParamStmt_dump(): """ Test FSParamStmt to_gerber() """ stmt = {"param": "FS", "zero": "L", "notation": "A", "x": "27"} fs = FSParamStmt.from_dict(stmt) assert fs.to_gerber() == "%FSLAX27Y27*%" stmt = {"param": "FS", "zero": "T", "notation": "I", "x": "25"} fs = FSParamStmt.from_dict(stmt) assert fs.to_gerber() == "%FSTIX25Y25*%" settings = FileSettings(zero_suppression="leading", notation="absolute") assert fs.to_gerber(settings) == "%FSLAX25Y25*%" def test_FSParamStmt_string(): """ Test FSParamStmt.__str__() """ stmt = {"param": "FS", "zero": "L", "notation": "A", "x": "27"} fs = FSParamStmt.from_dict(stmt) assert str(fs) == "<Format Spec: 2:7 leading zero suppression absolute notation>" stmt = {"param": "FS", "zero": "T", "notation": "I", "x": "25"} fs = FSParamStmt.from_dict(stmt) assert ( str(fs) == "<Format Spec: 2:5 trailing zero suppression incremental notation>" ) def test_MOParamStmt_factory(): """ Test MOParamStruct factory """ stmts = [{"param": "MO", "mo": "IN"}, {"param": "MO", "mo": "in"}] for stmt in stmts: mo = MOParamStmt.from_dict(stmt) assert mo.param == "MO" assert mo.mode == "inch" stmts = [{"param": "MO", "mo": "MM"}, {"param": "MO", "mo": "mm"}] for stmt in stmts: mo = MOParamStmt.from_dict(stmt) assert mo.param == "MO" assert mo.mode == "metric" stmt = {"param": "MO"} mo = MOParamStmt.from_dict(stmt) assert mo.mode == None stmt = {"param": "MO", "mo": "degrees kelvin"} pytest.raises(ValueError, MOParamStmt.from_dict, stmt) def test_MOParamStmt(): """ Test MOParamStmt initialization """ param = "MO" mode = "inch" stmt = MOParamStmt(param, mode) assert stmt.param == param for mode in ["inch", "metric"]: stmt = MOParamStmt(param, mode) assert stmt.mode == mode def test_MOParamStmt_dump(): """ Test MOParamStmt to_gerber() """ stmt = {"param": "MO", "mo": "IN"} mo = MOParamStmt.from_dict(stmt) assert mo.to_gerber() == "%MOIN*%" stmt = {"param": "MO", "mo": "MM"} mo = MOParamStmt.from_dict(stmt) assert mo.to_gerber() == "%MOMM*%" def test_MOParamStmt_conversion(): stmt = {"param": "MO", "mo": "MM"} mo = MOParamStmt.from_dict(stmt) mo.to_inch() assert mo.mode == "inch" stmt = {"param": "MO", "mo": "IN"} mo = MOParamStmt.from_dict(stmt) mo.to_metric() assert mo.mode == "metric" def test_MOParamStmt_string(): """ Test MOParamStmt.__str__() """ stmt = {"param": "MO", "mo": "IN"} mo = MOParamStmt.from_dict(stmt) assert str(mo) == "<Mode: inches>" stmt = {"param": "MO", "mo": "MM"} mo = MOParamStmt.from_dict(stmt) assert str(mo) == "<Mode: millimeters>" def test_IPParamStmt_factory(): """ Test IPParamStruct factory """ stmt = {"param": "IP", "ip": "POS"} ip = IPParamStmt.from_dict(stmt) assert ip.ip == "positive" stmt = {"param": "IP", "ip": "NEG"} ip = IPParamStmt.from_dict(stmt) assert ip.ip == "negative" def test_IPParamStmt(): """ Test IPParamStmt initialization """ param = "IP" for ip in ["positive", "negative"]: stmt = IPParamStmt(param, ip) assert stmt.param == param assert stmt.ip == ip def test_IPParamStmt_dump(): """ Test IPParamStmt to_gerber() """ stmt = {"param": "IP", "ip": "POS"} ip = IPParamStmt.from_dict(stmt) assert ip.to_gerber() == "%IPPOS*%" stmt = {"param": "IP", "ip": "NEG"} ip = IPParamStmt.from_dict(stmt) assert ip.to_gerber() == "%IPNEG*%" def test_IPParamStmt_string(): stmt = {"param": "IP", "ip": "POS"} ip = IPParamStmt.from_dict(stmt) assert str(ip) == "<Image Polarity: positive>" stmt = {"param": "IP", "ip": "NEG"} ip = IPParamStmt.from_dict(stmt) assert str(ip) == "<Image Polarity: negative>" def test_IRParamStmt_factory(): stmt = {"param": "IR", "angle": "45"} ir = IRParamStmt.from_dict(stmt) assert ir.param == "IR" assert ir.angle == 45 def test_IRParamStmt_dump(): stmt = {"param": "IR", "angle": "45"} ir = IRParamStmt.from_dict(stmt) assert ir.to_gerber() == "%IR45*%" def test_IRParamStmt_string(): stmt = {"param": "IR", "angle": "45"} ir = IRParamStmt.from_dict(stmt) assert str(ir) == "<Image Angle: 45>" def test_OFParamStmt_factory(): """ Test OFParamStmt factory """ stmt = {"param": "OF", "a": "0.1234567", "b": "0.1234567"} of = OFParamStmt.from_dict(stmt) assert of.a == 0.1234567 assert of.b == 0.1234567 def test_OFParamStmt(): """ Test IPParamStmt initialization """ param = "OF" for val in [0.0, -3.4567]: stmt = OFParamStmt(param, val, val) assert stmt.param == param assert stmt.a == val assert stmt.b == val def test_OFParamStmt_dump(): """ Test OFParamStmt to_gerber() """ stmt = {"param": "OF", "a": "0.123456", "b": "0.123456"} of = OFParamStmt.from_dict(stmt) assert of.to_gerber() == "%OFA0.12345B0.12345*%" def test_OFParamStmt_conversion(): stmt = {"param": "OF", "a": "2.54", "b": "25.4"} of = OFParamStmt.from_dict(stmt) of.units = "metric" # No effect of.to_metric() assert of.a == 2.54 assert of.b == 25.4 of.to_inch() assert of.units == "inch" assert of.a == 0.1 assert of.b == 1.0 # No effect of.to_inch() assert of.a == 0.1 assert of.b == 1.0 stmt = {"param": "OF", "a": "0.1", "b": "1.0"} of = OFParamStmt.from_dict(stmt) of.units = "inch" # No effect of.to_inch() assert of.a == 0.1 assert of.b == 1.0 of.to_metric() assert of.units == "metric" assert of.a == 2.54 assert of.b == 25.4 # No effect of.to_metric() assert of.a == 2.54 assert of.b == 25.4 def test_OFParamStmt_offset(): s = OFParamStmt("OF", 0, 0) s.offset(1, 0) assert s.a == 1.0 assert s.b == 0.0 s.offset(0, 1) assert s.a == 1.0 assert s.b == 1.0 def test_OFParamStmt_string(): """ Test OFParamStmt __str__ """ stmt = {"param": "OF", "a": "0.123456", "b": "0.123456"} of = OFParamStmt.from_dict(stmt) assert str(of) == "<Offset: X: 0.123456 Y: 0.123456 >" def test_SFParamStmt_factory(): stmt = {"param": "SF", "a": "1.4", "b": "0.9"} sf = SFParamStmt.from_dict(stmt) assert sf.param == "SF" assert sf.a == 1.4 assert sf.b == 0.9 def test_SFParamStmt_dump(): stmt = {"param": "SF", "a": "1.4", "b": "0.9"} sf = SFParamStmt.from_dict(stmt) assert sf.to_gerber() == "%SFA1.4B0.9*%" def test_SFParamStmt_conversion(): stmt = {"param": "OF", "a": "2.54", "b": "25.4"} of = SFParamStmt.from_dict(stmt) of.units = "metric" of.to_metric() # No effect assert of.a == 2.54 assert of.b == 25.4 of.to_inch() assert of.units == "inch" assert of.a == 0.1 assert of.b == 1.0 # No effect of.to_inch() assert of.a == 0.1 assert of.b == 1.0 stmt = {"param": "OF", "a": "0.1", "b": "1.0"} of = SFParamStmt.from_dict(stmt) of.units = "inch" # No effect of.to_inch() assert of.a == 0.1 assert of.b == 1.0 of.to_metric() assert of.units == "metric" assert of.a == 2.54 assert of.b == 25.4 # No effect of.to_metric() assert of.a == 2.54 assert of.b == 25.4 def test_SFParamStmt_offset(): s = SFParamStmt("OF", 0, 0) s.offset(1, 0) assert s.a == 1.0 assert s.b == 0.0 s.offset(0, 1) assert s.a == 1.0 assert s.b == 1.0 def test_SFParamStmt_string(): stmt = {"param": "SF", "a": "1.4", "b": "0.9"} sf = SFParamStmt.from_dict(stmt) assert str(sf) == "<Scale Factor: X: 1.4 Y: 0.9>" def test_LPParamStmt_factory(): """ Test LPParamStmt factory """ stmt = {"param": "LP", "lp": "C"} lp = LPParamStmt.from_dict(stmt) assert lp.lp == "clear" stmt = {"param": "LP", "lp": "D"} lp = LPParamStmt.from_dict(stmt) assert lp.lp == "dark" def test_LPParamStmt_dump(): """ Test LPParamStmt to_gerber() """ stmt = {"param": "LP", "lp": "C"} lp = LPParamStmt.from_dict(stmt) assert lp.to_gerber() == "%LPC*%" stmt = {"param": "LP", "lp": "D"} lp = LPParamStmt.from_dict(stmt) assert lp.to_gerber() == "%LPD*%" def test_LPParamStmt_string(): """ Test LPParamStmt.__str__() """ stmt = {"param": "LP", "lp": "D"} lp = LPParamStmt.from_dict(stmt) assert str(lp) == "<Level Polarity: dark>" stmt = {"param": "LP", "lp": "C"} lp = LPParamStmt.from_dict(stmt) assert str(lp) == "<Level Polarity: clear>" def test_AMParamStmt_factory(): name = "DONUTVAR" macro = """0 Test Macro. * 1,1,1.5,0,0* 20,1,0.9,0,0.45,12,0.45,0* 21,1,6.8,1.2,3.4,0.6,0* 22,1,6.8,1.2,0,0,0* 4,1,4,0.1,0.1,0.5,0.1,0.5,0.5,0.1,0.5,0.1,0.1,0* 5,1,8,0,0,8,0* 6,0,0,5,0.5,0.5,2,0.1,6,0* 7,0,0,7,6,0.2,0* 8,THIS IS AN UNSUPPORTED PRIMITIVE* """ s = AMParamStmt.from_dict({"param": "AM", "name": name, "macro": macro}) s.build() assert len(s.primitives) == 10 assert isinstance(s.primitives[0], AMCommentPrimitive) assert isinstance(s.primitives[1], AMCirclePrimitive) assert isinstance(s.primitives[2], AMVectorLinePrimitive) assert isinstance(s.primitives[3], AMCenterLinePrimitive) assert isinstance(s.primitives[4], AMLowerLeftLinePrimitive) assert isinstance(s.primitives[5], AMOutlinePrimitive) assert isinstance(s.primitives[6], AMPolygonPrimitive) assert isinstance(s.primitives[7], AMMoirePrimitive) assert isinstance(s.primitives[8], AMThermalPrimitive) assert isinstance(s.primitives[9], AMUnsupportPrimitive) def testAMParamStmt_conversion(): name = "POLYGON" macro = "5,1,8,25.4,25.4,25.4,0*" s = AMParamStmt.from_dict({"param": "AM", "name": name, "macro": macro}) s.build() s.units = "metric" # No effect s.to_metric() assert s.primitives[0].position == (25.4, 25.4) assert s.primitives[0].diameter == 25.4 s.to_inch() assert s.units == "inch" assert s.primitives[0].position == (1.0, 1.0) assert s.primitives[0].diameter == 1.0 # No effect s.to_inch() assert s.primitives[0].position == (1.0, 1.0) assert s.primitives[0].diameter == 1.0 macro = "5,1,8,1,1,1,0*" s = AMParamStmt.from_dict({"param": "AM", "name": name, "macro": macro}) s.build() s.units = "inch" # No effect s.to_inch() assert s.primitives[0].position == (1.0, 1.0) assert s.primitives[0].diameter == 1.0 s.to_metric() assert s.units == "metric" assert s.primitives[0].position == (25.4, 25.4) assert s.primitives[0].diameter == 25.4 # No effect s.to_metric() assert s.primitives[0].position == (25.4, 25.4) assert s.primitives[0].diameter == 25.4 def test_AMParamStmt_dump(): name = "POLYGON" macro = "5,1,8,25.4,25.4,25.4,0.0" s = AMParamStmt.from_dict({"param": "AM", "name": name, "macro": macro}) s.build() assert s.to_gerber() == "%AMPOLYGON*5,1,8,25.4,25.4,25.4,0.0*%" # TODO - Store Equations and update on unit change... s = AMParamStmt.from_dict( {"param": "AM", "name": "OC8", "macro": "5,1,8,0,0,1.08239X$1,22.5"} ) s.build() # assert_equal(s.to_gerber(), '%AMOC8*5,1,8,0,0,1.08239X$1,22.5*%') assert s.to_gerber() == "%AMOC8*5,1,8,0,0,0,22.5*%" def test_AMParamStmt_string(): name = "POLYGON" macro = "5,1,8,25.4,25.4,25.4,0*" s = AMParamStmt.from_dict({"param": "AM", "name": name, "macro": macro}) s.build() assert str(s) == "<Aperture Macro POLYGON: 5,1,8,25.4,25.4,25.4,0*>" def test_ASParamStmt_factory(): stmt = {"param": "AS", "mode": "AXBY"} s = ASParamStmt.from_dict(stmt) assert s.param == "AS" assert s.mode == "AXBY" def test_ASParamStmt_dump(): stmt = {"param": "AS", "mode": "AXBY"} s = ASParamStmt.from_dict(stmt) assert s.to_gerber() == "%ASAXBY*%" def test_ASParamStmt_string(): stmt = {"param": "AS", "mode": "AXBY"} s = ASParamStmt.from_dict(stmt) assert str(s) == "<Axis Select: AXBY>" def test_INParamStmt_factory(): """ Test INParamStmt factory """ stmt = {"param": "IN", "name": "test"} inp = INParamStmt.from_dict(stmt) assert inp.name == "test" def test_INParamStmt_dump(): """ Test INParamStmt to_gerber() """ stmt = {"param": "IN", "name": "test"} inp = INParamStmt.from_dict(stmt) assert inp.to_gerber() == "%INtest*%" def test_INParamStmt_string(): stmt = {"param": "IN", "name": "test"} inp = INParamStmt.from_dict(stmt) assert str(inp) == "<Image Name: test>" def test_LNParamStmt_factory(): """ Test LNParamStmt factory """ stmt = {"param": "LN", "name": "test"} lnp = LNParamStmt.from_dict(stmt) assert lnp.name == "test" def test_LNParamStmt_dump(): """ Test LNParamStmt to_gerber() """ stmt = {"param": "LN", "name": "test"} lnp = LNParamStmt.from_dict(stmt) assert lnp.to_gerber() == "%LNtest*%" def test_LNParamStmt_string(): stmt = {"param": "LN", "name": "test"} lnp = LNParamStmt.from_dict(stmt) assert str(lnp) == "<Level Name: test>" def test_comment_stmt(): """ Test comment statement """ stmt = CommentStmt("A comment") assert stmt.type == "COMMENT" assert stmt.comment == "A comment" def test_comment_stmt_dump(): """ Test CommentStmt to_gerber() """ stmt = CommentStmt("A comment") assert stmt.to_gerber() == "G04A comment*" def test_comment_stmt_string(): stmt = CommentStmt("A comment") assert str(stmt) == "<Comment: A comment>" def test_eofstmt(): """ Test EofStmt """ stmt = EofStmt() assert stmt.type == "EOF" def test_eofstmt_dump(): """ Test EofStmt to_gerber() """ stmt = EofStmt() assert stmt.to_gerber() == "M02*" def test_eofstmt_string(): assert str(EofStmt()) == "<EOF Statement>" def test_quadmodestmt_factory(): """ Test QuadrantModeStmt.from_gerber() """ line = "G74*" stmt = QuadrantModeStmt.from_gerber(line) assert stmt.type == "QuadrantMode" assert stmt.mode == "single-quadrant" line = "G75*" stmt = QuadrantModeStmt.from_gerber(line) assert stmt.mode == "multi-quadrant" def test_quadmodestmt_validation(): """ Test QuadrantModeStmt input validation """ line = "G76*" pytest.raises(ValueError, QuadrantModeStmt.from_gerber, line) pytest.raises(ValueError, QuadrantModeStmt, "quadrant-ful") def test_quadmodestmt_dump(): """ Test QuadrantModeStmt.to_gerber() """ for line in ("G74*", "G75*"): stmt = QuadrantModeStmt.from_gerber(line) assert stmt.to_gerber() == line def test_regionmodestmt_factory(): """ Test RegionModeStmt.from_gerber() """ line = "G36*" stmt = RegionModeStmt.from_gerber(line) assert stmt.type == "RegionMode" assert stmt.mode == "on" line = "G37*" stmt = RegionModeStmt.from_gerber(line) assert stmt.mode == "off" def test_regionmodestmt_validation(): """ Test RegionModeStmt input validation """ line = "G38*" pytest.raises(ValueError, RegionModeStmt.from_gerber, line) pytest.raises(ValueError, RegionModeStmt, "off-ish") def test_regionmodestmt_dump(): """ Test RegionModeStmt.to_gerber() """ for line in ("G36*", "G37*"): stmt = RegionModeStmt.from_gerber(line) assert stmt.to_gerber() == line def test_unknownstmt(): """ Test UnknownStmt """ line = "G696969*" stmt = UnknownStmt(line) assert stmt.type == "UNKNOWN" assert stmt.line == line def test_unknownstmt_dump(): """ Test UnknownStmt.to_gerber() """ lines = ("G696969*", "M03*") for line in lines: stmt = UnknownStmt(line) assert stmt.to_gerber() == line def test_statement_string(): """ Test Statement.__str__() """ stmt = Statement("PARAM") assert "type=PARAM" in str(stmt) stmt.test = "PASS" assert "test=PASS" in str(stmt) assert "type=PARAM" in str(stmt) def test_ADParamStmt_factory(): """ Test ADParamStmt factory """ stmt = {"param": "AD", "d": 0, "shape": "C"} ad = ADParamStmt.from_dict(stmt) assert ad.d == 0 assert ad.shape == "C" stmt = {"param": "AD", "d": 1, "shape": "R"} ad = ADParamStmt.from_dict(stmt) assert ad.d == 1 assert ad.shape == "R" stmt = {"param": "AD", "d": 1, "shape": "C", "modifiers": "1.42"} ad = ADParamStmt.from_dict(stmt) assert ad.d == 1 assert ad.shape == "C" assert ad.modifiers == [(1.42,)] stmt = {"param": "AD", "d": 1, "shape": "C", "modifiers": "1.42X"} ad = ADParamStmt.from_dict(stmt) assert ad.d == 1 assert ad.shape == "C" assert ad.modifiers == [(1.42,)] stmt = {"param": "AD", "d": 1, "shape": "R", "modifiers": "1.42X1.24"} ad = ADParamStmt.from_dict(stmt) assert ad.d == 1 assert ad.shape == "R" assert ad.modifiers == [(1.42, 1.24)] def test_ADParamStmt_conversion(): stmt = {"param": "AD", "d": 0, "shape": "C", "modifiers": "25.4X25.4,25.4X25.4"} ad = ADParamStmt.from_dict(stmt) ad.units = "metric" # No effect ad.to_metric() assert ad.modifiers[0] == (25.4, 25.4) assert ad.modifiers[1] == (25.4, 25.4) ad.to_inch() assert ad.units == "inch" assert ad.modifiers[0] == (1.0, 1.0) assert ad.modifiers[1] == (1.0, 1.0) # No effect ad.to_inch() assert ad.modifiers[0] == (1.0, 1.0) assert ad.modifiers[1] == (1.0, 1.0) stmt = {"param": "AD", "d": 0, "shape": "C", "modifiers": "1X1,1X1"} ad = ADParamStmt.from_dict(stmt) ad.units = "inch" # No effect ad.to_inch() assert ad.modifiers[0] == (1.0, 1.0) assert ad.modifiers[1] == (1.0, 1.0) ad.to_metric() assert ad.modifiers[0] == (25.4, 25.4) assert ad.modifiers[1] == (25.4, 25.4) # No effect ad.to_metric() assert ad.modifiers[0] == (25.4, 25.4) assert ad.modifiers[1] == (25.4, 25.4) def test_ADParamStmt_dump(): stmt = {"param": "AD", "d": 0, "shape": "C"} ad = ADParamStmt.from_dict(stmt) assert ad.to_gerber() == "%ADD0C*%" stmt = {"param": "AD", "d": 0, "shape": "C", "modifiers": "1X1,1X1"} ad = ADParamStmt.from_dict(stmt) assert ad.to_gerber() == "%ADD0C,1X1,1X1*%" def test_ADPamramStmt_string(): stmt = {"param": "AD", "d": 0, "shape": "C"} ad = ADParamStmt.from_dict(stmt) assert str(ad) == "<Aperture Definition: 0: circle>" stmt = {"param": "AD", "d": 0, "shape": "R"} ad = ADParamStmt.from_dict(stmt) assert str(ad) == "<Aperture Definition: 0: rectangle>" stmt = {"param": "AD", "d": 0, "shape": "O"} ad = ADParamStmt.from_dict(stmt) assert str(ad) == "<Aperture Definition: 0: obround>" stmt = {"param": "AD", "d": 0, "shape": "test"} ad = ADParamStmt.from_dict(stmt) assert str(ad) == "<Aperture Definition: 0: test>" def test_MIParamStmt_factory(): stmt = {"param": "MI", "a": 1, "b": 1} mi = MIParamStmt.from_dict(stmt) assert mi.a == 1 assert mi.b == 1 def test_MIParamStmt_dump(): stmt = {"param": "MI", "a": 1, "b": 1} mi = MIParamStmt.from_dict(stmt) assert mi.to_gerber() == "%MIA1B1*%" stmt = {"param": "MI", "a": 1} mi = MIParamStmt.from_dict(stmt) assert mi.to_gerber() == "%MIA1B0*%" stmt = {"param": "MI", "b": 1} mi = MIParamStmt.from_dict(stmt) assert mi.to_gerber() == "%MIA0B1*%" def test_MIParamStmt_string(): stmt = {"param": "MI", "a": 1, "b": 1} mi = MIParamStmt.from_dict(stmt) assert str(mi) == "<Image Mirror: A=1 B=1>" stmt = {"param": "MI", "b": 1} mi = MIParamStmt.from_dict(stmt) assert str(mi) == "<Image Mirror: A=0 B=1>" stmt = {"param": "MI", "a": 1} mi = MIParamStmt.from_dict(stmt) assert str(mi) == "<Image Mirror: A=1 B=0>" def test_coordstmt_ctor(): cs = CoordStmt("G04", 0.0, 0.1, 0.2, 0.3, "D01", FileSettings()) assert cs.function == "G04" assert cs.x == 0.0 assert cs.y == 0.1 assert cs.i == 0.2 assert cs.j == 0.3 assert cs.op == "D01" def test_coordstmt_factory(): stmt = { "function": "G04", "x": "0", "y": "001", "i": "002", "j": "003", "op": "D01", } cs = CoordStmt.from_dict(stmt, FileSettings()) assert cs.function == "G04" assert cs.x == 0.0 assert cs.y == 0.1 assert cs.i == 0.2 assert cs.j == 0.3 assert cs.op == "D01" def test_coordstmt_dump(): cs = CoordStmt("G04", 0.0, 0.1, 0.2, 0.3, "D01", FileSettings()) assert cs.to_gerber(FileSettings()) == "G04X0Y001I002J003D01*" def test_coordstmt_conversion(): cs = CoordStmt("G71", 25.4, 25.4, 25.4, 25.4, "D01", FileSettings()) cs.units = "metric" # No effect cs.to_metric() assert cs.x == 25.4 assert cs.y == 25.4 assert cs.i == 25.4 assert cs.j == 25.4 assert cs.function == "G71" cs.to_inch() assert cs.units == "inch" assert cs.x == 1.0 assert cs.y == 1.0 assert cs.i == 1.0 assert cs.j == 1.0 assert cs.function == "G70" # No effect cs.to_inch() assert cs.x == 1.0 assert cs.y == 1.0 assert cs.i == 1.0 assert cs.j == 1.0 assert cs.function == "G70" cs = CoordStmt("G70", 1.0, 1.0, 1.0, 1.0, "D01", FileSettings()) cs.units = "inch" # No effect cs.to_inch() assert cs.x == 1.0 assert cs.y == 1.0 assert cs.i == 1.0 assert cs.j == 1.0 assert cs.function == "G70" cs.to_metric() assert cs.x == 25.4 assert cs.y == 25.4 assert cs.i == 25.4 assert cs.j == 25.4 assert cs.function == "G71" # No effect cs.to_metric() assert cs.x == 25.4 assert cs.y == 25.4 assert cs.i == 25.4 assert cs.j == 25.4 assert cs.function == "G71" def test_coordstmt_offset(): c = CoordStmt("G71", 0, 0, 0, 0, "D01", FileSettings()) c.offset(1, 0) assert c.x == 1.0 assert c.y == 0.0 assert c.i == 1.0 assert c.j == 0.0 c.offset(0, 1) assert c.x == 1.0 assert c.y == 1.0 assert c.i == 1.0 assert c.j == 1.0 def test_coordstmt_string(): cs = CoordStmt("G04", 0, 1, 2, 3, "D01", FileSettings()) assert ( str(cs) == "<Coordinate Statement: Fn: G04 X: 0 Y: 1 I: 2 J: 3 Op: Lights On>" ) cs = CoordStmt("G04", None, None, None, None, "D02", FileSettings()) assert str(cs) == "<Coordinate Statement: Fn: G04 Op: Lights Off>" cs = CoordStmt("G04", None, None, None, None, "D03", FileSettings()) assert str(cs) == "<Coordinate Statement: Fn: G04 Op: Flash>" cs = CoordStmt("G04", None, None, None, None, "TEST", FileSettings()) assert str(cs) == "<Coordinate Statement: Fn: G04 Op: TEST>" def test_aperturestmt_ctor(): ast = ApertureStmt(3, False) assert ast.d == 3 assert ast.deprecated == False ast = ApertureStmt(4, True) assert ast.d == 4 assert ast.deprecated == True ast = ApertureStmt(4, 1) assert ast.d == 4 assert ast.deprecated == True ast = ApertureStmt(3) assert ast.d == 3 assert ast.deprecated == False def test_aperturestmt_dump(): ast = ApertureStmt(3, False) assert ast.to_gerber() == "D3*" ast = ApertureStmt(3, True) assert ast.to_gerber() == "G54D3*" assert str(ast) == "<Aperture: 3>"
python
import torch.nn as nn import torch.nn.functional as F import curves __all__ = ['WideResNet28x10'] def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=True) def conv3x3curve(in_planes, out_planes, fix_points, stride=1): return curves.Conv2d(in_planes, out_planes, kernel_size=3, fix_points=fix_points, stride=stride, padding=1, bias=True) class WideBasic(nn.Module): def __init__(self, in_planes, planes, dropout_rate, stride=1): super(WideBasic, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, bias=True) self.dropout = nn.Dropout(p=dropout_rate) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=True), ) def forward(self, x): out = self.dropout(self.conv1(F.relu(self.bn1(x)))) out = self.conv2(F.relu(self.bn2(out))) out += self.shortcut(x) return out class WideBasicCurve(nn.Module): def __init__(self, in_planes, planes, dropout_rate, fix_points, stride=1): super(WideBasicCurve, self).__init__() self.bn1 = curves.BatchNorm2d(in_planes, fix_points=fix_points) self.conv1 = curves.Conv2d(in_planes, planes, kernel_size=3, padding=1, bias=True, fix_points=fix_points) self.dropout = nn.Dropout(p=dropout_rate) self.bn2 = curves.BatchNorm2d(planes, fix_points=fix_points) self.conv2 = curves.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True, fix_points=fix_points) self.shortcut = None if stride != 1 or in_planes != planes: self.shortcut = curves.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=True, fix_points=fix_points) def forward(self, x, coeffs_t): out = self.dropout(self.conv1(F.relu(self.bn1(x, coeffs_t)), coeffs_t)) out = self.conv2(F.relu(self.bn2(out, coeffs_t)), coeffs_t) residual = x if self.shortcut is not None: residual = self.shortcut(x, coeffs_t) out += residual return out class WideResNetBase(nn.Module): def __init__(self, num_classes, depth=28, widen_factor=10, dropout_rate=0.): super(WideResNetBase, self).__init__() self.in_planes = 16 assert ((depth - 4) % 6 == 0), 'Wide-resnet depth should be 6n+4' n = (depth - 4) / 6 k = widen_factor nstages = [16, 16 * k, 32 * k, 64 * k] self.conv1 = conv3x3(3, nstages[0]) self.layer1 = self._wide_layer(WideBasic, nstages[1], n, dropout_rate, stride=1) self.layer2 = self._wide_layer(WideBasic, nstages[2], n, dropout_rate, stride=2) self.layer3 = self._wide_layer(WideBasic, nstages[3], n, dropout_rate, stride=2) self.bn1 = nn.BatchNorm2d(nstages[3], momentum=0.9) self.linear = nn.Linear(nstages[3], num_classes) def _wide_layer(self, block, planes, num_blocks, dropout_rate, stride): strides = [stride] + [1] * int(num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, dropout_rate, stride)) self.in_planes = planes return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = F.relu(self.bn1(out)) out = F.avg_pool2d(out, 8) out = out.view(out.size(0), -1) out = self.linear(out) return out class WideResNetCurve(nn.Module): def __init__(self, num_classes, fix_points, depth=28, widen_factor=10, dropout_rate=0.): super(WideResNetCurve, self).__init__() self.in_planes = 16 assert ((depth - 4) % 6 == 0), 'Wide-resnet depth should be 6n+4' n = (depth - 4) / 6 k = widen_factor nstages = [16, 16 * k, 32 * k, 64 * k] self.conv1 = conv3x3curve(3, nstages[0], fix_points=fix_points) self.layer1 = self._wide_layer(WideBasicCurve, nstages[1], n, dropout_rate, stride=1, fix_points=fix_points) self.layer2 = self._wide_layer(WideBasicCurve, nstages[2], n, dropout_rate, stride=2, fix_points=fix_points) self.layer3 = self._wide_layer(WideBasicCurve, nstages[3], n, dropout_rate, stride=2, fix_points=fix_points) self.bn1 = curves.BatchNorm2d(nstages[3], momentum=0.9, fix_points=fix_points) self.linear = curves.Linear(nstages[3], num_classes, fix_points=fix_points) def _wide_layer(self, block, planes, num_blocks, dropout_rate, stride, fix_points): strides = [stride] + [1] * int(num_blocks - 1) layers = [] for stride in strides: layers.append( block(self.in_planes, planes, dropout_rate, fix_points=fix_points, stride=stride) ) self.in_planes = planes return nn.ModuleList(layers) def forward(self, x, coeffs_t): out = self.conv1(x, coeffs_t) for block in self.layer1: out = block(out, coeffs_t) for block in self.layer2: out = block(out, coeffs_t) for block in self.layer3: out = block(out, coeffs_t) out = F.relu(self.bn1(out, coeffs_t)) out = F.avg_pool2d(out, 8) out = out.view(out.size(0), -1) out = self.linear(out, coeffs_t) return out class WideResNet28x10: base = WideResNetBase curve = WideResNetCurve kwargs = {'depth': 28, 'widen_factor': 10}
python
import numpy as np from sklearn.preprocessing import RobustScaler def normalize(_A, mask=None, norm_0mean=False): """Norm A (MRI-T2): filtering top 0.1% values by assigning them to the top_thr (the value at the 99th percentage) then map values to [0 1] range by dividing by the max intensity within the prostate for each slide""" thr = .01 # .01 mask = np.ones_like(_A) if mask is None else mask if not norm_0mean: x = np.zeros_like(_A) for c in range(_A.shape[-1]): for i in range(_A.shape[0]): tmp = _A[i, ..., c][mask[i, ..., 0] > 0].reshape((-1, 1)) tmp_n = RobustScaler().fit_transform(X=tmp)[..., 0] tmp_n1 = x[i, ..., c] tmp_n1[np.where(mask[i, ..., 0] == 1)] = tmp_n x[i, ..., c] = tmp_n1 _A = x.copy() else: x = np.zeros_like(_A) for c in range(_A.shape[-1]): mu = np.asarray([_A[i, ..., c][mask[i, ..., 0] == 1].mean() for i in range(_A.shape[0])]) sigma = np.asarray([_A[i, ..., c][mask[i, ..., 0] == 1].std() for i in range(_A.shape[0])]) _A[..., c] = ((_A[..., c] - mu[..., np.newaxis, np.newaxis]) / sigma[..., np.newaxis, np.newaxis]) * \ mask[..., 0] return _A
python
""" data:{coauthorship, coauthor} dataset:{cora, citeseer, pubmed} """ problem = 'coauthorship' dataset = 'cora' datasetroot = '../data/' + problem + '/' + dataset + '/' """ Configuration of the Network num_class = {cora: 7, citeseer: } """ hidden_dim = 400 out_dim = 200 num_class = 7 """ For training """ update_ratio = 0.004 seed = None refit = 0
python
import torch import torch.nn.functional as F from torch.distributions import Categorical import numpy as np from Gym.models.QLearningBase import QLearningBase class QLearning(QLearningBase): def __init__( self, device, n_actions, n_features, learning_rate=0.01, gamma=0.9, tau=0.001, updateTargetFreq=10000, epsilonStart=1, epsilonEnd=0.2, epsilonDecayFreq=1000, mSize=10000, batchSize=200, startTrainSize=100, transforms=None, ): netEval = Net(n_features, n_actions) netTarget = Net(n_features, n_actions) # optimizer 是訓練的工具 # 傳入 net 的所有參數, 學習率 optimizer = torch.optim.Adam(netEval.parameters(), lr=learning_rate) super().__init__( device=device, netEval=netEval, netTarget=netTarget, optimizer=optimizer, n_actions=n_actions, learning_rate=learning_rate, gamma=gamma, tau=tau, updateTargetFreq=updateTargetFreq, epsilonStart=epsilonStart, epsilonEnd=epsilonEnd, epsilonDecayFreq=epsilonDecayFreq, mSize=mSize, batchSize=batchSize, startTrainSize=startTrainSize, transforms=transforms, ) def choose_action(self, state): action = super().choose_action(state) return action, action class Net(torch.nn.Module): def __init__(self, img_shape, n_actions): super(Net, self).__init__() # 定義每層用什麼樣的形式 in_channels = img_shape[2] h = img_shape[0] w = img_shape[1] kernel_size = 8 stride = 4 padding = 0 self.conv1 = torch.nn.Conv2d( in_channels, 32, kernel_size=kernel_size, stride=stride, padding=padding ) h = (h + padding * 2 - kernel_size) // stride + 1 w = (w + padding * 2 - kernel_size) // stride + 1 # self.pool1 = torch.nn.MaxPool2d(2) # 32 x (h-2)//2 x (w-2)//2 # h //= 2 # w //= 2 kernel_size = 4 stride = 2 padding = 0 self.conv2 = torch.nn.Conv2d( 32, 64, kernel_size=kernel_size, stride=stride, padding=padding ) h = (h + padding * 2 - kernel_size) // stride + 1 w = (w + padding * 2 - kernel_size) // stride + 1 kernel_size = 3 stride = 1 padding = 0 self.conv3 = torch.nn.Conv2d( 64, 64, kernel_size=kernel_size, stride=stride, padding=padding ) h = (h + padding * 2 - kernel_size) // stride + 1 w = (w + padding * 2 - kernel_size) // stride + 1 # self.pool2 = torch.nn.MaxPool2d(2) # 64 x ((h-2)//2-2)//2 x ((w-2)//2-2)//2 # h //= 2 # w //= 2 self.fc1 = torch.nn.Linear(64 * h * w, 512) self.fc2 = torch.nn.Linear(512, n_actions) # self.dropout = torch.nn.Dropout(p=0.5) def forward(self, x): # 這同時也是 Module 中的 forward 功能 # 正向傳播輸入值, 神經網絡分析出輸出值 # x = self.pool1(F.relu(self.conv1(x))) # x = self.pool2(F.relu(self.conv2(x))) x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = x.view(x.shape[0], -1) # x = self.dropout(x) x = F.relu(self.fc1(x)) # x = self.dropout(x) x = self.fc2(x) return x
python
''' Author: jianzhnie Date: 2021-12-28 10:13:05 LastEditTime: 2021-12-28 10:20:24 LastEditors: jianzhnie Description: ''' import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import Optimizer KD_loss = nn.KLDivLoss(reduce='mean') def kd_step(teacher: nn.Module, student: nn.Module, temperature: float, inputs: torch.tensor, optimizer: Optimizer): teacher.eval() student.train() with torch.no_grad(): logits_t = teacher(inputs=inputs) logits_s = student(inputs=inputs) loss = KD_loss(input=F.log_softmax(logits_s / temperature, dim=-1), target=F.log_softmax(logits_t / temperature, dim=-1)) loss.backward() optimizer.step() optimizer.zero_grad() return loss
python
import pandas as pd import os input = __import__('sys').stdin.readline raw_data = [] for _ in range(44): tmp = ["", ""] tmp[0] = float(input()) tmp[1] = input().strip() raw_data.append(tmp) for x in raw_data: print(x) print(len(raw_data)) try: dir_path = os.path.abspath(__file__) + "/data/" file_name = "task3.xlsx" df = pd.DataFrame.from_records(raw_data) if not os.path.isdir(dir_path): os.mkdir(dir_path) df.to_excel(dir_path + file_name, sheet_name="Sheet1", index=False) print("fin") except OSError as e: print(e.__traceback__)
python
import pathlib import argparse import shutil import pytest import numpy as np from PIL import Image from src import image_averager @pytest.fixture def test_image_dir(tmpdir): test_images = pathlib.Path(__file__).parent / 'data' / 'test_images' target = pathlib.Path(tmpdir) / 'images' shutil.copytree(test_images, target) return target @pytest.fixture def averaged_image(): return pathlib.Path(__file__).parent / 'data' / 'expected_result.png' def test_existing_directory(tmpdir): assert image_averager.existing_directory(str(tmpdir)) == pathlib.Path(tmpdir) with pytest.raises(argparse.ArgumentTypeError): image_averager.existing_directory('/not/a/path') def test_build_average_image(test_image_dir, tmpdir, averaged_image): result = image_averager.build_average_image(test_image_dir) # outpath = pathlib.Path(tmpdir) / 'result.png' # result.save(outpath) expected = np.array(Image.open(averaged_image)) np.testing.assert_array_equal(expected, np.array(result)) def test_cli(test_image_dir, tmpdir, capsys): outpath = pathlib.Path(tmpdir / "result.png") args = f'-s {test_image_dir} -o {outpath} -l{"DEBUG"}' image_averager.main(args.split()) out, err = capsys.readouterr() assert not out assert err == 'INFO averaging 3 images.\n' assert outpath.exists()
python
from errors import * from parse import * from nodes import * from func import * from loop import * from ifelse import * class FlatNode(object): pass class Code(FlatNode): def __init__(self, words): self.words = words class GoTo(FlatNode): def __init__(self, index): self.index = index class Branch(FlatNode): """Branch-If-Zero object""" def __init__(self, index): self.index = index class LabdaNode(FlatNode): def __init__(self, index): self.index = index class Marker(object): pass class SingleInstruction(object): def __init__(self, opcode, ref): self.opcode = opcode self.ref = ref def __repr__(self): return str(self.opcode) + ' ' + str(self.ref) def flatten(tree, acc=None): if acc is None: acc = [] if isinstance(tree, list): for branch in tree: flatten(branch, acc) return acc for branch in tree.children: if isinstance(branch, list): for b in branch: flatten(b, acc) if isinstance(branch, Statement): acc.append(SingleInstruction('LINE_NUMBER', branch.linenr)) if isinstance(branch, Word): if acc and isinstance(acc[-1], Code): acc[-1].words.append(branch) else: acc.append(Code([branch])) elif isinstance(branch, WordList): if isinstance(branch, Line): acc.append(SingleInstruction('LINE_NUMBER', branch.linenr)) if acc and isinstance(acc[-1], Code): acc[-1].words.extend(branch.children) else: acc.append(Code(list(branch.children))) elif isinstance(branch, LabdaStatement): m = Marker() acc.append(LabdaNode(m)) for argument in branch.arguments: acc.append(SingleInstruction('SET_LOCAL', argument)) flatten(branch.body, acc) acc.append(SingleInstruction('RETURN', 0)) acc.append(m) if isinstance(branch, LocalFuncStatement): acc.append(SingleInstruction('SET_LOCAL', branch.name)) elif isinstance(branch, FuncStatement): name = branch.name if '!' in name: if name.count('!') > 1 or name.endswith('!'): raise DejaSyntaxError('methods need exactly one method name') if name.startswith('!'): name = 'eva' + name base, method = name.split('!') acc.append(SingleInstruction('PUSH_LITERAL', method)) acc.append(SingleInstruction('PUSH_WORD', base)) acc.append(SingleInstruction('SET_DICT', 0)) else: acc.append(SingleInstruction('SET_GLOBAL', name)) elif isinstance(branch, WhileStatement): m1 = Marker() m2 = Marker() acc.append(SingleInstruction('ENTER_SCOPE', 0)) acc.append(m1) flatten(branch.conditionclause, acc) acc.append(Branch(m2)) flatten(branch.body, acc) acc.append(GoTo(m1)) acc.append(m2) acc.append(SingleInstruction('LEAVE_SCOPE', 0)) elif isinstance(branch, ForStatement): m1 = Marker() m2 = Marker() flatten(branch.forclause, acc) acc.append(m1) acc.append(SingleInstruction('DUP', 0)) acc.append(Branch(m2)) acc.append(SingleInstruction('ENTER_SCOPE', 0)) acc.append(SingleInstruction('SET_LOCAL', '#f')) acc.append(SingleInstruction('SET_LOCAL', '#h')) acc.append(SingleInstruction('SET_LOCAL', branch.countername)) flatten(branch.body, acc) acc.append(SingleInstruction('PUSH_WORD', '#h')) acc.append(SingleInstruction('PUSH_WORD', '#f')) acc.append(SingleInstruction('LEAVE_SCOPE', 0)) acc.append(GoTo(m1)) acc.append(m2) acc.append(SingleInstruction('DROP', 0)) elif isinstance(branch, RepeatStatement): m1 = Marker() m2 = Marker() flatten(branch.forclause, acc) acc.append(SingleInstruction('ENTER_SCOPE', 0)) acc.append(SingleInstruction('SET_LOCAL', '#r')) acc.append(m1) acc.append(SingleInstruction('PUSH_WORD', '#r')) acc.append(Branch(m2)) flatten(branch.body, acc) acc.append(SingleInstruction('PUSH_WORD', '#r')) acc.append(SingleInstruction('PUSH_WORD', '--')) acc.append(SingleInstruction('SET_LOCAL', '#r')) acc.append(GoTo(m1)) acc.append(m2) acc.append(SingleInstruction('LEAVE_SCOPE', 0)) elif isinstance(branch, IfStatement): m_end = Marker() m = Marker() acc.append(SingleInstruction('ENTER_SCOPE', 0)) flatten(branch.ifclause.conditionclause, acc) acc.append(Branch(m)) flatten(branch.ifclause, acc) acc.append(GoTo(m_end)) acc.append(m) for elseifclause in branch.elseifclauses: m = Marker() flatten(elseifclause.conditionclause, acc) acc.append(Branch(m)) flatten(elseifclause, acc) acc.append(GoTo(m_end)) acc.append(m) if branch.elseclause: flatten(branch.elseclause, acc) acc.append(m_end) acc.append(SingleInstruction('LEAVE_SCOPE', 0)) elif isinstance(branch, TryStatement): m_body = Marker() m_end = Marker() acc.append(SingleInstruction('ENTER_ERRHAND', m_body)) for handler in branch.catchclauses: h_start = Marker() h_end = Marker() for ex in handler.exceptions: acc.extend([ SingleInstruction('DUP', 0), SingleInstruction('PUSH_LITERAL', ex), SingleInstruction('JMPEQ', h_start), ]) acc.pop() acc.extend([ SingleInstruction('JMPNE', h_end), h_start, SingleInstruction('DROP', 0), ]) flatten(handler, acc) acc.extend([GoTo(m_end), h_end]) acc.append(SingleInstruction('RERAISE', 0)) acc.append(m_body) flatten(branch.tryclause, acc) acc.append(SingleInstruction('LEAVE_ERRHAND', 0)) acc.append(m_end) return acc
python
# Generated by Django 3.0.4 on 2020-03-17 17:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('logomaker', '0002_category_image'), ] operations = [ migrations.CreateModel( name='logo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('logoname', models.CharField(max_length=100)), ('logoimage', models.ImageField(default='mypic', upload_to='upload/')), ], ), migrations.RemoveField( model_name='category', name='image', ), ]
python
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-节点管理(BlueKing-BK-NODEMAN) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.utils.translation import ugettext_lazy as _ from apps.exceptions import AppBaseException class BackendBaseException(AppBaseException): MODULE_CODE = 2000 class UploadPackageNotExistError(BackendBaseException): MESSAGE = _("文件包不存在") ERROR_CODE = 1 class JobNotExistError(BackendBaseException): MESSAGE = _("任务不存在") ERROR_CODE = 2 class StopDebugError(BackendBaseException): MESSAGE = _("停止调试失败") ERROR_CODE = 3 class PluginNotExistError(BackendBaseException): MESSAGE = _("插件包不存在") MESSAGE_TPL = _("插件包[{plugin_name}-{os_type}-{cpu_arch}]不存在") ERROR_CODE = 4 class PackageStatusOpError(BackendBaseException): MESSAGE = _("插件包状态变更错误") ERROR_CODE = 5 class PackageVersionValidationError(BackendBaseException): MESSAGE = _("插件包版本校验错误") ERROR_CODE = 6 class GenCommandsError(BackendBaseException): MESSAGE = _("安装命令生成失败") ERROR_CODE = 7 class GseEncryptedError(BackendBaseException): MESSAGE = _("GSE敏感信息加密失败") ERROR_CODE = 8 class PluginParseError(BackendBaseException): MESSAGE = _("插件解析错误") ERROR_CODE = 9 class CreatePackageRecordError(BackendBaseException): MESSAGE = _("归档插件包信息错误") ERROR_CODE = 10
python
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, emperor development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE.md, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import division from skbio import OrdinationResults from skbio.io import FileFormatError, IOSourceError from emperor.qiime_backports.parse import parse_coords as qiime_parse_coords def parse_coords(lines): """Parse skbio's ordination results file into coords, labels, eigvals, pct_explained. Returns: - list of sample labels in order - array of coords (rows = samples, cols = axes in descending order) - list of eigenvalues - list of percent variance explained For the file format check skbio.stats.ordination.OrdinationResults.read Strategy: read the file using skbio's parser and return the objects we want """ try: pcoa_results = OrdinationResults.read(lines) return (pcoa_results.samples.index.tolist(), pcoa_results.samples.values, pcoa_results.eigvals.values, pcoa_results.proportion_explained.values) except (FileFormatError, IOSourceError): try: lines.seek(0) except AttributeError: # looks like we have a list of lines, not a file-like object pass return qiime_parse_coords(lines)
python
rounds = ['chicken', 'ribs', 'pork', 'brisket'] class Table: def __init__(self, id=1, limit=6): self.id = id self.limit = limit self.boxes = { 'chicken': [], 'ribs': [], 'pork': [], 'brisket': [], } def add_box(self, round, box): self.boxes[round].append(box) def has_box(self, box): return any(box in self.boxes[rnd] for rnd in rounds) def can_take(self, round, box): return not self.has_box(box) and self.limit > len(self.boxes[round])
python
import json import time import urllib.parse import argparse from http.server import HTTPServer, BaseHTTPRequestHandler class PaulusHandler(BaseHTTPRequestHandler): def do_GET(self): self.send_response(200) self.send_header("Content-Type", "text/html") self.end_headers() self.wfile.write(form_html(args.questions).encode("utf-8")) def do_POST(self): content_length = int(self.headers.get("Content-Length")) body = self.rfile.read(content_length).decode("utf-8") form_data = parse_form_data(body) with open(args.output, "a") as file: file.write(json.dumps(form_data) + "\n") self.send_response(200) self.end_headers() self.wfile.write("Merci!".encode("utf-8")) def run(): server_address = ('', args.port) httpd = HTTPServer(server_address, PaulusHandler) httpd.serve_forever() def parse_args(): parser = argparse.ArgumentParser(description="Paulus") parser.add_argument( '--port', type=int, default=8000, help="Port to start the server on" ) parser.add_argument( '--questions', type=str, default="questions.txt", help="File that contains newline-separated questions" ) parser.add_argument( '--output', type=str, default="paulus.json", help="File to append poll data to" ) return parser.parse_args() def parse_form_data(string): form_data = {"time": int(time.time())} for line in string.split("&"): [key, val] = line.split("=") parsed_key = urllib.parse.unquote_plus(key).strip() parsed_val = urllib.parse.unquote_plus(val).strip() form_data[parsed_key] = parsed_val return form_data def form_html(questions_file): questions = [] with open(questions_file, "r") as file: questions = file.readlines() questions_html = "" for question in questions: questions_html += f""" <div class="form-question"> <label for="{question}">{question}</label> <div> <input type="checkbox" name="{question}" id="{question}"/> </div> </div> """ style = """ .form-question { display: flex; width: 100%; padding-bottom: 0.5em; } .form-question > * { display: block; width: 50%; } .form-question > label { text-align: right; margin-right: 10px; } input[type=submit] { position: relative; left: 50%; } """ message = f""" <!DOCTYPE html> <html> <head> <title>Paulus</title> </head> <body> <h1>Paulus</h1> <form action="" method="post"> {questions_html} <div class="form-question"> <label for="comment">comment</label> <textarea name="comment" id="comment"></textarea> </div> <input type="submit" value="Submit" /> </form> <style> {style} </style> </body> </html> """ return message if __name__ == "__main__": args = parse_args() run()
python
import cPickle as pickle import zlib """ Compressed version of pickle """ def zdumps(obj, compression_level = 3): return zlib.compress(pickle.dumps(obj,pickle.HIGHEST_PROTOCOL),compression_level) def zloads(zstr): return pickle.loads(zlib.decompress(zstr)) def dump(obj,path): compr = zdumps(obj) with open(path,"wb") as fp: fp.write(compr) def load(path): with open(path,"rb") as fp: compr = fp.read() return zloads(compr)
python
from .pointnet2_head import PointNet2Head __all__ = ['PointNet2Head']
python
#!/usr/bin/env python # -*- coding: UTF-8 -*- # vim: ts=4 sts=4 sw=4 tw=79 sta et """%prog [options] Python source code - @todo This implements the code to store and save data about tweets IMPORTANT NOTE: All times are in UTC. They must be either naive and represent UTC or contain valid tzinfo. """ __author__ = 'Patrick Butler' __email__ = '[email protected]' import pycassa import datetime from ..utils import now, dt_to_ts, uuid_to_dt from pycassa.util import convert_time_to_uuid class InvalidDefinitionException(Exception): pass class ColumnFamily(object): """Record a set of numerical stats""" name = None columns = [] super = False def __init__(self, pool): """@todo: to be defined :param pool: the connection pool with keypace to use """ if self.__class__.name is None: raise InvalidDefinitionException("Name undefined in class: " + self.__class__.__name__) self._pool = pool self._cf = pycassa.ColumnFamily(self._pool, self.__class__.name) @classmethod def _get_class_keys(cls): """@todo: Docstring for __get_class_keys :param arg1: @todo :returns: @todo """ arg_keys = {i: i for i in [ "comparator_type", "subcomparator_type", "merge_shards_chance", "column_validation_classes", "key_cache_size", "row_cache_size", "gc_grace_seconds", "read_repair_chance", "comment" "default_validation_class", "key_validation_class", "min_compaction_threshold", "max_compaction_threshold", "key_cache_save_period_in_seconds", "replicate_on_write", "row_cache_save_period_in_seconds", "compaction_strategy_options", "row_cache_provider", "key_alias", "compaction_strategy", "row_cache_keys_to_save", "compression_options", ]} arg_keys.update({'default_validation_class': 'default_type', 'key_validation_class': 'key_type', 'comparator_type': 'column_name_type', 'subcomparator_type': 'subcolumn_name_type', }) kwargs = {} for pc_arg, cls_arg in arg_keys.iteritems(): if hasattr(cls, cls_arg): kwargs[pc_arg] = getattr(cls, cls_arg) kwargs['column_validation_classes'] = cls.columns \ if cls.columns else None kwargs['super'] = cls.super return kwargs @classmethod def create(cls, sys, keyspace): """@todo: Docstring for create_cf :param sys: @todo :param keysapce: @todo :returns: @todo """ kwargs = cls._get_class_keys() if cls.name not in sys.get_keyspace_column_families(keyspace).keys(): sys.create_column_family(keyspace, cls.name, **kwargs) @classmethod def alter(cls, sys, keyspace): """@todo: Docstring for create_cf :param sys: @todo :param keysapce: @todo :returns: @todo """ kwargs = cls._get_class_keys() for k in ["super", "comparator_type", "subcomparator_type", "key_validation_class"]: if k in kwargs: del kwargs[k] sys.alter_column_family(keyspace, cls.name, **kwargs) @classmethod def create_or_alter(cls, sys, keyspace): """@todo: Docstring for create_cf :param sys: @todo :param keysapce: @todo :returns: @todo """ if cls.name not in sys.get_keyspace_column_families(keyspace).keys(): cls.create(sys, keyspace) else: cls.alter(sys, keyspace) def batch(self): return self._cf.batch() def insert(self, *args, **kwargs): batch = kwargs.get('batch') if batch is None: self._cf.insert(*args, **kwargs) else: del kwargs['batch'] batch.insert(*args, **kwargs) def remove(self, *args, **kwargs): batch = kwargs.get('batch') if batch is None: self._cf.remove(*args, **kwargs) else: del kwargs['batch'] batch.remove(*args, **kwargs) def get(self, *args, **kwargs): self._cf.get(*args, **kwargs) def xget(self, *args, **kwargs): self._cf.xget(*args, **kwargs) class WideTimeColumnFamily(ColumnFamily): """A generic class for storingnumerical stats start interval """ column_name_type = pycassa.types.TimeUUIDType() def __init__(self, pool): """@todo: to be defined :param pool: the connection pool with keypace to use """ cls = self.__class__ super(WideTimeColumnFamily, self).__init__(pool) if not hasattr(cls, 'start_ts'): self.__class__.start_ts = dt_to_ts(self.__class__.start) def row_key(self, _time): cls = self.__class__ _time = int(dt_to_ts(_time) - cls.start_ts) _time //= cls.interval return str(int(_time)) def col_key(self, _time): return convert_time_to_uuid(_time, randomize=True) def insert(self, time, data, batch=None): rkey = self.row_key(time) ckey = convert_time_to_uuid(time, randomize=True) if batch is None: self._cf.insert(rkey, {ckey: data}) else: batch.insert(rkey, {ckey: data}) return ckey def remove(self, uuid): t = uuid_to_dt(uuid) k = self.row_key(t) col_type = "columns" if self.__class__.super: col_type = "super_column" self._cf.remove(k, **{col_type: uuid}) def xget(self, start=None, stop=None, bsize=1000): cls = self.__class__ if start is None: start = cls.start if stop is None: stop = now() place = start while True: # start <= stop: kstart = self.row_key(place) total = self._cf.get_count(kstart, column_start=start, column_finish=stop,) s = start seen = 0 while seen < total: tmp = self._cf.get(kstart, column_start=s, column_finish=stop, column_count=bsize) itr = tmp.iteritems() if seen > 0: # column start/finish are inclusive so skip itr.next() for k, v in itr: yield k, v s = max(s, uuid_to_dt(k)) seen += 1 start = s if place > stop: break place += datetime.timedelta(seconds=cls.interval) return def get(self, start=None, stop=None, bsize=1000): return list(self.xget(start, stop, bsize)) class CounterColumnFamily(WideTimeColumnFamily): super = False default_type = pycassa.COUNTER_COLUMN_TYPE column_name_type = pycassa.DATE_TYPE #column_name_type = pycassa.types.TimeUUIDType() sub_interval = "m" def row_key(self, name, _time): cls = self.__class__ _time = int(dt_to_ts(_time) - cls.start_ts) _time //= cls.interval return name + "|" + str(int(_time)) def col_key(self, name, _time): si = self.__class__.sub_interval if si == "m": _time = _time.replace(second=0, microsecond=0) elif si == "h": _time = _time.replace(minute=0, second=0, microsecond=0) elif si == "d": _time = _time.replace(hour=0, minute=0, second=0, microsecond=0) return _time def add(self, name, value=1, _time=None): if _time is None: _time = now() rkey = self.row_key(name, _time) ckey = self.col_key(name, _time) self._cf.add(rkey, ckey, value) def get_value(self, name, _time): rkey = self.row_key(name, _time) ckey = self.col_key(name, _time) try: return self._cf.get(rkey, [ckey]).values()[0] except pycassa.cassandra.c10.ttypes.NotFoundException: return 0 class StatColumnFamily(WideTimeColumnFamily): super = False default_type = pycassa.INT_TYPE column_name_type = pycassa.DATE_TYPE #column_name_type = pycassa.types.TimeUUIDType() sub_interval = "m" def row_key(self, name, _time): cls = self.__class__ _time = int(dt_to_ts(_time) - cls.start_ts) _time //= cls.interval return name + "|" + str(int(_time)) def col_key(self, name, _time): si = self.__class__.sub_interval if si == "m": _time = _time.replace(second=0, microsecond=0) elif si == "h": _time = _time.replace(minute=0, second=0, microsecond=0) elif si == "d": _time = _time.replace(hour=0, minute=0, second=0, microsecond=0) return _time def insert(self, name, value, _time=None, batch=None): if _time is None: _time = now() rkey = self.row_key(name, _time) ckey = self.col_key(name, _time) if batch is None: self._cf.insert(rkey, {ckey: value}) else: batch.insert(rkey, {ckey: value}) def get(self, *args, **kwargs): return list(self.xget(*args, **kwargs)) def xget(self, name, start=None, stop=None, bsize=1000): cls = self.__class__ if start is None: start = cls.start if stop is None: stop = now() place = start while True: # start <= stop: kstart = self.row_key(name, place) total = self._cf.get_count(kstart, column_start=start, column_finish=stop,) s = start seen = 0 while seen < total: tmp = self._cf.get(kstart, column_start=s, column_finish=stop, column_count=bsize) itr = tmp.iteritems() if seen > 0: # column start/finish are inclusive so skip itr.next() for k, v in itr: yield k, v s = max(s, k) # uuid_to_dt(k)) seen += 1 start = s if place > stop: break place += datetime.timedelta(seconds=cls.interval) return #def get_value(self, name, _time): # rkey = self.row_key(name, _time) # ckey = self.col_key(name, _time) # try: # return self._cf.get(rkey, [ckey]).values()[0] # except pycassa.cassandra.c10.ttypes.NotFoundException: # return 0
python
"""Includes methods that plays the game. i.e. Self play, and AI v. AI. Author(s): Jonah Chen, Muhammad Ahsan Kaleem """ from time import perf_counter from copy import deepcopy from concurrent.futures import ProcessPoolExecutor from os import mkdir import numpy as np import tensorflow as tf from mcts import optimized_search from game import move_on_board from nptrain import * def self_play(model, games=128, game_iter=64, search_iter=512, gamma=1): """The model performs self play to generate training data. Args: model (tf.keras.models.Model): The model that will be predicting the policies and values for self players games (int, optional): The number of games in this batch of self players. Defaults to 128. game_iter (int, optional): The maximum length of the games. Defaults to 64. search_iter (int, optional): The number of iterations of MCTS that is performed to make each moves. Defaults to 512. gamma (float, optional): The discounting factor for the rewards. A value of 1 means no discounting. Defaults to 1. Returns: s (list of numpy arrays): A list of the boards that are a result of each state of the every game. pie (list of numpy arrays): A list of arrays of the policies generated from the monte-carlo tree search. z (list of int): A list of the value (result or diminished result) of each of the games. """ boards = np.zeros((games, 8, 8, 2,), dtype="float32") players = [1]*games inputs = None s = [] pie = [] z = [] # These are the parameters to train the network to gained by MCTS process # The elements are accessed as game_boards[game#][turn#] game_boards = [[] for _ in range(games)] mcts_policies = [[] for _ in range(games)] for turns in range(game_iter): print( f"------------------------------------------------------------\nTurn {turns+1} of {game_iter}. Ended: {games - len(game_boards)} of {games}. Cumulated: {int(perf_counter() - true_start)}s") if len(game_boards) == 0: return s, pie, z results = optimized_search( model, boards, players, roots=inputs, it=search_iter) inputs = [] games_ended = 0 for j in range(len(results)): i = j - games_ended # Save the results of the MCTS to train NN act, dist = results[i].play() game_boards[i].append( deepcopy(boards[i] if players[i] == 1 else np.flip(boards[i], axis=2))) mcts_policies[i].append(dist) # Make Move move_on_board(boards[i], act, player=players[i]) # When game ends, save the data of the game. state = is_win(boards[i]) if state: s.append(game_boards.pop(i)) pie.append(mcts_policies.pop(i)) if state == 1: z.append([(1 - 2 * (k % 2))*gamma**(turns-k) for k in range(turns+1)]) elif state == 2: z.append([(2 * (k % 2) - 1)*gamma**(turns-k) for k in range(turns+1)]) elif state == 3: z.append([0]*(turns+1)) boards = np.delete(boards, i, axis=0) players.pop() del results[i] games_ended += 1 else: # When game doesn't end. Player changes and the new state is appended to be evaluated on the next tern. inputs.append(results[i].children[act]) players[i] = players[i] % 2 + 1 return s, pie, z def digest(list_of_list): temp = [] for x1 in list_of_list: for x2 in x1: temp.append(x2) return np.array(temp) def ai_v_ai(black, white, games=64, game_iter=64, search_iter=512, tau=0): """Plays the AI black against white. Return the score of black (between 0 and 100, higher is better), the list of list of games played as moves (0-63) in the order they are played, and the record as a tuple (losses, draws, wins). Black will start with the black stones in every game""" # Creates the boards. boards = np.zeros((games, 8, 8, 2,), dtype="float32") players = [1]*games inputs = None # Create the statistics. wins, losses, draws = 0, 0, 0 # Creates the arrays of the moves being made. temp_games = [[] for _ in range(games)] save_games = [] for turns in range(game_iter): print( f"------------------------------------------------------------\nTurn {turns+1} of {game_iter}. w/d/l={wins}/{draws}/{losses}") # Return when all games end if len(temp_games) == 0: return round((100*wins+50*draws)/games), save_games, [losses, draws, wins] # Execute the MCTS results = optimized_search( white if turns % 2 else black, boards, players, roots=inputs, it=search_iter) inputs = [] games_ended = 0 for j in range(len(results)): i = j - games_ended # Generate and make the move act, _ = results[i].play(tau=tau) move_on_board(boards[i], act, player=players[i]) temp_games[i].append(act) # When game ends, save the data of the game. state = is_win(boards[i]) if state: save_games.append(np.array(temp_games.pop(i))) if state == 1: wins += 1 elif state == 2: losses += 1 elif state == 3: draws += 1 boards = np.delete(boards, i, axis=0) players.pop() del results[i] games_ended += 1 else: # When game doesn't end. Player changes and the new state is appended to be evaluated on the next tern. inputs.append(results[i].children[act]) players[i] = players[i] % 2 + 1 return round((100*wins+50*draws)/games), np.array(save_games), [losses, draws, wins] def generate_data(num, model, games=128, gamma=1): global true_start true_start = perf_counter() # Make a directory and write a dummy file to it. mkdir(f'selfplay_data/{num}') np.save(f'selfplay_data/{num}/_test', np.zeros(1,)) print("Directory created succesfully.") s, pie, z = self_play(model, games=games, gamma=gamma) start = perf_counter() with ProcessPoolExecutor() as executor: pie = executor.submit(digest, pie).result() z = executor.submit(digest, z).result() s = executor.submit(digest, s).result() end = perf_counter() print(end-start) np.save(f'selfplay_data/{num}/pie', pie) np.save(f'selfplay_data/{num}/z', z) np.save(f'selfplay_data/{num}/s', s) del s, pie, z def eval_model(new_model, old_model, games=128, verbose=True, search_iter=512): """Play games games with equal chance each model gets white and black and return the score the new_model achieved(0-100), the record [losses, draws, wins], the games played with black, the games played with white as a tuple in order.""" _, games1, record1 = ai_v_ai(new_model, old_model, games=games//2, search_iter=search_iter) _, games2, record2 = ai_v_ai(old_model, new_model, games=games//2, search_iter=search_iter) if verbose: print(f"Black (w/d/l): {record1[2]}/{record1[1]}/{record1[0]}") print(f"White (w/d/l): {record2[0]}/{record2[1]}/{record2[2]}") print(f"Total (w/d/l): {record1[2]+record2[0]}/{record1[1]+record2[1]}/{record1[0]+record2[2]}") return round(((record1[2]+record2[0])*100 + (record1[1]+record2[1])*50)/games), [record1[0]+record2[2], record1[1]+record2[1], record1[2]+record2[0]], games1, games2 if __name__ == '__main__': model2 = tf.keras.models.load_model('models/2') model1 = tf.keras.models.load_model('models/1') eval_model(model1, model2)
python
