|
A dataset for benchmarking keyphrase extraction and generation techniques from long document English scientific papers. For more details about the dataset please refer the original paper - [](). |
|
|
|
Data source - []() |
|
|
|
## Dataset Summary |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
### Data Fields |
|
|
|
- **id**: unique identifier of the document. |
|
- **sections**: list of all the sections present in the document. |
|
- **sec_text**: list of white space separated list of words present in each section. |
|
- **sec_bio_tags**: list of BIO tags of white space separated list of words present in each section. |
|
- **extractive_keyphrases**: List of all the present keyphrases. |
|
- **abstractive_keyphrase**: List of all the absent keyphrases. |
|
|
|
|
|
### Data Splits |
|
|
|
|Split| #datapoints | |
|
|--|--| |
|
| Train-Small | 20,000 | |
|
| Train-Medium | 50,000 | |
|
| Train-Large | 1,296,613 | |
|
| Test | 10,000 | |
|
| Validation | 10,000 | |
|
|
|
## Usage |
|
|
|
### Small Dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# get small dataset |
|
dataset = load_dataset("midas/ldkp10k", "small") |
|
|
|
def order_sections(sample): |
|
""" |
|
corrects the order in which different sections appear in the document. |
|
resulting order is: title, abstract, other sections in the body |
|
""" |
|
|
|
sections = [] |
|
sec_text = [] |
|
sec_bio_tags = [] |
|
|
|
if "title" in sample["sections"]: |
|
title_idx = sample["sections"].index("title") |
|
sections.append(sample["sections"].pop(title_idx)) |
|
sec_text.append(sample["sec_text"].pop(title_idx)) |
|
sec_bio_tags.append(sample["sec_bio_tags"].pop(title_idx)) |
|
|
|
if "abstract" in sample["sections"]: |
|
abstract_idx = sample["sections"].index("abstract") |
|
sections.append(sample["sections"].pop(abstract_idx)) |
|
sec_text.append(sample["sec_text"].pop(abstract_idx)) |
|
sec_bio_tags.append(sample["sec_bio_tags"].pop(abstract_idx)) |
|
|
|
sections += sample["sections"] |
|
sec_text += sample["sec_text"] |
|
sec_bio_tags += sample["sec_bio_tags"] |
|
|
|
return sections, sec_text, sec_bio_tags |
|
|
|
|
|
# sample from the train split |
|
print("Sample from train data split") |
|
train_sample = dataset["train"][0] |
|
|
|
sections, sec_text, sec_bio_tags = order_sections(train_sample) |
|
print("Fields in the sample: ", [key for key in train_sample.keys()]) |
|
print("Section names: ", sections) |
|
print("Tokenized Document: ", sec_text) |
|
print("Document BIO Tags: ", sec_bio_tags) |
|
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"]) |
|
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"]) |
|
print("\n-----------\n") |
|
|
|
# sample from the validation split |
|
print("Sample from validation data split") |
|
validation_sample = dataset["validation"][0] |
|
|
|
sections, sec_text, sec_bio_tags = order_sections(validation_sample) |
|
print("Fields in the sample: ", [key for key in validation_sample.keys()]) |
|
print("Section names: ", sections) |
|
print("Tokenized Document: ", sec_text) |
|
print("Document BIO Tags: ", sec_bio_tags) |
|
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"]) |
|
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"]) |
|
print("\n-----------\n") |
|
|
|
# sample from the test split |
|
print("Sample from test data split") |
|
test_sample = dataset["test"][0] |
|
|
|
sections, sec_text, sec_bio_tags = order_sections(test_sample) |
|
print("Fields in the sample: ", [key for key in test_sample.keys()]) |
|
print("Section names: ", sections) |
|
print("Tokenized Document: ", sec_text) |
|
print("Document BIO Tags: ", sec_bio_tags) |
|
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) |
|
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) |
|
print("\n-----------\n") |
|
|
|
``` |
|
|
|
**Output** |
|
```bash |
|
|
|
``` |
|
|
|
### Medium Dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# get medium dataset |
|
dataset = load_dataset("midas/ldkp10k", "medium") |
|
``` |
|
|
|
### Large Dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# get large dataset |
|
dataset = load_dataset("midas/ldkp10k", "large") |
|
``` |
|
|
|
## Citation Information |
|
Please cite the works below if you use this dataset in your work. |
|
|
|
``` |
|
@article{mahata2022ldkp, |
|
title={LDKP: A Dataset for Identifying Keyphrases from Long Scientific Documents}, |
|
author={Mahata, Debanjan and Agarwal, Naveen and Gautam, Dibya and Kumar, Amardeep and Parekh, Swapnil and Singla, Yaman Kumar and Acharya, Anish and Shah, Rajiv Ratn}, |
|
journal={arXiv preprint arXiv:2203.15349}, |
|
year={2022} |
|
} |
|
``` |
|
``` |
|
@article{lo2019s2orc, |
|
title={S2ORC: The semantic scholar open research corpus}, |
|
author={Lo, Kyle and Wang, Lucy Lu and Neumann, Mark and Kinney, Rodney and Weld, Dan S}, |
|
journal={arXiv preprint arXiv:1911.02782}, |
|
year={2019} |
|
} |
|
``` |
|
``` |
|
@inproceedings{ccano2019keyphrase, |
|
title={Keyphrase generation: A multi-aspect survey}, |
|
author={{\c{C}}ano, Erion and Bojar, Ond{\v{r}}ej}, |
|
booktitle={2019 25th Conference of Open Innovations Association (FRUCT)}, |
|
pages={85--94}, |
|
year={2019}, |
|
organization={IEEE} |
|
} |
|
``` |
|
``` |
|
@article{meng2017deep, |
|
title={Deep keyphrase generation}, |
|
author={Meng, Rui and Zhao, Sanqiang and Han, Shuguang and He, Daqing and Brusilovsky, Peter and Chi, Yu}, |
|
journal={arXiv preprint arXiv:1704.06879}, |
|
year={2017} |
|
} |
|
``` |
|
|
|
## Contributions |
|
Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax), [@UmaGunturi](https://github.com/UmaGunturi) and [@ad6398](https://github.com/ad6398) for adding this dataset |
|
|