max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
Application/AdminModule.py
nimitpatel26/Book-Fetch
0
12799851
from random import randint import datetime import pymysql import cgi def getConnection(): return pymysql.connect(host='localhost', user='root', password='<PASSWORD>', db='BookFetch') def newBook(): Title = input("Enter the title of the new book: ") ISBN = input("Enter the isbn of the new book: ") ISBN13 = input ("Enter the isbn 13: ") DPublished = input("Enter date published: ") Quantity = input("Enter quantity: ") Publisher = input("Enter publisher: ") Edition = input("Edition: ") Language = input("Language: ") Category = input("Category: ") Author = input("Author: ") connection = getConnection() connection.autocommit(True) try: with connection.cursor() as cursor: sql = ("insert into BookDetails values (\"" + Title + "\", " + ISBN + ", " + ISBN13 + ", \"" + DPublished + "\", " + Quantity + ", \"" + Publisher + "\", " + Edition + ", \"" + Language + "\", \"" + Category + "\", \"" + Author + "\");") cursor.execute(sql) finally: connection.close() def newUniversity(): Name = input("Enter the name of the university: ") RFName = input("First name of the representative: ") RLName = input("Last name of the representative: ") Street = input("Street: ") City = input("City: ") State = input("State: ") Country = input("Country: ") connection = getConnection() connection.autocommit(True) try: with connection.cursor() as cursor: sql = ("insert into Universities values(\"" + Name + "\", \"" + RFName + "\", \"" + RLName + "\", \"" + Street + "\", \"" + City + "\", \"" + State + "\", \"" + Country + "\");") cursor.execute(sql) finally: connection.close() def newDepartment(): UniversityName = input("Enter the name of the university: ") DeptName = input("Enter the name of the department: ") connection = getConnection() connection.autocommit(True) try: with connection.cursor() as cursor: sql = ("insert into Departments values(\"" + UniversityName + "\", \"" + DeptName + "\");") cursor.execute(sql) finally: connection.close() def newCourses(): CourseName = input("Enter the name of the course: ") UniversityName = input("Enter the name of the university: ") DeptName = input("Enter the name of the department: ") connection = getConnection() connection.autocommit(True) try: with connection.cursor() as cursor: sql = ("insert into Courses values(\"" + CourseName + "\", \"" + UniversityName + "\", \"" + DeptName + "\");") cursor.execute(sql) finally: connection.close() def newBAssociation(): print("All of these are foreign key constraints: ") CourseName = input("Enter the name of the course: ") UniversityName = input("Enter the name of the university: ") ISBN = input("Enter the isbn of the book: ") connection = getConnection() connection.autocommit(True) try: with connection.cursor() as cursor: sql = ("insert into CourseReq values(" + ISBN + ", \"" + CourseName + "\", \"" + UniversityName + "\");") cursor.execute(sql) finally: connection.close() def adminModuleMain(): welcomeMsg = ("---------------------\nAdmin Module\n---------------------") mainOptionsMsg = ( """Here are your options: 1) Create a new book with inventory 2) Create a new university 3) Create a new department 4) Create a new courses 5) Create a new book associations 6) Return 7) Quit Enter [1-7]: """) invalidInputMsg = "Invalid input, please enter a valid input." print(welcomeMsg) userInput = int(input(mainOptionsMsg)) print("\n") while(userInput < 1 or userInput > 7): print(invalidInputMsg) userInput = int(input(mainOptionsMsg)) print("\n") if (userInput == 1): newBook() elif (userInput == 2): newUniversity() elif (userInput == 3): newDepartment() elif (userInput == 4): newCourses() elif (userInput == 5): newBAssociation() elif (userInput == 6): return elif (userInput == 7): quit() adminModuleMain()
3.234375
3
pages/clean_box/images/sims_for_hoopla/pot_ext_shears_kappa.py
linan7788626/linan7788626.github.io
0
12799852
<filename>pages/clean_box/images/sims_for_hoopla/pot_ext_shears_kappa.py import numpy as np def deflection_sub_pJaffe(x0, y0, re, rc, a, x, y): r = np.sqrt((x - x0)**2.0 + (y - y0)**2.0) res = re / r * (np.sqrt(rc * rc + r * r) - rc - np.sqrt(a * a + r * r) + a) return res * (x - x0) / r, res * (y - y0) / r def deflection_nie(x0, y0, theta, ql, re, rc, ext_shears, ext_angle, ext_kappa, x, y): # SIE lens model tr = np.pi * (theta / 180.0) # + np.pi / 2.0 sx = x - x0 sy = y - y0 cs = np.cos(tr) sn = np.sin(tr) sx_r = sx * cs + sy * sn sy_r = -sx * sn + sy * cs psi = np.sqrt(ql**2.0 * (rc**2.0 + sx_r**2.0) + sy_r**2.0) dx_tmp = (re * np.sqrt(ql) / np.sqrt(1.0 - ql**2.0)) * \ np.arctan(np.sqrt(1.0 - ql**2.0) * sx_r / (psi + rc)) dy_tmp = (re * np.sqrt(ql) / np.sqrt(1.0 - ql**2.0)) * \ np.arctanh(np.sqrt(1.0 - ql**2.0) * sy_r / (psi + rc * ql**2.0)) dx = dx_tmp * cs - dy_tmp * sn dy = dx_tmp * sn + dy_tmp * cs # external shear tr2 = np.pi * (ext_angle / 180.0) cs2 = np.cos(2.0 * tr2) sn2 = np.sin(2.0 * tr2) dx2 = ext_shears * (cs2 * sx + sn2 * sy) dy2 = ext_shears * (sn2 * sx - cs2 * sy) # external kappa dx3 = ext_kappa * sx dy3 = ext_kappa * sy return dx + dx2 + dx3, dy + dy2 + dy3 def potential_nie(x0, y0, theta, ql, re, rc, ext_shears, ext_angle, ext_kappa, x, y): tr = np.pi * (theta / 180.0) # + np.pi / 2.0 sx = x - x0 sy = y - y0 cs = np.cos(tr) sn = np.sin(tr) sx_r = sx * cs + sy * sn sy_r = -sx * sn + sy * cs psi = np.sqrt(ql**2.0 * (rc**2.0 + sx_r**2.0) + sy_r**2.0) dx_tmp = (re * np.sqrt(ql) / np.sqrt(1.0 - ql**2.0)) * \ np.arctan(np.sqrt(1.0 - ql**2.0) * sx_r / (psi + rc)) dy_tmp = (re * np.sqrt(ql) / np.sqrt(1.0 - ql**2.0)) * \ np.arctanh(np.sqrt(1.0 - ql**2.0) * sy_r / (psi + rc * ql**2.0)) pot_SIE = sx_r * dx_tmp + sy_r * dy_tmp - 0.5 * re * \ np.sqrt(ql) * rc * np.log((psi + rc)**2.0 + (1.0 - (ql**2.0)) * (sx_r**2.0)) # external shear tr2 = np.pi * (ext_angle / 180.0) cs2 = np.cos(2.0 * tr2) sn2 = np.sin(2.0 * tr2) pot_exts = ext_shears * (sn2 * sx * sy + 0.5 * cs2 * (sx**2.0 - sy**2.0)) # external kappa pot_kaps = ext_kappa * (sx**2.0 + sy**2.0) * 0.5 return pot_SIE + pot_exts + pot_kaps def pot_sub_pJaffe(x0, y0, re, a, x, y): # res = # re*(np.sqrt(s*s+r*r)-s-np.sqrt(a*a+r*r)+a)-re*s*np.log((s+np.sqrt(s*s+r*r)/(2.0*s)))+re*a*np.log((a+np.sqrt(a*a+r*r)/(2.9*a))) r = np.sqrt((x - x0)**2.0 + (y - y0)**2.0) res = re * (r - np.sqrt(a * a + r * r) + a) + re * a * \ np.log((a + np.sqrt(a * a + r * r)) / (2.0 * a)) return res #if __name__ == '__main__': #import pylab as pl #r = np.linspace(0.0, 3.0, 100) #y = 1.0 / r * (np.sqrt(r * r) - np.sqrt(1.0 * 1.0 + r * r) + 1.0) #pl.plot(r,y,'k-') #pl.show()
1.820313
2
earsie_eats_blog/users/views.py
genomics-geek/earsie-eats.com
0
12799853
from django.contrib.auth import get_user_model from django.contrib.auth.mixins import LoginRequiredMixin from django.urls import reverse from django.views.generic import DetailView, ListView, RedirectView, UpdateView from allauth.socialaccount.providers.facebook.views import FacebookOAuth2Adapter from allauth.socialaccount.providers.github.views import GitHubOAuth2Adapter from allauth.socialaccount.providers.google.views import GoogleOAuth2Adapter from allauth.socialaccount.providers.instagram.views import InstagramOAuth2Adapter from allauth.socialaccount.providers.twitter.views import TwitterOAuthAdapter from rest_auth.registration.views import SocialLoginView from rest_auth.social_serializers import TwitterLoginSerializer User = get_user_model() class UserDetailView(LoginRequiredMixin, DetailView): model = User slug_field = "username" slug_url_kwarg = "username" user_detail_view = UserDetailView.as_view() class UserListView(LoginRequiredMixin, ListView): model = User slug_field = "username" slug_url_kwarg = "username" user_list_view = UserListView.as_view() class UserUpdateView(LoginRequiredMixin, UpdateView): model = User fields = ["name"] def get_success_url(self): return reverse("users:detail", kwargs={"username": self.request.user.username}) def get_object(self): return User.objects.get(username=self.request.user.username) user_update_view = UserUpdateView.as_view() class UserRedirectView(LoginRequiredMixin, RedirectView): permanent = False def get_redirect_url(self): return reverse("users:detail", kwargs={"username": self.request.user.username}) user_redirect_view = UserRedirectView.as_view() # Social Apps class FacebookLogin(SocialLoginView): adapter_class = FacebookOAuth2Adapter class GitHubLogin(SocialLoginView): adapter_class = GitHubOAuth2Adapter class GoogleLogin(SocialLoginView): adapter_class = GoogleOAuth2Adapter class InstagramLogin(SocialLoginView): adapter_class = InstagramOAuth2Adapter class TwitterLogin(SocialLoginView): serializer_class = TwitterLoginSerializer adapter_class = TwitterOAuthAdapter
2.125
2
duplicateOverSurface/duplicateOverSurface.py
minoue/miMayaPlugins
32
12799854
<reponame>minoue/miMayaPlugins<gh_stars>10-100 # # duplicaeOnSurface.py # # # ---------------------------------------------------------------------------- # "THE BEER-WARE LICENSE" (Revision 42): # <<EMAIL>> wrote this file. As long as you retain this # notice you can do whatever you want with this stuff. If we meet some day, # and you think this stuff is worth it, you can buy me a beer in return. # -<NAME> # ---------------------------------------------------------------------------- # from maya import OpenMaya from maya import OpenMayaUI from maya import OpenMayaMPx from maya import cmds try: from PySide.QtGui import QApplication from PySide import QtCore except ImportError: from PySide2.QtWidgets import QApplication from PySide2 import QtCore import math import sys DRAGGER = "duplicateOverSurfaceDragger" UTIL = OpenMaya.MScriptUtil() kPluginCmdName = "duplicateOverSurface" kRotationFlag = "-r" kRotationFlagLong = "-rotation" kDummyFlag = "-d" kDummyFlagLong = "-dummy" kInstanceFlag = "-ilf" kInstanceFlagLong = "-instanceLeaf" # Syntax creator def syntaxCreator(): syntax = OpenMaya.MSyntax() syntax.addArg(OpenMaya.MSyntax.kString) syntax.addFlag( kDummyFlag, kDummyFlagLong, OpenMaya.MSyntax.kBoolean) syntax.addFlag( kRotationFlag, kRotationFlagLong, OpenMaya.MSyntax.kBoolean) syntax.addFlag( kInstanceFlag, kInstanceFlagLong, OpenMaya.MSyntax.kBoolean) return syntax class DuplicateOverSurface(OpenMayaMPx.MPxCommand): def __init__(self): super(DuplicateOverSurface, self).__init__() self.ANCHOR_POINT = None self.DUPLICATED = None self.SOURCE = None self.SCALE_ORIG = None self.MATRIX_ORIG = None self.TARGET_FNMESH = None self.MOD_FIRST = None self.MOD_POINT = None self.SPACE = OpenMaya.MSpace.kWorld self.ROTATION = True self.InstanceFlag = False self.SHIFT = QtCore.Qt.ShiftModifier self.CTRL = QtCore.Qt.ControlModifier def doIt(self, args): # Parse the arguments. argData = OpenMaya.MArgDatabase(syntaxCreator(), args) self.SOURCE = argData.commandArgumentString(0) if argData.isFlagSet(kRotationFlag) is True: self.ROTATION = argData.flagArgumentBool(kRotationFlag, 0) if argData.isFlagSet(kInstanceFlag) is True: self.InstanceFlag = argData.flagArgumentBool(kInstanceFlag, 0) cmds.setToolTo(self.setupDragger()) def setupDragger(self): """ Setup dragger context command """ try: cmds.deleteUI(DRAGGER) except: pass dragger = cmds.draggerContext( DRAGGER, pressCommand=self.pressEvent, dragCommand=self.dragEvent, releaseCommand=self.releaseEvent, space='screen', projection='viewPlane', undoMode='step', cursor='hand') return dragger def pressEvent(self): button = cmds.draggerContext(DRAGGER, query=True, button=True) # Leave the tool by middle click if button == 2: cmds.setToolTo('selectSuperContext') return # Get clicked point in viewport screen space pressPosition = cmds.draggerContext(DRAGGER, query=True, ap=True) x = pressPosition[0] y = pressPosition[1] self.ANCHOR_POINT = [x, y] # Convert point_in_3d, vector_in_3d = convertTo3D(x, y) # Get MFnMesh of snap target targetDagPath = getDagPathFromScreen(x, y) # If draggin outside of objects if targetDagPath is None: return # Get origianl scale information self.SCALE_ORIG = cmds.getAttr(self.SOURCE + ".scale")[0] self.MATRIX_ORIG = cmds.xform(self.SOURCE, q=True, matrix=True) self.TARGET_FNMESH = OpenMaya.MFnMesh(targetDagPath) transformMatrix = self.getMatrix( point_in_3d, vector_in_3d, self.TARGET_FNMESH, self.SCALE_ORIG, self.MATRIX_ORIG) if transformMatrix is None: return # Create new object to snap self.DUPLICATED = self.getNewObject() # Reset transform of current object cmds.setAttr(self.DUPLICATED + ".translate", *[0, 0, 0]) location = [-i for i in cmds.xform(self.DUPLICATED, q=True, ws=True, rp=True)] cmds.setAttr(self.DUPLICATED + ".translate", *location) # Can't apply freeze to instances if self.InstanceFlag is not True: cmds.makeIdentity(self.DUPLICATED, apply=True, t=True) # Apply transformMatrix to the new object cmds.xform(self.DUPLICATED, matrix=transformMatrix) def getNewObject(self): return cmds.duplicate(self.SOURCE, ilf=self.InstanceFlag)[0] def dragEvent(self): """ Event while dragging a 3d view """ if self.TARGET_FNMESH is None: return dragPosition = cmds.draggerContext( DRAGGER, query=True, dragPoint=True) x = dragPosition[0] y = dragPosition[1] modifier = cmds.draggerContext( DRAGGER, query=True, modifier=True) if modifier == "none": self.MOD_FIRST = True qtModifier = QApplication.keyboardModifiers() if qtModifier == self.CTRL or qtModifier == self.SHIFT: # If this is the first click of dragging if self.MOD_FIRST is True: self.MOD_POINT = [x, y] # global MOD_FIRST self.MOD_FIRST = False length, degree = self.getDragInfo(x, y) if qtModifier == self.CTRL: length = 1.0 if qtModifier == self.SHIFT: degree = 0.0 # Convert point_in_3d, vector_in_3d = convertTo3D( self.MOD_POINT[0], self.MOD_POINT[1]) else: point_in_3d, vector_in_3d = convertTo3D(x, y) length = 1.0 degree = 0.0 # Get new transform matrix for new object transformMatrix = self.getMatrix( point_in_3d, vector_in_3d, self.TARGET_FNMESH, self.SCALE_ORIG, self.MATRIX_ORIG, length, degree ) if transformMatrix is None: return # Apply new transform cmds.xform(self.DUPLICATED, matrix=transformMatrix) cmds.setAttr(self.DUPLICATED + ".shear", *[0, 0, 0]) cmds.refresh(currentView=True, force=True) def releaseEvent(self): self.MOD_FIRST = True def getDragInfo(self, x, y): """ Get distance and angle in screen space. """ start_x = self.MOD_POINT[0] start_y = self.MOD_POINT[1] end_x = x end_y = y cathetus = end_x - start_x opposite = end_y - start_y # Get distance using Pythagorean theorem length = math.sqrt( math.pow(cathetus, 2) + math.pow(opposite, 2)) try: theta = cathetus / length degree = math.degrees(math.acos(theta)) if opposite < 0: degree = -degree return cathetus, degree except ZeroDivisionError: return None, None def getIntersection(self, point_in_3d, vector_in_3d, fnMesh): """ Return a point Position of intersection.. Args: point_in_3d (OpenMaya.MPoint) vector_in_3d (OpenMaya.mVector) Returns: OpenMaya.MFloatPoint : hitPoint """ hitPoint = OpenMaya.MFloatPoint() hitFacePtr = UTIL.asIntPtr() idSorted = False testBothDirections = False faceIDs = None triIDs = None accelParam = None hitRayParam = None hitTriangle = None hitBary1 = None hitBary2 = None maxParamPtr = 99999 # intersectPoint = OpenMaya.MFloatPoint( result = fnMesh.closestIntersection( OpenMaya.MFloatPoint( point_in_3d.x, point_in_3d.y, point_in_3d.z), OpenMaya.MFloatVector(vector_in_3d), faceIDs, triIDs, idSorted, self.SPACE, maxParamPtr, testBothDirections, accelParam, hitPoint, hitRayParam, hitFacePtr, hitTriangle, hitBary1, hitBary2) faceID = UTIL.getInt(hitFacePtr) if result is True: return hitPoint, faceID else: return None, None def getMatrix(self, mPoint, mVector, targetFnMesh, scale_orig, matrix_orig, scale_plus=1, degree_plus=0.0): """ Return a list of values which consist a new transform matrix. Args: mPoint (OpenMaya.MPoint) mVector (OpenMaya.MVector) Returns: list : 16 values for matrixs """ # Position of new object OP, faceID = self.getIntersection(mPoint, mVector, targetFnMesh) # If it doesn't intersect to any geometries, return None if OP is None and faceID is None: return None qtMod = QApplication.keyboardModifiers() if qtMod == (self.CTRL | self.SHIFT): OP = getClosestVertex(OP, faceID, targetFnMesh) # Get normal vector and tangent vector if self.ROTATION is False: NV = OpenMaya.MVector( matrix_orig[4], matrix_orig[5], matrix_orig[6]) NV.normalize() TV = OpenMaya.MVector( matrix_orig[0], matrix_orig[1], matrix_orig[2]) TV.normalize() else: NV = self.getNormal(OP, targetFnMesh) TV = self.getTangent(faceID, targetFnMesh) # Ctrl-hold rotation if qtMod == self.CTRL: try: rad = math.radians(degree_plus) q1 = NV.x * math.sin(rad / 2) q2 = NV.y * math.sin(rad / 2) q3 = NV.z * math.sin(rad / 2) q4 = math.cos(rad / 2) TV = TV.rotateBy(q1, q2, q3, q4) except TypeError: pass # Bitangent vector BV = TV ^ NV BV.normalize() # 4x4 Transform Matrix try: x = scale_orig[0] * (scale_plus / 100 + 1.0) y = scale_orig[1] * (scale_plus / 100 + 1.0) z = scale_orig[2] * (scale_plus / 100 + 1.0) TV *= x NV *= y BV *= z except TypeError: pass finally: matrix = [ TV.x, TV.y, TV.z, 0, NV.x, NV.y, NV.z, 0, BV.x, BV.y, BV.z, 0, OP.x, OP.y, OP.z, 1 ] return matrix def getTangent(self, faceID, targetFnMesh): """ Return a tangent vector of a face. Args: faceID (int) mVector (OpenMaya.MVector) Returns: OpenMaya.MVector : tangent vector """ tangentArray = OpenMaya.MFloatVectorArray() targetFnMesh.getFaceVertexTangents( faceID, tangentArray, self.SPACE) numOfVtx = tangentArray.length() x = sum([tangentArray[i].x for i in range(numOfVtx)]) / numOfVtx y = sum([tangentArray[i].y for i in range(numOfVtx)]) / numOfVtx z = sum([tangentArray[i].z for i in range(numOfVtx)]) / numOfVtx tangentVector = OpenMaya.MVector() tangentVector.x = x tangentVector.y = y tangentVector.z = z tangentVector.normalize() return tangentVector def getNormal(self, pointPosition, targetFnMesh): """ Return a normal vector of a face. Args: pointPosition (OpenMaya.MFloatPoint) targetFnMesh (OpenMaya.MFnMesh) Returns: OpenMaya.MVector : tangent vector int : faceID """ ptr_int = UTIL.asIntPtr() origin = OpenMaya.MPoint(pointPosition) normal = OpenMaya.MVector() targetFnMesh.getClosestNormal( origin, normal, self.SPACE, ptr_int) normal.normalize() return normal # Creator def cmdCreator(): return OpenMayaMPx.asMPxPtr(DuplicateOverSurface()) def initializePlugin(mObject): mPlugin = OpenMayaMPx.MFnPlugin(mObject, "<NAME>") try: mPlugin.registerCommand(kPluginCmdName, cmdCreator) mPlugin.setVersion("0.10") except: sys.stderr.write("Failed to register command: %s\n" % kPluginCmdName) raise def uninitializePlugin(mObject): mPlugin = OpenMayaMPx.MFnPlugin(mObject) try: mPlugin.deregisterCommand(kPluginCmdName) except: sys.stderr.write("Failed to unregister command: %s\n" % kPluginCmdName) def convertTo3D(screen_x, screen_y): """ Return point and vector of clicked point in 3d space. Args: screen_x (int) screen_y (int) Returns: OpenMaya.MPoint : point_in_3d OpenMaya.MVector : vector_in_3d """ point_in_3d = OpenMaya.MPoint() vector_in_3d = OpenMaya.MVector() OpenMayaUI.M3dView.active3dView().viewToWorld( int(screen_x), int(screen_y), point_in_3d, vector_in_3d) return point_in_3d, vector_in_3d def getDagPathFromScreen(x, y): """ Args: x (int or float) y (int or float) Returns: dagpath : OpenMaya.MDagPath """ # Select from screen OpenMaya.MGlobal.selectFromScreen( int(x), int(y), OpenMaya.MGlobal.kReplaceList, OpenMaya.MGlobal.kSurfaceSelectMethod) # Get dagpath, or return None if fails tempSel = OpenMaya.MSelectionList() OpenMaya.MGlobal.getActiveSelectionList(tempSel) dagpath = OpenMaya.MDagPath() if tempSel.length() == 0: return None else: tempSel.getDagPath(0, dagpath) return dagpath def getClosestVertex(point_orig, faceID, fnMesh): """ Args: point_orig (OpenMaya.MFloatPoint) faceID (int) fnMesh (OpenMaya.MFnMesh) Returns: closestPoint : OpenMaya.MPoint """ vertexIndexArray = OpenMaya.MIntArray() fnMesh.getPolygonVertices(faceID, vertexIndexArray) basePoint = OpenMaya.MPoint(point_orig) closestPoint = OpenMaya.MPoint() length = 99999.0 for index in vertexIndexArray: point = OpenMaya.MPoint() fnMesh.getPoint(index, point, OpenMaya.MSpace.kWorld) lengthVector = point - basePoint if lengthVector.length() < length: length = lengthVector.length() closestPoint = point return closestPoint
2.25
2
measure_mate/migrations/0015_merge.py
niche-tester/measure-mate
15
12799855
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-02-26 06:25 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('measure_mate', '0011_auto_20160225_1305'), ('measure_mate', '0014_auto_20160224_0207'), ] operations = [ ]
1.375
1
vit/formatter/start_remaining.py
kinifwyne/vit
179
12799856
from vit.formatter.start import Start class StartRemaining(Start): def format_datetime(self, start, task): return self.remaining(start)
2.09375
2
mpdshell.py
SirJson/mpdshell
0
12799857
<reponame>SirJson/mpdshell #!/usr/bin/env python3 import argparse import asyncio from re import DEBUG import selectors import socket import sys import threading import time import selectors from datetime import datetime from pathlib import Path from threading import Lock from typing import List from prompt_toolkit import HTML from prompt_toolkit import print_formatted_text as print from prompt_toolkit.application import Application, application from prompt_toolkit.completion import WordCompleter from prompt_toolkit.contrib.regular_languages.compiler import compile from prompt_toolkit.contrib.regular_languages.completion import \ GrammarCompleter from prompt_toolkit.contrib.regular_languages.lexer import GrammarLexer from prompt_toolkit.document import Document from prompt_toolkit.key_binding import KeyBindings from prompt_toolkit.layout.containers import (Float, FloatContainer, HSplit, Window) from prompt_toolkit.layout.controls import (Buffer, BufferControl, FormattedTextControl) from prompt_toolkit.layout.layout import Layout from prompt_toolkit.layout.menus import CompletionsMenu from prompt_toolkit.lexers import SimpleLexer from prompt_toolkit.output import ColorDepth from prompt_toolkit.styles import Style from prompt_toolkit.widgets import SearchToolbar, TextArea selector = selectors.SelectSelector() loop = asyncio.SelectorEventLoop(selector) asyncio.set_event_loop(loop) RECV_BUFFER_SIZE = 4096 SCRIPT_HOME = Path.home() / 'mpdscripts' DEBUGAPP = False NOECHO = False APP = None mpdcmds = [ "add", "addid", "addtagid", "albumart", "channels", "clear", "clearerror", "cleartagid", "close", "commands", "config", "consume", "count", "crossfade", "currentsong", "decoders", "delete", "deleteid", "delpartition", "disableoutput", "enableoutput", "find", "findadd", "getfingerprint", "idle", "kill", "list", "listall", "listallinfo", "listfiles", "listmounts", "listneighbors", "listpartitions", "listplaylist", "listplaylistinfo", "listplaylists", "load", "lsinfo", "mixrampdb", "mixrampdelay", "mount", "move", "moveid", "moveoutput", "newpartition", "next", "notcommands", "outputs", "outputset", "partition", "password", "pause", "ping", "play", "playid", "playlist", "playlistadd", "playlistclear", "playlistdelete", "playlistfind", "playlistid", "playlistinfo", "playlistmove", "playlistsearch", "plchanges", "plchangesposid", "previous", "prio", "prioid", "random", "rangeid", "readcomments", "readmessages", "readpicture", "rename", "repeat", "replay_gain_mode", "replay_gain_status", "rescan", "rm", "save", "search", "searchadd", "searchaddpl", "seek", "seekcur", "seekid", "sendmessage", "setvol", "shuffle", "single", "stats", "status", "sticker", "stop", "subscribe", "swap", "swapid", "tagtypes", "toggleoutput", "unmount", "unsubscribe", "update", "urlhandlers", "volume"] internalcmds = { "exec": lambda s, x: s.runscript(x), "scripts": lambda s, x: listscripts(s, x), "help": lambda s, x: apphelp(s, x), "mpchelp": lambda s, x: mpchelp(s, x), "reset": lambda s, x: resetterm(s,x) } class RepeatedTimer(object): def __init__(self, interval, function, *args, **kwargs): self._timer = None self.interval = interval self.function = function self.args = args self.kwargs = kwargs self.is_running = False self.next_call = time.time() self.start() def _run(self): self.is_running = False self.start() self.function(*self.args, **self.kwargs) def start(self): if not self.is_running: self.next_call += self.interval self._timer = threading.Timer( self.next_call - time.time(), self._run) self._timer.start() self.is_running = True def stop(self): self._timer.cancel() self.is_running = False class MPDClient(object): def __init__(self, hostname: str, port: int): self.selector = selectors.DefaultSelector() self._inbuffer = [] self._outbuffer = [] self._echobuffer = [] self.server = hostname self.port = port self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.connect((hostname, port)) data = self.socket.recv(RECV_BUFFER_SIZE) self.initmsg = str(data, 'utf-8') self.socket_lock = Lock() self.state_lock = Lock() self._io_lock = Lock() self.socket.setblocking(False) self.selector.register( self.socket, selectors.EVENT_READ | selectors.EVENT_WRITE, self.onsocketready) self._remote_closed = False self.dbg_lastmask = 0x0 def data_available(self) -> bool: with self._io_lock: return len(self._inbuffer) > 0 def echo_available(self) -> bool: with self._io_lock: return len(self._echobuffer) > 0 def peek_inbuffer(self) -> int: return len(self._inbuffer) def peek_outbuffer(self) -> int: return len(self._outbuffer) def peek_echobuffer(self) -> int: return len(self._echobuffer) def pop_message(self) -> str: with self._io_lock: msg = self._inbuffer.pop() if str(msg).strip() == 'OK': return None else: return msg def pop_echo(self) -> str: with self._io_lock: return self._echobuffer.pop() def runscript(self, param): params = param.split(' ') file = params[0] with open(SCRIPT_HOME / file) as mpcscript: data = mpcscript.read() return self.send(data) def disconnect(self, *argv): with self.socket_lock: try: self.socket.sendall(bytes('close', 'utf-8')) except BaseException as ex: print("Connection closed by remote: {}".format(ex)) finally: self.socket.shutdown(socket.SHUT_WR) self.socket.close() def ping(self) -> bool: self.send('ping') def ping_unchecked(self): try: self.send('ping') except BaseException: with self.state_lock: self._remote_closed = True def force_closed(self): with self.state_lock: return self._remote_closed def poll(self): events = self.selector.select() for key, mask in events: callback = key.data callback(key.fileobj, mask) def send(self, message: str): with self._io_lock: self._outbuffer.append(message) def onsocketready(self, connection, mask): self.dbg_lastmask = mask if mask & selectors.EVENT_READ: self._receive(connection) if mask & selectors.EVENT_WRITE: self._transmit(connection) def _receive(self, connection): chunks = [] with self._io_lock: data = connection.recv(RECV_BUFFER_SIZE) if data: chunks.append(data) self._inbuffer.append(str(b''.join(chunks), 'utf-8')) def _transmit(self, connection): with self._io_lock: while len(self._outbuffer) > 0: msg = self._outbuffer.pop() command = str(msg + '\n') connection.sendall(bytes(command, 'utf-8')) def local_echo(self, message): with self._io_lock: self._echobuffer.append(message) def close(self): with self.socket_lock: self.socket.shutdown(socket.SHUT_WR) self.socket.close() def create_grammar(): return compile( r""" (?P<exec>\![a-z]+) | ((?P<exec>\![a-z]+)\s(?P<execparam>[a-zA-Z0-9.