# Copyright (c) Johns Hopkins University and its affiliates. # This source code is licensed under the Apache 2 license found in the # LICENSE file in the root directory of this source tree. __author__ = "Max Fleming, Darius Irani" __copyright__ = "Copyright 2020, Johns Hopkins University" __credits__ = ["Max Fleming"] __license__ = "Apache 2.0" __version__ = "0.1" __maintainer__ = "JHU-COVID-QA" __email__ = "[email protected]" __status__ = "Development" import jsonlines import time from bs4 import BeautifulSoup from covid_scraping import utils, test_jsonlines class Conversion(): def __init__(self, file_prefix, path): """ This is the constructor for Conversion, the file_prefix should be the name of the file you want i.e. if your scraping 'American Veterinarian Medical Association', and approptiate file prefix would be 'AVMA'. The path should be the path from the directory your working in to Covid-19-infobot/data/scraping """ self._examples = [] self._file_prefix = file_prefix self._path = path def _check_example(self, example): required_keys_to_type = {'sourceUrl': str, 'sourceName': str, 'needUpdate': bool, 'typeOfInfo': str, 'isAnnotated': bool, 'responseAuthority': str, 'question': str, 'answer': str, 'hasAnswer': bool, 'targetEducationLevel': str, 'topic': list, 'extraData': dict, 'targetLocation': str, 'language': str} for key in required_keys_to_type.keys(): if key not in example: raise KeyError("'" + key + "'" + "was not found in dictionary") if not isinstance(example[key], required_keys_to_type[key]): raise ValueError("'" + key + "'" + "should be type " + str(required_keys_to_type[key])) for field in ['question', 'answer']: if len(example[field].strip()) == 0: # indicates empty field raise ValueError('{} field is empty'.format(field)) def addExample(self, dict): """ Added a qa pair to the converter the dictionary pass should have the following fields sourceUrl sourceName sourceDate lastUpdateTime needUpdate typeOfInfo isAnnotated responseAuthority question answer hasAnswer targetEducationLevel topic extraData targetLocation language """ self._check_example(dict) self._examples.append(dict) def _writeV2(self): v2_requirements_from_scraper = ['sourceUrl', 'sourceName', 'needUpdate', 'typeOfInfo', 'isAnnotated', 'responseAuthority', 'hasAnswer', 'targetEducationLevel', 'targetLocation', 'language', 'extraData', 'topic'] v2_requirements_from_conversion = ['sourceDate', 'lastUpdateTime', 'dateScraped', 'questionOriginal', 'questionText', 'answerOriginal', 'answerText', 'ID', 'answerContainsURLs', 'answerToks2URL'] path = self._path + '/schema_v0.2/' + self._file_prefix + '_v0.2.jsonl' qas = [] for example in self._examples: questionText, question_link_dict = utils.clean_text( example['question']) answerText, answer_link_dict = utils.clean_text(example['answer']) pairs_from_scraper = dict(zip(v2_requirements_from_scraper, list( map(example.get, v2_requirements_from_scraper)))) v2_conversion = [self._lastUpdateTime, self._lastUpdateTime, self._dateScraped, example['question'], questionText, example['answer'], answerText, example['sourceName'] + '|||' + str(hash(str(example['question']))), bool(answer_link_dict), answer_link_dict] pairs_from_conversion = dict( zip(v2_requirements_from_conversion, v2_conversion)) qas.append({**pairs_from_scraper, **pairs_from_conversion}) gold_data = utils.merge(path, qas) # Merging could add a exampleUUID for a new example. for example in gold_data: example.pop('exampleUUID', None) with jsonlines.open(path, 'w') as writer: writer.write_all(gold_data) return test_jsonlines(path, 'v0.2') def _writeV3(self): v3_requirements_from_scraper = ['sourceUrl', 'sourceName', 'needUpdate', 'typeOfInfo', 'isAnnotated', 'responseAuthority', 'hasAnswer', 'targetEducationLevel', 'targetLocation', 'language', 'extraData', 'topic'] v3_requirements_from_conversion = ['questionOriginal', 'questionText', 'answerOriginal', 'answerText', 'ID', 'answerContainsURLs', 'answerToks2URL'] path = self._path + '/schema_v0.3/' + self._file_prefix + '_v0.3.jsonl' qas = [] for example in self._examples: questionText, question_link_dict = utils.clean_text(example['question']) answerText, answer_link_dict = utils.clean_text(example['answer']) pairs_from_scraper = dict(zip(v3_requirements_from_scraper, list( map(example.get, v3_requirements_from_scraper)))) v3_conversion = [example['question'], questionText, example['answer'], answerText, example['sourceName'] + '|||' + str(hash(str(example['question']))), bool(answer_link_dict), answer_link_dict] pairs_from_conversion = dict( zip(v3_requirements_from_conversion, v3_conversion)) qas.append({**pairs_from_scraper, **pairs_from_conversion}) gold_data = utils.merge(path, qas) # Merging could add a exampleUUID for a new example. for example in gold_data: example.pop('exampleUUID', None) example.pop('sourceDate', None) example.pop('lastUpdateTime', None) example.pop('dateScraped', None) with jsonlines.open(path, 'w') as writer: writer.write_all(gold_data) return test_jsonlines(path, 'v0.3') def write(self): "Write all the added examples to the paths specified in the constructor" return self._writeV3()
python
import json from redisgears import getMyHashTag as hashtag from rgsync.common import * class CqlConnection: def __init__(self, user, password, db, keyspace): self._user = user self._password = password self._db = db self._keyspace = keyspace @property def user(self): return self._user() if callable(self._user) else self._user @property def password(self): return self._password() if callable(self._password) else self._password @property def db(self): return self._db() if callable(self._db) else self._db @property def keyspace(self): return self._keyspace() if callable(self._keyspace) else self._keyspace def _getConnectionStr(self): return json.dumps( { "user": self.user, "password": self.password, "db": self.db, "keyspace": self.keyspace, } ) def Connect(self): from cassandra.auth import PlainTextAuthProvider from cassandra.cluster import Cluster ConnectionStr = self._getConnectionStr() WriteBehindLog(f"Connect: connecting db={self.db} keyspace={self.keyspace}") auth_provider = PlainTextAuthProvider( username=self.user, password=self.password ) cluster = Cluster(self.db.split(), auth_provider=auth_provider) if self.keyspace != "": session = cluster.connect(self.keyspace) else: session = cluster.connect() WriteBehindLog("Connect: Connected") return session class CqlConnector: def __init__(self, connection, tableName, pk, exactlyOnceTableName=None): self.connection = connection self.tableName = tableName self.pk = pk self.exactlyOnceTableName = exactlyOnceTableName self.exactlyOnceLastId = None self.shouldCompareId = True if self.exactlyOnceTableName is not None else False self.session = None self.supportedOperations = [OPERATION_DEL_REPLICATE, OPERATION_UPDATE_REPLICATE] def PrepereQueries(self, mappings): def GetUpdateQuery(tableName, mappings, pk): query = f"update {tableName} set " fields = [ f"{val}=?" for kk, val in mappings.items() if not kk.startswith("_") ] query += ",".join(fields) query += f" where {self.pk}=?" return query self.addQuery = GetUpdateQuery(self.tableName, mappings, self.pk) self.delQuery = f"delete from {self.tableName} where {self.pk}=?" if self.exactlyOnceTableName is not None: self.exactlyOnceQuery = GetUpdateQuery( self.exactlyOnceTableName, {"val", "val"}, "id" ) def TableName(self): return self.tableName def PrimaryKey(self): return self.pk def WriteData(self, data): if len(data) == 0: WriteBehindLog("Warning, got an empty batch") return query = None try: if not self.session: self.session = self.connection.Connect() if self.exactlyOnceTableName is not None: shardId = f"shard-{hashtag()}" result = self.session.execute( f"select val from {self.exactlyOnceTableName} where id=?", shardId, ) res = result.first() if res is not None: self.exactlyOnceLastId = str(res["val"]) else: self.shouldCompareId = False except Exception as e: self.session = None # next time we will reconnect to the database self.exactlyOnceLastId = None self.shouldCompareId = ( True if self.exactlyOnceTableName is not None else False ) msg = f'Failed connecting to Cassandra database, error="{str(e)}"' WriteBehindLog(msg) raise Exception(msg) from None idsToAck = [] try: from cassandra.cluster import BatchStatement batch = BatchStatement() isAddBatch = ( True if data[0]["value"][OP_KEY] == OPERATION_UPDATE_REPLICATE else False ) query = self.addQuery if isAddBatch else self.delQuery stmt = self.session.prepare(query) lastStreamId = None for d in data: x = d["value"] lastStreamId = d.pop( "id", None ) # pop the stream id out of the record, we do not need it if ( self.shouldCompareId and CompareIds(self.exactlyOnceLastId, lastStreamId) >= 0 ): WriteBehindLog( f"Skip {lastStreamId} as it was already writen to the backend" ) continue op = x.pop(OP_KEY, None) if op not in self.supportedOperations: msg = "Got unknown operation" WriteBehindLog(msg) raise Exception(msg) from None self.shouldCompareId = False if op != OPERATION_UPDATE_REPLICATE: if isAddBatch: self.session.execute(batch) batch = BatchStatement() isAddBatch = False query = self.delQuery else: if not isAddBatch: self.session.execute(batch) batch = BatchStatement() isAddBatch = True query = self.addQuery stmt = self.session.prepare(query) batch.add(stmt.bind(x)) if len(batch) > 0: self.session.execute(batch) if self.exactlyOnceTableName is not None: stmt = self.session.prepare(self.exactlyOnceQuery) self.session.execute(stmt, {"id": shardId, "val": lastStreamId}) except Exception as e: self.session = None # next time we will reconnect to the database self.exactlyOnceLastId = None self.shouldCompareId = ( True if self.exactlyOnceTableName is not None else False ) msg = 'Got exception when writing to DB, query="%s", error="%s".' % ( (query if query else "None"), str(e), ) WriteBehindLog(msg) raise Exception(msg) from None
python
from graphics import * from menu import * from levels import * import common as var import states from game import * import lives as l from pathlib import * from file import * from highscores import * def main(): win = GraphWin("Arkasquash by Alexandre Valente", 800, 800, autoflush=False) #, autoflush=True startApplication(win) win.close() def startApplication(win): hasExited = False state = states.MAIN_MENU while not hasExited: if state == states.MAIN_MENU: state = mainMenu(win, state) elif state == states.GAME_STARTED: state, gameVariables = playGame(win, state) elif state == states.GAME_ENDED: #When the game ends, prompt the user to save score state = saveScore(win, state, gameVariables) elif state == states.HIGH_SCORES: state = highScores(win, state) elif state == states.INST_MENU: state = instructionsMenu(win, state) #elif state == states.LEVEL_EDITOR: #state = levelEditor(win, state) elif state == states.CARACTER_SEL: state = caracterSelection(win, state) elif state == states.GAME_EXIT or win.closed: hasExited = True update(states.FPS) def playGame(win, state): '''Draws the playing level, according to the current level number''' gameVariables = [1, 0, 0, 0, 0, 3, [], [], Text(Point(690, 715), ""), Image(Point(0,0), ""), Text(Point(700, 130), "Score"), Image(Point(0,0), ""), Image(Point(0,0), "")] drawLevel(win, gameVariables) l.drawHearts(win, gameVariables) l.drawScore(win, gameVariables) hasStarted = True isPlaying = False speed = 50 ballSpeed = 5 ballDir = -1 goDown = 0 times_moved = 0 isPaused = False rocketActive = False '''Game Loop''' while hasStarted: key = win.checkKey() '''Pause Menu''' if isPaused: mouse = win.checkMouse() if not isPaused and key == 'Escape': pause = showPause(win) isPaused = True elif isPaused and (key == 'Escape' or resumeButton(mouse)): closePause(pause) isPaused = False elif isPaused and mainMenuButton(mouse): return states.MAIN_MENU, gameVariables if not isPaused: if isPlaying and goDown > states.FPS * var.time_sec and times_moved < gameVariables[var.level] * 10: goDown = 0 moveBlocksDown(win, gameVariables) times_moved += 1 '''Game hasnt started, waiting for player to start''' if key == 'space' and not isPlaying: isPlaying = True ballDir = startBall() '''Move player Paddle''' if key == 'Left' or key == 'Right': movePlayer(win, key, gameVariables[var.player], speed) '''Launch a rocket that destroys a set ammout of blocks''' if isPlaying and key == 'z' and not rocketActive and gameVariables[var.rockets] > 0: l.launchRocket(win, gameVariables) gameVariables[var.rockets] -= 1 l.drawRockets(win, gameVariables) rocketActive = True if rocketActive: rocketActive = l.moveRocket(win, gameVariables) '''Move the paddle, while the game has not started''' if not isPlaying: if gameVariables[var.ball].getCenter().getX() != gameVariables[var.player].getAnchor().getX(): x = gameVariables[var.player].getAnchor().getX() - gameVariables[var.ball].getCenter().getX() gameVariables[var.ball].move(x, 0) if gameVariables[var.ball].getCenter().getY() >= 750: gameVariables[var.ball].move(0, -10) '''Detect collisions, ball movement, when die lose live and manage hearts''' if isPlaying and ballDir != -1: ballDir = checkCollisions(win, ballDir, gameVariables, var.ball_rad) moveBall(ballDir, ballSpeed, gameVariables) elif isPlaying and ballDir == -1: l.removeHeart(gameVariables) l.drawHearts(win, gameVariables) isPlaying = False '''When the number of blocks reaches 0, start next level and add heart''' if isPlaying and len(gameVariables[var.blocks]) <= 0: nextLevel(gameVariables) drawLevel(win, gameVariables) l.drawHearts(win, gameVariables) isPlaying = False ballDir = -1 times_moved = 0 if gameVariables[var.level] > 3: hasStarted = False '''When all lives are lost, end the game''' if gameVariables[var.lives] <= 0: isPlaying = False hasStarted = False if isPlaying: goDown += 1 update(states.FPS) return states.GAME_ENDED, gameVariables def saveScore(win, state, gameVars): #Creates the file in case it does not exist text, tab, scoreText = promptUsername(win, gameVars[var.score]) while win.checkKey() != 'Return': name = text.getText() name = name[:13] path = Path("scores.txt") if not path.is_file(): file = open("scores.txt", "w") file.close() inFile = open("scores.txt", "r+") data = inFile.read() inFile.close() if "`" not in data: outFile = open("scores.txt", "w+") outFile.write(name + "´" + str(gameVars[var.score]) + "`") outFile.close() else: newData = scoresToList(data, name, gameVars[var.score]) outFile = open("scores.txt", "w+") outFile.write(newData) outFile.close() scoreText.undraw() text.undraw() tab.undraw() return states.MAIN_MENU def highScores(win, state): players, tab = drawHighscores(win) while win.getKey() != 'Escape': pass return states.MAIN_MENU def instructionsMenu(win, state): tab = drawInstructions(win) while win.getKey() != 'Escape': pass tab.undraw() return states.MAIN_MENU def caracterSelection(win, state): tab = drawDesign(win) dN, player = drawPlayerDesign(win) key = 'm' while key != 'Escape': key = win.checkKey() if key == 'Left': dN, player = minusDesign(dN, player, win) #dN = designNumber elif key == 'Right': dN, player = plusDesign(dN, player, win) saveDesign(dN) tab.undraw() player.undraw() return states.MAIN_MENU main()
python
# Released under the MIT License. See LICENSE for details. # """Provide top level UI related functionality.""" from __future__ import annotations import os import weakref from dataclasses import dataclass from typing import TYPE_CHECKING, cast, Type import _ba from ba._generated.enums import TimeType from ba._general import print_active_refs if TYPE_CHECKING: from typing import Optional, Any import ba # Set environment variable BA_DEBUG_UI_CLEANUP_CHECKS to 1 # to print detailed info about what is getting cleaned up when. DEBUG_UI_CLEANUP_CHECKS = os.environ.get('BA_DEBUG_UI_CLEANUP_CHECKS') == '1' class Window: """A basic window. Category: User Interface Classes """ def __init__(self, root_widget: ba.Widget, cleanupcheck: bool = True): self._root_widget = root_widget # Complain if we outlive our root widget. if cleanupcheck: uicleanupcheck(self, root_widget) def get_root_widget(self) -> ba.Widget: """Return the root widget.""" return self._root_widget @dataclass class UICleanupCheck: """Holds info about a uicleanupcheck target.""" obj: weakref.ref widget: ba.Widget widget_death_time: Optional[float] class UILocation: """Defines a specific 'place' in the UI the user can navigate to. Category: User Interface Classes """ def __init__(self) -> None: pass def save_state(self) -> None: """Serialize this instance's state to a dict.""" def restore_state(self) -> None: """Restore this instance's state from a dict.""" def push_location(self, location: str) -> None: """Push a new location to the stack and transition to it.""" class UILocationWindow(UILocation): """A UILocation consisting of a single root window widget. Category: User Interface Classes """ def __init__(self) -> None: super().__init__() self._root_widget: Optional[ba.Widget] = None def get_root_widget(self) -> ba.Widget: """Return the root widget for this window.""" assert self._root_widget is not None return self._root_widget class UIEntry: """State for a UILocation on the stack.""" def __init__(self, name: str, controller: UIController): self._name = name self._state = None self._args = None self._instance: Optional[UILocation] = None self._controller = weakref.ref(controller) def create(self) -> None: """Create an instance of our UI.""" cls = self._get_class() self._instance = cls() def destroy(self) -> None: """Transition out our UI if it exists.""" if self._instance is None: return print('WOULD TRANSITION OUT', self._name) def _get_class(self) -> Type[UILocation]: """Returns the UI class our name points to.""" # pylint: disable=cyclic-import # TEMP HARD CODED - WILL REPLACE THIS WITH BA_META LOOKUPS. if self._name == 'mainmenu': from bastd.ui import mainmenu return cast(Type[UILocation], mainmenu.MainMenuWindow) raise ValueError('unknown ui class ' + str(self._name)) class UIController: """Wrangles ba.UILocations. Category: User Interface Classes """ def __init__(self) -> None: # FIXME: document why we have separate stacks for game and menu... self._main_stack_game: list[UIEntry] = [] self._main_stack_menu: list[UIEntry] = [] # This points at either the game or menu stack. self._main_stack: Optional[list[UIEntry]] = None # There's only one of these since we don't need to preserve its state # between sessions. self._dialog_stack: list[UIEntry] = [] def show_main_menu(self, in_game: bool = True) -> None: """Show the main menu, clearing other UIs from location stacks.""" self._main_stack = [] self._dialog_stack = [] self._main_stack = (self._main_stack_game if in_game else self._main_stack_menu) self._main_stack.append(UIEntry('mainmenu', self)) self._update_ui() def _update_ui(self) -> None: """Instantiate the topmost ui in our stacks.""" # First tell any existing UIs to get outta here. for stack in (self._dialog_stack, self._main_stack): assert stack is not None for entry in stack: entry.destroy() # Now create the topmost one if there is one. entrynew = (self._dialog_stack[-1] if self._dialog_stack else self._main_stack[-1] if self._main_stack else None) if entrynew is not None: entrynew.create() def uicleanupcheck(obj: Any, widget: ba.Widget) -> None: """Add a check to ensure a widget-owning object gets cleaned up properly. Category: User Interface Functions This adds a check which will print an error message if the provided object still exists ~5 seconds after the provided ba.Widget dies. This is a good sanity check for any sort of object that wraps or controls a ba.Widget. For instance, a 'Window' class instance has no reason to still exist once its root container ba.Widget has fully transitioned out and been destroyed. Circular references or careless strong referencing can lead to such objects never getting destroyed, however, and this helps detect such cases to avoid memory leaks. """ if DEBUG_UI_CLEANUP_CHECKS: print(f'adding uicleanup to {obj}') if not isinstance(widget, _ba.Widget): raise TypeError('widget arg is not a ba.Widget') if bool(False): def foobar() -> None: """Just testing.""" if DEBUG_UI_CLEANUP_CHECKS: print('uicleanupcheck widget dying...') widget.add_delete_callback(foobar) _ba.app.ui.cleanupchecks.append( UICleanupCheck(obj=weakref.ref(obj), widget=widget, widget_death_time=None)) def ui_upkeep() -> None: """Run UI cleanup checks, etc. should be called periodically.""" ui = _ba.app.ui remainingchecks = [] now = _ba.time(TimeType.REAL) for check in ui.cleanupchecks: obj = check.obj() # If the object has died, ignore and don't re-add. if obj is None: if DEBUG_UI_CLEANUP_CHECKS: print('uicleanupcheck object is dead; hooray!') continue # If the widget hadn't died yet, note if it has. if check.widget_death_time is None: remainingchecks.append(check) if not check.widget: check.widget_death_time = now else: # Widget was already dead; complain if its been too long. if now - check.widget_death_time > 5.0: print( 'WARNING:', obj, 'is still alive 5 second after its widget died;' ' you might have a memory leak.') print_active_refs(obj) else: remainingchecks.append(check) ui.cleanupchecks = remainingchecks
python
from typing import Sequence, Union, Dict import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import ListedColormap from kyle.util import safe_accuracy_score class EvalStats: TOP_CLASS_LABEL = "top_class" """ Class for computing evaluation statistics of classifiers, including calibration metrics :param y_true: integer array of shape (n_samples,) :param confidences: array of shape (n_samples, n_classes) :param bins: on how many homogeneous bins to evaluate the statistics """ def __init__(self, y_true: np.ndarray, confidences: np.ndarray, bins=30): assert ( len(y_true.shape) == 1 ), f"y_true has to be 1-dimensional, instead got shape: {y_true.shape}" assert ( len(confidences.shape) == 2 ), f"predicted_probabilities have to be of shape (#samples, #classes), instead got {confidences.shape}" assert confidences.shape[0] == len( y_true ), f"Mismatch between number of data points in confidences and labels, {confidences.shape[0]} != {len(y_true)}" self.num_samples = len(y_true) self.num_classes = confidences.shape[1] self.y_true = y_true self.y_pred = confidences.argmax(axis=1) self.confidences = confidences self._top_class_confidences = confidences.max(axis=1) self.bins: int = None # due to discretization they don't sum to 1 anymore self._discretized_confidences: np.ndarray = None self._discretized_probab_values: np.ndarray = None self.set_bins(bins) def expected_confidence(self, class_label: Union[int, str] = TOP_CLASS_LABEL): """ Returns the expected confidence for the selected class or for the predictions (default) :param class_label: either the class label as int or "top_class" :return: """ if class_label == self.TOP_CLASS_LABEL: confs = self._top_class_confidences else: confs = self.confidences[:, class_label] return float(np.mean(confs)) def set_bins(self, bins: int): self.bins = bins self._discretized_probab_values = (np.arange(self.bins) + 0.5) / self.bins bin_boundaries = np.linspace(0, 1, self.bins + 1) bin_boundaries[ 0 ] = -1 # in order to associate predicted probabilities = 0 to the right bin binned_confidences = ( np.digitize(x=self.confidences, bins=bin_boundaries, right=True) - 1 ) self._discretized_confidences = (binned_confidences + 0.5) / self.bins def accuracy(self): return safe_accuracy_score(self.y_true, self.y_pred) def marginal_accuracy(self, class_label: int): """ Corresponds to acc_i in our calibration paper :param class_label: :return: """ class_label_mask = self.y_pred == class_label predictions = self.y_pred[class_label_mask] gt = self.y_true[class_label_mask] return np.sum(gt == predictions) / len(self.y_true) @staticmethod def _expected_error( probabilities: np.ndarray, members_per_bin: np.ndarray, confidences: np.ndarray ) -> float: """ Computes the expected error, being the sum of abs. differences of true probabilities and mean confidences for each bin weighted by the factor N_bin / N_total :param probabilities: :param members_per_bin: :return: """ total_members = np.sum(members_per_bin) if total_members == 0: return 0.0 result = float(np.sum(np.abs(probabilities - confidences) * members_per_bin)) result /= total_members return result def _non_degenerate_acc_conf_differences(self) -> np.ndarray: """ Computes the absolute differences between accuracy and mean confidence for each non-degenerate bin where a bin is considered degenerate if for no confidence vector the maximum lies in the bin. E.g. for a N-classes classifier, all bins with right-hand value below 1/N will be degenerate since the maximum of a probabilities vector is always larger than 1/N. :return: array of shape (N_bins, ) """ accuracies, members_per_bin, confidences = self.top_class_reliabilities() acc_conf_difference = (accuracies - confidences)[members_per_bin > 0] return np.abs(acc_conf_difference) def expected_calibration_error(self): accuracies, members_per_bin, confidences = self.top_class_reliabilities() return self._expected_error(accuracies, members_per_bin, confidences) def average_calibration_error(self): return np.mean(self._non_degenerate_acc_conf_differences()) def max_calibration_error(self): return np.max(self._non_degenerate_acc_conf_differences()) def expected_marginal_calibration_error(self, class_label): """ I sort of made this up, although this very probably exists somewhere in the wild :param class_label: """ ( class_probabilities, members_per_bin, class_confidences, ) = self.marginal_reliabilities(class_label) return self._expected_error( class_probabilities, members_per_bin, class_confidences ) def average_marginal_calibration_error(self): """ I made this up, don't know if this metric was described anywhere yet. It is also not completely clear what this means in terms of probabilistic quantities. """ errors = np.zeros(self.num_classes) weights = np.zeros(self.num_classes) for class_label in range(self.num_classes): accuracies, n_members, class_confidences = self.marginal_reliabilities( class_label ) total_members = np.sum(n_members) errors[class_label] = self._expected_error( accuracies, n_members, class_confidences ) weights[class_label] = total_members return np.sum(errors * weights) / np.sum(weights) def class_wise_expected_calibration_error(self): result = sum( self.expected_marginal_calibration_error(k) for k in range(self.num_classes) ) result /= self.num_classes return result def marginal_reliabilities(self, class_label: int): """ Compute the true class probabilities and numbers of members (weights) for each of the N bins for the confidence for the given class. :return: tuple of two 1-dim arrays of length N, corresponding to (accuracy_per_bin, num_members_per_bin) """ discretized_class_confidences = self._discretized_confidences[:, class_label] class_confidences = self.confidences[:, class_label] members_per_bin = np.zeros(self.bins) accuracies_per_bin = np.zeros(self.bins) mean_class_confidences_per_bin = np.zeros(self.bins) for i, probability_bin in enumerate(self._discretized_probab_values): probability_bin_mask = discretized_class_confidences == probability_bin cur_gt_labels = self.y_true[probability_bin_mask] cur_class_confidences = class_confidences[probability_bin_mask] cur_members = np.sum(probability_bin_mask) cur_accuracy = safe_accuracy_score( cur_gt_labels, class_label * np.ones(len(cur_gt_labels)) ) if len(cur_class_confidences) > 0: cur_mean_class_confidence = cur_class_confidences.mean() else: cur_mean_class_confidence = probability_bin members_per_bin[i] = cur_members accuracies_per_bin[i] = cur_accuracy mean_class_confidences_per_bin[i] = cur_mean_class_confidence return accuracies_per_bin, members_per_bin, mean_class_confidences_per_bin def top_class_reliabilities(self): """ Compute the accuracies and numbers of members (weights) for each of the N bins for top-class confidence. :return: tuple of two 1-dim arrays of length N, corresponding to (accuracy_per_bin, num_members_per_bin) """ members_per_bin = np.zeros(self.bins) accuracies_per_bin = np.zeros(self.bins) mean_confidences_per_bin = np.zeros(self.bins) discretized_top_class_confidences = self._discretized_confidences.max(axis=1) for i, probability in enumerate(self._discretized_probab_values): probability_bin_mask = discretized_top_class_confidences == probability cur_members = np.sum(probability_bin_mask) if cur_members == 0: members_per_bin[i] = 0 accuracies_per_bin[i] = 0 mean_confidences_per_bin[i] = 0 continue cur_gt_labels = self.y_true[probability_bin_mask] cur_pred_labels = self.y_pred[probability_bin_mask] cur_top_class_confidences = self._top_class_confidences[ probability_bin_mask ] cur_accuracy = safe_accuracy_score(cur_gt_labels, cur_pred_labels) cur_mean_confidence = cur_top_class_confidences.mean() members_per_bin[i] = cur_members accuracies_per_bin[i] = cur_accuracy mean_confidences_per_bin[i] = cur_mean_confidence return accuracies_per_bin, members_per_bin, mean_confidences_per_bin # TODO: the reliabilities are plotted above the centers of bins, not above the mean confidences # The latter would plotting multiple curves at once impossible but the plot would be more precise def plot_reliability_curves( self, class_labels: Sequence[Union[int, str]], display_weights=False ): """ :param class_labels: :param display_weights: If True, for each reliability curve the weights of each bin will be plotted as histogram. The weights have been scaled for the sake of display, only relative differences between them have an interpretable meaning. The errors containing "expected" in the name take these weights into account. :return: """ colors = ListedColormap(["y", "g", "r", "c", "m"]) plt.figure() plt.title(f"Reliability curves ({self.bins} bins)") plt.xlabel("confidence") plt.ylabel("ground truth probability") plt.axis("equal") x_values = self._discretized_probab_values plt.plot( np.linspace(0, 1), np.linspace(0, 1), label="perfect calibration", color="b" ) for i, class_label in enumerate(class_labels): color = colors(i) if isinstance(class_label, int): label = f"class {class_label}" y_values, weights, _ = self.marginal_reliabilities(class_label) elif class_label == self.TOP_CLASS_LABEL: label = "prediction" y_values, weights, _ = self.top_class_reliabilities() else: raise ValueError(f"Unknown class label: {class_label}") plt.plot(x_values, y_values, marker=".", label=label, color=color) if display_weights: # rescale the weights such that the maximum is at 1/2 for improved visibility weights = 1 / 2 * weights / weights.max() plt.bar( x_values, weights, alpha=0.2, width=1 / self.bins, color=color, label=f"bin_weights for {label}", ) axes = plt.gca() axes.set_xlim([0, 1]) axes.set_ylim([0, 1]) plt.legend(loc="best") # TODO: delete, I don't think we need this. Maybe add flag to only plot bin weights to the plot above def plot_confidence_distributions( self, class_labels: Sequence[Union[int, str]], new_fig=True ): """ :param new_fig: :param class_labels: :return: """ colors = ListedColormap(["y", "g", "r", "c", "m"]) if new_fig: plt.figure() plt.title(f" Confidence Distribution ({self.bins} bins)") plt.xlabel("confidence") plt.ylabel("Frequency") x_values = self._discretized_probab_values for i, class_label in enumerate(class_labels): color = colors(i) if isinstance(class_label, int): label = f"class {class_label}" _, weights, _ = self.marginal_reliabilities(class_label) elif class_label == self.TOP_CLASS_LABEL: label = "prediction" _, weights, _ = self.top_class_reliabilities() else: raise ValueError(f"Unknown class label: {class_label}") plt.bar( x_values, weights, alpha=0.3, width=1 / self.bins, label=label, color=color, ) axes = plt.gca() axes.set_xlim([0, 1]) plt.legend(loc="best") if new_fig: plt.show() def plot_gt_distribution(self, label_names: Dict[int, str] = None): class_labels, counts = np.unique(self.y_true, return_counts=True) if label_names is not None: class_labels = [label_names.get(l, l) for l in class_labels] fig, ax = plt.subplots() ax.pie(counts, labels=class_labels, autopct="%1.1f%%", startangle=90) ax.axis("equal") # Equal aspect ratio ensures that pie is drawn as a circle. ax.set_title("Ground Truth Distribution") fig.show()
python
import subprocess import os from pathlib import Path import glob os.remove('text.txt') os.system('E:/ChromeCacheView.exe /scomma D:/Studies/nsfw_test/text.txt') fo = open("text.txt", "r") while True: line = fo.readline() if not line: break data=line.split(",",2) if "data_2 [12288]" in line: print(data[0]) print(data[1]) break cmd2 = subprocess.Popen('cmd.exe /C E:\ChromeCacheView.exe /copycache "'+data[1]+'" "image/jpeg" /CopyFilesFolder "D:\check" /UseWebSiteDirStructure 0') names = glob.glob("D:/Studies/nsfw_test/*.jpg") for i in names: if i.startswith('faces') or i.startswith('server') or i.startswith('output'): continue img = i break cmd3 = subprocess.Popen('cmd.exe /C python nsfw.py -m data/open_nsfw-weights.npy -u "'+data[1]+'" "'+img+'"')
python
""" Global Template Variables """ # Standard Library import os # Local Library from app.modules.entity.option_entity import OptionEntity def globals(request): option_entity = OptionEntity() return { "google_account": option_entity.get_value_by_key("google_analytics_account", ""), "app_timezone": os.getenv("APP_TIMEZONE", "UTC"), "activate_notifications": os.getenv("ACTIVATE_NOTIFICATIONS", "false") == "true", }
python
# get rid of this for python2.6+ import imp, sys, os def imp_path(): cwd = os.path.realpath('.') return [path for path in sys.path if os.path.realpath(path) != cwd] try: json = imp.load_module('json', *imp.find_module('json', imp_path())) loads, dumps = json.loads, json.dumps except ImportError: try: from simplejson import loads, dumps except ImportError: from cjson import decode as loads from cjson import encode def dumps(x): # do the same thing as simplejson: assume that all strings are utf-8 if isinstance(x, str): x = x.decode('utf-8') return encode(x)
python
from enum import Enum class Trend(Enum): NONE = 0 DoubleUp = 1 SingleUp = 2 FortyFiveUp = 3 Flat = 4 FortyFiveDown = 5 SingleDown = 6 DoubleDown = 7 NotComputable = 8 RateOutOfRange = 9
python
""" this is a practice file """ import math math.floor(3.4)
python
import tensorflow as tf def loss_fn(y_true, y_pred): return tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true, y_pred)) def accuracy_fn(y_true, y_pred): y_true = tf.cast(tf.argmax(y_true, axis=-1), tf.float32) y_pred = tf.cast(tf.argmax(y_pred, axis=-1), tf.float32) compare = tf.cast(tf.equal(y_true, y_pred), tf.float32) accuracy = tf.reduce_mean(compare) * 100 return accuracy def mse_loss(y_true, y_pred): return tf.reduce_mean(tf.math.squared_difference(y_true, y_pred)) def binary_cross_entropy_loss(y_true, y_pred): return tf.reduce_mean(- y_true * tf.math.log(y_pred) - (1 - y_true) * tf.math.log(1 - y_pred)) def categorical_cross_entropy_loss(y_true, y_pred): return tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true, y_pred))
python
import django from django.conf import settings def pytest_configure(): settings.configure( INSTALLED_APPS=[ 'django.contrib.contenttypes', 'django.contrib.auth', ], ROOT_URLCONF='djangoapp.urls', STATIC_URL='/static/', LANGUAGE_CODE='en', SITE_ID=1, MIDDLEWARE=( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ), ) django.setup()
python
#!/usr/bin/env python from matplotlib import pyplot as pp import numpy as np import sys def levenstein(source, target): if len(source) < len(target): return levenstein(target, source) if len(target) == 0: return len(source) source = np.array(tuple(source)) target = np.array(tuple(target)) prev_row = np.arange(target.size + 1) for s in source: curr_row = prev_row + 1 curr_row[1:] = np.minimum( curr_row[1:], np.add(prev_row[:-1], target != s)) curr_row[1:] = np.minimum( curr_row[1:], curr_row[0:-1] + 1) prev_row = curr_row return prev_row[-1] with open(sys.argv[1]) as file: lines = list(map(lambda l: l[:-1], file.readlines())) ds, l0 = [], lines[0] for line in lines[1:]: d = levenstein(line, l0) if d > 0: ds.append(d) pp.title('Levenstein Differences') pp.hist(ds, bins=13) pp.grid() pp.show()
python
__all__ = [ 'q1_collections_counter', 'q2_defaultdict_tutorial', 'q3_py_collections_namedtuple', 'q4_py_collections_ordereddict', 'q5_word_order', 'q6_py_collections_deque', 'q7_most_commons', 'q8_piling_up', ]
python
""" Utility functions for plotting figures consistently across different parts of the project """ import matplotlib.pyplot as plt def set_font_size(): """ Function which sets a standardized font size for all figures. Call this prior to plotting to apply the standard """ SMALLER_SIZE = 10 MED_SIZE = 12 BIG_SIZE = 18 # plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=MED_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MED_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALLER_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALLER_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=MED_SIZE) # legend fontsize plt.rc('figure', titlesize=BIG_SIZE) # fontsize of the figure title
python
""" Status of the API. """ from flask import request from flask_restful import Resource class Working(Resource): """ Working reveals whether or not connection to API is working. """ def get(self): """ /working/ Args: xx Returns: xx """ # set up object to export data = { "working": "YES" } return data
python
# SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2016, ARM Limited and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc import os import itertools from statistics import mean from lisa.tests.base import ( TestMetric, Result, ResultBundle, AggregatedResultBundle, TestBundle, RTATestBundle, CannotCreateError ) from lisa.target import Target from lisa.utils import ArtifactPath, groupby, ExekallTaggable from lisa.datautils import series_mean, df_window, df_filter_task_ids, series_tunnel_mean from lisa.wlgen.rta import RTA, Periodic, RTATask from lisa.trace import FtraceCollector, requires_events from lisa.analysis.load_tracking import LoadTrackingAnalysis from lisa.analysis.tasks import TasksAnalysis from lisa.pelt import PELT_SCALE, simulate_pelt, pelt_settling_time UTIL_SCALE = PELT_SCALE UTIL_CONVERGENCE_TIME_S = pelt_settling_time(1, init=0, final=1024) """ Time in seconds for util_avg to converge (i.e. ignored time) """ class LoadTrackingHelpers: """ Common bunch of helpers for load tracking tests. """ MAX_RTAPP_CALIB_DEVIATION = 3 / 100 """ Blacklist CPUs that have a RTapp calibration value that deviates too much from the average calib value in their capacity class. """ @classmethod def _get_blacklisted_cpus(cls, plat_info): """ Consider some CPUs as blacklisted when the load would not be proportionnal to utilization on them. That happens for CPUs that are busy executing other code than the test workload, like handling interrupts. It is detect that by looking at the RTapp calibration value and we blacklist outliers. """ rtapp_calib = plat_info['rtapp']['calib'] blacklisted = set() # For each class of CPUs, get the average rtapp calibration value # and blacklist the ones that are deviating too much from that for cpu_class in plat_info['capacity-classes']: calib_mean = mean(rtapp_calib[cpu] for cpu in cpu_class) calib_max = (1 + cls.MAX_RTAPP_CALIB_DEVIATION) * calib_mean blacklisted.update( cpu for cpu in cpu_class # exclude outliers that are too slow (i.e. calib value too small) if rtapp_calib[cpu] > calib_max ) return sorted(blacklisted) @classmethod def filter_capacity_classes(cls, plat_info): """ Filter out capacity-classes key of ``plat_info`` to remove blacklisted CPUs. .. seealso:: :meth:`_get_blacklisted_cpus` """ blacklisted_cpus = set(cls._get_blacklisted_cpus(plat_info)) return [ sorted(set(cpu_class) - blacklisted_cpus) for cpu_class in plat_info['capacity-classes'] ] @classmethod def correct_expected_pelt(cls, plat_info, cpu, signal_value): """ Correct an expected PELT signal from ``rt-app`` based on the calibration values. Since the instruction mix of ``rt-app`` might not be the same as the benchmark that was used to establish CPU capacities, the duty cycle of ``rt-app`` will only be accurate on big CPUs. When we know on which CPU the task actually executed, we can correct the expected value based on the ratio of calibration values and CPU capacities. """ calib = plat_info['rtapp']['calib'] cpu_capacities = plat_info['cpu-capacities'] # Correct the signal mean to what it should have been if rt-app # workload was exactly the same as the one used to establish CPU # capacities true_capacities = RTA.get_cpu_capacities_from_calibrations(calib) return signal_value * cpu_capacities[cpu] / true_capacities[cpu] class LoadTrackingBase(RTATestBundle, LoadTrackingHelpers): """ Base class for shared functionality of load tracking tests """ cpufreq_conf = { "governor": "performance" } """ The cpufreq configuration used while the synthetic workload is being run. Items are arguments to :meth:`devlib.cpufreq.use_governor`. """ @classmethod def _from_target(cls, target: Target, *, res_dir: ArtifactPath = None, ftrace_coll: FtraceCollector = None) -> 'LoadTrackingBase': plat_info = target.plat_info rtapp_profile = cls.get_rtapp_profile(plat_info) # After a bit of experimenting, it turns out that on some platforms # misprediction of the idle time (which leads to a shallow idle state, # a wakeup and another idle nap) can mess up the duty cycle of the # rt-app task we're running. In our case, a 50% duty cycle, 16ms period # task would always be active for 8ms, but it would sometimes sleep for # only 5 or 6 ms. # This is fine to do this here, as we only care about the proper # behaviour of the signal on running/not-running tasks. with target.disable_idle_states(): with target.cpufreq.use_governor(**cls.cpufreq_conf): cls.run_rtapp(target, res_dir, rtapp_profile, ftrace_coll) return cls(res_dir, plat_info) @staticmethod def is_almost_equal(target, value, allowed_delta_pct): """ Verify that ``value``` is reasonably close to ``target``` """ delta = target * allowed_delta_pct / 100 return target - delta <= value <= target + delta class InvarianceItem(LoadTrackingBase, ExekallTaggable): """ Basic check for CPU and frequency invariant load and utilization tracking **Expected Behaviour:** Load tracking signals are scaled so that the workload results in roughly the same util & load values regardless of compute power of the CPU used and its frequency. """ task_prefix = 'invar' cpufreq_conf = { "governor": "userspace" } def __init__(self, res_dir, plat_info, cpu, freq, freq_list): super().__init__(res_dir, plat_info) self.freq = freq self.freq_list = freq_list self.cpu = cpu @property def rtapp_profile(self): return self.get_rtapp_profile(self.plat_info, cpu=self.cpu, freq=self.freq) @property def task_name(self): """ The name of the only task this test uses """ tasks = self.rtapp_tasks assert len(tasks) == 1 return tasks[0] @property def wlgen_task(self): """ The :class:`lisa.wlgen.rta.RTATask` description of the only rt-app task, as specified in the profile. """ tasks = list(self.rtapp_profile.values()) assert len(tasks) == 1 return tasks[0] def get_tags(self): return {'cpu': '{}@{}'.format(self.cpu, self.freq)} @classmethod def get_rtapp_profile(cls, plat_info, cpu, freq): """ Get a specification for a rt-app workload with the specificied duty cycle, pinned to the given CPU. """ freq_capa = cls._get_freq_capa(cpu, freq, plat_info) duty_cycle_pct = freq_capa / UTIL_SCALE * 100 # Use half of the capacity at that OPP, so we are sure that the # task will fit even at the lowest OPP duty_cycle_pct //= 2 rtapp_profile = {} rtapp_profile["{}{}".format(cls.task_prefix, cpu)] = Periodic( duty_cycle_pct=duty_cycle_pct, duration_s=2, period_ms=cls.TASK_PERIOD_MS, cpus=[cpu], ) return rtapp_profile @classmethod def _from_target(cls, target: Target, *, cpu: int, freq: int, freq_list=None, res_dir: ArtifactPath = None, ftrace_coll: FtraceCollector = None) -> 'InvarianceItem': """ :param cpu: CPU to use, or ``None`` to automatically choose an appropriate set of CPUs. :type cpu: int or None :param freq: Frequency to run at in kHz. It is only relevant in combination with ``cpu``. :type freq: int or None """ plat_info = target.plat_info rtapp_profile = cls.get_rtapp_profile(plat_info, cpu, freq) logger = cls.get_logger() with target.cpufreq.use_governor(**cls.cpufreq_conf): target.cpufreq.set_frequency(cpu, freq) logger.debug('CPU{} frequency: {}'.format(cpu, target.cpufreq.get_frequency(cpu))) cls.run_rtapp(target, res_dir, rtapp_profile, ftrace_coll) freq_list = freq_list or [freq] return cls(res_dir, plat_info, cpu, freq, freq_list) @staticmethod def _get_freq_capa(cpu, freq, plat_info): capacity = plat_info['cpu-capacities'][cpu] # Scale the capacity linearly according to the frequency max_freq = max(plat_info['freqs'][cpu]) capacity *= freq / max_freq return capacity @LoadTrackingAnalysis.df_tasks_signal.used_events @TasksAnalysis.df_task_activation.used_events def get_simulated_pelt(self, task, signal_name): """ Simulate a PELT signal for a given task. :param task: task to look for in the trace. :type task: int or str or tuple(int, str) :param signal_name: Name of the PELT signal to simulate. :type signal_name: str :return: A :class:`pandas.DataFrame` with a ``simulated`` column containing the simulated signal, along with the column of the signal as found in the trace. """ logger = self.get_logger() trace = self.trace task = trace.get_task_id(task) cpus = trace.analysis.tasks.cpus_of_tasks([task]) df_activation = trace.analysis.tasks.df_task_activation(task) df = trace.analysis.load_tracking.df_tasks_signal(signal_name) df = df_filter_task_ids(df, [task]) # Ignore the first activation, as its signals are incorrect df_activation = df_activation.iloc[2:] # Make sure the activation df does not start before the dataframe of # signal values, otherwise we cannot provide a sensible init value df_activation = df_activation[df.index[0]:] # Get the initial signal value matching the first activation we will care about init_iloc = df.index.get_loc(df_activation.index[0], method='ffill') init = df[signal_name].iloc[init_iloc] try: # PELT clock in nanoseconds clock = df['update_time'] * 1e-9 except KeyError: if any( self.plat_info['cpu-capacities'][cpu] != UTIL_SCALE for phase in self.wlgen_task.phases for cpu in phase.cpus ): raise CannotCreateError('PELT time scaling can only be simulated when the PELT clock is available from the trace') logger.warning('PELT clock is not available, ftrace timestamp will be used at the expense of accuracy') clock = None df['simulated'] = simulate_pelt(df_activation['active'], index=df.index, init=init, clock=clock) # Since load is now CPU invariant in recent kernel versions, we don't # rescale it back. To match the old behavior, that line is # needed: # df['simulated'] /= self.plat_info['cpu-capacities'][cpu] / UTIL_SCALE kernel_version = self.plat_info['kernel']['version'] if ( signal_name == 'load' and kernel_version.parts[:2] < (5, 1) ): logger().warning('Load signal is assumed to be CPU invariant, which is true for recent mainline kernels, but may be wrong for {}'.format( kernel_version, )) df['error'] = df[signal_name] - df['simulated'] df = df.dropna() return df def _plot_pelt(self, task, signal_name, simulated, test_name): trace = self.trace kwargs = dict(interactive=False) axis = trace.analysis.load_tracking.plot_task_signals(task, signals=[signal_name], **kwargs) simulated.plot(ax=axis, drawstyle='steps-post', label='simulated {}'.format(signal_name)) activation_axis = axis.twinx() trace.analysis.tasks.plot_task_activation(task, alpha=0.2, axis=activation_axis, duration=True, **kwargs) axis.legend() path = ArtifactPath.join(self.res_dir, '{}_{}.png'.format(test_name, signal_name)) trace.analysis.load_tracking.save_plot(axis.get_figure(), filepath=path) def _add_cpu_metric(self, res_bundle): freq_str = '@{}'.format(self.freq) if self.freq is not None else '' res_bundle.add_metric("cpu", '{}{}'.format(self.cpu, freq_str)) return res_bundle @get_simulated_pelt.used_events def _test_behaviour(self, signal_name, error_margin_pct): task = self.task_name phase = self.wlgen_task.phases[0] df = self.get_simulated_pelt(task, signal_name) cpus = phase.cpus assert len(cpus) == 1 cpu = cpus[0] expected_duty_cycle_pct = phase.duty_cycle_pct expected_final_util = expected_duty_cycle_pct / 100 * UTIL_SCALE settling_time = pelt_settling_time(10, init=0, final=expected_final_util) settling_time += df.index[0] df = df[settling_time:] # Instead of taking the mean, take the average between the min and max # values of the settled signal. This avoids the bias introduced by the # fact that the util signal stays high while the task sleeps settled_signal_mean = series_tunnel_mean(df[signal_name]) expected_signal_mean = expected_final_util signal_mean_error_pct = abs(expected_signal_mean - settled_signal_mean) / UTIL_SCALE * 100 res = ResultBundle.from_bool(signal_mean_error_pct < error_margin_pct) res.add_metric('expected mean', expected_signal_mean) res.add_metric('settled mean', settled_signal_mean) res.add_metric('settled mean error', signal_mean_error_pct, '%') self._plot_pelt(task, signal_name, df['simulated'], 'behaviour') res = self._add_cpu_metric(res) return res @get_simulated_pelt.used_events def _test_correctness(self, signal_name, mean_error_margin_pct, max_error_margin_pct): task = self.task_name df = self.get_simulated_pelt(task, signal_name) abs_error = df['error'].abs() mean_error_pct = series_mean(abs_error) / UTIL_SCALE * 100 max_error_pct = abs_error.max() / UTIL_SCALE * 100 mean_ok = mean_error_pct <= mean_error_margin_pct max_ok = max_error_pct <= max_error_margin_pct res = ResultBundle.from_bool(mean_ok and max_ok) res.add_metric('actual mean', series_mean(df[signal_name])) res.add_metric('simulated mean', series_mean(df['simulated'])) res.add_metric('mean error', mean_error_pct, '%') res.add_metric('actual max', df[signal_name].max()) res.add_metric('simulated max', df['simulated'].max()) res.add_metric('max error', max_error_pct, '%') self._plot_pelt(task, signal_name, df['simulated'], 'correctness') res = self._add_cpu_metric(res) return res @_test_correctness.used_events def test_util_correctness(self, mean_error_margin_pct=2, max_error_margin_pct=5) -> ResultBundle: """ Check that the utilization signal is as expected. :param mean_error_margin_pct: Maximum allowed difference in the mean of the actual signal and the simulated one, as a percentage of utilization scale. :type mean_error_margin_pct: float :param max_error_margin_pct: Maximum allowed difference between samples of the actual signal and the simulated one, as a percentage of utilization scale. :type max_error_margin_pct: float """ return self._test_correctness( signal_name='util', mean_error_margin_pct=mean_error_margin_pct, max_error_margin_pct=max_error_margin_pct, ) @_test_correctness.used_events def test_load_correctness(self, mean_error_margin_pct=2, max_error_margin_pct=5) -> ResultBundle: """ Same as :meth:`test_util_correctness` but checking the load. """ return self._test_correctness( signal_name='load', mean_error_margin_pct=mean_error_margin_pct, max_error_margin_pct=max_error_margin_pct, ) @_test_behaviour.used_events @RTATestBundle.check_noisy_tasks(noise_threshold_pct=1) def test_util_behaviour(self, error_margin_pct=5) -> ResultBundle: """ Check the utilization mean is linked to the task duty cycle. .. note:: That is not really the case, as the util of a task is not updated when the task is sleeping, but is fairly close to reality as long as the task period is small enough. :param error_margin_pct: Allowed difference in percentage of utilization scale. :type error_margin_pct: float """ return self._test_behaviour('util', error_margin_pct) @_test_behaviour.used_events @RTATestBundle.check_noisy_tasks(noise_threshold_pct=1) def test_load_behaviour(self, error_margin_pct=5) -> ResultBundle: """ Same as :meth:`test_util_behaviour` but checking the load. """ return self._test_behaviour('load', error_margin_pct) class Invariance(TestBundle, LoadTrackingHelpers): """ Basic check for frequency invariant load and utilization tracking This test runs the same workload on one CPU of each capacity available in the system at a cross section of available frequencies. This class is mostly a wrapper around :class:`InvarianceItem`, providing a way to build a list of those for a few frequencies, and providing aggregated versions of the tests. Calling the tests methods on the items directly is recommended to avoid the unavoidable loss of information when aggregating the :class:`~lisa.tests.base.Result` of each item. `invariance_items` instance attribute is a list of instances of :class:`InvarianceItem`. """ # Make sure ftrace_conf is available so exekall can find the right settings # when building the FtraceCollector ftrace_conf = InvarianceItem.ftrace_conf NR_FREQUENCIES = 8 """ Maximum number of tested frequencies. """ def __init__(self, res_dir, plat_info, invariance_items): super().__init__(res_dir, plat_info) self.invariance_items = invariance_items @classmethod def _build_invariance_items(cls, target, res_dir, ftrace_coll): """ Yield a :class:`InvarianceItem` for a subset of target's frequencies, for one CPU of each capacity class. This is a generator function. :rtype: Iterator[:class:`InvarianceItem`] """ plat_info = target.plat_info def pick_cpu(filtered_class, cpu_class): try: return filtered_class[0] except IndexError: raise RuntimeError('All CPUs of one capacity class have been blacklisted: {}'.format(cpu_class)) # pick one CPU per class of capacity cpus = [ pick_cpu(filtered_class, cpu_class) for cpu_class, filtered_class in zip( plat_info['capacity-classes'], cls.filter_capacity_classes(plat_info) ) ] def select_freqs(cpu): all_freqs = plat_info['freqs'][cpu] def interpolate(start, stop, nr): step = (stop - start) / (nr - 1) return [start + i * step for i in range(nr)] # Select the higher freq no matter what selected_freqs = {max(all_freqs)} available_freqs = set(all_freqs) - selected_freqs nr_freqs = cls.NR_FREQUENCIES - len(selected_freqs) for ideal_freq in interpolate(min(all_freqs), max(all_freqs), nr_freqs): if not available_freqs: break # Select the freq closest to ideal selected_freq = min(available_freqs, key=lambda freq: abs(freq - ideal_freq)) available_freqs.discard(selected_freq) selected_freqs.add(selected_freq) return all_freqs, sorted(selected_freqs) cpu_freqs = { cpu: select_freqs(cpu) for cpu in cpus } logger = cls.get_logger() logger.info('Will run on: {}'.format( ', '.join( 'CPU{}@{}'.format(cpu, freq) for cpu, (all_freqs, freq_list) in sorted(cpu_freqs.items()) for freq in freq_list ) )) for cpu, (all_freqs, freq_list) in sorted(cpu_freqs.items()): for freq in freq_list: item_dir = ArtifactPath.join(res_dir, "{prefix}_{cpu}@{freq}".format( prefix=InvarianceItem.task_prefix, cpu=cpu, freq=freq, )) os.makedirs(item_dir) logger.info('Running experiment for CPU {}@{}'.format(cpu, freq)) yield InvarianceItem.from_target( target, cpu=cpu, freq=freq, freq_list=all_freqs, res_dir=item_dir, ftrace_coll=ftrace_coll, ) def iter_invariance_items(self) -> InvarianceItem: yield from self.invariance_items @classmethod def _from_target(cls, target: Target, *, res_dir: ArtifactPath = None, ftrace_coll: FtraceCollector = None) -> 'Invariance': return cls(res_dir, target.plat_info, list(cls._build_invariance_items(target, res_dir, ftrace_coll)) ) def get_trace(self, cpu, freq): """ :returns: The trace generated when running at a given frequency """ for item in self.invariance_items: if item.cpu == cpu and item.freq == freq: return item raise ValueError('No invariance item matching {cpu}@{freq}'.format(cpu, freq)) # Combined version of some other tests, applied on all available # InvarianceItem with the result merged. @InvarianceItem.test_util_correctness.used_events def test_util_correctness(self, mean_error_margin_pct=2, max_error_margin_pct=5) -> AggregatedResultBundle: """ Aggregated version of :meth:`InvarianceItem.test_util_correctness` """ def item_test(test_item): return test_item.test_util_correctness( mean_error_margin_pct=mean_error_margin_pct, max_error_margin_pct=max_error_margin_pct, ) return self._test_all_freq(item_test) @InvarianceItem.test_load_correctness.used_events def test_load_correctness(self, mean_error_margin_pct=2, max_error_margin_pct=5) -> AggregatedResultBundle: """ Aggregated version of :meth:`InvarianceItem.test_load_correctness` """ def item_test(test_item): return test_item.test_load_correctness( mean_error_margin_pct=mean_error_margin_pct, max_error_margin_pct=max_error_margin_pct, ) return self._test_all_freq(item_test) @InvarianceItem.test_util_behaviour.used_events def test_util_behaviour(self, error_margin_pct=5) -> AggregatedResultBundle: """ Aggregated version of :meth:`InvarianceItem.test_util_behaviour` """ def item_test(test_item): return test_item.test_util_behaviour( error_margin_pct=error_margin_pct, ) return self._test_all_freq(item_test) @InvarianceItem.test_load_behaviour.used_events def test_load_behaviour(self, error_margin_pct=5) -> AggregatedResultBundle: """ Aggregated version of :meth:`InvarianceItem.test_load_behaviour` """ def item_test(test_item): return test_item.test_load_behaviour( error_margin_pct=error_margin_pct, ) return self._test_all_freq(item_test) def _test_all_freq(self, item_test): """ Apply the `item_test` function on all instances of :class:`InvarianceItem` and aggregate the returned :class:`~lisa.tests.base.ResultBundle` into one. :attr:`~lisa.tests.base.Result.UNDECIDED` is ignored. """ item_res_bundles = [ item_test(item) for item in self.invariance_items ] return AggregatedResultBundle(item_res_bundles, 'cpu') @InvarianceItem.test_util_behaviour.used_events def test_cpu_invariance(self) -> AggregatedResultBundle: """ Check that items using the max freq on each CPU is passing util avg test. There could be false positives, but they are expected to be relatively rare. .. seealso:: :class:`InvarianceItem.test_util_behaviour` """ res_list = [] for cpu, item_group in groupby(self.invariance_items, key=lambda x: x.cpu): item_group = list(item_group) # combine all frequencies of that CPU class, although they should # all be the same max_freq = max(itertools.chain.from_iterable( x.freq_list for x in item_group )) max_freq_items = [ item for item in item_group if item.freq == max_freq ] for item in max_freq_items: # Only test util, as it should be more robust res = item.test_util_behaviour() res_list.append(res) return AggregatedResultBundle(res_list, 'cpu') @InvarianceItem.test_util_behaviour.used_events def test_freq_invariance(self) -> ResultBundle: """ Check that at least one CPU has items passing for all tested frequencies. .. seealso:: :class:`InvarianceItem.test_util_behaviour` """ logger = self.get_logger() def make_group_bundle(cpu, item_group): bundle = AggregatedResultBundle( [ # Only test util, as it should be more robust item.test_util_behaviour() for item in item_group ], # each item's "cpu" metric also contains the frequency name_metric='cpu', ) # At that level, we only report the CPU, since nested bundles cover # different frequencies bundle.add_metric('cpu', cpu) logger.info('Util avg invariance {res} for CPU {cpu}'.format( res=bundle.result.lower_name, cpu=cpu, )) return bundle group_result_bundles = [ make_group_bundle(cpu, item_group) for cpu, item_group in groupby(self.invariance_items, key=lambda x: x.cpu) ] # The combination differs from the AggregatedResultBundle default one: # we consider as passed as long as at least one of the group has # passed, instead of forcing all of them to pass. if any(result_bundle.result is Result.PASSED for result_bundle in group_result_bundles): overall_result = Result.PASSED elif all(result_bundle.result is Result.UNDECIDED for result_bundle in group_result_bundles): overall_result = Result.UNDECIDED else: overall_result = Result.FAILED return AggregatedResultBundle( group_result_bundles, name_metric='cpu', result=overall_result ) class CPUMigrationBase(LoadTrackingBase): """ Base class for migration-related load tracking tests The idea here is to run several rt-app tasks and to have them pinned to a single CPU for a single phase. They can change CPUs in a new phase, and we can then inspect the CPU utilization - it should match the sum of the utilization of all the tasks running on it. **Design notes:** Since we sum up the utilization of each task, make sure not to overload the CPU - IOW, there should always be some idle cycles. The code assumes all tasks have the same number of phases, and that those phases are all aligned. """ PHASE_DURATION_S = 3 * UTIL_CONVERGENCE_TIME_S """ The duration of a single phase """ TASK_PERIOD_MS = 16 """ The average value of the runqueue PELT signals is very dependent on the task period, so it's important to set it to a known validate value in that class. """ @abc.abstractmethod def get_nr_required_cpu(cls, plat_info): """ The number of CPUs of same capacity involved in the test """ pass @classmethod def run_rtapp(cls, target, res_dir, profile, ftrace_coll, cgroup=None): # Just do some validation on the profile for name, task in profile.items(): for phase in task.phases: if len(phase.cpus) != 1: raise RuntimeError("Each phase must be tied to a single CPU. " "Task \"{}\" violates this".format(name)) super().run_rtapp(target, res_dir, profile, ftrace_coll, cgroup) @property def cpus(self): """ All CPUs used by RTapp workload. """ return set(itertools.chain.from_iterable( phase.cpus for task in self.rtapp_profile.values() for phase in task.phases )) @classmethod def check_from_target(cls, target): super().check_from_target(target) try: target.plat_info["cpu-capacities"] except KeyError as e: raise CannotCreateError(str(e)) # Check that there are enough CPUs of the same capacity cls.get_migration_cpus(target.plat_info) @classmethod def get_migration_cpus(cls, plat_info): """ :returns: N CPUs of same capacity, with N set by :meth:`get_nr_required_cpu`. """ # Iterate over descending CPU capacity groups nr_required_cpu = cls.get_nr_required_cpu(plat_info) for cpus in reversed(plat_info["capacity-classes"]): if len(cpus) >= nr_required_cpu: return cpus[:nr_required_cpu] raise CannotCreateError( "This workload requires {} CPUs of identical capacity".format( nr_required_cpu)) def get_expected_cpu_util(self): """ Get the per-phase average CPU utilization expected from the rtapp profile :returns: A dict of the shape {cpu : {phase_id : expected_util}} """ cpu_util = {} for task in self.rtapp_profile.values(): for phase_id, phase in enumerate(task.phases): cpu = phase.cpus[0] cpu_util.setdefault(cpu, {}).setdefault(phase_id, 0) cpu_util[cpu][phase_id] += UTIL_SCALE * (phase.duty_cycle_pct / 100) return cpu_util @property def reference_task(self): return list(self.rtapp_profile.values())[0] @LoadTrackingAnalysis.df_cpus_signal.used_events def get_trace_cpu_util(self): """ Get the per-phase average CPU utilization read from the trace :returns: A dict of the shape {cpu : {phase_id : trace_util}} """ df = self.trace.analysis.load_tracking.df_cpus_signal('util') phase_start = self.trace.start cpu_util = {} for i, phase in enumerate(self.reference_task.phases): # Start looking at signals once they should've converged start = phase_start + UTIL_CONVERGENCE_TIME_S # Trim the end a bit, otherwise we could have one or two events # from the next phase end = phase_start + phase.duration_s * .9 phase_df = df[start:end] for cpu in self.cpus: util = phase_df[phase_df.cpu == cpu].util cpu_util.setdefault(cpu, {})[i] = series_tunnel_mean(util) phase_start += phase.duration_s return cpu_util @LoadTrackingAnalysis.plot_task_signals.used_events def _plot_util(self): analysis = self.trace.analysis.load_tracking fig, axes = analysis.setup_plot(nrows=len(self.rtapp_tasks)) for task, axis in zip(self.rtapp_tasks, axes): analysis.plot_task_signals(task, signals=['util'], axis=axis) self.trace.analysis.rta.plot_phases(task, axis=axis) filepath = ArtifactPath.join(self.res_dir, 'tasks_util.png') analysis.save_plot(fig, filepath=filepath) filepath = ArtifactPath.join(self.res_dir, 'cpus_util.png') cpus = sorted(self.cpus) analysis.plot_cpus_signals(cpus, signals=['util'], filepath=filepath) @get_trace_cpu_util.used_events @_plot_util.used_events @RTATestBundle.check_noisy_tasks(noise_threshold_pct=1) def test_util_task_migration(self, allowed_error_pct=5) -> ResultBundle: """ Test that a migrated task properly propagates its utilization at the CPU level :param allowed_error_pct: How much the trace averages can stray from the expected values :type allowed_error_pct: float """ expected_cpu_util = self.get_expected_cpu_util() trace_cpu_util = self.get_trace_cpu_util() passed = True expected_metrics = {} trace_metrics = {} deltas = {} for cpu in self.cpus: cpu_str = "cpu{}".format(cpu) expected_metrics[cpu_str] = TestMetric({}) trace_metrics[cpu_str] = TestMetric({}) deltas[cpu_str] = TestMetric({}) for i, phase in enumerate(self.reference_task.phases): expected_util = expected_cpu_util[cpu][i] trace_util = trace_cpu_util[cpu][i] if not self.is_almost_equal( expected_util, trace_util, allowed_error_pct): passed = False # Just some verbose metric collection... phase_str = "phase{}".format(i) delta = 100 * (trace_util - expected_util) / expected_util expected_metrics[cpu_str].data[phase_str] = TestMetric(expected_util) trace_metrics[cpu_str].data[phase_str] = TestMetric(trace_util) deltas[cpu_str].data[phase_str] = TestMetric(delta, "%") res = ResultBundle.from_bool(passed) res.add_metric("Expected utilization", expected_metrics) res.add_metric("Trace utilization", trace_metrics) res.add_metric("Utilization deltas", deltas) self._plot_util() return res class OneTaskCPUMigration(CPUMigrationBase): """ Some tasks on two big CPUs, one of them migrates in its second phase. """ @classmethod def get_nr_required_cpu(cls, plat_info): return 2 @classmethod def get_rtapp_profile(cls, plat_info): profile = {} cpus = cls.get_migration_cpus(plat_info) for task in ["migr", "static0", "static1"]: # An empty RTATask just to sum phases up profile[task] = RTATask() common_phase_settings = dict( duration_s=cls.PHASE_DURATION_S, period_ms=cls.TASK_PERIOD_MS, ) for cpu in cpus: # A task that will migrate to another CPU profile["migr"] += Periodic( duty_cycle_pct=cls.unscaled_utilization(plat_info, cpu, 20), cpus=[cpu], **common_phase_settings) # Just some tasks that won't move to get some background utilization profile["static0"] += Periodic( duty_cycle_pct=cls.unscaled_utilization(plat_info, cpus[0], 30), cpus=[cpus[0]], **common_phase_settings) profile["static1"] += Periodic( duty_cycle_pct=cls.unscaled_utilization(plat_info, cpus[1], 20), cpus=[cpus[1]], **common_phase_settings) return profile class NTasksCPUMigrationBase(CPUMigrationBase): """ N tasks on N CPUs, with all the migration permutations. """ @classmethod def get_rtapp_profile(cls, plat_info): cpus = cls.get_migration_cpus(plat_info) def make_name(i): return 'migr{}'.format(i) nr_tasks = len(cpus) profile = { make_name(i): RTATask() for i in range(nr_tasks) } # Define one task per CPU, and create all the possible migrations by # shuffling around these tasks for cpus_combi in itertools.permutations(cpus, r=nr_tasks): for i, cpu in enumerate(cpus_combi): profile[make_name(i)] += Periodic( duty_cycle_pct=cls.unscaled_utilization(plat_info, cpu, 50), duration_s=cls.PHASE_DURATION_S, period_ms=cls.TASK_PERIOD_MS, cpus=[cpu], ) return profile class TwoTasksCPUMigration(NTasksCPUMigrationBase): """ Two tasks on two big CPUs, swap their CPU in the second phase """ @classmethod def get_nr_required_cpu(cls, plat_info): return 2 class NTasksCPUMigration(NTasksCPUMigrationBase): """ N tasks on N CPUs, and try all permutations of tasks and CPUs. """ @classmethod def get_nr_required_cpu(cls, plat_info): """ Select the maximum number of CPUs the tests can handle. """ return max(len(cpus) for cpus in plat_info["capacity-classes"]) def test_util_task_migration(self, allowed_error_pct=8) -> ResultBundle: """ Relax the margins compared to the super-class version. """ return super().test_util_task_migration( allowed_error_pct=allowed_error_pct, ) # vim :set tabstop=4 shiftwidth=4 textwidth=80 expandtab
python
