Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowNotImplementedError
Message:      Cannot write struct type 'model_kwargs' with no child field to Parquet. Consider adding a dummy child field.
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 583, in write_table
                  self._build_writer(inferred_schema=pa_table.schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 404, in _build_writer
                  self.pa_writer = self._WRITER_CLASS(self.stream, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 1010, in __init__
                  self.writer = _parquet.ParquetWriter(
                File "pyarrow/_parquet.pyx", line 2157, in pyarrow._parquet.ParquetWriter.__cinit__
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowNotImplementedError: Cannot write struct type 'model_kwargs' with no child field to Parquet. Consider adding a dummy child field.
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2029, in _prepare_split_single
                  num_examples, num_bytes = writer.finalize()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 602, in finalize
                  self._build_writer(self.schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 404, in _build_writer
                  self.pa_writer = self._WRITER_CLASS(self.stream, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 1010, in __init__
                  self.writer = _parquet.ParquetWriter(
                File "pyarrow/_parquet.pyx", line 2157, in pyarrow._parquet.ParquetWriter.__cinit__
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowNotImplementedError: Cannot write struct type 'model_kwargs' with no child field to Parquet. Consider adding a dummy child field.
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1396, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1045, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1029, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1124, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1884, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2040, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

config
dict
report
dict
name
string
backend
dict
scenario
dict
launcher
dict
environment
dict
load
dict
forward
dict
{ "name": "2024-09-30-20-07-10/pytorch", "backend": { "name": "pytorch", "version": "2.4.1", "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend", "task": "feature-extraction", "library": "transformers", "model_type": "gpt2", "model": "openai-community/gpt2", "processor": "openai-community/gpt2", "device": "cpu", "device_ids": null, "seed": 42, "inter_op_num_threads": null, "intra_op_num_threads": null, "model_kwargs": {}, "processor_kwargs": {}, "no_weights": false, "device_map": null, "torch_dtype": "float32", "eval_mode": true, "to_bettertransformer": false, "low_cpu_mem_usage": null, "attn_implementation": null, "cache_implementation": null, "autocast_enabled": false, "autocast_dtype": null, "torch_compile": false, "torch_compile_target": "forward", "torch_compile_config": {}, "quantization_scheme": null, "quantization_config": {}, "deepspeed_inference": false, "deepspeed_inference_config": {}, "peft_type": null, "peft_config": {} }, "scenario": { "name": "inference", "_target_": "optimum_benchmark.scenarios.inference.scenario.InferenceScenario", "iterations": 10, "duration": 10, "warmup_runs": 10, "input_shapes": { "batch_size": 2, "num_choices": 2, "sequence_length": 16 }, "new_tokens": null, "memory": true, "latency": true, "energy": false, "forward_kwargs": {}, "generate_kwargs": { "max_new_tokens": 32, "min_new_tokens": 32 }, "call_kwargs": {} }, "launcher": { "name": "process", "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher", "device_isolation": false, "device_isolation_action": null, "numactl": true, "numactl_kwargs": { "cpunodebind": 0, "membind": 0 }, "start_method": "spawn" }, "environment": { "cpu": " AMD EPYC 7R13 Processor", "cpu_count": 64, "cpu_ram_mb": 529717.026816, "system": "Linux", "machine": "x86_64", "platform": "Linux-5.10.205-195.807.amzn2.x86_64-x86_64-with-glibc2.36", "processor": "", "python_version": "3.10.15", "optimum_benchmark_version": "0.5.0", "optimum_benchmark_commit": null, "transformers_version": "4.44.2", "transformers_commit": null, "accelerate_version": "0.34.2", "accelerate_commit": null, "diffusers_version": null, "diffusers_commit": null, "optimum_version": "1.22.0", "optimum_commit": null, "timm_version": null, "timm_commit": null, "peft_version": null, "peft_commit": null } }
