kubota/luke-large-defamation-detection-japanese
Text Classification
•
Updated
•
233
•
5
id
stringlengths 19
19
| target
sequence | label
sequence | user_id_list
sequence |
---|---|---|---|
1494101762587836419 | [
3,
1,
3
] | [
4,
3,
4
] | [
65,
90,
51
] |
1494127310340976648 | [
1,
1,
1
] | [
2,
2,
2
] | [
65,
90,
51
] |
1494128253279567872 | [
3,
1,
1
] | [
1,
1,
1
] | [
65,
90,
51
] |
1494131907076190209 | [
1,
3,
1
] | [
1,
4,
1
] | [
65,
90,
51
] |
1494150116118515715 | [
1,
1,
3
] | [
3,
3,
4
] | [
65,
90,
51
] |
1494156454793969666 | [
1,
1,
3
] | [
4,
2,
2
] | [
65,
90,
51
] |
1494162318527463433 | [
3,
3,
3
] | [
3,
4,
2
] | [
65,
90,
51
] |
1494162638825467905 | [
3,
1,
3
] | [
3,
2,
3
] | [
65,
90,
51
] |
1494167418121637889 | [
2,
1,
1
] | [
3,
2,
2
] | [
65,
90,
51
] |
1494176257046908933 | [
1,
1,
3
] | [
4,
2,
4
] | [
65,
90,
51
] |
1494191889574084608 | [
1,
1,
1
] | [
1,
2,
1
] | [
65,
90,
51
] |
1494239227416297472 | [
1,
1,
1
] | [
1,
2,
1
] | [
65,
90,
51
] |
1494241642215133189 | [
1,
1,
1
] | [
1,
2,
1
] | [
65,
90,
51
] |
1494243758572933120 | [
1,
1,
1
] | [
3,
2,
2
] | [
65,
90,
51
] |
1494249749272092682 | [
2,
2,
1
] | [
1,
2,
1
] | [
65,
90,
51
] |
1494275699456106496 | [
1,
1,
1
] | [
1,
1,
2
] | [
65,
90,
51
] |
1494275950032273409 | [
3,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494298478746701825 | [
3,
1,
1
] | [
3,
1,
2
] | [
65,
90,
51
] |
1494300906149482498 | [
1,
3,
1
] | [
3,
4,
3
] | [
65,
90,
51
] |
1494307282171363332 | [
1,
1,
1
] | [
3,
3,
3
] | [
65,
90,
51
] |
1494313039692460040 | [
1,
3,
1
] | [
3,
4,
2
] | [
65,
90,
51
] |
1494316978135535618 | [
3,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494318450826948611 | [
1,
1,
1
] | [
3,
3,
3
] | [
65,
90,
51
] |
1494319789212581892 | [
1,
1,
1
] | [
2,
3,
2
] | [
65,
90,
51
] |
1494320352628985857 | [
1,
0,
1
] | [
3,
0,
4
] | [
65,
90,
51
] |
1494325458036740098 | [
1,
1,
1
] | [
3,
3,
3
] | [
65,
90,
51
] |
1494326477495869441 | [
1,
1,
3
] | [
3,
3,
3
] | [
65,
90,
51
] |
1494328200947974150 | [
3,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494329699920904196 | [
1,
1,
1
] | [
2,
3,
3
] | [
65,
90,
51
] |
1494335278450094083 | [
3,
1,
1
] | [
4,
3,
2
] | [
65,
90,
51
] |
1494377364532318217 | [
0,
1,
3
] | [
0,
3,
3
] | [
65,
90,
51
] |
1494383127304687621 | [
3,
3,
1
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494386642672832512 | [
3,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494393896419291137 | [
1,
1,
1
] | [
1,
2,
1
] | [
65,
90,
51
] |
1494398845253722112 | [
1,
1,
1
] | [
1,
2,
1
] | [
65,
90,
51
] |
1494409179645509632 | [
0,
0,
0
] | [
0,
0,
0
] | [
65,
90,
51
] |
1494428047487156227 | [
1,
3,
1
] | [
2,
4,
2
] | [
65,
90,
51
] |
1494432035640786958 | [
1,
3,
1
] | [
2,
4,
2
] | [
65,
90,
51
] |
1494435703207645185 | [
1,
3,
1
] | [
3,
4,
3
] | [
65,
90,
51
] |
1494447675885821952 | [
1,
3,
1
] | [
1,
4,
1
] | [
65,
90,
51
] |
1494452454385393664 | [
1,
1,
1
] | [
3,
3,
3
] | [
65,
90,
51
] |
1494452673432547332 | [
1,
1,
1
] | [
2,
3,
2
] | [
65,
90,
51
] |
1494455157735981058 | [
1,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494455982725816322 | [
1,
3,
1
] | [
4,
4,
2
] | [
65,
90,
51
] |
1494456238733955072 | [
3,
1,
1
] | [
1,
2,
2
] | [
65,
90,
51
] |
1494459153498402820 | [
1,
1,
1
] | [
3,
3,
3
] | [
65,
90,
51
] |
1494459193151332353 | [
2,
3,
1
] | [
1,
2,
2
] | [
65,
90,
51
] |
1494459486521937921 | [
1,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494460579435917312 | [
1,
1,
2
] | [
2,
3,
1
] | [
65,
90,
51
] |