from __future__ import absolute_import, division, print_function, unicode_literals from typing import List import tempfile from io import StringIO import pandas as pd from Bio import AlignIO, SeqIO, Phylo from Bio.Align import MultipleSeqAlignment from Bio.Align.Applications import ClustalOmegaCommandline from .AlignCommandline import MafftCommandline from .SeqLike import SeqLikeType, SeqLike def pad_seq_records_for_alignment(seqs: List[SeqLikeType]): """Pad sequences so that lengths match for multiple sequence alignment. :param seqs: a list of SeqLikeType :returns: a MultipleSeqAlignment object """ df = pd.DataFrame({"seqs": [SeqLike(seq, seq_type="aa") for seq in seqs]}) return df.seqs.seq.as_alignment() def _generic_aligner_commandline_stdout(cline, **kwargs): """Execute aligner commandline that writes to stdout and return an alignment. Helper function. :param cline: a subprocess object from Bio.Align.Applications.AbstractCommandline :param **kwargs: additional arguments for alignment command :returns: a MultipleSeqAlignment object """ stdout, _ = cline() try: stdout = StringIO(stdout) except TypeError: stdout = StringIO(unicode(stdout, "utf-8")) return AlignIO.read(stdout, "fasta", **kwargs) def _generic_aligner_commandline_file(cline, seqrecs, **kwargs): """Execute aligner commandline that requires file i/o and return an alignment. Helper function. :param cline: a subprocess object from Bio.Align.Applications.AbstractCommandline :param seqrecs: a list of SeqRecord that will be aligned :param **kwargs: additional arguments for alignment command :returns: a MultipleSeqAlignment object """ assert len(seqrecs) > 1, "Need more than 1 sequence for alignment." # build alignment object 'unaligned'; pad seqrecs to be equal length unaligned = pad_seq_records_for_alignment(seqrecs) # execute alignment with tempfile.NamedTemporaryFile(delete=False, mode="w") as tempf: AlignIO.write(unaligned, tempf, "fasta") tempf.flush() return cline(tempf, **kwargs) def _generic_alignment(cline, seqrecs, preserve_order=True, **kwargs): """Align sequences using command line stored as cline. Helper function. :param cline: a subprocess object from Bio.Align.Applications.AbstractCommandline :param seqrecs: an iterator of SeqRecord that will be aligned :param preserve_order: if True, reorder aligned seqrecs to match input order. :param **kwargs: additional arguments for alignment command :returns: a MultipleSeqAlignment object with aligned sequences """ # convert iterator to list, so that we can extract keys and still run the alignment unaligned = list(seqrecs) # if alignment sequences from NCBI Blast, id will include spaces keys = [seqrec.id.split()[0] for seqrec in unaligned] # execute alignment aligned = _generic_aligner_commandline_file(cline, unaligned, **kwargs) if preserve_order: aligned = SeqIO.to_dict(aligned) aligned = MultipleSeqAlignment(aligned[key] for key in keys) # make all alignment uppercase return MultipleSeqAlignment([seqrec.upper() for seqrec in aligned]) def mafft_alignment(seqrecs, preserve_order=True, **kwargs): """Align sequences using MAFFT. :param seqrecs: a list or dict of SeqRecord that will be aligned to ref :param preserve_order: if True, reorder aligned seqrecs to match input order. :param **kwargs: additional arguments for alignment command :returns: a MultipleSeqAlignment object with aligned sequences :sa: https://mafft.cbrc.jp/alignment/software/ """ def commandline(file_obj, **kwargs): cline = MafftCommandline(input=file_obj.name, **kwargs) return _generic_aligner_commandline_stdout(cline) # MAFFT does not reorder alignment by default (reorder=False), but don't overwrite 'reorder' if set if "reorder" not in kwargs: kwargs["reorder"] = not preserve_order return _generic_alignment(commandline, seqrecs, preserve_order=preserve_order, **kwargs) def clustal_omega_alignment(seqrecs, preserve_order=True, **kwargs): """Align sequences using Clustal Omega :param seqrecs: a list or dict of SeqRecord that will be aligned to ref :param preserve_order: if True, reorder aligned seqrecs to match input order. :param **kwargs: additional arguments for alignment command :returns: a MultipleSeqAlignment object with aligned sequences """ if preserve_order: outputorder = "input-order" else: outputorder = "tree-order" def commandline(file_obj, **kwargs): cline = ClustalOmegaCommandline("clustalo", infile=file_obj.name, outputorder=outputorder, **kwargs) return _generic_aligner_commandline_stdout(cline) return _generic_alignment(commandline, seqrecs, **kwargs) def clustal_omega_distance_matrix(seqrecs, **kwargs): """Generate a distance matrix using Clustal Omega :param seqrecs: a list or dict of SeqRecord that will be aligned to ref :param **kwargs: additional arguments for command line alignment :returns: the pairwise distance matrix """ def commandline(ft, **kwargs): with tempfile.NamedTemporaryFile(delete=False, mode="w") as ft_out: cline = ClustalOmegaCommandline( "clustalo", infile=ft.name, force=True, distmat_out=ft_out.name, distmat_full=True, distmat_full_iter=True, ) stdout, stderr = cline() df = pd.read_csv(ft_out.name, delim_whitespace=True, skiprows=1, header=None, index_col=0) df.index.name = "seqid" return df return _generic_aligner_commandline_file(commandline, seqrecs, **kwargs) def clustal_omega_alignment_tree(seqrecs, **kwargs): """Generate phylogenetic tree using Clustal Omega and scikit-bio Neighbor Joining This function computes a distance matrix using Clustal Omega, which skbio.tree.nj uses to generate a newick file. Bio.Phylo can read this newick file. Note: this function requires scikit-bio. :param seqrecs: a list or dict of SeqRecord that will be aligned to ref :param **kwargs: additional arguments for alignment command :returns: a Bio.Phylo phylogenetic tree object :sa: https://biopython.org/wiki/Phylo :sa: http://scikit-bio.org/docs/0.2.1/generated/skbio.tree.nj.html """ import skbio def skbio2phylo(treenode, format="newick"): """Convert skbio.tree.TreeNode object to Bio.Phylo.Newick.Tree object :param treenode: an skbio.tree.TreeNode object :param format: kind of tree, AKA New Hampshire Format :returns: an equivalent Bio.Phylo.Newick.Tree object :sa: https://biopython.org/docs/1.74/api/Bio.Phylo.Newick.html """ with tempfile.NamedTemporaryFile(delete=True, mode="w") as tempf: treenode.write(tempf.name, format) tempf.flush() return Phylo.read(tempf.name, format) distance_matrix = clustal_omega_distance_matrix(seqrecs, **kwargs) ids = [s.id for s in seqrecs] skbio_tree = skbio.tree.nj(skbio.DistanceMatrix(distance_matrix, ids)) return skbio2phylo(skbio_tree) def clustalw_alignment_tree(seqrecs, **kwargs): """Generate phylogenetic tree using ClustalW. Note that ClustalW is an older generation of Clustal aligner compared to Clustal Omega. It is considered to be slower and less robust for aligning large sequence sets, but it is included here because it does not require scikit-bio. :param seqrecs: a list or dict of SeqRecord that will be aligned to ref :param **kwargs: additional arguments for alignment command :returns: the phylogenetic tree instead of the alignment object """ def commandline(ft, **kwargs): with tempfile.NamedTemporaryFile(delete=False, mode="w") as ft_out: cline = ClustalwCommandline(infile=ft.name, output="fasta", newtree=ft_out.name) stdout, stderr = cline() return Phylo.read(ft_out.name, "newick") return _generic_alignment(commandline, seqrecs, preserve_order=False, **kwargs)
python
import sys def input(): return sys.stdin.readline()[:-1] N, M = map(int, input().split()) tree = [[] for i in range(N)] for _ in range(M): a, b = map(int, input().split()) a -= 1 b -= 1 tree[a].append(b) tree[b].append(a) ans = [[] for i in range(N)] for target_no in range(N): for t_friend_no in tree[target_no]: for t_friend_friend_no in tree[t_friend_no]: if target_no == t_friend_friend_no: continue if t_friend_friend_no in tree[target_no]: continue if t_friend_friend_no in ans[target_no]: continue ans[target_no].append(t_friend_friend_no) for a in ans: print(len(a))
python
import asyncio import re from functools import partial import pytest from dagster import ( AssetKey, AssetMaterialization, AssetObservation, DynamicOut, DynamicOutput, DynamicOutputDefinition, ExpectationResult, Failure, Field, In, InputDefinition, Materialization, Noneable, Nothing, Out, Output, OutputDefinition, RetryRequested, Selector, build_op_context, build_solid_context, composite_solid, execute_solid, op, pipeline, resource, solid, ) from dagster.core.errors import ( DagsterInvalidConfigError, DagsterInvalidDefinitionError, DagsterInvalidInvocationError, DagsterInvalidPropertyError, DagsterInvariantViolationError, DagsterResourceFunctionError, DagsterStepOutputNotFoundError, DagsterTypeCheckDidNotPass, ) def test_solid_invocation_no_arg(): @solid def basic_solid(): return 5 result = basic_solid() assert result == 5 with pytest.raises( DagsterInvalidInvocationError, match="Compute function of solid 'basic_solid' has no context " "argument, but context was provided when invoking.", ): basic_solid(build_solid_context()) # Ensure alias is accounted for in error message with pytest.raises( DagsterInvalidInvocationError, match="Compute function of solid 'aliased_basic_solid' has no context " "argument, but context was provided when invoking.", ): basic_solid.alias("aliased_basic_solid")(build_solid_context()) with pytest.raises( DagsterInvalidInvocationError, match="Too many input arguments were provided for solid 'basic_solid'. This may be " "because an argument was provided for the context parameter, but no context parameter was " "defined for the solid.", ): basic_solid(None) # Ensure alias is accounted for in error message with pytest.raises( DagsterInvalidInvocationError, match="Too many input arguments were provided for solid 'aliased_basic_solid'. This may be " "because an argument was provided for the context parameter, but no context parameter was " "defined for the solid.", ): basic_solid.alias("aliased_basic_solid")(None) def test_solid_invocation_none_arg(): @solid def basic_solid(_): return 5 result = basic_solid(None) assert result == 5 def test_solid_invocation_context_arg(): @solid def basic_solid(context): context.log.info("yay") basic_solid(None) basic_solid(build_solid_context()) basic_solid(context=None) basic_solid(context=build_solid_context()) def test_solid_invocation_empty_run_config(): @solid def basic_solid(context): assert context.run_config is not None assert context.run_config == {"resources": {}} basic_solid(context=build_solid_context()) def test_solid_invocation_run_config_with_config(): @solid(config_schema={"foo": str}) def basic_solid(context): assert context.run_config assert context.run_config["solids"] == {"basic_solid": {"config": {"foo": "bar"}}} basic_solid(build_solid_context(solid_config={"foo": "bar"})) def test_solid_invocation_out_of_order_input_defs(): @solid(input_defs=[InputDefinition("x"), InputDefinition("y")]) def check_correct_order(y, x): assert y == 6 assert x == 5 check_correct_order(6, 5) check_correct_order(x=5, y=6) check_correct_order(6, x=5) def test_solid_invocation_with_resources(): @solid(required_resource_keys={"foo"}) def solid_requires_resources(context): assert context.resources.foo == "bar" return context.resources.foo # Ensure that a check invariant is raise when we attempt to invoke without context with pytest.raises( DagsterInvalidInvocationError, match="Compute function of solid 'solid_requires_resources' has context argument, but no " "context was provided when invoking.", ): solid_requires_resources() # Ensure that alias is accounted for in error message with pytest.raises( DagsterInvalidInvocationError, match="Compute function of solid 'aliased_solid_requires_resources' has context argument, but no " "context was provided when invoking.", ): solid_requires_resources.alias("aliased_solid_requires_resources")() # Ensure that error is raised when we attempt to invoke with a None context with pytest.raises( DagsterInvalidInvocationError, match='solid "solid_requires_resources" has required resources, but no context was ' "provided.", ): solid_requires_resources(None) # Ensure that error is raised when we attempt to invoke with a context without the required # resource. context = build_solid_context() with pytest.raises( DagsterInvalidInvocationError, match='solid "solid_requires_resources" requires resource "foo", but no resource ' "with that key was found on the context.", ): solid_requires_resources(context) context = build_solid_context(resources={"foo": "bar"}) assert solid_requires_resources(context) == "bar" def test_solid_invocation_with_cm_resource(): teardown_log = [] @resource def cm_resource(_): try: yield "foo" finally: teardown_log.append("collected") @solid(required_resource_keys={"cm_resource"}) def solid_requires_cm_resource(context): return context.resources.cm_resource # Attempt to use solid context as fxn with cm resource should fail context = build_solid_context(resources={"cm_resource": cm_resource}) with pytest.raises(DagsterInvariantViolationError): solid_requires_cm_resource(context) del context assert teardown_log == ["collected"] # Attempt to use solid context as cm with cm resource should succeed with build_solid_context(resources={"cm_resource": cm_resource}) as context: assert solid_requires_cm_resource(context) == "foo" assert teardown_log == ["collected", "collected"] def test_solid_invocation_with_config(): @solid(config_schema={"foo": str}) def solid_requires_config(context): assert context.solid_config["foo"] == "bar" return 5 # Ensure that error is raised when attempting to execute and no context is provided with pytest.raises( DagsterInvalidInvocationError, match="Compute function of solid 'solid_requires_config' has context argument, but no " "context was provided when invoking.", ): solid_requires_config() # Ensure that alias is accounted for in error message with pytest.raises( DagsterInvalidInvocationError, match="Compute function of solid 'aliased_solid_requires_config' has context argument, but no " "context was provided when invoking.", ): solid_requires_config.alias("aliased_solid_requires_config")() # Ensure that error is raised when we attempt to invoke with a None context with pytest.raises( DagsterInvalidInvocationError, match='solid "solid_requires_config" has required config schema, but no context was ' "provided.", ): solid_requires_config(None) # Ensure that error is raised when context does not have the required config. context = build_solid_context() with pytest.raises( DagsterInvalidConfigError, match="Error in config for solid", ): solid_requires_config(context) # Ensure that error is raised when attempting to execute and no context is provided, even when # configured with pytest.raises( DagsterInvalidInvocationError, match="Compute function of solid 'configured_solid' has context argument, but no " "context was provided when invoking.", ): solid_requires_config.configured({"foo": "bar"}, name="configured_solid")() # Ensure that if you configure the solid, you can provide a none-context. result = solid_requires_config.configured({"foo": "bar"}, name="configured_solid")(None) assert result == 5 result = solid_requires_config(build_solid_context(solid_config={"foo": "bar"})) assert result == 5 def test_solid_invocation_default_config(): @solid(config_schema={"foo": Field(str, is_required=False, default_value="bar")}) def solid_requires_config(context): assert context.solid_config["foo"] == "bar" return context.solid_config["foo"] assert solid_requires_config(None) == "bar" @solid(config_schema=Field(str, is_required=False, default_value="bar")) def solid_requires_config_val(context): assert context.solid_config == "bar" return context.solid_config assert solid_requires_config_val(None) == "bar" @solid( config_schema={ "foo": Field(str, is_required=False, default_value="bar"), "baz": str, } ) def solid_requires_config_partial(context): assert context.solid_config["foo"] == "bar" assert context.solid_config["baz"] == "bar" return context.solid_config["foo"] + context.solid_config["baz"] assert ( solid_requires_config_partial(build_solid_context(solid_config={"baz": "bar"})) == "barbar" ) def test_solid_invocation_dict_config(): @solid(config_schema=dict) def solid_requires_dict(context): assert context.solid_config == {"foo": "bar"} return context.solid_config assert solid_requires_dict(build_solid_context(solid_config={"foo": "bar"})) == {"foo": "bar"} @solid(config_schema=Noneable(dict)) def solid_noneable_dict(context): return context.solid_config assert solid_noneable_dict(build_solid_context()) is None assert solid_noneable_dict(None) is None def test_solid_invocation_kitchen_sink_config(): @solid( config_schema={ "str_field": str, "int_field": int, "list_int": [int], "list_list_int": [[int]], "dict_field": {"a_string": str}, "list_dict_field": [{"an_int": int}], "selector_of_things": Selector( {"select_list_dict_field": [{"an_int": int}], "select_int": int} ), "optional_list_of_optional_string": Noneable([Noneable(str)]), } ) def kitchen_sink(context): return context.solid_config solid_config_one = { "str_field": "kjf", "int_field": 2, "list_int": [3], "list_list_int": [[1], [2, 3]], "dict_field": {"a_string": "kdjfkd"}, "list_dict_field": [{"an_int": 2}, {"an_int": 4}], "selector_of_things": {"select_int": 3}, "optional_list_of_optional_string": ["foo", None], } assert kitchen_sink(build_solid_context(solid_config=solid_config_one)) == solid_config_one def test_solid_with_inputs(): @solid def solid_with_inputs(x, y): assert x == 5 assert y == 6 return x + y assert solid_with_inputs(5, 6) == 11 assert solid_with_inputs(x=5, y=6) == 11 assert solid_with_inputs(5, y=6) == 11 assert solid_with_inputs(y=6, x=5) == 11 # Check for proper error when incorrect number of inputs is provided. with pytest.raises( DagsterInvalidInvocationError, match='No value provided for required input "y".' ): solid_with_inputs(5) with pytest.raises( DagsterInvalidInvocationError, match="Too many input arguments were provided for solid 'solid_with_inputs'", ): solid_with_inputs(5, 6, 7) with pytest.raises( DagsterInvalidInvocationError, match="Too many input arguments were provided for solid 'solid_with_inputs'", ): solid_with_inputs(5, 6, z=7) # Check for proper error when incorrect number of inputs is provided. with pytest.raises( DagsterInvalidInvocationError, match='No value provided for required input "y".' ): solid_with_inputs(5, x=5) def test_failing_solid(): @solid def solid_fails(): raise Exception("Oh no!") with pytest.raises( Exception, match="Oh no!", ): solid_fails() def test_attempted_invocation_in_composition(): @solid def basic_solid(_x): pass msg = ( "Must pass the output from previous node invocations or inputs to the composition " "function as inputs when invoking nodes during composition." ) with pytest.raises( DagsterInvalidDefinitionError, match=msg, ): @pipeline def _pipeline_will_fail(): basic_solid(5) with pytest.raises( DagsterInvalidDefinitionError, match=msg, ): @pipeline def _pipeline_will_fail_again(): basic_solid(_x=5) def test_async_solid(): @solid async def aio_solid(): await asyncio.sleep(0.01) return "done" loop = asyncio.get_event_loop() assert loop.run_until_complete(aio_solid()) == "done" def test_async_gen_invocation(): @solid async def aio_gen(_): await asyncio.sleep(0.01) yield Output("done") context = build_solid_context() async def get_results(): res = [] async for output in aio_gen(context): res.append(output) return res loop = asyncio.get_event_loop() output = loop.run_until_complete(get_results())[0] assert output.value == "done" def test_multiple_outputs_iterator(): @solid(output_defs=[OutputDefinition(int, name="1"), OutputDefinition(int, name="2")]) def solid_multiple_outputs(): yield Output(2, output_name="2") yield Output(1, output_name="1") # Ensure that solid works both with execute_solid and invocation result = execute_solid(solid_multiple_outputs) assert result.success outputs = list(solid_multiple_outputs()) assert outputs[0].value == 2 assert outputs[1].value == 1 def test_wrong_output(): @solid def solid_wrong_output(): return Output(5, output_name="wrong_name") with pytest.raises( DagsterInvariantViolationError, match=re.escape( 'Core compute for solid "solid_wrong_output" returned an output "wrong_name" that does ' "not exist. The available outputs are ['result']" ), ): execute_solid(solid_wrong_output) with pytest.raises( DagsterInvariantViolationError, match=re.escape( 'Invocation of solid "solid_wrong_output" returned an output "wrong_name" that does ' "not exist. The available outputs are ['result']" ), ): solid_wrong_output() def test_optional_output_return(): @solid( output_defs=[ OutputDefinition(int, name="1", is_required=False), OutputDefinition(int, name="2"), ] ) def solid_multiple_outputs_not_sent(): return Output(2, output_name="2") assert solid_multiple_outputs_not_sent().value == 2 def test_optional_output_yielded(): @solid( output_defs=[ OutputDefinition(int, name="1", is_required=False), OutputDefinition(int, name="2"), ] ) def solid_multiple_outputs_not_sent(): yield Output(2, output_name="2") assert list(solid_multiple_outputs_not_sent())[0].value == 2 def test_optional_output_yielded_async(): @solid( output_defs=[ OutputDefinition(int, name="1", is_required=False), OutputDefinition(int, name="2"), ] ) async def solid_multiple_outputs_not_sent(): yield Output(2, output_name="2") async def get_results(): res = [] async for output in solid_multiple_outputs_not_sent(): res.append(output) return res loop = asyncio.get_event_loop() output = loop.run_until_complete(get_results())[0] assert output.value == 2 def test_missing_required_output_generator(): # Test missing required output from a generator solid @solid(output_defs=[OutputDefinition(int, name="1"), OutputDefinition(int, name="2")]) def solid_multiple_outputs_not_sent(): yield Output(2, output_name="2") with pytest.raises( DagsterStepOutputNotFoundError, match='Core compute for solid "solid_multiple_outputs_not_sent" did not return an output ' 'for non-optional output "1"', ): execute_solid(solid_multiple_outputs_not_sent) with pytest.raises( DagsterInvariantViolationError, match="Invocation of solid 'solid_multiple_outputs_not_sent' did not return an output " "for non-optional output '1'", ): list(solid_multiple_outputs_not_sent()) def test_missing_required_output_generator_async(): # Test missing required output from an async generator solid @solid(output_defs=[OutputDefinition(int, name="1"), OutputDefinition(int, name="2")]) async def solid_multiple_outputs_not_sent(): yield Output(2, output_name="2") with pytest.raises( DagsterStepOutputNotFoundError, match='Core compute for solid "solid_multiple_outputs_not_sent" did not return an output ' 'for non-optional output "1"', ): execute_solid(solid_multiple_outputs_not_sent) async def get_results(): res = [] async for output in solid_multiple_outputs_not_sent(): res.append(output) return res loop = asyncio.get_event_loop() with pytest.raises( DagsterInvariantViolationError, match="Invocation of solid 'solid_multiple_outputs_not_sent' did not return an output " "for non-optional output '1'", ): loop.run_until_complete(get_results()) def test_missing_required_output_return(): @solid(output_defs=[OutputDefinition(int, name="1"), OutputDefinition(int, name="2")]) def solid_multiple_outputs_not_sent(): return Output(2, output_name="2") with pytest.raises( DagsterStepOutputNotFoundError, match='Core compute for solid "solid_multiple_outputs_not_sent" did not return an output ' 'for non-optional output "1"', ): execute_solid(solid_multiple_outputs_not_sent) with pytest.raises( DagsterInvariantViolationError, match="Invocation of solid 'solid_multiple_outputs_not_sent' did not return an output " "for non-optional output '1'", ): solid_multiple_outputs_not_sent() def test_output_sent_multiple_times(): @solid(output_defs=[OutputDefinition(int, name="1")]) def solid_yields_twice(): yield Output(1, "1") yield Output(2, "1") with pytest.raises( DagsterInvariantViolationError, match='Compute for solid "solid_yields_twice" returned an output "1" multiple times', ): execute_solid(solid_yields_twice) with pytest.raises( DagsterInvariantViolationError, match="Invocation of solid 'solid_yields_twice' yielded an output '1' multiple times", ): list(solid_yields_twice()) @pytest.mark.parametrize( "property_or_method_name,val_to_pass", [ ("pipeline_run", None), ("step_launcher", None), ("pipeline_def", None), ("pipeline_name", None), ("mode_def", None), ("solid_handle", None), ("solid", None), ("get_step_execution_context", None), ], ) def test_invalid_properties_on_context(property_or_method_name, val_to_pass): @solid def solid_fails_getting_property(context): result = getattr(context, property_or_method_name) # for the case where property_or_method_name is a method, getting an attribute won't cause # an error, but invoking the method should. result(val_to_pass) if val_to_pass else result() # pylint: disable=expression-not-assigned with pytest.raises(DagsterInvalidPropertyError): solid_fails_getting_property(None) def test_solid_retry_requested(): @solid def solid_retries(): raise RetryRequested() with pytest.raises(RetryRequested): solid_retries() def test_solid_failure(): @solid def solid_fails(): raise Failure("oops") with pytest.raises(Failure, match="oops"): solid_fails() def test_yielded_asset_materialization(): @solid def solid_yields_materialization(_): yield AssetMaterialization(asset_key=AssetKey(["fake"])) yield Output(5) yield AssetMaterialization(asset_key=AssetKey(["fake2"])) events = list(solid_yields_materialization(None)) outputs = [event for event in events if isinstance(event, Output)] assert outputs[0].value == 5 materializations = [ materialization for materialization in events if isinstance(materialization, AssetMaterialization) ] assert len(materializations) == 2 def test_input_type_check(): @solid(input_defs=[InputDefinition("x", dagster_type=int)]) def solid_takes_input(x): return x + 1 assert solid_takes_input(5) == 6 with pytest.raises( DagsterTypeCheckDidNotPass, match='Description: Value "foo" of python type "str" must be a int.', ): solid_takes_input("foo") def test_output_type_check(): @solid(output_defs=[OutputDefinition(dagster_type=int)]) def wrong_type(): return "foo" with pytest.raises( DagsterTypeCheckDidNotPass, match='Description: Value "foo" of python type "str" must be a int.', ): wrong_type() def test_pending_node_invocation(): @solid def basic_solid_to_hook(): return 5 assert basic_solid_to_hook.with_hooks(set())() == 5 @solid def basic_solid_with_tag(context): assert context.has_tag("foo") return context.get_tag("foo") assert basic_solid_with_tag.tag({"foo": "bar"})(None) == "bar" def test_composite_solid_invocation_out_of_composition(): @solid def basic_solid(): return 5 @composite_solid def composite(): basic_solid() with pytest.raises( DagsterInvariantViolationError, match="Attempted to call composite solid " "'composite' outside of a composition function. Invoking composite solids is only valid in a " "function decorated with @pipeline or @composite_solid.", ): composite() def test_pipeline_invocation(): @pipeline def basic_pipeline(): pass with pytest.raises( DagsterInvariantViolationError, match="Attempted to call pipeline " "'basic_pipeline' directly. Pipelines should be invoked by using an execution API function " r"\(e.g. `execute_pipeline`\).", ): basic_pipeline() @solid async def foo_async() -> str: return "bar" def test_coroutine_asyncio_invocation(): async def my_coroutine_test(): result = await foo_async() assert result == "bar" loop = asyncio.get_event_loop() loop.run_until_complete(my_coroutine_test()) def test_solid_invocation_nothing_deps(): @solid(input_defs=[InputDefinition("start", Nothing)]) def nothing_dep(): return 5 # Ensure that providing the Nothing-dependency input throws an error with pytest.raises( DagsterInvalidInvocationError, match="Attempted to provide value for nothing input 'start'. Nothing dependencies are ignored " "when directly invoking solids.", ): nothing_dep(start="blah") with pytest.raises( DagsterInvalidInvocationError, match="Too many input arguments were provided for solid 'nothing_dep'. This may be because " "you attempted to provide a value for a nothing dependency. Nothing dependencies are " "ignored when directly invoking solids.", ): nothing_dep("blah") # Ensure that not providing nothing dependency also works. assert nothing_dep() == 5 @solid(input_defs=[InputDefinition("x"), InputDefinition("y", Nothing), InputDefinition("z")]) def sandwiched_nothing_dep(x, z): return x + z assert sandwiched_nothing_dep(5, 6) == 11 with pytest.raises( DagsterInvalidInvocationError, match="Too many input arguments were provided for solid 'sandwiched_nothing_dep'. This may " "be because you attempted to provide a value for a nothing dependency. Nothing " "dependencies are ignored when directly invoking solids.", ): sandwiched_nothing_dep(5, 6, 7) def test_dynamic_output_gen(): @solid( output_defs=[ DynamicOutputDefinition(name="a", is_required=False), OutputDefinition(name="b", is_required=False), ] ) def my_dynamic(): yield DynamicOutput(value=1, mapping_key="1", output_name="a") yield DynamicOutput(value=2, mapping_key="2", output_name="a") yield Output(value="foo", output_name="b") a1, a2, b = my_dynamic() assert a1.value == 1 assert a1.mapping_key == "1" assert a2.value == 2 assert a2.mapping_key == "2" assert b.value == "foo" def test_dynamic_output_async_gen(): @solid( output_defs=[ DynamicOutputDefinition(name="a", is_required=False), OutputDefinition(name="b", is_required=False), ] ) async def aio_gen(): yield DynamicOutput(value=1, mapping_key="1", output_name="a") yield DynamicOutput(value=2, mapping_key="2", output_name="a") await asyncio.sleep(0.01) yield Output(value="foo", output_name="b") async def get_results(): res = [] async for output in aio_gen(): res.append(output) return res loop = asyncio.get_event_loop() a1, a2, b = loop.run_until_complete(get_results()) assert a1.value == 1 assert a1.mapping_key == "1" assert a2.value == 2 assert a2.mapping_key == "2" assert b.value == "foo" def test_dynamic_output_non_gen(): @solid(output_defs=[DynamicOutputDefinition(name="a", is_required=False)]) def should_not_work(): return DynamicOutput(value=1, mapping_key="1", output_name="a") with pytest.raises( DagsterInvariantViolationError, match="Attempted to return a DynamicOutput from solid. DynamicOuts are only supported " "using yield syntax.", ): should_not_work() def test_dynamic_output_async_non_gen(): @solid(output_defs=[DynamicOutputDefinition(name="a", is_required=False)]) def should_not_work(): asyncio.sleep(0.01) return DynamicOutput(value=1, mapping_key="1", output_name="a") loop = asyncio.get_event_loop() with pytest.raises( DagsterInvariantViolationError, match="Attempted to return a DynamicOutput from solid. DynamicOuts are only supported " "using yield syntax.", ): loop.run_until_complete(should_not_work()) def test_solid_invocation_with_bad_resources(capsys): @resource def bad_resource(_): if 1 == 1: raise Exception("oopsy daisy") yield "foo" @solid(required_resource_keys={"my_resource"}) def solid_requires_resource(context): return context.resources.my_resource with pytest.raises( DagsterResourceFunctionError, match="Error executing resource_fn on ResourceDefinition my_resource", ): with build_solid_context(resources={"my_resource": bad_resource}) as context: assert solid_requires_resource(context) == "foo" captured = capsys.readouterr() # make sure there are no exceptions in the context destructor (__del__) assert "Exception ignored in" not in captured.err @pytest.mark.parametrize("context_builder", [build_solid_context, build_op_context]) def test_build_context_with_resources_config(context_builder): @resource(config_schema=str) def my_resource(context): assert context.resource_config == "foo" @solid(required_resource_keys={"my_resource"}) def my_solid(context): assert context.run_config["resources"]["my_resource"] == {"config": "foo"} context = context_builder( resources={"my_resource": my_resource}, resources_config={"my_resource": {"config": "foo"}}, ) my_solid(context) # bad resource config case with pytest.raises( DagsterInvalidConfigError, match='Received unexpected config entry "bad_resource" at the root.', ): context_builder( resources={"my_resource": my_resource}, resources_config={"bad_resource": {"config": "foo"}}, ) def test_logged_user_events(): @op def logs_events(context): context.log_event(AssetMaterialization("first")) context.log_event(Materialization("second")) context.log_event(ExpectationResult(success=True)) context.log_event(AssetObservation("fourth")) yield AssetMaterialization("fifth") yield Output("blah") context = build_op_context() list(logs_events(context)) assert [type(event) for event in context.get_events()] == [ AssetMaterialization, Materialization, ExpectationResult, AssetObservation, ] def test_add_output_metadata(): @op(out={"out1": Out(), "out2": Out()}) def the_op(context): context.add_output_metadata({"foo": "bar"}, output_name="out1") yield Output(value=1, output_name="out1") context.add_output_metadata({"bar": "baz"}, output_name="out2") yield Output(value=2, output_name="out2") context = build_op_context() events = list(the_op(context)) assert len(events) == 2 assert context.get_output_metadata("out1") == {"foo": "bar"} assert context.get_output_metadata("out2") == {"bar": "baz"} def test_add_output_metadata_after_output(): @op def the_op(context): yield Output(value=1) context.add_output_metadata({"foo": "bar"}) with pytest.raises( DagsterInvariantViolationError, match="In op 'the_op', attempted to log output metadata for output 'result' which has already been yielded. Metadata must be logged before the output is yielded.", ): list(the_op(build_op_context())) def test_log_metadata_multiple_dynamic_outputs(): @op(out={"out1": DynamicOut(), "out2": DynamicOut()}) def the_op(context): context.add_output_metadata({"one": "one"}, output_name="out1", mapping_key="one") yield DynamicOutput(value=1, output_name="out1", mapping_key="one") context.add_output_metadata({"two": "two"}, output_name="out1", mapping_key="two") context.add_output_metadata({"three": "three"}, output_name="out2", mapping_key="three") yield DynamicOutput(value=2, output_name="out1", mapping_key="two") yield DynamicOutput(value=3, output_name="out2", mapping_key="three") context.add_output_metadata({"four": "four"}, output_name="out2", mapping_key="four") yield DynamicOutput(value=4, output_name="out2", mapping_key="four") context = build_op_context() events = list(the_op(context)) assert len(events) == 4 assert context.get_output_metadata("out1", mapping_key="one") == {"one": "one"} assert context.get_output_metadata("out1", mapping_key="two") == {"two": "two"} assert context.get_output_metadata("out2", mapping_key="three") == {"three": "three"} assert context.get_output_metadata("out2", mapping_key="four") == {"four": "four"} def test_log_metadata_after_dynamic_output(): @op(out=DynamicOut()) def the_op(context): yield DynamicOutput(1, mapping_key="one") context.add_output_metadata({"foo": "bar"}, mapping_key="one") with pytest.raises( DagsterInvariantViolationError, match="In op 'the_op', attempted to log output metadata for output 'result' with mapping_key 'one' which has already been yielded. Metadata must be logged before the output is yielded.", ): list(the_op(build_op_context())) def test_kwarg_inputs(): @op(ins={"the_in": In(str)}) def the_op(**kwargs) -> str: return kwargs["the_in"] + "foo" with pytest.raises( DagsterInvalidInvocationError, match="op 'the_op' has 0 positional inputs, but 1 positional inputs were provided.", ): the_op("bar") assert the_op(the_in="bar") == "barfoo" with pytest.raises(KeyError): the_op(bad_val="bar") @op(ins={"the_in": In(), "kwarg_in": In(), "kwarg_in_two": In()}) def the_op(the_in, **kwargs): return the_in + kwargs["kwarg_in"] + kwargs["kwarg_in_two"] assert the_op("foo", kwarg_in="bar", kwarg_in_two="baz") == "foobarbaz" def test_default_kwarg_inputs(): @op def the_op(x=1, y=2): return x + y assert the_op() == 3 def test_kwargs_via_partial_functools(): def fake_func(foo, bar): return foo + bar new_func = partial(fake_func, foo=1, bar=2) new_op = op(name="new_func")(new_func) assert new_op() == 3
python
from pytest import approx from CompAero.FannoFlowRelations import FannoFlowRelations as ffr from CompAero.internal import FlowState as FS class TestFannoClassFuncs: gamma = 1.4 # Test the Functions for Subsonic Case ####################################################################################### def test_subsonic_t_tstar(self): assert ffr.calc_T_Tstar(0.5, self.gamma) == approx(1.1429, rel=1e-4) def test_subsonic_mach_from_t_tstar(self): assert ffr.calc_mach_from_T_TStar(1.14285714, self.gamma) == approx(0.5, rel=1e-2) def test_subsonic_p_pstar(self): assert ffr.calc_P_Pstar(0.5, self.gamma) == approx(2.1381, rel=1e-4) def test_subsonic_mach_from_p_pstar(self): assert ffr.calc_mach_from_P_PStar(2.13808993, self.gamma) == approx(0.5, rel=1e-2) def test_subsonic_rho_rhoStar(self): assert ffr.calc_Rho_RhoStar(0.5, self.gamma) == approx(1.871, rel=1e-4) def test_subsonic_mach_from_rho_rhoStar(self): assert ffr.calc_mach_from_Rho_RhoStar(1.871, 1.4) == approx(0.5, 1e-3) def test_subsonic_p0_p0Star(self): assert ffr.calc_Po_PoStar(0.5, self.gamma) == approx(1.3398, rel=1e-4) def test_subsonic_mach_from_p0_p0Star(self): assert ffr.calc_mach_from_Po_PoStar(1.33984375, self.gamma, flowType=FS.SUB_SONIC) == approx( 0.5, 1e-3 ) def test_subsonic_4FLstarD(self): assert ffr.calc_4FLSt_D(0.5, self.gamma) == approx(1.0691, rel=1e-4) def test_subsonic_mach_from_4FLstarD(self): assert ffr.calc_mach_from_4FLSt_D(1.06906031, self.gamma, flowType=FS.SUB_SONIC) == approx( 0.5, rel=1e-3 ) def test_subsonic_u_uStar(self): assert ffr.calc_U_UStar(0.5, self.gamma) == approx(0.5345, rel=1e-4) def test_subsonic_mach_from_u_uStar(self): assert ffr.calc_mach_from_U_USt(0.53452248, self.gamma) == approx(0.5, rel=1e-3) # Test the Functions for Supersonic Case ####################################################################################### def test_supersonic_t_tstar(self): assert ffr.calc_T_Tstar(1.5, self.gamma) == approx(0.82759, rel=1e-4) def test_supersonic_mach_from_t_tstar(self): assert ffr.calc_mach_from_T_TStar(0.82758620, self.gamma) == approx(1.5, rel=1e-2) def test_supersonic_p_pstar(self): assert ffr.calc_P_Pstar(1.5, self.gamma) == approx(0.6065, rel=1e-4) def test_supersonic_mach_from_p_pstar(self): assert ffr.calc_mach_from_P_PStar(0.60647843, self.gamma) == approx(1.5, rel=1e-2) def test_supersonic_rho_rhoStar(self): assert ffr.calc_Rho_RhoStar(1.5, self.gamma) == approx(0.7328, rel=1e-4) def test_supersonic_mach_from_rho_rhoStar(self): assert ffr.calc_mach_from_Rho_RhoStar(0.7328, 1.4) == approx(1.5, 1e-3) def test_supersonic_p0_p0Star(self): assert ffr.calc_Po_PoStar(1.5, self.gamma) == approx(1.1762, rel=1e-4) def test_supersonic_mach_from_p0_p0Star(self): assert ffr.calc_mach_from_Po_PoStar(1.17616705, self.gamma, flowType=FS.SUPER_SONIC) == approx( 1.5, 1e-3 ) def test_supersonic_4FLstarD(self): assert ffr.calc_4FLSt_D(1.5, self.gamma) == approx(0.13605, rel=1e-4) def test_supersonic_mach_from_4FLstarD(self): assert ffr.calc_mach_from_4FLSt_D(0.13605021, self.gamma, flowType=FS.SUPER_SONIC) == approx( 1.5, rel=1e-3 ) def test_supersonic_u_uStar(self): assert ffr.calc_U_UStar(1.5, self.gamma) == approx(1.3646, rel=1e-4) def test_supersonic_mach_from_u_uStar(self): assert ffr.calc_mach_from_U_USt(1.36457647, self.gamma) == approx(1.5, rel=1e-3) class TestFannoClassSubsonic: gamma = 1.4 def test_fanno_from_mach(self): inst = ffr(self.gamma, mach=0.5) inst.apply_pipe_parameters(0.4, 11, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(0.5, rel=1e-3) assert inst.t_tSt == approx(1.1429, rel=1e-4) assert inst.p_pSt == approx(2.1381, rel=1e-4) assert inst.rho_rhoSt == approx(1.871, rel=1e-4) assert inst.po_poSt == approx(1.3398, rel=1e-4) assert inst.f4LSt_D == approx(1.0691, rel=1e-4) assert inst.u_uSt == approx(0.5345, rel=1e-4) assert inst.flowType == FS.SUB_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(0.593, 1e-3) assert inst.dwnStrm_t_tSt == approx(1.1211, 1e-3) assert inst.dwnStrm_p_pSt == approx(1.7855, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.1966, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(1.5926, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.5191, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(0.6279, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_from_t_tStar(self): inst = ffr(self.gamma, t_tSt=1.1428571428571428) inst.apply_pipe_parameters(0.4, 11, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(0.5, rel=1e-3) assert inst.t_tSt == approx(1.1429, rel=1e-4) assert inst.p_pSt == approx(2.1381, rel=1e-4) assert inst.rho_rhoSt == approx(1.871, rel=1e-4) assert inst.po_poSt == approx(1.3398, rel=1e-4) assert inst.f4LSt_D == approx(1.0691, rel=1e-4) assert inst.u_uSt == approx(0.5345, rel=1e-4) assert inst.flowType == FS.SUB_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(0.593, 1e-3) assert inst.dwnStrm_t_tSt == approx(1.1211, 1e-3) assert inst.dwnStrm_p_pSt == approx(1.7855, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.1966, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(1.5926, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.5191, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(0.6279, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_from_p_pStar(self): inst = ffr(self.gamma, p_pSt=2.1381) inst.apply_pipe_parameters(0.4, 11, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(0.5, rel=1e-3) assert inst.t_tSt == approx(1.1429, rel=1e-4) assert inst.p_pSt == approx(2.1381, rel=1e-4) assert inst.rho_rhoSt == approx(1.871, rel=1e-4) assert inst.po_poSt == approx(1.3398, rel=1e-4) assert inst.f4LSt_D == approx(1.0691, rel=1e-4) assert inst.u_uSt == approx(0.5345, rel=1e-4) assert inst.flowType == FS.SUB_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(0.593, 1e-3) assert inst.dwnStrm_t_tSt == approx(1.1211, 1e-3) assert inst.dwnStrm_p_pSt == approx(1.7855, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.1966, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(1.5926, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.5191, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(0.6279, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_from_rho_rhoStar(self): inst = ffr(self.gamma, rho_rhoSt=1.8708286933869707) inst.apply_pipe_parameters(0.4, 11, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(0.5, rel=1e-3) assert inst.t_tSt == approx(1.1429, rel=1e-4) assert inst.p_pSt == approx(2.1381, rel=1e-4) assert inst.rho_rhoSt == approx(1.871, rel=1e-4) assert inst.po_poSt == approx(1.3398, rel=1e-4) assert inst.f4LSt_D == approx(1.0691, rel=1e-4) assert inst.u_uSt == approx(0.5345, rel=1e-4) assert inst.flowType == FS.SUB_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(0.593, 1e-3) assert inst.dwnStrm_t_tSt == approx(1.1211, 1e-3) assert inst.dwnStrm_p_pSt == approx(1.7855, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.1966, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(1.5926, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.5191, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(0.6279, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_from_po_poStar(self): inst = ffr(self.gamma, po_poSt=1.33984375, flowType=FS.SUB_SONIC) inst.apply_pipe_parameters(0.4, 11, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(0.5, rel=1e-3) assert inst.t_tSt == approx(1.1429, rel=1e-4) assert inst.p_pSt == approx(2.1381, rel=1e-4) assert inst.rho_rhoSt == approx(1.871, rel=1e-4) assert inst.po_poSt == approx(1.3398, rel=1e-4) assert inst.f4LSt_D == approx(1.0691, rel=1e-4) assert inst.u_uSt == approx(0.5345, rel=1e-4) assert inst.flowType == FS.SUB_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(0.593, 1e-3) assert inst.dwnStrm_t_tSt == approx(1.1211, 1e-3) assert inst.dwnStrm_p_pSt == approx(1.7855, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.1966, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(1.5926, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.5191, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(0.6279, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_from_f4LStar_D(self): inst = ffr(self.gamma, f4LSt_D=1.0690603127182559, flowType=FS.SUB_SONIC) inst.apply_pipe_parameters(0.4, 11, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(0.5, rel=1e-3) assert inst.t_tSt == approx(1.1429, rel=1e-4) assert inst.p_pSt == approx(2.1381, rel=1e-4) assert inst.rho_rhoSt == approx(1.871, rel=1e-4) assert inst.po_poSt == approx(1.3398, rel=1e-4) assert inst.f4LSt_D == approx(1.0691, rel=1e-4) assert inst.u_uSt == approx(0.5345, rel=1e-4) assert inst.flowType == FS.SUB_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(0.593, 1e-3) assert inst.dwnStrm_t_tSt == approx(1.1211, 1e-3) assert inst.dwnStrm_p_pSt == approx(1.7855, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.1966, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(1.5926, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.5191, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(0.6279, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_from_u_uStar(self): inst = ffr(self.gamma, u_uSt=0.5345224838248488) inst.apply_pipe_parameters(0.4, 11, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(0.5, rel=1e-3) assert inst.t_tSt == approx(1.1429, rel=1e-4) assert inst.p_pSt == approx(2.1381, rel=1e-4) assert inst.rho_rhoSt == approx(1.871, rel=1e-4) assert inst.po_poSt == approx(1.3398, rel=1e-4) assert inst.f4LSt_D == approx(1.0691, rel=1e-4) assert inst.u_uSt == approx(0.5345, rel=1e-4) assert inst.flowType == FS.SUB_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(0.593, 1e-3) assert inst.dwnStrm_t_tSt == approx(1.1211, 1e-3) assert inst.dwnStrm_p_pSt == approx(1.7855, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.1966, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(1.5926, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.5191, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(0.6279, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_choked_flow(self): inst = ffr(self.gamma, mach=0.5) inst.apply_pipe_parameters(0.4, 22, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(0.5, rel=1e-3) assert inst.t_tSt == approx(1.1429, rel=1e-4) assert inst.p_pSt == approx(2.1381, rel=1e-4) assert inst.rho_rhoSt == approx(1.871, rel=1e-4) assert inst.po_poSt == approx(1.3398, rel=1e-4) assert inst.f4LSt_D == approx(1.0691, rel=1e-4) assert inst.u_uSt == approx(0.5345, rel=1e-4) assert inst.flowType == FS.SUB_SONIC assert inst.chockedFlow assert inst.dwnStrmMach == approx(1.0, 1e-3) assert inst.dwnStrm_t_tSt == approx(1.0, 1e-3) assert inst.dwnStrm_p_pSt == approx(1.0, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.0, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(1.0, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.0, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(1.0, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) class TestFannoClassSupersonic: gamma = 1.4 def test_fanno_from_mach(self): inst = ffr(self.gamma, mach=1.5) inst.apply_pipe_parameters(0.4, 1.5, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(1.5, rel=1e-3) assert inst.t_tSt == approx(0.8276, rel=1e-4) assert inst.p_pSt == approx(0.6065, rel=1e-4) assert inst.rho_rhoSt == approx(0.7328, rel=1e-4) assert inst.po_poSt == approx(1.1762, rel=1e-4) assert inst.f4LSt_D == approx(0.13605, rel=1e-4) assert inst.u_uSt == approx(1.3646, rel=1e-4) assert inst.flowType == FS.SUPER_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(1.2887, 1e-3) assert inst.dwnStrm_t_tSt == approx(0.9008, 1e-3) assert inst.dwnStrm_p_pSt == approx(0.7365, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.0616, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(0.8176, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.06105, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(1.2231, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_from_t_tStar(self): inst = ffr(self.gamma, t_tSt=0.8275862068965517) inst.apply_pipe_parameters(0.4, 1.5, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(1.5, rel=1e-3) assert inst.t_tSt == approx(0.8276, rel=1e-4) assert inst.p_pSt == approx(0.6065, rel=1e-4) assert inst.rho_rhoSt == approx(0.7328, rel=1e-4) assert inst.po_poSt == approx(1.1762, rel=1e-4) assert inst.f4LSt_D == approx(0.13605, rel=1e-4) assert inst.u_uSt == approx(1.3646, rel=1e-4) assert inst.flowType == FS.SUPER_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(1.2887, 1e-3) assert inst.dwnStrm_t_tSt == approx(0.9008, 1e-3) assert inst.dwnStrm_p_pSt == approx(0.7365, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.0616, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(0.8176, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.06105, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(1.2231, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_from_p_pStar(self): inst = ffr(self.gamma, p_pSt=0.6064784348631227) inst.apply_pipe_parameters(0.4, 1.5, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(1.5, rel=1e-3) assert inst.t_tSt == approx(0.8276, rel=1e-4) assert inst.p_pSt == approx(0.6065, rel=1e-4) assert inst.rho_rhoSt == approx(0.7328, rel=1e-4) assert inst.po_poSt == approx(1.1762, rel=1e-4) assert inst.f4LSt_D == approx(0.13605, rel=1e-4) assert inst.u_uSt == approx(1.3646, rel=1e-4) assert inst.flowType == FS.SUPER_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(1.2887, 1e-3) assert inst.dwnStrm_t_tSt == approx(0.9008, 1e-3) assert inst.dwnStrm_p_pSt == approx(0.7365, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.0616, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(0.8176, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.06105, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(1.2231, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_from_rho_rhoStar(self): inst = ffr(self.gamma, rho_rhoSt=0.7328281087929399) inst.apply_pipe_parameters(0.4, 1.5, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(1.5, rel=1e-3) assert inst.t_tSt == approx(0.8276, rel=1e-4) assert inst.p_pSt == approx(0.6065, rel=1e-4) assert inst.rho_rhoSt == approx(0.7328, rel=1e-4) assert inst.po_poSt == approx(1.1762, rel=1e-4) assert inst.f4LSt_D == approx(0.13605, rel=1e-4) assert inst.u_uSt == approx(1.3646, rel=1e-4) assert inst.flowType == FS.SUPER_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(1.2887, 1e-3) assert inst.dwnStrm_t_tSt == approx(0.9008, 1e-3) assert inst.dwnStrm_p_pSt == approx(0.7365, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.0616, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(0.8176, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.06105, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(1.2231, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_from_po_poStar(self): inst = ffr(self.gamma, po_poSt=1.1761670524691357, flowType=FS.SUPER_SONIC) inst.apply_pipe_parameters(0.4, 1.5, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(1.5, rel=1e-3) assert inst.t_tSt == approx(0.8276, rel=1e-4) assert inst.p_pSt == approx(0.6065, rel=1e-4) assert inst.rho_rhoSt == approx(0.7328, rel=1e-4) assert inst.po_poSt == approx(1.1762, rel=1e-4) assert inst.f4LSt_D == approx(0.13605, rel=1e-4) assert inst.u_uSt == approx(1.3646, rel=1e-4) assert inst.flowType == FS.SUPER_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(1.2887, 1e-3) assert inst.dwnStrm_t_tSt == approx(0.9008, 1e-3) assert inst.dwnStrm_p_pSt == approx(0.7365, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.0616, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(0.8176, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.06105, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(1.2231, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_from_f4LStar_D(self): inst = ffr(self.gamma, f4LSt_D=0.13605021738414635, flowType=FS.SUPER_SONIC) inst.apply_pipe_parameters(0.4, 1.5, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(1.5, rel=1e-3) assert inst.t_tSt == approx(0.8276, rel=1e-4) assert inst.p_pSt == approx(0.6065, rel=1e-4) assert inst.rho_rhoSt == approx(0.7328, rel=1e-4) assert inst.po_poSt == approx(1.1762, rel=1e-4) assert inst.f4LSt_D == approx(0.13605, rel=1e-4) assert inst.u_uSt == approx(1.3646, rel=1e-4) assert inst.flowType == FS.SUPER_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(1.2887, 1e-3) assert inst.dwnStrm_t_tSt == approx(0.9008, 1e-3) assert inst.dwnStrm_p_pSt == approx(0.7365, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.0616, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(0.8176, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.06105, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(1.2231, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_from_u_uStar(self): inst = ffr(self.gamma, u_uSt=1.364576478442026) inst.apply_pipe_parameters(0.4, 1.5, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(1.5, rel=1e-3) assert inst.t_tSt == approx(0.8276, rel=1e-4) assert inst.p_pSt == approx(0.6065, rel=1e-4) assert inst.rho_rhoSt == approx(0.7328, rel=1e-4) assert inst.po_poSt == approx(1.1762, rel=1e-4) assert inst.f4LSt_D == approx(0.13605, rel=1e-4) assert inst.u_uSt == approx(1.3646, rel=1e-4) assert inst.flowType == FS.SUPER_SONIC assert not inst.chockedFlow assert inst.dwnStrmMach == approx(1.2887, 1e-3) assert inst.dwnStrm_t_tSt == approx(0.9008, 1e-3) assert inst.dwnStrm_p_pSt == approx(0.7365, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.0616, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(0.8176, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.06105, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(1.2231, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5) def test_fanno_choked_flow(self): inst = ffr(self.gamma, mach=1.5) inst.apply_pipe_parameters(0.4, 22, 0.005) assert inst.gamma == approx(self.gamma, rel=1e-3) assert inst.mach == approx(1.5, rel=1e-3) assert inst.t_tSt == approx(0.8276, rel=1e-4) assert inst.p_pSt == approx(0.6065, rel=1e-4) assert inst.rho_rhoSt == approx(0.7328, rel=1e-4) assert inst.po_poSt == approx(1.1762, rel=1e-4) assert inst.f4LSt_D == approx(0.13605, rel=1e-4) assert inst.u_uSt == approx(1.3646, rel=1e-4) assert inst.flowType == FS.SUPER_SONIC assert inst.chockedFlow assert inst.dwnStrmMach == approx(1.0, 1e-3) assert inst.dwnStrm_t_tSt == approx(1.0, 1e-3) assert inst.dwnStrm_p_pSt == approx(1.0, rel=1e-4) assert inst.dwnStrm_po_poSt == approx(1.0, rel=1e-4) assert inst.dwnStrm_rho_rhoSt == approx(1.0, rel=1e-4) assert inst.dwnStrm_f4LSt_D == approx(0.0, rel=1e-4) assert inst.dwnStrm_u_uSt == approx(1.0, rel=1e-4) assert inst.p2_p1 == approx(inst.dwnStrm_p_pSt / inst.p_pSt, rel=1e-5) assert inst.rho2_rho1 == approx(inst.dwnStrm_rho_rhoSt / inst.rho_rhoSt, rel=1e-5) assert inst.t2_t1 == approx(inst.dwnStrm_t_tSt / inst.t_tSt, rel=1e-5) assert inst.po2_po1 == approx(inst.dwnStrm_po_poSt / inst.po_poSt, rel=1e-5) assert inst.f4LD2_f4LD1 == approx(inst.dwnStrm_f4LSt_D / inst.f4LSt_D, rel=1e-5) assert inst.u2_u1 == approx(inst.dwnStrm_u_uSt / inst.u_uSt, rel=1e-5)