{ "load": { "memory": { "unit": "MB", "max_ram": 681.046016, "max_global_vram": null, "max_process_vram": null, "max_reserved": null, "max_allocated": null }, "latency": { "unit": "s", "values": [ 3.966448713093996 ], "count": 1, "total": 3.966448713093996, "mean": 3.966448713093996, "p50": 3.966448713093996, "p90": 3.966448713093996, "p95": 3.966448713093996, "p99": 3.966448713093996, "stdev": 0, "stdev_": 0 }, "throughput": null, "energy": null, "efficiency": null }, "forward": { "memory": { "unit": "MB", "max_ram": 1118.568448, "max_global_vram": null, "max_process_vram": null, "max_reserved": null, "max_allocated": null }, "latency": { "unit": "s", "values": [ 0.031664811074733734, 0.09032496809959412, 0.08789736032485962, 0.08879967033863068, 0.03201989829540253, 0.08423884212970734, 0.09121345728635788, 0.08818551898002625, 0.10675350204110146, 0.19785945490002632, 0.0942402333021164, 0.04522080719470978, 0.08535459265112877, 0.08885210379958153, 0.0986480675637722, 0.09995739534497261, 0.09575177729129791, 0.09239067509770393, 0.03208519145846367, 0.09070052206516266, 0.10381597653031349, 0.09207630902528763, 0.10417983680963516, 0.0865817703306675, 0.09156954288482666, 0.040636464953422546, 0.08521194010972977, 0.08829500526189804, 0.08948914706707001, 0.1023632176220417, 0.03461951017379761, 0.0840756930410862, 0.0945257768034935, 0.08783899620175362, 0.09395387768745422, 0.034185975790023804, 0.09510071203112602, 0.0886068120598793, 0.08157702162861824, 0.09246017038822174, 0.031726278364658356, 0.08865620940923691, 0.08059243112802505, 0.032624177634716034, 0.09196900576353073, 0.0810699611902237, 0.032106757164001465, 0.08851849660277367, 0.08451725915074348, 0.08841004222631454, 0.03747054189443588, 0.0800025649368763, 0.08907618746161461, 0.031612418591976166, 0.0850784033536911, 0.08847757801413536, 0.03188742697238922, 0.08446324989199638, 0.08871014416217804, 0.08404295146465302, 0.031542208045721054, 0.0881211906671524, 0.08473438397049904, 0.032881759107112885, 0.08916052803397179, 0.08412286266684532, 0.09036565572023392, 0.03156974911689758, 0.08749698475003242, 0.09203888103365898, 0.10392692685127258, 0.09789970889687538, 0.08869035914540291, 0.03473401442170143, 0.09474534913897514, 0.09939325973391533, 0.09798290580511093, 0.0987880527973175, 0.0935584120452404, 0.0831904374063015, 0.10094492882490158, 0.031647149473428726, 0.08074774593114853, 0.08792132139205933, 0.03603678196668625, 0.09554637596011162, 0.08905418589711189, 0.0875939279794693, 0.09969789162278175, 0.09206515178084373, 0.10020159929990768, 0.03647914156317711, 0.15708202123641968, 0.039025597274303436, 0.0864202082157135, 0.08877819776535034, 0.0871780626475811, 0.0955420508980751, 0.033497247844934464, 0.08007903769612312, 0.08830239623785019, 0.03901897743344307, 0.09567869827151299, 0.09157699719071388, 0.09119665995240211, 0.09682190045714378, 0.033938050270080566, 0.08098247274756432, 0.08844276517629623, 0.09172916784882545, 0.08812952414155006, 0.032098960131406784, 0.08067170158028603, 0.09230662509799004, 0.04153048247098923, 0.08251176029443741, 0.09716947749257088, 0.08605539053678513, 0.09076864272356033, 0.04387693107128143, 0.0814075917005539, 0.08873757347464561, 0.09102284908294678, 0.09644880890846252, 0.09592880681157112, 0.10283755138516426 ], "count": 126, "total": 10.094007708132267, "mean": 0.08011117228676402, "p50": 0.08842640370130539, "p90": 0.09909065626561642, "p95": 0.10271896794438362, "p99": 0.14449989143759012, "stdev": 0.026657956278453555, "stdev_": 33.276202953352595 }, "throughput": { "unit": "samples/s", "value": 24.965306871816182 }, "energy": null, "efficiency": null } }
null
null
null
null
null
null
null
null
null
2024-09-30-20-07-10/pytorch
{ "name": "pytorch", "version": "2.4.1", "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend", "task": "feature-extraction", "library": "transformers", "model_type": "gpt2", "model": "openai-community/gpt2", "processor": "openai-community/gpt2", "device": "cpu", "device_ids": null, "seed": 42, "inter_op_num_threads": null, "intra_op_num_threads": null, "model_kwargs": {}, "processor_kwargs": {}, "no_weights": false, "device_map": null, "torch_dtype": "float32", "eval_mode": true, "to_bettertransformer": false, "low_cpu_mem_usage": null, "attn_implementation": null, "cache_implementation": null, "autocast_enabled": false, "autocast_dtype": null, "torch_compile": false, "torch_compile_target": "forward", "torch_compile_config": {}, "quantization_scheme": null, "quantization_config": {}, "deepspeed_inference": false, "deepspeed_inference_config": {}, "peft_type": null, "peft_config": {} }
{ "name": "inference", "_target_": "optimum_benchmark.scenarios.inference.scenario.InferenceScenario", "iterations": 10, "duration": 10, "warmup_runs": 10, "input_shapes": { "batch_size": 2, "num_choices": 2, "sequence_length": 16 }, "new_tokens": null, "memory": true, "latency": true, "energy": false, "forward_kwargs": {}, "generate_kwargs": { "max_new_tokens": 32, "min_new_tokens": 32 }, "call_kwargs": {} }