\/\\\-\_\s]+)\s*) | (?P<func>[a-z]+) | ((?P<func>[a-z]+)\s(?P<params>\+?[a-zA-Z0-9.\/\:\\\-\_\s]+)\s*) """ ) def mpchelp(mpd, _param): output = '' output += "=== MPC Commands ===\n" for c in mpdcmds: output += str(c) + "\n" mpd.local_echo(output) def apphelp(mpd, _param): output = '' output += "=== Shell Commands ===\n" for c in internalcmds.keys(): output += str(c) + "\n" mpd.local_echo(output) def resetterm(mpd, _param): APP.reset() mpd.local_echo("Terminal reset!") def listscripts(mpd, _param): output = f'=== Available mpd shell scripts in "{SCRIPT_HOME}" ===' files = list(SCRIPT_HOME.glob("*.ncs")) for file in files: output += ' - ' + file.name + "\n" output += f'\n\n----\n=> Total: {len(files)}' mpd.local_echo(output) def gen_style() -> Style: base00 = '#000000' base01 = '#202020' base02 = '#303030' base03 = '#505050' base04 = '#909090' base05 = '#bfbfbf' base06 = '#e0e0e0' base07 = '#ffffff' base08 = '#eb008a' base09 = '#f29333' base0A = '#f8ca12' base0B = '#FF6236' base0C = '#00aabb' base0D = '#0e5a94' base0E = '#b31e8d' base0F = '#7a2d00' baseA0 = '#242424' baseA1 = '#06A191' return Style.from_dict( { "function": base0D, "parameter": base08, "exec": base0E, "execparam": base09, "trailing-input": base0F, "output": base0B, "debug": f"bg:{base01} {base0A}", "input": f"bg:{base01} {base04}", "linetoken": base0C, "line": base03, "base": f"bg:{baseA0} {base05}", "toolbar": f"bg:{base01} {baseA1}", "title": f"bg:{base02} #90A4AE", "c1": "#FF5722", "c2": "#D4E157", "c3": "#9575CD", "c4": "#4CAF50", "c5": "#9C27B0" }) def invalid_input(msg="Invalid command"): return msg def get_line_prefix(lineno, wrap_count): return HTML('<linetoken><b>»</b></linetoken> ') def get_netdbg_prefix(lineno, wrap_count): return HTML('<linetoken>NETTICK: </linetoken> ') def get_socketdbg_prefix(lineno, wrap_count): return HTML('<linetoken>SOCKET:</linetoken> ') def get_echodbg_prefix(lineno, wrap_count): return HTML('<linetoken>SYSECHO:</linetoken> ') def main(): global DEBUGAPP, NOECHO, APP parser = argparse.ArgumentParser() parser.add_argument("host", help="The host of your MPD instance") parser.add_argument("-p", "--port", help="The port on which MPD is running (default: 6600)", type=int, default=6600, required=False) parser.add_argument("-s", "--secret", help="Initialize connection with this password (default: None)", type=str, required=False) parser.add_argument("-d", "--debug", help="Show internal debug info (default: 0)", type=bool, default=False, required=False) parser.add_argument("-a", "--alive-tick", help="How many seconds between a keep a live should be waited. (default: 3)", type=int, default=3, required=False) parser.add_argument("-n", "--no-echo", help="Own commands don't get written into the output view (default: 0)", type=bool, default=False, required=False) parser.add_argument("-b", "--buffer-size", help="The size of one TCP buffer. A message might get broken into multiple buffer if the size isn't big enough or your network can't support it. For optimal performance choose a size with the power of two. (default: 4096)", type=int, default=4096, required=False) args = parser.parse_args() DEBUGAPP = args.debug alive_tick = args.alive_tick port = args.port print(f"Connecting to {args.host}@{port}...") mpd = MPDClient(args.host, port) grammar = create_grammar() intro_text = HTML(f"Connected to: <c1>{mpd.server}@{mpd.port}</c1> ❯ <c2>{mpd.initmsg}</c2>") client_settings = HTML(f"Keep alive tick: <c4>{alive_tick}</c4> | TCP buffer: <c4>{RECV_BUFFER_SIZE}</c4> | Echo enabled: <c4>{str(not NOECHO)}</c4>") help_text = HTML(f"Exit: <c4>[Control-C]</c4> | Scroll up: <c4>[PageUp]</c4> | Scroll down: <c4>[PageDown]</c4> | App command prefix: <c4>[!]</c4> <b>(try !help)</b>") lexer = GrammarLexer( grammar, lexers={ "func": SimpleLexer("class:function"), "params": SimpleLexer("class:parameter"), "exec": SimpleLexer("class:exec"), "execparam": SimpleLexer("class:execparam"), }, ) commands = [] commands.extend(mpdcmds) keywords = WordCompleter(commands) intern_keywords = WordCompleter(internalcmds.keys()) completer = GrammarCompleter( grammar, { "func": keywords, "exec": intern_keywords }, ) search_field = SearchToolbar() # For reverse search. output_field = Buffer() netdbg_buffer = Buffer() socketdbg_buffer = Buffer() echodbg_buffer = Buffer() input_field = TextArea( height=1, lexer=lexer, completer=completer, prompt="❯ ", style="class:input", multiline=False, wrap_lines=False, search_field=search_field, ) lineup = Window(height=1, char="▁", style="class:line") linedown = Window(height=1, char="▔", style="class:line") debugnotice = Window( FormattedTextControl( HTML("<b>== Debug Info ==</b>") ), height=1, style="class:title", ) nettickwnd = Window( BufferControl(buffer=netdbg_buffer), height=1, get_line_prefix=get_netdbg_prefix, wrap_lines=False, style="class:debug") socketwnd = Window( BufferControl(buffer=socketdbg_buffer), height=1, get_line_prefix=get_socketdbg_prefix, wrap_lines=False, style="class:debug") echownd = Window( BufferControl(buffer=echodbg_buffer), height=1, get_line_prefix=get_echodbg_prefix, wrap_lines=False, style="class:debug") debugzone = HSplit([]) if args.debug: debugzone = HSplit([ lineup, debugnotice, lineup, nettickwnd, socketwnd, echownd, linedown]) container = FloatContainer( content=HSplit( [ Window( FormattedTextControl( intro_text ), height=1, style="class:title", ), Window( FormattedTextControl( client_settings ), height=1, style="class:title", ), linedown, debugzone, Window( BufferControl(buffer=output_field), get_line_prefix=get_line_prefix, wrap_lines=False, style="class:output"), lineup, input_field, search_field, linedown, lineup, Window( FormattedTextControl( help_text ), height=1, style="class:toolbar", ), ] ), floats=[ Float( xcursor=True, ycursor=True, content=CompletionsMenu(max_height=32, scroll_offset=1), ) ], style="class:base" ) def netdebug_print(msg): if not DEBUGAPP: return netdbg_buffer.document = Document( text=msg, cursor_position=0 ) def sockdebug_print(msg): if not DEBUGAPP: return socketdbg_buffer.document = Document( text=msg, cursor_position=0 ) def echodbg_print(msg): if not DEBUGAPP: return echodbg_buffer.document = Document( text=msg, cursor_position=0 ) def indent(text: str, spaces=2): output = '' for l in text.splitlines(): output += ' ' * spaces + l + '\n' return output def accept(buff): if mpd.force_closed(): application.exit(result="Connection reset by peer") try: match = grammar.match(buff.text) if match: params = match.variables() execcmd = params.get("exec") if execcmd is not None: params = params.get("execparam") funcptr = internalcmds.get( execcmd[1:], lambda s, x: invalid_input("Unknown internal command")) funcptr(mpd, params) else: cmd = params.get("func") if cmd not in mpdcmds: mpd.local_echo(invalid_input()) else: mpd.local_echo(buff.text) mpd.send(buff.text) if buff.text == "close": application.exit() else: mpd.local_echo(invalid_input()) except BaseException as e: tb = sys.exc_info()[2] mpd.local_echo("\n\nError: {}\n\tFrame: {}\n\tInstruction: {}\n\tLine: {}".format( e, tb.tb_frame, tb.tb_lasti, tb.tb_lineno)) input_field.accept_handler = accept # The key bindings. kb = KeyBindings() @kb.add("pageup") def onpageup(_event): output_field.cursor_position -= 500 @kb.add("pagedown") def onpagedown(_event): output_field.cursor_position += 500 @kb.add("c-c") @kb.add("c-q") def _(event): """Pressing Ctrl-Q or Ctrl-C will exit the user interface.""" event.app.exit() #### # Here happens the main loop sort of #### def netpoll(): if not mpd: return sockdebug_print( f"[{ datetime.now().isoformat()}] mask: {mpd.dbg_lastmask}") mpd.poll() netdebug_print( f"[{ datetime.now().isoformat()}] netbuffer: input({mpd.peek_inbuffer()}) output({mpd.peek_outbuffer()})") echodbg_print( f"[{ datetime.now().isoformat()}] echobuffer: {mpd.peek_echobuffer()}") #################################### # SECTION: READBACK COLLECT #################################### sockdebug_print( f"[{ datetime.now().isoformat()}] mask: {mpd.dbg_lastmask}") recv_output = '' while mpd.data_available(): message = mpd.pop_message() if message: isonow = datetime.now().isoformat(timespec='seconds') recv_output += indent(f'\n[{isonow}] {message}\n') netdebug_print( f"[{ datetime.now().isoformat()}] netbuffer (DRAIN): input({mpd.peek_inbuffer()}) output({mpd.peek_outbuffer()})") #################################### # SECTION: READBACK ECHOs #################################### sockdebug_print( f"[{ datetime.now().isoformat()}] mask: {mpd.dbg_lastmask}") local_output = '' while mpd.echo_available(): echodbg_print( f"[{ datetime.now().isoformat()}] echobuffer (DRAIN): {mpd.peek_echobuffer()}") echomsg = mpd.pop_echo() if echomsg: isonow = datetime.now().isoformat(timespec='seconds') local_output += f'\n{echomsg}\n' echodbg_print( f"[{ datetime.now().isoformat()}] echobuffer (DRAIN): {mpd.peek_echobuffer()}") #################################### # SECTION WRITE TO TTY #################################### sockdebug_print( f"[{ datetime.now().isoformat()}] mask: {mpd.dbg_lastmask}") new_text = output_field.text if recv_output != '': netdebug_print( f"[{ datetime.now().isoformat()}] netbuffer (DRAW): input({mpd.peek_inbuffer()}) output({mpd.peek_outbuffer()})") echodbg_print( f"[{ datetime.now().isoformat()}] echobuffer (DRAW): {mpd.peek_echobuffer()}") new_text += recv_output if local_output != '': netdebug_print( f"[{ datetime.now().isoformat()}] netbuffer (DRAW): input({mpd.peek_inbuffer()}) output({mpd.peek_outbuffer()})") echodbg_print( f"[{ datetime.now().isoformat()}] echobuffer (DRAW): {mpd.peek_echobuffer()}") new_text += local_output if recv_output != '' or local_output != '': output_field.document = Document( text=new_text, cursor_position=len(new_text)) application.invalidate() #################################### # netpoll() end #################################### autoping = RepeatedTimer(3.0, lambda x: x.ping_unchecked(), mpd) autopoll = RepeatedTimer(1.0, netpoll) # Run application. application = Application( layout=Layout(container, focused_element=input_field), key_bindings=kb, style=gen_style(), mouse_support=True, full_screen=True, enable_page_navigation_bindings=False, color_depth=ColorDepth.TRUE_COLOR ) APP = application if args.secret is not None: mpd.send(f"password {args.secret}") application.run() autoping.stop() autopoll.stop() mpd.disconnect() if __name__ == '__main__': main()
1.765625
2
FlaskApp/utils.py
robertavram/project5
7
12799858
import random import string import other_info import re from dicttoxml import dicttoxml def make_csrf_state(size): ''' Makes a CSRF state by randomly choosing uppercase letters and digits ''' return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in xrange(size)) def valid_item_name(item_name): ''' Test item name for bad words or format etc -not fully implemented for this project''' if len(item_name) > 50: return False; return True def valid_item_description(item_description): '''test item description for bad words or format etc -not fully implemented for this project''' if len(item_description) > 1000: return False return True def allowed_file(filename): ''' Checks if an image file has the right extension ''' ALLOWED_EXTENSIONS = set(['jpg', 'jpeg', 'gif', "png"]) return '.' in filename and \ filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS def valid_link(link): ''' Checks if the link provided is a valid link format - not fully implemented for this project''' pat = re.compile("/^(https?:\/\/)?([\da-z\.-]+)\.([a-z\.]{2,6})([\/\w \.-]*)*\/?$/") pat.match(link) if not pat: return False return True if link else False def test_new_item(item_dict): ''' takes an item dictionary and checks if all fields are properly filled returns: tuple (Bool: Success, string: Error) ''' # for now just test the surface things category = item_dict.get("category") if not category in other_info.item_categories: return (False, "Category is invalid") name = item_dict.get("name") if not name or not valid_item_name(name) == True: return (False, "Name not valid") description = item_dict.get("description") if not valid_item_description(description) == True: return (False, "Description not valid") link = item_dict.get("link") if link and not valid_link(item_dict["link"]): return (False, "Link is not valid") return (True, None) def test_item_prop(item_dict): ''' Tests all the properties passed in the item_dict and checks if they are valid for updating the item ''' my_valid_vars = ['name', 'category', 'description', 'link'] for kw in item_dict: if kw not in my_valid_vars: return (False, "You are trying to update a property that doesn't exist: %s"%kw) if kw == 'name' and not valid_item_name(item_dict[kw]): return (False, "Name not valid") if kw == 'description' and not valid_item_description(item_dict[kw]): return (False, "Description not valid") if kw == 'category' and item_dict[kw] not in other_info.item_categories: return (False, "Category not valid") if kw == 'link' and not valid_link(item_dict[kw]): return (False, "Link not valid") return (True, None) def remove_special_characters(my_string): return ''.join(e for e in my_string if e.isalnum()).lower() def get_cat_regex(): return "(?i)"+'|'.join(other_info.item_categories) def makexml(my_dict): return dicttoxml(my_dict)
2.921875
3
npde.py
marghetis/npde
37
12799859
import numpy as np import tensorflow as tf import tensorflow.contrib.distributions as tfd from integrators import ODERK4, SDEEM from kernels import OperatorKernel from gpflow import transforms from param import Param float_type = tf.float64 jitter0 = 1e-6 class NPODE: def __init__(self,Z0,U0,sn0,kern,jitter=jitter0, summ=False,whiten=True,fix_Z=False,fix_U=False,fix_sn=False): """ Constructor for the NPODE model Args: Z0: Numpy matrix of initial inducing points of size MxD, M being the number of inducing points. U0: Numpy matrix of initial inducing vectors of size MxD, M being the number of inducing points. sn0: Numpy vector of size 1xD for initial signal variance kern: Kernel object for GP interpolation jitter: Float of jitter level whiten: Boolean. Currently we perform the optimization only in the white domain summ: Boolean for Tensorflow summary fix_Z: Boolean - whether inducing locations are fixed or optimized fix_U: Boolean - whether inducing vectors are fixed or optimized fix_sn: Boolean - whether noise variance is fixed or optimized """ self.name = 'npode' self.whiten = whiten self.kern = kern self.jitter = jitter with tf.name_scope("NPDE"): Z = Param(Z0, name = "Z", summ = False, fixed = fix_Z) U = Param(U0, name = "U", summ = False, fixed = fix_U) sn = Param(np.array(sn0), name = "sn", summ = summ, fixed = fix_sn, transform = transforms.Log1pe()) self.Z = Z() self.U = U() self.sn = sn() self.D = U.shape[1] self.integrator = ODERK4(self) self.fix_Z = fix_Z self.fix_sn = fix_sn self.fix_U = fix_U def f(self,X,t=[0]): """ Implements GP interpolation to compute the value of the differential function at location(s) X. Args: X: TxD tensor of input locations, T is the number of locations. Returns: TxD tensor of differential function (GP conditional) computed on input locations """ U = self.U Z = self.Z kern = self.kern N = tf.shape(X)[0] M = tf.shape(Z)[0] D = tf.shape(Z)[1] # dim of state if kern.ktype == "id": Kzz = kern.K(Z) + tf.eye(M, dtype=float_type) * self.jitter else: Kzz = kern.K(Z) + tf.eye(M*D, dtype=float_type) * self.jitter Lz = tf.cholesky(Kzz) Kzx = kern.K(Z, X) A = tf.matrix_triangular_solve(Lz, Kzx, lower=True) if not self.whiten: A = tf.matrix_triangular_solve(tf.transpose(Lz), A, lower=False) f = tf.matmul(A, U, transpose_a=True) # transformation for "id - rbf" kernel if not kern.ktype == "id" and not kern.ktype == "kr" : f = tf.reshape(f,[N,D]) return f def build_prior(self): if self.kern.ktype == "id" or self.kern.ktype == "kr": if self.whiten: mvn = tfd.MultivariateNormalDiag( loc=tf.zeros_like(self.U[:,0])) else: mvn = tfd.MultivariateNormalFullCovariance( loc=tf.zeros_like(self.U[:,0]), covariance_matrix=self.kern.K(self.Z,self.Z)) probs = tf.add_n([mvn.log_prob(self.U[:,d]) for d in range(self.kern.ndims)]) else: if self.whiten: mvn = tfd.MultivariateNormalDiag( loc=tf.zeros_like(self.U)) else: mvn = tfd.MultivariateNormalFullCovariance( loc=tf.zeros_like(self.U), covariance_matrix=self.kern.K(self.Z,self.Z)) probs = tf.reduce_sum(mvn.log_prob(tf.squeeze(self.U))) return probs def forward(self,x0,ts): return self.integrator.forward(x0=x0,ts=ts) def predict(self,x0,t): """ Computes the integral and returns the path Args: x0: Python/numpy array of initial value t: Python/numpy array of time points the integral is evaluated at Returns: ODE solution computed at t, tensor of size [len(t),len(x0)] """ x0 = np.asarray(x0,dtype=np.float64).reshape((1,-1)) t = [t] integrator = ODERK4(self) path = integrator.forward(x0,t) path = path[0] return path def Kzz(self): kern = self.kern Z = self.Z M = tf.shape(Z)[0] D = tf.shape(Z)[1] # dim of state if kern.ktype == "id": Kzz = kern.K(Z) + tf.eye(M, dtype=float_type) * self.jitter else: Kzz = kern.K(Z) + tf.eye(M*D, dtype=float_type) * self.jitter return Kzz def U(self): U = self.U if self.whiten: Lz = tf.cholesky(self.Kzz()) U = tf.matmul(Lz,U) return U def __str__(self): rep = 'noise variance: ' + str(self.sn.eval()) + \ '\nsignal variance: ' + str(self.kern.sf.eval()) + \ '\nlengthscales: ' + str(self.kern.ell.eval()) return rep class NPSDE(NPODE): def __init__(self,Z0,U0,sn0,kern,diffus,s=1,jitter=jitter0, summ=False,whiten=True,fix_Z=False,fix_U=False,fix_sn=False): """ Constructor for the NPSDE model Args: Z0: Numpy matrix of initial inducing points of size MxD, M being the number of inducing points. U0: Numpy matrix of initial inducing vectors of size MxD, M being the number of inducing points. sn0: Numpy vector of size 1xD for initial signal variance kern: Kernel object for GP interpolation diffus: BrownianMotion object for diffusion GP interpolation s: Integer parameterizing how denser the integration points are jitter: Float of jitter level summ: Boolean for Tensorflow summary whiten: Boolean. Currently we perform the optimization only in the white domain fix_Z: Boolean - whether inducing locations are fixed or optimized fix_U: Boolean - whether inducing vectors are fixed or optimized fix_sn: Boolean - whether noise variance is fixed or optimized """ super().__init__(Z0,U0,sn0,kern,jitter=jitter, summ=summ,whiten=whiten,fix_Z=fix_Z,fix_U=fix_U,fix_sn=fix_sn) self.name = 'npsde' self.diffus = diffus self.integrator = SDEEM(self) def build_prior(self): pf = super().build_prior() pg = self.diffus.build_prior() return pf + pg def g(self,ts,Nw=1): return self.diffus.g(ts=ts,Nw=Nw) def forward(self,x0,ts,Nw=1): return self.integrator.forward(x0=x0,ts=ts,Nw=Nw) def sample(self,x0,t,Nw): """ Draws random samples from a learned SDE system Args: Nw: Integer number of samples x0: Python/numpy array of initial value t: Python/numpy array of time points the integral is evaluated at Returns: Tensor of size [Nw,len(t),len(x0)] storing samples """ # returns (Nw, len(t), D) x0 = np.asarray(x0,dtype=np.float64).reshape((1,-1)) t = [t] path = self.integrator.forward(x0,t,Nw) path = path[0] return path def __str__(self): return super().__str__() + self.diffus.__str__() class BrownianMotion: def __init__(self,sf0,ell0,Z0,U0,whiten=False,summ=False, fix_ell=True,fix_sf=True,fix_Z=True,fix_U=False): with tf.name_scope('Brownian'): Zg = Param(Z0, name = "Z", summ = False, fixed = fix_Z) Ug = Param(U0, name = "U", summ = False, fixed = fix_U) self.kern = OperatorKernel(sf0=sf0, ell0=ell0, ktype="id", name='Kernel', summ=summ, fix_ell=fix_ell, fix_sf=fix_sf) self.Zg = Zg() self.Ug = Ug() self.jitter = 1e-6 self.whiten = whiten self.fix_Z = fix_Z self.fix_U = fix_U def g(self,X,t): """ generates state dependent brownian motion Args: X: current states (in rows) t: current time (used if diffusion depends on time) Returns: A tensor of the same shape as X """ Ug = self.Ug Zg = self.Zg kern = self.kern if not kern.ktype == "id": raise NotImplementedError() M = tf.shape(Zg)[0] D = tf.shape(X)[1] if kern.ktype == "id": Kzz = kern.K(Zg) + tf.eye(M, dtype=float_type) * self.jitter else: Kzz = kern.K(Zg) + tf.eye(M*D, dtype=float_type) * self.jitter Lz = tf.cholesky(Kzz) Kzx = kern.K(Zg, X) A = tf.matrix_triangular_solve(Lz, Kzx, lower=True) if not self.whiten: A = tf.matrix_triangular_solve(tf.transpose(Lz), A, lower=False) g = tf.matmul(A, Ug, transpose_a=True) dw = tf.random_normal(tf.shape(X),dtype=float_type) return g*dw def __str__(self): rep = '\ndiff signal variance: ' + str(self.kern.sf.eval()) + \ '\ndiff lengthscales: ' + str(self.kern.ell.eval()) return rep def build_prior(self): if self.whiten: mvn = tfd.MultivariateNormalDiag( loc=tf.zeros_like(self.Ug)) else: mvn = tfd.MultivariateNormalFullCovariance( loc=tf.zeros_like(self.Ug), covariance_matrix=self.kern.K(self.Zg,self.Zg)) return tf.reduce_sum(mvn.log_prob(self.Ug))
2.28125
2
python/raft/Leader.py
chenzhaoplus/vraft
23
12799860
<gh_stars>10-100 import time from random import randrange import grequests from NodeState import NodeState from client import Client from cluster import HEART_BEAT_INTERVAL, ELECTION_TIMEOUT_MAX import logging from monitor import send_state_update, send_heartbeat logging.basicConfig(format='%(asctime)s - %(levelname)s: %(message)s', datefmt='%H:%M:%S', level=logging.INFO) class Leader(NodeState): def __init__(self, candidate): super(Leader, self).__init__(candidate.node) self.current_term = candidate.current_term self.commit_index = candidate.commit_index self.last_applied_index = candidate.last_applied_index self.entries = candidate.entries self.stopped = False self.followers = [peer for peer in self.cluster if peer != self.node] self.election_timeout = float(randrange(ELECTION_TIMEOUT_MAX / 2, ELECTION_TIMEOUT_MAX)) def heartbeat(self): while not self.stopped: logging.info(f'{self} send heartbeat to followers') logging.info('========================================================================') send_heartbeat(self, HEART_BEAT_INTERVAL) client = Client() with client as session: posts = [ grequests.post(f'http://{peer.uri}/raft/heartbeat', json=self.node, session=session) for peer in self.followers ] for response in grequests.map(posts, gtimeout=HEART_BEAT_INTERVAL): if response is not None: logging.info(f'{self} got heartbeat from follower: {response.json()}') else: logging.info(f'{self} got heartbeat from follower: None') logging.info('========================================================================') time.sleep(HEART_BEAT_INTERVAL) def __repr__(self): return f'{type(self).__name__, self.node.id, self.current_term}'