1494472083681603590 | [
3,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494531282663256066 | [
1,
1,
3
] | [
4,
3,
4
] | [
65,
90,
51
] |
1494546353913200645 | [
1,
1,
1
] | [
2,
3,
2
] | [
65,
90,
51
] |
1494579949529079813 | [
1,
3,
3
] | [
4,
3,
4
] | [
65,
90,
51
] |
1494583604785352706 | [
2,
1,
2
] | [
3,
2,
2
] | [
65,
90,
51
] |
1494592954643611651 | [
3,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494595781516722177 | [
3,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494620913501085700 | [
1,
1,
1
] | [
1,
3,
2
] | [
65,
90,
51
] |
1494629786878025730 | [
2,
1,
1
] | [
3,
3,
3
] | [
65,
90,
51
] |
1494633554529374208 | [
1,
1,
1
] | [
4,
3,
2
] | [
65,
90,
51
] |
1494638550893330432 | [
1,
0,
1
] | [
2,
0,
2
] | [
65,
90,
51
] |
1494643413265702913 | [
1,
1,
1
] | [
1,
2,
1
] | [
65,
90,
51
] |
1494648386892759040 | [
2,
3,
1
] | [
1,
2,
1
] | [
65,
90,
51
] |
1494650742451638272 | [
1,
1,
1
] | [
3,
2,
2
] | [
65,
90,
51
] |
1494662840162336769 | [
3,
1,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494669078279364609 | [
0,
1,
3
] | [
0,
3,
4
] | [
65,
90,
51
] |
1494675239699365888 | [
1,
1,
1
] | [
1,
3,
2
] | [
65,
90,
51
] |
1494686530832859137 | [
1,
1,
1
] | [
3,
3,
3
] | [
65,
90,
51
] |
1494688036298567684 | [
1,
1,
1
] | [
3,
3,
3
] | [
65,
90,
51
] |
1494695124450025472 | [
1,
3,
1
] | [
4,
4,
2
] | [
65,
90,
51
] |
1494695964363296774 | [
3,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494702037744820225 | [
1,
3,
1
] | [
3,
4,
3
] | [
65,
90,
51
] |
1494703453410828290 | [
1,
1,
3
] | [
4,
3,
4
] | [
65,
90,
51
] |
1494703838481186818 | [
3,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494706632101888001 | [
1,
3,
1
] | [
1,
1,
2
] | [
65,
90,
51
] |
1494738482882748420 | [
3,
1,
1
] | [
4,
1,
2
] | [
65,
90,
51
] |
1494744282615353348 | [
1,
1,
1
] | [
3,
2,
3
] | [
65,
90,
51
] |
1494765432263168003 | [
1,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494780533293064192 | [
3,
1,
3
] | [
3,
3,
4
] | [
65,
90,
51
] |
1494782763022839808 | [
1,
1,
1
] | [
2,
2,
2
] | [
65,
90,
51
] |
1494784933188947968 | [
1,
1,
3
] | [
2,
2,
2
] | [
65,
90,
51
] |
1494800884982710273 | [
1,
1,
1
] | [
2,
2,
2
] | [
65,
90,
51
] |
1494804141352226817 | [
0,
3,
3
] | [
0,
4,
4
] | [
65,
90,
51
] |
1494810938146394114 | [
1,
1,
1
] | [
1,
2,
1
] | [
65,
90,
51
] |
1494811814634594304 | [
1,
1,
3
] | [
3,
3,
4
] | [
65,
90,
51
] |
1494813598346268672 | [
1,
1,
1
] | [
3,
3,
3
] | [
65,
90,
51
] |
1494814044385349632 | [
3,
1,
1
] | [
3,
1,
3
] | [
65,
90,
51
] |
1494816934558601219 | [
3,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494817831988387841 | [
1,
1,
1
] | [
2,
2,
2
] | [
65,
90,
51
] |
1494820802075959296 | [
1,
1,
1
] | [
3,
2,
2
] | [
65,
90,
51
] |
1494822848141340672 | [
1,
3,
1
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494857971255312384 | [
1,
3,
1
] | [
1,
4,
2
] | [
65,
90,
51
] |
1494867779299983361 | [
3,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494924448499404803 | [
3,
1,
1
] | [
3,
3,
2
] | [
65,
90,
51
] |
1494932188256604160 | [
1,
1,
1
] | [
3,
2,
2
] | [
65,
90,
51
] |
1494976700941479937 | [
1,
3,
1
] | [
1,
4,
1
] | [
65,
90,
51
] |
1494981480929382401 | [
3,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
1494986144102055938 | [
3,
3,
1
] | [
1,
4,
1
] | [
65,
90,
51
] |
1494997060369608709 | [
1,
3,
1
] | [
4,
4,
2
] | [
65,
90,
51
] |
1495007833930473478 | [
0,
3,
0
] | [
0,
4,
0
] | [
65,
90,
51
] |
1495010817582198788 | [
3,
3,
3
] | [
4,
4,
4
] | [
65,
90,
51
] |
SNSにおける誹謗中傷検出のためのデータセットです.