python
import json, os, copy def tag_check(resourceTags, include=True): checkTags = json.loads(os.environ['checkTags']) tagResults = copy.copy(checkTags) if include == True: for cTag in checkTags: for rTag in resourceTags: #Check each check Tag where there is both a key and value, if match remove from list if (rTag == cTag): tagResults.remove(cTag) #CHeck where only a tag key is provided, if match remove from list if "Value" not in cTag: if cTag['Key'] == rTag['Key']: tagResults.remove(cTag) #success if when the checkTags is an empty array, i.e. [] if tagResults == []: return (True) else: return (False) elif include == False: tagResults = True for cTag in checkTags: for rTag in resourceTags: #Check each check Tag where there is both a key and value, if match remove from list if (rTag == cTag): tagResults = True #CHeck where only a tag key is provided, if match remove from list if "Value" not in cTag: if cTag['Key'] == rTag['Key']: tagResults = True #success if when the checkTags is an empty array, i.e. [] return (tagResults)
python
import itertools def get_output_filename(input_filename): return input_filename.replace('input', 'output') class Checksum: day = 2 test = 2 def get_input_filename(self): return "day" + str(self.day).zfill(2) + ".input" def process(self, raw_input): input_spreadsheet = self.parseInput(raw_input) row_checksums = self.calculate_row_checkums(input_spreadsheet) result = sum(row_checksums) return result def calculate_row_checkums(self, input_spreadsheet): if self.test == 1: return [self.calculate_checksum(row) for row in input_spreadsheet] if self.test == 2: return [self.get_divisors(row) for row in input_spreadsheet] def calculate_checksum(self, row): return max(row) - min(row) def get_divisors(self, row): for a, b in itertools.permutations(row, 2): if a % b == 0: return int(a / b) def parseInput(self, raw_input): result = [] for row in raw_input: result.append([int(number) for number in row.split()]) return result def executeTestOnFile(self, input_filename): with open(input_filename) as input_file: raw_input = input_file.readlines() result = self.process(raw_input) print(result) with open(get_output_filename(input_filename), 'w') as output_file: output_file.write(str(result)) if __name__ == "__main__": checksum = Checksum() checksum.test = 2 checksum.executeTestOnFile(checksum.get_input_filename())
python
from typing import Iterable, List from .syntax import Field, NodeType, Syntax from .node import Node class CField(Field): PATH = "path" NAME = "name" VALUE = "value" PARAMETERS = "parameters" directive = "directive" argument = "argument" OPERATOR = "operator" FUNCTION = "function" ARGUMENT = "argument" ARGUMENTS = "arguments" LEFT = "left" RIGHT = "right" DECLARATOR = "declarator" BODY = "body" PREFIX = "prefix" SIZE = "size" TYPE = "type" LABEL = "label" CONDITION = "condition" CONSEQUENCE = "consequence" ALTERNATIVE = "alternative" INITIALIZER = "initializer" INDEX = "index" DESIGNATOR = "designator" UPDATE = "update" class CNodeType(NodeType): # Binary expression operators PLAIN_ASSIGNMENT = "=" ARITHMETIC_ADDITION = "+" ARITHMETIC_SUBTRACTION = "-" ARITHMETIC_ADDITION_ADDITION = "++" ARITHMETIC_SUBTRACTION_SUBTRACTION = "--" ARITHMETIC_MULTIPLICATION = "*" ARITHMETIC_DIVISION = "/" ARITHMETIC_MODULO = "%" BITWISE_OR = "|" BITWISE_AND = "&" BITWISE_XOR = "^" SHIFT_LEFT = "<<" SHIFT_RIGHT = ">>" LOGICAL_AND = "&&" LOGICAL_OR = "||" RELATIONAL_LESS_THAN = "<" RELATIONAL_GREATER_THAN = ">" RELATIONAL_LESS_THAN_OR_EQUAL = "<=" RELATIONAL_GREATER_THAN_OR_EQUAL = ">=" RELATIONAL_EQUAL = "==" RELATIONAL_NOT_EQUAL = "!=" Logical_NOT = "!" ARITHMETIC_COMPOUND_ADDITION = "+=" ARITHMETIC_COMPOUND_SUBTRACTION = "-=" ARITHMETIC_COMPOUND_MULTIPLICATION = "*=" ARITHMETIC_COMPOUND_DIVISION = "/=" ARITHMETIC_COMPOUND_MODULO = "%=" BITWISE_COMPOUND_OR = "|=" BITWISE_COMPOUND_AND = "&=" BITWISE_COMPOUND_XOR = "^=" SHIFT_COMPOUND_LEFT = "<<=" SHIFT_COMPOUND_RIGHT = ">>=" # Literals IDENTIFIER = "identifier" # Types PRIMITIVE_TYPE = "primitive_type" SIZED_TYPE_SPECIFIER = "sized_type_specifier" STRUCT_SPECIFIER = "struct_specifier" UNION_SPECIFIER = "union_specifier" # Constructs EXPRESSION_STATEMENT = "expression_statement" ASSIGNMENT_EXPRESSION = "assignment_expression" DECLARATION = "declaration" IF_STATEMENT = "if_statement" WHILE_STATEMENT = "while_statement" TRANSLATION_UNIT = "translation_unit" COMPOUND_STATEMENT = "compound_statement" DO_STATEMENT = "do_statement" FOR_STATEMENT = "for_statement" SWITCH_STATEMENT = "switch_statement" BREAK_STATEMENT = "break_statement" CONTINUE_STATEMENT = "continue_statement" RETURN_STATEMENT = "return_statement" LABELED_STATEMENT = "labeled_statement" GOTO_STATEMENT = "goto_statement" FUNCTION_DEFINITION = "function_definition" TYPE_DEFINITION = "type_definition" ENUM_SPECIFIER = "enum_specifier" STORAGE_CLASS_SPECIFIERS = "storage_class_specifier" TYPE_QUALIFIER = "type_qualifier" INIT_DECLARATOR = "init_declarator" ARRAY_DECLARATOR = "array_declarator" POINTER_DECLARATOR = "pointer_declarator" PARAMETER_DECLARATION = "parameter_declaration" PREPROC_IFDEF = "preproc_ifdef" PREPROC_DEF = "preproc_def" CASE_STATEMENT = "case_statement" PARENTHESIZED_EXPRESSION = "parenthesized_expression" UNARY_EXPRESSION = "unary_expression" BINARY_EXPRESSION = "binary_expression" NUMBER_LITERAL = "number_literal" UPDATE_EXPRESSION = "update_expression" class CSyntax(Syntax): @property def plain_assignment(self) -> Iterable[CNodeType]: return [ CNodeType.PLAIN_ASSIGNMENT, ] @property def logical_unary_operators(self) -> Iterable[CNodeType]: return [ CNodeType.Logical_NOT ] @property def arithmetic_operators(self) -> Iterable[CNodeType]: return [ CNodeType.ARITHMETIC_ADDITION, CNodeType.ARITHMETIC_SUBTRACTION, CNodeType.ARITHMETIC_MULTIPLICATION, CNodeType.ARITHMETIC_DIVISION, CNodeType.ARITHMETIC_MODULO, ] @property def arithmetic_unary_operators(self) -> Iterable[CNodeType]: return [ CNodeType.ARITHMETIC_ADDITION, CNodeType.ARITHMETIC_SUBTRACTION, ] @property def update_expression_operators(self) -> Iterable[CNodeType]: return [ CNodeType.ARITHMETIC_ADDITION_ADDITION, CNodeType.ARITHMETIC_SUBTRACTION_SUBTRACTION, ] @property def bitwise_operators(self) -> Iterable[CNodeType]: return [ CNodeType.BITWISE_OR, CNodeType.BITWISE_AND, CNodeType.BITWISE_XOR, ] @property def shift_operators(self) -> Iterable[CNodeType]: return [ CNodeType.SHIFT_LEFT, CNodeType.SHIFT_RIGHT, ] @property def logical_operators(self) -> Iterable[CNodeType]: return [ CNodeType.LOGICAL_AND, CNodeType.LOGICAL_OR, ] @property def relational_operators(self) -> Iterable[CNodeType]: return [ CNodeType.RELATIONAL_GREATER_THAN, CNodeType.RELATIONAL_GREATER_THAN_OR_EQUAL, CNodeType.RELATIONAL_LESS_THAN, CNodeType.RELATIONAL_LESS_THAN_OR_EQUAL, CNodeType.RELATIONAL_EQUAL, CNodeType.RELATIONAL_NOT_EQUAL, ] @property def arithmetic_compound_assignment(self) -> Iterable[CNodeType]: return [ CNodeType.ARITHMETIC_COMPOUND_ADDITION, CNodeType.ARITHMETIC_COMPOUND_SUBTRACTION, CNodeType.ARITHMETIC_COMPOUND_MULTIPLICATION, CNodeType.ARITHMETIC_COMPOUND_DIVISION, CNodeType.ARITHMETIC_COMPOUND_MODULO, ] @property def bitwise_compound_assignment(self) -> Iterable[CNodeType]: return [ CNodeType.BITWISE_COMPOUND_OR, CNodeType.BITWISE_COMPOUND_AND, CNodeType.BITWISE_COMPOUND_XOR, ] @property def shift_compound_assignment(self) -> Iterable[CNodeType]: return [ CNodeType.SHIFT_COMPOUND_LEFT, CNodeType.SHIFT_COMPOUND_RIGHT, ] @property def structures(self) -> Iterable[CNodeType]: return [ CNodeType.IF_STATEMENT, CNodeType.WHILE_STATEMENT, CNodeType.DO_STATEMENT, CNodeType.FOR_STATEMENT, CNodeType.SWITCH_STATEMENT, CNodeType.FUNCTION_DEFINITION ] @property def assignment_query(self) -> str: return "((assignment_expression) @exp)" @property def compound_assignment_query(self) -> str: return "((assignment_expression) @exp)" @property def binary_expression_query(self) -> str: return '((binary_expression) @exp)' + self.assignment_query @property def unary_expression_query(self) -> str: return '((unary_expression) @exp)' @property def update_expression_query(self) -> str: return '((update_expression) @exp)' @property def number_literal_query(self) -> str: return '((number_literal) @num)' @property def function_declaration_query(self) -> str: return "((function_definition) @def)" @property def struct_declaration_query(self) -> str: return '((struct_specifier) @spec)' @property def if_statement_query(self) -> str: return '(if_statement) @if' @property def declaration_query(self) -> str: return '(declaration) @declaration' def get_binary_expression_operator(self, node: Node) -> Node: return node.children[1] def get_function_definitions(self, node: Node) -> Node: return node def get_struct_declaration(self, node: Node) -> Node: return node def get_if_declaration(self, node: Node) -> Node: return node def get_for_loop_body(self, node: Node) -> Node: return node.named_children[-1] def get_function_identifier(self, definition: Node) -> Node: current = definition \ .child_by_field(CField.DECLARATOR) \ .child_by_field(CField.DECLARATOR) if current is None: return None while True: next = current.child_by_field(CField.DECLARATOR) if next is None: break current = next return current def get_immediate_structure_descendent(self, node: Node) -> Node: if node is None: return None types: List[str] = [ nodeType.value for nodeType in self.structures ] return node.get_immediate_descendent_of_types(types) def get_structure_descendent(self, node: Node) -> Node: if node is None: return None types: List[str] = [ nodeType.value for nodeType in self.structures ] return node.get_descendent_of_types(types) def is_immediate_structure_descendent(self, node: Node, type: CNodeType) -> bool: if node is None: return False immediate_structure: Node = self.get_immediate_structure_descendent(node) if immediate_structure is None: return False immediate_type: CNodeType = self.node_field(immediate_structure.type) return type is immediate_type def is_structure_descendent(self, node: Node, type: CNodeType) -> bool: if node is None: return False immediate_structure: Node = self.get_structure_descendent(node) if immediate_structure is None: return False immediate_type: CNodeType = self.node_field(immediate_structure.type) return type is immediate_type def is_default_switch_case(self, case: Node) -> bool: if case is None: return False return case.child_by_field(CField.VALUE) is None def is_empty_switch_case(self, case: Node) -> bool: if case is None: return False if self.is_default_switch_case(case): return case.named_child_count < 1 return case.named_child_count == 1 def is_switch_case(self, case: Node) -> bool: if not case.parent.is_type(CNodeType.CASE_STATEMENT): return False return case.parent.child_by_field(CField.VALUE) == case def is_field_of_type(self, node: Node, structure: CNodeType, field: CField) -> bool: if node is None: return False structure_node: Node = self.get_structure_descendent(node) if structure_node is None or not structure_node.is_type(structure): return False field_node: Node = structure_node.child_by_field(field) return field is not None and node == field_node def is_condition_of_if(self, node: Node) -> bool: return self.is_field_of_type( node, CNodeType.IF_STATEMENT, CField.CONDITION ) def is_condition_of_while(self, node: Node) -> bool: return self.is_field_of_type( node, CNodeType.WHILE_STATEMENT, CField.CONDITION ) def is_condition_of_for(self, node: Node) -> bool: return self.is_field_of_type( node, CNodeType.FOR_STATEMENT, CField.CONDITION ) def is_initialisation_of_for(self, node: Node) -> bool: return self.is_field_of_type( node, CNodeType.FOR_STATEMENT, CField.INITIALIZER ) def is_update_of_for(self, node: Node) -> bool: return self.is_field_of_type( node, CNodeType.FOR_STATEMENT, CField.UPDATE ) def is_condition_of_do_while(self, node: Node) -> bool: return self.is_field_of_type( node, CNodeType.DO_STATEMENT, CField.CONDITION ) def is_body_of_for_loop(self, node: Node) -> bool: # A for-loop does not have the "body" as a field. # for this reason we just have to check if the for-loop # is the first descendent of the structure. for_statement: Node = node.get_immediate_descendent_of_types( [ CNodeType.FOR_STATEMENT.value ] ) if for_statement is None: return False # The last named child of the for_statement node is the body of the loop for_body = self.get_for_loop_body(for_statement) return for_body == node or \ node.is_immediate_descendent_of_node(for_body) def is_condition_of_switch(self, node: Node) -> bool: return self.is_field_of_type( node, CNodeType.SWITCH_STATEMENT, CField.CONDITION ) def has_else_if(self, node: Node) -> bool: alternative: Node = node.child_by_field(CField.ALTERNATIVE) return alternative is not None and alternative.is_type(CNodeType.IF_STATEMENT) def is_labeled_statement(self, node: Node) -> bool: return node is not None and node.is_type(CNodeType.LABELED_STATEMENT) def is_expression_statement(self, node: Node) -> bool: return node is not None and node.is_type(CNodeType.EXPRESSION_STATEMENT) def is_return_statement(self, node: Node) -> bool: return node is not None and node.is_type(CNodeType.RETURN_STATEMENT) def is_declaration(self, node: Node) -> bool: return node is not None and node.is_type(CNodeType.DECLARATION) def is_immediate_of_function_definition(self, node: Node) -> bool: return node is not None and node.get_immediate_descendent_of_types_field( [ CNodeType.FUNCTION_DEFINITION.value ], CField.BODY ) is not None def is_immediate_of_translation_unit(self, node: Node) -> bool: return node is not None and node.get_immediate_descendent_of_types( [ CNodeType.TRANSLATION_UNIT ] ) is not None def is_goto_statement(self, node: Node) -> bool: return node is not None and node.is_type(CNodeType.GOTO_STATEMENT) def node_field(self, node_type: str) -> CNodeType: return CNodeType(node_type)
python
#from __future__ import unicode_literals from twisted.internet import reactor, endpoints from twisted.internet.defer import inlineCallbacks from ..transit_server import Transit class ServerBase: log_requests = False @inlineCallbacks def setUp(self): self._lp = None if self.log_requests: blur_usage = None else: blur_usage = 60.0 yield self._setup_relay(blur_usage=blur_usage) self._transit_server._debug_log = self.log_requests @inlineCallbacks def _setup_relay(self, blur_usage=None, log_file=None, usage_db=None): ep = endpoints.TCP4ServerEndpoint(reactor, 0, interface="127.0.0.1") self._transit_server = Transit(blur_usage=blur_usage, log_file=log_file, usage_db=usage_db) self._lp = yield ep.listen(self._transit_server) addr = self._lp.getHost() # ws://127.0.0.1:%d/wormhole-relay/ws self.transit = u"tcp:127.0.0.1:%d" % addr.port def tearDown(self): if self._lp: return self._lp.stopListening()
python
#execute(object) #object will be the python code a = "print('hiii')" print(exec(a))
python
# -*- coding: utf-8 -*- """Walker that performs simple name-binding analysis as it traverses the AST""" import ast from .util import merge_dicts from .walkers import Walker from . import compat __all__ = ['Scoped'] @Walker def find_names(tree, collect, stop, **kw): if isinstance(tree, (ast.Attribute, ast.Subscript)): stop() if isinstance(tree, ast.Name): collect((tree.id, tree)) @Walker def find_assignments(tree, collect, stop, **kw): if isinstance(tree, compat.scope_nodes): collect((tree.name, tree)) stop() if isinstance(tree, ast.Assign): for x in find_names.collect(tree.targets): collect(x) def extract_arg_names(args): return dict( ([(args.vararg.arg, args.vararg)] if args.vararg else []) + ([(args.kwarg.arg, args.kwarg)] if args.kwarg else []) + [(arg.arg, arg) for arg in args.args] + [(arg.arg, arg) for arg in args.kwonlyargs] ) class Scoped(Walker): """Used in conjunction with `@Walker`, via @Scoped @Walker def my_func(tree, scope, **kw): ... This decorator wraps the `Walker` and injects in a `scope` argument into the function. This argument is a dictionary of names which are in-scope in the present `tree`s environment, starting from the `tree` on which the recursion was start. This can be used to track the usage of a name binding through the AST snippet, and detecting when the name gets shadowed by a more tightly scoped name binding. """ def __init__(self, walker): self.walker = walker def recurse_collect(self, tree, sub_kw=[], **kw): kw['scope'] = kw.get('scope', dict(find_assignments.collect(tree))) return Walker.recurse_collect(self, tree, sub_kw, **kw) def func(self, tree, set_ctx_for, scope, **kw): def extend_scope(tree, *dicts, **kw): new_scope = merge_dicts(*([scope] + list(dicts))) if "remove" in kw: for rem in kw['remove']: del new_scope[rem] set_ctx_for(tree, scope=new_scope) if isinstance(tree, ast.Lambda): extend_scope(tree.body, extract_arg_names(tree.args)) if isinstance(tree, (ast.GeneratorExp, ast.ListComp, ast.SetComp, ast.DictComp)): iterator_vars = {} for gen in tree.generators: extend_scope(gen.target, iterator_vars) extend_scope(gen.iter, iterator_vars) iterator_vars.update(dict(find_names.collect(gen.target))) extend_scope(gen.ifs, iterator_vars) if isinstance(tree, ast.DictComp): extend_scope(tree.key, iterator_vars) extend_scope(tree.value, iterator_vars) else: extend_scope(tree.elt, iterator_vars) if isinstance(tree, compat.function_nodes): extend_scope(tree.args, {tree.name: tree}) extend_scope( tree.body, {tree.name: tree}, extract_arg_names(tree.args), dict(find_assignments.collect(tree.body)), ) if isinstance(tree, ast.ClassDef): extend_scope(tree.bases, remove=[tree.name]) extend_scope(tree.body, dict(find_assignments.collect(tree.body)), remove=[tree.name]) if isinstance(tree, ast.ExceptHandler): extend_scope(tree.body, {tree.name: tree.name}) if isinstance(tree, ast.For): extend_scope(tree.body, dict(find_names.collect(tree.target))) if isinstance(tree, ast.With): extend_scope(tree.body, dict(find_names.collect(tree.items))) return self.walker.func( tree, set_ctx_for=set_ctx_for, scope=scope, **kw )
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: train.py import argparse import itertools import numpy as np import os import cv2 import six import shutil assert six.PY3, "FasterRCNN requires Python 3!" import tensorflow as tf import tqdm import tensorpack.utils.viz as tpviz from tensorpack import * from tensorpack.tfutils import optimizer from tensorpack.tfutils.common import get_tf_version_tuple, get_tensors_by_names from tensorpack.tfutils.summary import add_moving_summary from tensorpack.tfutils.varreplace import freeze_variables import model_frcnn import model_mrcnn from basemodel import image_preprocess, resnet_c4_backbone, resnet_conv5, resnet_fpn_backbone, backbone_scope from dataset import DetectionDataset from config import finalize_configs, config as cfg from data import get_all_anchors, get_all_anchors_fpn, get_train_dataflow from eval_utils import EvalCallback from model_box import RPNAnchors, clip_boxes, crop_and_resize, roi_align from model_cascade import CascadeRCNNHead, CascadeRCNNHeadWithHardExamples from model_fpn import fpn_model, generate_fpn_proposals, multilevel_roi_align, multilevel_rpn_losses from model_frcnn import BoxProposals, FastRCNNHead, fastrcnn_outputs, fastrcnn_predictions, sample_fast_rcnn_targets from model_mrcnn import maskrcnn_loss, maskrcnn_upXconv_head from model_rpn import generate_rpn_proposals, rpn_head, rpn_losses try: import horovod.tensorflow as hvd except ImportError: pass class DetectionModel(ModelDesc): def preprocess(self, image): image = tf.expand_dims(image, 0) image = image_preprocess(image, bgr=True) return tf.transpose(image, [0, 3, 1, 2]) @property def training(self): return get_current_tower_context().is_training def optimizer(self): lr = tf.get_variable('learning_rate', initializer=0.003, trainable=False) tf.summary.scalar('learning_rate-summary', lr) # The learning rate in the config is set for 8 GPUs, and we use trainers with average=False. lr = lr / 8. opt = tf.train.MomentumOptimizer(lr, 0.9) if cfg.TRAIN.NUM_GPUS < 8: opt = optimizer.AccumGradOptimizer(opt, 8 // cfg.TRAIN.NUM_GPUS) return opt def get_inference_tensor_names(self): """ Returns two lists of tensor names to be used to create an inference callable. Returns: [str]: input names [str]: output names """ if cfg.MODE_THIRD_STAGE: out = ['output/boxes', 'output/scores', 'third_stage_features_out', 'ff_gt_tracklet_scores', 'sparse_tracklet_scores', 'tracklet_score_indices'] else: out = ['output/boxes', 'output/scores', 'output/labels'] if cfg.MODE_MASK: out.append('output/masks') if cfg.EXTRACT_GT_FEATURES: return ['image', 'roi_boxes'], ['boxes_for_extraction', 'features_for_extraction'] else: return ['image'], out def build_graph(self, *inputs): inputs = dict(zip(self.input_names, inputs)) image = self.preprocess(inputs['image']) # 1CHW features = self.backbone(image) anchor_inputs = {k: v for k, v in inputs.items() if k.startswith('anchor_')} if cfg.EXTRACT_GT_FEATURES: anchor_inputs["roi_boxes"] = inputs["roi_boxes"] proposals, rpn_losses = self.rpn(image, features, anchor_inputs) # inputs? targets = [inputs[k] for k in ['gt_boxes', 'gt_labels', 'gt_masks'] if k in inputs] head_losses = self.roi_heads(image, features, proposals, targets) if self.training: wd_cost = regularize_cost( '.*/W', l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), name='wd_cost') total_cost = tf.add_n( rpn_losses + head_losses + [wd_cost], 'total_cost') add_moving_summary(total_cost, wd_cost) return total_cost class ResNetC4Model(DetectionModel): def inputs(self): ret = [ tf.placeholder(tf.float32, (None, None, 3), 'image'), tf.placeholder(tf.int32, (None, None, cfg.RPN.NUM_ANCHOR), 'anchor_labels'), tf.placeholder(tf.float32, (None, None, cfg.RPN.NUM_ANCHOR, 4), 'anchor_boxes'), tf.placeholder(tf.float32, (None, 4), 'gt_boxes'), tf.placeholder(tf.int64, (None,), 'gt_labels')] # all > 0 if cfg.MODE_MASK: ret.append( tf.placeholder(tf.uint8, (None, None, None), 'gt_masks') ) # NR_GT x height x width return ret def backbone(self, image): return [resnet_c4_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCKS[:3])] def rpn(self, image, features, inputs): featuremap = features[0] rpn_label_logits, rpn_box_logits = rpn_head('rpn', featuremap, cfg.RPN.HEAD_DIM, cfg.RPN.NUM_ANCHOR) anchors = RPNAnchors(get_all_anchors(), inputs['anchor_labels'], inputs['anchor_boxes']) anchors = anchors.narrow_to(featuremap) image_shape2d = tf.shape(image)[2:] # h,w pred_boxes_decoded = anchors.decode_logits(rpn_box_logits) # fHxfWxNAx4, floatbox proposal_boxes, proposal_scores = generate_rpn_proposals( tf.reshape(pred_boxes_decoded, [-1, 4]), tf.reshape(rpn_label_logits, [-1]), image_shape2d, cfg.RPN.TRAIN_PRE_NMS_TOPK if self.training else cfg.RPN.TEST_PRE_NMS_TOPK, cfg.RPN.TRAIN_POST_NMS_TOPK if self.training else cfg.RPN.TEST_POST_NMS_TOPK) if self.training: losses = rpn_losses( anchors.gt_labels, anchors.encoded_gt_boxes(), rpn_label_logits, rpn_box_logits) else: losses = [] return BoxProposals(proposal_boxes), losses def roi_heads(self, image, features, proposals, targets): image_shape2d = tf.shape(image)[2:] # h,w featuremap = features[0] gt_boxes, gt_labels, *_ = targets if self.training: # sample proposal boxes in training proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes, gt_labels) # The boxes to be used to crop RoIs. # Use all proposal boxes in inference boxes_on_featuremap = proposals.boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE) roi_resized = roi_align(featuremap, boxes_on_featuremap, 14) feature_fastrcnn = resnet_conv5(roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCKS[-1]) # nxcx7x7 # Keep C5 feature to be shared with mask branch feature_gap = GlobalAvgPooling('gap', feature_fastrcnn, data_format='channels_first') fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs('fastrcnn', feature_gap, cfg.DATA.NUM_CLASS) fastrcnn_head = FastRCNNHead(proposals, fastrcnn_box_logits, fastrcnn_label_logits, gt_boxes, tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32)) if self.training: all_losses = fastrcnn_head.losses() if cfg.MODE_MASK: gt_masks = targets[2] # maskrcnn loss # In training, mask branch shares the same C5 feature. fg_feature = tf.gather(feature_fastrcnn, proposals.fg_inds()) mask_logits = maskrcnn_upXconv_head( 'maskrcnn', fg_feature, cfg.DATA.NUM_CATEGORY, num_convs=0) # #fg x #cat x 14x14 target_masks_for_fg = crop_and_resize( tf.expand_dims(gt_masks, 1), proposals.fg_boxes(), proposals.fg_inds_wrt_gt, 14, pad_border=False) # nfg x 1x14x14 target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets') all_losses.append(maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg)) return all_losses else: decoded_boxes = fastrcnn_head.decoded_output_boxes() decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes') label_scores = fastrcnn_head.output_scores(name='fastrcnn_all_scores') final_boxes, final_scores, final_labels = fastrcnn_predictions( decoded_boxes, label_scores, name_scope='output') if cfg.MODE_MASK: roi_resized = roi_align(featuremap, final_boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE), 14) feature_maskrcnn = resnet_conv5(roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCKS[-1]) mask_logits = maskrcnn_upXconv_head( 'maskrcnn', feature_maskrcnn, cfg.DATA.NUM_CATEGORY, 0) # #result x #cat x 14x14 indices = tf.stack([tf.range(tf.size(final_labels)), tf.cast(final_labels, tf.int32) - 1], axis=1) final_mask_logits = tf.gather_nd(mask_logits, indices) # #resultx14x14 tf.sigmoid(final_mask_logits, name='output/masks') return [] class ResNetFPNModel(DetectionModel): def inputs(self): ret = [ tf.placeholder(tf.float32, (None, None, 3), 'image')] num_anchors = len(cfg.RPN.ANCHOR_RATIOS) for k in range(len(cfg.FPN.ANCHOR_STRIDES)): ret.extend([ tf.placeholder(tf.int32, (None, None, num_anchors), 'anchor_labels_lvl{}'.format(k + 2)), tf.placeholder(tf.float32, (None, None, num_anchors, 4), 'anchor_boxes_lvl{}'.format(k + 2))]) ret.extend([ tf.placeholder(tf.float32, (None, 4), 'gt_boxes'), tf.placeholder(tf.int64, (None,), 'gt_labels')]) # all > 0 if cfg.MODE_MASK: ret.append( tf.placeholder(tf.uint8, (None, None, None), 'gt_masks') ) # NR_GT x height x width if cfg.EXTRACT_GT_FEATURES: ret.append(tf.placeholder(tf.float32, (None, 4,), 'roi_boxes')) return ret def slice_feature_and_anchors(self, p23456, anchors): for i, stride in enumerate(cfg.FPN.ANCHOR_STRIDES): with tf.name_scope('FPN_slice_lvl{}'.format(i)): anchors[i] = anchors[i].narrow_to(p23456[i]) def backbone(self, image): c2345 = resnet_fpn_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCKS) p23456 = fpn_model('fpn', c2345) return p23456 def rpn(self, image, features, inputs): if cfg.EXTRACT_GT_FEATURES: boxes = inputs['roi_boxes'] return BoxProposals(boxes), tf.constant(0, dtype=tf.float32) assert len(cfg.RPN.ANCHOR_SIZES) == len(cfg.FPN.ANCHOR_STRIDES) image_shape2d = tf.shape(image)[2:] # h,w all_anchors_fpn = get_all_anchors_fpn() multilevel_anchors = [RPNAnchors( all_anchors_fpn[i], inputs['anchor_labels_lvl{}'.format(i + 2)], inputs['anchor_boxes_lvl{}'.format(i + 2)]) for i in range(len(all_anchors_fpn))] self.slice_feature_and_anchors(features, multilevel_anchors) # Multi-Level RPN Proposals rpn_outputs = [rpn_head('rpn', pi, cfg.FPN.NUM_CHANNEL, len(cfg.RPN.ANCHOR_RATIOS)) for pi in features] multilevel_label_logits = [k[0] for k in rpn_outputs] multilevel_box_logits = [k[1] for k in rpn_outputs] multilevel_pred_boxes = [anchor.decode_logits(logits) for anchor, logits in zip(multilevel_anchors, multilevel_box_logits)] proposal_boxes, proposal_scores = generate_fpn_proposals( multilevel_pred_boxes, multilevel_label_logits, image_shape2d) if self.training: losses = multilevel_rpn_losses( multilevel_anchors, multilevel_label_logits, multilevel_box_logits) else: losses = [] return BoxProposals(proposal_boxes), losses def roi_heads(self, image, features, proposals, targets): image_shape2d = tf.shape(image)[2:] # h,w assert len(features) == 5, "Features have to be P23456!" gt_boxes, gt_labels, *_ = targets if self.training: proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes, gt_labels) fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC) if not cfg.FPN.CASCADE: roi_feature_fastrcnn = multilevel_roi_align(features[:4], proposals.boxes, 7) head_feature = fastrcnn_head_func('fastrcnn', roi_feature_fastrcnn) fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs( 'fastrcnn/outputs', head_feature, cfg.DATA.NUM_CLASS) fastrcnn_head = FastRCNNHead(proposals, fastrcnn_box_logits, fastrcnn_label_logits, gt_boxes, tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32)) else: def roi_func(boxes): return multilevel_roi_align(features[:4], boxes, 7) fastrcnn_head = CascadeRCNNHead( proposals, roi_func, fastrcnn_head_func, (gt_boxes, gt_labels), image_shape2d, cfg.DATA.NUM_CLASS) if cfg.EXTRACT_GT_FEATURES: roi_feature_fastrcnn = multilevel_roi_align(features[:4], proposals.boxes, 7) tf.identity(roi_feature_fastrcnn, "rpn/feature") if self.training: all_losses = fastrcnn_head.losses() if cfg.MODE_MASK: gt_masks = targets[2] # maskrcnn loss roi_feature_maskrcnn = multilevel_roi_align( features[:4], proposals.fg_boxes(), 14, name_scope='multilevel_roi_align_mask') maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 target_masks_for_fg = crop_and_resize( tf.expand_dims(gt_masks, 1), proposals.fg_boxes(), proposals.fg_inds_wrt_gt, 28, pad_border=False) # fg x 1x28x28 target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets') all_losses.append(maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg)) return all_losses else: decoded_boxes = fastrcnn_head.decoded_output_boxes() decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes') label_scores = fastrcnn_head.output_scores(name='fastrcnn_all_scores') final_boxes, final_scores, final_labels = fastrcnn_predictions( decoded_boxes, label_scores, name_scope='output') if cfg.MODE_MASK: # Cascade inference needs roi transform with refined boxes. roi_feature_maskrcnn = multilevel_roi_align(features[:4], final_boxes, 14) maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 indices = tf.stack([tf.range(tf.size(final_labels)), tf.cast(final_labels, tf.int32) - 1], axis=1) final_mask_logits = tf.gather_nd(mask_logits, indices) # #resultx28x28 tf.sigmoid(final_mask_logits, name='output/masks') return [] class ResNetFPNTrackModel(ResNetFPNModel): def inputs(self): ret = super().inputs() if cfg.USE_PRECOMPUTED_REF_FEATURES: ret.append(tf.placeholder(tf.float32, (256, 7, 7), 'ref_features')) else: ret.append(tf.placeholder(tf.float32, (None, None, 3), 'ref_image')) ret.append(tf.placeholder(tf.float32, (4,), 'ref_box')) if cfg.MODE_THIRD_STAGE: ret.append(tf.placeholder(tf.float32, (256, 7, 7), 'ff_gt_tracklet_feat')) ret.append(tf.placeholder(tf.float32, (None, 256, 7, 7), 'active_tracklets_feats')) ret.append(tf.placeholder(tf.float32, (None, 4), 'active_tracklets_boxes')) ret.append(tf.placeholder(tf.float32, (), 'tracklet_distance_threshold')) if cfg.MODE_HARD_MINING: ret.append(tf.placeholder(tf.float32, (None, 3, 256, 7, 7), 'hard_negative_features')) if cfg.MODE_IF_HARD_MINING_THEN_ALSO_POSITIVES: ret.append(tf.placeholder(tf.float32, (None, 3, 256, 7, 7), 'hard_positive_features')) ret.append(tf.placeholder(tf.float32, (None, 3), 'hard_positive_ious')) ret.append(tf.placeholder(tf.float32, (None, 4), 'hard_positive_gt_boxes')) ret.append(tf.placeholder(tf.float32, (None, 3, 4), 'hard_positive_jitter_boxes')) if cfg.EXTRACT_GT_FEATURES: ret.append(tf.placeholder(tf.float32, (None, 4,), 'roi_boxes')) return ret def backbone(self, image): c2345 = resnet_fpn_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCKS) with backbone_scope(freeze=cfg.BACKBONE.FREEZE_AT > 3): p23456 = fpn_model('fpn', c2345) return p23456, c2345 def rpn(self, image, features, inputs): if cfg.EXTRACT_GT_FEATURES: boxes = inputs['roi_boxes'] return BoxProposals(boxes), tf.constant(0, dtype=tf.float32) if cfg.BACKBONE.FREEZE_AT > 3: with freeze_variables(stop_gradient=False, skip_collection=True): return super().rpn(image, features, inputs) else: return super().rpn(image, features, inputs) def roi_heads(self, image, ref_features, ref_box, features, proposals, targets, hard_negative_features=None, hard_positive_features=None, hard_positive_ious=None, hard_positive_gt_boxes=None, hard_positive_jitter_boxes=None, precomputed_ref_features=None): image_shape2d = tf.shape(image)[2:] # h,w assert len(features) == 5, "Features have to be P23456!" gt_boxes, gt_labels, *_ = targets if self.training: proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes, gt_labels) fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC) if precomputed_ref_features is None: roi_aligned_ref_features = multilevel_roi_align(ref_features[:4], ref_box[tf.newaxis], 7) else: roi_aligned_ref_features = precomputed_ref_features[tf.newaxis] if cfg.MODE_SHARED_CONV_REDUCE: scope = tf.get_variable_scope() else: scope = "" assert cfg.FPN.CASCADE def roi_func(boxes, already_aligned_features=None): if already_aligned_features is None: aligned_features = multilevel_roi_align(features[:4], boxes, 7) else: # for hard example mining aligned_features = already_aligned_features tiled = tf.tile(roi_aligned_ref_features, [tf.shape(aligned_features)[0], 1, 1, 1]) concat_features = tf.concat((tiled, aligned_features), axis=1) with argscope(Conv2D, data_format='channels_first', kernel_initializer=tf.variance_scaling_initializer( scale=2.0, mode='fan_out', distribution='untruncated_normal' if get_tf_version_tuple() >= (1, 12) else 'normal')): with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): reduced_features = Conv2D('conv_reduce', concat_features, 256, 1, activation=None) return reduced_features if cfg.MODE_HARD_MINING and self.training: fastrcnn_head = CascadeRCNNHeadWithHardExamples( proposals, roi_func, fastrcnn_head_func, (gt_boxes, gt_labels), image_shape2d, cfg.DATA.NUM_CLASS, hard_negative_features, hard_positive_features, cfg.HARD_NEGATIVE_LOSS_SCALING_FACTOR, cfg.HARD_POSITIVE_LOSS_SCALING_FACTOR, hard_positive_ious, hard_positive_gt_boxes, hard_positive_jitter_boxes) else: fastrcnn_head = CascadeRCNNHead( proposals, roi_func, fastrcnn_head_func, (gt_boxes, gt_labels), image_shape2d, cfg.DATA.NUM_CLASS) if cfg.EXTRACT_GT_FEATURES: # get boxes and features for each of the three cascade stages! b0 = proposals.boxes b1, b2, _ = fastrcnn_head._cascade_boxes f0 = multilevel_roi_align(features[:4], b0, 7) f1 = multilevel_roi_align(features[:4], b1, 7) f2 = multilevel_roi_align(features[:4], b2, 7) tf.concat([b0, b1, b2], axis=0, name="boxes_for_extraction") tf.concat([f0, f1, f2], axis=0, name="features_for_extraction") if self.training: all_losses = fastrcnn_head.losses() if cfg.MODE_MASK: gt_masks = targets[2] # maskrcnn loss roi_feature_maskrcnn = multilevel_roi_align( features[:4], proposals.fg_boxes(), 14, name_scope='multilevel_roi_align_mask') maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 target_masks_for_fg = crop_and_resize( tf.expand_dims(gt_masks, 1), proposals.fg_boxes(), proposals.fg_inds_wrt_gt, 28, pad_border=False) # fg x 1x28x28 target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets') all_losses.append(maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg)) if cfg.MEASURE_IOU_DURING_TRAINING: decoded_boxes = fastrcnn_head.decoded_output_boxes() decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes') label_scores = fastrcnn_head.output_scores(name='fastrcnn_all_scores') final_boxes, final_scores, final_labels = fastrcnn_predictions( decoded_boxes, label_scores, name_scope='output_train') # if predictions are empty, this might break... # to prevent, stack dummy box boxes_for_iou = tf.concat([final_boxes[:1], tf.constant([[0.0, 0.0, 1.0, 1.0]], dtype=tf.float32)], axis=0) from examples.FasterRCNN.utils.box_ops import pairwise_iou iou_at_1 = tf.identity(pairwise_iou(gt_boxes[:1], boxes_for_iou)[0, 0], name="train_iou_at_1") add_moving_summary(iou_at_1) return all_losses else: decoded_boxes = fastrcnn_head.decoded_output_boxes() decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes') label_scores = fastrcnn_head.output_scores(name='fastrcnn_all_scores') final_boxes, final_scores, final_labels = fastrcnn_predictions( decoded_boxes, label_scores, name_scope='output') if cfg.MODE_MASK: # Cascade inference needs roi transform with refined boxes. roi_feature_maskrcnn = multilevel_roi_align(features[:4], final_boxes, 14) maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 indices = tf.stack([tf.range(tf.size(final_labels)), tf.cast(final_labels, tf.int32) - 1], axis=1) final_mask_logits = tf.gather_nd(mask_logits, indices) # #resultx28x28 tf.sigmoid(final_mask_logits, name='output/masks') return [] def build_graph(self, *inputs): inputs = dict(zip(self.input_names, inputs)) image = self.preprocess(inputs['image']) # 1CHW fpn_features, backbone_features = self.backbone(image) if cfg.USE_PRECOMPUTED_REF_FEATURES: ref_features = None ref_box = None else: ref_image = self.preprocess(inputs['ref_image']) # 1CHW ref_box = inputs['ref_box'] with tf.variable_scope(tf.get_variable_scope(), reuse=True): ref_features, _ = self.backbone(ref_image) anchor_inputs = {k: v for k, v in inputs.items() if k.startswith('anchor_')} if cfg.EXTRACT_GT_FEATURES: anchor_inputs["roi_boxes"] = inputs["roi_boxes"] proposals, rpn_losses = self.rpn(image, fpn_features, anchor_inputs) # inputs? second_stage_features = fpn_features targets = [inputs[k] for k in ['gt_boxes', 'gt_labels', 'gt_masks'] if k in inputs] hard_negative_features = None hard_positive_features = None hard_positive_ious = None hard_positive_gt_boxes = None hard_positive_jitter_boxes = None if cfg.MODE_HARD_MINING: hard_negative_features = inputs['hard_negative_features'] if cfg.MODE_IF_HARD_MINING_THEN_ALSO_POSITIVES: hard_positive_features = inputs['hard_positive_features'] hard_positive_ious = inputs['hard_positive_ious'] hard_positive_gt_boxes = inputs['hard_positive_gt_boxes'] hard_positive_jitter_boxes = inputs['hard_positive_jitter_boxes'] precomputed_ref_features = None if cfg.USE_PRECOMPUTED_REF_FEATURES: precomputed_ref_features = inputs['ref_features'] # Extend proposals by previous frame detections if not self.training and cfg.MODE_THIRD_STAGE and cfg.EXTEND_PROPOSALS_BY_ACTIVE_TRACKLETS: proposal_boxes = proposals.boxes tracklet_boxes = inputs['active_tracklets_boxes'] concat_boxes = tf.concat([proposal_boxes, tracklet_boxes], axis=0) proposals = BoxProposals(concat_boxes) head_losses = self.roi_heads(image, ref_features, ref_box, second_stage_features, proposals, targets, hard_negative_features, hard_positive_features, hard_positive_ious, hard_positive_gt_boxes, hard_positive_jitter_boxes, precomputed_ref_features=precomputed_ref_features) if cfg.MODE_THIRD_STAGE: self._run_third_stage(inputs, second_stage_features, tf.shape(image)[2:4]) if self.training: wd_cost = regularize_cost( '.*/W', l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), name='wd_cost') total_cost = tf.add_n( rpn_losses + head_losses + [wd_cost], 'total_cost') add_moving_summary(total_cost, wd_cost) return total_cost def _run_third_stage(self, inputs, second_stage_features, image_hw): boxes, scores = get_tensors_by_names(['output/boxes', 'output/scores']) # let's fix (as in finalize) the boxes, so we can roi align only one time aligned_features_curr = multilevel_roi_align(second_stage_features[:4], boxes, 7) # these also need to be extracted! aligned_features_curr = tf.identity(aligned_features_curr, name='third_stage_features_out') ff_gt_tracklet_scores, _ = self._score_for_third_stage(ref_feats=inputs['ff_gt_tracklet_feat'][tf.newaxis], det_feats=aligned_features_curr) tf.identity(ff_gt_tracklet_scores, name='ff_gt_tracklet_scores') sparse_tracklet_scores, tracklet_score_indices = self._score_for_third_stage( ref_feats=inputs['active_tracklets_feats'], det_feats=aligned_features_curr, dense=False, ref_boxes=inputs['active_tracklets_boxes'], det_boxes=boxes, image_hw=image_hw, tracklet_distance_threshold=inputs['tracklet_distance_threshold']) tf.identity(sparse_tracklet_scores, name='sparse_tracklet_scores') tf.identity(tracklet_score_indices, name='tracklet_score_indices') def _score_for_third_stage(self, ref_feats, det_feats, dense=True, ref_boxes=None, det_boxes=None, image_hw=None, tracklet_distance_threshold=0.08): # build all pairs n_refs = tf.shape(ref_feats)[0] n_dets = tf.shape(det_feats)[0] active_tracklets_tiled = tf.tile(ref_feats[:, tf.newaxis], multiples=[1, n_dets, 1, 1, 1]) dets_tiled = tf.tile(det_feats[tf.newaxis], multiples=[n_refs, 1, 1, 1, 1]) concated = tf.concat([active_tracklets_tiled, dets_tiled], axis=2) if not dense: # use boxes to prune the connectivity assert ref_boxes is not None assert det_boxes is not None assert image_hw is not None def xyxy_to_cxcywh(boxes_xyxy): wh = boxes_xyxy[:, 2:] - boxes_xyxy[:, :2] c = boxes_xyxy[:, :2] + wh / 2 boxes_cwh = tf.concat((c, wh), axis=1) return boxes_cwh active_tracklets_boxes_cxcywh = xyxy_to_cxcywh(ref_boxes) boxes_cxcywh = xyxy_to_cxcywh(det_boxes) # normalize by image size h = image_hw[0] w = image_hw[1] norm = tf.cast(tf.stack([w, h, w, h], axis=0), tf.float32) diffs = tf.abs(active_tracklets_boxes_cxcywh[:, tf.newaxis] - boxes_cxcywh[tf.newaxis]) / norm[ tf.newaxis, tf.newaxis] # use distances of boxes, first frame scores ("scores") to prune thresholds = tf.stack([tracklet_distance_threshold] * 4, axis=0) keep_mask = tf.reduce_all(diffs < thresholds, axis=2) indices = tf.where(keep_mask) flattened = tf.boolean_mask(concated, keep_mask) else: indices = None flattened = tf.reshape( concated, [tf.shape(concated)[0] * tf.shape(concated)[1]] + [int(x) for x in concated.shape[2:]]) fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC) if cfg.MODE_SHARED_CONV_REDUCE: scope = tf.get_variable_scope() else: scope = "" all_posteriors = [] # do this for every cascade stage for idx in range(3): with tf.variable_scope('cascade_rcnn_stage{}'.format(idx + 1), reuse=True): with argscope(Conv2D, data_format='channels_first'): with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): reduced_features = Conv2D('conv_reduce', flattened, 256, 1, activation=None) head_feats = fastrcnn_head_func('head', reduced_features) with tf.variable_scope('outputs_new', reuse=True): classification = FullyConnected('class', head_feats, 2) posteriors = tf.nn.softmax(classification) all_posteriors.append(posteriors) posteriors = (all_posteriors[0] + all_posteriors[1] + all_posteriors[2]) / tf.constant(3.0, dtype=tf.float32) scores = posteriors[:, 1] return scores, indices def get_inference_tensor_names(self): inp, out = super().get_inference_tensor_names() if cfg.USE_PRECOMPUTED_REF_FEATURES: inp.append('ref_features') else: inp.append('ref_image') inp.append('ref_box') if cfg.MODE_THIRD_STAGE: inp.append('ff_gt_tracklet_feat') inp.append('active_tracklets_feats') inp.append('active_tracklets_boxes') inp.append('tracklet_distance_threshold') return inp, out if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--load', help='load a model for evaluation or training. Can overwrite BACKBONE.WEIGHTS') parser.add_argument('--logdir', help='log directory', default='train_log/siamrcnn') parser.add_argument('--config', help="A list of KEY=VALUE to overwrite those defined in config.py", nargs='+') if get_tf_version_tuple() < (1, 6): # https://github.com/tensorflow/tensorflow/issues/14657 logger.warn("TF<1.6 has a bug which may lead to crash in FasterRCNN if you're unlucky.") args = parser.parse_args() if args.config: cfg.update_args(args.config) MODEL = ResNetFPNTrackModel() DetectionDataset() # initialize the config with information from our dataset is_horovod = cfg.TRAINER == 'horovod' if is_horovod: hvd.init() logger.info("Horovod Rank={}, Size={}".format(hvd.rank(), hvd.size())) if not is_horovod or hvd.rank() == 0: # keep the old log folder if already existing! (before it would just delete it) logger.set_logger_dir(args.logdir, 'k') # logger.set_logger_dir(args.logdir, 'd') finalize_configs(is_training=True) stepnum = cfg.TRAIN.STEPS_PER_EPOCH # warmup is step based, lr is epoch based init_lr = cfg.TRAIN.WARMUP_INIT_LR * min(8. / cfg.TRAIN.NUM_GPUS, 1.) warmup_schedule = [(0, init_lr), (cfg.TRAIN.WARMUP, cfg.TRAIN.BASE_LR)] warmup_end_epoch = cfg.TRAIN.WARMUP * 1. / stepnum lr_schedule = [(int(warmup_end_epoch + 0.5), cfg.TRAIN.BASE_LR)] factor = 8. / cfg.TRAIN.NUM_GPUS for idx, steps in enumerate(cfg.TRAIN.LR_SCHEDULE[:-1]): mult = 0.1 ** (idx + 1) lr_schedule.append( (steps * factor // stepnum, cfg.TRAIN.BASE_LR * mult)) logger.info("Warm Up Schedule (steps, value): " + str(warmup_schedule)) logger.info("LR Schedule (epochs, value): " + str(lr_schedule)) train_dataflow = get_train_dataflow() # This is what's commonly referred to as "epochs" total_passes = cfg.TRAIN.LR_SCHEDULE[-1] * 8 / train_dataflow.size() logger.info("Total passes of the training set is: {:.5g}".format(total_passes)) callbacks = [ PeriodicCallback( ModelSaver(max_to_keep=10, keep_checkpoint_every_n_hours=1), # every_k_epochs=1), every_k_epochs=20), # linear warmup ScheduledHyperParamSetter( 'learning_rate', warmup_schedule, interp='linear', step_based=True), ScheduledHyperParamSetter('learning_rate', lr_schedule), PeakMemoryTracker(), EstimatedTimeLeft(median=True), SessionRunTimeout(60000).set_chief_only(True), # 1 minute timeout ] + [ EvalCallback(dataset, *MODEL.get_inference_tensor_names(), args.logdir) for dataset in cfg.DATA.VAL ] if not is_horovod: callbacks.append(GPUUtilizationTracker()) start_epoch = cfg.TRAIN.STARTING_EPOCH if is_horovod and hvd.rank() > 0: session_init = None else: # first try to find existing model checkpoint_path = os.path.join(args.logdir, "checkpoint") if os.path.exists(checkpoint_path): session_init = get_model_loader(checkpoint_path) start_step = int(session_init.path.split("-")[-1]) start_epoch = start_step // stepnum logger.info( "initializing from existing model, " + session_init.path + ", starting from epoch " + str(start_epoch)) else: if args.load: session_init = get_model_loader(args.load) else: session_init = get_model_loader(cfg.BACKBONE.WEIGHTS) if cfg.BACKBONE.WEIGHTS else None max_epoch = min(cfg.TRAIN.LR_SCHEDULE[-1] * factor // stepnum, cfg.TRAIN.MAX_NUM_EPOCHS) traincfg = TrainConfig( model=MODEL, data=QueueInput(train_dataflow), callbacks=callbacks, steps_per_epoch=stepnum, # max_epoch=cfg.TRAIN.LR_SCHEDULE[-1] * factor // stepnum, max_epoch=max_epoch, session_init=session_init, starting_epoch=start_epoch ) if is_horovod: trainer = HorovodTrainer(average=False) else: # nccl mode appears faster than cpu mode trainer = SyncMultiGPUTrainerReplicated(cfg.TRAIN.NUM_GPUS, average=False, mode='nccl') launch_train_with_config(traincfg, trainer)
python
import csv import matplotlib.pyplot as plt import numpy as np def MC_size_dependence(): f = open("./size_dep.csv", 'r') x = csv.reader(f) size_MC = [] times = [] for i in x: size_MC.append(int(i[0])) times.append(int(i[1])) fig = plt.figure() plt.plot(size_MC, times) plt.xlabel("Number of pairs stored") plt.ylabel("Average query time in ms") fig.savefig("../figures/MC_size_dependence.pdf") plt.show() def pre_process_time(): fp1 = open("./TC_pre_pro.txt", 'r') fp2 = open("./MC_pre_pro.txt", 'r') nodes = [i for i in range(10, 21, 2)] f1 = csv.reader(fp1) f2 = csv.reader(fp2) p2 = [[]] * 5 p1 = [int(i[0]) for i in f1] p2_temp = [int(i[0]) for i in f2] print(p2_temp) for i in range(5): p2[i] = [p2_temp[j] / 20 for j in range(i, len(p2_temp), 5)] f = plt.figure() plt.plot(nodes, p1, label="Complete transitive closure") for i in range(5): plt.plot(nodes, p2[i], label=str((i + 1) * 10) + "% pairs computed") plt.xlabel("|V|(in thousands)") plt.ylabel("Time taken to build table(in ms)") plt.title("Comparision of pre-processing times for Algorithm 1 & 3") plt.legend() plt.show() f.savefig("../figures/pre_pro_10iter_MC.pdf", bbox_inches='tight') def hits_vs_miss(): fp = csv.reader(open("./hits_and_miss.csv", 'r')) g_hits = [] g_miss = [] nodes = [] hits = [] misses = [] for i, line in enumerate(fp): hits.append(int(line[2])) misses.append(int(line[3])) if (i + 1) % 5 == 0: nodes.append(int(line[0])) g_hits.append(np.mean(hits)/1000) g_miss.append(np.mean(misses)/1000) hits = [] misses = [] fig = plt.figure() plt.plot(nodes, g_hits) plt.xlabel("Number of pairs stored") plt.ylabel("Number of hits(in thousands)") plt.show() fig.savefig("../figures/hits_vs_misses.pdf") def f(r): timings = [] x = [] count = 0 for line in r: x.append(int(line[1])) count += 1 if count == 20: timings.append(sum(x) / 20) x = [] count = 0 return timings def edge_size(): f1 = open("./data_algo1.csv", 'r') f2 = open("./data_algo2.csv", 'r') f3 = open("./data_algo3.csv", 'r') r1 = csv.reader(f1) r2 = csv.reader(f2) r3 = csv.reader(f3) x1 = f(r1) x2 = f(r2) x3 = f(r3) x1[3] = x1[3] / 100 print(x1) print(x2) print(x3) x = [2, 3, 4, 5, 6] fig = plt.figure() plt.plot(x, x1, label="Full Transitive Closure") plt.plot(x, x2, label="Partial Transitive Closure") plt.plot(x[:3], x3[:3], label="BFS") plt.legend() plt.xlabel("Edge-Node Ratio") plt.ylabel("Average Time taken for query in milliseconds") plt.show() fig.savefig("../figures/edge_variation.pdf") # pre_process_time() hits_vs_miss() # MC_size_dependence() # edge_size()
python
# Copyright 2021 Katteli Inc. # TestFlows.com Open-Source Software Testing Framework (http://testflows.com) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import inspect from textwrap import indent, dedent from tempfile import NamedTemporaryFile from linecache import cache as code_cache from contextlib import ExitStack from testflows._core.contrib.arpeggio import RegExMatch as _ from testflows._core.contrib.arpeggio import OneOrMore, ZeroOrMore, EOF, Optional, Not from testflows._core.contrib.arpeggio import ParserPython as PEGParser from testflows._core.contrib.arpeggio import PTNodeVisitor, visit_parse_tree from testflows._core.exceptions import exception as get_exception from testflows.texts import * DummySection = NullStep class TestStack(ExitStack): def push_context(self, cm): return super(TestStack, self).enter_context(cm) def pop_context(self): """Pop and close last context manager from stack. """ is_sync, cb = self._exit_callbacks.pop() assert is_sync cb(None, None, None) class Visitor(PTNodeVisitor): def __init__(self, stack, source_data, *args, **kwargs): self.stack = stack self.source_data = source_data self.globals = globals() self.locals = {} self.current_level = 0 super(Visitor, self).__init__(*args, **kwargs) def visit_header(self, node, children): self.process(node) def execute(visitor, node): visitor.locals["self"] = current() position = node.position lines = node.flat_str() if node.rule_name == "exec_code": exec_lines = "\n".join(lines.strip().splitlines()[1:-1]) else: if lines.endswith('"'): end = lines.rsplit('"')[-1] exec_lines = fr'''text(fr"""{lines}""", dedent=False, end='{end}')''' else: exec_lines = f'text(fr"""{lines}""", dedent=False, end="")' with NamedTemporaryFile("w+", suffix=".py") as code_file: code_file.write(exec_lines) code_file.seek(0) code_file.flush() visitor.locals["__file__"] = code_file.name source_code = code_file.read() source_name = code_file.name code_cache[source_name] = ( len(source_code), None, [line+'\n' for line in source_code.splitlines()], source_name ) try: exec(compile(source_code, source_name, 'exec'), visitor.globals, visitor.locals) except Exception as e: exc_tb = e.__traceback__ syntax_error = isinstance(e, SyntaxError) if syntax_error: tb_lineno = e.lineno else: exc_tb = exc_tb.tb_next tb_lineno = exc_tb.tb_lineno split_lines = lines.splitlines() code_offset = 0 if node.rule_name == "exec_code": code_offset = 1 line_offset = visitor.source_data[:position].count("\n") line_fmt = " %" + str(len(str(len(split_lines) + line_offset))) + "d| %s" line_at_fmt = " %" + str(len(str(len(split_lines) + line_offset))) + "d|> %s" numbered_lines = "\n".join( [line_fmt % (n + line_offset,l) if n != tb_lineno + code_offset else line_at_fmt % (n + line_offset,l) for n, l in enumerate( split_lines, 1)]) code_exc = type(e)(str(e) + f"\n\n{'Syntax Error' if syntax_error else 'Error'} occured in the following text:\n\n" + numbered_lines) code_exc.with_traceback(exc_tb) err(f"{e.__class__.__name__}\n" + get_exception(type(e), code_exc, code_exc.__traceback__)) def process(self, node): for child in node: self.execute(child) def visit_intro(self, node, children): self.process(node) def visit_section(self, node, children): section_level = node[0].value.count("#") assert self.current_level >= 0, "current level is invalid" section = Section(node.heading.heading_name.value.strip(), context=SharedContext(current().context)) if section_level > self.current_level: for i in range(section_level - self.current_level - 1): self.stack.push_context(DummySection()) else: for i in range(self.current_level - section_level + 1): self.stack.pop_context() self.stack.push_context(section) self.current_level = section_level self.process(node) def Parser(): """TestFlows executable document parser. """ def line(): return _(r"[^\n]*\n") def non_empty_line(): return _(r"[^\n]+\n") def final_line(): return _(r"[^\n]+"), EOF def paragraph(): return OneOrMore(Not(exec_code_start), [non_empty_line, final_line]) def header_sep(): return _(r"---[ \t]*\n") def header(): return header_sep, ZeroOrMore(Not(header_sep), line), header_sep def exec_code_start(): return _(r"[ \t]?[ \t]?[ \t]?[`~][`~][`~]python:testflows[ \t]*\n") def exec_code_end(): return (_(r"[ \t]?[ \t]?[ \t]?[`~][`~][`~][ \t]*"), [_(r"\n"), EOF]) def exec_code(): return exec_code_start, ZeroOrMore(Not(exec_code_end), line), exec_code_end def intro(): return ZeroOrMore(Not(heading), [exec_code, paragraph, line, final_line]) def section(): return heading, ZeroOrMore(Not(heading), [exec_code, paragraph, line, final_line]) def heading(): return [ (_(r"\s*#+\s+"), heading_name, _(r"\n?")), (heading_name, _(r"\n?[-=]+\n?")) ] def heading_name(): return _(r"[^\n]+") def document(): return Optional(Optional(header), intro, ZeroOrMore(section)) return PEGParser(document, skipws=False) def execute(source): """Execute TestFlows Document (*.tfd). :param source: source file-like object """ parser = Parser() source_data = source.read() if not source_data: fail(f"source file '{os.path.abspath(source.name)}' is empty") tree = parser.parse(source_data) if tree is None: err(f"parsing {os.path.abspath(source.name)} failed") with TestStack() as stack: visit_parse_tree(tree, Visitor(stack, source_data))
python
#!/bin/python ## subnetMask = input('Enter your subnet mask in dotted-decimal notation: ') o1 = int(subnetMask.split('.')[0]) o2 = int(subnetMask.split('.')[1]) o3 = int(subnetMask.split('.')[2]) o4 = int(subnetMask.split('.')[3]) print('Your subnet mask in binary is: {0:08b}.{1:08b}.{2:08b}.{3:08b}'.format(o1, o2, o3, o4)) print('Your subnet mask in hexadecimal is: {0:X}.{1:X}.{2:X}.{3:X}'.format(o1, o2, o3, o4)) ## ## End of file...