2.359375
2
getDOBBoilerData.py
dtom90/pygotham_boiler_miner
0
12799861
import urllib.request from bs4 import BeautifulSoup def getDOBBoilerData( boroNum, houseNum, houseStreet ): url = requestToDOBUrl( boroNum, houseNum, houseStreet ) soup = urlToSoup( url ) if hasDOBData( soup ): return extractDOBDataFromSoup( soup ) else: return "Invalid Query" def requestToDOBUrl( boroNum, houseNum, houseStreet ): return ("http://a810-bisweb.nyc.gov/bisweb/PropertyProfileOverviewServlet" + "?boro=" + str(boroNum) + "&houseno=" + str(houseNum) + "&street=" + houseStreet.replace(' ','+')) def urlToSoup( url ): "Takes in URL and returns a soup object of the contents." webpage = urllib.request.urlopen( url ) soup = BeautifulSoup( webpage.read(), "html.parser" ) # soup.unicode return soup def hasDOBData( soup ): "Checks to see whether DEP data exist for a given application number." tables = soup.find_all("table") return tables[1].get_text().find("NO RECORD") == -1 def extractDOBDataFromSoup( soup ): """ Takes in data structure from BeautifulSoup and parses for DOB Boiler Data. We assume that the soup has been prescreened to ensure that data exist. """ allUrls = soup.find_all('a') #get the url with the reference to the "BoilerComplianceQueryServlet". #There should be exactly one such url. for i in allUrls: if i['href'].find("BoilerComplianceQueryServlet") != -1: url = "http://a810-bisweb.nyc.gov/bisweb/" + i['href'] soup2 = urlToSoup(url) boilerTables = soup2.find_all('table') records = list() for row in boilerTables[3].find_all('tr'): #grab the table with boiler data records.append(row.get_text().strip('\n').split('\n')) return records
3.515625
4
srunner/drl_code/scenario_utils/kinetics.py
liuyuqi123/scenario_runner
0
12799862
""" Some methods for kenetics.s """ import carla import numpy as np import math def get_speed(vehicle): """ Get speed consider only 2D velocity. """ vel = vehicle.get_velocity() return math.sqrt(vel.x ** 2 + vel.y ** 2) # + vel.z ** 2) def set_vehicle_speed(vehicle, speed: float): """ Set vehicle to a target speed. Velocity vector coincide vehicle x-axis. :param:speed in m/s """ # set a initial speed for ego vehicle transform = vehicle.get_transform() # transform matrix from actor coord system to world system trans_matrix = get_transform_matrix(transform) # actor2world # target velocity in local coordinate system, in m/s target_vel = np.array([[speed], [0.], [0.]]) # target velocity in world coordinate system target_vel_world = np.dot(trans_matrix, target_vel) target_vel_world = np.squeeze(target_vel_world) # in carla.Vector3D target_velocity = carla.Vector3D( x=target_vel_world[0], y=target_vel_world[1], z=target_vel_world[2], ) # vehicle.set_target_velocity(target_velocity) def angle_reg(angle): """ Regularize angle into certain bound. default range is [-pi, pi] """ while True: if -np.pi <= angle <= np.pi: return angle if angle < -np.pi: angle += 2 * np.pi else: angle -= 2 * np.pi def get_transform_matrix(transform: carla.Transform): """ Get and parse a transformation matrix by transform. Matrix is from Actor coord system to the world coord system. :param transform: :return trans_matrix: transform matrix in ndarray """ # original trans matrix in list _T = transform.get_matrix() # transform matrix from Actor system to world system trans_matrix = np.array([[_T[0][0], _T[0][1], _T[0][2]], [_T[1][0], _T[1][1], _T[1][2]], [_T[2][0], _T[2][1], _T[2][2]]]) return trans_matrix def get_inverse_transform_matrix(transform: carla.Transform): """ Get inverse transform matrix from a transform class. Inverse transform refers to from world coord system to actor coord system. """ _T = transform.get_inverse_matrix() # transform matrix from Actor system to world system inverse_trans_matrix = np.array([[_T[0][0], _T[0][1], _T[0][2]], [_T[1][0], _T[1][1], _T[1][2]], [_T[2][0], _T[2][1], _T[2][2]]]) return inverse_trans_matrix def vector2array(vector: carla.Vector3D): """ Transform carla.Vector3D instance to ndarray """ array = np.array([vector.x, vector.y, vector.z]) return array def get_vehicle_kinetic(vehicle: carla.Vehicle): """ todo unfinished Get kinetics of ego vehicle. todo use a class to encapsulate all methods about getting kinetics """ kinetic_dict = {} transform = vehicle.get_transform() vehicle.get_acceleration() vehicle.get_angular_velocity() def get_distance_along_route(wmap, route, target_location): """ Calculate the distance of the given location along the route Note: If the location is not along the route, the route length will be returned :param wmap: carla.Map of current world :param route: list of tuples, (carla.Transform, RoadOption) :param target_location: """ covered_distance = 0 prev_position = None found = False # Don't use the input location, use the corresponding wp as location target_location_from_wp = wmap.get_waypoint(target_location).transform.location for trans, _ in route: # input route is transform position = trans.location location = target_location_from_wp # Don't perform any calculations for the first route point if not prev_position: prev_position = position continue # Calculate distance between previous and current route point interval_length_squared = ((prev_position.x - position.x) ** 2) + ((prev_position.y - position.y) ** 2) distance_squared = ((location.x - prev_position.x) ** 2) + ((location.y - prev_position.y) ** 2) # Close to the current position? Stop calculation if distance_squared < 1.0: break if distance_squared < 400 and not distance_squared < interval_length_squared: # Check if a neighbor lane is closer to the route # Do this only in a close distance to correct route interval, otherwise the computation load is too high starting_wp = wmap.get_waypoint(location) wp = starting_wp.get_left_lane() while wp is not None: new_location = wp.transform.location new_distance_squared = ((new_location.x - prev_position.x) ** 2) + ( (new_location.y - prev_position.y) ** 2) if np.sign(starting_wp.lane_id) != np.sign(wp.lane_id): break if new_distance_squared < distance_squared: distance_squared = new_distance_squared location = new_location else: break wp = wp.get_left_lane() wp = starting_wp.get_right_lane() while wp is not None: new_location = wp.transform.location new_distance_squared = ((new_location.x - prev_position.x) ** 2) + ( (new_location.y - prev_position.y) ** 2) if np.sign(starting_wp.lane_id) != np.sign(wp.lane_id): break if new_distance_squared < distance_squared: distance_squared = new_distance_squared location = new_location else: break wp = wp.get_right_lane() if distance_squared < interval_length_squared: # The location could be inside the current route interval, if route/lane ids match # Note: This assumes a sufficiently small route interval # An alternative is to compare orientations, however, this also does not work for # long route intervals curr_wp = wmap.get_waypoint(position) prev_wp = wmap.get_waypoint(prev_position) wp = wmap.get_waypoint(location) if prev_wp and curr_wp and wp: if wp.road_id == prev_wp.road_id or wp.road_id == curr_wp.road_id: # Roads match, now compare the sign of the lane ids if (np.sign(wp.lane_id) == np.sign(prev_wp.lane_id) or np.sign(wp.lane_id) == np.sign(curr_wp.lane_id)): # The location is within the current route interval covered_distance += math.sqrt(distance_squared) found = True break covered_distance += math.sqrt(interval_length_squared) prev_position = position return covered_distance, found
3.9375
4
src/oci/adm/models/application_dependency_vulnerability_summary.py
pabs3/oci-python-sdk
0
12799863
<reponame>pabs3/oci-python-sdk<filename>src/oci/adm/models/application_dependency_vulnerability_summary.py # coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class ApplicationDependencyVulnerabilitySummary(object): """ An Application Dependency Vulnerability represents a single dependency in our application. An Application Dependency Vulnerability can be associated with eventual Vulnerabilities. Each Application Dependency is uniquely defined by a nodeId and lists eventual dependencies that this element depends on. """ def __init__(self, **kwargs): """ Initializes a new ApplicationDependencyVulnerabilitySummary object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param gav: The value to assign to the gav property of this ApplicationDependencyVulnerabilitySummary. :type gav: str :param node_id: The value to assign to the node_id property of this ApplicationDependencyVulnerabilitySummary. :type node_id: str :param application_dependency_node_ids: The value to assign to the application_dependency_node_ids property of this ApplicationDependencyVulnerabilitySummary. :type application_dependency_node_ids: list[str] :param vulnerabilities: The value to assign to the vulnerabilities property of this ApplicationDependencyVulnerabilitySummary. :type vulnerabilities: list[oci.adm.models.Vulnerability] :param is_found_in_knowledge_base: The value to assign to the is_found_in_knowledge_base property of this ApplicationDependencyVulnerabilitySummary. :type is_found_in_knowledge_base: bool """ self.swagger_types = { 'gav': 'str', 'node_id': 'str', 'application_dependency_node_ids': 'list[str]', 'vulnerabilities': 'list[Vulnerability]', 'is_found_in_knowledge_base': 'bool' } self.attribute_map = { 'gav': 'gav', 'node_id': 'nodeId', 'application_dependency_node_ids': 'applicationDependencyNodeIds', 'vulnerabilities': 'vulnerabilities', 'is_found_in_knowledge_base': 'isFoundInKnowledgeBase' } self._gav = None self._node_id = None self._application_dependency_node_ids = None self._vulnerabilities = None self._is_found_in_knowledge_base = None @property def gav(self): """ **[Required]** Gets the gav of this ApplicationDependencyVulnerabilitySummary. Unique Group Artifact Version (GAV) identifier (Group:Artifact:Version). :return: The gav of this ApplicationDependencyVulnerabilitySummary. :rtype: str """ return self._gav @gav.setter def gav(self, gav): """ Sets the gav of this ApplicationDependencyVulnerabilitySummary. Unique Group Artifact Version (GAV) identifier (Group:Artifact:Version). :param gav: The gav of this ApplicationDependencyVulnerabilitySummary. :type: str """ self._gav = gav @property def node_id(self): """ **[Required]** Gets the node_id of this ApplicationDependencyVulnerabilitySummary. Unique identifier of an Application Dependency node. :return: The node_id of this ApplicationDependencyVulnerabilitySummary. :rtype: str """ return self._node_id @node_id.setter def node_id(self, node_id): """ Sets the node_id of this ApplicationDependencyVulnerabilitySummary. Unique identifier of an Application Dependency node. :param node_id: The node_id of this ApplicationDependencyVulnerabilitySummary. :type: str """ self._node_id = node_id @property def application_dependency_node_ids(self): """ **[Required]** Gets the application_dependency_node_ids of this ApplicationDependencyVulnerabilitySummary. List of (Application Dependencies) node identifiers on which this node depends. :return: The application_dependency_node_ids of this ApplicationDependencyVulnerabilitySummary. :rtype: list[str] """ return self._application_dependency_node_ids @application_dependency_node_ids.setter def application_dependency_node_ids(self, application_dependency_node_ids): """ Sets the application_dependency_node_ids of this ApplicationDependencyVulnerabilitySummary. List of (Application Dependencies) node identifiers on which this node depends. :param application_dependency_node_ids: The application_dependency_node_ids of this ApplicationDependencyVulnerabilitySummary. :type: list[str] """ self._application_dependency_node_ids = application_dependency_node_ids @property def vulnerabilities(self): """ **[Required]** Gets the vulnerabilities of this ApplicationDependencyVulnerabilitySummary. List of vulnerabilities for the Application Dependency. :return: The vulnerabilities of this ApplicationDependencyVulnerabilitySummary. :rtype: list[oci.adm.models.Vulnerability] """ return self._vulnerabilities @vulnerabilities.setter def vulnerabilities(self, vulnerabilities): """ Sets the vulnerabilities of this ApplicationDependencyVulnerabilitySummary. List of vulnerabilities for the Application Dependency. :param vulnerabilities: The vulnerabilities of this ApplicationDependencyVulnerabilitySummary. :type: list[oci.adm.models.Vulnerability] """ self._vulnerabilities = vulnerabilities @property def is_found_in_knowledge_base(self): """ **[Required]** Gets the is_found_in_knowledge_base of this ApplicationDependencyVulnerabilitySummary. Indicates if the artifact is found in the knowledge base. :return: The is_found_in_knowledge_base of this ApplicationDependencyVulnerabilitySummary. :rtype: bool """ return self._is_found_in_knowledge_base @is_found_in_knowledge_base.setter def is_found_in_knowledge_base(self, is_found_in_knowledge_base): """ Sets the is_found_in_knowledge_base of this ApplicationDependencyVulnerabilitySummary. Indicates if the artifact is found in the knowledge base. :param is_found_in_knowledge_base: The is_found_in_knowledge_base of this ApplicationDependencyVulnerabilitySummary. :type: bool """ self._is_found_in_knowledge_base = is_found_in_knowledge_base def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
2.25
2
scripts/typing-summary.py
AlexWaygood/typing
1,145
12799864
<gh_stars>1000+ #!/usr/bin/env python3 """ Generate a summary of last week's issues tagged with "topic: feature". The summary will include a list of new and changed issues and is sent each Monday at 0200 CE(S)T to the typing-sig mailing list. Due to limitation with GitHub Actions, the mail is sent from a private server, currently maintained by @srittau. """ from __future__ import annotations import datetime from dataclasses import dataclass from typing import Any, Iterable, Sequence import requests ISSUES_API_URL = "https://api.github.com/repos/python/typing/issues" ISSUES_URL = "https://github.com/python/typing/issues?q=label%3A%22topic%3A+feature%22" ISSUES_LABEL = "topic: feature" SENDER_EMAIL = "Typing Bot <<EMAIL>>" RECEIVER_EMAIL = "<EMAIL>" @dataclass class Issue: number: int title: str url: str created: datetime.datetime user: str pull_request: bool = False def main() -> None: since = previous_week_start() issues = fetch_issues(since) new, updated = split_issues(issues, since) print_summary(since, new, updated) def previous_week_start() -> datetime.date: today = datetime.date.today() return today - datetime.timedelta(days=today.weekday() + 7) def fetch_issues(since: datetime.date) -> list[Issue]: """Return (new, updated) issues.""" j = requests.get( ISSUES_API_URL, params={ "labels": ISSUES_LABEL, "since": f"{since:%Y-%m-%d}T00:00:00Z", "per_page": "100", "state": "open", }, headers={"Accept": "application/vnd.github.v3+json"}, ).json() assert isinstance(j, list) return [parse_issue(j_i) for j_i in j] def parse_issue(j: Any) -> Issue: number = j["number"] title = j["title"] url = j["html_url"] created_at = datetime.datetime.fromisoformat(j["created_at"][:-1]) user = j["user"]["login"] pull_request = "pull_request" in j assert isinstance(number, int) assert isinstance(title, str) assert isinstance(url, str) assert isinstance(user, str) return Issue(number, title, url, created_at, user, pull_request) def split_issues( issues: Iterable[Issue], since: datetime.date ) -> tuple[list[Issue], list[Issue]]: new = [] updated = [] for issue in issues: if issue.created.date() >= since: new.append(issue) else: updated.append(issue) new.sort(key=lambda i: i.number) updated.sort(key=lambda i: i.number) return new, updated def print_summary( since: datetime.date, new: Sequence[Issue], changed: Sequence[Issue] ) -> None: print(f"From: {SENDER_EMAIL}") print(f"To: {RECEIVER_EMAIL}") print(f"Subject: Opened and changed typing issues week {since:%G-W%V}") print() print(generate_mail(new, changed)) def generate_mail(new: Sequence[Issue], changed: Sequence[Issue]) -> str: if len(new) == 0 and len(changed) == 0: s = ( "No issues or pull requests with the label 'topic: feature' were opened\n" "or updated last week in the typing repository on GitHub.\n\n" ) else: s = ( "The following is an overview of all issues and pull requests in the\n" "typing repository on GitHub with the label 'topic: feature'\n" "that were opened or updated last week, excluding closed issues.\n\n" "---------------------------------------------------\n\n" ) if len(new) > 0: s += "The following issues and pull requests were opened last week: \n\n" s += "".join(generate_issue_text(issue) for issue in new) s += "\n---------------------------------------------------\n\n" if len(changed) > 0: s += "The following issues and pull requests were updated last week: \n\n" s += "".join(generate_issue_text(issue) for issue in changed) s += "\n---------------------------------------------------\n\n" s += ( "All issues and pull requests with the label 'topic: feature'\n" "can be viewed under the following URL:\n\n" ) s += ISSUES_URL return s def generate_issue_text(issue: Issue) -> str: s = f"#{issue.number:<5} " if issue.pull_request: s += "[PR] " s += f"{issue.title}\n" s += f" opened by @{issue.user}\n" s += f" {issue.url}\n" return s if __name__ == "__main__": main()
2.84375
3
pi/ch08_rfid_read/SimpleMFRC522.py
simonmonk/hacking2
10
12799865
import MFRC522 import RPi.GPIO as GPIO class SimpleMFRC522: READER = None; TAG = { 'id' : None, 'text' : ''}; KEY = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF] def __init__(self): self.READER = MFRC522.MFRC522() def read(self): tag = self.read_no_block() while not tag: tag = self.read_no_block() return tag def read_no_block(self): (status, TagType) = self.READER.MFRC522_Request(self.READER.PICC_REQIDL) if status != self.READER.MI_OK: return None (status, uid) = self.READER.MFRC522_Anticoll() if status != self.READER.MI_OK: return None self.TAG['id'] = self.uid_to_num(uid) self.READER.MFRC522_SelectTag(uid) status = self.READER.MFRC522_Auth(self.READER.PICC_AUTHENT1A, 8, self.KEY, uid) if status == self.READER.MI_OK: text = self.READER.MFRC522_Read(8) if text: self.TAG['text'] = ''.join(chr(i) for i in text) self.READER.MFRC522_StopCrypto1() return self.TAG def write(self, sector, text): tag = self.write_no_block(8, text) while not tag: tag = self.write_no_block(8, text) return tag def write_no_block(self, sector, text): (status, TagType) = self.READER.MFRC522_Request(self.READER.PICC_REQIDL) if status != self.READER.MI_OK: return None (status, uid) = self.READER.MFRC522_Anticoll() if status != self.READER.MI_OK: return None self.TAG['id'] = self.uid_to_num(uid) self.READER.MFRC522_SelectTag(uid) status = self.READER.MFRC522_Auth(self.READER.PICC_AUTHENT1A, 8, self.KEY, uid) self.READER.MFRC522_Read(8) if status == self.READER.MI_OK: data = bytearray() data.extend(text.ljust(16)) self.READER.MFRC522_Write(8, data) text = self.READER.MFRC522_Read(8) if text: self.TAG['text'] = ''.join(chr(i) for i in text) self.READER.MFRC522_StopCrypto1() return self.TAG def uid_to_num(self, uid): n = 0 for i in range(0, 5): n = n * 256 + uid[i] return n
2.8125
3
bigcode-fetcher/bigcode_fetcher/downloader.py
sourcery-ai-bot/bigcode-tools
6
12799866
<gh_stars>1-10 import os.path as path from concurrent.futures import ThreadPoolExecutor import subprocess import logging import json from bigcode_fetcher.project import Project def download_git_project(project, output_dir, full_fetch=False): command = ["git", "clone"] if not full_fetch: command += ["--depth", "1"] command += [project.clone_url, output_dir] subprocess.run(command) def download_project(project, output_base_dir, full_fetch=False): try: output_dir = path.join(output_base_dir, project.full_name) if path.isdir(output_dir): logging.info("%s already exists", project.full_name) return False download_git_project(project, output_dir, full_fetch=full_fetch) return True except Exception as e: # pylint: disable=broad-except logging.warning("could not download %s: %s", project.full_name, e) def download_projects(projects, output_dir, full_fetch=False): with ThreadPoolExecutor() as executor: executor.map(lambda p: download_project(p, output_dir, full_fetch=full_fetch), projects) def load_projects_from_file(input_file): with open(input_file, "r") as f: return [Project(project) for project in json.load(f)] def download_projects_command(args): projects = load_projects_from_file(args.input_file) download_projects(projects, args.output_dir)
2.515625
3
main_v2.py
armsp/covid19-vis
5
12799867
import os import glob import json import logging as lg from pathlib import Path from datetime import date, datetime import yaml import requests import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from matplotlib.dates import date2num, DateFormatter import matplotlib.transforms as transforms from jinja2 import Environment, FileSystemLoader from jhu_handler import melt_data, get_jhu_stats, get_india_stats_from_jhu from mohfw_handler import mohfw_data_to_df, add_lat_lon, get_mohfw_stats, extract_clean_df from chloropleth import make_chloropleth_json from clean import add_clean_state_data lg.basicConfig(level=lg.DEBUG, format=("[%(asctime)s] [%(levelname)8s] %(filename)s - %(message)s"), datefmt="%d-%b-%Y %I:%M:%S %p")#, filename='log.txt', filemode='a+' template_loader = FileSystemLoader('./templates') template_env = Environment(loader=template_loader) TEMPLATE = "template.html" template = template_env.get_template(TEMPLATE) sns.set(style="ticks") sns.set_context("paper", rc={"font.size":8,"axes.titlesize":9,"axes.labelsize":10,"lines.linewidth": 1.5,'lines.markersize':3})#paper,talk,notebook fig, ax = plt.subplots() covid_data_path = os.path.join(os.environ['GITHUB_WORKSPACE'], 'covid-data', 'csse_covid_19_data', 'csse_covid_19_time_series') cases_path = os.path.join(covid_data_path, 'time_series_covid19_confirmed_global.csv') recoveries_path = os.path.join(covid_data_path, 'time_series_covid19_recovered_global.csv') deaths_path = os.path.join(covid_data_path, 'time_series_covid19_deaths_global.csv') Path(os.path.join(os.environ['GITHUB_WORKSPACE'], 'covid19-in', 'datasets', 'timeseries_records')).mkdir(parents=True, exist_ok=True) Path(os.path.join(os.environ['GITHUB_WORKSPACE'], 'covid19-in', 'datasets', 'statewise_distribution')).mkdir(parents=True, exist_ok=True) mohfw_data_df = mohfw_data_to_df() table_df = extract_clean_df(mohfw_data_df) table_df = add_lat_lon(table_df) #print("Table DF") #print(table_df) if not table_df.empty: table_df.to_csv(f'./datasets/statewise_distribution/{str(date.today())}.csv', sep=',', encoding='utf-8', index=False) else: lg.warning("Failed to write statewise distribution file. Map will use old file even though new data is available") in_cases_df, in_recoveries_df, in_deaths_df = get_india_stats_from_jhu(cases_path, recoveries_path, deaths_path) # Transforming data to a format lineplot likes final_df = melt_data(in_cases_df, in_deaths_df, in_recoveries_df) final_df.to_csv(f'./datasets/timeseries_records/cases_deaths_recoveries_timeseries.csv', sep=',', encoding='utf-8', index=False) ## Using data that is larger live_cases = in_cases_df live_recoveries = in_recoveries_df live_deaths = in_deaths_df date_today_str = date.today().strftime("%-m/%-d/%y") print(f"Today's date is = {date_today_str}") date_today = date.today() print(date_today) #check date in index live_cases_latest_date = live_cases.columns[-1] live_recoveries_latest_date = live_recoveries.columns[-1] live_deaths_latest_date = live_deaths.columns[-1] #get today's stats from mohfw mohfw_stats = get_mohfw_stats(table_df) print(mohfw_stats) #compare dates live_cases_latest_date = datetime.strptime(live_cases_latest_date, "%m/%d/%y").date() live_recoveries_latest_date = datetime.strptime(live_recoveries_latest_date, "%m/%d/%y").date() live_deaths_latest_date = datetime.strptime(live_deaths_latest_date, "%m/%d/%y").date() print(live_cases_latest_date, live_recoveries_latest_date, live_deaths_latest_date) if date_today > live_cases_latest_date: if mohfw_stats['in_stats']['cases'] > int(live_cases.iloc[:,-1:].iloc[0]): print(mohfw_stats['in_stats']['cases'], int(live_cases.iloc[:,-1:].iloc[0])) live_cases[date_today_str] = mohfw_stats['in_stats']['cases']# new column in live with mohfw value elif date_today == live_cases_latest_date: if mohfw_stats['in_stats']['cases'] > int(live_cases.iloc[:,-1:].iloc[0]): live_cases.iloc[:,-1:].iloc[0] = mohfw_stats['in_stats']['cases'] if date_today > live_recoveries_latest_date: print(mohfw_stats['in_stats']['recovered'], int(live_recoveries.iloc[:,-1:].iloc[0])) if mohfw_stats['in_stats']['recovered'] > int(live_recoveries.iloc[:,-1:].iloc[0]): live_recoveries[date_today_str] = mohfw_stats['in_stats']['recovered'] elif date_today == live_recoveries_latest_date: if mohfw_stats['in_stats']['recovered'] > int(live_recoveries.iloc[:,-1:].iloc[0]): live_recoveries.iloc[:,-1:].iloc[0] = mohfw_stats['in_stats']['recovered'] if date_today > live_deaths_latest_date: if mohfw_stats['in_stats']['deaths'] > int(live_deaths.iloc[:,-1:].iloc[0]): live_deaths[date_today_str] = mohfw_stats['in_stats']['deaths'] elif date_today == live_deaths_latest_date: if mohfw_stats['in_stats']['deaths'] > int(live_deaths.iloc[:,-1:].iloc[0]): live_deaths.iloc[:,-1:].iloc[0] = mohfw_stats['in_stats']['deaths'] print(live_cases) print(live_deaths) print(live_recoveries) plot_df = melt_data(live_cases, live_deaths, live_recoveries) #plot_df['index'] = plot_df['index'].apply(lambda x: datetime.strptime(x, '%m/%d/%y')) plot_df.to_csv(f'./datasets/timeseries_records/live_cases_deaths_recoveries_timeseries.csv', sep=',', encoding='utf-8', index=False) jhu_df = melt_data(in_cases_df, in_deaths_df, in_recoveries_df) #jhu_df['index'] = jhu_df['index'].apply(lambda x: datetime.strptime(x, '%m/%d/%y')) jhu_df.to_csv(f'./datasets/timeseries_records/cases_deaths_recoveries_timeseries.csv', sep=',', encoding='utf-8', index=False) # Make plot ax = plt.axes() kwargs = {'markeredgewidth': 0.25} sns.lineplot(x='index', y='value', hue='category', hue_order=['cases', 'recoveries', 'deaths'], style='category', palette={'cases': 'Red', 'recoveries': 'Green', 'deaths': 'Gray'}, dashes=False, data=plot_df, markers={'deaths': 'X', 'recoveries': 'd', 'cases': 'o'}, ax=ax, **kwargs) # Draw horizontal lines at max values cases_max = int(plot_df['value'].where(plot_df['category'] == 'cases').max()) deaths_max = int(plot_df['value'].where(plot_df['category'] == 'deaths').max()) recoveries_max = int(plot_df['value'].where(plot_df['category'] == 'recoveries').max()) ax.axhline(cases_max, ls='dotted', linewidth=0.5) ax.axhline(deaths_max, ls='dotted', linewidth=0.5) ax.axhline(recoveries_max, ls='dotted', linewidth=0.5) #'-', '--', '-.', ':', 'None', ' ', '', 'solid', 'dashed', 'dashdot', 'dotted' plt.title('COVID-19 Cases, Recoveries & Deaths Graph') ax.set(xlabel='Time ->', ylabel='Cases / Deaths') ax.xaxis.label.set_visible(False) ax.yaxis.label.set_visible(False) ax.legend(labels=['Confirmed Cases', 'Recoveries', 'Deaths'], frameon=False)#loc='upper left' myFmt = DateFormatter("%d %b") #myFmt = DateFormatter("%d %b %y") ax.xaxis.set_major_formatter(myFmt) #ax.set(xticks=final_df['index'].values) ax.grid(color='#f3f3f3', linestyle=':', linewidth=0.5)##cdcdcd #f3f3f3 #D3D3D3 ratio = 0.5 ax.set_aspect(1.0/ax.get_data_ratio()*ratio) plt.xticks(fontsize=5, rotation=0)#, ha='right') #plt.yticks(fontsize=6) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['left'].set_edgecolor('gray') ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ax.tick_params(axis="x", direction='in', length=3, width=0.5) ax.get_yaxis().set_visible(False) ax.spines['bottom'].set_linewidth(0.5) ax.spines['left'].set_linewidth(0.5) #trans = transforms.blended_transform_factory(ax.get_yticklabels()[0].get_transform(), ax.transData) #ax.text(0, cases_max, color="red", s=cases_max, transform=trans, ha="right", va="center") #ax.text(0, deaths_max, color="red", s=deaths_max, transform=trans, ha="right", va="center") ax.text(0.01, cases_max, cases_max, color="red", transform=ax.get_yaxis_transform(), ha="left", va="bottom") ax.text(0.01, deaths_max, deaths_max, color="red", transform=ax.get_yaxis_transform(), ha="left", va="bottom") ax.text(0.01, recoveries_max, recoveries_max, color="green", transform=ax.get_yaxis_transform(), ha="left", va="bottom") #ax.annotate(cases_max, [ax.get_xticks()[-1], cases_max], va='bottom', ha='right', color='red') #ax.annotate(deaths_max, [ax.get_xticks()[-1], deaths_max], va='bottom', ha='left', color='red') xt = ax.get_xticks().tolist() last_x_tick = date2num(plot_df['index'].values[-1]) if xt[-1] > last_x_tick: xt.pop(-1) else: if abs(xt[-1] - last_x_tick) < (xt[1] - xt[0])/2: xt.pop(-1) #xt = np.append(xt, last_x_tick) xt.append(last_x_tick) #xtl = xt.tolist() ax.set_xticks(xt) ax.axvline(last_x_tick, ls='dotted', linewidth=0.5) plt.savefig("graph.svg", format='svg', dpi=1200, bbox_inches='tight') #plt.show() # Make index.html # accquire latest statistics covid_daily_reports_path = os.path.join(os.environ['GITHUB_WORKSPACE'], 'covid-data', 'csse_covid_19_data', 'csse_covid_19_daily_reports') jhu_stats = get_jhu_stats(covid_daily_reports_path) #Compare JHU Stats with MoHFW stats for india if mohfw_stats['in_stats']['cases'] > jhu_stats['in_stats']['cases']: in_cases_greater = mohfw_stats['in_stats']['cases'] else: in_cases_greater = jhu_stats['in_stats']['cases'] if mohfw_stats['in_stats']['deaths'] > jhu_stats['in_stats']['deaths']: in_deaths_greater = mohfw_stats['in_stats']['deaths'] else: in_deaths_greater = jhu_stats['in_stats']['deaths'] if mohfw_stats['in_stats']['recovered'] > jhu_stats['in_stats']['recovered']: in_recovered_greater = mohfw_stats['in_stats']['recovered'] else: in_recovered_greater = jhu_stats['in_stats']['recovered'] #world stats w_confirmed = jhu_stats['w_stats']['cases'] w_deaths = jhu_stats['w_stats']['deaths'] w_recovered = jhu_stats['w_stats']['recovered'] ## read resource yaml with open('resources.yaml') as fs: resources = yaml.load(fs, yaml.SafeLoader) # add clean datasets state_data_path = os.path.join(os.environ['GITHUB_WORKSPACE'], 'covid19-in', 'datasets') print("adding clean datasets") add_clean_state_data(state_data_path) #clean_state_data_path = os.path.join(os.environ['GITHUB_WORKSPACE'], 'covid19-in', 'datasets', 'clean_daily_statewise_distribution') #map_json = make_chloropleth_json(clean_state_data_path) # Get ready to pass data to template stats_dict = {'w_cases': w_confirmed, 'w_deaths': w_deaths, 'w_recovered': w_recovered, 'i_cases': in_cases_greater, 'i_deaths': in_deaths_greater , 'i_recovered': in_recovered_greater} commit_info_dict = {'current_time': datetime.now().strftime("%B %d, %Y at %I:%M %p"), 'commit_sha': os.environ['GITHUB_SHA']} state_info = {'link': f"https://github.com/armsp/covid19.in/blob/master/datasets/statewise_distribution/{str(date.today())}.csv"} namespace = {'statistics': stats_dict, 'safety_resources': resources['SAFETY & PREVENTION'], 'about': resources['Virus & the Disease'], 'fakes': resources['Fads, Fake News & Scams'], 'misc': resources['Miscellaneous'], 'commit_info': commit_info_dict, 'state_info': state_info} #,'c_map': map_json rendered_html = template.render(**namespace) with open("index.html", "w+") as f: f.write(rendered_html)
1.929688
2
src/congram.py
marvintau/congram
0
12799868
<filename>src/congram.py # -*- coding: utf-8 -*- import os import sys import itertools import numpy as np from color_schemes import color_func def get_term_size(): rows, columns = os.popen('stty size', 'r').read().split() return int(rows), int(columns) class Pos: def __init__(self, row, col): self.row = row self.col = col def __add__(self, pos): return Pos(self.row + pos.row, self.col + pos.col) def __mul__(self, pos_time): if type(pos_time) is tuple: return Pos(self.row * pos_time[0], self.col * pos_time[1]) return Pos(self.row * pos_time.row, self.col * pos_time.row) def __str__(self): return "{%d, %d}" % (self.row, self.col) class Color: def __init__(self, r, g, b): self.r = int(r) self.g = int(g) self.b = int(b) def __add__(self, inc): if type(inc) == inc and len(inc) == 3: return Color(self.r + inc[0], self.g + inc[1], self.b + inc[2]) elif type(inc) == Color: return Color(self.r + inc.r, self.g + inc.g, self.b + inc.b) elif type(inc) == int: return Color(self.r + inc, self.g + inc, self.b + inc) else: raise TypeError("operand type must be either 3-tuple or Color") def __mul__(self, inc): if type(inc) == tuple and len(inc) == 3: return Color(self.r * inc[0], self.g * inc[1], self.b * inc[2]) elif type(inc) == float: return Color(int(self.r * inc), int(self.g * inc), int(self.b * inc)) else: raise TypeError("operand type must be either 3-tuple or int") def __str__(self): return "{%d, %d, %d}" % (self.r, self.g, self.b) class CharColor: def __init__(self, fore, back=None): if type(fore) == tuple and len(fore) == 3: self.fore = Color(*fore) else: self.fore = fore if back == None : self.back = Color(0,0,0) elif type(back) == tuple and len(back) == 3: self.back = Color(*back) else: self.back = back def __add__(self, inc): if type(inc) == tuple: if len(inc) == 2: return CharColor(self.fore + inc[0], self.back + inc[1]) elif len(inc) == 3: return CharColor(self.fore + inc, self.back + inc) else: raise TypeError("operand type must be either 3-tuple or 2-tuple") elif type(inc) is int: return CharColor(self.fore + inc, self.back + inc) else: raise TypeError("operand type must be tuple") def __mul__(self, inc): if type(inc) == tuple: if len(inc) == 2: return CharColor(self.fore * inc[0], self.back * inc[1]) elif len(inc) == 3: return CharColor(self.fore * inc, self.back * inc) else: raise TypeError("operand type must be either 3-tuple or 2-tuple") elif type(inc) is float: return CharColor(self.fore * inc, self.back * inc) else: raise TypeError("operand type must be tuple") def __str__(self): return str(self.fore) + " " + str(self.back) class Rect: """ Rect: Draw a rectangle area with given fore/back color and text content records position, size, color and content only. """ def __init__(self, pos, color, text): self.pos = pos self.color = color self.text = text class Canvas: rows, cols = get_term_size() # graphic elements hold by Canvas. elems = [] # for successively adding elements current_line = 0 def add_text(self, text, color, anchor=None): if anchor is None: anchor = Pos(self.current_line, (self.cols - len(text)) / 2) color = color * (0.5, 1.) self.add_empty_line(anchor) self.elems.append(Rect(anchor, color, text)) self.current_line += 2 def add_empty_line(self, pos): self.elems.append(Rect(Pos(pos.row, 0), CharColor((0,0,0)), " "*self.cols)) def add_frame(self, size, anchor, sides=("left", "right", "top", "bottom"), x_tick_range=None, y_tick_range=None, x_rep=None, y_rep=None, x_off=None, y_off=None): color = CharColor((255, 255, 255)) for l in range(size.row+1): self.add_empty_line(Pos(l, 0) + anchor) tick_char = u"│" if x_off is not None and x_rep is not None: if (l + x_off) % x_rep == 0: tick_char = u"├" if "left" in sides: self.elems.append(Rect(Pos(l, 0)+anchor, color, tick_char)) if "right" in sides: self.elems.append(Rect(Pos(l, size.col)+anchor, color, u"│")) for l in range(1,size.col): tick_char = u"─" if y_off is not None and y_rep is not None: if (l + y_off) % y_rep == 0: tick_char = u"┴" if "top" in sides: self.elems.append(Rect(Pos(0, l)+anchor, color, u"─")) if "bottom" in sides: self.elems.append(Rect(Pos(size.row, l)+anchor, color, tick_char)) self.elems.append(Rect(anchor, color, u"┌")) self.elems.append(Rect(anchor+Pos(size.row, 0), color, u"└")) self.elems.append(Rect(anchor+Pos(size.row, size.col), color, u"┘")) self.elems.append(Rect(anchor+Pos(0, size.col), color, u"┐")) def add_grid(self, table, color_func, anchor=None): cell_size = 0 min_cell = min([min(c) for c in table]) max_cell = max([max(c) for c in table]) # Get reformed string and calculate max length for row in table: for cell in row: try: new_cell = "%1.2f" % cell except TypeError: new_cell = cell if cell_size < len(new_cell): cell_size = len(new_cell) cell_size += 2 if anchor is None: anchor = Pos(self.current_line, (self.cols - len(table[0]) * cell_size - 7) / 3) self.add_frame(Pos(len(table)*3+3, len(table[0])*cell_size+5), anchor, x_rep=3, x_off=0, y_rep=cell_size, y_off=0) def add_cell(cell, anchor, pos, isBlank=False): pos = pos * (1, cell_size) + anchor + Pos(0, 2) back = color_func((cell-min_cell)/(max_cell-min_cell)) color = CharColor(back, back) * (1., 0.5) cell = "" if isBlank else "%1.2f" % cell if type(cell) is float else cell cell = cell.rjust(cell_size - 2) self.elems.append(Rect(pos, color, " " + cell + " ")) # Add each cell into element table # and calculates the max cell length cell_anchor = anchor + Pos(2, 1) for [row_num, row] in enumerate(table): for [col_num, cell] in enumerate(row): add_cell(cell, cell_anchor, Pos(row_num*3+0, col_num), True) add_cell(cell, cell_anchor, Pos(row_num*3+1, col_num)) add_cell(cell, cell_anchor, Pos(row_num*3+2, col_num), True) # Add a thermometer on the right side thermo_left = len(table[0]) * cell_size + 10 for line in range(1, len(table) * 3 + 6): pos = Pos(line, thermo_left) + anchor back = color_func(1.0 - 1.0 * line / (len(table) * 3+3)) color = CharColor(Color(0, 0, 0), back) self.elems.append(Rect(pos, color, " ")) self.current_line += len(table)*3 + 4 def add_hist(self, hist, color_func, anchor=None): max_val = max(hist[0]) height = 30 bar_width = 5 if anchor is None: anchor = Pos(self.current_line, (self.cols - len(hist[0]) * bar_width) / 2) self.add_frame(Pos(height + 3, len(hist[0])*bar_width + 5), anchor, x_rep=3, x_off=0, y_rep=bar_width, y_off=0) hist_anchor = anchor + Pos(2, 3) for line in range(height): for ith, val in enumerate(hist[0]): pos = Pos(line, ith*bar_width) + hist_anchor if height * (1 - val/max_val) < line: color = color_func(val/max_val) self.elems.append(Rect(pos, CharColor(color, color*2), " ")) self.current_line += 30 def render_line(self, line_num, is_reset=False): """ render elements in single line """ # Find all elements to be rendered in current line elems_inline = [elem for elem in self.elems if elem.pos.row == line_num] visible_parts = [] def visible_check((A_left, A_right, _), (B_left, B_right, B_id)): # compare the left/right bound of new element with each # existing bound. A_left_shaded = A_left <= B_left A_right_shaded = A_right >= B_right A_left_dodged = A_right < B_left A_right_dodged = A_left > B_right # Four cases of shading: # 1. dodged: the fore and back element doesn't overlap # 2. shaded: fore element shaded at left or right bound of back # element. # 3. split: fore element splits back element into two visible # parts. if A_left_dodged or A_right_dodged: # dodged return ((B_left, B_right, B_id),) elif not (A_left_shaded or A_right_shaded): # splitted return ((B_left, A_left, B_id),(A_right, B_right, B_id)) elif (A_left_shaded and A_right_shaded): # fully shaded return [] else: # partially shaded if A_left_shaded: return ((A_right, B_right, B_id),) if A_right_shaded: return ((B_left, A_left, B_id),) for elem_i, elem in enumerate(elems_inline): elem_bound = (elem.pos.col, elem.pos.col + len(elem.text), elem_i) for i, part in enumerate(visible_parts): visible_parts[i] = visible_check(elem_bound, part) visible_parts.append((elem_bound,)) # list flatten operation by itertools.chain flatten both list and # tuple (and all iterables), thus we have to coat it with one more # tuple in order to maintain the form. visible_parts = list(itertools.chain.from_iterable(visible_parts)) visible_parts = sorted(visible_parts, key=lambda x:x[0]) # handles if no elements in this line strokes = "" if visible_parts == [] else " " * visible_parts[0][0] COLOR_RESET = '\x01\x1b[0m\x02' for part in visible_parts: elem = elems_inline[part[2]] color = elem.color text = elem.text[part[0] - elem.pos.col : part[1] - elem.pos.col] strokes += self.stroke(text, color) strokes += COLOR_RESET if is_reset else "" sys.stdout.write(strokes + COLOR_RESET) sys.stdout.write("\n") def render(self, is_reset=False): sys.stdout.flush() sys.stdout.write("\n") for line in range(self.rows): self.render_line(line, is_reset) def stroke(self, text, c): COLOR_FORE = 38 COLOR_BACK = 48 color_seq = '\x01\x1b[{z};2;{r};{g};{b}m\x02' fore = color_seq.format(z=COLOR_FORE, r=c.fore.r, g=c.fore.g, b=c.fore.b) back = color_seq.format(z=COLOR_BACK, r=c.back.r, g=c.back.g, b=c.back.b) return fore+back+text if __name__ == "__main__": c = Canvas() grid = np.random.random_sample(((7, 10))) hist = np.random.random_sample(((15, 1))) c.add_text("This is a heatmap example", CharColor(color_func["Plum"](0.9))) c.add_grid(grid.tolist(), color_func["Plum"]) c.add_text("This is a histogram example", CharColor(color_func["BlueGreenYellow"](0.9))) #c.add_hist(grid.tolist(), color_func["BlueGreenYellow"]) c.render(True)
3.09375
3
webui/chart.py
twmarshall/tbd
0
12799869
<reponame>twmarshall/tbd import matplotlib # prevents pyplot from trying to connect to x windowing matplotlib.use('Agg') import matplotlib.pyplot as plt import sys webui_root = "webui/" points = [] for i in range(1, len(sys.argv)): points.append(sys.argv[i]) plt.plot(points) plt.ylabel('some numbers') plt.savefig(webui_root + "tasks.png")
2.421875
2
5-1.py
xeno14/advent_of_code2018
0
12799870
with open("input/5.txt") as f: #with open("input/5.test") as f: poly = f.read().strip() def is_reactable(x,y): return x.lower()==y.lower() and x.islower() != y.islower() assert(not is_reactable("a", "a")) assert(not is_reactable("a", "B")) assert(is_reactable("a", "A")) print(len(poly)) result = "" for p in poly: if len(result)==0: result += p continue q = result[-1] # tail if is_reactable(p, q): result = result[:-1] # remove tail else: result += p print(len(result))
3.53125
4
luizalabs/core/migrations/0011_auto_20190911_0550.py
LucasSRocha/django_rest_llabs
0
12799871
<gh_stars>0 # Generated by Django 2.1.12 on 2019-09-11 05:50 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', '0010_auto_20190910_1022'), ] operations = [ migrations.AlterUniqueTogether( name='product', unique_together={('wishlist', 'product_id')}, ), ]
1.375
1
scripts/scraper.py
brainglobe/brainglobe-web
1
12799872
<reponame>brainglobe/brainglobe-web<filename>scripts/scraper.py from loguru import logger from rich import print from rich.table import Table from mdutils.mdutils import MdUtils import semanticscholar as sch from myterial import pink, blue_light ''' Searches google scholar for papers using brainglobe's tools ''' AUTHORS = ( '34308754', # <NAME> '3853277', # <NAME> '8668066', # <NAME> ) KEYWORDS = ('brainglobe', 'brainrender', 'cellfinder', 'brainreg') def fetch_citations(): ''' Fetches citations semantic scholar, for each author in the list get all publications and only keep the ones relevant for brainglobe. Then, use these publications to find papers citing them ''' citations = [] brainglobe_papers = dict( id = [], year = [], title = [], authors = [], link=[], ) citing_brainglobe = dict( id = [], year = [], title = [], authors = [], link=[], ) # loop over authors logger.info('Getting brainglobe papers') for author_n, author_id in enumerate(AUTHORS): added = 0 logger.debug(f'Fetching for author {author_n+1}/{len(AUTHORS)}') author = sch.author(author_id) logger.debug(f'Found {len(author["papers"])} papers for {author["name"]}') if not len(author.keys()): raise ValueError('Could not fetch author data, probably an API timeout error, wait a bit.') # loop over papers for paper in author['papers']: paper = sch.paper(paper['paperId']) if not paper or paper['abstract'] is None: logger.debug(f' skipping paper {paper["title"]} because it has not abstract') continue matched_keywords = [kw for kw in KEYWORDS if kw in paper['abstract'].lower()] # add it to the list of brainglobe papers if matched_keywords: if paper['corpusId'] in brainglobe_papers['id']: logger.debug(f' skipping paper: {paper["title"]} to avoid duplicates') continue # skip duplicates logger.debug(f'Found brainglobe paper: "{paper["title"]}" @ "{paper["venue"]}" with |{paper["numCitedBy"]}| citations') brainglobe_papers['id'].append(paper['corpusId']) brainglobe_papers['year'].append(str(paper['year'])) brainglobe_papers['authors'].append([auth['name'] for auth in paper['authors']]) brainglobe_papers['title'].append(paper['title']) brainglobe_papers['link'].append(paper['url']) citations.append(paper['citations']) added += 1 else: logger.debug(f'Paper NOT belonging to brainglobe: "{paper["title"]}" @ "{paper["venue"]}" with |{paper["numCitedBy"]}| citations') logger.debug(f'Added {added}/{len(author["papers"])} papers for {author["name"]}') logger.info(f'Found {len(brainglobe_papers["id"])} brainglobe papers') logger.info('Getting papers citing our work') for paper_citations in citations: for paper in paper_citations: if paper['paperId'] in citing_brainglobe['id']: continue # avoid duplicates citing_brainglobe['id'].append(paper['paperId']) citing_brainglobe['year'].append(str(paper['year'])) citing_brainglobe['title'].append(paper['title']) citing_brainglobe['authors'].append([auth['name'] for auth in paper['authors']]) citing_brainglobe['link'].append(paper['url']) logger.info(f'Found {len(citing_brainglobe["id"])} papers citing brainglobe') return {**brainglobe_papers, **citing_brainglobe} def print_citations(citations): ''' prints a list of citations as a rich tble ''' tb = Table(box=None, header_style=f'bold {pink}') tb.add_column('Year', justify='right', style='dim') tb.add_column('Title', style=blue_light) tb.add_column('Authors') for n in range(len(citations['id'])): tb.add_row( citations['year'][n], citations['title'][n], ', '.join(citations['authors'][n]), ) print(tb) def make_citations_markdown(citations): ''' Replaces ./_pages/references.md to update with the most recent citations of papers using/citing brainglobe ''' logger.debug('Updating markdown file') # create markdown file mdFile = MdUtils(file_name='_pages/references.md') # add metadata & header mdFile.write(text=""" --- permalink: /references author_profile: true title: "References" --- """) mdFile.new_header(level=1, title='Papers citing BrainGlobe tools ') years = sorted(set(citations['year'])) for adding_year in years: mdFile.new_header(level=2, title=adding_year) # add papers for n in range(len(citations['id'])): year = citations['year'][n] link = citations['link'][n] if year != adding_year: continue mdFile.new_header(level=3, title= mdFile.new_inline_link(link=link, text=citations['title'][n]) ) # add 'in the press' mdFile.write(""" # BrainGlobe reported in press/online ### [Why These Python Coders are Joining the napari Community](https://cziscience.medium.com/why-these-python-coders-are-joining-the-napari-community-c0af6bb6ee3a) _Chan Zuckerberg Science Initiative (Medium), June 2021_ ### [Using deep learning to aid 3D cell detection in whole brain microscopy images](https://www.sainsburywellcome.org/web/blog/using-deep-learning-aid-3d-cell-detection-whole-brain-microscopy-images) _Sainsbury Wellcome Centre Blog, June 2021_ ### [Brainrender: visualising brain data in 3D](https://www.sainsburywellcome.org/web/blog/brainrender-visualising-brain-data-3d) _Sainsbury Wellcome Centre Blog, March 2021_ ### [Cellfinder: Harnessing the power of deep learning to map the brain](https://www.sainsburywellcome.org/web/blog/cellfinder-harnessing-power-deep-learning-map-brain) _Sainsbury Wellcome Centre Blog, April 2020_ ### [The best neuroscience stories from April 2020](https://www.scientifica.uk.com/neurowire/the-best-neuroscience-stories-from-april-2020) _NeuroWire (Scientifica), April 2020_ """) # save mdFile.create_md_file() # remove extra empty lines at top of file with open('_pages/references.md', 'r') as fin: content = fin.read() with open('_pages/references.md', 'w') as fout: fout.write(content.replace('\n\n\n\n', '')) if __name__ == '__main__': citations = fetch_citations() # print_citations(citations) make_citations_markdown(citations)
2.515625
3
src/Sample_DataAnalysis/data_generator.py
techmentry/techmentry-python-bootcamp
0
12799873