{ "name": "process", "_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher", "device_isolation": false, "device_isolation_action": null, "numactl": true, "numactl_kwargs": { "cpunodebind": 0, "membind": 0 }, "start_method": "spawn" }
{ "cpu": " AMD EPYC 7R13 Processor", "cpu_count": 64, "cpu_ram_mb": 529717.026816, "system": "Linux", "machine": "x86_64", "platform": "Linux-5.10.205-195.807.amzn2.x86_64-x86_64-with-glibc2.36", "processor": "", "python_version": "3.10.15", "optimum_benchmark_version": "0.5.0", "optimum_benchmark_commit": null, "transformers_version": "4.44.2", "transformers_commit": null, "accelerate_version": "0.34.2", "accelerate_commit": null, "diffusers_version": null, "diffusers_commit": null, "optimum_version": "1.22.0", "optimum_commit": null, "timm_version": null, "timm_commit": null, "peft_version": null, "peft_commit": null }
null
null
null
null
null
null
null
null
null
{ "memory": { "unit": "MB", "max_ram": 681.046016, "max_global_vram": null, "max_process_vram": null, "max_reserved": null, "max_allocated": null }, "latency": { "unit": "s", "values": [ 3.966448713093996 ], "count": 1, "total": 3.966448713093996, "mean": 3.966448713093996, "p50": 3.966448713093996, "p90": 3.966448713093996, "p95": 3.966448713093996, "p99": 3.966448713093996, "stdev": 0, "stdev_": 0 }, "throughput": null, "energy": null, "efficiency": null }
{ "memory": { "unit": "MB", "max_ram": 1118.568448, "max_global_vram": null, "max_process_vram": null, "max_reserved": null, "max_allocated": null }, "latency": { "unit": "s", "values": [ 0.031664811074733734, 0.09032496809959412, 0.08789736032485962, 0.08879967033863068, 0.03201989829540253, 0.08423884212970734, 0.09121345728635788, 0.08818551898002625, 0.10675350204110146, 0.19785945490002632, 0.0942402333021164, 0.04522080719470978, 0.08535459265112877, 0.08885210379958153, 0.0986480675637722, 0.09995739534497261, 0.09575177729129791, 0.09239067509770393, 0.03208519145846367, 0.09070052206516266, 0.10381597653031349, 0.09207630902528763, 0.10417983680963516, 0.0865817703306675, 0.09156954288482666, 0.040636464953422546, 0.08521194010972977, 0.08829500526189804, 0.08948914706707001, 0.1023632176220417, 0.03461951017379761, 0.0840756930410862, 0.0945257768034935, 0.08783899620175362, 0.09395387768745422, 0.034185975790023804, 0.09510071203112602, 0.0886068120598793, 0.08157702162861824, 0.09246017038822174, 0.031726278364658356, 0.08865620940923691, 0.08059243112802505, 0.032624177634716034, 0.09196900576353073, 0.0810699611902237, 0.032106757164001465, 0.08851849660277367, 0.08451725915074348, 0.08841004222631454, 0.03747054189443588, 0.0800025649368763, 0.08907618746161461, 0.031612418591976166, 0.0850784033536911, 0.08847757801413536, 0.03188742697238922, 0.08446324989199638, 0.08871014416217804, 0.08404295146465302, 0.031542208045721054, 0.0881211906671524, 0.08473438397049904, 0.032881759107112885, 0.08916052803397179, 0.08412286266684532, 0.09036565572023392, 0.03156974911689758, 0.08749698475003242, 0.09203888103365898, 0.10392692685127258, 0.09789970889687538, 0.08869035914540291, 0.03473401442170143, 0.09474534913897514, 0.09939325973391533, 0.09798290580511093, 0.0987880527973175, 0.0935584120452404, 0.0831904374063015, 0.10094492882490158, 0.031647149473428726, 0.08074774593114853, 0.08792132139205933, 0.03603678196668625, 0.09554637596011162, 0.08905418589711189, 0.0875939279794693, 0.09969789162278175, 0.09206515178084373, 0.10020159929990768, 0.03647914156317711, 0.15708202123641968, 0.039025597274303436, 0.0864202082157135, 0.08877819776535034, 0.0871780626475811, 0.0955420508980751, 0.033497247844934464, 0.08007903769612312, 0.08830239623785019, 0.03901897743344307, 0.09567869827151299, 0.09157699719071388, 0.09119665995240211, 0.09682190045714378, 0.033938050270080566, 0.08098247274756432, 0.08844276517629623, 0.09172916784882545, 0.08812952414155006, 0.032098960131406784, 0.08067170158028603, 0.09230662509799004, 0.04153048247098923, 0.08251176029443741, 0.09716947749257088, 0.08605539053678513, 0.09076864272356033, 0.04387693107128143, 0.0814075917005539, 0.08873757347464561, 0.09102284908294678, 0.09644880890846252, 0.09592880681157112, 0.10283755138516426 ], "count": 126, "total": 10.094007708132267, "mean": 0.08011117228676402, "p50": 0.08842640370130539, "p90": 0.09909065626561642, "p95": 0.10271896794438362, "p99": 0.14449989143759012, "stdev": 0.026657956278453555, "stdev_": 33.276202953352595 }, "throughput": { "unit": "samples/s", "value": 24.965306871816182 }, "energy": null, "efficiency": null }

No dataset card yet

New: Create and edit this dataset card directly on the website!

Contribute a Dataset Card
Downloads last month
4