python
import time import numpy as np import cv2 import open3d as o3d from numba import njit, prange import pycuda.autoinit import pycuda.driver as cuda from pycuda import gpuarray from matplotlib import pyplot as plt from pf_pose_estimation.tsdf_lib import TSDFVolume from pf_pose_estimation.cuda_kernels import source_module class ParticleFilter: def __init__(self, obj_tsdf_volume: TSDFVolume, num_particles: int = 2048): # object model self.obj_tsdf_volume = obj_tsdf_volume self.obj_surface = obj_tsdf_volume.get_surface_cloud_marching_cubes(voxel_size=0.005) self.obj_offset = np.asarray(self.obj_surface.points).mean(0) # initialize particle filter self.num_particles = num_particles self.particles = np.tile(np.eye(4), (self.num_particles, 1, 1)).astype(np.float32) # (N, 4, 4) self.particles = self.jitter(self.particles, 180, 180, 180, 0.05, 0.05, 0.05, init_offset=self.obj_offset) self.particle_weights_gpu = gpuarray.zeros(self.num_particles, dtype=np.float32) # load cuda kernels self._cuda_batch_inlier_metric = source_module.get_function('batchInlierMetric') @staticmethod @njit(parallel=True, fastmath=True) def random_sample_transformations(N, ai, aj, ak, i, j, k): T = np.empty((N, 4, 4), np.float32) for idx in prange(N): ai_rand = np.random.uniform(-ak, ak) # exchange ai, ak aj_rand = np.random.uniform(-aj, aj) ak_rand = np.random.uniform(-ai, ai) # exchange ai, ak x_rand = np.random.uniform(-i, i) y_rand = np.random.uniform(-j, j) z_rand = np.random.uniform(-k, k) si, sj, sk = np.sin(ai_rand), np.sin(aj_rand), np.sin(ak_rand) ci, cj, ck = np.cos(ai_rand), np.cos(aj_rand), np.cos(ak_rand) cc, cs = ci*ck, ci*sk sc, ss = si*ck, si*sk T[idx, 0, 0] = cj*ck T[idx, 0, 1] = sj*sc-cs T[idx, 0, 2] = sj*cc+ss T[idx, 1, 0] = cj*sk T[idx, 1, 1] = sj*ss+cc T[idx, 1, 2] = sj*cs-sc T[idx, 2, 0] = -sj T[idx, 2, 1] = cj*si T[idx, 2, 2] = cj*ci T[idx, 3, :3] = 0 T[idx, 3, 3] = 1 T[idx, 0, 3] = x_rand T[idx, 1, 3] = y_rand T[idx, 2, 3] = z_rand return T @staticmethod def jitter(particles, ai, aj, ak, i, j, k, init_offset=None): """ Randomly sample N transformation matrices, by randomly rotating 'rzyx' plus translation reference: https://github.com/davheld/tf/blob/master/src/tf/transformations.py ai, aj, ak (degrees) along x-axis, y-axis, z-axis i, j, k (m) """ particles = particles.copy() if init_offset is not None: particles[:, :3, 3] -= init_offset ai = ai * np.pi / 180 aj = aj * np.pi / 180 ak = ak * np.pi / 180 T = ParticleFilter.random_sample_transformations(particles.shape[0], ai, aj, ak, i, j, k) particles = T @ particles if init_offset is not None: particles[:, :3, 3] += init_offset return particles @staticmethod @njit(parallel=True) def get_roi_from_mask(mask: np.ndarray): H, W = mask.shape start_row = H - 1 start_col = W - 1 end_row = 0 end_col = 0 for i in prange(H): for j in prange(W): if mask[i, j]: start_row = min(start_row, i) start_col = min(start_col, j) end_row = max(end_row, i) end_col = max(end_col, j) return np.array([start_row, start_col, end_row, end_col], dtype=np.int32) @staticmethod def create_pcd(depth_im: np.ndarray, cam_intr: np.ndarray, color_im: np.ndarray = None, cam_extr: np.ndarray = np.eye(4)): intrinsic_o3d = o3d.camera.PinholeCameraIntrinsic() intrinsic_o3d.intrinsic_matrix = cam_intr depth_im_o3d = o3d.geometry.Image(depth_im) if color_im is not None: color_im_o3d = o3d.geometry.Image(color_im) rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(color_im_o3d, depth_im_o3d, depth_scale=1, convert_rgb_to_intensity=False) pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd, intrinsic_o3d, extrinsic=cam_extr) else: pcd = o3d.geometry.PointCloud.create_from_depth_image(depth_im_o3d, intrinsic_o3d, extrinsic=cam_extr, depth_scale=1) return pcd def estimate(self, color_im: np.ndarray, depth_im: np.ndarray, cam_intr: np.ndarray, mask: np.ndarray = None, num_iters: int = 50, visualize: bool = True): H, W = depth_im.shape if mask is None: color_im_bgr = cv2.cvtColor(color_im, cv2.COLOR_RGB2BGR) roi = cv2.selectROI("select_roi", color_im_bgr, fromCenter=False, showCrosshair=True) cv2.destroyWindow("select_roi") start_col, start_row, roi_w, roi_h = roi mask = np.zeros((H, W), dtype=bool) mask[start_row:start_row+roi_h+1, start_col:start_col+roi_w+1] = True # find the center of current observation as the initial position masked_depth_im = depth_im.copy() masked_depth_im[~mask] = 0 obs_pcd = ParticleFilter.create_pcd(masked_depth_im, cam_intr) obs_offset = np.asarray(obs_pcd.points).mean(0) # get region of interest start_row, start_col, end_row, end_col = ParticleFilter.get_roi_from_mask(mask) roi_h = end_row - start_row + 1 roi_w = end_col - start_col + 1 # cropped depth image cropped_depth_im = masked_depth_im[start_row:end_row+1, start_col:end_col+1] tic = time.time() for idx in range(num_iters): # Particle diffusion top_thresh = int(0.1 * self.num_particles) # top 10% of the particles will be kept without diffusion top_particles = self.particles[:top_thresh].copy() if idx < 0.5 * num_iters: self.particles = self.jitter(self.particles, 10, 10, 10, 0.04, 0.04, 0.04, init_offset=self.obj_offset) elif idx < 0.3 * num_iters: self.particles = self.jitter(self.particles, 2, 2, 2, 0.02, 0.02, 0.02, init_offset=self.obj_offset) elif idx < 0.2 * num_iters: self.particles = self.jitter(self.particles, 2, 2, 2, 0.01, 0.01, 0.01, init_offset=self.obj_offset) else: self.particles = self.jitter(self.particles, 1, 1, 1, 0.01, 0.01, 0.01, init_offset=self.obj_offset) self.particles[:top_thresh] = top_particles # rendering shifted_particles = self.particles.copy() shifted_particles[:, :3, 3] += obs_offset batch_depth_gpu, _ = self.obj_tsdf_volume.batch_ray_casting(roi_w, roi_h, cam_intr, np.linalg.inv(shifted_particles), shifted_particles, start_row, start_col, self.num_particles, to_host=False) # compute weights self.compute_weights_inlier_metric(batch_depth_gpu, cropped_depth_im, self.particle_weights_gpu, inlier_thresh=0.01) weights = self.particle_weights_gpu.get() sorted_indices = np.argsort(weights)[::-1] # descending order # get maximum likely estimate best_weight = weights[sorted_indices[0]] best_particle = shifted_particles[sorted_indices[0]].copy() # resample particles weights_sum = np.sum(weights) if np.allclose(weights_sum, 0): p = np.ones_like(weights) / len(weights) else: p = weights / weights_sum resampled_indices = np.random.choice(self.num_particles, size=self.num_particles, replace=True, p=p) resampled_indices[:top_thresh] = sorted_indices[:top_thresh] self.particles = self.particles[resampled_indices] if visualize: self.visualize_particles(color_im, batch_depth_gpu, sorted_indices, start_row, start_col, top_k=5, pause=False, text="iteration:" + str(idx).zfill(4), text_color=(0, 0, 255), window_name="visualization") toc = time.time() print(f"Perform {num_iters} iterations in {toc - tic:.03f}s") if visualize: self.visualize_particles(color_im, batch_depth_gpu, sorted_indices, start_row, start_col, top_k=10, pause=True, text="iteration:" + str(idx).zfill(4), text_color=(0, 0, 255), window_name='visualization') cv2.destroyWindow("visualization") return best_particle, best_weight def visualize_particles(self, color_im, batch_depth_gpu, sorted_indices, start_row, start_col, top_k=1, pause=False, text=None, text_color=(0, 0, 0), window_name="visualization"): color_im = cv2.cvtColor(color_im, cv2.COLOR_RGB2BGR) color_im = cv2.putText(color_im, text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, text_color, 1, cv2.LINE_AA) rendered_im = color_im.copy() batch_depth_cpu = batch_depth_gpu.get()[sorted_indices[:top_k]].astype(bool) for i in range(1, top_k): batch_depth_cpu[0] |= batch_depth_cpu[i] h, w = batch_depth_cpu[0].shape rendered_depth = np.zeros((h, w, 3), dtype=np.uint8) rendered_depth[batch_depth_cpu[0].astype(bool)] = [0, 0, 255] rendered_im[start_row:start_row+h, start_col:start_col+w, :] = rendered_depth alpha = 0.5 blended_im = cv2.addWeighted(color_im, alpha, rendered_im, (1 - alpha), 0.0) cv2.imshow(window_name, blended_im) if pause: cv2.waitKey(0) else: cv2.waitKey(1) def compute_weights_inlier_metric(self, batch_depth_gpu, depth_im, particle_weights_gpu, inlier_thresh=0.005): H, W = depth_im.shape self._cuda_batch_inlier_metric( np.int32(H), np.int32(W), np.int32(self.num_particles), batch_depth_gpu, cuda.In(depth_im.astype(np.float32)), particle_weights_gpu, np.float32(inlier_thresh), block=(1024, 1, 1), grid=(int(np.ceil(self.num_particles / 1024)), 1, 1) )
python
import re import os import requests from xml.dom.minidom import ( parseString, parse as parseFile, Text as TextNode, ) from ...conventions import LOCAL_PATH from .. import readers class DNFRepositoryMetalink: def __init__(self, baseurl, repo, architecture): self.baseurl = baseurl self.repo = repo self.architecture = architecture self.url = '{base}?repo={repo}&arch={arch}'.format( base=baseurl, repo=repo, arch=architecture) self.identifier = re.sub(r'[^a-zA-Z0-9_]', '_', '{}/{}/{}' .format(baseurl, repo, architecture) ) def get_repositories(self): req = requests.get(self.url) tree = parseString(req.text) urls = tree.getElementsByTagName('url') https_urls = [url for url in urls if url.getAttribute('protocol') == 'https'] for https_url in sorted(https_urls, key=lambda x: int(x.getAttribute("preference"))): url = https_url.childNodes[0].wholeText print('Downloading data from {url}'.format(url=url)) yield DNFRepository(url) def download_to(self, dir_name): cache_file_name = self.identifier if os.path.exists(os.path.join(dir_name, 'data.xml.gz')): return for repository in self.get_repositories(): try: return repository.download_to(dir_name) except Exception as e: print(e) class DNFRepository: def __init__(self, url): self.url = url def download_to(self, dir_name): os.makedirs(dir_name, exist_ok=True) data = parseString(requests.get(self.url).text) primary = [node for node in data.getElementsByTagName('data') if node.getAttribute('type') == 'primary'][0] tree_base = re.sub(r'/tree/.*', '/tree/', self.url) extension = primary.getElementsByTagName('location')[0].getAttribute('href') url = tree_base + extension with open(os.path.join(dir_name, 'data.xml.gz'), 'wb') as f: r = requests.get(url) f.write(readers.gz(r.content)) def getText(node): return node.childNodes[0].wholeText def parse_package(package): nodes = { node.tagName: node for node in package.childNodes if not isinstance(node, TextNode) } data = { 'Package': getText(nodes['name']), 'Description': getText(nodes['summary']), 'Section': (getText(nodes['format'] .getElementsByTagName('rpm:group')[0])), } if len(nodes['format'].getElementsByTagName('rpm:requires')) != 0: nodes['Dependencies'] = [ entry.getAttribute('name') for entry in (nodes['format'] .getElementsByTagName('rpm:requires')[0] .getElementsByTagName('rpm:entry')) ] yield data class DNFCacheReader: def __init__(self, repositories, identifier): cache_dir = get_cache_path(identifier) self.paths = [] for repo in repositories: self.paths.append(os.path.join(cache_dir, repo.identifier, 'data.xml.gz')) assert(os.path.exists(self.paths[-1])) def get_packages(self): for fname in self.paths: with open(fname, 'rt') as f: tree = parseFile(f) for package in tree.getElementsByTagName('package'): yield from parse_package(package) def get_cache_path(identifier): return os.path.join(LOCAL_PATH, 'cache', identifier + '.cache') def build_cache(repositories, identifier): cache_dir = get_cache_path(identifier) os.makedirs(cache_dir, exist_ok=True) for repo in repositories: repo.download_to(os.path.join(cache_dir, repo.identifier))
python
# Generated by Django 3.1.5 on 2021-07-11 17:27 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('profiles', '0001_initial'), ('classroom', '0001_initial'), ] operations = [ migrations.AlterField( model_name='membership', name='student', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='member', to='profiles.student'), ), ]
python
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding: utf-8 """Import ONNX model to gluon interface""" # pylint: disable=no-member from .import_onnx import GraphProto def import_to_gluon(model_file, ctx): """ Imports the ONNX model files, passed as a parameter, into Gluon SymbolBlock object. Parameters ---------- model_file : str ONNX model file name ctx : Context or list of Context Loads the model into one or many context(s). Returns ------- sym_block : :class:`~mxnet.gluon.SymbolBlock` A SymbolBlock object representing the given model file. Notes ----- This method is available when you ``import mxnet.contrib.onnx`` """ graph = GraphProto() try: import onnx except ImportError: raise ImportError("Onnx and protobuf need to be installed. Instructions to" + " install - https://github.com/onnx/onnx#installation") model_proto = onnx.load_model(model_file) net = graph.graph_to_gluon(model_proto.graph, ctx) return net
python
from django.http import JsonResponse from django_filters.rest_framework import DjangoFilterBackend from rest_framework import permissions from rest_framework.decorators import action from rest_framework.response import Response from rest_framework.viewsets import ModelViewSet from django_cookie_app import models from django_cookie_app.rest import serializers from django_cookie_app import filtersets class MyViewSetMixin: def get_permissions(self): if self.action == 'list': self.permission_classes.append( permissions.IsAuthenticated ) else: self.permission_classes = [permissions.IsAdminUser] return [permission() for permission in self.permission_classes] class OrderViewSet(MyViewSetMixin, ModelViewSet): """ OrderViewSet """ serializer_class = serializers.OrderSerializer queryset = models.Order.objects.select_related( 'choco_oran', 'mint_choco', 'syrup', 'vanilla', 'raspberry').all() permission_classes = [] filterset_class = filtersets.OrderFilter filter_backends = (DjangoFilterBackend,) @action( detail=False, methods=['post', 'get'], permission_classes=[permissions.IsAuthenticatedOrReadOnly]) def inspect(self, request, pk=None): """ inspect """ if request.method == 'POST': order_id = models.Order.objects.inspect(dict(request.data)) return JsonResponse(order_id) return Response({"user": request.user}) class ChocoOrangeViewSet(MyViewSetMixin, ModelViewSet): """ ChocoOrangeViewSet """ serializer_class = serializers.ChocoOrangeSerializer queryset = models.ChocoOrange.objects.all() @action( detail=False, methods=['get'], permission_classes=[permissions.IsAuthenticatedOrReadOnly]) def update_bucket(self, request, pk=None): """ update_bucket """ if request.method == 'GET': order_id = models.ChocoOrange.objects.update_last() return JsonResponse(order_id) return Response({"user": request.user}) class MintChocoViewSet(MyViewSetMixin, ModelViewSet): """ MintChocoViewSet """ serializer_class = serializers.MintChocoSerializer queryset = models.MintChoco.objects.all() @action( detail=False, methods=['get'], permission_classes=[permissions.IsAuthenticatedOrReadOnly]) def update_bucket(self, request, pk=None): """ update_bucket """ if request.method == 'GET': order_id = models.MintChoco.objects.update_last() return JsonResponse(order_id) return Response({"user": request.user}) class SyrupViewSet(MyViewSetMixin, ModelViewSet): """ SyrupViewSet """ serializer_class = serializers.SyrupSerializer queryset = models.Syrup.objects.all() @action( detail=False, methods=['get'], permission_classes=[permissions.IsAuthenticatedOrReadOnly]) def update_bucket(self, request, pk=None): """ update_bucket """ if request.method == 'GET': order_id = models.Syrup.objects.update_last() return JsonResponse(order_id) return Response({"user": request.user}) class VanillaStrawberryChocolateViewSet(MyViewSetMixin, ModelViewSet): """ VanillaStrawberryChocolateViewSet """ serializer_class = serializers.VanillaStrawberryChocolateSerializer queryset = models.VanillaStrawberryChocolate.objects.all() @action( detail=False, methods=['get'], permission_classes=[permissions.IsAuthenticatedOrReadOnly]) def update_bucket(self, request, pk=None): """ update_bucket """ if request.method == 'GET': order_id = models.VanillaStrawberryChocolate.objects.update_last() return JsonResponse(order_id) return Response({"user": request.user}) class RaspberryWhiteChocolateViewSet(MyViewSetMixin, ModelViewSet): """ RaspberryWhiteChocolateViewSet """ serializer_class = serializers.RaspberryWhiteChocolateSerializer queryset = models.RaspberryWhiteChocolate.objects.all() @action( detail=False, methods=['get'], permission_classes=[permissions.IsAuthenticatedOrReadOnly]) def update_bucket(self, request, pk=None): """ update_bucket" """ if request.method == 'GET': order_id = models.RaspberryWhiteChocolate.objects.update_last() return JsonResponse(order_id) return Response({"user": request.user})
python
import os import re import numpy as np import pandas as pd FILE_ROOT_PATH = os.path.dirname(os.path.abspath(__file__)) source = os.path.join(FILE_ROOT_PATH, '9889.xlsx') output = os.path.join(FILE_ROOT_PATH, 'result_9889.xlsx') def merge_sheets(path: str) -> pd.DataFrame: '''将每个表格的sheet页中日期、期货成交汇总、期货持仓汇总聚集到一起 ''' df = pd.read_excel(path, sheet_name=None) print(len(list(df.keys()))) all_indexs = dict() all_sheet_df_res = pd.DataFrame() for sheet_index, sheet in enumerate(list(df.keys())): if sheet_index < len(list(df.keys())) + 1: # 测试时候控制前几个 print(sheet_index) df_sheet = pd.read_excel(path, sheet_name=sheet) row, col = df_sheet.shape child_indexs = [] child_table1_flag = 0 child_table2_flag = 0 for r in range(row): each_row_list = list(df_sheet.loc[r]) if "交易日期" in each_row_list: key_date = str(each_row_list[7]) date_row = r # print(key_date) elif "期货持仓汇总" in each_row_list: # print(each_row_list) # print("从此行开始截取数据", r) first_start = r child_indexs.append(first_start) child_table1_flag = 1 elif "合计" in each_row_list and child_table1_flag == 1: # print(each_row_list) # print("第一段结束", r) first_end = r child_indexs.append(first_end) # 跳出前总结数据 if key_date: all_indexs[key_date] = child_indexs elif "期权持仓汇总" in each_row_list: # print(each_row_list) # print("从此行开始截取数据", r) second_start = r child_indexs.append(second_start) child_table2_flag = 1 elif "合计" in each_row_list and child_table2_flag == 1: # print(each_row_list) # print("第二段结束", r) second_end = r if second_end not in child_indexs: child_indexs.append(second_end) # 跳出前总结数据 if key_date: all_indexs[key_date] = child_indexs each_sheet_res = [] # 每个sheet页的结果 # print(child_indexs) if len(child_indexs) == 2: df_sheet.loc[date_row][0] = df_sheet.loc[date_row][7] df_sheet.loc[date_row][1:] = np.nan each_sheet_res.append(df_sheet.loc[date_row]) # 日期行 # print(df_sheet.loc[date_row][0]) for i in range(child_indexs[0], child_indexs[1] + 1): # print(i) # print(df_sheet.loc[i]) each_sheet_res.append(df_sheet.loc[i]) elif len(child_indexs) == 4: df_sheet.loc[date_row][0] = df_sheet.loc[date_row][7] df_sheet.loc[date_row][1:] = np.nan each_sheet_res.append(df_sheet.loc[date_row]) # 日期行 # print(df_sheet.loc[date_row]) for i in range(child_indexs[0], child_indexs[1] + 1): # print(i) # print(df_sheet.loc[i]) each_sheet_res.append(df_sheet.loc[i]) for j in range(child_indexs[2], child_indexs[3] + 1): # print(j) # print(df_sheet.loc[j]) each_sheet_res.append(df_sheet.loc[j]) # print(each_sheet_res) each_sheet_res_df = pd.DataFrame(each_sheet_res).reset_index(drop=True) all_sheet_df_res = pd.concat([all_sheet_df_res, each_sheet_res_df], axis=0) # break return all_sheet_df_res if __name__ == "__main__": res = merge_sheets(source) res.to_excel(output, header=None, index=False)
python
from ligeor import TwoGaussianModel as TwoG import numpy as np def test_initialize_filename(filename, data): model = TwoG(filename=filename, n_downsample=1, delimiter=',') assert(((model.phases == data[:,0]) & (model.fluxes == data[:,1]) & (model.sigmas == data[:,2])).all()) def test_initialize_data(data): model = TwoG(phases=data[:,0], fluxes=data[:,1], sigmas=data[:,2]) assert(((model.phases == data[:,0]) & (model.fluxes == data[:,1]) & (model.sigmas == data[:,2])).all()) return model def test_estimate_ecl_pos_widths(model, result): est_positions = model.estimate_eclipse_positions_widths(model.phases, model.fluxes) estimates = {} estimates['pos1'] = est_positions['ecl_positions'][0] estimates['pos2'] = est_positions['ecl_positions'][1] estimates['width1'] = est_positions['ecl_widths'][0] estimates['width2'] = est_positions['ecl_widths'][1] for key in result.keys(): assert(np.abs(estimates[key] - result[key]) < 2e-1) def test_fit(model, result): model.fit() assert(model.best_fit['func'] == result['func']) assert((np.abs( model.best_fit['param_vals'][0] - np.array(result['param_vals'])) < 1e-2*np.ones(len(model.best_fit['param_vals'][0]))).all()) return model def test_compute_ecl_params(model, result): eb_dict = model.compute_eclipse_params() for key in eb_dict.keys(): if key in result.keys(): assert(np.abs(eb_dict[key] - result[key]) < 5e-2) elif key != 'eclipse_edges': assert(np.isnan(eb_dict[key])) else: pass # if __name__=='main': # true values of all models C = 1. mu1 = 0. sigma1 = 0.015 d1 = 0.5 mu2 = 0.42 sigma2 = 0.01 d2 = 0.35 Aell = 0.05 # load data on each synthetic model data_c = np.loadtxt('../data/const.csv', delimiter=',') data_cg = np.loadtxt('../data/cg.csv', delimiter=',') data_ce = np.loadtxt('../data/ce.csv', delimiter=',') data_cge = np.loadtxt('../data/cge.csv', delimiter=',') data_cg12 = np.loadtxt('../data/cg12.csv', delimiter=',') data_cg12e1 = np.loadtxt('../data/cg12e1.csv', delimiter=',') data_cg12e2 = np.loadtxt('../data/cg12e2.csv', delimiter=',') # check if file initialization works test_initialize_filename('../data/cg12.csv', data_cg12) #create a twoG model for each # model_c = test_initialize_data(data_c) model_cg = test_initialize_data(data_cg) # model_ce = test_initialize_data(data_ce) model_cge = test_initialize_data(data_cge) model_cg12 = test_initialize_data(data_cg12) model_cg12e1 = test_initialize_data(data_cg12e1) model_cg12e2 = test_initialize_data(data_cg12e2) # test estimated eclipse positions test_estimate_ecl_pos_widths(model_cg, {'pos1': 0., 'width1': 0.015}) test_estimate_ecl_pos_widths(model_cge, {'pos1': 0., 'width1': 0.015}) test_estimate_ecl_pos_widths(model_cg12, {'pos1': 0., 'width1': 0.015, 'pos2': 0.42, 'width2': 0.01}) # test fits for all models # test_fit(model_c, {'func': 'C', 'param_vals': [C]}) test_fit(model_cg, {'func': 'CG', 'param_vals': [C,mu1,d1,sigma1]}) # test_fit(model_ce, {'func': 'CE', 'param_vals': [C, Aell, mu1]}) test_fit(model_cge, {'func': 'CGE', 'param_vals': [C, mu1, d1, sigma1, Aell]}) test_fit(model_cg12, {'func': 'CG12', 'param_vals': [C, mu1, d1, sigma1, mu2, d2, sigma2]}) test_fit(model_cg12e1, {'func': 'CG12E1', 'param_vals': [C, mu1, d1, sigma1, mu2, d2, sigma2, Aell]}) test_fit(model_cg12e2, {'func': 'CG12E2', 'param_vals': [C, mu1, d1, sigma1, mu2, d2, sigma2, Aell]}) # test eclipse parameters for all models test_compute_ecl_params(model_cg, {'primary_width': 5.6*sigma1, 'primary_position': mu1, 'primary_depth': d1}) test_compute_ecl_params(model_cge, {'primary_width': 5.6*sigma1, 'primary_position': mu1, 'primary_depth': d1}) test_compute_ecl_params(model_cg12, {'primary_width': 5.6*sigma1, 'secondary_width': 5.6*sigma2, 'primary_position': mu1, 'secondary_position': mu2, 'primary_depth': d1, 'secondary_depth': d2}) test_compute_ecl_params(model_cg12e1, {'primary_width': 5.6*sigma1, 'secondary_width': 5.6*sigma2, 'primary_position': mu1, 'secondary_position': mu2, 'primary_depth': d1, 'secondary_depth': d2}) test_compute_ecl_params(model_cg12e2, {'primary_width': 5.6*sigma1, 'secondary_width': 5.6*sigma2, 'primary_position': mu1, 'secondary_position': mu2, 'primary_depth': d1, 'secondary_depth': d2})
python
""" 小结 - 实例成员与类成员 创建 实例变量在构造函数中:对象.变量名 = 数据 实例方法: def 方法名(self): pass 类变量在类中方法外:变量名 = 数据 类方法: @classmethod def 方法名(cls): pass 使用 实例变量:对象.变量名 实例方法:对象.方法名() 类变量:类.变量名 类方法:类.方法名() 特殊: """ class MyClass: # 创建类变量 data02 = 20 # 创建类方法 @classmethod def func02(cls): print(cls.data02) def __init__(self): # 创建实例变量 self.data01 = 10 # 创建实例方法 def func01(self): print(self.data01) m01 = MyClass() # 操作实例变量 print(m01.data01) # 操作类变量 print(MyClass.data02) # 通过对象访问实例方法 m01.func01() # 不建议通过类名访问 # MyClass.func01(m01) # 通过类访问类方法 MyClass.func02() # 不建议通过对象访问类方法 # m01.func02()
python
import argparse import json import os.path as pth import sys from glob import iglob from typing import Any, Callable, Dict from typing import MutableMapping as Map from typing import Optional, Type, Union, cast from ..core.fp import OneOf from ..core.io import CiTool, env, error_block from ..core.issue import Issue from .validators import validate_non_empty_str class CmdModule: """Interface for command modules.""" meta: Dict[str, str] @staticmethod def add_arguments(_parser: argparse.ArgumentParser) -> None: """Should be defined if we want to manipulate the argument parser object. This will allow us to define options that may apply to the subparsers. """ ... @staticmethod def add_parser( _subparser: argparse._SubParsersAction, # noqa pylint: disable=protected-access _raw: Type[argparse.RawTextHelpFormatter], ) -> None: """This function is required for commands so that we may be able to define arguments.""" ... @staticmethod def run(_arg: argparse.Namespace) -> int: """This function needs to call a library function and return 0 if successful or non-zero if there is a failure.""" ... def import_mod(name: str) -> CmdModule: """Import a module by string.""" module = __import__(name) for part in name.split('.')[1:]: module = getattr(module, part) return cast(CmdModule, module) def get_command_modules( root: str, commands_module: str, ) -> Map[str, CmdModule]: """Return a dictionary mapping command names to modules that define an `add_parser` method. root: The absolute path of the directory containing the __main__.py that activates the cli. commands_module: The full module resolution. For instance `m.cli.commands`. """ dir_name = '/'.join(commands_module.split('.')[1:]) mod_names = list(iglob(f'{root}/{dir_name}/*.py')) mod = {} for name in mod_names: tname = pth.split(name)[1][:-3] tmod = import_mod(f'{commands_module}.{tname}') if hasattr(tmod, 'add_parser'): mod[tname] = tmod return mod def get_cli_command_modules( file_path: str, ) -> Map[str, Union[CmdModule, Map[str, CmdModule]]]: """Return a dictionary containing the commands and subcommands for the cli. Note that file_path is expected to be the absolute path to the __main__.py file. Another restriction is that the __main__.py file must have the `cli.commands` module as its sibling. """ root = pth.split(pth.abspath(file_path))[0] main_mod = pth.split(root)[1] cli_root = f'{main_mod}.cli' root_cmd = get_command_modules(root, f'{cli_root}.commands') mod: Map[str, Union[CmdModule, Map[str, CmdModule]]] = {} for key, val in root_cmd.items(): mod[key] = val mod['.meta'] = import_mod(f'{cli_root}.commands') subcommands = list(iglob(f'{root}/cli/commands/*')) for name in subcommands: if name.endswith('.py') or name.endswith('__'): continue tname = pth.split(name)[1] mod[tname] = get_command_modules(root, f'{cli_root}.commands.{tname}') mod[f'{tname}.meta'] = import_mod(f'{cli_root}.commands.{tname}') return mod def main_parser( mod: Map[str, Union[CmdModule, Map[str, CmdModule]]], add_args=None, ): """Creates an argp parser and returns the result calling its parse_arg method. The `add_args` param may be provided as a function that takes in an `argparse.ArgumentParser` instance to be able to take additional actions. """ meta_mod = cast(CmdModule, mod['.meta']) main_meta = meta_mod.meta # type: ignore raw = argparse.RawTextHelpFormatter # NOTE: In the future we will need to extend from this class to be able to # override the error method to be able to print CI environment messages. argp = argparse.ArgumentParser( formatter_class=raw, description=main_meta['description'], ) if add_args: add_args(argp) subp = argp.add_subparsers( title='commands', dest='command_name', required=True, help='additional help', metavar='<command>', ) names = sorted(mod.keys()) for name in names: if name.endswith('.meta'): continue if isinstance(mod[name], dict): meta_mod = cast(CmdModule, mod[f'{name}.meta']) meta = meta_mod.meta # type: ignore parser = subp.add_parser( name, help=meta['help'], formatter_class=raw, description=meta['description'], ) if hasattr(meta_mod, 'add_arguments'): meta_mod.add_arguments(parser) subsubp = parser.add_subparsers( title='commands', dest='subcommand_name', required=True, help='additional help', metavar='<command>', ) sub_mod = cast(Dict[str, CmdModule], mod[name]) for subname in sorted(sub_mod.keys()): sub_mod[subname].add_parser(subsubp, raw) else: cast(CmdModule, mod[name]).add_parser(subp, raw) return argp.parse_args() def run_cli( file_path: str, main_args=None, ) -> None: """Helper function to create a cli application. def main_args(argp): argp.add_argument(...) def main(): run_cli(__file__, main_args) We only need `main_args` if we need to gain access to the `argparse.ArgumentParser` instance. """ mod = get_cli_command_modules(file_path) arg = main_parser(mod, main_args) if arg == 1: sys.exit(1) if hasattr(arg, 'subcommand_name'): sub_mod = cast(Dict[str, CmdModule], mod[arg.command_name]) sys.exit(sub_mod[arg.subcommand_name].run(arg)) sys.exit(cast(CmdModule, mod[arg.command_name]).run(arg)) def display_issue(issue: Issue) -> None: """print an error message.""" CiTool.error(issue.message) error_block(str(issue)) def display_result(val: Any) -> None: """print the JSON stringification of the param `val` provided that val is not `None`.""" if val is not None: try: print(json.dumps(val, separators=(',', ':'))) except Exception: print(val) def run_main( callback: Callable[[], OneOf[Issue, Any]], handle_result: Callable[[Any], None] = display_result, handle_issue: Callable[[Issue], None] = display_issue, ): """Run the callback and print the returned value as a JSON string. Set the print_raw param to True to bypass the JSON stringnification. To change how the result or an issue should be display then provide the optional arguments handle_result and handle_issue. For instance, to display the raw value simply provide the `print` function. Return 0 if the callback is a `Good` result otherwise return 1. """ try: res = callback() val = res.value if res.is_bad: if isinstance(val, Issue): handle_issue(val) else: issue = Issue('non-issue exception', cause=cast(Issue, val)) handle_issue(issue) return 1 handle_result(val) except Exception as ex: issue = Issue('unknown caught exception', cause=ex) handle_issue(issue) return 1 return 0 def call_main(fun, args, print_raw=False) -> int: """ @deprecated: Use run_main The `fun` param will be called by providing the list of values in `args`. By default, the result of calling `fun` will be JSON stringified but we can avoid this by providing `print_raw` set to True. """ try: res = fun(*args) val = res.value if res.is_bad: if isinstance(val, Issue): return error(val.message, val) issue = Issue('non-issue exception', cause=val) return error(issue.message, issue) if val is not None or isinstance(val, list): if print_raw: print(val) else: try: print(json.dumps(val, separators=(',', ':'))) except Exception: print(val, file=sys.stderr) except Exception as ex: CiTool.error('unknown caught exception') error_block(repr(ex)) return 1 return 0 def error(msg: str, issue: Optional[Issue] = None) -> int: """print an error message.""" CiTool.error(msg) if issue: error_block(str(issue)) return 1 def cli_integration_token(integration: str, env_var: str): """Return a function that takes in a parser. This generated function registers a token argument in the parser which looks for its value in the environment variables. """ return lambda parser: parser.add_argument( '-t', '--token', type=validate_non_empty_str, default=env(env_var), help=f'{integration} access token (default: env.{env_var})', )
python
import hashlib import os import pickle from urllib.request import urlretrieve import numpy as np from PIL import Image from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.utils import resample from tqdm import tqdm from zipfile import ZipFile import math import numpy as np import tensorflow as tf from tqdm import tqdm import matplotlib.pyplot as plt import matplotlib.image as mpimg import matplotlib.gridspec as gridspec import cv2 """ Helper-function for flattening a layer A convolutional layer produces an output tensor with 4 dimensions. We will add fully-connected layers after the convolution layers, so we need to reduce the 4-dim tensor to 2-dim which can be used as input to the fully-connected layer. """ def flatten_layer(layer): # Get the shape of the input layer. layer_shape = layer.get_shape() # The shape of the input layer is assumed to be: # layer_shape == [num_images, img_height, img_width, num_channels] # The number of features is: img_height * img_width * num_channels # We can use a function from TensorFlow to calculate this. num_features = layer_shape[1:4].num_elements() # Reshape the layer to [num_images, num_features]. # Note that we just set the size of the second dimension # to num_features and the size of the first dimension to -1 # which means the size in that dimension is calculated # so the total size of the tensor is unchanged from the reshaping. layer_flat = tf.reshape(layer, [-1, num_features]) # The shape of the flattened layer is now: # [num_images, img_height * img_width * num_channels] # Return both the flattened layer and the number of features. return layer_flat, num_features def jitter_images(images): # fs for features jittered_images = [] for i in range(len(images)): image = images[i] jittered_image = transform_image(image) jittered_images.append(jittered_image) return np.array(jittered_images) def rbg_to_gray(images): # fs for features gray_images = [] for i in range(len(images)): image = images[i] # gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray_image = color2gray(image) gray_images.append(gray_image) return np.array(gray_images) def color2gray(image): gray = 0.2989 * image[:,:,0] + 0.5870 * image[:,:,1] + 0.1140 * image[:,:,2] return gray def flatten_images(images): flattened_images = [] for i in range(0, images.shape[0]): image = images[i] f = np.array(image, dtype=np.float32).flatten() flattened_images.append(f) return np.array(flattened_images) # Problem 1 - Implement Min-Max scaling for greyscale image data def normalize_greyscale(image_data): """ Normalize the image data with Min-Max scaling to a range of [0.1, 0.9] :param image_data: The image data to be normalized :return: Normalized image data """ # ToDo: Implement Min-Max scaling for greyscale image data a = 0.1 b = 0.9 x_min = np.min(image_data) x_max = np.max(image_data) x_prime = [a + (((x - x_min) * (b - a)) / (x_max - x_min)) for x in image_data] # print(image_data, ' normalized to ---> ', x_prime) return np.array(x_prime) # Save the data for easy access def save_data(train_features, train_labels, valid_features, valid_labels, test_features, test_labels): pickle_file = 'trafficsigns_trained.pickle' if not os.path.isfile(pickle_file): print('Saving data to pickle file...') try: with open(pickle_file, 'wb') as pfile: pickle.dump( { 'train_dataset': train_features, 'train_labels': train_labels, 'valid_dataset': valid_features, 'valid_labels': valid_labels, 'test_dataset': test_features, 'test_labels': test_labels }, pfile, pickle.HIGHEST_PROTOCOL) except Exception as e: print('Unable to save data to', pickle_file, ':', e) raise print('Data cached in pickle file.') def reload_trained_data(): # Reload the data pickle_file = 'trafficsigns_trained.pickle' with open(pickle_file, 'rb') as f: pickle_data = pickle.load(f) train_features = pickle_data['train_dataset'] train_labels = pickle_data['train_labels'] valid_features = pickle_data['valid_dataset'] valid_labels = pickle_data['valid_labels'] test_features = pickle_data['test_dataset'] test_labels = pickle_data['test_labels'] del pickle_data # Free up memory print('Data and modules loaded.') def transform_image(img, ang_range=20, shear_range=10, trans_range=5): """ This function transforms images to generate new images. The function takes in following arguments, 1- Image 2- ang_range: Range of angles for rotation 3- shear_range: Range of values to apply affine transform to 4- trans_range: Range of values to apply translations over. A Random uniform distribution is used to generate different parameters for transformation """ # Rotation ang_rot = np.random.uniform(ang_range) - ang_range / 2 rows, cols, ch = img.shape Rot_M = cv2.getRotationMatrix2D((cols / 2, rows / 2), ang_rot, 1) # Translation tr_x = trans_range * np.random.uniform() - trans_range / 2 tr_y = trans_range * np.random.uniform() - trans_range / 2 Trans_M = np.float32([[1, 0, tr_x], [0, 1, tr_y]]) # Shear pts1 = np.float32([[5, 5], [20, 5], [5, 20]]) pt1 = 5 + shear_range * np.random.uniform() - shear_range / 2 pt2 = 20 + shear_range * np.random.uniform() - shear_range / 2 pts2 = np.float32([[pt1, 5], [pt2, pt1], [5, pt2]]) shear_M = cv2.getAffineTransform(pts1, pts2) img = cv2.warpAffine(img, Rot_M, (cols, rows)) img = cv2.warpAffine(img, Trans_M, (cols, rows)) img = cv2.warpAffine(img, shear_M, (cols, rows)) return img def plot_image(image): # image = mpimg.imread(X_train[0][0]) # image = X_train[0][0] plt.imshow(image, interpolation='nearest') plt.axis('off') plt.show() def plot_images(images, jitter=False): gs1 = gridspec.GridSpec(10, 10) gs1.update(wspace=0.01, hspace=0.02) # set the spacing between axes. plt.figure(figsize=(12,12)) for i in range(len(images)): ax1 = plt.subplot(gs1[i]) ax1.set_xticklabels([]) ax1.set_yticklabels([]) ax1.set_aspect('equal') img = images[i] if jitter == True: img = transform_image(img) plt.subplot(10,10,i+1) plt.imshow(img, interpolation='nearest') plt.axis('off') plt.show() def compute_dimensions(train_features, test_features): n_train = len(train_features) n_test = len(test_features) image_shape = train_features.shape[1:3] labels_count = len(np.unique(train_labels)) image_size = image_shape[0] # Images are stored in one-dimensional arrays of this length. img_size_flat = image_size * image_size print("Number of training examples =", n_train) print("Number of testing examples =", n_test) print("Image data shape =", image_shape) print("Number of labels =", labels_count) print("Image size =", image_size) print("img_size_flat =", img_size_flat) print("") print("") return n_train, n_test, num_channels, image_shape, labels_count, image_size, img_size_flat def next_batch(batch_size, fake_data=False): """Return the next `batch_size` examples from this data set.""" global _index_in_epoch, _num_examples, _epochs_completed, X_train, train_labels start = _index_in_epoch _index_in_epoch += batch_size if _index_in_epoch > _num_examples: # Finished epoch _epochs_completed += 1 # Shuffle the data perm = np.arange(_num_examples) np.random.shuffle(perm) X_train = X_train[perm] train_labels = train_labels[perm] # Start next epoch start = 0 _index_in_epoch = batch_size assert batch_size <= _num_examples end = _index_in_epoch return X_train[start:end], train_labels[start:end] # 1. Load in train and test pickle files training_file = '../traffic-sign-data/train.p' testing_file = '../traffic-sign-data/test.p' with open(training_file, mode='rb') as f: train = pickle.load(f) with open(testing_file, mode='rb') as f: test = pickle.load(f) X_train, train_labels, train_size, train_coords = train['features'], train['labels'], train['sizes'], train['coords'] X_test, test_labels, test_size, test_coords = test['features'], test['labels'], test['sizes'], test['coords'] assert len(X_train) == len(train_labels), 'features must be same size as labels' # Detect if any images' sizes differ from their coords ROI # for i in range(len(train_coords)): # if not np.array_equal(train_size[i], train_coords[i]): # print("size: {} coords: {}".format(train_size[i], train_coords[i])) # 2. Get randomized datasets for training and validation print('train_features before split: ', len(X_train)) print('train_labels before split: ', len(train_labels)) print('test_features before split: ', len(X_test)) print('test_labels before split: ', len(test_labels)) print('') split_test_size = 0.05 X_train, valid_features, train_labels, valid_labels = train_test_split( X_train, train_labels, test_size=0.15, random_state=832289) print('Training features and labels randomized and split with train_test_split (test_size: {})'.format(split_test_size)) print('') print('train_features after split: ', len(X_train)) print('train_labels after split: ', len(train_labels)) print('test_features after split: ', len(X_test)) print('test_labels after split: ', len(test_labels)) # Globals _epochs_completed = 0 _index_in_epoch = 0 _num_examples = len(X_train) # [Adapted from Lesson 7 - MiniFlow] # Turn labels into numbers and apply One-Hot Encoding print(X_train.shape) X_train = rbg_to_gray(X_train) X_test = rbg_to_gray(X_test) print(X_train.shape) # Flatten train and test features # X_train = np.arange(len(X_train) * 1024).reshape((len(X_train), 1024)) # X_test = np.arange(len(X_test) * 1024).reshape((len(X_test), 1024)) # assert len(X_train) == len(train_labels), 'features must be same size as labels' X_train = flatten_images(X_train) X_test = flatten_images(X_test) print(X_train.shape) X_train = normalize_greyscale(X_train) X_test = normalize_greyscale(X_test) print(X_train.shape) num_channels = 1 # let's compute the dimensions of our data n_train, n_test, num_channels, image_shape, labels_count, image_size, img_size_flat = compute_dimensions(X_train, X_test) # [Adapted from Lesson 7 - MiniFlow] # Turn labels into numbers and apply One-Hot Encoding encoder = LabelBinarizer() encoder.fit(train_labels) train_labels = encoder.transform(train_labels) test_labels = encoder.transform(test_labels) # Change to float32, so it can be multiplied against the features in TensorFlow, which are float32 train_labels = train_labels.astype(np.float32) test_labels = test_labels.astype(np.float32) is_labels_encod = True print('Labels One-Hot Encoded') features_count = image_size * num_channels # TRAFFIC SIGNS data input (img shape: 32*32) a_mode = 1 b_mode = 1 if a_mode == 1: # Parameters # learning_rate = tf.constant(0.2) # Passing global_step to minimize() will increment it at each step. global_step = tf.Variable(0, trainable=False) initial_learning_rate = 0.25 learning_rate = tf.train.exponential_decay(initial_learning_rate, global_step, 50000, 0.96, staircase=True) training_epochs = 100 batch_size = 32 display_step = 1 n_hidden_layer = 256 # layer number of features n2_hidden_layer = 512 # layer number of features # Store layers weight & bias weights = [ { 'hidden_layer': tf.Variable(tf.random_normal([features_count, n_hidden_layer])), 'out': tf.Variable(tf.random_normal([n_hidden_layer, labels_count])) }, { 'hidden_layer': tf.Variable(tf.random_normal([features_count, n2_hidden_layer])), 'out': tf.Variable(tf.random_normal([n2_hidden_layer, labels_count])) } ] biases = [ { 'hidden_layer': tf.Variable(tf.random_normal([n_hidden_layer])), 'out': tf.Variable(tf.random_normal([labels_count])) }, { 'hidden_layer': tf.Variable(tf.random_normal([n2_hidden_layer])), 'out': tf.Variable(tf.random_normal([labels_count])) } ] # tf Graph input x = tf.placeholder("float", [None, image_size]) y = tf.placeholder("float", [None, labels_count]) x_flat = tf.reshape(x, [-1, features_count]) keep_prob = tf.placeholder(tf.float32) # probability to keep units # Hidden layer with RELU activation layer_1 = tf.add(tf.matmul(x_flat, weights[0]['hidden_layer']), biases[0]['hidden_layer']) layer_1 = tf.nn.relu(layer_1) # layer_1 = tf.nn.dropout(layer_1, keep_prob) # Output layer with linear activation logits = tf.matmul(layer_1, weights[0]['out']) + biases[0]['out'] if b_mode == 1: # Define loss and optimizer # cost also called cross_entropy cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, y)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost, global_step=global_step) init = tf.initialize_all_variables() # Launch the graph with tf.Session() as sess: sess.run(init) # Training cycle for epoch in range(training_epochs): total_batch = int(math.ceil(n_train / batch_size)) # int(n_train / batch_size) # Loop over all batches for i in range(total_batch): batch_x, batch_y = next_batch(batch_size) # Run optimization op (backprop) and cost op (to get loss value) sess.run(optimizer, feed_dict={x: batch_x, y: batch_y, keep_prob: 0.5}) # Display logs per epoch step if epoch % display_step == 0: c = sess.run(cost, feed_dict={x: batch_x, y: batch_y, keep_prob: 0.5}) print("Epoch:", '%04d' % (epoch + 1), '/', '%04d'%(training_epochs), "cost=", "{:.9f}".format(c)) # Calculate accuracy correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print(" learning rate: ", sess.run(learning_rate)) print(" batch size: ", batch_size) print(" train accuracy: ", accuracy.eval({x: batch_x, y: batch_y, keep_prob: 1.0})) print(" test accuracy: ", accuracy.eval({x: X_test, y: test_labels, keep_prob: 1.0})) print('') print("Optimization Finished!") # Test model # train_step = tf.train.AdamOptimizer(1e-4).minimize(cost) # Calculate accuracy correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print("test accuracy:", accuracy.eval({x: X_test, y: test_labels, keep_prob: 1.0})) elif b_mode == 2: # Launch the graph with tf.Session() as sess: cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, y)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess.run(tf.initialize_all_variables()) for i in range(20000): batch = next_batch(batch_size) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={x: batch[0], y: batch[1], keep_prob: 1.0}) print("step %d, training accuracy %g" % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y: batch[1], keep_prob: 0.5}) print("test accuracy %g" % accuracy.eval(feed_dict={x: X_test, y: test_labels, keep_prob: 1.0})) elif a_mode == 2: print("DO lesson_7_miniflow lab process") # ToDo: Set the features and labels tensors features = tf.placeholder(tf.float32) labels = tf.placeholder(tf.float32) # ToDo: Set the weights and biases tensors weights = tf.Variable(tf.truncated_normal([features_count, labels_count])) biases = tf.Variable(tf.zeros([labels_count], dtype=tf.float32)) from tensorflow.python.ops.variables import Variable assert features._op.name.startswith('Placeholder'), 'features must be a placeholder' assert labels._op.name.startswith('Placeholder'), 'labels must be a placeholder' assert isinstance(weights, Variable), 'weights must be a TensorFlow variable' assert isinstance(biases, Variable), 'biases must be a TensorFlow variable' assert features._shape == None or ( \ features._shape.dims[0].value is None and \ features._shape.dims[1].value in [None, 1024]), 'The shape of features is incorrect' assert labels._shape in [None, 43], 'The shape of labels is incorrect' assert weights._variable._shape == (1024, 43), 'The shape of weights is incorrect' assert biases._variable._shape == (43), 'The shape of biases is incorrect' assert features._dtype == tf.float32, 'features must be type float32' assert labels._dtype == tf.float32, 'labels must be type float32' # Feed dicts for training, validation, and test session train_feed_dict = {features: X_train, labels: train_labels} valid_feed_dict = {features: valid_features, labels: valid_labels} test_feed_dict = {features: X_test, labels: test_labels} # self.x_flat = tf.reshape(features, [-1, image_size]) # Linear Function WX + b logits = tf.matmul(features, weights) + biases # From Sridhar Sampath in forums at https://carnd-udacity.atlassian.net/wiki/questions/12617346/answers/12620228 logits = -np.amax(logits) prediction = tf.nn.softmax(logits) # Cross entropy # cross_entropy = -tf.reduce_sum(labels * tf.log(prediction), reduction_indices=1) # From Vivek forum tip at: # # https://carnd-udacity.atlassian.net/wiki/cq/viewquestion.action?id=12617346&questionTitle=what-could-be-causing-very-low-accuracy cross_entropy = tf.reduce_mean( -tf.reduce_sum(labels * tf.log(tf.clip_by_value(prediction, 1e-10, 1.0)), reduction_indices=[1])) # Training loss loss = tf.reduce_mean(cross_entropy) # Create an operation that initializes all variables init = tf.initialize_all_variables() # Test Cases with tf.Session() as session: session.run(init) session.run(loss, feed_dict=train_feed_dict) session.run(loss, feed_dict=valid_feed_dict) session.run(loss, feed_dict=test_feed_dict) biases_data = session.run(biases) assert not np.count_nonzero(biases_data), 'biases must be zeros' print('Tests Passed!') # Determine if the predictions are correct is_correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(labels, 1)) # Calculate the accuracy of the predictions accuracy = tf.reduce_mean(tf.cast(is_correct_prediction, tf.float32)) print('Accuracy function created.') # ToDo: Find the best parameters for each configuration # Validation accuracy at 0.8085333108901978 learning_rate = 0.0001 epochs = 15 batch_size = 25 ### DON'T MODIFY ANYTHING BELOW ### # Gradient Descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # The accuracy measured against the validation set validation_accuracy = 0.0 # Measurements use for graphing loss and accuracy log_batch_step = 50 batches = [] loss_batch = [] train_acc_batch = [] valid_acc_batch = [] with tf.Session() as session: session.run(init) batch_count = int(math.ceil(len(X_train) / batch_size)) for epoch_i in range(epochs): # Progress bar batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i + 1, epochs), unit='batches') # The training cycle for batch_i in batches_pbar: # Get a batch of training features and labels batch_start = batch_i * batch_size batch_features = X_train[batch_start:batch_start + batch_size] batch_labels = train_labels[batch_start:batch_start + batch_size] # Run optimizer and get loss _, l = session.run( [optimizer, loss], feed_dict={features: batch_features, labels: batch_labels}) # Log every 50 batches if not batch_i % log_batch_step: # Calculate Training and Validation accuracy training_accuracy = session.run(accuracy, feed_dict=train_feed_dict) validation_accuracy = session.run(accuracy, feed_dict=valid_feed_dict) # Log batches previous_batch = batches[-1] if batches else 0 batches.append(log_batch_step + previous_batch) loss_batch.append(l) train_acc_batch.append(training_accuracy) valid_acc_batch.append(validation_accuracy) # Check accuracy against Validation data validation_accuracy = session.run(accuracy, feed_dict=valid_feed_dict) print('Epoch {}, validation accuracy {}'.format(epoch_i, validation_accuracy)) loss_plot = plt.subplot(211) loss_plot.set_title('Loss') loss_plot.plot(batches, loss_batch, 'g') loss_plot.set_xlim([batches[0], batches[-1]]) acc_plot = plt.subplot(212) acc_plot.set_title('Accuracy') acc_plot.plot(batches, train_acc_batch, 'r', label='Training Accuracy') acc_plot.plot(batches, valid_acc_batch, 'b', label='Validation Accuracy') acc_plot.set_ylim([0, 1.0]) acc_plot.set_xlim([batches[0], batches[-1]]) acc_plot.legend(loc=4) plt.tight_layout() plt.show() print('Validation accuracy for [{}, {}, {}] at {}'.format(epochs, batch_size, learning_rate, validation_accuracy)) """ Test Set the epochs, batch_size, and learning_rate with the best learning parameters you discovered in problem 3. You're going to test your model against your hold out dataset/testing data. This will give you a good indicator of how well the model will do in the real world. You should have a test accuracy of atleast 80%. """ # ToDo: Set the epochs, batch_size, and learning_rate with the best parameters from problem 3 epochs = 100 batch_size = 20 learning_rate = 0.5 ### DON'T MODIFY ANYTHING BELOW ### # The accuracy measured against the test set test_accuracy = 0.0 with tf.Session() as session: session.run(init) batch_count = int(math.ceil(len(X_train) / batch_size)) for epoch_i in range(epochs): # Progress bar batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i + 1, epochs), unit='batches') # The training cycle for batch_i in batches_pbar: # Get a batch of training features and labels batch_start = batch_i * batch_size batch_features = X_train[batch_start:batch_start + batch_size] batch_labels = train_labels[batch_start:batch_start + batch_size] # Run optimizer _ = session.run(optimizer, feed_dict={features: batch_features, labels: batch_labels}) # Check accuracy against Test data test_accuracy = session.run(accuracy, feed_dict=test_feed_dict) assert test_accuracy >= 0.80, 'Test accuracy at {}, should be equal to or greater than 0.80'.format(test_accuracy) print('Nice Job! Test Accuracy is {}'.format(test_accuracy))
python