5,000件の日本語のツイートに,それぞれ以下で定義している誹謗中傷の対象者と内容をアノテーションしています.アノテーションは,3人のクラウドワーカーにより行われています.2022年2月15日から2022年6月30日までのツイートです. 元のツイートは含まれていないため,Twitter APIを用いてデータセットを収集してください.
中傷対象(target)と中傷内容(label)の2項目がアノテーションされています.
文として成立しておらず意味の取れないものはラベルC(0)としています.
target | 対象 | 例 |
---|---|---|
A1(1) | (人種・性別・職業・思想などを共通とする)グループ | (人種・性別・職業・思想などを共通とする)グループ |
A2(2) | 個人(著名人や知人など) | 〇〇大統領,芸能人の〇〇さん,おまえ |
A3(3) | 対象がはっきりしないもの | |
C(0) | 文として成立しておらず意味が取れない | |
label | 誹謗中傷の種類 | 侵害されるもの | 例 |
---|---|---|---|
B1(1) | 生命を脅かす,精神的・身体的な危害を加える | 私生活の平穏 | • 殺害予告などの脅迫発言 • ◯◯なんていなくなればいいのにな |
B2(2) | 容姿,人格などをけなしている | 名誉感情 | • 太っているくせにカッコいいと勘違いしている • 田舎育ちだからファッション感覚がない |
B3(3) | 社会から客観的に受ける価値を低下させる | 名誉権 | • ◯◯さんは過去に事件を起こして逮捕されたことがある • ◯◯さんは会社の同僚と不倫をしている |
B4(4) | B1-B3のどれにも当てはまらず中傷性がない | ||
C(0) | 文として成立しておらず意味が取れない |
id
Twitter IDtarget
: 3名のアノテータのカテゴリAの回答 values: C(0), A1(1), A2(2), A3(3)label
: 3名のアノテータのカテゴリBの回答 values: C(0), B1(1), B2(2), B3(3), B4(4)user_id_list
: 匿名化された回答者のID# sample code from https://github.com/twitterdev/Twitter-API-v2-sample-code/blob/main/Tweet-Lookup/get_tweets_with_bearer_token.py
import requests
import os
import json
from datasets import load_dataset
# To set your enviornment variables in your terminal run the following line:
# export 'BEARER_TOKEN'='<your_bearer_token>'
bearer_token = os.environ.get("BEARER_TOKEN")
def create_url(ids: list):
tweet_fields = "tweet.fields=created_at"
ids = f"ids={','.join(ids)}"
url = "https://api.twitter.com/2/tweets?{}&{}".format(ids, tweet_fields)
return url
def bearer_oauth(r):
"""
Method required by bearer token authentication.
"""
r.headers["Authorization"] = f"Bearer {bearer_token}"
r.headers["User-Agent"] = "v2TweetLookupPython"
return r
def connect_to_endpoint(url):
response = requests.request("GET", url, auth=bearer_oauth)
if response.status_code != 200:
raise Exception(
"Request returned an error: {} {}".format(
response.status_code, response.text
)
)
return response.json()
def get_text_data(examples):
url = create_url(examples["id"])
json_response = connect_to_endpoint(url)
# print(json_response["data"])
text_dict = {data["id"]: data["text"] for data in json_response["data"]}
time_dict = {data["id"]: data["created_at"] for data in json_response["data"]}
return {
"text": [text_dict.get(id) for id in examples["id"]],
"created_at": [time_dict.get(id) for id in examples["id"]],
}
dataset = load_dataset("kubota/defamation-japanese-twitter")
dataset = dataset.map(get_text_data, batched=True, batch_size=100)
dataset["train"].to_pandas().head()
Thanks to @kubotaissei for adding this dataset.