import requests from requests.compat import urljoin import json import os import datetime # https://www.covid19api.dev/#intro # creating a static dictionary for all the month in the 3 letter format. as this is the only # sure way of getting it correct without having to do a lot of date parsing. months = { 1: "jan", 2: "feb", 3: "mar", 4: "apr", 5: "may", 6: "jun", 7: "jul", 8: "aug", 9: "sep", 10: "oct", 11: "nov", 12: "dec" } # create a global variable for the bearer token. # what is a bearer token? in simple words, it is a token we get when we authenticate with the server. when we send it to the server with the bearer_token = "" api_def = None def read_api_def(): # we store this API definition in a file just so that whenever there is a change to the API we don't have to touch the code. We can just # change the API endpoint, and the code should work the same way. global api_def # read this API definition from the file in the config folder, and then store it for later use. api_def_file_path = os.path.join( os.path.dirname(__file__), "config", "api-def.json") with open(api_def_file_path, "r") as f: api_def = json.load(f) def generate_token(force=False): # The covid 19 tracking API we want to use requires us to authenticate with some form of username and password. To this request, # the API returns a bearer token, which in simpler terms is a way for it to know who is making a request and if that person can # use that endpoint. It also helps keep a track of the number of requests a user has made and also manage telemetry. global bearer_token # the token that the server sends us has a lifetime of ~55 hours. Hence, we don't need to regenerate it. We can just store the token # and load it the next time we bring up our script. However, it is to be noted that once 55 hours are up, we need to regenerate the token. # you can write some code trivially by storing the date and time the token was generated on in the json file itself, and then using it with the code below # to check if the token present is valid or not. If it is not, then you can refresh it. See a simple example below token_file_path = os.path.join( os.path.dirname(__file__), "config", "token.json") # check if we have a valid token already in the file if force == False and os.path.exists(token_file_path): with open(token_file_path) as token_file: # is the time difference between now and the date time the token was fetched > 50 hours? if no, then continue using this token token_details = json.load(token_file) token_load_dt_tm = datetime.datetime.strptime( token_details["timestamp"], "%m/%d/%Y, %H:%M:%S") if (datetime.datetime.now() - token_load_dt_tm).seconds < (50 * 3600): return # okay we either need to fetch a token from scratch or need a new one since the old one expired auth_params = { "username": api_def["username"], "password": api_def["password"] } auth_response = requests.post( url=urljoin(api_def["root_url"], api_def["api_defs"]["gen_token"]), data=auth_params) # please take a look at REST response codes - https://developer.mozilla.org/en-US/docs/Web/HTTP/Status if auth_response.status_code == 200: bearer_token = json.loads( auth_response.content.decode("utf-8"))["Document"] auth_token = { "token": bearer_token, "timestamp": datetime.datetime.now().strftime("%m/%d/%Y, %H:%M:%S") } with open(token_file_path, "w") as f: json.dump(auth_token, f, indent=4) else: print("A problem occurred. Code: {}, Message: {}".format( auth_response.status_code, auth_response.content.decode("utf-8"))) raise Exception("Problem with auth") def get_global_daily_report(month: int, year: int): # get today's date information today = datetime.datetime.today() # check if the month is valid if month not in months.keys(): raise Exception( "Invalid month range! please choose a month range between 1-12") # check if the date range supplied actually makes sense. Covid data is tabulated from Jan 2020 till today. if year < 2020 or year > today.year or (year == today.year and month > today.month): raise Exception( "Invalid date range! No valid data prior to Jan 2020 or in the future. Please choose a month and year between and including, Jan 2020 and current month and year") # connect to the server to get the data. we also need to api_req_param = api_def["api_defs"]["global_daily_reports"].format( mon=str(months[month]), yyyy=year) auth_token = { "Authorization": "Bearer {0}".format(bearer_token) } stats_response = requests.get( url=urljoin(api_def["root_url"], api_req_param), headers=auth_token) return ( stats_response.status_code, stats_response.content.decode("utf-8") ) def init(): read_api_def() generate_token() def main(mon=0, year=0): init() mon = datetime.datetime.today().month if mon == 0 else mon year = datetime.datetime.today().year if year == 0 else year response = get_global_daily_report(mon, year) if response[0] == 200: with open(os.path.join(os.path.dirname(__file__), "data", "data_{}{}.json".format(mon, year)), "w") as f: json.dump(json.loads(response[1]), f, indent=4) if __name__ == "__main__": main()
3.25
3
src/gui.py
LambWolf777/Pathfinding
0
12799874
<filename>src/gui.py<gh_stars>0 """ This module handles the user interface (GUI) for the pathfinding visualizer. It handles the function for clicking on buttons, using input buttons, displaying stats, popups and setting start/end nodes It also creates all buttons by the init_gui function """ from pickle import load, dump from os import getcwd, mkdir from os.path import join, exists import tkinter from tkinter import filedialog from random import randrange from typing import * import pygame as pg import config as cfg import constants as cst from classes import * folder_path = getcwd() grid_path = join(folder_path, "Grids") if not exists(grid_path): mkdir(grid_path) def remove_from_root(*attributes, **kwargs) -> None: """ Removes the popup_gui from the root/parent Gui. Disable the grid from receiving input and redraw it to cover the popup necessary kwargs: - 'root': Parent/root Gui - 'child': Child Gui to remove from Parent :param attributes: Used to specify "grid" if it needs to be redrawn :param kwargs: See the necessary kwargs above :return: None """ try: kwargs["root"].objects.remove(kwargs["child"]) kwargs["root"].draw_all(*attributes) except KeyError: pass class Gui: text_input = "" def __init__(self, dict_object: Dict[str, Any], **kwargs: Any) -> None: """ Creates a gui window or screen, if a Gui object is added to its objects, it will pass down its click events to it recursively until used. Specific kwargs: - external=True Allows clicks outside the Gui's objects - ext_close=True Removes Gui from parent Gui on external clicks :param dict_object: all objects in dict_object MUST have a display() method and can have an is_clicked() method to handle clicks on Buttons (see classes.py for prefabricated classes to use) :param kwargs: add attributes to the gui, used for dependency injection. """ self.objects = [] self.events = [] for name, obj in dict_object.items(): setattr(self, name, obj) setattr(self, f"{obj.__class__}_group", []) self.objects.append(obj) for obj in self.objects: self.__dict__[f"{obj.__class__}_group"].append(obj) self.__dict__.update(kwargs) def draw_all(self, *attributes: str) -> None: """ Call display() method on all of its objects. :param attributes: Call the display() method on additional attributes of the gui :return: None """ for obj in self.objects: obj.display() for key in attributes: self.__dict__[key].display() def handle_events(self, *additional: Any) -> None: """ Handle click and keyboard input events by redistributing to handle click or handle input methods. TYPING: *additional: (event.type, function(event, *args) -> None , *args), ... :param additional: Allows entering specific (event.type, function, (*args)) tuples to handle other events. The function will receive parameters (event, args). (I couldn't get the typing right...) :return: None """ for event in self.events: if event.type == pg.MOUSEBUTTONDOWN: self.handle_clicks(pg.mouse.get_pos()) elif event.type == pg.KEYDOWN: self.handle_input(event) for user_event, func, *args in additional: if event.type == user_event: func(event, *args) self.events.clear() def handle_input(self, event: pg.event.Event): """ Process Keyboard user input, the entered text is stored as a class attribute. A TextInputButton must be activated for this function to run, once the Enter key is pressed, it's confirm_input(self.text_input) method will be called with the injected input. :param event: must be of type pg.KEYDOWN event :return: None """ for button in self.objects: if button.__class__ is TextInputButton and button.is_activated: if event.key == pg.K_BACKSPACE: if len(Gui.text_input) <= 1: Gui.text_input = "" else: Gui.text_input = Gui.text_input[:-1] button.dict["value"] = Gui.text_input elif event.key == pg.K_RETURN: button.confirm_input(Gui.text_input) Gui.text_input = "" else: Gui.text_input += event.unicode button.dict["value"] = Gui.text_input button.display() def handle_clicks(self, mouse_pos: Tuple[int, int], root: 'Gui' = None) -> bool: """ Handle clicking events, will recursively pass down click events to child Gui if one is in its objects (LIMITED TO ONE CHILD GUI). If any of its objects is clicked, the object's is_clicked() method will be called if it has one. :param mouse_pos: Coordinates of the cursor :param root: parent Gui, allows the child to remove itself from the parent's objects once terminated :return: True if click was used, else False """ def check_priority() -> Union[DropDownButton, Gui]: """ Check if any of the Gui's objects require priority on clicks (currently only for DropDownButton and any child Gui that might be spawned during the program :return: object with priority """ priority_to = None for obj in self.objects: if isinstance(obj, Gui): priority_to = obj return priority_to def handle_priority(priority_obj: Union[DropDownButton, Gui]) -> bool: """ If priority object was found look if any clicks affect it, clicking outside of a DropDownButton's rect is allowed and clicks will be registered, but is forbidden for child Gui :param priority_obj: The object with priority :return: True if click was used, else False """ used = False if isinstance(priority_obj, Gui): # Inject parent Gui dependency as root, to allow the child Gui to remove itself # from the parent's objects when it is terminated used = priority_obj.handle_clicks(mouse_pos, root=self) try: if not used and not priority_obj.external: used = True if not used and priority_obj.ext_close: priority_obj.src_butt.is_activated = False remove_from_root(root=self, child=priority_obj) except AttributeError: pass return used click = pg.Rect(mouse_pos, (1, 1)) click_used = False prio = check_priority() if prio: click_used = handle_priority(prio) # Clicking outside the child-most Gui is forbidden if not click_used: for button in self.objects: try: if not button.is_disabled: if click.colliderect(button.rect): click_used = True button.is_clicked(gui=self, root=root) elif button.is_activated and button.__class__ is TextInputButton: button.confirm_input(self.text_input) except AttributeError: pass return click_used # TODO: alot of setter functions could be shifted into a get_data(gui) method by the pathfinder to unclutter this # module and remove some LOC... def init_gui(pathfinder_obj: Any, grid_obj: Grid) -> Gui: """ Initialise the main Gui for the visualizer module, most dependency issues are fixed by injecting the necessary objects as arguments. First define the necessary functions for all buttons that will be added to the Gui. Second, create a dict of all the objects to be added to the Gui as "attribute": object. The dict is defined one line at a time because all Button's position depend on the previous ones Last we create the Gui from the dict, with pathfinder and grid added as kwargs. :param pathfinder_obj: Pathfinder object to link to the Gui (class is not typed to avoid import) :param grid_obj: Grid object to link to the Gui :return: Gui object """ # Button functions for particular cases: def random_walls(self: GridButton) -> None: """ Function for the random walls button, 10% of the nodes in the grid will become walls :param self: random_walls button object. For GridButton, this parameter is always injected in is_clicked :return: None """ self.is_activated = False for column in grid_obj.all_nodes: for node in column: if randrange(11) == 0: if node is not grid_obj.start and node is not grid_obj.end: node.status |= Node.WALL cst.dirty_fills.append(node.get_fill()) def disp_moves_func(arg: bool) -> None: """ Function for the display moves Checkbox. Switches the bool of pathfinder.display_steps attribute. Disables the run interval and wait time buttons of the main_gui if display_steps if False, and display the buttons the show change. :param arg: display_moves_button.is_activated, For Checkboxes this parameter is always injected in is_clicked :return: None """ pathfinder_obj.display = arg # if "wait_time_button" in gui.__dict__.keys() and "run_interval_button" in gui.__dict__.keys(): try: main_gui_handler.wait_time_button.is_disabled = not arg main_gui_handler.run_interval_button.is_disabled = not arg main_gui_handler.wait_time_button.display() main_gui_handler.run_interval_button.display() except KeyError: pass def diago_func(arg: bool) -> None: """ Function for the diago_allowed Checkbox. Switches the bool of pathfinder.diago attribute. :param arg: diago_button.is_activated, For Checkboxes this parameter is always injected in is_clicked :return: None """ pathfinder_obj.diago = arg def apply_rsr_func(arg: bool) -> None: """ Function for the apply_rsr Checkbox. Switches the bool of pathfinder.apply_rsr attribute. :param arg: apply_rsr_button.is_activated, For Checkboxes this parameter is always injected in is_clicked :return: None """ pathfinder_obj.apply_rsr = arg def set_algo(self: AlgoButton) -> None: """ Set the pathfinder.algo attribute to the algorithm associated with the AlgoButton :param self: inject reference to self. For AlgoButton, this parameter is always injected in is_clicked :return: None """ pathfinder_obj.algo = self.algo main_gui_handler.dropdown_algo.is_activated = False remove_from_root(root=main_gui_handler, child=algo_gui) def generate() -> None: """ Calls the generate method of the grid object, and injects the n_wide and n_high dependencies from the main_gui's grid_n_wide and grid_n_high TextInputButtons' values :return: None """ grid_obj.generate(main_gui_handler.grid_n_wide_button.dict["value"], main_gui_handler.grid_n_high_button.dict["value"]) def play_pause(arg: bool = None) -> None: """ Switches the pathfinder.running attribute on and off on every press if run conditions are met. Call pathfinder.init_search methode if pathfinder.search_is_init is False. Disable Buttons that cannot be used during pathfinding :param arg: Not needed, but is included for the functions of other StateButtons :return: None """ def disable_buttons() -> None: """ Disable Buttons that cannot be used during pathfinding :return: None """ for obj in main_gui_handler.objects: if obj.__class__ is not StateButton and obj is not main_gui_handler.exit_button: try: obj.is_disabled = True except AttributeError: continue obj.display() def check_conditions() -> bool: """ Check that an algorithm is defined, the grid has a starting node and an ending node. If no end or start node is defined, adds a popup Gui to the main_gui :return: True if pathfinder is ready to run """ if pathfinder_obj.algo: if grid_obj.start: if grid_obj.end: return True else: pg.event.post(pg.event.Event(cst.NO_END, announcement="No end Node!")) else: pg.event.post(pg.event.Event(cst.NO_START, announcement="No start Node!")) return False if check_conditions(): pathfinder_obj.running = not pathfinder_obj.running # could add pause/unpause timers... if not pathfinder_obj.search_is_init: disable_buttons() if not pathfinder_obj.display or main_gui_handler.run_interval_button.dict["value"] == -1: # update display to show disabled buttons before pathfinder starts looping handle_display() pg.display.flip() pathfinder_obj.init_search() def reset(partial: bool = False) -> None: """ Stops the pathfinder, and reset all necessary attributes, also reset the grid. If partial, leaves walls, start and end nodes as is :param partial: True if resetting search, False if resetting grid :return: None""" pathfinder_obj.running = False if not partial: if grid_obj.start is not None: temp = grid_obj.start grid_obj.start = None temp.is_start = False cst.dirty_fills.append(temp.get_fill()) if grid_obj.end is not None: temp = grid_obj.end grid_obj.end = None temp.is_end = False cst.dirty_fills.append(temp.get_fill()) pathfinder_obj.search_is_init = False pathfinder_obj.dijkstra_cost_so_far = 0 pathfinder_obj.running = False pathfinder_obj.path_found = False pathfinder_obj.frontier = [] pathfinder_obj.queue.clear() pathfinder_obj.to_be_removed = [] pathfinder_obj.shortest_path = [] pathfinder_obj.run_timer = 0 pathfinder_obj.start_time = 0 pathfinder_obj.end_time = 0 pathfinder_obj.neighbors_prep_dt = 0 pathfinder_obj.rsr_prep_dt = 0 pathfinder_obj.algo_dt = 0 for column in grid_obj.all_nodes: for node in column: node.neighbors = None node.came_from = None if node.update_color() is not cst.BLACK: if not partial: node.status &= ~(Node.WALL | Node.END | Node.START) node.status &= ~(Node.SYM_RECT | Node.BORDER | Node.VISITED | Node.PATH) cst.dirty_fills.append(node.get_fill()) for obj in main_gui_handler.objects: try: obj.is_disabled = False obj.display() except AttributeError: # (Backgrounds) continue main_gui_handler.run_interval_button.is_disabled = \ main_gui_handler.run_interval_button.is_disabled = \ not main_gui_handler.display_moves_button.is_activated # TODO: try resetting the focus to pygame def save() -> None: """ Save the Grid object as a Pickle file in the Grids folder (or other) :return: None """ tkinter.Tk().withdraw() direct = filedialog.asksaveasfilename(initialdir=grid_path, defaultextension=".pickle") if direct: save_object = {"start": grid_obj.start, "end": grid_obj.end, "grid": grid_obj.all_nodes} with open(direct, "wb") as file: dump(save_object, file) def load_grid() -> None: """ Load a grid object from the Grids folder (or other), update values, scale the grid and show all changes :return: None """ def scale_and_draw() -> None: """ Scale the grid object to fit current screen size, draw the grid :return: None """ # scale grid to screen, as well as possible, might make grid go out of borders nodes_width = grid_obj.width / main_gui_handler.grid_n_wide_button.dict["value"] nodes_height = grid_obj.height / main_gui_handler.grid_n_high_button.dict["value"] start_height = 25 # Substracting the first because it will be incremented during the loop position_y = start_height - nodes_height position_x = cfg.button_background_rect.width - nodes_width for column in grid_obj.all_nodes: position_x += nodes_width for node in column: position_y += nodes_height node.height = nodes_height node.width = nodes_width node.position = (position_x, position_y) node.rect = pg.rect.Rect(node.position, (node.width, node.height)) position_y = start_height - nodes_height grid_obj.display() def update_values(save_object: dict) -> None: """ Updates the attributes of the grid object and the values of the grid_n_wide and grid_n_high buttons and display changes :param save_object: save object loaded from pickle file :return: None """ grid_obj.all_nodes = save_object["grid"] grid_obj.start = save_object["start"] grid_obj.end = save_object["end"] main_gui_handler.grid_n_wide_button.dict["value"] = len(grid_obj.all_nodes) main_gui_handler.grid_n_high_button.dict["value"] = len(grid_obj.all_nodes[0]) main_gui_handler.grid_n_wide_button.display() main_gui_handler.grid_n_high_button.display() tkinter.Tk().withdraw() direct = filedialog.askopenfilename(initialdir=grid_path) if direct: with open(direct, "rb") as file: save_object_ = load(file) update_values(save_object_) scale_and_draw() def exit_func() -> None: """ Exit program. :return: None """ pg.event.post(pg.event.Event(pg.QUIT)) # creating GUI ##################################################################################################### main_gui: Dict[str, Union[pg.Rect, GridButton, AlgoButton, Checkbox, DropDownButton, TextInputButton, StateButton, SystemButton, Background]] = dict() # It's a bit ugly doing it like this but it's the only way I know to keep reference to the previous entry. # Also I wanted to make a flexible GUI object to be able to use it elsewhere (pop-ups) main_gui["button_background_rect"] = Background(cst.LIGHT_GREY, cfg.button_background_rect) # grid placement buttons main_gui["start_node_button"] = GridButton((15, 25), "Place Start") main_gui["end_node_button"] = GridButton((main_gui["start_node_button"].rect.right + 5, main_gui["start_node_button"].rect.top), "Place End") main_gui["draw_walls_button"] = GridButton((15, main_gui["start_node_button"].rect.bottom + 10), "Draw walls") main_gui["erase_walls_button"] = GridButton((main_gui["draw_walls_button"].rect.right + 5, main_gui["draw_walls_button"].rect.top), "Erase walls") main_gui["random_walls_button"] = GridButton((15, main_gui["draw_walls_button"].rect.bottom + 10), "Random walls", func=random_walls) # algo buttons algo_buttons = [AlgoButton((0, 0), "Flood Fill", "bfs", active_color=cst.BLACK, rounded=False, func=set_algo), AlgoButton((0, 0), "A*", "astar", active_color=cst.BLACK, rounded=False, func=set_algo), AlgoButton((0, 0), "Dijkstra", "dijkstra", active_color=cst.BLACK, rounded=False, func=set_algo)] algo_buttons[0].is_activated = True algo_gui = Gui({f"{button.algo}": button for button in algo_buttons}, external=True, ext_close=True) main_gui["dropdown_algo"] = DropDownButton((15, main_gui["random_walls_button"].rect.bottom + 30), "Algo: ", algo_buttons, child_gui=algo_gui) main_gui["diago_button"] = Checkbox("Diagonal moves", (15, main_gui["dropdown_algo"].rect.bottom + 10), False, diago_func) main_gui["apply_rsr_button"] = Checkbox("Apply RSR", (15, main_gui["diago_button"].rect.bottom + 10), False, apply_rsr_func) main_gui["display_moves_button"] = Checkbox("Display moves", (15, main_gui["apply_rsr_button"].rect.bottom + 10), True, disp_moves_func) main_gui["run_interval_button"] = TextInputButton({"min": -1, "max": 9999, "default": 0, "value": 0}, (15, main_gui["display_moves_button"].rect.bottom + 10), 40, "Run: ") main_gui["wait_time_button"] = TextInputButton({"min": 0, "max": 9999, "default": 0, "value": 0}, (main_gui["run_interval_button"].rect.right + 5, main_gui["display_moves_button"].rect.bottom + 10), 40, "Wait: ") main_gui["reset_button"] = StateButton((15, main_gui["run_interval_button"].rect.bottom + 30), "Reset Grid", reset) main_gui["reset_search_button"] = StateButton((main_gui["reset_button"].rect.right + 5, main_gui["reset_button"].rect.top), "Reset Search", reset, True) main_gui["play_pause_button"] = StateButton((15, main_gui["reset_search_button"].rect.bottom + 10), "Play/Pause", play_pause) main_gui["grid_n_wide_button"] = TextInputButton({"min": 3, "max": cfg.window.get_width() - 205 - 25, "default": 100, "value": 100}, (15, main_gui["play_pause_button"].rect.bottom + 30), 50, "Nodes in width: ", func=generate) main_gui["grid_n_high_button"] = TextInputButton({"min": 3, "max": cfg.window.get_height() - 125 - 25, "default": 100, "value": 100}, (15, main_gui["grid_n_wide_button"].rect.bottom + 10), 40, "Nodes in height: ", func=generate) main_gui["brush_size_button"] = TextInputButton({"min": 1, "max": 200, "default": 1, "value": 1}, (15, main_gui["grid_n_high_button"].rect.bottom + 10), 30, "Brush size: ") main_gui["save_grid_button"] = SystemButton((15, main_gui["brush_size_button"].rect.bottom + 30), "Save Grid", save) main_gui["load_grid_button"] = SystemButton((main_gui["save_grid_button"].rect.right + 5, main_gui["save_grid_button"].rect.top), "Load Grid", load_grid) main_gui["exit_button"] = SystemButton((15, main_gui["load_grid_button"].rect.bottom + 30), "Exit", exit_func) main_gui_handler = Gui(main_gui, pathfinder=pathfinder_obj, grid=grid_obj) return main_gui_handler def handle_display() -> None: """ Does all the fills and blits to the window then clear channel, fills are made before blits. All the program's fill and blits orders are appended to one of the lists in cst.to_display (see constants.py module), for special cases there is an early and a late channel. :return: None """ for group in cst.to_display: for i, j in group: if i.__class__ is pg.Surface: cfg.window.blit(i, j) else: cfg.window.fill(i, j) group.clear() def pop_up(announcement: str) -> Gui: """ Creates a Pop-up window Gui with a single OK button to dismiss the message and remove the Gui from its parent Gui. Use as follows: from the main Gui, on event: main_Gui.objects.append(pop_up("hello")) :param announcement: Text to be displayed on the popup window :return: A Gui object representing the popup window """ def ok_func(root: Gui, child: Gui) -> None: """ Removes the popup_gui from the root/parent Gui. Disable the grid from receiving input and redraw it to cover the popup :param root: Parent/root Gui :param child: Child Gui to remove from parent :return: None """ root.grid.disabled = pg.time.get_ticks() + 100 remove_from_root("grid", root=root, child=child) text_surf = cst.big_text_font.render(announcement, True, cst.RED) bg_width = 2 * text_surf.get_width() bg_height = 4 * text_surf.get_height() text_obj = (text_surf, ((bg_width - text_surf.get_width()) / 2, (bg_height - text_surf.get_height()) / 3)) dimension_butt = Button((0, 0), "OK") ok_button = OkButton(((cfg.window.get_width() - dimension_butt.rect.w) / 2, (cfg.window.get_height() - dimension_butt.rect.h) / 2 + 100 / 4), "OK", func=ok_func) background = Background(cst.DARK_GREY, pg.Rect(((cfg.window.get_width() - bg_width) / 2, (cfg.window.get_height() - bg_height) / 2), (bg_width, bg_height)), text_obj) popup = Gui({"popup_bg": background, "ok_butt": ok_button}) popup.draw_all() return popup class StatsHandler: def __init__(self, background: Background, increment: int = 200, **kwargs: Stat) -> None: """ Creates a Singleton Stats handler for displaying Stat objects on a Background (Background is important so the anti aliased text does not become opaque. :param background: Background object where the stats will be displayed (positioning is not automatic) :param increment: Delay between updates of the stats in ms :param kwargs: add stat objects as attributes of the stat handler ("attribute" = object) and in a list of stats """ self.__dict__.update(kwargs) self.stats = [obj for obj in self.__dict__.values() if obj.__class__ is Stat] self.background = background self.chrono = 0 self.increment = increment def display(self) -> None: """ Display all Stat object in self.stats. :return: None """ self.background.display() for stat in self.stats: stat.display() def timer(self) -> bool: """ Handles timing of the stats handler :return: True if it's time to display """ if pg.time.get_ticks() >= self.chrono: self.chrono += self.increment return True return False def main(self) -> None: """ Main loop of the stats handler, it's the only thing that needs to be called once it has been initialised :return: None """ if self.timer(): self.display() def init_stats(pathfinder: Any) -> StatsHandler: """ Initialise the StatsHandler object, with injected dependency to the pathfinder to access stats values. First define the getter functions for the Stat objects Then Instantiate the Stat object as kwargs for the StatsHandler :param pathfinder: Pathfinder object of the program (Singleton) (class not typed to avoid import) :return: StatsHandler object """ # defining stats getters def get_algo_dt() -> float: """ Get algorithm process time from the pathfinder or the time since it started processing""" return round(pathfinder.algo_dt, 2) def get_neighbor_dt() -> float: """ Get the time taken for preprocessing the grid's nodes' neighbors from the pathfinder""" return round(pathfinder.neighbors_prep_dt, 2) def get_rsr_dt() -> float: """ Get the time taken for preprocessing Rectangular Symmetry Reduction from the pathfinder""" return round(pathfinder.rsr_prep_dt, 2) def get_path_len() -> float: """ Get the lenght of the shortest path found by the pathfinder""" return len(pathfinder.shortest_path) def get_fps() -> float: """ Get the fps of the program""" return round(cfg.clock.get_fps(), 1) stat_handler = StatsHandler( background=Background(cst.LIGHT_GREY, cfg.stats_background_rect), increment=200, process_time=Stat("Process time (ms): ", cst.BLACK, (cfg.stats_background_rect.x + 15, cfg.stats_background_rect.y + 15), get_algo_dt), neighbor_prep_time=Stat("Neighbors Preprocess (ms): ", cst.BLACK, (cfg.stats_background_rect.x + 15, cfg.stats_background_rect.y + 35), get_neighbor_dt), rsr_prep_time=Stat("RSR Preprocess (ms): ", cst.BLACK, (cfg.stats_background_rect.x + 15, cfg.stats_background_rect.y + 55), get_rsr_dt), fps_stat=Stat("FPS: ", cst.BLACK, (cfg.stats_background_rect.x + 300, cfg.stats_background_rect.y + 15), get_fps), path_length=Stat("Path length: ", cst.BLACK, (cfg.stats_background_rect.x + 300, cfg.stats_background_rect.y + 35), get_path_len)) return stat_handler