# -*- coding: utf-8 -*- """ Created on Fri Sep 7 13:10:58 2018 @author: Joseph Bell Geoscience Australia """ ''' reads a csv file and adds DGGS to it This is for placeNames Placenames is from 2018 A query was used to gather basic placename data into a csv Code fields were converted into their full text equivalent while building the query This code reflects the number of decimal points in the lat and long by adjusting the size of the DGGS box. In practice the DGGS boxes were often too big. Needs adjusting eg a level DGGS 5 box is too big for anything. ''' f = r'\\xxxxxxxx\ACT_grid\ACT_Points.csv' output = list() import csv from auspixdggs.auspixengine.dggs import RHEALPixDGGS import math from auspixdggs.auspixengine.utils import my_round # make an instance rdggs = RHEALPixDGGS() # function to write a list to a csv file # requires the list and the filename to save it too def write_list_to_file(myList, filename): """Write the list to csv file.""" with open(filename, "w") as outfile: for entries in myList: outfile.write(entries) # add a return after each line outfile.write("\n") def cleanPosition(pos): pos = pos.replace('(', '') pos = pos.replace(')', '') pos = pos.replace(',', ' ') return pos failed = 0 myPoints = list() myCells = list() myHeader = "ID, Name, DGGSrHealpix, Longi, Lati" myPoints.append(myHeader) # open the data file with open(f) as csvDataFile: csvReader = csv.reader(csvDataFile) next(csvReader) # skip the header for row in csvReader: # read in the latlong longi = float(row[2]) lati = float(row[3]) # feed lat long into convertor # Pick a (longitude-latitude) point on the ellipsoid and find the resolution cell that contains it :: t = (longi, lati) # set the resolution resolution = 10 # calculate the dggs cell from long and lat ie t thisCell = rdggs.cell_from_point(resolution, t, plane=False) # false = on the curve # now have a dggs cell for that point if thisCell not in myCells: # filter out cells already in there - only do the new ones myCells.append(thisCell) dggsCell = str(thisCell) # find the boundary dggsLoc = list() for item in dggsCell: # build a dggs location cell as a list like dggsLoc = ['R', 7, 2, 4, 5, 6, 3, 2, 3, 4, 3, 8, 3] if item.isalpha(): dggsLoc.append(item) else: item = int(item) dggsLoc.append(item) #print() # print(dggsLoc) c = rdggs.cell(dggsLoc) # print (c) bound = list() # a list for the cell boundary #try: for p in c.boundary(n=2, plane=False): bound.append(p) # prepare for shapefile output #print(str(row[0])) myPoints.append( str(row[0]) + ', ' + str(row[1]) + ',' + str(thisCell) + ',' + str(p[0]) + ', ' + str(p[1])) print (str(row[0]) + ', ' + str(row[1]) + ',' + str(thisCell) + ',' + str(p[0]) + ', ' + str(p[1])) # NW = cleanPosition(str(bound[0])) # #print ('NW = ', NW) # NE = cleanPosition(str(bound[1])) # SE = cleanPosition(str(bound[2])) # SW = cleanPosition(str(bound[3])) # # print(bound) # # print() # # # build output # pushout = (str(row[0]) + ',' + str(row[1]) + ',' + str(row[2]) + ',' + str(row[3]) + # ',' + str(resolution) + ',' + str(NW) + ',' + str(NE) + ',' + str(SE) + ',' + str(SW)) # #print (pushout) # output.append(pushout) #except: # print('failed', str(row[0]), p, c) # failed += 1 # pass # overwrites previous file unless you rename or move it # write_list_to_file(output, r"\\xxxxxx\ACT_grid\ACT_Grid_bounds.csv") # write_list_to_file(myPoints, r"\\xxxxxxx\temp\PN_boundings.csv") print('number failed = ', failed) # # for row in output: # # print(row) # print("finished")
python
# -*- coding: utf-8 -*- # Copyright 2018 IBM. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """ This module contains the definition of a base class for feature map. Several types of commonly used approaches. """ from collections import OrderedDict import copy import itertools import logging import numpy as np from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import Pauli from qiskit.qasm import pi from sympy.core.numbers import NaN, Float from qiskit.aqua import Operator from qiskit.aqua.components.feature_maps import FeatureMap, self_product logger = logging.getLogger(__name__) class PauliExpansion(FeatureMap): """ Mapping data with the second order expansion followed by entangling gates. Refer to https://arxiv.org/pdf/1804.11326.pdf for details. """ CONFIGURATION = { 'name': 'PauliExpansion', 'description': 'Pauli expansion for feature map (any order)', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'Pauli_Expansion_schema', 'type': 'object', 'properties': { 'depth': { 'type': 'integer', 'default': 2, 'minimum': 1 }, 'entangler_map': { 'type': ['array', 'null'], 'default': None }, 'entanglement': { 'type': 'string', 'default': 'full', 'oneOf': [ {'enum': ['full', 'linear']} ] }, 'paulis': { 'type': ['array'], "items": { "type": "string" }, 'default': ['Z', 'ZZ'] } }, 'additionalProperties': False } } def __init__(self, num_qubits, depth=2, entangler_map=None, entanglement='full', paulis=['Z', 'ZZ'], data_map_func=self_product): """Constructor. Args: num_qubits (int): number of qubits depth (int): the number of repeated circuits entangler_map (list[list]): describe the connectivity of qubits, each list describes [source, target], or None for full entanglement. Note that the order is the list is the order of applying the two-qubit gate. entanglement (str): ['full', 'linear'], generate the qubit connectivitiy by predefined topology paulis (str): a comma-seperated string for to-be-used paulis data_map_func (Callable): a mapping function for data x """ self.validate(locals()) super().__init__() self._num_qubits = num_qubits self._depth = depth if entangler_map is None: self._entangler_map = self.get_entangler_map(entanglement, num_qubits) else: self._entangler_map = self.validate_entangler_map(entangler_map, num_qubits) self._pauli_strings = self._build_subset_paulis_string(paulis) self._data_map_func = data_map_func self._magic_num = np.nan self._param_pos = OrderedDict() self._circuit_template = self._build_circuit_template() def _build_subset_paulis_string(self, paulis): # fill out the paulis to the number of qubits temp_paulis = [] for pauli in paulis: len_pauli = len(pauli) for possible_pauli_idx in itertools.combinations(range(self._num_qubits), len_pauli): string_temp = ['I'] * self._num_qubits for idx in range(len(possible_pauli_idx)): string_temp[-possible_pauli_idx[idx] - 1] = pauli[-idx - 1] temp_paulis.append(''.join(string_temp)) # clean up string that can not be entangled. final_paulis = [] for pauli in temp_paulis: where_z = np.where(np.asarray(list(pauli[::-1])) != 'I')[0] if len(where_z) == 1: final_paulis.append(pauli) else: is_valid = True for src, targ in itertools.combinations(where_z, 2): if [src, targ] not in self._entangler_map: is_valid = False break if is_valid: final_paulis.append(pauli) else: logger.warning("Due to the limited entangler_map," " {} is skipped.".format(pauli)) logger.info("Pauli terms include: {}".format(final_paulis)) return final_paulis def _build_circuit_template(self): x = np.asarray([self._magic_num] * self._num_qubits) qr = QuantumRegister(self._num_qubits, name='q') qc = self.construct_circuit(x, qr) for index in range(len(qc.data)): gate_param = qc.data[index][0].params param_sub_pos = [] for x in range(len(gate_param)): if isinstance(gate_param[x], NaN): param_sub_pos.append(x) if param_sub_pos != []: self._param_pos[index] = param_sub_pos return qc def _extract_data_for_rotation(self, pauli, x): where_non_i = np.where(np.asarray(list(pauli[::-1])) != 'I')[0] return x[where_non_i] def _construct_circuit_with_template(self, x): coeffs = [self._data_map_func(self._extract_data_for_rotation(pauli, x)) for pauli in self._pauli_strings] * self._depth qc = copy.deepcopy(self._circuit_template) data_idx = 0 for key, value in self._param_pos.items(): new_param = coeffs[data_idx] for pos in value: qc.data[key].params[pos] = Float(2. * new_param) # rotation angle is 2x data_idx += 1 return qc def construct_circuit(self, x, qr=None, inverse=False): """ Construct the second order expansion based on given data. Args: x (numpy.ndarray): 1-D to-be-transformed data. qr (QauntumRegister): the QuantumRegister object for the circuit, if None, generate new registers with name q. inverse (bool): whether or not inverse the circuit Returns: QuantumCircuit: a quantum circuit transform data x. """ if not isinstance(x, np.ndarray): raise TypeError("x must be numpy array.") if x.ndim != 1: raise ValueError("x must be 1-D array.") if x.shape[0] != self._num_qubits: raise ValueError("number of qubits and data dimension must be the same.") if qr is None: qc = self._construct_circuit_with_template(x) else: qc = QuantumCircuit(qr) for _ in range(self._depth): for i in range(self._num_qubits): qc.u2(0, pi, qr[i]) for pauli in self._pauli_strings: coeff = self._data_map_func(self._extract_data_for_rotation(pauli, x)) p = Pauli.from_label(pauli) qc += Operator.construct_evolution_circuit([[coeff, p]], 1, 1, qr) if inverse: qc = qc.inverse() return qc
python
from scapy.all import * from flpr import FLPR, FLPR_PORT from ifaces import ifaces from util import ban_ip # verify that the last IP in history is the receiver's IP def ips_flpr_2(pkt): ip = pkt[IP] flpr = pkt[FLPR] print("flipper message received, ID = %s, CTR = %s, LIM = %s" % (flpr.id, flpr.ctr, flpr.lim)) if not flpr.hist: print("ATTACK DETECTED: history is empty") ban_ip(ip.src) elif flpr.ctr == flpr.lim: print("scores communication") print("message forwarded") elif ip.dst != flpr.hist[-1]: print("ATTACK DETECTED: last IP in history and receiver's IP not matching") ban_ip(ip.src) else: print("regular message") print("message forwarded") print() if __name__ == "__main__": bind_layers(TCP, FLPR, sport=FLPR_PORT) bind_layers(TCP, FLPR, dport=FLPR_PORT) print("listening for FLPR on TCP port %s" % FLPR_PORT) # intercept only incoming FLPR messages sniff(prn=ips_flpr_2, iface=ifaces, lfilter=lambda pkt: FLPR in pkt and pkt[Ether].src != Ether().src)
python
#!/usr/bin/env python3 from boldui import Oplist, Expr, var, stringify_op, ProtocolServer from boldui.framework import Clear, Column, Padding, Center, SizedBox, Rectangle, Text, Flexible def main(): root = Clear( color=0xff202030, child=Column([ Padding( Text( 'Hello, World!', font_size=18, color=0xffa0a0a0, ), all=10, ), Padding( Center( SizedBox( Rectangle(0xffa0a0a0), width=abs((var('time') % 1) - 0.5) * 50 + 100, height=abs(((var('time') + 0.5) % 1) - 0.5) * 50 + 100, ), ), all=10, ), Padding( Rectangle( color=Expr.if_(var('height') > 600, 0xffa0a0a0, 0xff9090d0) ), all=10 ), Flexible( Padding( Rectangle( color=Expr.if_(var('width') > 800, 0xffa0a0a0, 0xffd09090) ), all=10 ), flex_x=3, ), ]), ) built_root = root.build() oplist = Oplist() size = built_root.layout(Expr(0), Expr(0), var('width'), var('height')) scene = built_root.render(oplist, Expr(0), Expr(0), size[0], size[1]) for op in scene: print(stringify_op(op)) server = ProtocolServer("/tmp/boldui.hello_world.sock") server.scene = {'oplist': oplist.to_list(), 'scene': scene, 'vars': {}} server.serve() if __name__ == '__main__': main()
python
from Services import ApiService from Services import DBService import logging logger = logging.getLogger('Roby') #This class can be viewd as an AbstractFactory # for the adapters, because the data source # can be different # Registry / Service container of the Classes that # can adapt to different data sources or services (could be database, API, FTP, Bucket S3 etc etc) # Using the Python decorators SERVICE_ADAPTERS = dict() def register(): """Register a Service Class that can adapt to different data sources""" SERVICE_ADAPTERS["API"] = ApiService.ApiService SERVICE_ADAPTERS["DB"] = DBService.DbService class ServiceAdapter: def __init__(self): register() def get_service(self, service_type): return SERVICE_ADAPTERS[service_type]
python
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import sys, signal import tensorflow as tf import utils as ut from agent import Agent from envs import create_env logger = ut.logging.get_logger() def train(args, server, cluster, env, queue_shapes, trajectory_queue_size, replay_queue_size): agent = Agent(args, server, cluster, env, queue_shapes, trajectory_queue_size, replay_queue_size) # Variable names that start with "local" are not saved in checkpoints. variables_to_save = [ v for v in tf.global_variables() if not v.name.startswith("local")] init_op = tf.variables_initializer(variables_to_save) init_all_op = tf.global_variables_initializer() saver = ut.tf.FastSaver(variables_to_save) var_list = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name) logger.info('Trainable vars:') for v in var_list: logger.info(' %s %s', v.name, v.get_shape()) def init_fn(ses): logger.info("Initializing all parameters.") ses.run(init_all_op) devices = ["/job:ps"] if args.task == 0: devices += ["/job:worker/task:{}/gpu:0".format(args.task), "/job:worker/task:{}/cpu:0".format(args.task)] elif args.task == 1: devices += ["/job:worker/task:{}/gpu:{}".format(args.task, 1 if args.num_gpu > 1 else 0), "/job:worker/task:{}/cpu:0".format(args.task)] else: devices += ["/job:worker/task:{}/cpu:0".format(args.task)] config = tf.ConfigProto(device_filters=devices, allow_soft_placement=True) logger.info("Events directory: %s_%s", args.load_path, args.task) summary_writer = tf.summary.FileWriter( "{}_{}".format(args.load_path, args.task)) agent.summary_writer = summary_writer uninitialized_variables = tf.report_uninitialized_variables(variables_to_save) if args.task == 1 and args.loss == 'gan': local_init_op = tf.variables_initializer(agent.local_disc.var_list) else: local_init_op = None sv = tf.train.Supervisor( is_chief=args.task == 0, logdir=str(args.load_path), saver=saver, summary_op=None, init_op=init_op, init_fn=init_fn, local_init_op=local_init_op, summary_writer=summary_writer, # very useful when sv.managed_session hang #ready_op=tf.constant([], dtype=tf.string), ready_op=uninitialized_variables, global_step=agent.policy_step, save_model_secs=30, save_summaries_secs=30) num_policy_steps = 100000000 logger.info( "Starting session. If this hangs, we're mostly likely waiting" " to connect to the parameter server. One common cause is that" " the parameter server DNS name isn't resolving yet, or is misspecified.") with sv.managed_session(server.target, config=config) as sess, \ sess.as_default(): ############################### # Run thread ############################### if args.task == 1 and args.loss == 'gan': # master_disc ->local_disc sess.run(agent.disc_initializer) agent.start_replay_thread(sess, summary_writer) elif args.task >= 1: sess.run(agent.policy_sync) agent.start_worker_thread(sess, summary_writer) policy_step = sess.run(agent.policy_step) logger.info("Starting training at step=%d", policy_step) while not sv.should_stop() and ( \ not num_policy_steps or policy_step < num_policy_steps): if args.task == 0: agent.train_policy(sess) elif args.task == 1 and args.loss == 'gan': # local_disc -> master_disc sess.run(agent.disc_sync) agent.train_gan(sess) else: sess.run(agent.policy_sync) policy_step = sess.run(agent.policy_step) # Ask for all the services to stop. sv.stop() logger.info('reached %s steps. worker stopped.', policy_step)
python
def sortedSquaredArray(array): # Write your code here. sortedSquared=[0 for _ in array] smallIndex =0 largeIndex=len(array)-1 for idx in reversed(range(len(array))): if abs(array[smallIndex])>abs(array[largeIndex]): sortedSquared[idx] = array[smallIndex]*array[smallIndex] smallIndex+=1 else: sortedSquared[idx]=array[largeIndex]*array[largeIndex] largeIndex-=1 return sortedSquared print(sortedSquaredArray([-5,-4,-3,-2,0,2,4,5]))
python
import cv2 import os import scipy as scp import scipy.misc import numpy as np def triangStats(img, noHoles = False, minPercArea = 0.1): imggray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, imbw = cv2.threshold(imggray, 10, 255, 0) _, contours, _ = cv2.findContours(imbw, 1, 2) maxArea = 0; Ax = Ay = Bx = By = Cx = Cy = 0 areaCnt = 0 maxCnt = None idx = -1 for cnt in contours: idx += 1 retval, triangle = cv2.minEnclosingTriangle(cnt) if (triangle is None): continue areaCnt = cv2.contourArea(cnt) if (areaCnt <= maxArea): continue maxArea = areaCnt maxCnt = idx Ax = triangle[0][0][0] Ay = triangle[0][0][1] Bx = triangle[1][0][0] By = triangle[1][0][1] Cx = triangle[2][0][0] Cy = triangle[2][0][1] if (maxArea <= minPercArea * imggray.shape[0] * imggray.shape[1]): return False, None, None, None, None v1x = 0 v1y = 0 v2x = 0 v2y = 0 v3x = 0 v3y = 0 imgCnt = np.zeros((img.shape[0], img.shape[1], 3), np.uint8) mask = np.zeros((img.shape[0], img.shape[1], 3), np.uint8) cv2.drawContours(mask, contours, maxCnt, color=(255, 255, 255), thickness=cv2.FILLED) color = [0, 0, 0] contActivePixels = 0 valret = True for i in range(mask.shape[0]): for j in range(mask.shape[1]): if (mask[i, j, 0] == 255 and mask[i, j, 1] == 255 and mask[i, j, 2] == 255): if(img[i, j, 0] != 0 or img[i, j, 1] != 0 or img[i, j, 2] != 0): contActivePixels+=1 if (color[0] == 0 and color[1] == 0 and color[2] == 0): color[0] = int(img[i][j][0]) color[1] = int(img[i][j][1]) color[2] = int(img[i][j][2]) else: if (img[i][j][0] != color[0] or img[i][j][1] != color[1] or img[i][j][2] != color[2]): if (noHoles or (img[i][j][0] != 0 or img[i][j][1] != 0 or img[i][j][2] != 0)): valret = False if(valret == False): return False, None, None, None, None cv2.drawContours(imgCnt, contours, maxCnt, color=color, thickness=cv2.FILLED) if (Cy < By and Cy < Ay): v1y = Cy v1x = Cx if (Ax < Bx): v2x = Ax v2y = Ay v3x = Bx v3y = By else: v2x = Bx v2y = By v3x = Ax v3y = Ay elif (By < Cy and By < Ay): v1y = By v1x = Bx if (Ax < Cx): v2x = Ax v2y = Ay v3x = Cx v3y = Cy else: v2x = Cx v2y = Cy v3x = Ax v3y = Ay else: v1y = Ay v1x = Ax if (Bx < Cx): v2x = Bx v2y = By v3x = Cx v3y = Cy else: v2x = Cx v2y = Cy v3x = Bx v3y = By # (x,y),radius = cv2.minEnclosingCircle(cnt) triangleArea = abs((v2x * (v1y - v3y) + v1x * (v3y - v2y) + v3x * (v2y - v1y)) / 2) # print(f"({v1x},{v1y}) ({v2x},{v2y}) ({v3x},{v3y}) {maxArea} {triangleArea}") # a=input('pare') # center = (int(x),int(y)) # radius = int(radius) # cv2.circle(img,center,radius,(255,255,0),2) #desc = [maxArea / triangleArea, 0 if v3y - v1y == 0 else (v2y - v1y) / (v3y - v1y), #1 if v1x - v2x > 0 and v3x - v1x > 0 else 0, np.rad2deg(np.arctan( abs(v3y-v2y) / (v3x - v2x)))] if triangleArea == 0 or (v3x - v2x) == 0: return False, None, None, None, None desc = [contActivePixels/triangleArea, np.rad2deg(np.arctan(abs(v3y - v2y) / (v3x - v2x))), 1 if v1x - v2x > 0 and v3x - v1x > 0 else 0 ] return True, np.array([desc]),contActivePixels/(imggray.shape[0] * imggray.shape[1]), imgCnt, color
python
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The errors in the conformance process.""" class BlockConformanceFailure(Exception): def __init__( self, start_line_number, validated_lines, block_number, file_number, node, rows): super(BlockConformanceFailure, self).__init__() self.start_line_number = start_line_number self.validated_lines = validated_lines self.block_number = block_number self.file_number = file_number self.node = node self.rows = rows def __str__(self): return ( 'Block %d starting on row %d in file number %d is non-conformant.\n\n' 'First invalid row: %d (row %d in input file).\n\n' 'Expected structure:\n%s\n' 'Actual structure:\n%s\n' % ( self.block_number, self.start_line_number, self.file_number, self.validated_lines + 1, self.start_line_number + self.validated_lines + 1, self.node, [str(row.type) for row in self.rows])) class CardinalityFailure(Exception): def __init__(self, block_number, file_number, error): super(CardinalityFailure, self).__init__() self.block_number = block_number self.file_number = file_number self.error = error def __str__(self): return ('Block number %s in the file number %s is not conformant (error= %s' '.).' % (self.block_number, self.file_number, self.error))
python
# Generated by Django 2.1.7 on 2019-09-20 15:49 from django.conf import settings import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Fav', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], ), migrations.CreateModel( name='Thing', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200, validators=[django.core.validators.MinLengthValidator(2, 'Title must be greater than 2 characters')])), ('text', models.TextField()), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('favorites', models.ManyToManyField(related_name='favorite_things', through='favs.Fav', to=settings.AUTH_USER_MODEL)), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='fav_thing_owner', to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='fav', name='thing', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='favs.Thing'), ), migrations.AddField( model_name='fav', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='favs_users', to=settings.AUTH_USER_MODEL), ), migrations.AlterUniqueTogether( name='fav', unique_together={('thing', 'user')}, ), ]
python
import os import sys from collections import defaultdict, OrderedDict from geodata.encoding import safe_decode, safe_encode from geodata.i18n.unicode_paths import DATA_DIR from geodata.text.normalize import normalized_tokens, normalize_string from geodata.text.tokenize import tokenize, token_types from geodata.text.phrases import PhraseFilter from marisa_trie import BytesTrie DICTIONARIES_DIR = os.path.join(DATA_DIR, 'dictionaries') PREFIX_KEY = u'\x02' SUFFIX_KEY = u'\x03' POSSIBLE_ROMAN_NUMERALS = set(['i', 'ii', 'iii', 'iv', 'v', 'vi', 'vii', 'viii', 'ix', 'x', 'xi', 'xii', 'xiii', 'xiv', 'xv', 'xvi', 'xvii', 'xviii', 'xix', 'xx', 'xxx', 'xl', 'l', 'lx', 'lxx', 'lxxx', 'xc', 'c', 'cc', 'ccc', 'cd', 'd', 'dc', 'dcc', 'dccc', 'cm', 'm', 'mm', 'mmm', 'mmmm']) PHRASE = 'PHRASE' class DictionaryPhraseFilter(PhraseFilter): def __init__(self, *dictionaries): self.dictionaries = dictionaries self.canonicals = {} def serialize(self, s): return s def deserialize(self, s): return s def configure(self, base_dir=DICTIONARIES_DIR): kvs = defaultdict(OrderedDict) for lang in os.listdir(DICTIONARIES_DIR): for filename in self.dictionaries: is_suffix_dictionary = 'suffixes' in filename is_prefix_dictionary = 'prefixes' in filename dictionary_name = filename.split('.', 1)[0] path = os.path.join(DICTIONARIES_DIR, lang, filename) if not os.path.exists(path): continue for line in open(path): line = line.strip() if not line: continue phrases = safe_decode(line).split(u'|') if not phrases: continue canonical = phrases[0] canonical_normalized = normalize_string(canonical) self.canonicals[(canonical, lang, dictionary_name)] = phrases[1:] for i, phrase in enumerate(phrases): if phrase in POSSIBLE_ROMAN_NUMERALS: continue is_canonical = normalize_string(phrase) == canonical_normalized if is_suffix_dictionary: phrase = SUFFIX_KEY + phrase[::-1] elif is_prefix_dictionary: phrase = PREFIX_KEY + phrase kvs[phrase][(lang, dictionary_name, canonical)] = is_canonical kvs = [(k, '|'.join([l, d, str(int(i)), safe_encode(c)])) for k, vals in kvs.iteritems() for (l, d, c), i in vals.iteritems()] self.trie = BytesTrie(kvs) self.configured = True def search_substring(self, s): if len(s) == 0: return None, 0 for i in xrange(len(s) + 1): if not self.trie.has_keys_with_prefix(s[:i]): i -= 1 break if i > 0: return (self.trie.get(s[:i]), i) else: return None, 0 def search_suffix(self, token): suffix_search, suffix_len = self.search_substring(SUFFIX_KEY + token[::-1]) if suffix_len > 0: suffix_len -= len(SUFFIX_KEY) return suffix_search, suffix_len def search_prefix(self, token): prefix_search, prefix_len = self.search_substring(PREFIX_KEY + token) if prefix_len > 0: prefix_len -= len(PREFIX_KEY) return prefix_search, prefix_len def basic_filter(self, tokens): return super(DictionaryPhraseFilter, self).filter(tokens) def filter(self, tokens): for p, t, data in self.basic_filter(tokens): if not p: t, c = t token = t token_len = len(token) suffix_search, suffix_len = self.search_suffix(token) if suffix_search and self.trie.get(token[(token_len - suffix_len):].rstrip('.')): yield ([(t, c)], PHRASE, suffix_len, map(safe_decode, suffix_search)) continue prefix_search, prefix_len = self.search_prefix(token) if prefix_search and self.trie.get(token[:prefix_len]): yield ([(t, c)], PHRASE, prefix_len, map(safe_decode, prefix_search)) continue else: c = PHRASE yield t, c, len(t), map(safe_decode, data) STREET_TYPES_DICTIONARIES = ('street_types.txt', 'directionals.txt', 'concatenated_suffixes_separable.txt', 'concatenated_suffixes_inseparable.txt', 'concatenated_prefixes_separable.txt', 'organizations.txt', 'people.txt', 'personal_suffixes.txt', 'personal_titles.txt', 'qualifiers.txt', 'stopwords.txt',) GIVEN_NAME_DICTIONARY = 'given_names.txt' SURNAME_DICTIONARY = 'surnames.txt' NAME_DICTIONARIES = (GIVEN_NAME_DICTIONARY, SURNAME_DICTIONARY,) NAME_ABBREVIATION_DICTIONARIES = STREET_TYPES_DICTIONARIES + ('academic_degrees.txt', 'building_types.txt', 'company_types.txt', 'place_names.txt', 'qualifiers.txt', 'synonyms.txt', 'toponyms.txt', ) UNIT_ABBREVIATION_DICTIONARIES = ('level_types.txt', 'post_office.txt', 'unit_types.txt', ) ALL_ABBREVIATION_DICTIONARIES = STREET_TYPES_DICTIONARIES + \ NAME_ABBREVIATION_DICTIONARIES + \ UNIT_ABBREVIATION_DICTIONARIES + \ ('no_number.txt', 'nulls.txt',) _gazetteers = [] def create_gazetteer(*dictionaries): g = DictionaryPhraseFilter(*dictionaries) _gazetteers.append(g) return g street_types_gazetteer = create_gazetteer(*STREET_TYPES_DICTIONARIES) names_gazetteer = create_gazetteer(*NAME_ABBREVIATION_DICTIONARIES) unit_types_gazetteer = create_gazetteer(*UNIT_ABBREVIATION_DICTIONARIES) street_and_unit_types_gazetteer = create_gazetteer(*(STREET_TYPES_DICTIONARIES + UNIT_ABBREVIATION_DICTIONARIES)) abbreviations_gazetteer = create_gazetteer(*ALL_ABBREVIATION_DICTIONARIES) given_name_gazetteer = create_gazetteer(GIVEN_NAME_DICTIONARY) def init_gazetteers(): for g in _gazetteers: g.configure()
python
#!/usr/bin/python3 """cleaning gentx data """ import json import logging # ## Preface: python data tools import pandas as pd log = logging.getLogger(__name__) BORING = ['Verified', 'Task Type', 'Event', 'Submission Link'] def main(argv, stdout, cwd): log.info('versions: %s', dict(pandas=pd.__version__)) [portal_export, dest] = argv[1:3] tasks = load(cwd / portal_export) tasks = extract(tasks) save(tasks, cwd / dest, stdout) def load(path): # ## Sumitted Tasks # # exported from the portal task_export = pd.read_csv(path, parse_dates=['Last Date Updated']) task_export = task_export[ task_export.Task == 'Create and submit gentx - Metering '] # log.info('portal update: %s', task_export.dtypes) # one completed task per participant tasks = mark_dups(task_export.set_index('TaskBoardID')) log.info('tasks:\n%s', tasks.drop(['Status', 'Verified', 'Task Type', 'Event', 'Submission Link'], axis=1).sort_values( 'Last Date Updated').tail()) # ## Clean up markup # # The portal exports with newline as `<br>`. # log.info( # tasks[tasks['Submission Link'].str.contains('<br />') # .fillna(False)][['Submission Link']].head(8)) return tasks # + def mark_dups(df, key='Discord ID'): """one per participant""" df = df.sort_values([key, 'Last Date Updated']) dupd = df.duplicated([key], keep='last') df.loc[dupd, 'Status'] = 'Obsolete' dups = df[df.Status == 'Obsolete'].reset_index().drop( BORING, axis=1) log.warning('dropping dups by %s:\n%s', key, dups[['TaskBoardID', 'Discord ID', 'Moniker']]) log.info('tasks: %s', (dict(submissions_all=len(df), deduped=len(df) - len(dups), dups=len(dups)))) return df # + def nobr(data): return data.str.replace('<br />', '') def tryjson(txt): try: return json.loads(txt) except Exception as ex: return ex def extract(tasks): tasks['gentx'] = nobr(tasks['Submission Link']).apply( lambda txt: tryjson(txt)) tasks['jsonErr'] = tasks.gentx.apply(lambda v: isinstance(v, Exception)) # print(json.dumps(tasks.gentx.iloc[0], indent=2)) tasks['moniker'] = tasks.gentx.apply( lambda v: None if isinstance(v, Exception) else v['body']['messages'][0]['description']['moniker']) tasks['delegator_address'] = tasks.gentx.apply( lambda v: None if isinstance(v, Exception) else v['body']['messages'][0]['delegator_address']) log.warning('JSON errors:\n%s', tasks[['Discord ID', 'Moniker', 'jsonErr']][tasks.jsonErr]) dup_moniker = tasks[tasks.Status == 'Completed'].sort_values('Moniker') dup_moniker = dup_moniker[dup_moniker.duplicated('Moniker')] dup_moniker = dup_moniker.drop(columns=BORING) if len(dup_moniker): log.warning('Duplicate Monikers?\n%s', dup_moniker) # ## No gentx with >50 BLD tasks['amount'] = tasks[~tasks.jsonErr].gentx.apply( lambda g: g['body']['messages'][0]['value']['amount'] ).astype('float') / 1000000.0 over50 = tasks[tasks.amount > 50] if len(over50): log.warning('No gentx with >50 BLD\n%s', over50) return tasks def save(tasks, dest, stdout): # alljson = json.dumps([tx for tx in tasks.gentx.values], indent=2) # (_home() / 'Desktop' / 'genesis.json').open('w').write(alljson) dest.mkdir(parents=True, exist_ok=True) # ## separate files ok = tasks[(tasks.Status == 'Completed') & ~tasks.jsonErr] for ix, info in ok[['gentx']].reset_index().iterrows(): path = dest / f'gentx{ix}.json' json.dump(info.gentx, path.open('w')) tasks = tasks.sort_values(['Discord ID', 'Last Date Updated']) tasks[['Discord ID', 'Moniker', 'Status', 'jsonErr', 'Last Date Updated', 'moniker', 'delegator_address']].reset_index().to_csv(stdout) def _more_checks(): # ## duplicate pubkeys filestuff = [json.load(p.open()) for p in (_home() / 'Desktop' / 'gentx3').iterdir()] len(gentxs) df = pd.DataFrame(pd.Series(filestuff), columns=['gentx']) df['pubkey'] = df.gentx.apply(lambda g: g['body']['messages'][0]['pubkey']['key']) df['moniker'] = df.gentx.apply(lambda g: g['body']['messages'][0]['description']['moniker']) df = df.set_index('pubkey') df.head() df.loc[df.index.duplicated()] df['rate'] = df.gentx.apply(lambda g: g['body']['messages'][0]['commission']['rate']) df['max_rate'] = df.gentx.apply(lambda g: g['body']['messages'][0]['commission']['max_rate']) df[['moniker', 'rate', 'max_rate']] df[['moniker', 'rate', 'max_rate']][df.max_rate <= df.rate] if __name__ == '__main__': def _script(): from sys import argv, stdout, stderr from pathlib import Path logging.basicConfig( level=logging.INFO, stream=stderr, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') main(argv[:], stdout, cwd=Path('.')) _script()
python
from . import startup from . import models from . import services from fastapi.responses import JSONResponse import json import random app = startup.app redisDb = startup.redisDb card_collection = models.CardCollection(startup.source) @app.get("/decks") def get_decks(): """ Returns all deck types """ decks = models.DeckType.get_me() return JSONResponse(content=decks) @app.get("/all-cards/from-deck/{from_deck}") def get_all_cards_from_deck(from_deck: models.DeckType): """ Return all cards in a given deck """ cards = [ item for item in card_collection.values() if item["from_deck"] == from_deck ] response = json.loads(models.CardResponse(cards=cards).json()) return JSONResponse(content=response) @app.get("/all-cards") def get_all_cards(): """ Return all cards """ cards = [item for item in card_collection.values()] response = json.loads(models.CardResponse(cards=cards).json()) return JSONResponse(content=response) @app.get("/draw", response_model=models.Card) def draw(): """ Randomly Draw a Card """ card = random.choice(list(card_collection.values())) return card @app.get("/draw/from-deck/{deck_type}", response_model=models.Card) def draw(deck_type: models.DeckType): """ Randomly Draw a Card from a specified deck """ deck = list( filter(lambda x: x["from_deck"] == deck_type, list(card_collection.values())) ) card = random.choice(deck) return card @app.get("/get-current-session") def get_current_session(): current_session = redisDb.get("Current").decode("utf-8") return JSONResponse( content={ "data": current_session, } ) @app.post("/start") def start(request: models.StartRequest): if redisDb.get("Current"): return JSONResponse( content={ "success": False, "data": "There's currently an existing session.", } ) sid = "SESH-" + services.generate_id(4) redisDb.set("Current", sid) session = {"PL-" + services.generate_id(3): i for i in request.players} redisDb.hmset(sid, session) return JSONResponse( content={ "success": True, "sid": sid, "pids": session, } ) @app.post("/end") def end(request: models.EndRequest): currentSession = redisDb.get("Current") if not currentSession: return JSONResponse( content={ "success": False, "data": "There are no sessions.", } ) redisDb.delete("Current") redisDb.delete(request.sid) return JSONResponse( content={ "success": True, "data": "Succesfully ended existing session.", } )
python
import sys input = lambda: sys.stdin.readline().rstrip() n, m = map(int, input().split()) s = {input() for _ in range(n)} l = [] for _ in range(m): t = input() if t in s: s.remove(t) l.append(t) l.sort() print(len(l), *l, sep="\n")
python
""" Backward compatible behaviour with a primary key 'Id' and upper-case field names """ from django.db import models class User(models.Model): username = models.CharField(max_length=80) last_name = models.CharField(max_length=80) first_name = models.CharField(max_length=40, null=True, blank=True) email = models.EmailField() is_active = models.BooleanField(default=False) class Lead(models.Model): company = models.CharField(max_length=255) last_name = models.CharField(max_length=80) owner = models.ForeignKey(User, on_delete=models.DO_NOTHING)
python
from flask import render_template, jsonify, request, session, redirect from dataclasses import Test import forms from werkzeug.exceptions import HTTPException def home(): return render_template("home.html") def error(e): return render_template("error.html", error_num=e.code if isinstance(e, HTTPException) else 500, error_txt=str(e).split(": ", 1)[1])
python
# Create your models here. from django.db import models from Graphic_reporter.models import Image class Published_Article(models.Model): slug = models.CharField(max_length=140) title = models.CharField(max_length=140) description = models.CharField(max_length=140) body = models.TextField() publishedtime = models.DateTimeField(auto_now_add=True) images = models.ManyToManyField('Graphic_reporter.Image') def __str__(self): return 'Publised Article: ' + self.slug
python
# -*- coding: utf-8 -*- """Setup file for easy installation""" from os.path import join, dirname from setuptools import setup version = __import__('social_auth').__version__ LONG_DESCRIPTION = """ Django Social Auth is an easy to setup social authentication/registration mechanism for Django projects. Crafted using base code from django-twitter-oauth_ and django-openid-auth_, implements a common interface to define new authentication providers from third parties. """ def long_description(): """Return long description from README.rst if it's present because it doesn't get installed.""" try: return open(join(dirname(__file__), 'README.rst')).read() except IOError: return LONG_DESCRIPTION setup(name='django-social-auth', version=version, author='Matías Aguirre', author_email='[email protected]', description='Django social authentication made simple.', license='BSD', keywords='django, openid, oauth, social auth, application', url='https://github.com/omab/django-social-auth', packages=['social_auth', 'social_auth.backends', 'social_auth.backends.contrib', 'social_auth.backends.pipeline', 'social_auth.db'], package_data={'social_auth': ['locale/*/LC_MESSAGES/*']}, long_description=long_description(), install_requires=['django>=1.2.5', 'oauth2>=1.5.167', 'python_openid>=2.2'], classifiers=['Framework :: Django', 'Development Status :: 4 - Beta', 'Topic :: Internet', 'License :: OSI Approved :: BSD License', 'Intended Audience :: Developers', 'Environment :: Web Environment', 'Programming Language :: Python :: 2.5', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7'])
python
from django.urls import path, include from . import views urlpatterns = [ # Home Page URLs path('', views.home, name="home"), path(r'^logout/$', views.logoutUser, name="logout"), path('about/', views.about, name="about"), # Registrations path('customer-registration/', views.cusRegister, name="customer-registration"), path('restaurant-registration/', views.resRegister, name="restaurant-registration"), # login Pages path('res-login/', views.reslogin, name="reslogin"), path('cus-login/', views.cuslogin, name="cuslogin"), path('restaurant/', include('restaurants.urls')), path('customer/', include('customers.urls')), ]
python
import abc import six @six.add_metaclass(abc.ABCMeta) class VarSet: @abc.abstractmethod def var_names(self, model): pass class VarSetFromSubH(VarSet): """Creates a VarSet from SubH instances specified in a model. Args: label (:class:`VarSet`): VarSet instance model (:class:`Model`): Model instance """ def __init__(self, label): super(VarSetFromSubH, self).__init__() self.label = label def var_names(self, model): # take model here return model.namespaces[0][self.label] class VarSetFromVarLabels(VarSet): """Creates a VarSet from a provided list of variables. Args: var_list: a list of variables model (:class:`Model`): Model instance """ def __init__(self, var_list): super(VarSetFromVarLabels, self).__init__() self.var_list = var_list def var_names(self, model): return set( var.label for var in self.var_list ) class VarSetFromLabels(VarSet): """Creates a VarSet from a provided list of variables. Args: var_list: a list of variables model (:class:`Model`): Model instance """ def __init__(self, labels): super(VarSetFromLabels, self).__init__() self.labels = labels def var_names(self, model): return set( label for label in self.labels ) class AndVars(VarSet): """Creates a VarSet that contains the intersection of two VarSet instances. Args: set_a (:class:`VarSet`): VarSet instance set_b (:class:`VarSet`): VarSet instance model (:class:`Model`): Model instance Examples: In this example, two VarSet instances are created from the SubH class. AndVars provides the common variable namespaces between these two sets. >>> from pyqubo import SubH, VarSetFromSubH, Binary, AndVars >>> a, b, c = Binary("a"), Binary("b"), Binary("c") >>> exp = (SubH(a + b, 'n1') + SubH(b + c, 'n2'))**2 >>> model = exp.compile() >>> set_x = VarSetFromSubH('n1') >>> set_y = VarSetFromSubH('n2') >>> set_z = AndVars(set_x, set_y) >>> set_z.var_names(model) {'b'} """ def __init__(self, set_a, set_b): super(AndVars, self).__init__() self.set_a = set_a self.set_b = set_b def var_names(self, model): return self.set_a.var_names(model) & self.set_b.var_names(model) class OrVars(VarSet): """Creates a VarSet that contains the union of two VarSet instances. Args: set_a (:class:`VarSet`): VarSet instance set_b (:class:`VarSet`): VarSet instance model (:class:`Model`): Model instance Examples: In this example, two VarSet instances are created from the SubH class. OrVars provides all namespaces contained in these two sets. >>> from pyqubo import SubH, VarSetFromSubH, Binary, OrVars >>> a, b, c = Binary("a"), Binary("b"), Binary("c") >>> exp = (SubH(a + b, 'n1') + SubH(b + c, 'n2'))**2 >>> model = exp.compile() >>> set_x = VarSetFromSubH('n1') >>> set_y = VarSetFromSubH('n2') >>> set_z = OrVars(set_x, set_y) >>> set_z.var_names(model) #doctest: +SKIP {'a', 'b', 'c'} """ def __init__(self, set_a, set_b): super(OrVars, self).__init__() self.set_a = set_a self.set_b = set_b def var_names(self, model): return self.set_a.var_names(model) | self.set_b.var_names(model)
python
from mmdet.models.necks.fpn import FPN from .second_fpn import SECONDFPN from .second_fpn_ran import SECONDFPN_RAN from .second_fpn_mask import SECONDFPNMASK __all__ = ['FPN', 'SECONDFPN', 'SECONDFPN_RAN', 'SECONDFPNMASK']
python
import time import datetime as dt date = {} date["Future"] = dt.datetime.now() + dt.timedelta(seconds = 10) if date["Future"] <= dt.datetime.now(): print("Succ\n")
python
import re examples1 = { "2x3x4": 58, "1x1x10": 43 } examples2 = { "2x3x4": 34, "1x1x10": 14 } def day2a(test=False): if test: inputs = examples else: inputs = open("d2.txt", "r").read().strip().split("\n") real_total = 0 for item in inputs: wayall = 0 bl, bw, bh = re.match("^([0-9]+)x([0-9]+)x([0-9]+)$", item).groups() bl = int(bl) bw = int(bw) bh = int(bh) ar1 = 2 * bl * bw ar2 = 2 * bw * bh ar3 = 2 * bh * bl total = ar1 + ar2 + ar3 litems = sorted([bl, bw, bh], reverse=True) sm1 = litems.pop() sm2 = litems.pop() total += (sm1 * sm2) wayall += total if test: print(wayall) print(wayall == examples1[item]) else: real_total += wayall if not test: print(real_total) def day2b(test=False): if test: inputs = examples2 else: inputs = open("d2.txt", "r").read().strip().split("\n") real_total = 0 for item in inputs: wayall = 0 bl, bw, bh = re.match("^([0-9]+)x([0-9]+)x([0-9]+)$", item).groups() bl = int(bl) bw = int(bw) bh = int(bh) bow = bl * bw * bh litems = sorted([bl, bw, bh], reverse=True) sm1 = litems.pop() * 2 sm2 = litems.pop() * 2 wayall += bow + sm1 + sm2 if test: print(wayall) print(wayall == examples2[item]) else: real_total += wayall if not test: print(real_total) day2a() day2b()
python
# Copyright (c) OpenMMLab. All rights reserved. import os import time from mmdet.datasets import DATASETS from .base_sot_dataset import BaseSOTDataset @DATASETS.register_module() class UAV123Dataset(BaseSOTDataset): """UAV123 dataset of single object tracking. The dataset is only used to test. """ def __init__(self, *args, **kwargs): """Initialization of SOT dataset class.""" super().__init__(*args, **kwargs) def load_data_infos(self, split='test'): """Load dataset information. Args: split (str, optional): Dataset split. Defaults to 'test'. Returns: list[dict]: The length of the list is the number of videos. The inner dict is in the following format: { 'video_path': the video path 'ann_path': the annotation path 'start_frame_id': the starting frame number contained in the image name 'end_frame_id': the ending frame number contained in the image name 'framename_template': the template of image name } """ print('Loading UAV123 dataset...') start_time = time.time() data_infos = [] data_infos_str = self.loadtxt( self.ann_file, return_array=False).split('\n') # the first line of annotation file is a dataset comment. for line in data_infos_str[1:]: # compatible with different OS. line = line.strip().replace('/', os.sep).split(',') data_info = dict( video_path=line[0], ann_path=line[1], start_frame_id=int(line[2]), end_frame_id=int(line[3]), framename_template='%06d.jpg') data_infos.append(data_info) print(f'UAV123 dataset loaded! ({time.time()-start_time:.2f} s)') return data_infos
python
# -*- coding: utf-8 -*- informe_temp_atual = float(input("informe a temperatura atual: ")) if (informe_temp_atual > 0) and (informe_temp_atual <= 15): print ("Muito frio") elif (informe_temp_atual >= 16) and (informe_temp_atual <= 23): print ("Frio") elif (informe_temp_atual >= 24) and (informe_temp_atual <= 26): print ("Agradavel") elif (informe_temp_atual >= 27) and (informe_temp_atual <= 30): print ("Calor") elif (informe_temp_atual >= 31): print ("Muito Quente")
python
def merge_sort(arr): if len(arr) < 2: return arr # divide into 2 half divider = len(arr) // 2 arr1 = merge_sort(arr[0:divider]) arr2 = merge_sort(arr[divider:]) return merge(arr1, arr2) def merge(arra, arrb): i = j = 0 merge_list = [] while i < len(arra) and j < len(arrb): if arra[i] < arrb[j]: merge_list.append(arra[i]) i += 1 else: merge_list.append(arrb[j]) j += 1 while i < len(arra): merge_list.append(arra[i]) i += 1 while j < len(arrb): merge_list.append(arrb[j]) j += 1 return merge_list def max_advertise_revenue(): # let total_revenue be total advertisement revenue total_revenue = 0 # let ad_price_list be a list for ad amount price ad_price_list = [] # let clicks_list be a list for click count clicks_list = [] # read file input with open("./3_3_dot_product20180216.in") as f: line_num = 0 for line in f: line_num += 1 # read the first item for the n of items and weight if line_num == 1: num_item = int(line) else: # read ad revenue if line_num == 2: items = line.split() for item in items: ad_price_list.append(int(item)) # read clicks if line_num == 3: items = line.split() for item in items: clicks_list.append(int(item)) # merge sort clicks_list = merge_sort(clicks_list) # merge sort ad_price_list = merge_sort(ad_price_list) # loop through n items to add up revenue for index in range(0, len(clicks_list)): # add up advertisement revenue total_revenue += clicks_list[index] * ad_price_list[index] # return program output return total_revenue if __name__ == '__main__': """ Algorithmic Design and Techniques Solution to Programming Challenge 3-3: Maximum Advertisement Revenue """ print("total advertise revenue is %s" % max_advertise_revenue())
python
def anagrams(word, words): return [x for x in words if sorted(list(x)) == sorted(list(word))]
python
from random import randint from compara_texto import ComparaTexto class GeradorStrings(): def nova(self, comprimento): comp = ComparaTexto() caracteres = comp.CARACTERES_POSSIVEIS() resultado = [] for _ in range(comprimento): aleatorio = randint(0, len(caracteres) - 1) resultado.append(caracteres[aleatorio]) return ''.join(resultado)
python
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode from x2paddle.core.graph import GraphNode from x2paddle.core.util import * from functools import reduce import numpy as np import onnx import onnx.numpy_helper as numpy_helper from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE import logging as _logging from collections import OrderedDict import math import os import copy import sys import shutil _logger = _logging.getLogger(__name__) def _const_weight_or_none(node, necessary=False): if 'Constant' in node.layer_type: return node.value if isinstance(node, ONNXGraphDataNode): return node.weight if necessary: assert '{} should be an initializer or Constant operator.'.format( node.name) return None def _rename_or_remove_weight(weights, origin_name, target_name=None, is_remove=True): ''' Rename parameters by Paddle's naming rule of parameters. Args: weights(dict[String:np.ndarray]): Dict stored paramters, the key in weights is name of parameter. origin_name(String): Name of parameter to rename or remove. target_name(String, optional): if target_name is not None, add new key-value pair {target_name:weights[origin_name]} to weights, and target_name must follow paddle's naming rule of parameters. Default: None. is_remove: if is_remove is True, remove origin key-value pair. Default: True. Returns: None ''' if origin_name not in weights: raise KeyError('{} not a key in {}'.format(origin_name, weights)) if is_remove: # remove weight data = weights.pop(origin_name) else: data = weights[origin_name] if target_name is not None: # rename weight weights[target_name] = data def _is_static_shape(shape): negtive_dims = 0 error_dims = 0 for dim in shape: if dim < 0: negtive_dims += 1 if dim < -1: error_dims += 1 if negtive_dims > 1: return False if error_dims > 0: return False return True def _get_same_padding(in_size, kernel_size, stride): new_size = int(math.ceil(in_size * 1.0 / stride)) pad_size = (new_size - 1) * stride + kernel_size - in_size pad0 = int(pad_size / 2) pad1 = pad_size - pad0 return [pad0, pad1] def print_mapping_info(func): def run_mapping(*args, **kwargs): node = args[1] try: res = func(*args, **kwargs) except: print("convert failed node:{}, op_type is {}".format( node.name[9:], node.layer_type)) raise else: return res return run_mapping class OpSet9(): elementwise_ops = { 'Add': 'paddle.add', 'Div': 'paddle.divide', 'Sub': 'paddle.subtract', 'Mul': 'paddle.multiply', 'Pow': 'paddle.pow', } directly_map_ops = { 'Ceil': ['paddle.ceil'], # reduce function 'ReduceMean': ['paddle.mean', dict(axes='axis', keepdims='keepdim'), dict(axes=None, keepdims=1)], 'ReduceSum': ['paddle.sum', dict(axes='axis', keepdims='keepdim'), dict(axes=None, keepdims=1)], 'ReduceMin': ['paddle.min', dict(axes='axis', keepdims='keepdim'), dict(axes=None, keepdim=1)], 'ReduceMax': ['paddle.max', dict(axes='axis', keepdims='keepdim'), dict(axes=None, keepdim=1)], 'ReduceProd': ['paddle.prod', dict(axes='axis', keepdims='keepdim'), dict(axes=None, keepdim=1)], # active function 'Relu': ['paddle.nn.ReLU'], 'LeakyRelu': ['paddle.nn.LeakyReLU', dict(alpha='negative_slope'), dict(negative_slope=.01)], 'Elu': ['paddle.nn.functional.elu', dict(alpha='alpha'), dict(alpha=1.)], 'ThresholdedRelu': ['paddle.nn.functional.thresholded_relu', dict(alpha='threshold'), dict(alpha=1.)], 'Tanh': ['paddle.nn.Tanh'], 'Sigmoid': ['paddle.nn.Sigmoid'], 'Softsign': ['paddle.nn.Softsign'], 'Softplus': ['paddle.nn.Softplus', dict(threshold='threshold'), dict(threshold=float(sys.maxsize))], 'Exp': ['paddle.exp'], 'Log': ['paddle.log'], 'LogSoftmax': ['paddle.nn.functional.log_softmax', dict(axis='axis'), dict(axis=1)], 'Softmax': ['paddle.nn.Softmax', dict(axis='axis'), dict(axis=1)], 'Sqrt': ['paddle.sqrt'], 'Floor': ['paddle.floor'], 'Abs': ['paddle.abs'], 'Erf': ['paddle.erf'], } def __init__(self, decoder, paddle_graph): super(OpSet9, self).__init__() self.graph = decoder.graph self.paddle_graph = paddle_graph self.input_index = 0 self.inputs_info = dict() self.weights = dict() self.nn_name2id = dict() self.done_weight_list = list() @print_mapping_info def directly_map(self, node, *args, **kwargs): inputs = node.layer.input assert len(inputs) == 1, 'directly_map error with multi inputs' input = self.graph.get_input_node(node, idx=0, copy=True) onnx_attrs = node.attr_map if '' in onnx_attrs: onnx_attrs.pop('') if '_' in onnx_attrs: onnx_attrs.pop('_') op_info = self.directly_map_ops[node.layer_type] paddle_op = op_info[0] layer_attrs = dict() if len(op_info) > 1: attrs_name_map_dict = op_info[1] for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items(): if onnx_attr_name in onnx_attrs: layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name] else: layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name] if paddle_op.startswith("paddle.nn") and 'functional' not in paddle_op: op_name = paddle_op[10:].lower() op_name = name_generator(op_name, self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] self.paddle_graph.add_layer( kernel=paddle_op, inputs={"x": input.name}, outputs=layer_outputs, **layer_attrs) else: self.paddle_graph.add_layer( kernel=paddle_op, inputs={"x": input.name}, outputs=[node.name], **layer_attrs) @print_mapping_info def elementwise_map(self, node): op_type = self.elementwise_ops[node.layer_type] val_x = self.graph.get_input_node(node, idx=0, copy=True) val_y = self.graph.get_input_node(node, idx=1, copy=True) inputs_dict = {'x': val_x.name, 'y': val_y.name} self.paddle_graph.add_layer( op_type, inputs=inputs_dict, outputs=[node.name]) @print_mapping_info def place_holder(self, node): shape = node.out_shapes[0] for i, dim_shape in enumerate(shape): if dim_shape == 0 and i == 0: shape[i] = 1 if dim_shape == 0 and i != 0: assert 'shape of input is not assigned' self.paddle_graph.add_layer( kernel="paddle.to_tensor", inputs={}, outputs=[node.name], data="x{}".format(self.input_index)) self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype] self.input_index += 1 @print_mapping_info def create_parameter(self, node, parameter=None): if parameter is not None: node = parameter dtype = node.dtype shape = node.out_shapes[0] if hasattr(node.weight, "shape") and len(node.weight.shape) == 0: self.paddle_graph.add_layer( "paddle.full", inputs={}, outputs=[node.name], dtype=string(dtype), shape=[1], fill_value=node.weight) else: self.weights[node.name] = node.weight self.paddle_graph.add_layer( "self.create_parameter", inputs={}, outputs=[node.name], shape=shape, attr=string(node.name), dtype=string(dtype), default_initializer="paddle.nn.initializer.Constant(value=0.0)") def _pad_if_asymmetric(self, node, pads, val_name): # pads: SSEE assert len(pads) & 1 == 0 symmetric = True ndims = len(pads) // 2 for idx_dim in range(ndims): if pads[idx_dim] != pads[ndims + idx_dim]: symmetric = False break if symmetric: return pads[:ndims], val_name val_padded = self.Pad(node, op_independent=False) return [0] * ndims, val_padded def _interpolate(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) inputs = {'x': val_x.name} attrs = dict() if node.layer_type == 'Resize': if len(node.layer.input) == 2: # opset 10 val_scales = self.graph.get_input_node(node, idx=1, copy=True) # TODO(syf): paddle.nn.functional.interpolate will support the length # which is the same as the rank of input. attrs['scale_factor'] = self.weights[val_scales.name].tolist()[2:] elif len(node.layer.input) == 3: # opset 11 val_scales = self.graph.get_input_node(node, idx=2, copy=True) # TODO(syf): paddle.nn.functional.interpolate will support the length # which is the same as the rank of input. attrs['scale_factor'] = self.weights[val_scales.name].tolist()[2:] elif len(node.layer.input) == 4: # opset 11 val_sizes = self.graph.get_input_node(node, idx=3, copy=True) var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw' self.paddle_graph.add_layer( 'paddle.split', inputs={"x": val_sizes.name}, outputs=[var_nc, var_hw], num_or_sections=[2, 2], axis=0) self.paddle_graph.add_layer( "paddle.cast", inputs={"x": var_hw}, outputs=[var_hw], dtype=string('int32')) inputs['size'] = var_hw attrs = {"align_corners": False, "mode": string(node.get_attr('mode', 'nearest'))} self.paddle_graph.add_layer( kernel="paddle.nn.functional.interpolate", inputs=inputs, outputs=[node.name], **attrs) return elif node.layer_type == 'Upsample': val_scales = self.graph.get_input_node(node, idx=1, copy=True) self.paddle_graph.add_layer( "paddle.slice", inputs={"input": val_scales.name}, outputs=[val_scales.name], axes=[0], starts=[2], ends=[4]) inputs['scale_factor'] = val_scales.name mode = node.get_attr('mode', 'nearest') attrs.update({"align_corners": False, "mode": string(mode), "align_mode": 1}) val_x_shape = val_x.out_shapes[0] if mode == "linear" and len(val_x_shape) == 4: attrs["mode"] = string("bilinear") attrs["align_corners"] = True self.paddle_graph.add_layer( kernel="paddle.nn.functional.interpolate", inputs=inputs, outputs=[node.name], **attrs) @print_mapping_info def HardSigmoid(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) alpha = node.get_attr('alpha', 0.2) beta = node.get_attr('beta', 0.5) self.paddle_graph.add_layer( kernel="paddle.scale", inputs={"x": val_x.name}, outputs=[node.name + "_val"], scale=alpha, bias=beta) self.paddle_graph.add_layer( kernel="paddle.clip", inputs={"x": node.name + "_val"}, outputs=[node.name], min=0.0, max=1.0) @print_mapping_info def Shape(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) self.paddle_graph.add_layer( kernel="paddle.shape", inputs={"input": val_x.name}, outputs=[node.name]) self.paddle_graph.add_layer( 'paddle.cast', inputs={"x": node.name}, outputs=[node.name], dtype=string('int64')) @print_mapping_info def RoiAlign(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_rois = self.graph.get_input_node(node, idx=1, copy=True) pooled_height = node.get_attr('output_height') pooled_width = node.get_attr('output_width') spatial_scale = node.get_attr('spatial_scale') sampling_ratio = node.get_attr('sampling_ratio') layer_attrs = { 'pooled_height': pooled_height, 'pooled_width': pooled_width, 'spatial_scale': spatial_scale, 'sampling_ratio': sampling_ratio, } self.paddle_graph.add_layer( 'paddle.fluid.layers.roi_align', inputs={'input': val_x.name, 'rois': val_rois.name}, outputs=[node.name], **layer_attrs) @print_mapping_info def MaxRoiPool(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_rois = self.graph.get_input_node(node, idx=1, copy=True) spatial_scale = node.get_attr('spatial_scale') pooled_height, pooled_width = node.get_attr('pooled_shape') layer_attrs = { 'pooled_height': pooled_height, 'pooled_width': pooled_width, 'spatial_scale': spatial_scale, } self.paddle_graph.add_layer( 'paddle.fluid.layers.roi_pool', inputs={'input': val_x.name, 'rois': val_rois.name}, outputs=[node.name], **layer_attrs) @print_mapping_info def Pad(self, node, op_independent=True): val_x = self.graph.get_input_node(node, idx=0, copy=True) pads = node.get_attr('pads') is_pads_attr = True if pads is None: val_pad = self.graph.get_input_node(node, idx=1, copy=True) pad_shape = val_pad.out_shapes[0] is_pads_attr = False pads = _const_weight_or_none(val_pad) if pads is not None: is_pads_attr = True mode = node.get_attr('mode', 'constant') value = node.get_attr('value', 0.) data_shape = val_x.out_shapes[0] output_shape = node.out_shapes[0] assume_pad = False layer_attrs = {} layer_attrs['mode'] = string(mode) layer_attrs['value'] = value if not op_independent: output_name = node.name + '_paded' else: output_name = node.name nn_op_name = name_generator("pad", self.nn_name2id) layer_outputs = [nn_op_name, output_name] if is_pads_attr: paddings = [] if len(pads) in [2, 4, 6]: if data_shape: assume_pad |= data_shape and 2 * (len(data_shape) - 2) == len(pads) # NCHW if output_shape: assume_pad |= output_shape and 2 * (len(output_shape) - 2) == len(pads) # NCHW if assume_pad: paddle_op = 'paddle.nn.Pad{}D'.format(len(output_shape) - 2) paddings = np.array(pads).reshape( (2, -1)).transpose().astype("int32") paddings = np.flip(paddings, axis=0).flatten().tolist() layer_attrs['padding'] = paddings else: if data_shape: assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW if output_shape: assume_pad |= output_shape and 2 * len(output_shape) == len(pads) # NCHW if assume_pad: paddle_op = 'paddle.nn.functional.pad' paddings = np.array(pads).reshape( (2, -1)).transpose().astype("int32").flatten().tolist() layer_attrs['pad'] = paddings else: raise Exception("The padding value {} is wrong!".format(pads)) elif len(pads) == 8: if data_shape: assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW if output_shape: assume_pad |= output_shape and 2 * len(output_shape) == len(pads) # NCHW if assume_pad: paddle_op = 'paddle.nn.Pad2D' paddings = np.array(pads).reshape( (2, -1)).transpose().astype("int32") paddings = np.flip(paddings, axis=0).flatten().tolist() if sum(paddings[:4]) == 0: paddings = paddings[4:] layer_attrs['padding'] = paddings else: layer_attrs["pad"] = paddings paddle_op = "custom_layer:PadAllDim4WithOneInput" else: raise Exception("The padding value {} is wrong!".format(pads)) self.paddle_graph.add_layer( paddle_op, inputs={'x': val_x.name}, outputs=layer_outputs[1:] if paddle_op == 'paddle.nn.functional.pad' else layer_outputs, **layer_attrs) if not op_independent: return node.name + '_paded' else: pads_len = val_pad.out_shapes[0][0] if pads_len in [2, 4, 6]: if data_shape: assume_pad |= data_shape and 2 * (len(data_shape) - 2) == pads_len # NCHW if output_shape: assume_pad |= output_shape and 2 * (len(output_shape) - 2) == pads_len # NCHW if assume_pad: if pads_len == 2: data_format = "NCL" elif pads_len == 4: data_format = "NCHW" else: data_format = "NCDHW" self.paddle_graph.add_layer( "custom_layer:PadWithTwoInput", inputs={'x': val_x.name, 'pad': val_pad.name}, outputs=layer_outputs, value=value, mode=string(mode), data_format=string(data_format)) else: if data_shape: assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW if output_shape: assume_pad |= output_shape and 2 * len(output_shape) == pads_len # NCHW if assume_pad: if pads_len == 4: self.paddle_graph.add_layer( "custom_layer:PadAllDim2", inputs={'x': val_x.name, 'pad': val_pad.name}, outputs=layer_outputs, value=value, mode=string(mode)) else: raise Exception("The padding value is wrong!") elif pads_len == 8: if data_shape: assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW if output_shape: assume_pad |= output_shape and 2 * len(output_shape) == pads_len # NCHW if assume_pad: self.paddle_graph.add_layer( "custom_layer:PadAllDim4", inputs={'x': val_x.name, 'pad': val_pad.name}, outputs=layer_outputs, value=value, mode=string(mode)) else: raise Exception("The padding value is wrong!") if not op_independent: return node.name + '_paded' @print_mapping_info def Unsqueeze(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) axes = node.get_attr('axes') layer_attrs = {'axis': axes} if len(val_x.out_shapes[0]) == 0: if node.name: self.paddle_graph.add_layer( 'paddle.reshape', inputs={"x": val_x.name}, outputs=[node.name], shape=[1]) else: self.paddle_graph.add_layer( 'paddle.unsqueeze', inputs={"x": val_x.name}, outputs=[node.name], **layer_attrs) @print_mapping_info def Shrink(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) bias = node.get_attr('bias') lambd = node.get_attr('lambd') assert bias == 0.0, 'not support bias!