|
--- |
|
dataset_info: |
|
features: |
|
- name: rgb |
|
dtype: image |
|
- name: ir |
|
dtype: image |
|
splits: |
|
- name: train |
|
num_bytes: 743157232.6539416 |
|
num_examples: 4113 |
|
- name: test |
|
num_bytes: 186676141.08705837 |
|
num_examples: 1029 |
|
download_size: 928212503 |
|
dataset_size: 929833373.7409999 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
|
|
For modified FLIR |
|
|
|
Usage: |
|
```py |
|
from torchvision import transforms |
|
from datasets import load_dataset |
|
|
|
dataset_name = "newguyme/flir_paired" |
|
dataset_flir_paired = load_dataset(dataset_name, split="train",use_auth_token=True) |
|
# dataset_flir_paired |
|
|
|
flir_preprocess = transforms.Compose( |
|
[ |
|
transforms.Resize((config.image_size, config.image_size)), |
|
# transforms.RandomHorizontalFlip(), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
def flir_transform(examples): |
|
rgb = [flir_preprocess(image.convert("RGB")) for image in examples["rgb"]] |
|
ir = [flir_preprocess(image.convert("RGB")) for image in examples["ir"]] |
|
|
|
return {"rgb_t_3ch": rgb, "ir_t_3ch":ir} |
|
|
|
|
|
dataset_flir_paired.set_transform(flir_transform) |
|
|
|
``` |
|
|