3.1875
3
src/examples/aircraft.py
pillmuncher/hornet
0
12799875
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (C) 2016 <NAME> <<EMAIL>> __version__ = '0.2.5a' __date__ = '2016-08-11' __author__ = '<NAME> <<EMAIL>>' __license__ = 'MIT' import pprint from hornet import * from hornet.symbols import ( side, left, right, wing, segment, segments, section, sections, point, Side, Id, S, Ss, W ) def make_wing(db): db.tell( wing(Side, wing(side(Side), Ss)) << segments(Side, Ss), segments(Side, segments(Ss)) << findall(segment(Id, S), segment(Side, Id) & sections(Id, S), Ss), sections(Id, sections(Ss)) << findall(section(S), section(Id, S), Ss), segment(left, 1), segment(left, 2), segment(right, 3), segment(right, 4), section(1, [point(1, 2), point(3, 4)]), section(1, [point(5, 6), point(7, 8)]), section(2, [point(2, 3), point(4, 5)]), section(2, [point(6, 7), point(8, 9)]), section(3, [point(11, 12), point(13, 14)]), section(3, [point(15, 16), point(17, 18)]), section(4, [point(12, 13), point(14, 15)]), section(4, [point(16, 17), point(18, 19)]), ) def ask_wing(db, side): for subst in db.ask(wing(side, W)): pprint.pprint(subst[W]) db = Database() make_wing(db) ask_wing(db, left) ask_wing(db, right)
2.515625
3
random/random_util_test.py
ljszalai/pyaster
0
12799876
import unittest import random_util class MyTestCase(unittest.TestCase): def test_visualize_results(self): column_width = 20 print("Generated id:".rjust(column_width, ' ') + random_util.generate_id()) print("Generated uuid:".rjust(column_width, ' ') + random_util.generate_uuid()) print("Generated token:".rjust(column_width, ' ') + random_util.generate_token()) if __name__ == '__main__': unittest.main()
2.90625
3
accounts/migrations/0001_initial.py
UniversitaDellaCalabria/IdM
2
12799877
<filename>accounts/migrations/0001_initial.py # Generated by Django 2.1.4 on 2019-02-18 14:37 import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0009_alter_user_last_name_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('dn', models.CharField(blank=True, default='', max_length=254)), ('is_active', models.BooleanField(default=True, verbose_name='attivo')), ('email', models.EmailField(blank=True, max_length=254, null=True, verbose_name='email address')), ('matricola', models.CharField(blank=True, max_length=6, null=True, verbose_name='Matricola/Codice di identificazione')), ('first_name', models.CharField(blank=True, max_length=30, null=True, verbose_name='Nome')), ('last_name', models.CharField(blank=True, max_length=30, null=True, verbose_name='Cognome')), ('codice_fiscale', models.CharField(blank=True, max_length=16, null=True, verbose_name='Codice Fiscale')), ('gender', models.CharField(blank=True, choices=[('male', 'Maschio'), ('female', 'Femmina'), ('other', 'Altro')], max_length=12, null=True, verbose_name='Genere')), ('location', models.CharField(blank=True, max_length=30, null=True, verbose_name='Place of birth')), ('birth_date', models.DateField(blank=True, null=True, verbose_name='Date of birth')), ('access_notification', models.BooleanField(default=True, help_text='enable email send', verbose_name='Send Email notification accesses')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'ordering': ['username'], 'verbose_name_plural': 'Utenti Unical ID', }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), ]
2.15625
2
utility/runner.py
theBraindonor/chicago-crime-arrests
1
12799878
#!/usr/bin/env python # -*- coding: utf-8 -*- """ A common training and evaluation runner to allow for easy and consistent model creation and evalutation """ __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2019, <NAME>" __license__ = "Creative Commons Attribution-ShareAlike 4.0 International License" __version__ = "1.0" import pandas as pd from collections import Counter from skopt import BayesSearchCV from sklearn.base import clone from sklearn.externals.joblib import Parallel, delayed from sklearn.model_selection import StratifiedKFold, train_test_split from sklearn.utils import shuffle from utility import batch_predict, batch_predict_proba, EvaluationFrame, Evaluator, Logger, use_project_path, batch_fit_classifier def crossfold_classifier(estimator, transformer, x_train, y_train, train_index, test_index, record_predict_proba, verbose, fit_increment, warm_start, max_iters, random_state): """ This method allows for training to be done using the joblib parallelism in scikit learn. Overall a hacky method to allow for incremental training. Really needs to be refactored into a cleaner form. """ if hasattr(x_train, 'iloc'): x_fold_train, x_fold_test = x_train.iloc[train_index], x_train.iloc[test_index] else: x_fold_train, x_fold_test = x_train[train_index], x_train[test_index] if hasattr(y_train, 'iloc'): y_fold_train, y_fold_test = y_train.iloc[train_index], y_train.iloc[test_index] else: y_fold_train, y_fold_test = y_train[train_index], y_train[test_index] if fit_increment is not None: if max_iters is not None: for iter in range(max_iters): x_fold_train, y_fold_train = shuffle(x_fold_train, y_fold_train, random_state=random_state) batch_fit_classifier(estimator, x_fold_train, y_fold_train, transformer=transformer, increment=fit_increment, verbose=verbose) else: batch_fit_classifier(estimator, x_fold_train, y_fold_train, transformer=transformer, increment=fit_increment, verbose=verbose) else: if transformer is not None: x_fold_train = transformer.transform(x_fold_train) estimator.fit(x_fold_train, y_fold_train) y_fold_test_predict = batch_predict(estimator, x_fold_test, transformer=transformer, verbose=False) fold_predict_frame = EvaluationFrame(y_fold_test, y_fold_test_predict) fold_predict_proba_frame = None if record_predict_proba: y_fold_test_predict_proba = batch_predict_proba(estimator, x_fold_test, transformer=transformer, verbose=False) fold_predict_proba_frame = EvaluationFrame(y_fold_test, y_fold_test_predict_proba) return Evaluator.evaluate_classifier_fold(fold_predict_frame, fold_predict_proba_frame) class Runner: """ The runner supports bare estimator fitting and searvh-based fitting. By default it will make use of the a BayesianSearchCV to perform hyperparameter tuning. Ensures everything is cleanly logged, evaluated, and pickled. """ def __init__( self, name, df, target, estimator, hyper_parameters=None): self.name = name self.df = df self.target = target self.estimator = estimator self.hyper_parameters = hyper_parameters self.trained_estimator = None def run_classification_experiment( self, sample=None, random_state=None, test_size=0.20, multiclass=False, record_predict_proba=False, sampling=None, cv=5, verbose=True, transformer=None, fit_increment=None, warm_start=False, max_iters=None, n_jobs=-1): use_project_path() logger = Logger('%s.txt' % self.name) evaluator = Evaluator(logger) data_frame = self.df if sample is not None: data_frame = data_frame.sample(n=sample, random_state=random_state) x_train, x_test, y_train, y_test = train_test_split(data_frame, data_frame[self.target], test_size=test_size) if transformer is not None: logger.time_log('Fitting Transformer...') transformer.fit(x_train) logger.time_log('Transformer Fit Complete.\n') if sampling is not None: logger.time_log('Starting Data Re-Sampling...') logger.log('Original Training Shape is %s' % Counter(y_train)) x_new, y_new = sampling.fit_resample(x_train, y_train) logger.log('Balanced Training Shape is %s' % Counter(y_new)) if hasattr(x_train, 'columns'): x_new = pd.DataFrame(x_new, columns=x_train.columns) x_train, y_train = x_new, y_new logger.time_log('Re-Sampling Complete.\n') logger.time_log('Shuffling Re-Sampled Data.\n') x_train, y_train = shuffle(x_train, y_train, random_state=random_state) logger.time_log('Shuffling Complete.\n') if self.hyper_parameters is not None: self.estimator.set_params(**self.hyper_parameters.params) if cv is not None: kfold = StratifiedKFold(n_splits=cv, random_state=random_state) logger.time_log('Cross Validating Model...') fold_scores = Parallel(n_jobs=n_jobs, verbose=3)( delayed(crossfold_classifier)( clone(self.estimator), transformer, x_train, y_train, train_index, test_index, record_predict_proba, verbose, fit_increment, warm_start, max_iters, random_state ) for train_index, test_index in kfold.split(x_train, y_train) ) logger.time_log('Cross Validation Complete.\n') logger.time_log('Training Model...') if fit_increment is not None: if max_iters is not None: for iter in range(max_iters): x_iter_train, y_iter_train = shuffle(x_train, y_train, random_state=random_state) batch_fit_classifier(self.estimator, x_iter_train, y_iter_train, transformer=transformer, increment=fit_increment, verbose=verbose) else: batch_fit_classifier(self.estimator, x_train, y_train, transformer=transformer, increment=fit_increment, verbose=verbose) else: if transformer is not None: x_train_transformed = transformer.transform(x_train) self.estimator.fit(x_train_transformed, y_train) else: self.estimator.fit(x_train, y_train) logger.time_log('Training Complete.\n') logger.time_log('Testing Training Partition...') y_train_predict = batch_predict(self.estimator, x_train, transformer=transformer, verbose=verbose) logger.time_log('Testing Complete.\n') train_evaluation_frame = EvaluationFrame(y_train, y_train_predict) logger.time_log('Testing Holdout Partition...') y_test_predict = batch_predict(self.estimator, x_test, transformer=transformer, verbose=verbose) logger.time_log('Testing Complete.\n') test_evaluation_frame = EvaluationFrame(y_test, y_test_predict) test_evaluation_frame.save('%s_predict.p' % self.name) test_proba_evaluation_frame = None if record_predict_proba: logger.time_log('Testing Holdout Partition (probability)...') y_test_predict_proba = batch_predict_proba(self.estimator, x_test, transformer=transformer, verbose=verbose) test_proba_evaluation_frame = EvaluationFrame(y_test, y_test_predict_proba) test_proba_evaluation_frame.save('%s_predict_proba.p' % self.name) logger.time_log('Testing Complete.\n') if cv is not None: evaluator.evaluate_fold_scores(fold_scores) evaluator.evaluate_classifier_result( self.estimator, test_evaluation_frame, train=train_evaluation_frame, test_proba=test_proba_evaluation_frame, multiclass=multiclass ) logger.close() if self.hyper_parameters is not None: self.hyper_parameters.save('%s_params.p' % self.name) self.trained_estimator = self.estimator def run_classification_search_experiment( self, scoring, sample=None, random_state=None, test_size=0.20, n_jobs=-1, n_iter=2, cv=5, verbose=3, multiclass=False, record_predict_proba=False, sampling=None): use_project_path() logger = Logger('%s.txt' % self.name) search = BayesSearchCV( self.estimator, self.hyper_parameters.search_space, n_jobs=n_jobs, n_iter=n_iter, cv=cv, verbose=verbose, scoring=scoring, return_train_score=True ) data_frame = self.df if sample is not None: data_frame = data_frame.sample(n=sample, random_state=random_state) x_train, x_test, y_train, y_test = train_test_split(data_frame, data_frame[self.target], test_size=test_size) if sampling is not None: logger.time_log('Starting Data Re-Sampling...') logger.log('Original Training Shape is %s' % Counter(y_train)) x_new, y_new = sampling.fit_resample(x_train, y_train) logger.log('Balanced Training Shape is %s' % Counter(y_new)) if hasattr(x_train, 'columns'): x_new = pd.DataFrame(x_new, columns=x_train.columns) x_train, y_train = x_new, y_new logger.time_log('Re-Sampling Complete.\n') logger.time_log('Shuffling Re-Sampled Data.\n') x_train, y_train = shuffle(x_train, y_train, random_state=random_state) logger.time_log('Shuffling Complete.\n') logger.time_log('Starting HyperParameter Search...') results = search.fit(x_train, y_train) logger.time_log('Search Complete.\n') logger.time_log('Testing Training Partition...') y_train_predict = batch_predict(results.best_estimator_, x_train) logger.time_log('Testing Complete.\n') train_evaluation_frame = EvaluationFrame(y_train, y_train_predict) logger.time_log('Testing Holdout Partition...') y_test_predict = batch_predict(results.best_estimator_, x_test) logger.time_log('Testing Complete.\n') test_evaluation_frame = EvaluationFrame(y_test, y_test_predict) test_evaluation_frame.save('%s_predict.p' % self.name) test_proba_evaluation_frame = None if record_predict_proba: logger.time_log('Testing Holdout Partition (probability)...') y_test_predict_proba = batch_predict_proba(results.best_estimator_, x_test) test_proba_evaluation_frame = EvaluationFrame(y_test, y_test_predict_proba) test_proba_evaluation_frame.save('%s_predict_proba.p' % self.name) logger.time_log('Testing Complete.\n') evaluator = Evaluator(logger) evaluator.evaluate_classifier_result( results, test_evaluation_frame, train=train_evaluation_frame, test_proba=test_proba_evaluation_frame, multiclass=multiclass ) logger.close() self.hyper_parameters.params = results.best_params_ self.hyper_parameters.save('%s_params.p' % self.name) self.trained_estimator = results.best_estimator_
2.40625
2
almanak/file/__init__.py
clausjuhl/almanak
0
12799879
from almanak.file import compress, decompress, extract, fileinfo __ALL__ = ['compress', 'decompress', 'extract', 'fileinfo']
1.34375
1
src/user_lib/connection_manager.py
crehmann/CO2Logger
0
12799880
from utime import ticks_ms import network import time from umqtt.simple import MQTTClient STATE_DISCONNECTED = 0 STATE_WLAN_CONNECTING = 1 STATE_WLAN_CONNECTED = 2 STATE_MQTT_CONNECTING = 3 STATE_MQTT_CONNECTED = 4 WLAN_CONNECTION_TIMEOUT_MS = 30 * 1000 MQTT_CONNECTION_TIMEOUT_MS = 30 * 1000 class ConnectionManager: def __init__(self): self._wlan = network.WLAN(network.STA_IF) self._wlanSsid = None self._wlanPassword = None self._wlanConnectingTimestamp = None self._mqtt = None self._mqttConnectingTimestamp = None self._state = STATE_DISCONNECTED self._data = {} def configureWlan(self, ssid, password): self._wlanSsid = ssid self._wlanPassword = password def configureMqtt(self, mqttClientId, mqttServer, mqttUsername, mqttPassword): self._mqtt = MQTTClient(mqttClientId, mqttServer, 0, mqttUsername, mqttPassword) def initConnection(self): if self._state == STATE_DISCONNECTED: self.__connectWlan() def publish(self, topic, data): # keeping only the latest value self._data[topic] = data self.__flush() def update(self): if self._state > STATE_WLAN_CONNECTING \ and not self._wlan.isconnected: self._state = STATE_DISCONNECTED if self._state == STATE_WLAN_CONNECTING: self.__updateWlanConnectingState() if self._state == STATE_WLAN_CONNECTED: self.__updateWlanConnectedState() if self._state == STATE_MQTT_CONNECTING: self.__updateMqttConnectingState() def __connectWlan(self): if self._wlanSsid: print("connecting to wlan...") self._wlanConnectingTimestamp = ticks_ms() self._state = STATE_WLAN_CONNECTING try: self._wlan.active(True) self._wlan.disconnect() self._wlan.connect(self._wlanSsid, self._wlanPassword) except Exception as ex: self.__printException(ex) def __updateWlanConnectingState(self): if ticks_ms() - self._wlanConnectingTimestamp > WLAN_CONNECTION_TIMEOUT_MS: print("Could not connect to wlan. Falling back to disconnected state") self._state = STATE_DISCONNECTED elif self._wlan.isconnected() \ and not self._wlan.ifconfig()[0]=='0.0.0.0': self._state = STATE_WLAN_CONNECTED print("wlan connected") def __updateWlanConnectedState(self): if self._mqtt: print("connecting to mqtt") self._state = STATE_MQTT_CONNECTING self._mqttConnectingTimestamp = ticks_ms() try: self._mqtt.connect() except Exception as ex: self.__printException(ex) def __updateMqttConnectingState(self): if ticks_ms() - self._mqttConnectingTimestamp > MQTT_CONNECTION_TIMEOUT_MS: print("MQTT connection failed.") self._state = STATE_WLAN_CONNECTED else: try: self._mqtt.ping() self._state = STATE_MQTT_CONNECTED self.__flush() print("mqtt connection established") except Exception as ex: self.__printException(ex) def __flush(self): if self._state == STATE_MQTT_CONNECTED: try: for key in list(self._data): self._mqtt.publish(key, self._data[key]) del self._data[key] except Exception as ex: self._state = STATE_WLAN_CONNECTED self.__printException(ex) def __printException(self, ex): template = "An exception of type {0} occurred. Arguments:\n{1!r}" message = template.format(type(ex).__name__, ex.args) print(message)
2.9375
3
setup.py
karlcow/ymir
1
12799881
<reponame>karlcow/ymir<filename>setup.py<gh_stars>1-10 import distutils.core distutils.core.setup( name='Ymir', author='<NAME>', author_email='<EMAIL>', version='0.1dev', packages=['ymir', ], license='LICENSE.txt', url='http://pypi.python.org/pypi/Ymir/', description='script to manage La Grange blog http://www.la-grange.net/', long_description=open('README.txt').read(), )
1.164063
1
snli/wae-stochastic/gl.py
yq-wen/probabilistic_nlg
28
12799882
<reponame>yq-wen/probabilistic_nlg config_fingerprint = None config = None log_writer = None isTrain = True
0.855469
1
code/ch08-outbound-text-messages/db/__all_models.py
rcastleman/twilio-and-sendgrid-python-course
29
12799883
<reponame>rcastleman/twilio-and-sendgrid-python-course<gh_stars>10-100 # noinspection PyUnresolvedReferences from db import order # noinspection PyUnresolvedReferences from db import user
1.015625
1
MyInfo/models.py
hhauer/myinfo
2
12799884
<reponame>hhauer/myinfo from django.db import models from localflavor.us.models import USStateField, PhoneNumberField from MyInfo.validators import validate_psu_phone import logging logger = logging.getLogger(__name__) # PSU Mailcode class Mailcode(models.Model): code = models.CharField(max_length=40) description = models.CharField(max_length=255) def __str__(self): return self.code + " -- " + self.description # For departmental dropdown choices. class Department(models.Model): name = models.CharField(max_length=255, unique=True) def __str__(self): return self.name # Buildings class Building(models.Model): name = models.CharField(max_length=255, unique=True) code = models.CharField(max_length=10, unique=True) def __str__(self): return self.name # Directory information for users with psuPublish = y. Upstream logic assumes that # all fields except psu_uuid are to be rendered and editable. class DirectoryInformation(models.Model): COMPANY_CHOICES = ( ('Portland State University', 'Portland State University'), ('Portland State University Foundation', 'PSU Foundation'), ) psu_uuid = models.CharField(unique=True, max_length=36, primary_key=True, editable=False) company = models.CharField(max_length=50, choices=COMPANY_CHOICES, null=True, blank=True, default="Portland State University") telephone = models.CharField(max_length=32, null=True, blank=True, validators=[validate_psu_phone]) fax = models.CharField(max_length=32, null=True, blank=True, validators=[validate_psu_phone]) job_title = models.CharField(max_length=128, null=True, blank=True) department = models.ForeignKey(Department, null=True, blank=True) office_building = models.ForeignKey(Building, null=True, blank=True) office_room = models.CharField(max_length=10, null=True, blank=True) mail_code = models.ForeignKey(Mailcode, null=True, blank=True) street_address = models.CharField(max_length=150, null=True, blank=True, default="1825 SW Broadway") city = models.CharField(max_length=50, null=True, blank=True, default="Portland") state = USStateField(blank=True, null=True, default="OR") zip_code = models.CharField(max_length=10, null=True, blank=True, default="97201") def __str__(self): # pragma: no cover return self.psu_uuid # Password reset contact information. class ContactInformation(models.Model): psu_uuid = models.CharField(unique=True, max_length=36, primary_key=True) cell_phone = PhoneNumberField(blank=True, null=True) alternate_email = models.EmailField(max_length=254, blank=True, null=True) def __str__(self): return self.psu_uuid # Maintenance notice. class MaintenanceNotice(models.Model): start_display = models.DateTimeField() end_display = models.DateTimeField() message = models.TextField() def __str__(self): # pragma: no cover return "Maintenance starting: " + str(self.start_display)
2.5
2
shapeutils/django/serializers.py
slavas62/shape-utils
0
12799885
<reponame>slavas62/shape-utils from django.contrib.gis.geos import GEOSGeometry from django.db import models import json import datetime import decimal class JSONEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, datetime.date): return obj.isoformat() if isinstance(obj, datetime.date): return obj.isoformat() if isinstance(obj, decimal.Decimal): return str(obj) if isinstance(obj, GEOSGeometry): return json.JSONDecoder().decode(obj.geojson) if isinstance(obj, models.Model): return str(obj) return super(JSONEncoder, self).default(obj) def geojsondata(features, geometry_field='geometry'): data = { 'type': 'FeatureCollection', 'features': [], } for entry in features: feature = { 'type': 'Feature', 'geometry': entry.get(geometry_field, None), 'properties': {}, } for k, v in entry.iteritems(): if k != geometry_field: feature['properties'][k] = v data['features'].append(feature) return data def geojson(*args, **kwargs): encoder = JSONEncoder() data = geojsondata(*args, **kwargs) return encoder.encode(data)
2.34375
2
c3po/__init__.py
yashchau1303/C-3PO
34
12799886
"""__init__ module for project root."""