=0' self.paddle_graph.add_layer( 'paddle.nn.functional.hardshrink', inputs={"x": val_x.name}, outputs=[node.name], threshold=lambd) @print_mapping_info def Constant(self, node): val_output = self.graph.get_node(node.layer.output[0], copy=True) value = node.get_attr('value') dtype = np.dtype(value.dtype) output_dtype = val_output.dtype if output_dtype: assert dtype == output_dtype, 'tensor dtype unmatches storage dtype' shape = node.get_attr('shape', None) if shape is None: shape = val_output.out_shapes[0] if shape is None: shape = list(value.shape) _logger.warning('in (Constant -> %s): ' 'attribute "shape" of %s not inferred, ' 'using value as 1-D tensor may lead to fails', val_output.name, val_output.name) if len(value) == 1: value = value.tolist() value = value[0] self.paddle_graph.add_layer( "paddle.full", inputs={}, outputs=[node.name], dtype=string(dtype), shape=[1], fill_value=value) else: value = np.reshape(value, shape) self.weights[node.name] = value self.paddle_graph.add_layer( "self.create_parameter", inputs={}, outputs=[node.name], shape=shape, attr=string(node.name), dtype=string(dtype), default_initializer="paddle.nn.initializer.Constant(value=0.0)") @print_mapping_info def Resize(self, node): self._interpolate(node) @print_mapping_info def Upsample(self, node): self._interpolate(node) @print_mapping_info def InstanceNormalization(self, node): op_name = name_generator("instanse_norm", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] val_x = self.graph.get_input_node(node, idx=0, copy=True) val_scale = self.graph.get_input_node(node, idx=1, copy=True) val_b = self.graph.get_input_node(node, idx=2, copy=True) epsilon = node.get_attr('epsilon', 1e-5) self.weights[op_name+'.scale'] = self.weights[val_scale.name] self.weights[op_name+'.bias'] = self.weights[val_b.name] layer_attrs = { 'num_features': node.out_shapes[0][1], 'epsilon': epsilon, } dim = len(val_x.out_shapes[0]) if dim == 3: paddle_op = "paddle.nn.InstanceNorm1D" elif dim == 4: paddle_op = "paddle.nn.InstanceNorm2D" elif dim == 5: paddle_op = "paddle.nn.InstanceNorm3D" else: raise Exception("The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization.") self.paddle_graph.add_layer( paddle_op, inputs={"x": val_x.name}, outputs=layer_outputs, **layer_attrs) @print_mapping_info def Expand(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_shape = self.graph.get_input_node(node, idx=1, copy=True) val_x_dtype = val_x.dtype name_ones = node.name + '_ones' attr_ones = { 'shape': val_shape.name, 'dtype': string(val_x_dtype), 'fill_value': 1 } self.paddle_graph.add_layer( 'paddle.full', inputs={}, outputs=[name_ones], **attr_ones) inputs_dict = {'x': name_ones, 'y': val_x.name} self.paddle_graph.add_layer( 'paddle.multiply', inputs=inputs_dict, outputs=[node.name]) @print_mapping_info def Gather(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) indices = self.graph.get_input_node(node, idx=1, copy=True) indices_shape = indices.out_shapes[0] axis = node.get_attr('axis', 0) #assert len( # indices_shape) <= 2, "Gather op don't support dim of indice >2 " if axis == 0 and len(indices_shape) <= 1: if len(val_x.out_shapes[0]) <= 1: self.paddle_graph.add_layer( 'paddle.gather', inputs={'x': val_x.name, 'index': indices.name}, outputs=[node.name]) elif len(val_x.out_shapes[0]) > 1: if len(indices_shape) == 0: gather_ = node.name + '_1' self.paddle_graph.add_layer( 'paddle.gather', inputs={'x': val_x.name, 'index': indices.name}, outputs=[gather_]) self.paddle_graph.add_layer( 'paddle.squeeze', inputs={'x': gather_}, outputs=[node.name], axis=[0]) else: self.paddle_graph.add_layer( 'paddle.gather', inputs={'x': val_x.name, 'index': indices.name}, outputs=[node.name]) elif axis > 0 and len(indices_shape) <= 1: perm = list(range(len(val_x.out_shapes[0]))) perm = [axis] + perm[:axis] + perm[axis + 1:] name_trans = val_x.name + '_trans' self.paddle_graph.add_layer( 'paddle.transpose', inputs={"x": val_x.name}, outputs=[name_trans], perm=perm) self.paddle_graph.add_layer( 'paddle.gather', inputs={'x': name_trans, 'index': indices.name}, outputs=[node.name]) self.paddle_graph.add_layer( 'paddle.transpose', inputs={"x": node.name}, outputs=[node.name], perm=perm) if len(indices_shape) < 1: self.paddle_graph.add_layer( 'paddle.squeeze', inputs={'x': node.name}, outputs=[node.name], axis=[axis]) elif axis == 0 and len(indices_shape) > 1: if val_x.out_shapes[0] is not None and isinstance( val_x, ONNXGraphDataNode): indices_cast = indices.name + '_cast' self.paddle_graph.add_layer( 'paddle.cast', inputs={"x": indices.name}, outputs=[indices_cast], dtype=string('int64')) op_name = name_generator("embedding", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] self.weights[op_name + '.weight'] = _const_weight_or_none(val_x) self.paddle_graph.add_layer( 'paddle.nn.Embedding', inputs={"x": indices_cast}, outputs=layer_outputs, num_embeddings=val_x.out_shapes[0][0], embedding_dim=val_x.out_shapes[0][1]) else: from functools import reduce reshape_shape = reduce(lambda x, y: x * y, indices_shape) indices_reshape = indices.name + '_shape' self.paddle_graph.add_layer( 'paddle.reshape', inputs={"x": indices.name}, outputs=[indices_reshape], shape=[reshape_shape, ]) perm = list(range(len(val_x.out_shapes[0]))) self.paddle_graph.add_layer( 'paddle.gather', inputs={'x': val_x.name, 'index': indices_reshape}, outputs=[node.name]) val_x_shape = val_x.out_shapes[0] reshaped_shape = [] for i in perm: reshaped_shape.append(indices_shape[i]) for i in val_x_shape[:axis] + val_x_shape[axis + 1:]: reshaped_shape.append(i) self.paddle_graph.add_layer( 'paddle.reshape', inputs={"x": node.name}, outputs=[node.name], shape=reshaped_shape) elif axis > 0 and len(indices_shape) > 1: from functools import reduce reshape_shape = reduce(lambda x, y: x * y, indices_shape) indices_reshape = indices.name + '_shape' self.paddle_graph.add_layer( 'paddle.reshape', inputs={"x": indices.name}, outputs=[indices_reshape], shape=[reshape_shape, ]) perm = list(range(len(val_x.out_shapes[0]))) perm = [axis] + perm[:axis] + perm[axis + 1:] name_trans = val_x.name + '_transpose' self.paddle_graph.add_layer( 'paddle.transpose', inputs={"x": val_x.name}, outputs=[name_trans], perm=perm) self.paddle_graph.add_layer( 'paddle.gather', inputs={'x': name_trans, 'index': indices_reshape}, outputs=[node.name]) input_transpose = node.name + '_transpose' self.paddle_graph.add_layer( 'paddle.transpose', inputs={"x": node.name}, outputs=[input_transpose], perm=perm) val_x_shape = val_x.out_shapes[0] reshaped_shape = [] for i in perm: reshaped_shape.append(indices_shape[i]) for i in val_x_shape[:axis] + val_x_shape[axis + 1:]: reshaped_shape.append(i) self.paddle_graph.add_layer( 'paddle.reshape', inputs={"x": input_transpose}, outputs=[node.name], shape=reshaped_shape) @print_mapping_info def ScatterND(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) indices = self.graph.get_input_node(node, idx=1, copy=True) updates = self.graph.get_input_node(node, idx=2, copy=True) if len(indices.out_shapes[0]) == 1: self.paddle_graph.add_layer( 'paddle.scatter', inputs={'x': val_x.name, 'index': indices.name, 'updates': updates.name}, outputs=[node.name]) else: input_inner_indices = node.name + '_input_inner_indices' shape = val_x.out_shapes[0] self.paddle_graph.add_layer( 'paddle.reshape', inputs={"x": indices.name}, outputs=[indices.name], shape=indices.out_shapes[0]) zeros_like_val_x = val_x.name + '_zeros' self.paddle_graph.add_layer( 'paddle.zeros_like', inputs={"x": val_x.name}, outputs=[zeros_like_val_x]) self.paddle_graph.add_layer( 'paddle.scatter_nd_add', inputs={ 'x': zeros_like_val_x, 'index': indices.name, 'updates': updates.name }, outputs=[input_inner_indices]) indices_mask = node.name + '_indices_mask' constant_minus_one = node.name + '_constant_minus_one' # full_like support create tensor shape like input tensor self.paddle_graph.add_layer( 'paddle.full_like', inputs={"x": updates.name}, outputs=[constant_minus_one], dtype=string(updates.dtype), fill_value=-1) self.paddle_graph.add_layer( 'paddle.scatter_nd_add', inputs={ 'x': zeros_like_val_x, 'index': indices.name, 'updates': constant_minus_one }, outputs=[indices_mask]) constant_one = node.name + '_constant_1' # full_like support create tensor shape like input tensor self.paddle_graph.add_layer( 'paddle.full_like', inputs={"x": val_x.name}, outputs=[constant_one], dtype=string(val_x.dtype), fill_value=1) input_out_indices_mask = node.name + '_input_out_indices_mask' self.paddle_graph.add_layer( "paddle.add", inputs={"x": indices_mask, "y": constant_one}, outputs=[input_out_indices_mask]) input_out_indices = node.name + '_input_out_indices' self.paddle_graph.add_layer( "paddle.multiply", inputs={"x": val_x.name, "y": input_out_indices_mask}, outputs=[input_out_indices]) self.paddle_graph.add_layer( "paddle.add", inputs={"x": input_inner_indices, "y": input_out_indices}, outputs=[node.name]) @print_mapping_info def Range(self, node): val_start = self.graph.get_input_node(node, idx=0, copy=True) val_limit = self.graph.get_input_node(node, idx=1, copy=True) val_delta = self.graph.get_input_node(node, idx=2, copy=True) dtype = val_start.dtype inputs = {'start': val_start.name, 'end': val_limit.name, 'step': val_delta.name} self.paddle_graph.add_layer( 'paddle.arange', inputs=inputs, outputs=[node.name], dtype=string(dtype)) @print_mapping_info def Slice(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) starts, ends, axes, steps = None, None, None, None layer_attrs = {} if len(node.inputs) > 1: starts = self.graph.get_input_node(node, idx=1, copy=True) ends = self.graph.get_input_node(node, idx=2, copy=True) starts_value = _const_weight_or_none(starts) if starts_value is not None: starts_value = starts_value.tolist() ends_value = _const_weight_or_none(ends) if ends_value is not None: ends_value = ends_value.tolist() if len(node.inputs) > 2: s_len = len(val_x.out_shapes[0]) axes = list(range(s_len)) if len(node.inputs) > 3: axes_node = self.graph.get_input_node(node, idx=3, copy=True) axes = _const_weight_or_none(axes_node, necessary=True).tolist() if len(node.inputs) > 4: steps = self.graph.get_input_node(node, idx=4, copy=True) steps = _const_weight_or_none(steps).tolist() layer_attrs = { "axes": axes, "starts": starts.name, "ends": ends.name } if starts_value is not None and ends_value is not None and axes is not None: starts_value = starts_value.copy() ends_value = ends_value.copy() for idx in range(len(ends_value)): if starts_value[idx] >= val_x.out_shapes[0][axes[idx]] and val_x.out_shapes[0][axes[idx]] > 0: starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1 ends_value[idx] = val_x.out_shapes[0][axes[idx]] elif ends_value[idx] > 2**31 - 1: ends_value[idx] = 2**31 - 1 layer_attrs = { "axes": axes, "starts": starts_value, "ends": ends_value } else: if starts.dtype != 'int32': starts_cast = starts.name + '_cast' self.paddle_graph.add_layer( 'paddle.cast', inputs={"x": starts.name}, outputs=[starts_cast], dtype=string('int32')) layer_attrs['starts'] = starts_cast if ends.dtype != 'int32': ends_cast = ends.name + '_cast' else: ends_cast = ends.name self.paddle_graph.add_layer( 'paddle.cast', inputs={"x": ends.name}, outputs=[ends_cast], dtype=string('int32')) layer_attrs['ends'] = ends_cast else: starts = node.get_attr('starts') ends = node.get_attr('ends') axes = node.get_attr('axes') for idx in range(len(ends)): if ends[idx] > 2**31 - 1: ends[idx] = 2**31 - 1 layer_attrs = {"axes": axes, "starts": starts, "ends": ends} if steps is not None: layer_attrs['strides'] = steps self.paddle_graph.add_layer( 'paddle.strided_slice', inputs={"x": val_x.name}, outputs=[node.name], **layer_attrs) else: self.paddle_graph.add_layer( 'paddle.slice', inputs={"input": val_x.name}, outputs=[node.name], **layer_attrs) @print_mapping_info def ConstantOfShape(self, node): val_shape = self.graph.get_input_node(node, idx=0, copy=True) val_y = self.graph.get_node(node.layer.output[0], copy=True) value = node.get_attr('value') dtype = value.dtype value = value.tolist() assert len(value) == 1, ('given value not Scalar, shape of value > 1, ' 'this is not supported') if len(value) == 1: value = value[0] layer_attrs = { 'dtype': string(dtype), 'fill_value': value } self.paddle_graph.add_layer( "paddle.full", inputs={'shape': val_shape.name}, outputs=[node.name], **layer_attrs) @print_mapping_info def Clip(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_y = self.graph.get_node(node.layer.output[0], copy=True) max_value, min_value = None, None if len(node.inputs) == 1: max_value = node.get_attr('max') min_value = node.get_attr('min') layer_attrs = { 'max': max_value, 'min': min_value, } self.paddle_graph.add_layer( 'paddle.clip', inputs={"x": val_x.name}, outputs=[node.name], **layer_attrs) else: min_ipt = self.graph.get_input_node(node, idx=1, copy=True) max_ipt = self.graph.get_input_node(node, idx=2, copy=True) min_value = _const_weight_or_none(min_ipt) max_value = _const_weight_or_none(max_ipt) if max_value.shape == (1, ): max_value = max_value[0] if min_value.shape == (1, ): min_value = min_value[0] if max_value is not None and min_value is not None: layer_attrs = {'max': max_value, 'min': min_value} self.paddle_graph.add_layer( 'paddle.clip', inputs={"x": val_x.name}, outputs=[node.name], **layer_attrs) else: raise @print_mapping_info def Split(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) paddle_op = 'split' split = node.get_attr('split') axis = node.get_attr('axis', 0) layer_attrs = { 'num_or_sections': split, 'axis': axis, } outputs_list = list() if isinstance(split, list) or isinstance(split, tuple): if len(split) == 1: outputs_list.append(node.name) else: for i in range(len(split)): outputs_list.append("{}_p{}".format(node.layer_name, i)) else: outputs_list.append(node.name) self.paddle_graph.add_layer( 'paddle.split', inputs={"x": val_x.name}, outputs=outputs_list, **layer_attrs) @print_mapping_info def Reshape(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_shape = self.graph.get_input_node(node, idx=1, copy=True) val_reshaped = self.graph.get_node(node.layer.output[0], copy=True) shape_value = _const_weight_or_none(val_shape) shape_dims = len(val_shape.out_shapes[0]) if shape_value is not None: self.paddle_graph.add_layer( 'paddle.reshape', inputs={'x': val_x.name}, outputs=[node.name], shape=shape_value.tolist()) elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[ 0]): self.paddle_graph.add_layer( 'paddle.reshape', inputs={'x': val_x.name}, outputs=[node.name], shape=node.out_shapes[0]) else: # shape may be [], come form Gather by scalar indices if len(val_shape.out_shapes[0]) > 0: self.paddle_graph.add_layer( 'paddle.reshape', inputs={'x': val_shape.name}, outputs=[val_shape.name], shape=val_shape.out_shapes[0]) if val_shape.dtype != "int32": self.paddle_graph.add_layer( 'paddle.cast', inputs={'x': val_shape.name}, outputs=[val_shape.name], dtype=string("int32")) self.paddle_graph.add_layer( 'paddle.reshape', inputs={'x': val_x.name, 'shape': val_shape.name}, outputs=[node.name]) @print_mapping_info def Cast(self, node): val_input = self.graph.get_input_node(node, idx=0, copy=True) val_output = self.graph.get_node(node.layer.output[0], copy=True) dtype = node.get_attr('to') if not isinstance(dtype, np.dtype): dtype = TENSOR_TYPE_TO_NP_TYPE[dtype] output_dtype = val_output.dtype if output_dtype: assert dtype == output_dtype, 'dtype of to unmatches output' self.paddle_graph.add_layer( 'paddle.cast', inputs={'x': val_input.name}, outputs=[node.name], dtype=string(dtype)) @print_mapping_info def Not(self, node): val_input = self.graph.get_input_node(node, idx=0, copy=True) self.paddle_graph.add_layer('paddle.logical_not', inputs={'x': val_input.name}, outputs=[node.name]) @print_mapping_info def AveragePool(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) auto_pad = node.get_attr('auto_pad', 'NOTSET') kernel_shape = node.get_attr("kernel_shape") poolnd = len(kernel_shape) strides = node.get_attr("strides") pad_mode = node.get_attr("pads") ceil_mode = bool(node.get_attr('ceil_mode', 0)) pads = node.get_attr('pads', [0] * (poolnd * 2)) paddings, val_x = self._pad_if_asymmetric(node, pads, val_x) if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER": input_shape = val_x.out_shapes[0] pad_h = _get_same_padding(input_shape[2], kernel_shape[0], strides[0]) pad_w = _get_same_padding(input_shape[3], kernel_shape[1], strides[1]) paddings = pad_h + pad_w op_name = name_generator("pool", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd) assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported' layer_attrs = { "kernel_size": kernel_shape, "stride": strides, "padding": paddings, "ceil_mode": ceil_mode, "exclusive": 'True', } self.paddle_graph.add_layer( paddle_op, inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, outputs=layer_outputs, **layer_attrs) @print_mapping_info def Concat(self, node): inputs_list = [] dtypes = set() for i in range(len(node.layer.input)): ipt = self.graph.get_input_node(node, idx=i, copy=True) inputs_list.append(ipt.name) dtypes.add(ipt.dtype) if len(dtypes) > 1: assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.' axis = node.get_attr('axis') self.paddle_graph.add_layer( 'paddle.concat', inputs={"x": inputs_list}, outputs=[node.name], axis=axis) @print_mapping_info def Flatten(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) output_shape = node.out_shapes[0] axis = node.get_attr('axis', 1) shape_list = [1, 1] if axis == 0: for s in output_shape: shape_list[1] *= s else: for s in output_shape[:axis]: shape_list[0] *= s for s in output_shape[axis:]: shape_list[1] *= s self.paddle_graph.add_layer( 'paddle.reshape', inputs={"x": val_x.name}, outputs=[node.name], shape=shape_list) @print_mapping_info def Gemm(self, node): val_a = self.graph.get_input_node(node, idx=0, copy=True) val_b = self.graph.get_input_node(node, idx=1, copy=True) val_c = self.graph.get_input_node(node, idx=2, copy=True) alpha = node.get_attr('alpha', 1.) # optional beta = node.get_attr('beta', 1.) # optional trans_a = bool(node.get_attr('transA', 0)) # optional trans_b = bool(node.get_attr('transB', 0)) # optional val_mm = node.name + '_mm' matmul_inputs = {"x": val_a.name, "y": val_b.name} attr_matmul = { "transpose_x": trans_a, "transpose_y": trans_b, } self.paddle_graph.add_layer( 'paddle.matmul', inputs=matmul_inputs, outputs=[val_mm], **attr_matmul) self.paddle_graph.add_layer( "paddle.scale", inputs={"x": val_mm}, outputs=[val_mm], scale=alpha) if beta != 0: if beta == 1.: add_inputs = {"x": val_mm, "y": val_c.name} self.paddle_graph.add_layer( "paddle.add", inputs=add_inputs, outputs=[node.name]) else: var_beta = node.name + '_beta' self.paddle_graph.add_layer( "paddle.scale", inputs={"x": val_c.name}, outputs=[var_beta], scale=beta) add_inputs = {"x": val_mm, "y": var_beta} self.paddle_graph.add_layer( "paddle.add", inputs=add_inputs, outputs=[node.name]) @print_mapping_info def Sum(self, node): val_inps = node.layer.input inputs_dict = { "x": self.graph.get_input_node( node, idx=0, copy=True).name, "y": self.graph.get_input_node( node, idx=1, copy=True).name, } self.paddle_graph.add_layer("paddle.add", inputs=inputs_dict, outputs=[node.name]) for idx, ipt in enumerate(val_inps[2:]): y = self.graph.get_input_node(node, idx=idx, copy=True) inputs_dict = { "x": node.name, "y": y.name, } self.paddle_graph.add_layer( "paddle.add", inputs=inputs_dict, outputs=[node.name]) @print_mapping_info def MatMul(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_y = self.graph.get_input_node(node, idx=1, copy=True) x_shape = val_x.out_shapes[0] y_shape = val_y.out_shapes[0] inputs_dict = {"x": val_x.name, "y": val_y.name} if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1: y_squeeze = val_y.name + '_squeeze' self.paddle_graph.add_layer( "paddle.squeeze", inputs={"x": val_y.name}, outputs=[y_squeeze], axis=[0]) inputs_dict['y'] = y_squeeze self.paddle_graph.add_layer( "paddle.matmul", inputs=inputs_dict, outputs=[node.name]) else: self.paddle_graph.add_layer( "paddle.matmul", inputs=inputs_dict, outputs=[node.name]) @print_mapping_info def BatchNormalization(self, node): op_name = name_generator("batchnorm", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] val_x = self.graph.get_input_node(node, idx=0, copy=True) val_scale = self.graph.get_input_node(node, idx=1, copy=True) val_b = self.graph.get_input_node(node, idx=2, copy=True) val_mean = self.graph.get_input_node(node, idx=3, copy=True) val_var = self.graph.get_input_node(node, idx=4, copy=True) momentum = node.get_attr('momentum', .9) epsilon = node.get_attr('epsilon', 1e-5) c = val_x.out_shapes[0][1] _rename_or_remove_weight(self.weights, val_scale.name, op_name+'.weight') _rename_or_remove_weight(self.weights, val_b.name, op_name+'.bias') _rename_or_remove_weight(self.weights, val_var.name, op_name+'._variance') _rename_or_remove_weight(self.weights, val_mean.name, op_name+'._mean') # Attribute: spatial is used in BatchNormalization-1,6,7 spatial = bool(node.get_attr('spatial')) layer_attrs = { "num_channels": c, "momentum": momentum, "epsilon": epsilon, "is_test": True, "use_global_stats": False, } self.paddle_graph.add_layer( "paddle.nn.BatchNorm", inputs={"x": val_x.name}, outputs=layer_outputs, **layer_attrs) @print_mapping_info def Transpose(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) s_len = len(val_x.out_shapes[0]) perm_default = list(range(s_len)) perm_default.reverse() perm = node.get_attr('perm', perm_default) self.paddle_graph.add_layer( "paddle.transpose", inputs={"x": val_x.name}, outputs=[node.name], perm=perm) @print_mapping_info def PRelu(self, node): op_name = name_generator("prelu", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] val_x = self.graph.get_input_node(node, idx=0, copy=True) val_slope = self.graph.get_input_node(node, idx=1, copy=True) mode = 'channel' shape_slope = val_slope.out_shapes[0] if shape_slope == [1] * len(shape_slope): mode = 'all' if mode == "element": self.paddle_graph.add_layer( "paddle.zeros", inputs={}, outputs=[output_name + "__zeros"], shape=shape_slope, dtype=string(node.dtype)) self.paddle_graph.add_layer( "paddle.maximum", inputs={"x": val_x.name, "y": output_name + "__zeros"}, outputs=[output_name + "__max"]) self.paddle_graph.add_layer( "paddle.minimum", inputs={"x": val_x.name, "y": output_name + "__zeros"}, outputs=[output_name + "__max"]) self.paddle_graph.add_layer( "paddle.multiply", inputs={"x": val_slope.name, "y": output_name + "__min"}, outputs=[output_name + "__mul"]) self.paddle_graph.add_layer( "paddle.add", inputs={"x": output_name + "__max", "y": output_name + "__mul"}, outputs=[output_name]) else: if mode == 'channel': slope_data = _const_weight_or_none(val_slope) if slope_data is None: self.paddle_graph.add_layer( "paddle.reshape", inputs={"x": val_slope.name}, outputs=[val_slope.name], shape=[shape_slope[0]]) self.paddle_graph.add_layer( "paddle.nn.functional.prelu", inputs={"x": val_x.name, "weight": val_slope.name}, outputs=[node.name]) return _rename_or_remove_weight(self.weights, val_slope.name) if len(shape_slope) > 1: self.weights[op_name+'._weight'] = np.reshape(slope_data, shape_slope[0]) num_parameters = val_x.out_shapes[0][1] else: num_parameters = 1 _rename_or_remove_weight(self.weights, val_slope.name) self.weights[op_name+'._weight'] = np.reshape(self.weights[val_slope.name], [1]) self.paddle_graph.add_layer( "paddle.nn.PReLU", inputs={"x": val_x.name}, outputs=layer_outputs, num_parameters=num_parameters) @print_mapping_info def Squeeze(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) axes = node.get_attr('axes') if len(val_x.out_shapes[0]) == 1: self.paddle_graph.add_layer( "paddle.cast", inputs={"x": val_x.name}, outputs=[node.name], dtype=string(val_x.dtype)) else: self.paddle_graph.add_layer( "paddle.squeeze", inputs={"x": val_x.name}, outputs=[node.name], axis=axes) @print_mapping_info def Equal(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_y = self.graph.get_input_node(node, idx=1, copy=True) self.paddle_graph.add_layer( "paddle.equal", inputs={'x': val_x.name, 'y': val_y.name}, outputs=[node.name]) @print_mapping_info def Greater(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_y = self.graph.get_input_node(node, idx=1, copy=True) self.paddle_graph.add_layer( "paddle.greater_than", inputs={'x': val_x.name, 'y': val_y.name}, outputs=[node.name], param_attr=None) @print_mapping_info def Where(self, node): condition = self.graph.get_input_node(node, idx=0, copy=True) val_x = self.graph.get_input_node(node, idx=1, copy=True) val_y = self.graph.get_input_node(node, idx=2, copy=True) not_condition = condition.name + '_not' self.paddle_graph.add_layer( "paddle.logical_not", inputs={"x": condition.name}, outputs=[not_condition]) cast_not_condition = not_condition + '_cast' self.paddle_graph.add_layer( "paddle.cast", inputs={"x": not_condition}, outputs=[cast_not_condition], dtype=string(val_x.dtype)) cast_condition = condition.name + '_cast' self.paddle_graph.add_layer( "paddle.cast", inputs={"x": condition.name}, outputs=[cast_condition], dtype=string(val_x.dtype)) mul_val_x = val_x.name + '_mul' self.paddle_graph.add_layer( "paddle.multiply", inputs={'x': val_x.name, 'y': cast_condition}, outputs=[mul_val_x]) mul_val_y = val_y.name + '_mul' self.paddle_graph.add_layer( "paddle.multiply", inputs={'x': val_y.name, 'y': cast_not_condition}, outputs=[mul_val_y]) self.paddle_graph.add_layer( "paddle.add", inputs={'x': mul_val_x, 'y': mul_val_y}, outputs=[node.name]) @print_mapping_info def NonZero(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_x_dim = len(val_x.out_shapes[0]) if val_x_dim == 1: self.paddle_graph.add_layer( "paddle.nonzero", inputs={"x": val_x.name}, outputs=[val_x.name]) self.paddle_graph.add_layer( "paddle.transpose", inputs={"x": val_x.name}, outputs=[node.layer_name], perm=[1, 0]) if val_x_dim > 1: self.paddle_graph.add_layer( "paddle.nonzero", inputs={"x": val_x.name}, outputs=[val_x.name]) self.paddle_graph.add_layer( "paddle.split", inputs={"x": val_x.name}, outputs=[val_x.name], num_or_sections=1, axis=val_x_dim) self.paddle_graph.add_layer( "paddle.concat", inputs={"x": val_x.name}, outputs=[node.name]) @print_mapping_info def Identity(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) self.paddle_graph.add_layer( "paddle.assign", inputs={"x": val_x.name}, outputs=[node.name]) @print_mapping_info def Tile(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_repeats = self.graph.get_input_node(node, idx=1, copy=True) repeats = _const_weight_or_none(val_repeats) if repeats is None: repeats = val_repeats.name if val_repeats.dtype != 'int32': self.paddle_graph.add_layer( "paddle.cast", inputs={"x": repeats}, outputs=["{}.tmp".format(repeats)], dtype=string("int32")) repeats = "{}.tmp".format(repeats) elif isinstance(repeats, int): repeats = [repeats] attr = { 'expand_times': repeats, "name": string(node.name), } self.paddle_graph.add_layer( "paddle.tile", inputs={"x": val_x.name}, outputs=[node.name], repeat_times=repeats) @print_mapping_info def MaxPool(self, node): op_name = name_generator("pool", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] val_x = self.graph.get_input_node(node, idx=0, copy=True) auto_pad = node.get_attr('auto_pad', 'NOTSET') assert node.get_attr( "dilations") is None, 'only dilations = 0 is supported' # optional kernel_shape = node.get_attr("kernel_shape") poolnd = len(kernel_shape) strides = node.get_attr("strides") pad_mode = node.get_attr("pads") ceil_mode = bool(node.get_attr('ceil_mode', 0)) # optional pads = node.get_attr('pads', [0] * (poolnd * 2)) # optional paddle_op = 'paddle.nn.MaxPool{}D'.format(poolnd) assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported' paddings, val_x = self._pad_if_asymmetric(node, pads, val_x) if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER": input_shape = val_x.out_shapes[0] pad_h = _get_same_padding(input_shape[2], kernel_shape[0], strides[0]) pad_w = _get_same_padding(input_shape[3], kernel_shape[1], strides[1]) paddings = pad_h + pad_w layer_attrs = { "kernel_size": kernel_shape, "stride": strides, "padding": paddings, "ceil_mode": ceil_mode, } self.paddle_graph.add_layer( paddle_op, inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, outputs=layer_outputs, **layer_attrs) @print_mapping_info def GlobalMaxPool(self, node): op_name = name_generator("pool", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] val_x = self.graph.get_input_node(node, idx=0, copy=True) input_shape = val_x.out_shapes[0] if len(input_shape) == 4: poolnd = 2 elif len(input_shape) == 5: poolnd = 3 elif len(input_shape) == 3: poolnd = 1 paddle_op = 'paddle.nn.AdaptiveMaxPool{}D'.format(poolnd) assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported' output_shape = node.out_shapes[0] self.paddle_graph.add_layer( paddle_op, inputs={'x': val_x.name}, outputs=layer_outputs, output_size=output_shape[2:]) @print_mapping_info def GlobalAveragePool(self, node): op_name = name_generator("pool", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] val_x = self.graph.get_input_node(node, idx=0, copy=True) input_shape = val_x.out_shapes[0] if len(input_shape) == 4: poolnd = 2 elif len(input_shape) == 5: poolnd = 3 elif len(input_shape) == 3: poolnd = 1 paddle_op = 'paddle.nn.AdaptiveAvgPool{}D'.format(poolnd) assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported' output_shape = node.out_shapes[0] self.paddle_graph.add_layer( paddle_op, inputs={'x': val_x.name}, outputs=layer_outputs, output_size=output_shape[2:]) @print_mapping_info def Conv(self, node): op_name = name_generator("conv", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] val_x = self.graph.get_input_node(node, idx=0, copy=True) val_w = self.graph.get_input_node(node, idx=1, copy=True) has_bias = len(node.layer.input) == 3 if has_bias: val_b = self.graph.get_input_node(node, idx=2, copy=True) auto_pad = node.get_attr('auto_pad', 'NOTSET') kernel_shape = node.get_attr('kernel_shape') convnd = len(kernel_shape) assert 2 <= convnd <= 3, 'only Conv2D and Conv3D is supported' num_out_channels = val_w.out_shapes[0][0] num_in_channels = val_w.out_shapes[0][1] paddle_op = 'paddle.nn.Conv{}D'.format(convnd) num_groups = node.get_attr('group', 1) strides = node.get_attr('strides', [1] * convnd) dilations = node.get_attr('dilations', [1] * convnd) pads = node.get_attr('pads', [0] * (convnd * 2)) input_shape = val_x.out_shapes[0] paddings, val_x = self._pad_if_asymmetric(node, pads, val_x) if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER": pad_h = _get_same_padding(input_shape[2], kernel_shape[0], strides[0]) pad_w = _get_same_padding(input_shape[3], kernel_shape[1], strides[1]) paddings = pad_h + pad_w layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name} layer_attrs = { "in_channels": num_in_channels * num_groups, "out_channels": num_out_channels, "kernel_size": kernel_shape, "stride": strides, "padding": paddings, "dilation": dilations, "groups": num_groups, } remove_weight = True if val_w.name in self.done_weight_list else False if remove_weight: self.done_weight_list.append(val_w.name) _rename_or_remove_weight(self.weights, val_w.name, op_name+'.weight', remove_weight) if has_bias: remove_bias = True if val_b.name in self.done_weight_list else False if remove_bias: self.done_weight_list.append(val_b_name) _rename_or_remove_weight(self.weights, val_b.name, op_name+'.bias', remove_bias) else: layer_attrs["bias_attr"] = False if reduce(lambda x,y:x*y, input_shape) in [1, -1] and 1 not in input_shape: input_shape[1] = num_in_channels * num_groups input_shape[0] = 0 input_shape[2] = 0 self.paddle_graph.add_layer( "paddle.reshape", inputs=layer_inputs, outputs=[layer_inputs["x"]], shape=input_shape) self.paddle_graph.add_layer( paddle_op, inputs=layer_inputs, outputs=layer_outputs, **layer_attrs) @print_mapping_info def ConvTranspose(self, node): op_name = name_generator("conv_trans", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] val_x = self.graph.get_input_node(node, idx=0, copy=True) val_w = self.graph.get_input_node(node, idx=1, copy=True) val_b = None if len(node.layer.input) > 2: val_b = self.graph.get_input_node(node, idx=2, copy=True) auto_pad = node.get_attr('auto_pad', 'NOTSET') out_padding = node.get_attr('output_padding', [0, 0]) kernel_shape = node.get_attr('kernel_shape') assert kernel_shape, 'kernel_shape not inferred' convnd = len(kernel_shape) assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported' num_in_channels = val_w.out_shapes[0][0] num_out_channels = val_w.out_shapes[0][1] paddle_op = 'paddle.nn.Conv{}DTranspose'.format(convnd) num_groups = node.get_attr('group', 1) strides = node.get_attr('strides', [1] * convnd) dilations = node.get_attr('dilations', [1] * convnd) output_size = node.get_attr('output_shape', []) pads = node.get_attr('pads', [0] * (convnd * 2)) paddings, var_x = self._pad_if_asymmetric(node, pads, val_x) output_size = [0, 0] output_size[0] = (val_x.out_shapes[0][2] - 1 ) * strides[0] - 2 * paddings[0] + dilations[0] * ( kernel_shape[0] - 1) + 1 + out_padding[0] output_size[1] = (val_x.out_shapes[0][3] - 1 ) * strides[1] - 2 * paddings[1] + dilations[1] * ( kernel_shape[1] - 1) + 1 + out_padding[1] # Conv2DTranspose缺少output_size,只能在forward里头传进output_size inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name} layer_attrs = { "in_channels": num_in_channels, "out_channels": num_out_channels * num_groups, "kernel_size": kernel_shape, "stride": strides, "dilation": dilations, "padding": paddings, "groups": num_groups, "output_padding":out_padding} _rename_or_remove_weight(self.weights, val_w.name, op_name+'.weight',) if val_b is not None: _rename_or_remove_weight(self.weights, val_b.name, op_name+'.bias') self.paddle_graph.add_layer( kernel=paddle_op, inputs=inputs_dict, outputs=layer_outputs, **layer_attrs) @print_mapping_info def ArgMax(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) axis = node.get_attr('axis') keepdims = False if node.get_attr('keepdims') == 0 else True layer_attrs = {'axis': axis, 'keepdim': keepdims} self.paddle_graph.add_layer( 'paddle.argmax', inputs={"x": val_x.name}, outputs=[node.name], **layer_attrs) @print_mapping_info def Size(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) self.paddle_graph.add_layer( "paddle.shape", inputs={"input": val_x.name}, outputs=[node.name]) self.paddle_graph.add_layer( 'paddle.cast', inputs={"x": node.name}, outputs=[node.name], dtype=string('int64')) self.paddle_graph.add_layer( "paddle.prod", inputs={"x": node.name}, outputs=[node.name]) @print_mapping_info def Sign(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) if node.dtype not in ["float16", "float32", "float64"]: self.paddle_graph.add_layer( "paddle.cast", inputs={"x": val_x.name}, outputs=[val_x.name], dtype=string("float32")) self.paddle_graph.add_layer( "paddle.sign", inputs={"x": val_x.name}, outputs=[node.name]) if node.dtype not in ["float16", "float32", "float64"]: self.paddle_graph.add_layer( "paddle.cast", inputs={"x": node.name}, outputs=[node.name], dtype=string(node.dtype)) @print_mapping_info def OneHot(self, node): nn_op_name = name_generator("onehot", self.nn_name2id) output_name = node.name layer_outputs = [nn_op_name, output_name] indices = self.graph.get_input_node(node, idx=0, copy=True) depth = self.graph.get_input_node(node, idx=1, copy=True) values = self.graph.get_input_node(node, idx=2, copy=True) axis = node.get_attr('axis', -1) self.paddle_graph.add_layer( "custom_layer:OneHot", inputs={"indices": indices.name, "depth": depth.name, "values": values.name}, outputs=layer_outputs, axis=axis) @print_mapping_info def Reciprocal(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) self.paddle_graph.add_layer( "paddle.reciprocal", inputs={"x": val_x.name}, outputs=[node.name]) @print_mapping_info def LSTM(self, node): x = self.graph.get_input_node(node, idx=0, copy=True) input_weight = self.graph.get_input_node(node, idx=1, copy=True) hidden_weight = self.graph.get_input_node(node, idx=2, copy=True) input_nums = len(node.layer.input) exist_input_nums = 3 have_bias = False if input_nums > 3 and node.layer.input[3] != '': bias = self.graph.get_input_node(node, idx=exist_input_nums, copy=True) have_bias = True exist_input_nums += 1 if input_nums > 4 and node.layer.input[4] != '': sequence_lens = self.graph.get_input_node(node, idx=exist_input_nums, copy=True) exist_input_nums += 1 if input_nums > 5 and node.layer.input[5] != '': init_h = self.graph.get_input_node(node, idx=exist_input_nums, copy=True) self.paddle_graph.add_layer( 'paddle.reshape', inputs={"x": init_h.name}, outputs=[init_h.name], shape=init_h.out_shapes[0] ) exist_input_nums += 1 if input_nums > 6 and node.layer.input[6] != '': init_c = self.graph.get_input_node(node, idx=exist_input_nums, copy=True) self.paddle_graph.add_layer( 'paddle.reshape', inputs={"x": init_c.name}, outputs=[init_c.name], shape=init_c.out_shapes[0] ) input_weight_np = _const_weight_or_none(input_weight) _rename_or_remove_weight(self.weights, input_weight.name) hidden_size = node.get_attr('hidden_size', input_weight_np.shape[1]/4) input_size = input_weight_np.shape[2] hidden_weight_np = _const_weight_or_none(hidden_weight) _rename_or_remove_weight(self.weights, hidden_weight.name) bias_np = _const_weight_or_none(bias) _rename_or_remove_weight(self.weights, bias.name) input_bias_np = bias_np[:, :4*hidden_size] hidden_bias_np = bias_np[:, 4*hidden_size:] # parameters order in paddle:lstm: # 1. gate order in paddle is: input, forget, cell, output. # 2. gate orfer in onnx is: input, output, forget, cell. def reform_weights(w, n, intervals): slices = [w[:,x * n: y * n] for x, y in intervals] return np.concatenate(slices, axis=1) def transform_weight_with_bias(weights, n, intervals): return [reform_weights(w, n, intervals) for w in weights] reform_permutation = [(0, 1), (2, 4), (1, 2)] weights = transform_weight_with_bias( [input_weight_np, hidden_weight_np, input_bias_np, hidden_bias_np], hidden_size, reform_permutation) op_name = name_generator("lstm", self.nn_name2id) y_out = node.output(0) yh_out = node.output(1) yc_out = node.output(2) direction = node.get_attr('direction', 'forward') def generate_paddle_param_names(op_name, suffix=''): param_names = [] param_names.extend(['{}.weight_ih_l0{}', '{}.weight_hh_l0{}']) if have_bias != False: param_names.append('{}.bias_ih_l0{}') if have_bias != False: param_names.append('{}.bias_hh_l0{}') param_names = [x.format(op_name, suffix) for x in param_names] return param_names def assign_params(op_name, weights, weight_idx=0, suffix=''): param_names = generate_paddle_param_names(op_name, suffix) print(param_names) for param_name, weight in zip(param_names, weights): self.weights[param_name] = weight[weight_idx] if direction == 'backward': raise Exception("LSTM support 'forward' or 'bidirectional', except '{}'.".format(direction)) else: assign_params(op_name, weights) if direction == 'bidirectional': assign_params(op_name, weights, 1, '_reverse') self.paddle_graph.add_layer( 'paddle.nn.LSTM', inputs={'input': x.name, 'initial_states': (init_h.name, init_c.name)}, outputs=[op_name, y_out, yh_out, yc_out], input_size=input_size, hidden_size=hidden_size, num_layers=1, direction=string(direction), time_major=True) self.paddle_graph.add_layer( 'paddle.reshape', inputs={"x": y_out}, outputs=[y_out], shape=[0, 0, -1, hidden_size] ) self.paddle_graph.add_layer( 'paddle.transpose', inputs={"x": y_out}, outputs=[y_out], perm=[0,2,1,3] ) @print_mapping_info def TopK(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) val_k = self.graph.get_input_node(node, idx=1, copy=True) layer_attrs = dict() layer_attrs["axis"] = node.get_attr('axis', -1) layer_attrs["largest"] = True if node.get_attr('largest', 1) == 1 else False layer_attrs["sorted"] = True if node.get_attr('sorted', 1) == 1 else False self.paddle_graph.add_layer( "paddle.topk", inputs={"x": val_x.name, "k": val_k.name}, outputs=["{}_p{}".format(node.layer_name, 0), "{}_p{}".format(node.layer_name, 1)], **layer_attrs) @print_mapping_info def LRN(self, node): op_name = name_generator("lrn", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] val_x = self.graph.get_input_node(node, idx=0, copy=True) alpha = node.get_attr('alpha', 0.0001) beta = node.get_attr('beta', 0.75) bias = node.get_attr('bias', 1.0) size = node.get_attr('size') layer_attrs = { 'size': size, 'alpha': alpha, 'beta': beta, 'k': bias } self.paddle_graph.add_layer( "custom_layer:LocalResponseNorm", inputs={"x": val_x.name}, outputs=layer_outputs, **layer_attrs)
python
#!/usr/bin/env python3 # authors: RocaPiedra # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. from __future__ import print_function import subprocess import glob import os import sys import random import time import numpy as np import cv2 import pygame from pygame.locals import KMOD_CTRL from pygame.locals import K_ESCAPE from pygame.locals import K_q import numpy as np # ============================================================================== # -- Find CARLA module --------------------------------------------------------- # ============================================================================== try: sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % ( sys.version_info.major, sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) except IndexError: pass # ============================================================================== # -- Add PythonAPI for release mode -------------------------------------------- # ============================================================================== try: sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))) + '/carla') except IndexError: pass import carla # Launch server def serverLauncher(): bashCommand = "cd ../.. && CarlaUE4.exe" process = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) output, error = process.communicate()
python
""" Copyright (c) 2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging from copy import deepcopy from functools import partial import pytest import torch from nncf.common.utils.logger import logger as nncf_logger from nncf.experimental.torch.nas.bootstrapNAS.elasticity.base_handler import SEHBuilderStateNames from nncf.experimental.torch.nas.bootstrapNAS.elasticity.elastic_depth import EDBuilderStateNames from nncf.experimental.torch.nas.bootstrapNAS.elasticity.elastic_kernel import EKBuilderStateNames from nncf.experimental.torch.nas.bootstrapNAS.elasticity.elastic_width import EWBuilderStateNames from nncf.experimental.torch.nas.bootstrapNAS.elasticity.elasticity_dim import ElasticityDim from nncf.torch.model_creation import create_nncf_network from tests.torch.helpers import BasicConvTestModel from tests.torch.helpers import get_empty_config from tests.torch.nas.creators import build_elastic_model_from_handler from tests.torch.nas.descriptors import ElasticityDesc from tests.torch.nas.helpers import do_conv2d from tests.torch.nas.helpers import move_model_to_cuda_if_available from tests.torch.nas.test_elastic_depth import BASIC_ELASTIC_DEPTH_PARAMS from tests.torch.nas.test_elastic_depth import BasicTestSuperNet from tests.torch.nas.test_elastic_depth import DepthBasicConvTestModel from tests.torch.nas.test_elastic_kernel import BASIC_ELASTIC_KERNEL_PARAMS from tests.torch.nas.test_elastic_width import BASIC_ELASTIC_WIDTH_PARAMS from tests.torch.nas.test_elastic_width import TwoConvAddConvTestModel from tests.torch.nas.test_elastic_width import TwoSequentialConvBNTestModel @pytest.yield_fixture() def _nncf_caplog(caplog): nncf_logger.propagate = True yield caplog nncf_logger.propagate = False def ref_width_output_fn(model, x): return model.get_minimal_subnet_output_without_reorg(x) COMMON_WIDTH_STATE_DESCS = [ ElasticityDesc( ElasticityDim.WIDTH, model_cls=TwoConvAddConvTestModel, params=BASIC_ELASTIC_WIDTH_PARAMS, ref_state={ 'elasticity_params': BASIC_ELASTIC_WIDTH_PARAMS, 'grouped_node_names_to_prune': [ ['TwoConvAddConvTestModel/NNCFConv2d[conv1]/conv2d_0', 'TwoConvAddConvTestModel/NNCFConv2d[conv2]/conv2d_0'] ] }, ref_output_fn=ref_width_output_fn ), ElasticityDesc( ElasticityDim.WIDTH, model_cls=TwoSequentialConvBNTestModel, params=BASIC_ELASTIC_WIDTH_PARAMS, ref_state={ 'elasticity_params': BASIC_ELASTIC_WIDTH_PARAMS, 'grouped_node_names_to_prune': [ ['TwoSequentialConvBNTestModel/Sequential[all_layers]/NNCFConv2d[0]/conv2d_0'], ['TwoSequentialConvBNTestModel/Sequential[all_layers]/NNCFConv2d[3]/conv2d_0'] ] }, ref_output_fn=ref_width_output_fn ), ] def ref_kernel_output_fn(model, x): conv = model.conv ref_padding = 1 ref_weights = conv.weight[:, :, 1:4, 1:4] return do_conv2d(conv, x, weight=ref_weights, padding=ref_padding) COMMON_KERNEL_DESC = ElasticityDesc( ElasticityDim.KERNEL, model_cls=partial(BasicConvTestModel, 1, out_channels=1, kernel_size=5), params=BASIC_ELASTIC_KERNEL_PARAMS, ref_output_fn=ref_kernel_output_fn, ref_state={ SEHBuilderStateNames.ELASTICITY_PARAMS: BASIC_ELASTIC_KERNEL_PARAMS, EKBuilderStateNames.NODE_NAMES_TO_MAKE_ELASTIC: ['BasicConvTestModel/NNCFConv2d[conv]/conv2d_0'] }, input_size=[1, 1, 5, 5] ) COMMON_DEPTH_SUPERNET_DESC = ElasticityDesc( ElasticityDim.DEPTH, model_cls=BasicTestSuperNet, params={ 'mode': 'auto', 'min_block_size': 2 }, ref_state={ 'elasticity_params': { 'allow_linear_combination': False, 'allow_nested_blocks': False, 'max_block_size': 50, 'min_block_size': 2, 'skipped_blocks': None }, EDBuilderStateNames.SKIPPED_BLOCKS: [ { 'start_node_name': 'BasicTestSuperNet/NNCFConv2d[conv1]/conv2d_0', 'end_node_name': 'BasicTestSuperNet/__add___0' } ], EDBuilderStateNames.SKIPPED_BLOCKS_DEPENDENCIES: {0: [0]}, EDBuilderStateNames.OrdinalIds: [[1, 3]], }, ref_search_space=[[0], []] ) def ref_depth_output_fn(model, x): model.set_skipped_layers(['conv1']) return model(x) COMMON_DEPTH_BASIC_DESC = ElasticityDesc( ElasticityDim.DEPTH, model_cls=DepthBasicConvTestModel, params=BASIC_ELASTIC_DEPTH_PARAMS, ref_output_fn=ref_depth_output_fn, ref_search_space=[[0], []], ref_state={ 'elasticity_params': { 'allow_linear_combination': False, 'allow_nested_blocks': False, 'max_block_size': 50, 'min_block_size': 6, 'skipped_blocks': [['DepthBasicConvTestModel/Sequential[branch_with_blocks]/NNCFConv2d[conv0]/conv2d_0', 'DepthBasicConvTestModel/Sequential[branch_with_blocks]/NNCFConv2d[conv1]/conv2d_0']] }, EDBuilderStateNames.SKIPPED_BLOCKS: BASIC_ELASTIC_DEPTH_PARAMS['skipped_blocks_state'], EDBuilderStateNames.SKIPPED_BLOCKS_DEPENDENCIES: BASIC_ELASTIC_DEPTH_PARAMS['skipped_blocks_dependencies'], EDBuilderStateNames.OrdinalIds: None, } ) LIST_STATE_AFTER_BUILD_DESCS = [ *COMMON_WIDTH_STATE_DESCS, COMMON_DEPTH_SUPERNET_DESC, COMMON_KERNEL_DESC ] @pytest.mark.parametrize('desc', LIST_STATE_AFTER_BUILD_DESCS, ids=map(str, LIST_STATE_AFTER_BUILD_DESCS)) def test_can_get_builder_state_after_build(desc): _, builder = desc.build_handler() actual_state = builder.get_state() assert actual_state == desc.ref_state ELASTIC_WIDTH_PARAMS_BB = {'filter_importance': 'L2', **BASIC_ELASTIC_WIDTH_PARAMS} LIST_STATE_BEFORE_BUILD_DESCS = [ ElasticityDesc( ElasticityDim.WIDTH, params=ELASTIC_WIDTH_PARAMS_BB, ref_state={ SEHBuilderStateNames.ELASTICITY_PARAMS: ELASTIC_WIDTH_PARAMS_BB, EWBuilderStateNames.GROUPED_NODE_NAMES_TO_PRUNE: [] } ), ElasticityDesc( ElasticityDim.KERNEL, params=BASIC_ELASTIC_KERNEL_PARAMS, ref_state={ SEHBuilderStateNames.ELASTICITY_PARAMS: BASIC_ELASTIC_KERNEL_PARAMS, EKBuilderStateNames.NODE_NAMES_TO_MAKE_ELASTIC: [] } ), COMMON_DEPTH_BASIC_DESC ] @pytest.mark.parametrize('desc', LIST_STATE_BEFORE_BUILD_DESCS, ids=map(str, LIST_STATE_BEFORE_BUILD_DESCS)) class TestBeforeBuild: def test_can_get_builder_state_before_build(self, desc: ElasticityDesc): builder = desc.create_builder() actual_state = builder.get_state() assert actual_state == desc.ref_state def test_output_warning_when_state_overrides_params(self, desc: ElasticityDesc, _nncf_caplog): old_builder = desc.create_builder_with_config({}) old_state = old_builder.get_state() new_params = desc.params new_builder = desc.create_builder_with_config(new_params) new_builder.load_state(old_state) record = next(iter(_nncf_caplog.records)) assert record.levelno == logging.WARNING def test_no_warning_when_state_and_params_are_the_same(self, desc: ElasticityDesc, _nncf_caplog): old_builder = desc.create_builder() old_state = old_builder.get_state() new_params = desc.params.copy() new_builder = desc.create_builder_with_config(new_params) new_builder.load_state(old_state) assert not _nncf_caplog.records LIST_LOAD_STATE_DESCS = [ COMMON_DEPTH_BASIC_DESC, *COMMON_WIDTH_STATE_DESCS, COMMON_KERNEL_DESC ] @pytest.mark.parametrize('desc', LIST_LOAD_STATE_DESCS, ids=map(str, LIST_LOAD_STATE_DESCS)) def test_can_load_handler_state(desc: ElasticityDesc): model = desc.model_cls() move_model_to_cuda_if_available(model) model_copy = deepcopy(model) device = next(iter(model.parameters())).device dummy_input = torch.ones(model.INPUT_SIZE).to(device) input_size = desc.input_size if not input_size: input_size = model.INPUT_SIZE config = get_empty_config(input_sample_sizes=input_size) old_nncf_network = create_nncf_network(model, config) old_builder = desc.create_builder() old_handler = old_builder.build(old_nncf_network) elastic_model = build_elastic_model_from_handler(old_nncf_network, old_handler) old_handler.activate_minimum_subnet() old_output = elastic_model(dummy_input) ref_output = desc.ref_output_fn(model, dummy_input) assert torch.allclose(old_output, ref_output) new_nncf_network = create_nncf_network(model_copy, config) builder_state = old_builder.get_state() # no need in config to restore builder state new_builder = desc.create_builder_with_config({}) new_builder.load_state(builder_state) new_handler = new_builder.build(new_nncf_network) elastic_model = build_elastic_model_from_handler(new_nncf_network, new_handler) new_handler.activate_minimum_subnet() new_output = elastic_model(dummy_input) assert torch.allclose(old_output, new_output)
python
# -*- coding: utf-8 -*- """CquenceR.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1iywElgfFio7e8VN1yZOemHm8hRV4IJHy # Clone CquenceR and PatchBundle """ !git clone https://github.com/SecureThemAll/PatchBundle.git !git clone https://github.com/SecureThemAll/CquenceR.git """# Install python 3.7""" !apt-get install python3.7 python3.7-dev """# Initialize CquenceR Version of OpenNMT needs no be under 2.0.0, or some dependencies will not work later, such as the OpenNMT's preprocess script and other inputs. Also, the python version check in the init script might fail, just comment it. """ ! CquenceR/init.sh """# Install python 3.7 dependencies""" !curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py !python3.7 get-pip.py !python3.7 -m pip install pandas !python3.7 -m pip install sklearn !python3.7 -m pip install python-Levenshtein !python3.7 -m pip install PyGithub !python3.7 -m pip install matplotlib !python3.7 -m pip install ipykernel # !python3.7 -m pip freeze > requirements.txt """# Create new dataset""" # Commented out IPython magic to ensure Python compatibility. # %cd PatchBundle/tool/ !echo 'asd' > token.txt !python3.7 ./PatchBundle.py filter --datasets nvd secbench mozilla secretpatch msr20 -m -v # %cd ../.. """# Preprocess Dataset Only into Source and Target Sets for Stats""" !python3.7 ./CquenceR/CquenceR.py preprocess -op /tmp/dataset --no_truncation --no_onmt -v """# Plot Stats for Dataset""" !python3.7 CquenceR/CquenceR.py stats -v -sp /tmp/dataset --save /content/CquenceR/plots """# Clean Data""" !python3.7 ./CquenceR/CquenceR.py clean -v """# Preprocess Dataset for Training and Testing """ !python3.7 ./CquenceR/CquenceR.py preprocess -s train_val_test -v !python3.7 -m pip install --upgrade torchvision==0.6.0 # Commented out IPython magic to ensure Python compatibility. # %cd CquenceR !git pull # %cd .. !which onmt_preprocess """# Train with GPU and Plot results (train_plots is the output folder) If you can not run with the gpu, update the torch. For that just uncomment the next cell and run it. """ #!python3.7 -m pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html !python3.7 CquenceR/CquenceR.py train -v --plot --gpu """# Test and Plot Results (test_plots is the output folder)""" !python3.7 CquenceR/CquenceR.py test -v --plot import torch # setting device on GPU if available, else CPU device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('Using device:', device) print() #Additional Info when using cuda if device.type == 'cuda': print(torch.cuda.get_device_name(0)) print('Memory Usage:') print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB') print('Cached: ', round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB')
python
"""Data Analysis ================ """ from os.path import exists import nixio as nix import numpy as np import numpy.linalg from typing import Dict, List, Tuple, Type, Union, Set, Any, Optional, Iterator import pandas as pd from collections import defaultdict from kivy_garden.collider import Collide2DPoly, CollideEllipse from kivy_garden.painter import PaintCircle, PaintEllipse, PaintPolygon, \ PaintFreeformPolygon, PaintPoint, PaintShape from glitter2.storage.data_file import DataFile __all__ = ( 'default_value', 'not_cached', 'AnalysisFactory', 'AnalysisSpec', 'FileDataAnalysis', 'AnalysisChannel', 'TemporalAnalysisChannel', 'EventAnalysisChannel', 'PosAnalysisChannel', 'ZoneAnalysisChannel', 'get_variable_type_optional') def _sort_dict(d: dict) -> List[tuple]: return list(sorted(d.items(), key=lambda x: x[0])) def _get_flat_types(type_hint: Type) -> Tuple[Type]: if hasattr(type_hint, '__origin__') and type_hint.__origin__ is Union: return type_hint.__args__ return type_hint, def _filter_default(type_hint: Type) -> List[Type]: types = _get_flat_types(type_hint) return [t for t in types if t != DefaultType] known_arg_types = { int, float, str, List[int], List[float], List[str], type(None)} known_ret_types = { int, float, str, List[int], List[float], List[str], Tuple[int], Tuple[float], Tuple[str]} def is_type_unknown(known_types, query): return set(query) - known_types def get_variable_type_optional(type_hint: List[Type]) -> Tuple[Type, bool]: if len(type_hint) == 1: return type_hint[0], False if type(None) not in type_hint: raise ValueError('Expected to contain none type if more than one type') type_hint.remove(type(None)) if len(type_hint) == 1: return type_hint[0], True raise ValueError('Expected only one type') class default_value(int): pass DefaultType = Type[default_value] DefaultFloat = Union[float, DefaultType] DefaultStr = Union[str, DefaultType] not_cached = object() class AnalysisFactory: analysis_classes: Set[Type['AnalysisChannel']] = set() by_name: Dict[str, Type['AnalysisChannel']] = {} @classmethod def register_analysis_class(cls, analysis_class: Type['AnalysisChannel']): cls.analysis_classes.add(analysis_class) name = f'{analysis_class.__module__}\0{analysis_class.__qualname__}' cls.by_name[name] = analysis_class @classmethod def get_class_from_method( cls, method) -> Tuple[Type['AnalysisChannel'], str]: mod = method.__module__ cls_name, method_name = method.__qualname__.rsplit('.', maxsplit=1) name = f'{mod}\0{cls_name}' if name not in cls.by_name: raise ValueError( f'Unrecognized class {cls_name} of method {method}') return cls.by_name[name], method_name @classmethod def get_classes_from_type( cls, analysis_type: str) -> List[Type['AnalysisChannel']]: return [c for c in cls.analysis_classes if c.analysis_type == analysis_type] @classmethod def get_variables( cls, global_vars=True, local_vars=True ) -> Dict[ str, Tuple[List[Type['AnalysisChannel']], str, Tuple[Type, bool], Any]]: variables = {} all_variables = {} for c in cls.analysis_classes: special_args = c.spec_get_special_arg_type() for key, (doc, tp) in c.spec_get_compute_variables().items(): if key in all_variables: doc_, tp_ = all_variables[key] # we allow empty doc, in which case non-empty is used if doc and doc_ and doc != doc_ or tp != tp_: raise ValueError( f'Variable "{key}" of class {c} was previously ' f'defined with type "{tp_}" and doc "{doc_}", but ' f'we now got type "{tp}" and doc "{doc}"') if doc: all_variables[key] = doc, tp else: all_variables[key] = doc, tp is_global = c.spec_get_is_global_arg(key) if is_global and global_vars or not is_global and local_vars: if key not in variables: special_arg = special_args.get(key, None) variables[key] = [c], doc, tp, special_arg else: classes, doc_, tp_, special_arg = variables[key] classes.append(c) # just in case previously we had empty doc if doc: variables[key] = classes, doc, tp, special_arg return variables @classmethod def _get_methods_from_type( cls, analysis_type: str, creating_methods ) -> Dict[str, Tuple[Type['AnalysisChannel'], str, Type]]: methods = {} for c in cls.analysis_classes: if c.analysis_type != analysis_type: continue special_type = c.spec_get_channel_creating_methods() for key, (doc, tp) in c.spec_get_compute_methods().items(): if creating_methods: if key in special_type: methods[key] = c, doc, tp else: if key not in special_type: methods[key] = c, doc, tp return methods @classmethod def get_channel_creating_methods_from_type( cls, analysis_type: str ) -> Dict[str, Tuple[Type['AnalysisChannel'], str, Type]]: return cls._get_methods_from_type(analysis_type, True) @classmethod def get_compute_methods_from_type( cls, analysis_type: str ) -> Dict[str, Tuple[Type['AnalysisChannel'], str, Type]]: return cls._get_methods_from_type(analysis_type, False) @classmethod def get_channel_creating_method_spec( cls, analysis_cls: Type['AnalysisChannel'], name: str ) -> Tuple[str, Type, str, Dict[str, Tuple[Tuple[Type, bool], str]]]: create_type = analysis_cls.spec_get_channel_creating_methods()[name] doc, ret_type = analysis_cls.spec_get_compute_methods()[name] special_args = analysis_cls.spec_get_special_arg_type() variables = {} for var, (_, tp) in analysis_cls.spec_get_compute_method_args( name).items(): variables[var] = tp, special_args.get(var, None) return doc, ret_type, create_type, variables @classmethod def get_compute_method_spec( cls, analysis_cls: Type['AnalysisChannel'], name: str ) -> Tuple[str, Type, Dict[str, Tuple[Tuple[Type, bool], str]]]: doc, ret_type = analysis_cls.spec_get_compute_methods()[name] special_args = analysis_cls.spec_get_special_arg_type() variables = {} for var, (_, tp) in analysis_cls.spec_get_compute_method_args( name).items(): variables[var] = tp, special_args.get(var, None) return doc, ret_type, variables class AnalysisSpec: _default_args: Dict[Type['AnalysisChannel'], Dict[str, Any]] = {} _new_channels: List[ Tuple[str, str, Type['AnalysisChannel'], str, tuple, dict]] = [] _computations: List[ Tuple[Optional[List[str]], str, Type['AnalysisChannel'], str, tuple, dict]] = [] def __init__(self, **kwargs): super().__init__(**kwargs) self._default_args = defaultdict(dict) self._new_channels = [] self._computations = [] def add_arg_default( self, cls: Type['AnalysisChannel'], name: str, value: Any): self._default_args[cls][name] = value def add_new_channel_computation( self, channel: str, new_channel_name: str, compute_method, *args, **kwargs): cls, method_name = AnalysisFactory.get_class_from_method( compute_method) self._new_channels.append( (channel, new_channel_name, cls, method_name, args, kwargs)) def add_computation( self, channels: List[str], compute_method, *args, compute_key: str = '', **kwargs): cls, method_name = AnalysisFactory.get_class_from_method( compute_method) self._computations.append( (channels, compute_key, cls, method_name, args, kwargs)) def compute_create_channels(self, analysis_object: 'FileDataAnalysis'): default_args = self._default_args cls_cache = {} for channel, new_name, cls, method_name, args, kwargs in \ self._new_channels: cache_key = cls, channel if cache_key not in cls_cache: obj = cls_cache[cache_key] = cls( name=channel, analysis_object=analysis_object) for name, value in default_args.get(cls, {}).items(): setattr(obj, name, value) analysis_channel = cls_cache[cache_key] brief_name = method_name if brief_name.startswith('compute_'): brief_name = brief_name[8:] # get the type of channel created create_map = \ analysis_channel.spec_get_channel_creating_methods() ret_type = create_map[brief_name] f = getattr(analysis_channel, method_name) res = f(*args, **kwargs) # add the channel to the data analysis object add = getattr(analysis_object, f'add_{ret_type}_channel') add(new_name, *res) def compute(self, analysis_object: 'FileDataAnalysis') -> list: output = [] default_args = self._default_args cls_cache = {} for channels, compute_key, cls, method_name, args, kwargs in \ self._computations: if not channels: if cls.analysis_type == 'event': channels = analysis_object.event_channels_data.keys() elif cls.analysis_type == 'pos': channels = analysis_object.pos_channels_data.keys() elif cls.analysis_type == 'zone': channels = analysis_object.zone_channels_shapes.keys() for channel in channels: cache_key = cls, channel if cache_key not in cls_cache: obj = cls_cache[cache_key] = cls( name=channel, analysis_object=analysis_object) for name, value in default_args.get(cls, {}).items(): setattr(obj, name, value) analysis_channel = cls_cache[cache_key] brief_name = method_name if brief_name.startswith('compute_'): brief_name = brief_name[8:] f = getattr(analysis_channel, method_name) res = f(*args, **kwargs) output.append( (analysis_channel.analysis_type, channel, brief_name, compute_key, res)) return output def clear_arg_defaults(self): self._default_args = defaultdict(dict) def clear_new_channel_computation(self): self._new_channels = [] def clear_computation(self): self._computations = [] class FileDataAnalysis: filename: str = '' data_file: DataFile = None nix_file: Optional[nix.File] = None metadata: Dict = {} video_metadata: Dict = {} timestamps: np.ndarray = None event_channels_data: Dict[str, Optional[np.ndarray]] = {} pos_channels_data: Dict[str, Optional[np.ndarray]] = {} zone_channels_shapes: Dict[str, Optional[PaintShape]] = {} channels_metadata: Dict[str, dict] = {} normalized_names_map: Dict[str, str] = {} missed_timestamps = False missing_timestamp_values = [] pixels_per_meter = 0 def __init__(self, filename, **kwargs): super(FileDataAnalysis, self).__init__(**kwargs) self.filename = filename self.event_channels_data = {} self.pos_channels_data = {} self.zone_channels_shapes = {} self.channels_metadata = {} self.normalized_names_map = {} def flatten_data(self, data_arrays) -> np.ndarray: ordered_indices = self.data_file.timestamp_intervals_ordered_keys if len(data_arrays) > 1: data = [data_arrays[i] for i in ordered_indices] return np.concatenate(data) else: return np.array(data_arrays[0]) def __enter__(self): self.open_data_file() return self def __exit__(self, exc_type, exc_val, exc_tb): self.close_data_file() def open_data_file(self): self.nix_file = nix.File.open(self.filename, nix.FileMode.ReadOnly) self.data_file = DataFile(nix_file=self.nix_file) def load_file_metadata(self, channels: Set[str] = None): data_file = self.data_file data_file.open_file() self.video_metadata = data_file.video_metadata_dict self.metadata = metadata = {} metadata['saw_all_timestamps'] = data_file.saw_all_timestamps metadata['glitter2_version'] = data_file.glitter2_version metadata['ffpyplayer_version'] = data_file.ffpyplayer_version metadata['pixels_per_meter'] = data_file.pixels_per_meter self.pixels_per_meter = data_file.pixels_per_meter self.missed_timestamps = not data_file.saw_all_timestamps if self.missed_timestamps: data_arrays_order = data_file.timestamp_intervals_ordered_keys data = [data_file.timestamps_arrays[i] for i in data_arrays_order] if not data: raise ValueError('No data found in the file') missing = [float(item[-1]) for item in data[:-1]] if not data_file._saw_first_timestamp: missing.insert(0, float(data[0][0])) if not data_file._saw_last_timestamp: missing.append(float(data[-1][-1])) self.missing_timestamp_values = missing else: self.missing_timestamp_values = [] metadata = self.channels_metadata normalized_names_map = self.normalized_names_map for channels_data, src_channels in ( (self.event_channels_data, data_file.event_channels), (self.pos_channels_data, data_file.pos_channels), (self.zone_channels_shapes, data_file.zone_channels)): for _, channel in _sort_dict(src_channels): m = channel.channel_config_dict name = m['name'] if channels and name not in channels: continue normalized_names_map[name.lower()] = name metadata[name] = m channels_data[name] = None def load_file_data(self, channels: Set[str] = None): self.load_file_metadata(channels) data_file = self.data_file self.timestamps = self.flatten_data(data_file.timestamps_arrays) zone_channels_shapes = self.zone_channels_shapes shape_cls_map = { 'PaintCircle': PaintCircle, 'PaintEllipse': PaintEllipse, 'PaintPolygon': PaintPolygon, 'PaintFreeformPolygon': PaintFreeformPolygon, 'PaintPoint': PaintPoint } for channels_data, src_channels in ( (self.event_channels_data, data_file.event_channels), (self.pos_channels_data, data_file.pos_channels), (None, data_file.zone_channels)): for _, channel in _sort_dict(src_channels): m = channel.channel_config_dict name = m['name'] if channels and name not in channels: continue if channels_data is None: state = m['shape_config'] cls = shape_cls_map[state['cls']] shape = cls.create_shape_from_state(state) zone_channels_shapes[name] = shape else: channels_data[name] = self.flatten_data( channel.data_arrays) def close_data_file(self): if self.nix_file is None: return self.nix_file.close() self.nix_file = None def compute_data_summary(self, spec: AnalysisSpec) -> list: # export_computed_statistics provides the header rows = [] filename = self.filename video_head = self.video_metadata['filename_head'] video_tail = self.video_metadata['filename_tail'] missed_timestamps = self.missed_timestamps row = [filename, video_head, video_tail, missed_timestamps] # first create all new data channels spec.compute_create_channels(self) # now compute any stats for stat in spec.compute(self): rows.append(row + list(stat)) return rows @staticmethod def export_computed_data_summary(filename: str, data: list): """Adds .xlsx to the name. :param filename: :param data: :return: """ if not filename.endswith('.xlsx'): filename += '.xlsx' if exists(filename): raise ValueError('"{}" already exists'.format(filename)) excel_writer = pd.ExcelWriter(filename, engine='xlsxwriter') header = [ 'data file', 'video path', 'video filename', 'missed timestamps', 'channel_type', 'channel', 'measure', 'measure_key', 'value'] df = pd.DataFrame(data, columns=header) df.to_excel(excel_writer, sheet_name='statistics', index=False) excel_writer.save() def export_raw_data_to_excel(self, filename, dump_zone_collider=False): if not filename.endswith('.xlsx'): filename += '.xlsx' if exists(filename): raise ValueError('"{}" already exists'.format(filename)) excel_writer = pd.ExcelWriter(filename, engine='xlsxwriter') if self.missed_timestamps: # if we have timestamp discontinuities, indicate it data = [ 'Not all video frames were watched - timestamps are missing'] if self.missing_timestamp_values: data.append('timestamps around where frames are missing:') data.extend(self.missing_timestamp_values) df = pd.DataFrame(data) df.to_excel( excel_writer, sheet_name='missing_timestamps', index=False) file_metadata = dict(self.metadata) file_metadata.update(self.video_metadata) file_metadata = _sort_dict(file_metadata) df = pd.DataFrame(file_metadata, columns=['Property', 'Value']) df.to_excel(excel_writer, sheet_name='file_metadata', index=False) # add sheet for all the channels metadata metadata = [] channels_metadata = self.channels_metadata for channel_name in self.event_channels_data: metadata.append(('event_channel', channel_name)) metadata.extend(_sort_dict(channels_metadata[channel_name])) for channel_name in self.pos_channels_data: metadata.append(('pos_channel', channel_name)) metadata.extend(_sort_dict(channels_metadata[channel_name])) for channel_name in self.zone_channels_shapes: metadata.append(('zone_channel', channel_name)) # shape info is saved in the zone channels sheet d = dict(channels_metadata[channel_name]) d.pop('shape_config', None) metadata.extend(_sort_dict(d)) df = pd.DataFrame(metadata, columns=['Property', 'Value']) df.to_excel(excel_writer, sheet_name='channels_metadata', index=False) # add timestamps df = pd.DataFrame(self.timestamps, columns=['timestamp']) df.to_excel(excel_writer, sheet_name='timestamps', index=False) # add event channels data columns_header = [] columns = [] for channel_name, data in self.event_channels_data.items(): columns_header.append(channel_name) columns.append(data) df = pd.DataFrame(columns).T df.columns = columns_header df.to_excel(excel_writer, sheet_name='event_channels', index=False) # add pos channels data colliders = {} if dump_zone_collider: for channel_name, shape in self.zone_channels_shapes.items(): colliders[channel_name] = \ ZoneAnalysisChannel.collider_from_shape(shape) columns_header = [] columns = [] for channel_name, data in self.pos_channels_data.items(): columns_header.append(f'{channel_name}:x') columns_header.append(f'{channel_name}:y') columns.append(data[:, 0]) columns.append(data[:, 1]) for zone_name, collider in colliders.items(): valid_points = data[:, 0] != -1 columns_header.append(f'{channel_name}:--:{zone_name}') valid_points[valid_points] = collider.collide_points( data[valid_points, :].tolist()) columns.append(valid_points) df = pd.DataFrame(columns).T df.columns = columns_header df.to_excel(excel_writer, sheet_name='pos_channels', index=False) # add zone channels metadata shape_config = [] for channel_name in self.zone_channels_shapes: shape_config.append(('zone_channel', channel_name)) # only save shape info d = channels_metadata[channel_name].get('shape_config', {}) shape_config.extend(_sort_dict(d)) df = pd.DataFrame(shape_config, columns=['Property', 'Value']) df.to_excel(excel_writer, sheet_name='zone_channels', index=False) excel_writer.save() def add_event_channel(self, name: str, data: np.ndarray, metadata: dict): if name in self.channels_metadata: raise ValueError(f'name "{name}" already exists as a channel') d = {'name': name} d.update(metadata) self.channels_metadata[name] = d self.event_channels_data[name] = data self.normalized_names_map[name.lower()] = name def add_pos_channel(self, name: str, data: np.ndarray, metadata: dict): if name in self.channels_metadata: raise ValueError(f'name "{name}" already exists as a channel') d = {'name': name} d.update(metadata) self.channels_metadata[name] = d self.pos_channels_data[name] = data self.normalized_names_map[name.lower()] = name def add_zone_channel(self, name: str, shape: PaintShape, metadata: dict): if name in self.channels_metadata: raise ValueError(f'name "{name}" already exists as a channel') d = {'name': name, 'shape_config': shape.get_state()} d.update(metadata) self.channels_metadata[name] = d self.zone_channels_shapes[name] = shape self.normalized_names_map[name.lower()] = name def normalized_name(self, name): normalized_name = name.lower() names = self.normalized_names_map if normalized_name not in names: raise KeyError(f'No channel named "{name}"') return names[normalized_name] class AnalysisChannel: """compute_variables and compute_methods are per-class.""" analysis_type: str = '' analysis_object: FileDataAnalysis = None name: str = '' metadata: Dict = {} _compute_variables_: Dict[str, str] = {} """Dict of variables names to their brief docs shown to the user. """ _compute_variables_cache: Dict[str, Tuple[str, Tuple[Type, bool]]] = {} _compute_methods_: Dict[str, str] = {} """Dict of compute method names to their brief docs shown to the user. The keys must exist as methods prefixed with ``compute_``. """ _compute_methods_cache: Dict[str, Tuple[str, Type]] = {} _channel_creating_methods_: Dict[str, str] = {} """Dict for each method that returns a new channel, mapping to the type of channel created. """ _special_arg_type_: Dict[str, str] = {} """Dict for each arg that accepts a special type, indicating what the arg means. E.g. whether it's a event channel name etc. """ _compute_method_args_cache: Dict[ str, Dict[str, Tuple[str, Tuple[Type, bool]]]] = {} def __init__(self, name: str, analysis_object: FileDataAnalysis, **kwargs): self.analysis_object = analysis_object self.name = name self.metadata = analysis_object.channels_metadata[ analysis_object.normalized_name(name)] def normalized_name(self, name): return self.analysis_object.normalized_name(name) @classmethod def spec_get_compute_variables( cls) -> Dict[str, Tuple[str, Tuple[Type, bool]]]: if cls.__dict__.get('_compute_variables_cache', None) is not None: return cls._compute_variables_cache cls._compute_variables_cache = variables = {} if '_compute_variables_' not in cls.__dict__: return variables annotations = cls.__annotations__ for name, value in cls._compute_variables_.items(): if name not in annotations: raise ValueError( f'No type annotation found for variable {name} of {cls}') annotated_type = _filter_default(annotations[name]) unknown = is_type_unknown(known_arg_types, annotated_type) special_arg_type = cls.spec_get_special_arg_type() if name not in special_arg_type and unknown: raise ValueError( f'Type {unknown} for {name} of {cls} is not recognized') variables[name] = value, get_variable_type_optional(annotated_type) return variables @classmethod def spec_get_compute_methods(cls) -> Dict[str, Tuple[str, Type]]: if cls.__dict__.get('_compute_methods_cache', None) is not None: return cls._compute_methods_cache cls._compute_methods_cache = methods = {} if '_compute_methods_' not in cls.__dict__: return methods for name, value in cls._compute_methods_.items(): annotations = getattr( getattr(cls, f'compute_{name}'), '__annotations__', {}) if 'return' not in annotations: raise ValueError( f'No return type annotation found for {name} of {cls}') annotated_type = _filter_default(annotations['return']) unknown = is_type_unknown(known_ret_types, annotated_type) channel_methods = cls.spec_get_channel_creating_methods() # if it doesn't create a channel and we don't recognize the type... if name not in channel_methods and unknown: raise ValueError( f'Return type {unknown} for {name} of {cls} is not ' f'a understood type') methods[name] = value, annotated_type return methods @classmethod def spec_get_is_global_arg(cls, name: str) -> bool: """Returns whether the argument is a global argument for all methods of the class (i.e. it was defined as a class variable), or it is method specific with no global default value. """ return name in cls.__dict__ @classmethod def spec_get_channel_creating_methods(cls) -> Dict[str, str]: if '_channel_creating_methods_' not in cls.__dict__: return {} return cls._channel_creating_methods_ @classmethod def spec_get_special_arg_type(cls) -> Dict[str, str]: if '_special_arg_type_' not in cls.__dict__: return {} return cls._special_arg_type_ @classmethod def spec_get_compute_method_args( cls, name) -> Dict[str, Tuple[str, Tuple[Type, bool]]]: if '_compute_method_args_cache' not in cls.__dict__: cls._compute_method_args_cache = {} cache = cls._compute_method_args_cache if name not in cache: variables = cache[name] = {} known_variables = cls.spec_get_compute_variables() f = getattr(cls, f'compute_{name}') annotations = getattr(f, '__annotations__', {}) for var_name, var_type in annotations.items(): if var_name in {'return', 'self'}: continue if var_name not in known_variables: raise ValueError( f'Variable {var_name} of method {name} is not ' f'documented in the _compute_variables_ dictionary') doc, (var_type_, optional_) = known_variables[var_name] var_type, optional = get_variable_type_optional( _filter_default(var_type)) if var_type != var_type_: raise ValueError( f'Variable {var_name} of method {name} was documented ' f'as both {var_type} and {var_type_}') variables[var_name] = doc, (var_type, optional) return cache[name] def get_args(self, **kwargs) -> list: res = [] for name, value in kwargs.items(): if value is not default_value: res.append(value) else: res.append(getattr(self, name, None)) return res def get_cache(self, prop: str, **kwargs) -> Tuple: args = tuple(self.get_args(**kwargs)) prop_val = getattr(self, prop) if prop_val is not None and prop_val[1] == args: return prop_val[0], args return not_cached, args def get_cache_these_args(self, prop: str, **kwargs) -> Any: args = tuple(kwargs.values()) prop_val = getattr(self, prop) if prop_val is not None and prop_val[1] == args: return prop_val[0] return not_cached class TemporalAnalysisChannel(AnalysisChannel): data: np.ndarray = None timestamps: np.ndarray = None def __init__(self, **kwargs): super().__init__(**kwargs) self.timestamps = self.analysis_object.timestamps norm = self.analysis_object.normalized_name self.data = getattr( self.analysis_object, f'{self.analysis_type}_channels_data')[norm(self.name)] @staticmethod def _get_active_intervals( data: np.ndarray, timestamps: np.ndarray, start: Optional[float] = None, end: Optional[float] = None ) -> Dict[str, np.ndarray]: s = 0 if start is not None: s = np.searchsorted(timestamps, start, side='left') e = timestamps.shape[0] if end is not None: e = np.searchsorted(data, end, side='right') data = data[s:e] timestamps = timestamps[s:e] if data.shape[0] <= 1: intervals = np.empty((0, 2)) indices = np.arange(0) return {'intervals': intervals, 'timestamps': timestamps, 'mask': data, 'indices': indices, 'start': s, 'end': e} arange = np.arange(data.shape[0]) signed_data = data.astype(np.int8) diff = signed_data[1:] - signed_data[:-1] pos_diff = diff == 1 starts = timestamps[1:][pos_diff] starts_indices = arange[1:][pos_diff] neg_diff = diff == -1 ends = timestamps[1:][neg_diff] ends_indices = arange[1:][neg_diff] # de we need the first index as the start (if array starts with 1) # # of intervals is same as number of start positions n = starts.shape[0] if data[0] == 1: n += 1 intervals = np.empty((n, 2)) indices = np.empty((n, 2), dtype=arange.dtype) # interval starts at zero if data[0] == 1: intervals[1:, 0] = starts intervals[0, 0] = timestamps[0] indices[1:, 0] = starts_indices indices[0, 0] = 0 else: intervals[:, 0] = starts indices[:, 0] = starts_indices if data[-1] == 1: intervals[:-1, 1] = ends intervals[-1, 1] = timestamps[-1] indices[:-1, 1] = ends_indices indices[-1, 1] = arange[-1] else: intervals[:, 1] = ends indices[:, 1] = ends_indices return {'intervals': intervals, 'timestamps': timestamps, 'mask': data, 'indices': indices, 'start': s, 'end': e} @staticmethod def _compute_active_duration(intervals: np.ndarray) -> float: return np.sum( intervals[:, 1] - intervals[:, 0]) if intervals.shape[0] else 0. @staticmethod def _compute_delay_to_first( timestamps: np.ndarray, intervals: np.ndarray) -> float: return intervals[0, 0] - timestamps[0] if intervals.shape[0] else -1. @staticmethod def _compute_scored_duration(timestamps: np.ndarray) -> float: return timestamps[-1] - timestamps[0] if timestamps.shape[0] else 0. @staticmethod def _compute_event_count(intervals: np.ndarray) -> int: return intervals.shape[0] class EventAnalysisChannel(TemporalAnalysisChannel): analysis_type: str = 'event' _active_duration: Tuple[float, Tuple] = None _delay_to_first: Tuple[float, Tuple] = None _scored_duration: Tuple[float, Tuple] = None _event_count: Tuple[int, Tuple] = None _active_interval: Tuple[Dict[str, np.ndarray], Tuple] = None start: Optional[float] = None end: Optional[float] = None event_channels: List[str] _compute_variables_: Dict[str, str] = { 'start': '', 'end': '', 'event_channels': '', } _compute_methods_: Dict[str, str] = { 'active_duration': 'The total duration, in seconds, that the event was ON/active', 'delay_to_first': 'The delay, relative to the start of the video, of the first ' 'occurrence of the event', 'scored_duration': 'The duration of the video or the section that was analyzed, if ' 'only a interval of the data is exported', 'event_count': 'The number of times the event occurred', 'combine_events_and': 'Creates a new event channel from the listed event channels, ' 'where the new channel is active if "all" of the listed channels ' 'are active', 'combine_events_or': 'Creates a new event channel from the listed event channels, ' 'where the new channel is active if "any" of the listed channels ' 'are active', 'event_intervals': 'The list of timestamps of the start and end of each active ' 'interval. Given as [s1, e1, s2, e2, ...], where s and e indicate ' 'the start and end timestamps of the intervals, if any', } _channel_creating_methods_: Dict[str, str] = { 'combine_events_and': 'event', 'combine_events_or': 'event', } _special_arg_type_: Dict[str, str] = {'event_channels': 'event'} def get_active_intervals( self, start: Optional[float] = None, end: Optional[float] = None) -> Dict[str, np.ndarray]: val = self.get_cache_these_args( '_active_interval', start=start, end=end) if val is not not_cached: return val intervals = self._get_active_intervals( self.data, self.timestamps, start=start, end=end) self._active_interval = intervals, (start, end) return intervals def compute_active_duration( self, start: Optional[DefaultFloat] = default_value, end: Optional[DefaultFloat] = default_value) -> float: val, (start, end) = self.get_cache( '_active_duration', start=start, end=end) if val is not not_cached: return val intervals = self.get_active_intervals(start, end)['intervals'] val = self._compute_active_duration(intervals) self._active_duration = val, (start, end) return val def compute_delay_to_first( self, start: Optional[DefaultFloat] = default_value, end: Optional[DefaultFloat] = default_value) -> float: val, (start, end) = self.get_cache( '_delay_to_first', start=start, end=end) if val is not not_cached: return val active_intervals = self.get_active_intervals(start, end) val = self._compute_delay_to_first( active_intervals['timestamps'], active_intervals['intervals']) self._delay_to_first = val, (start, end) return val def compute_scored_duration( self, start: Optional[DefaultFloat] = default_value, end: Optional[DefaultFloat] = default_value) -> float: val, (start, end) = self.get_cache( '_scored_duration', start=start, end=end) if val is not not_cached: return val timestamps = self.get_active_intervals(start, end)['timestamps'] val = self._compute_scored_duration(timestamps) self._scored_duration = val, (start, end) return val def compute_event_count( self, start: Optional[DefaultFloat] = default_value, end: Optional[DefaultFloat] = default_value) -> int: val, (start, end) = self.get_cache( '_event_count', start=start, end=end) if val is not not_cached: return val intervals = self.get_active_intervals(start, end)['intervals'] val = self._compute_event_count(intervals) self._event_count = val, (start, end) return val def compute_event_intervals( self, start: Optional[DefaultFloat] = default_value, end: Optional[DefaultFloat] = default_value) -> List[float]: start, end = self.get_args(start=start, end=end) intervals = self.get_active_intervals(start, end)['intervals'] items = np.reshape(intervals, intervals.shape[0] * 2) return items.tolist() def compute_combine_events_and( self, event_channels: List[str]) -> Tuple[np.ndarray, dict]: channels_data = self.analysis_object.event_channels_data norm = self.analysis_object.normalized_name arr = [channels_data[norm(name)] for name in event_channels] arr.append(self.data) return np.logical_and.reduce(arr, axis=0), {} def compute_combine_events_or( self, event_channels: List[str]) -> Tuple[np.ndarray, dict]: channels_data = self.analysis_object.event_channels_data norm = self.analysis_object.normalized_name arr = [channels_data[norm(name)] for name in event_channels] arr.append(self.data) return np.logical_or.reduce(arr, axis=0), {} class PosAnalysisChannel(TemporalAnalysisChannel): analysis_type: str = 'pos' _mean_center_distance: Tuple[float, Tuple] = None _distance_traveled: Tuple[float, Tuple] = None _mean_speed: Tuple[float, Tuple] = None _active_interval: Tuple[Dict[str, np.ndarray], Tuple] = None _colliders: Dict[str, Union[Collide2DPoly, CollideEllipse]] start: Optional[float] = None end: Optional[float] = None event_channel: Optional[str] event_channels: List[str] zone_channel: Optional[str] zone_channels: List[str] _compute_variables_: Dict[str, str] = { 'start': 'The start time in video time, or nothing to start from ' 'the beginning of the video', 'end': 'The end time in video time, or nothing to end at ' 'the end of the video', 'event_channel': 'The event channel to use', 'event_channels': 'The listed event channels to use', 'zone_channel': 'The zone channel to use', 'zone_channels': 'The listed zone channels to use', } _compute_methods_: Dict[str, str] = { 'event_from_pos': 'Creates a new event channel from the pos channel, where ' 'the new channel is active for time "t" if the channel was coded ' 'with a position for time t', 'pos_in_any_zone': 'Creates a new event channel where the new channel is active for ' 'time "t" if the position is in any of the listed zones for ' 'time "t"', 'mean_center_distance': 'The mean distance of the channel to the named zone, while the ' 'event channel is active, if an event channel was selected', 'distance_traveled': 'The total distance the channel traveled in pixels while the ' 'event channel is active, if an event channel was selected', 'mean_speed': 'The mean speed of the channel in pixels per second while the ' 'event channel is active, if an event channel was selected', } _channel_creating_methods_: Dict[str, str] = { 'event_from_pos': 'event', 'pos_in_any_zone': 'event'} _special_arg_type_: Dict[str, str] = { 'event_channel': 'event', 'event_channels': 'event', 'zone_channel': 'zone', 'zone_channels': 'zone'} def __init__(self, **kwargs): super().__init__(**kwargs) self._colliders = {} def get_collider( self, zone_name: str) -> Union[Collide2DPoly, CollideEllipse]: if zone_name not in self._colliders: norm = self.analysis_object.normalized_name shape = self.analysis_object.zone_channels_shapes[norm(zone_name)] self._colliders[zone_name] = \ ZoneAnalysisChannel.collider_from_shape(shape) return self._colliders[zone_name] def get_active_intervals( self, event_channel: Optional[str] = None, start: Optional[float] = None, end: Optional[float] = None) -> Dict[str, np.ndarray]: val = self.get_cache_these_args( '_active_interval', event_channel=event_channel, start=start, end=end) if val is not not_cached: return val norm = self.analysis_object.normalized_name data = self.data[:, 0] != -1 if event_channel: data = np.logical_and( data, self.analysis_object.event_channels_data[norm(event_channel)]) intervals = self._get_active_intervals( data, self.timestamps, start=start, end=end) self._active_interval = intervals, (start, end) return intervals def compute_event_from_pos( self, event_channels: List[str]) -> Tuple[np.ndarray, dict]: norm = self.analysis_object.normalized_name channels_data = self.analysis_object.event_channels_data arr = [channels_data[norm(name)] for name in event_channels] arr.append(self.data[:, 0] != -1) return np.logical_or.reduce(arr, axis=0), {} def compute_pos_in_any_zone( self, zone_channels: List[str]) -> Tuple[np.ndarray, dict]: arr = [] valid_points = self.data[:, 0] != -1 points = self.data[valid_points, :].tolist() for zone in zone_channels: collider = self.get_collider(zone) arr.append(collider.collide_points(points)) valid_points[valid_points] = np.logical_or.reduce(arr, axis=0) return valid_points, {} def compute_mean_center_distance( self, zone_channel: DefaultStr, event_channel: Optional[DefaultStr] = default_value, start: Optional[DefaultFloat] = default_value, end: Optional[DefaultFloat] = default_value) -> float: val, (zone_channel, event_channel, start, end) = self.get_cache( '_mean_center_distance', zone_channel=zone_channel, event_channel=event_channel, start=start, end=end) if val is not not_cached: return val intervals = self.get_active_intervals(event_channel, start, end) collider = self.get_collider(zone_channel) data = self.data[intervals['start']:intervals['end'], :] data = data[intervals['mask'], :] - collider.get_centroid() val = float(np.mean(numpy.linalg.norm(data, axis=1))) self._mean_center_distance = val, ( zone_channel, event_channel, start, end) return val def compute_distance_traveled( self, event_channel: Optional[DefaultStr] = default_value, start: Optional[DefaultFloat] = default_value, end: Optional[DefaultFloat] = default_value) -> float: val, (event_channel, start, end) = self.get_cache( '_distance_traveled', event_channel=event_channel, start=start, end=end) if val is not not_cached: return val intervals = self.get_active_intervals(event_channel, start, end) indices = intervals['indices'] data = self.data[intervals['start']:intervals['end'], :] val = 0 for s, e in indices: val += np.sum( np.linalg.norm(data[s + 1:e + 1, :] - data[s:e, :], axis=1)) val = float(val) self._distance_traveled = val, (event_channel, start, end) return val def compute_mean_speed( self, event_channel: Optional[DefaultStr] = default_value, start: Optional[DefaultFloat] = default_value, end: Optional[DefaultFloat] = default_value) -> float: val, (event_channel, start, end) = self.get_cache( '_mean_speed', event_channel=event_channel, start=start, end=end) if val is not not_cached: return val intervals = self.get_active_intervals(event_channel, start, end) indices = intervals['indices'] interval_times = intervals['intervals'] data = self.data[intervals['start']:intervals['end'], :] dist = 0 for s, e in indices: dist += np.sum( np.linalg.norm(data[s + 1:e + 1, :] - data[s:e, :], axis=1)) dt = np.sum(interval_times[:, 1] - interval_times[:, 0]) val = 0. if dt: val = float(dist / dt) self._mean_speed = val, (event_channel, start, end) return val class ZoneAnalysisChannel(AnalysisChannel): analysis_type: str = 'zone' shape: PaintShape = None _collider = None _compute_methods_: Dict[str, str] = { 'area': 'The area of the zone in pixels', 'centroid': 'The centroid of the zone in pixels', } def __init__(self, **kwargs): super().__init__(**kwargs) norm = self.analysis_object.normalized_name self.shape = self.analysis_object.zone_channels_shapes[norm(self.name)] @staticmethod def collider_from_shape( shape: PaintShape) -> Union[Collide2DPoly, CollideEllipse]: if isinstance(shape, PaintPolygon): return Collide2DPoly(points=shape.points, cache=True) elif isinstance(shape, PaintCircle): x, y = shape.center r = shape.radius return CollideEllipse(x=x, y=y, rx=r, ry=r) elif isinstance(shape, PaintEllipse): x, y = shape.center rx, ry = shape.radius_x, shape.radius_y return CollideEllipse( x=x, y=y, rx=rx, ry=ry, angle=shape.angle) elif isinstance(shape, PaintPoint): x, y = shape.position return CollideEllipse(x=x, y=y, rx=1, ry=1) else: assert False @property def collider(self): collider = self._collider if collider is not None: return collider self._collider = self.collider_from_shape(self.shape) return self._collider def compute_area(self) -> float: return self.collider.get_area() def compute_centroid(self) -> Tuple[float]: return self.collider.get_centroid() AnalysisFactory.register_analysis_class(EventAnalysisChannel) AnalysisFactory.register_analysis_class(PosAnalysisChannel) AnalysisFactory.register_analysis_class(ZoneAnalysisChannel)
python
#!../env/bin/python from db_models import db, ColorScheme # define columns columns = ['ColorSchemeName', 'NumCategories', 'CriticalValue' ,'CategoryNumber', 'RedValue', 'GreenValue', 'BlueValue', 'SchemeType'] # open file f = open('../assets/colorbrewer.csv','r') # generate inserts for each line for r in f.readlines(): datadict = dict(zip(columns,r.strip().split(','))) # insert color info color = ColorScheme(datadict['ColorSchemeName'], int(datadict['NumCategories']) if datadict['NumCategories'] else None, float(datadict['CriticalValue']) if datadict['CriticalValue'] else None, int(datadict['CategoryNumber']) if datadict['CategoryNumber'] else None, int(datadict['RedValue']) if datadict['RedValue'] else None, int(datadict['GreenValue']) if datadict['GreenValue'] else None, int(datadict['BlueValue']) if datadict['BlueValue'] else None, datadict['SchemeType']) db.session.add(color) db.session.commit() # close file f.close()
python
import numpy as np import matplotlib.pyplot as plt from scipy.integrate import ode def f(phi, current_concentrations): # use simpler variable names s1 = current_concentrations[0] s2 = current_concentrations[1] v0 = 5.0 k1 = 3.0 k2 = 2.0 change_in_s1 = v0 - k1 * s1 change_in_s2 = k1 * s1 - k2*s2 return [change_in_s1, change_in_s2] initial_concentrations = [1.0, 0.0] solver = ode(f).set_integrator('dopri5') # Runge-Kutta, equiv. to ode45() in MATLAB solver.set_initial_value(initial_concentrations) timestep = 0.01 number_of_timepoints = int(1/timestep) timepoints = np.linspace(0, 5, number_of_timepoints) s1 = np.zeros(number_of_timepoints) s2 = np.zeros(number_of_timepoints) for i in range(number_of_timepoints): current_concentrations = solver.integrate(timepoints[i]) s1[i] = current_concentrations[0] s2[i] = current_concentrations[1] plt.figure() plt.plot(timepoints,s1) plt.plot(timepoints,s2) plt.xlabel('Time') plt.ylabel('Concentration') plt.legend(['s_1', 's_2'], loc='upper left') plt.show()
python
"""Tools that interact with Ilab's REST database.""" import re import copy import traceback from bs4 import BeautifulSoup from ua_ilab_tools import extract_custom_forms, ilab_api, api_types ONLY_INT_FIELDS = [ "Concentration_each_sample", "Concentration", "Volume (uL)", "Initial_Number_Slides_or_Punches_each_sample", "Template Length", "Template_Length_each_sample"] SKIP_FORM_PATTERNS = [r"REQUEST A QUOTE.*", r".*NQ.*"] class IlabConfigError(Exception): """The request or form has been configured or altered incorrectly.""" class IlabTools(): def __init__(self, core_id, token): if "Bearer" not in token: token = "Bearer " + token auth_creds = { "Authorization": f"{token}", "Content-Type": "application/xml" } self.api = ilab_api.IlabApi(core_id, auth_creds) def get_service_requests(self, status="processing", specific_uri=None): """Get the service requests with the given status from ilab's REST DB. Keyword Arguments: status (string): If you want service requests with a certain status. By default, it is 'processing'. specific_uri (string): If you want a specific endpoint. Returns: req_uri_to_soup (dict): The dictionary that holds all of the {service req uris:request soup}. If no service requests are found, returns an empty dict. """ req_uri_to_soup = {} if specific_uri: get_responses = self.api.get( f"service_requests/{specific_uri}.xml", get_all=False) requests_soup = BeautifulSoup(get_responses[0].text, "xml") requests_soup = requests_soup.find("service-request") req_uri_to_soup[requests_soup.find("id").string] = requests_soup else: get_responses = self.api.get( "service_requests.xml", parameters={"states": status}, get_all=True) # Soup all get responses (multiple pages or not). req_paged_soups = [ BeautifulSoup(response.text, "xml") for response in get_responses] # Get every service-request in every page. for get_soup in req_paged_soups: for req_soup in get_soup.find_all("service-request"): req_uri_to_soup[req_soup.find("id").string] = req_soup return req_uri_to_soup def get_service_cost(self, price_id): """Get the cost associated with the given service_id. Arguments: price_id (string): The id associated with a price. Returns: service_price (namedtuple): The calculated price of the service, or None if not found. """ service_price = None get_responses = self.api.get("services.xml") for response in get_responses: services_page_soup = BeautifulSoup(response.text, "xml") id_soup = services_page_soup.find(string=price_id) if id_soup: service_soup = id_soup.find_parent("service") price_soup = service_soup.find("price") current_price = price_soup.find("price").string unit = price_soup.find("unit").find("description").string service_price = api_types.Service_Price( price=float(current_price), samples_per_unit=unit) return service_price def get_request_charges(self, req_id): """Get all of the charges of the req_id passed in. Arguments: req_id(string): The unique string of ints that map to a request. Returns: charges_uri_soup (dict): The dict of uri_to_soup of all the charges associated with that request. Returns an empty dict if not found. """ get_responses = self.api.get(f"service_requests/{req_id}/charges.xml") charge_paged_soups = [ BeautifulSoup(response.text, "xml") for response in get_responses] charges_uri_soup = dict() for get_soup in charge_paged_soups: for charge in get_soup.find_all("charge"): charges_uri_soup[charge.find("id").string] = charge return charges_uri_soup def get_milestones(self, request_id): """Get all of the milestones associated with a service request. Arguments: request_id (string): The unique string of ints that map to a request. Returns: milestone_name_soup (dict): Holds all {milestone name : soup of milestone}. Returns an empty dict if not found. """ get_responses = self.api.get( f"service_requests/{request_id}/milestones.xml") milestone_paged_soups = [ BeautifulSoup(response.text, "xml") for response in get_responses] milestone_name_soup = {} for get_soup in milestone_paged_soups: for milestone in get_soup.find_all("milestone"): name_tag = milestone.find("name") if name_tag: milestone_name_soup[name_tag.string] = milestone return milestone_name_soup def get_custom_forms(self, req_id): """Get all of the custom forms of the req_id passed in. Arguments: req_id (string): The unique string of ints that map to a request. Returns: forms_uri_to_soup (dict): The dictionary that holds all of the {custom form uris: form_soup}. Returns an empty dict if not found. """ get_responses = self.api.get( f"service_requests/{req_id}/custom_forms.xml") form_paged_soups = [ BeautifulSoup(response.text, "xml") for response in get_responses] forms_uri_to_soup = {} for get_soup in form_paged_soups: for form in get_soup.find_all("custom-form"): forms_uri_to_soup[form.find("id").string] = form return forms_uri_to_soup def extract_project_info(req_soup, full_name=False): """Extract the relevant project info from a request. Arguments: req_soup (BS4 soup object): The soup of the request. full_name (boolean): Whether or not to capture the entire project name or just the last hyphenated element. Returns: prj_info (Project): The required info to post a project. """ if full_name: prj_name = req_soup.find("name").string else: prj_name = req_soup.find("name").string.split('-')[-1] res_name = req_soup.find("owner").find("name").string email = req_soup.find("owner").find("email").string # NOTE: Change this line to your own institution's email domain. if "email.arizona.edu" in email: res_lab = "internal" else: res_lab = "external" # Replace all not ascii chars with ascii ones, and any symbols with '-'. prj_res = api_types.Researcher( extract_custom_forms._sanitize_text(res_name.split()[0]), extract_custom_forms._sanitize_text(res_name.split()[-1]), extract_custom_forms._sanitize_text(res_lab), email, "") prj_info = api_types.Project(prj_name, prj_res) return prj_info def extract_custom_form_info(req_id, form_id, form_soup): """Extract all of the fields passed into the form. Arguments: req_id (String): The unique string of ints that map to a request (URI). form_id (String): The unique string of ints that map to a form. form_soup (BeautifulSoup object): The soup of the form you want to parse. Returns: form_info (CustomForm): The CustomForm object with all of the form's fields initialized. Raises: TypeError: The form has no fields configured. ValueError: The form has duplicate samples. """ # If we need any of these types, we can make new methods. skip_types = ["charges", "file", "table", "help", "file_no_upload"] field_strategy = { "handsontable_grid": extract_custom_forms.grid_type, "checkbox": extract_custom_forms.checkbox_type, "all_others": extract_custom_forms.all_other_types} # Find the desired custom form out of all of the form_soup. target_form = form_soup.find(string=form_id) target_form = target_form.find_parent("custom-form") form_soup = target_form form_name = form_soup.find("name").string fields_soup = form_soup.find("fields") form_info = api_types.CustomForm(form_name, req_id, form_id) # Get all of the field information. for field_soup in fields_soup.find_all("field"): field_type = field_soup.find("type").string if field_type in skip_types: # Do nothing with the field types that we don't yet care about. continue try: field_strategy[field_type](field_soup, form_info) except KeyError: field_strategy["all_others"](field_soup, form_info) except TypeError: raise TypeError( f"The grid in the {form_info.name} form in request" f" {form_info.req_id} has been filled out incorrectly. The" f" error message is: {traceback.format_exc()}") # Raise an error if a form doesn't have samples. if not form_info.samples: return form_info if form_info.field_to_values.get("duplicate_samples"): if form_info.field_to_values["duplicate_samples"] == "Yes": b_samples = copy.deepcopy(form_info.samples) for a_sample, b_sample in zip(form_info.samples, b_samples): a_sample.name += "A" b_sample.name += "B" form_info.samples = form_info.samples + b_samples extract_custom_forms.bind_container_info(form_info) # Allows duplicate names if they have different well locations in a # plate. if form_info.con_type != "96 well plate": sample_names = [sample.name for sample in form_info.samples] if len(set(sample_names)) != len(sample_names): raise ValueError( f"There are two or more samples named the same thing in" f" request {form_info.req_id}. Please review and edit your" f" sample names.") for name, value in form_info.field_to_values.items(): if name in ONLY_INT_FIELDS: value = re.sub(r"[^.0-9]", "", value) if "_each_sample" in name: udf_name = name.replace("_each_sample", "").replace("_", " ") for sample in form_info.samples: sample.udf_to_value[udf_name] = value return form_info
python
__copyright__ = ''' Copyright 2017 the original author or authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' __author__ = 'David Turanski' import os,sys sys.path.insert(0, os.path.abspath('..')) sys.path.insert(0, os.path.abspath('.')) from springcloudstream.grpc.stream import Processor def echo(data): return data args =[ '--port','9999', '--debug' ] Processor(echo,args).start()
python
# George Adamson # 05/19/2020 fhand1 = open('dijkstraRoute_oceanEN_RD_50km_50.txt') fhand_out = open('dijkstraRoute_oceanEN_RD_50km_50.pg','w') # Read in Route lats = [] lons = [] for line in fhand1: route_data = line.split(',') lats.append(route_data[1]) lons.append(route_data[2].rstrip()) # Header Information fhand_out.write('stk.v.11.7') fhand_out.write('\n\tBEGIN GreatArc') fhand_out.write('\n\t\tMethod DetTimeAccFromVel') fhand_out.write('\n\t\tTimeOfFirstWaypoint 19 May 2020 16:00:00.000000000') fhand_out.write('\n\t\tArcGranularity 5.729577951308e-001') fhand_out.write('\n\t\tAltRef WGS84') fhand_out.write('\n\t\tAltInterpMethod EllipsoidHeight') fhand_out.write('\n\t\tNumberOfWaypoints 29') fhand_out.write('\n\t\tBEGIN Waypoints') for i in range(0,len(lats)): time = i * 1.016507057765e4 alt = 18288.00000 fhand_out.write('\n\t\t' + str(time) + " " + str(lats[i]) + " " + str(-1*float(lons[i])) + " " + str(alt) + " " + str(0.59944444444444) + " " + str(0.000000000000e0)) fhand_out.write('\n\t\tEND Waypoints') fhand_out.write('\n\tEND GreatArc') # Close Files fhand1.close() fhand_out.close()
python