1.179688
1
app/helpers/pointdeletion.py
B-tronics/KinemAutomation
0
12799887
import cv2 import math POINTS = [] class PointFilter: def __init__(self, points): self._points = points def deletePoints(self, event, xCoordinate, yCoordinate, flags, params): if event == cv2.EVENT_RBUTTONDOWN: diff = list() for point in self._points: xd = math.pow((point[0] - xCoordinate), 2) yd = math.pow((point[1] - yCoordinate), 2) d = math.sqrt(xd + yd) diff.append(d) pointToDelete = diff.index(min(diff)) self._points.pop(pointToDelete)
2.890625
3
doc/examples/nonlinear_from_rest/submit_multiple_check_RB.py
snek5000/snek5000-cbox
0
12799888
import numpy as np from fluiddyn.clusters.legi import Calcul2 as Cluster from critical_Ra_RB import Ra_c_RB as Ra_c_RB_tests prandtl = 1.0 dim = 2 dt_max = 0.005 end_time = 30 nb_procs = 10 nx = 8 order = 10 stretch_factor = 0.0 Ra_vert = 1750 x_periodicity = False z_periodicity = False cluster = Cluster() cluster.commands_setting_env = [ "PROJET_DIR=/fsnet/project/meige/2020/20CONVECTION", "source /etc/profile", "source $PROJET_DIR/miniconda3/etc/profile.d/conda.sh", "conda activate env-snek", "export NEK_SOURCE_ROOT=$HOME/Dev/snek5000/lib/Nek5000", "export PATH=$PATH:$NEK_SOURCE_ROOT/bin", "export FLUIDSIM_PATH=$PROJET_DIR/numerical/", ] for aspect_ratio, Ra_c_test in Ra_c_RB_tests.items(): ny = int(nx * aspect_ratio) if nx * aspect_ratio - ny: continue Ra_vert_nums = np.logspace(np.log10(Ra_c_test), np.log10(1.04 * Ra_c_test), 4) for Ra_vert_num in Ra_vert_nums: command = ( f"run_simul_check_from_python.py -Pr {prandtl} -nx {nx} --dim {dim} " f"--order {order} --dt-max {dt_max} --end-time {end_time} -np {nb_procs} " f"-a_y {aspect_ratio} --stretch-factor {stretch_factor} " f"--Ra-vert {Ra_vert_num}" ) if x_periodicity: command += " --x-periodicity" elif z_periodicity: command += " --z-periodicity" print(command) name_run = f"RB_asp{aspect_ratio:.3f}_Ra{Ra_vert_num:.3e}_Pr{prandtl:.2f}_msh{nx*order}x{round(nx*aspect_ratio)*order}" cluster.submit_script( command, name_run=name_run, nb_cores_per_node=nb_procs, omp_num_threads=1, ask=False, )
1.882813
2
cicada2/operator/daemon/types.py
herzo175/cicada-2
11
12799889
<reponame>herzo175/cicada-2 from typing import Dict, List, TypedDict class Dependency(TypedDict): name: str labels: Dict[str, str] statuses: List[str] class SetupConfig(TypedDict): pvc: str mountPath: str remotePath: str localPath: str class Spec(TypedDict): dependencies: List[Dependency] ioConfig: Dict[str, str] engineConfig: Dict[str, str] tests: SetupConfig reports: SetupConfig class Metadata(TypedDict): name: str namespace: str class TestEngineBody(TypedDict): metadata: Metadata spec: Spec
2.140625
2
programs/foldtest_magic.py
yamamon75/PmagPy
2
12799890
#!/usr/bin/env python import os import sys import numpy as np import matplotlib if matplotlib.get_backend() != "TKAgg": matplotlib.use("TKAgg") import pandas as pd from matplotlib import pyplot as plt import pmagpy.pmag as pmag import pmagpy.pmagplotlib as pmagplotlib from pmag_env import set_env import operator OPS = {'<' : operator.lt, '<=' : operator.le, '>' : operator.gt, '>=': operator.ge, '=': operator.eq} def main(): """ NAME foldtest_magic.py DESCRIPTION does a fold test (Tauxe, 2010) on data INPUT FORMAT pmag_specimens format file, er_samples.txt format file (for bedding) SYNTAX foldtest_magic.py [command line options] OPTIONS -h prints help message and quits -f sites formatted file [default for 3.0 is sites.txt, for 2.5, pmag_sites.txt] -fsa samples formatted file -fsi sites formatted file -exc use criteria to set acceptance criteria (supported only for data model 3) -n NB, set number of bootstraps, default is 1000 -b MIN, MAX, set bounds for untilting, default is -10, 150 -fmt FMT, specify format - default is svg -sav saves plots and quits -DM NUM MagIC data model number (2 or 3, default 3) OUTPUT Geographic: is an equal area projection of the input data in original coordinates Stratigraphic: is an equal area projection of the input data in tilt adjusted coordinates % Untilting: The dashed (red) curves are representative plots of maximum eigenvalue (tau_1) as a function of untilting The solid line is the cumulative distribution of the % Untilting required to maximize tau for all the bootstrapped data sets. The dashed vertical lines are 95% confidence bounds on the % untilting that yields the most clustered result (maximum tau_1). Command line: prints out the bootstrapped iterations and finally the confidence bounds on optimum untilting. If the 95% conf bounds include 0, then a pre-tilt magnetization is indicated If the 95% conf bounds include 100, then a post-tilt magnetization is indicated If the 95% conf bounds exclude both 0 and 100, syn-tilt magnetization is possible as is vertical axis rotation or other pathologies """ if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit kappa = 0 dir_path = pmag.get_named_arg("-WD", ".") nboot = int(float(pmag.get_named_arg("-n", 1000))) # number of bootstraps fmt = pmag.get_named_arg("-fmt", "svg") data_model_num = int(float(pmag.get_named_arg("-DM", 3))) if data_model_num == 3: infile = pmag.get_named_arg("-f", 'sites.txt') orfile = 'samples.txt' site_col = 'site' dec_col = 'dir_dec' inc_col = 'dir_inc' tilt_col = 'dir_tilt_correction' dipkey, azkey = 'bed_dip', 'bed_dip_direction' crit_col = 'criterion' critfile = 'criteria.txt' else: infile = pmag.get_named_arg("-f", 'pmag_sites.txt') orfile = 'er_samples.txt' site_col = 'er_site_name' dec_col = 'site_dec' inc_col = 'site_inc' tilt_col = 'site_tilt_correction' dipkey, azkey = 'sample_bed_dip', 'sample_bed_dip_direction' crit_col = 'pmag_criteria_code' critfile = 'pmag_criteria.txt' if '-sav' in sys.argv: plot = 1 else: plot = 0 if '-b' in sys.argv: ind = sys.argv.index('-b') untilt_min = int(sys.argv[ind+1]) untilt_max = int(sys.argv[ind+2]) else: untilt_min, untilt_max = -10, 150 if '-fsa' in sys.argv: orfile = pmag.get_named_arg("-fsa", "") elif '-fsi' in sys.argv: orfile = pmag.get_named_arg("-fsi", "") if data_model_num == 3: dipkey, azkey = 'bed_dip', 'bed_dip_direction' else: dipkey, azkey = 'site_bed_dip', 'site_bed_dip_direction' else: if data_model_num == 3: orfile = 'sites.txt' else: orfile = 'pmag_sites.txt' orfile = pmag.resolve_file_name(orfile, dir_path) infile = pmag.resolve_file_name(infile, dir_path) critfile = pmag.resolve_file_name(critfile, dir_path) df = pd.read_csv(infile, sep='\t', header=1) # keep only records with tilt_col data = df.copy() data = data[data[tilt_col].notnull()] data = data.where(data.notnull(), "") # turn into pmag data list data = list(data.T.apply(dict)) # get orientation data if data_model_num == 3: # often orientation will be in infile (sites table) if os.path.split(orfile)[1] == os.path.split(infile)[1]: ordata = df[df[azkey].notnull()] ordata = ordata[ordata[dipkey].notnull()] ordata = list(ordata.T.apply(dict)) # sometimes orientation might be in a sample file instead else: ordata = pd.read_csv(orfile, sep='\t', header=1) ordata = list(ordata.T.apply(dict)) else: ordata, file_type = pmag.magic_read(orfile) if '-exc' in sys.argv: crits, file_type = pmag.magic_read(critfile) SiteCrits = [] for crit in crits: if crit[crit_col] == "DE-SITE": SiteCrits.append(crit) #break # get to work # PLTS = {'geo': 1, 'strat': 2, 'taus': 3} # make plot dictionary if not set_env.IS_WIN: pmagplotlib.plot_init(PLTS['geo'], 5, 5) pmagplotlib.plot_init(PLTS['strat'], 5, 5) pmagplotlib.plot_init(PLTS['taus'], 5, 5) if data_model_num == 2: GEOrecs = pmag.get_dictitem(data, tilt_col, '0', 'T') else: GEOrecs = data if len(GEOrecs) > 0: # have some geographic data num_dropped = 0 DIDDs = [] # set up list for dec inc dip_direction, dip for rec in GEOrecs: # parse data dip, dip_dir = 0, -1 Dec = float(rec[dec_col]) Inc = float(rec[inc_col]) orecs = pmag.get_dictitem( ordata, site_col, rec[site_col], 'T') if len(orecs) > 0: if orecs[0][azkey] != "": dip_dir = float(orecs[0][azkey]) if orecs[0][dipkey] != "": dip = float(orecs[0][dipkey]) if dip != 0 and dip_dir != -1: if '-exc' in sys.argv: keep = 1 for site_crit in SiteCrits: crit_name = site_crit['table_column'].split('.')[1] if crit_name and crit_name in rec.keys() and rec[crit_name]: # get the correct operation (<, >=, =, etc.) op = OPS[site_crit['criterion_operation']] # then make sure the site record passes if op(float(rec[crit_name]), float(site_crit['criterion_value'])): keep = 0 if keep == 1: DIDDs.append([Dec, Inc, dip_dir, dip]) else: num_dropped += 1 else: DIDDs.append([Dec, Inc, dip_dir, dip]) if num_dropped: print("-W- Dropped {} records because each failed one or more criteria".format(num_dropped)) else: print('no geographic directional data found') sys.exit() pmagplotlib.plot_eq(PLTS['geo'], DIDDs, 'Geographic') data = np.array(DIDDs) D, I = pmag.dotilt_V(data) TCs = np.array([D, I]).transpose() pmagplotlib.plot_eq(PLTS['strat'], TCs, 'Stratigraphic') if plot == 0: pmagplotlib.draw_figs(PLTS) Percs = list(range(untilt_min, untilt_max)) Cdf, Untilt = [], [] plt.figure(num=PLTS['taus']) print('doing ', nboot, ' iterations...please be patient.....') for n in range(nboot): # do bootstrap data sets - plot first 25 as dashed red line if n % 50 == 0: print(n) Taus = [] # set up lists for taus PDs = pmag.pseudo(DIDDs) if kappa != 0: for k in range(len(PDs)): d, i = pmag.fshdev(kappa) dipdir, dip = pmag.dodirot(d, i, PDs[k][2], PDs[k][3]) PDs[k][2] = dipdir PDs[k][3] = dip for perc in Percs: tilt = np.array([1., 1., 1., 0.01*perc]) D, I = pmag.dotilt_V(PDs*tilt) TCs = np.array([D, I]).transpose() ppars = pmag.doprinc(TCs) # get principal directions Taus.append(ppars['tau1']) if n < 25: plt.plot(Percs, Taus, 'r--') # tilt that gives maximum tau Untilt.append(Percs[Taus.index(np.max(Taus))]) Cdf.append(float(n) / float(nboot)) plt.plot(Percs, Taus, 'k') plt.xlabel('% Untilting') plt.ylabel('tau_1 (red), CDF (green)') Untilt.sort() # now for CDF of tilt of maximum tau plt.plot(Untilt, Cdf, 'g') lower = int(.025*nboot) upper = int(.975*nboot) plt.axvline(x=Untilt[lower], ymin=0, ymax=1, linewidth=1, linestyle='--') plt.axvline(x=Untilt[upper], ymin=0, ymax=1, linewidth=1, linestyle='--') tit = '%i - %i %s' % (Untilt[lower], Untilt[upper], 'Percent Unfolding') print(tit) plt.title(tit) if plot == 0: pmagplotlib.draw_figs(PLTS) ans = input('S[a]ve all figures, <Return> to quit \n ') if ans != 'a': print("Good bye") sys.exit() files = {} for key in list(PLTS.keys()): files[key] = ('foldtest_'+'%s' % (key.strip()[:2])+'.'+fmt) pmagplotlib.save_plots(PLTS, files) if __name__ == "__main__": main()
2.515625
3
demo.py
solaaa/signal_processing_by_GPU
0
12799891
# coding=utf-8 import numpy as np import reikna.cluda as cluda from reikna.fft import FFT, FFTShift import pyopencl.array as clarray from pyopencl import clmath from reikna.core import Computation, Transformation, Parameter, Annotation, Type from reikna.algorithms import PureParallel from matplotlib import cm import time as t import matplotlib.pyplot as plt import statistic_functions4 as sf #import mylog as Log np.set_printoptions(threshold=np.inf) batch = 100 N = 1024 api = cluda.any_api() thr = api.Thread.create() data = np.load('8psk_data.npy') data = np.reshape(data, (batch*4, N)) # 一共 batch*4 = 400次 t1 = t.clock() data0 = data[0:batch, :].astype(np.complex128) data_g = thr.to_device(data0) print(t.clock()-t1) #compile fft = FFT(data_g, (0,1)) fftc = fft.compile(thr) data_f = thr.array(data0.shape, dtype=np.complex128) shift = FFTShift(data_f, (0,1)) shiftc = shift.compile(thr) data_shift = thr.array(data0.shape, dtype=np.complex128) sum = sf.stat(thr) logg10 = sf.logg10(thr) def myfft(data): ''' input: data: cluda-Array (100, 1024) ----------------------------------------------- output: TS_gpu: cluda-Array (1000, 1024) ''' #FFT t_fft = t.clock() data_f = thr.array(data.shape, dtype=np.complex128) STAT_gpu = thr.array(data.shape, dtype=np.complex128) fftc(data_f, data) shiftc(STAT_gpu, data_f) #log t_log = t.clock() STAT_gpu = abs(STAT_gpu) logg10(STAT_gpu, global_size = (N, batch)) #统计,插值 t_st = t.clock() TS_gpu = cluda.ocl.Array(thr, shape=(1000, N), dtype=np.int) sum(TS_gpu, STAT_gpu, global_size = (N,batch)) print('fft: %f, log: %f, stat: %f'%(t_log-t_fft, t_st-t_log, t.clock()-t_st)) print('total: %f'%(t.clock()-t_fft)) return TS_gpu i=0 j=0 fig=plt.figure() #fig, ax = plt.subplots() summ = 0 while i<100: t1 = t.clock() data0 = data[j:(j+1)*batch, :].astype(np.complex128) data_g = thr.to_device(data0) out = myfft(data_g) out = out.get() t2 = t.clock() #nipy_spectral plt.clf() #plt.imshow(out, cmap = cm.hot) plt.imshow(out, cmap = 'nipy_spectral') plt.ylim(0,1000) plt.pause(0.00000001) print('No. %d, transmission+compute: %f, plot: %f'%(i, t2-t1, t.clock()-t2)) summ = summ + t2-t1 j = j + 1 i = i + 1 if j == 4: j=0 print('avg compute: %f'%(summ/100))
2.140625
2
doc/source/EXAMPLES/allskyf25.py
kapteyn-astro/kapteyn
3
12799892
<gh_stars>1-10 from kapteyn import maputils import numpy from service import * fignum = 25 fig = plt.figure(figsize=figsize) frame = fig.add_axes(plotbox) title = r"Polyconic projection (PCO). (Cal. fig.29)" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---PCO', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -5.0, 'CTYPE2' : 'DEC--PCO', 'CRVAL2' : 0.0, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 5.0 } X = polrange() Y = numpy.arange(-75,90,15.0) # !!!!!! Let the world coordinates for constant latitude run from 180,180 # instead of 0,360. Then one prevents the connection between the two points # 179.9999 and 180.0001 which is a jump, but smaller than the definition of # a rejected jump in the wcsgrat module. # Also we need to increase the value of 'gridsamples' to # increase the relative size of a jump. f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180), startx=X, starty=Y, gridsamples=2000) grat.setp_lineswcs0(0, lw=2) grat.setp_lineswcs1(0, lw=2) # Remove the left 180 deg and print the right 180 deg instead w1 = numpy.arange(0,151,30.0) w2 = numpy.arange(180,360,30.0) w2[0] = 180 + epsilon lon_world = numpy.concatenate((w1, w2)) lat_world = [-60, -30, 30, 60] labkwargs0 = {'color':'r', 'va':'bottom', 'ha':'right'} labkwargs1 = {'color':'b', 'va':'bottom', 'ha':'right'} doplot(frame, fignum, annim, grat, title, lon_world=lon_world, lat_world=lat_world, labkwargs0=labkwargs0, labkwargs1=labkwargs1, markerpos=markerpos)
2.328125
2
questionbank/comments/filters.py
SyafiqTermizi/questionbank
1
12799893
<gh_stars>1-10 import django_filters from .models import QuestionComment, ExamComment class QuestionCommentFilter(django_filters.FilterSet): is_resolved = django_filters.BooleanFilter() class Meta: model = QuestionComment fields = ('is_resolved',) class ExamCommentFilter(django_filters.FilterSet): is_resolved = django_filters.BooleanFilter() class Meta: model = ExamComment fields = ('is_resolved',)
1.96875
2
botorch/test_functions/__init__.py
cnheider/botorch
0
12799894
<reponame>cnheider/botorch #!/usr/bin/env python3 from .branin import neg_branin from .eggholder import neg_eggholder from .hartmann6 import neg_hartmann6 from .holder_table import neg_holder_table from .michalewicz import neg_michalewicz from .styblinski_tang import neg_styblinski_tang __all__ = [ "neg_branin", "neg_eggholder", "neg_hartmann6", "neg_holder_table", "neg_michalewicz", "neg_styblinski_tang", ]
1.320313
1
bot/db/repos/HomeworkManager.py
WizzardHub/EcoleDirecteOrtBot
0
12799895
from bot.db.entities.Homework import Homework class HomeworkManager: def __init__(self, db): self._db = db def getAll(self): cur = self._db.cursor() cur.execute('SELECT * FROM Homework') homeworks = [] for homework in cur.fetchall(): homeworks.append(Homework(homework[1], homework[2], homework[3], homework[4], homework[5], homework[6], homework[7], homework[8], homework[9], homework[10])) return homeworks def insert(self, homework): cur = self._db.cursor() cur.execute('INSERT INTO Homework (date, matiere, codeMatiere, aFaire, idDevoir' ', documentsAFaire, donneLe, effectue, interrogation, rendreEnLigne' ') values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)', (homework.getDate(), homework.getMatiere(), homework.getCodeMatiere(), homework.getAFaire(), homework.getIdDevoir(), homework.getDocumentAFaire(), homework.getDonneLe(), homework.getEffectue(), homework.getInterrogation(), homework.getRendreEnLigne(),)) self._db.commit()
2.8125
3
dataconverter.py
zhang96/CSVToJSON
1
12799896
<gh_stars>1-10 # Simple Python program that converts CSV to JSON for my MongoDB project. # - It converts all the csv files under the directory at once. import csv import json import glob for files in glob.glob("*.csv"): csvfile = open(files, 'r') jsonfile = open(files[:-4] + '.json', 'w') reader = csv.reader(open(files, 'rU')) fieldnames = () out = 0 for row in reader: temp = [] # print row fieldnames = row break counter = 0 out = "" for row in reader: if counter == 0: # skip print "0" else: # print row itemCounter = 0 temp = "{" for item in row: a = item # print a nameCounter = 0 for item in fieldnames: if itemCounter == nameCounter: # print item temp += ' "' temp += item temp += '"' temp += ': "' temp += a temp += '",' nameCounter += 1 itemCounter += 1 temp = temp[:-1] temp += "}" # print temp out += temp out += ", " counter += 1 out = out[:-1] jsonfile.write(out) print "End of Execution"
3.609375
4
encrypt_decrypt_app/atbash_cipher_tests.py
Chika-Jinanwa/chikas-cipher
0
12799897
import unittest from atbash_cipher import AtbashCipher test = AtbashCipher() #instantiate test caesar cipher class class AtbashCipherEncryptTests(unittest.TestCase): def test_empty_string(self): self.assertMultiLineEqual(test.encrypt(''), '') def test_string_with_only_spaces(self): self.assertMultiLineEqual(test.encrypt(' '), ' ') def test_string_no_wrap_around(self): self.assertMultiLineEqual(test.encrypt('abc'), 'zyx') def test_string_wrap_around(self): self.assertMultiLineEqual( test.encrypt('wvu'), 'def') def test_multi_word(self): self.assertMultiLineEqual(test.encrypt('abc wvu'), 'zyx def') #for values of key less than 0, JavaScript frontend is tasked with validating #that key must be >= 0. Hence the test is skipped here class AtbashCipherDecryptTests(unittest.TestCase): def test_empty_string(self): self.assertMultiLineEqual(test.decrypt(''), '') def test_string_with_only_spaces(self): self.assertMultiLineEqual(test.decrypt(' '), ' ') def test_string_no_wrap_around(self): self.assertMultiLineEqual(test.decrypt('zyx'), 'abc') def test_string_wrap_around(self): self.assertMultiLineEqual( test.decrypt('def'), 'wvu') def test_multi_word(self): self.assertMultiLineEqual(test.decrypt('zyx def'), 'abc wvu') if __name__ == '__main__': unittest.main() unittest.main()
3.25
3
Pi-SMS.py
Femi123p/Pi-Sms
1
12799898
<filename>Pi-SMS.py from firebase import firebase import RPi.GPIO as GPIO import plivo from time import sleep # this lets us have a time delay (see line 15) GPIO.setmode(GPIO.BCM) # set up BCM GPIO numbering GPIO.setup(25, GPIO.IN) # set GPIO25 as input (button) GPIO.setup(24, GPIO.OUT) #plivo setup srcPhoneNo="<mobile number>" #phone number associated with your account dstPhoneNo="<mobile number>" #phone number where you want to send sms smsText= u"leds glow" #message which you want to send msgObj={ 'src': srcPhoneNo, 'dst': dstPhoneNo, 'text': smsText} #get auth_id and auth_token from plivo console auth_id="<id>" #auth_id key which you will get on plivio app auth_token="<token>" #auth_token which you will get on plivio app pSMS = plivo.RestAPI(auth_id, auth_token) #firebase setup firebaseURL='< your firebase link>' fBase = firebase.FirebaseApplication(firebaseURL, None) LedOn=False; def LedOn(): print(fBase.put('/data/user_1/',"LedOn","1")) print(pSMS.send_message(msgObj)) LedOn=True def LedOff(): if(fBase.get('/data/user_1/','LedOn')=="1") : print(fBase.put('/data/user_1/',"LedOffd","0")) LedOn=False try: while True: if GPIO.input(25): print ("Port 25 is 1/HIGH/True - LED ON") GPIO.output(24, 1) LedOn() #result=firebase.put('/data/','user_1',{'gasleakage':'1'}) else: print ("Port 25 is 0/LOW/False - LED OFF") GPIO.output(24, 0) # set port/pin value to 0/LOW/False sleep(0.1) finally: GPIO.cleanup()
3.3125
3
dps/common.py
Kel0/django-parrallel-sessions
0
12799899
from typing import Protocol class VEnvProtocol(Protocol): path = None def activate(self): """ Activate virtual environment """ class VEnvTypeProtocol(Protocol): _manager = None def validate(self, *args, **kwargs): """ Make sure that venv is exist """ def get_activate_string(self): pass class ShellExecutorProtocol: def add_to_exec_chain(self, activate_str): pass def exec(self): pass
2.671875
3
tests/fields/test_integer.py
Ennkua/wtforms
1,197
12799900
from tests.common import DummyPostData from wtforms.fields import IntegerField from wtforms.form import Form class F(Form): a = IntegerField() b = IntegerField(default=48) def test_integer_field(): form = F(DummyPostData(a=["v"], b=["-15"])) assert form.a.data is None assert form.a.raw_data == ["v"] assert form.a() == """<input id="a" name="a" type="number" value="v">""" assert form.b.data == -15 assert form.b() == """<input id="b" name="b" type="number" value="-15">""" assert not form.a.validate(form) assert form.b.validate(form) form = F(DummyPostData(a=[], b=[""])) assert form.a.data is None assert form.a.raw_data == [] assert form.b.data is None assert form.b.raw_data == [""] assert not form.validate() assert len(form.b.process_errors) == 1 assert len(form.b.errors) == 1 form = F(b=9) assert form.b.data == 9 assert form.a._value() == "" assert form.b._value() == "9" form = F(DummyPostData(), data=dict(b="v")) assert form.b.data is None assert form.a._value() == "" assert form.b._value() == "" assert not form.validate() assert len(form.b.process_errors) == 1 assert len(form.b.errors) == 1
2.71875
3
modules/shellhelper.py
pilgun/app-run-and-log
1
12799901
<filename>modules/shellhelper.py from loguru import logger import subprocess from modules import config from modules.exceptions import AbsentPackageException, ErrorInstallingException, ErrorUninstallingException, NotEnoughSpaceException import os def install(new_apk_path): cmd = '"{}" install -r "{}"'.format(config.ADB_PATH, new_apk_path) try: out = request_pipe(cmd) except Exception as e: if 'not enough space' in str(e): raise NotEnoughSpaceException() raise ErrorInstallingException if 'Exception occurred while dumping' in out: raise ErrorUninstallingException def uninstall(package): cmd = '"{}" uninstall "{}"'.format(config.ADB_PATH, package) try: request_pipe(cmd) except Exception: raise ErrorUninstallingException def request_pipe(cmd): pipe = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = pipe.communicate() res = out if not out: res = err if pipe.returncode > 0 : raise Exception("----------------------------------------------------\n\ Out: %s\nError: %s" % (out, err)) return res.decode('utf-8') def start_activity_explicitly(package_name, activity_name): # adb shell am start -n com.package.name/com.package.name.ActivityName logger.debug("Starting activity [%s] of the package [%s]..." % (activity_name, package_name)) run_string = package_name + '/' + activity_name cmd = "{0} shell am start -n {1}".format(config.ADB_PATH, run_string) request_pipe(cmd) def clean_log(): cmd = "{0} logcat -c".format(config.ADB_PATH) request_pipe(cmd) def dump_log(path): cmd = "{0} logcat -d *:E > {1}".format(config.ADB_PATH, path) request_pipe(cmd) def save_log(logs_dir, app): file_path = os.path.join(logs_dir, "{}.txt".format(app)) dump_log(file_path) return file_path def read_log(path): with open(path, 'r') as file: data = file.read() return data def get_api_level(): cmd = "{} shell getprop ro.build.version.sdk".format(config.ADB_PATH) api_level = int(request_pipe(cmd)) return api_level def run_monkey(package, seed, throttle, event_num): cmd = 'adb shell monkey -p {} -s {} --throttle {} {}' request_pipe(cmd.format(package, seed, throttle, event_num))
2.234375
2
models/classification/train_on_flir.py
Lindronics/honours_project_dissertation
2
12799902
import os import argparse import numpy as np import tensorflow as tf import tensorflow.keras as K from sklearn.metrics import classification_report from dataset import FLIRDataset def grid_search(train_labels: str, test_labels: str, output:str, res:tuple=(120, 160), lazy:bool=True, batch_size:int=16, epochs:int=20): """ Runs a grid search over all known models. Params ------ train_labels: str Path to training labels test_labels: str Path to testing labels output: str Path to output directory res: tuple Input resolution of network lazy: bool Whether to load data lazily in batches during training batch_size: int Batch size in case of lazy loading epochs: int Training epochs """ # Data print("=> Loading data.") train = FLIRDataset(train_labels, res=res, batch_size=batch_size) test = FLIRDataset(test_labels, res=res, batch_size=batch_size) # In eager loading mode, train on everything. if not lazy: X_train, y_train = train.get_all() X_test, y_test = test.get_all() X_train = np.concatenate([X_train, X_test], axis=0) y_train = np.concatenate([y_train, y_test], axis=0) def net(x, num_classes=1): x = K.applications.resnet_v2.ResNet50V2(include_top=False, weights=None, input_shape=x.shape[1:])(x) x = K.layers.Flatten()(x) x = K.layers.Dense(num_classes, activation="softmax")(x) return x print("\n=> Training model.") input_tensor = K.layers.Input((160, 120, 1)) output_tensor = net(input_tensor, num_classes=train.num_classes()) model = K.Model(input_tensor, output_tensor) model.compile(optimizer="sgd", loss="categorical_crossentropy", metrics=["accuracy"]) # Train model if lazy: model.fit(x=train, epochs=epochs, validation_data=train, verbose=2) else: model.fit(x=X_train, y=y_train, epochs=epochs, batch_size=batch_size, verbose=2) # Save weights model.save_weights(os.path.join(output, "flir_pretrained_weights.h5")) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Train model on FLIR dataset.") parser.add_argument("train", help="Directory containing training labels") parser.add_argument("test", help="Directory containing testing labels") parser.add_argument("out", help="Output directory for results") parser.add_argument("epochs", help="Number of epochs") parser.add_argument("-l", "--lazy", dest="lazy", help="Load data lazily", action="store_true") args = vars(parser.parse_args()) grid_search(args["train"], args["test"], args["out"], res=(120, 160), lazy=bool(args["lazy"]), epochs=int(args["epochs"])) print("\n=> Finished.")
2.609375
3
src/reader.py
DavidRivasPhD/mrse
0
12799903
""" Module to read the query and other inputs """ from Bio import Entrez from filter import filter_selector def inputnow(): """ Reads the inputs' values :return: query """ # the email must be the user's individual/personal email (NOT an institutional email or a default email # as this could lead to exceeding the maximum allowable frequency of requests per user, of 3 per second) Entrez.email = "<EMAIL>" # The maximum number of search results to be displayed could be the following default value or an input value < 100 results_number = 5 query = input("enter your search query: ") filter_option = input("would you like to use advanced search filter? (yes/no): ") if filter_option == "yes": query = filter_selector(query) return query, results_number
3.78125
4
jarbas_hive_mind/settings.py
flo-mic/HiveMind-core
43
12799904
<gh_stars>10-100 from os import makedirs from os.path import isdir, join, expanduser DATA_PATH = expanduser("~/jarbasHiveMind") if not isdir(DATA_PATH): makedirs(DATA_PATH) CERTS_PATH = join(DATA_PATH, "certs") if not isdir(CERTS_PATH): makedirs(CERTS_PATH) DB_PATH = join(DATA_PATH, "database") if not isdir(DB_PATH): makedirs(DB_PATH) CLIENTS_DB = "sqlite:///" + join(DB_PATH, "clients.db") DEFAULT_PORT = 5678 USE_SSL = True LOG_BLACKLIST = [] MYCROFT_WEBSOCKET_CONFIG = { "host": "0.0.0.0", "port": 8181, "route": "/core", "ssl": False }
1.867188
2
assignment4/merge.py
zhaoze1991/cs6200
1
12799905
#!/usr/bin/env python file1_name = 'a' file2_name = 'titanic' class Item(object): """tring for Item""" def __init__(self): super(Item, self).__init__() l1 = open(file1_name, 'r').readlines() l2 = open(file2_name, 'r').readlines() res = open('res','w') def run(): for i in range(len(l1)): line1 = l1[i].split() line2 = l2[i].split() val = (int(line1[3]) + int(line2[3])) / 2 res.writelines(line1[0] + ' ' + line1[1] + ' ' + line1[2] + ' ' + str(val) + ' \n') run() res.close()
3.453125
3
kernal/FileSystem.py
FAWC-bupt/OS-Course-Design
1
12799906
<filename>kernal/FileSystem.py<gh_stars>1-10 """ 目录逻辑结构:树形 目录物理结构:连续形 TODO:磁盘外部碎片如何处理? TODO:磁盘IO添加中断 """ import math from enum import Enum from kernal import Tool class FileOperation(Enum): Read = 0 Write = 1 Create = 2 Rename = 3 Delete = 4 Redirect = 5 class FileAuthority(Enum): Default = 0 ReadOnly = 1 WriteOnly = 2 class Folder: def __init__(self, folder_name: str, parent_folder, child_nodes: list): """ 文件夹数据结构,请注意,文件夹为逻辑结构,因此不会占用物理磁盘空间 :param folder_name:文件夹名 :param parent_folder:父节点。所有父节点一定是文件夹,注意,根节点(根文件夹)没有父节点,该属性为None :param child_nodes:子节点。可能有多个,且可能是文件夹,也可能是文件 """ self.id = Tool.uniqueNum() self.folder_name = folder_name self.parent_node = parent_folder self.child_nodes = child_nodes def __str__(self): return self.folder_name class UserFile: def __init__(self, file_name: str, parent_folder, data, authority: FileAuthority = FileAuthority.Default): """ 文件数据结构 :param file_name:文件名 :param parent_folder:父节点文件夹,每个文件该属性必须有值 :param data:文件数据 :param authority:文件权限 """ self.id = Tool.uniqueNum() self.file_name = file_name self.parent_node = parent_folder self.data = data self.size = math.ceil(len(data) / 10) """ size是文件占据的磁盘空间,为了方便前端表示,单位为10字节(即磁盘一个块有10字节),一个英文字符一个字节,注意每次更改file内容时应当要更新该值 eg1. yes 有三个字符,占三个字节,除以10向上取整,因此该文件占据的磁盘空间为1 eg2. I am sure I am very handsome. 有29个字符(标点空格都算),因此该文件占据的磁盘空间为3 """ self.disk_position = -1 # 文件在磁盘中的位置 self.authority = authority def __str__(self): return self.file_name def contiguousAllocation(file_to_allocated: UserFile, Disk: list): """ 磁盘文件连续分配 :param Disk: 文件系统磁盘 :param file_to_allocated:需要分配磁盘空间的文件 :return:返回文件所存储的磁盘位置(起始下标),若返回-1说明磁盘空间不足 """ start_index = -1 space_counter = 0 for i in range(len(Disk)): # 主要思想是,找到磁盘中连续且符合文件大小的几个块,且从磁盘头部遍历查找,这样有利于减少外部碎片 if Disk[i] == -1: if start_index == -1: start_index = i space_counter += 1 if space_counter >= file_to_allocated.size: for j in range(start_index, start_index + file_to_allocated.size): Disk[j] = file_to_allocated.id return start_index else: start_index = -1 space_counter = 0 return -1 def writeDiskToTXT(): # TODO:把结果输出到TXT? pass def creatFileOrFolder(is_folder: bool, name: str, parent_folder: Folder, file_table: list, Disk: list, data, child_nodes=None): """ 创建文件或文件夹 :param Disk: 文件系统磁盘 :param file_table: 文件表 :param is_folder:是否是文件夹 :param name:文件/文件夹名称 :param parent_folder:父文件夹对象 :param child_nodes:文件夹内容 :param data:文件数据 :return:文件/文件夹对象。若同路径存在重名返回-1,磁盘分配错误返回-2 """ if child_nodes is None: child_nodes = [] if is_folder: if parent_folder is not None: for node in parent_folder.child_nodes: if str(node) == name and isinstance(node, Folder): return -1 new_folder = Folder(name, parent_folder, child_nodes) if not name == 'root': parent_folder.child_nodes.append(new_folder) return new_folder else: for node in parent_folder.child_nodes: if str(node) == name and isinstance(node, UserFile): # 同路径重名 return -1 new_file = UserFile(name, parent_folder, data) file_table.append(new_file) new_file.disk_position = contiguousAllocation(new_file, Disk) if new_file.disk_position == -1: print('磁盘空间分配错误') # TODO:异常处理 return -2 parent_folder.child_nodes.append(new_file) return new_file def getPath(is_folder: bool, target_folder: Folder = None, target_file: UserFile = None): """ 利用递归获取文件/文件夹的路径 :param is_folder:欲获取路径的对象是否是文件夹 :param target_folder:目标文件夹 :param target_file:目标文件 :return:目标对象的路径 """ if is_folder and target_folder.folder_name == 'root': return '/root' if not is_folder: path_now = target_file.file_name parent_node = target_file.parent_node else: path_now = target_folder.folder_name parent_node = target_folder.parent_node path = getPath(True, target_folder=parent_node) + '/' + path_now return path """ 路径的格式为: /root/aaa/w 以上路径表示root文件夹下的aaa文件夹的名为w的文件/文件夹 """ def pathToObj(path: str, IR: dict, file_table: list, Disk: list, root: Folder): """ 通过路径找到文件/文件夹 :param root:文件系统根节点 :param Disk: 文件系统磁盘 :param file_table: 文件表 :param IR: 直接执行指令 :param path:文件字符串 :return:文件/文件夹对象。若查找错误,返回0 """ path = path.replace(" ", "") path_node_list = path.split('/') if path_node_list[0] == "": path_node_list = path_node_list[1:] if len(path_node_list) < 1 or path_node_list[0] != 'root': return 0 # 从root出发 parent_node = root # 每次都会更新子节点们 child_node_names = list(map(str, parent_node.child_nodes)) for i in range(1, len(path_node_list)): if i == len(path_node_list) - 1: # 单纯的查询文件目录树 if IR is None: return parent_node.child_nodes[child_node_names.index(path_node_list[i])] elif IR["operator"] == "createFile": return creatFileOrFolder(False, path_node_list[i], parent_node, data=IR['content'], Disk=Disk, file_table=file_table) elif IR["operator"] == "createFolder": return creatFileOrFolder(True, path_node_list[i], parent_node, data=None, Disk=Disk, file_table=file_table) else: # 不存在问题 if not path_node_list[i] in child_node_names: return 0 target = parent_node.child_nodes[child_node_names.index(path_node_list[i])] # 读文件 if IR["operator"] == "readFile": # 权限不够 if target.authority == FileAuthority.WriteOnly: return -1 # 读数据 else: return target.data # 写文件 elif IR["operator"] == "writeFile": # 权限不够 if target.authority == FileAuthority.ReadOnly: return -1 # 写数据 else: clearFileInDisk(target, Disk) target.data = IR["content"] target.size = math.ceil(len(IR["content"]) / 10) target.disk_position = contiguousAllocation(target, Disk) return 1 elif IR["operator"] == "delFile": if isinstance(target, Folder): return 0 else: clearFileInDisk(target, Disk) file_table.remove(target) target.parent_node.child_nodes.remove(target) return 1 elif IR["operator"] == "renameFile": if IR["newName"] in child_node_names: print('新名称在同路径下冲突') return -1 else: target.file_name = IR["newName"] return 1 elif IR["operator"] == "renameFolder": if IR["newName"] in child_node_names: print('新名称在同路径下冲突') return -1 else: target.folder_name = IR["newName"] return 1 elif path_node_list[i] in child_node_names: parent_node = parent_node.child_nodes[child_node_names.index(path_node_list[i])] child_node_names = list(map(str, parent_node.child_nodes)) else: return 0 def clearFileInDisk(target_file: UserFile, Disk: list): """ 在物理磁盘中删除文件信息 :param Disk: 文件系统磁盘 :param target_file:欲删除的文件 """ for i in range(target_file.disk_position, target_file.disk_position + target_file.size): Disk[i] = -1 def findFileById(file_id: int, file_table: list): """ 通过文件id返回文件对象 该函数常用于磁盘索引文件,因为在本项目中磁盘仅需读取文件标识符(id)即可找到文件对象 :param file_table: 文件表 :param file_id:文件标识符 :return:文件对象。若返回-1表明没有找到对应标识符的文件 """ for f in file_table: if f.id == file_id: return f return -1 def findObjByName(name: str, parent_node): """ 利用递归,查找除了root文件夹以外的文件系统对象 :param name:文件/文件夹名称 :param parent_node:该参数用于递归,调用时必须传入root文件系统节点 :return:None表示没有该对象,否则返回文件系统对象 """ if not parent_node.child_nodes: return None child_node_names = list(map(str, parent_node.child_nodes)) if name in child_node_names: return parent_node.child_nodes[child_node_names.index(name)] else: for child_node in parent_node.child_nodes: if isinstance(child_node, Folder): result = findObjByName(name, child_node) if result is not None: return result return None def renameFolder(old_name: str, new_name: str, root: Folder): """ 重命名文件夹 :param root: 文件系统根节点 :param old_name:旧名称 :param new_name:新名称 :return:0表示找不到文件夹,-1表示新名字重名,1表示改名成功 """ folder_obj = findObjByName(old_name, root) if folder_obj is None: print('找不到该文件夹') # TODO:异常处理 return 0 child_node_names = list(map(str, folder_obj.parent_node.child_nodes)) if new_name in child_node_names: print('新名称在同路径下冲突') return -1 else: folder_obj.folder_name = new_name return 1 def renameFile(old_name: str, new_name: str, root: Folder): """ 重命名文件 :param root: 文件系统根节点 :param old_name:旧名称 :param new_name:新名称 :return:0表示找不到文件,-1表示新名字重名,1表示改名成功 """ file_obj = findObjByName(old_name, root) if file_obj is None: print('找不到该文件') # TODO:异常处理 return 0 child_node_names = list(map(str, file_obj.parent_node.child_nodes)) if new_name in child_node_names: print('新名称在同路径下冲突') return -1 else: file_obj.file_name = new_name return 1 def writeFile(file_name: str, content: str, root: Folder, Disk: list): """ 写文件内容(原先内容会删除) :param Disk: 文件系统磁盘 :param root: 文件系统根节点 :param file_name:文件名 :param content:新内容 :return:返回1表示成功写入,返回0表示写入失败,返回-1表示文件没有写权限 """ target_file = findObjByName(file_name, root) if target_file is None or isinstance(target_file, Folder): print('文件不存在') # TODO:异常处理 return 0 assert isinstance(target_file, UserFile) if target_file.authority == FileAuthority.ReadOnly: print('文件权限不足') # TODO:异常处理 return -1 else: clearFileInDisk(target_file, Disk) target_file.data = content target_file.size = math.ceil(len(content) / 10) target_file.disk_position = contiguousAllocation(target_file, Disk) return 1 def readFile(file_name: str, root: Folder): """ 读取文件 :param root: 文件系统根节点 :param file_name:文件名称 :return:返回文件数据字符串,若返回0表明文件不存在,返回-1表明文件权限不足 """ target_file = findObjByName(file_name, root) if target_file is None or isinstance(target_file, Folder): print('文件不存在') # TODO:异常处理 return 0 assert isinstance(target_file, UserFile) if target_file.authority == FileAuthority.WriteOnly: print('文件权限不足') # TODO:异常处理 return -1 else: return target_file.data def delFile(file_name: str, file_table: list, root: Folder, Disk: list): """ 彻底删除文件,包括磁盘和文件表的记录 :param Disk: 文件系统磁盘 :param root: 文件系统根节点 :param file_table: 文件表 :param file_name:文件名 :return:返回0表示无法找到对应文件,返回1表明删除成功 """ target_file = findObjByName(file_name, root) if target_file is None or isinstance(target_file, Folder): print('文件不存在') # TODO:异常处理 return 0 assert isinstance(target_file, UserFile) clearFileInDisk(target_file, Disk) file_table.remove(target_file) target_file.parent_node.child_nodes.remove(target_file) return 1 def redirectFile(file_name: str, target_folder_name: str, root: Folder): """ 在不删除文件的情况下重定向文件路径,可以和其他操作组合实现复制和剪切等操作 :param root: 文件系统根节点 :param file_name:欲重定向的文件名称 :param target_folder_name:欲重定向的目标文件夹 :return:返回0表示无法找到对应文件,返回1表明重定向成功 """ target_file = findObjByName(file_name, root) if target_file is None or isinstance(target_file, Folder): print('文件不存在') # TODO:异常处理 return 0 target_folder = findObjByName(target_folder_name, root) if target_folder is None or isinstance(target_folder, UserFile): print('文件夹不存在') # TODO:异常处理 return 0 assert isinstance(target_file, UserFile) assert isinstance(target_folder, Folder) target_file.parent_node.child_nodes.remove(target_file) target_file.parent_node = target_folder target_folder.child_nodes.append(target_file) return 1 def initFileSystem(DiskSize: int = 1000, state: bool = False): """ 文件系统初始化 :param DiskSize:文件系统磁盘大小 :param state:状态标志 :return:状态标志,文件根节点,文件系统磁盘,文件表 """ disk = [-1 for _ in range(DiskSize)] # 磁盘,存储文件的id f_table = [] # 文件表,存储所有已经建立的文件 root_node = creatFileOrFolder(True, 'root', None, data=None, Disk=disk, file_table=f_table) if not state: state = True default_folder_1 = creatFileOrFolder(True, 'default_folder_1', root_node, data=None, Disk=disk, file_table=f_table) default_folder_2 = creatFileOrFolder(True, 'default_folder_2', root_node, data=None, Disk=disk, file_table=f_table) default_folder_3 = creatFileOrFolder(True, 'default_folder_3', root_node, data=None, Disk=disk, file_table=f_table) creatFileOrFolder(False, 'test', default_folder_1, data='This is a file for test', Disk=disk, file_table=f_table) root_node.child_nodes = [default_folder_1, default_folder_2, default_folder_3] return state, root_node, disk, f_table def FileTree(parent_node): # 是目录 if isinstance(parent_node, Folder): data = [] child_nodes = list(parent_node.child_nodes) for child in child_nodes: data.append(FileTree(child)) return {parent_node.__str__(): data} elif isinstance(parent_node, UserFile): return {parent_node.__str__(): 0}
2.40625
2
bin/karyon.py
Gabaldonlab/karyon
0
12799907
<reponame>Gabaldonlab/karyon desc="""Karyon pipeline. More info at: https://github.com/Gabaldonlab/karyon """ epilog="""Author: <NAME> (<EMAIL>) Worcester MA, 04/Nov/2021""" import sys, os, re import argparse import psutil import pysam import pandas as pd import string import random from spades_recipee import call_SPAdes from prepare_libraries import preparation from trimming_libraries import trimming from varcall_recipee import var_call from datetime import datetime parser = argparse.ArgumentParser(description=desc, epilog=epilog, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-d', '--output_directory', required=True, help='Directory where all the output files will be generated. Required.') parser.add_argument('-o', '--output_name', default=False, help='Prefix name for all the output files. If omitted, it will generate a random string. This random string will be the same as the identifier for intermediate files.') parser.add_argument('-l', '--libraries', required=True, nargs='+', help="Fastq libraries to use for assembly and variant calling. Unsuitable libraries for any of the steps will be ignored. Required.") parser.add_argument('-F', '--favourite', default=False, help='Sets one library as the prefered one for the variant calling analysis. Otherwise, karyon will select the largest library for performing the variant calling protocol.') parser.add_argument('-c', '--configuration', default=False, help="Configuration file. By default will use ./configuration.txt as the configuration file.") parser.add_argument('-g', '--genome_assembler', default="dipspades", choices=['dipspades','dipSPAdes','spades', 'SPAdes','platanus','Platanus', 'soapdenovo', 'SOAPdenovo'], help="Genome assembly software to use. By default it will use dipSPAdes. Options are: dipSPADEs, SPAdes, SOAPdenovo or Platanus.") parser.add_argument('-T', '--no_trimming', action='store_true', default=False, help='If this tag is active, the program will skip the trimming step.') parser.add_argument('-A', '--no_assembly', default=False, help='If this tag is active it will skip the assembly step. It requires a reference assembly.') parser.add_argument('-R', '--no_reduction', action='store_true', default=False, help='If this tag is active, the program will not launch the reduction step of redundans. Remember that the step is used to perform many downstream analyses. If you skip it, the analyses may not make much sense.') parser.add_argument('-V', '--no_varcall', nargs='+', default=False, help="If this tag is active, the program will skip the variant calling step. Many downstream analyses require this and won't be possible if you skip it.") parser.add_argument('-B', '--no_busco', default=False, action='store_true', help='If this tag is active, BUSCO analysis will be ommited.') parser.add_argument('-P', '--no_plot', action='store_true', default=False, help="If this tag is active, the program will omit the plots at the end of the the variant calling step.") parser.add_argument('-w', '--window_size', default=1000, help='Window size used for some of the analyses. Default is 1000 (1Kb)') parser.add_argument('-x', '--max_scaf2plot', default=20, help="Maximum number of scaffolds to plot for scaffold-specific plots. Default is 20.") parser.add_argument('-s', '--scafminsize', default=False, help="Will ignore scaffolds with length below the given threshold") parser.add_argument('-S', '--scafmaxsize', default=False, help="Will ignore scaffolds with length above the given threshold") parser.add_argument('-a', '--try_again', default=False, action='store_true', help='Use previous karyon results and skips already computed steps.') parser.add_argument('-K', '--keep_tmp', action='store_true', default=False, help='If this tag is active, the program will not remove all intermediary files in the folder tmp after it has finished') parser.add_argument('-i', '--job_id', default=False, help='Identifier of the intermediate files generated by the different programs. If false, the program will assign a name consisting of a string of 6 random alphanumeric characters.') parser.add_argument('-m', '--memory_limit', default=False, help='Memory limit for all the programs set in Gb. By default it will try to use all memory available.') parser.add_argument('-M', '--memory_fraction', default=1, help='Proportion of total memory to use by all programs. By default it will use all available memory (default=1), but it may be useful to reduce the percent to avoid freezing other tasks of the computer during peaks.') parser.add_argument('-n', '--nodes', default=False, help='Number of computation nodes to use. If set a number higher than total, it will use total. If set a number lower than total, it will calculate memory usage based on the fraction of nodes set with respect to total existing nodes.') args = parser.parse_args() def id_generator(size=6, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) ###Parses the config file in order to check the parameters of all the programs.### def parse_config(config): config_dict = {} prev = 0 for line in open(config): if line[0] == "#": continue elif line[0] == "+": prev = line[1:-1] config_dict[prev] = ["","",""] elif line[0] == "@": if config_dict[prev][0] != "": continue config_dict[prev][0] = line[1:-1] elif line[0] == ">": config_dict[prev][1] = config_dict[prev][1] + line[1:-1] + " " elif line[0] == "?": if config_dict[prev][2] != "": continue config_dict[prev][2] = line[1:-1] + " " return config_dict ###Selects the main library to use. This is set to accelerate the assembly process and improve the results def select_champion(fastq): parse_dict = {} for i in open(fastq): chunk = i.split() if chunk[5] == "2": continue else: parse_dict[chunk[0]] = chunk[1:] champion=[0,''] if args.favourite == False: for element in parse_dict: if int(parse_dict[element][2]) > champion[0]: champion = [int(parse_dict[element][2]), element] else: champion = [0,args.favourite] return champion def exit_program(message): sys.stderr.write("\n%s\n\n"%message) sys.exit(1) def main(): ###Defines the location of configuration.txt if setting by default### config_path = args.configuration if not args.configuration: selfpath = os.path.dirname(os.path.realpath(sys.argv[0])) config_path = selfpath[:selfpath.rfind('/')] config_path = selfpath[:selfpath.rfind('/')]+"/configuration.txt" true_output = os.path.abspath(args.output_directory) if true_output[-1] != "/": true_output=true_output+"/" print("wololo", true_output) ###Sets RAM usage options### total_nodes = n_nodes = psutil.cpu_count() if args.nodes and int(args.nodes) < total_nodes: n_nodes = int(args.nodes) if not args.memory_limit: ram_limit = int(psutil.virtual_memory()[0]/1000000000 * float(args.memory_fraction)) if n_nodes < total_nodes: ram_limit = int(psutil.virtual_memory()[0]/1000000000 * float(args.memory_fraction) * (float(n_nodes)/total_nodes)) else: ram_limit = args.memory_limit * int(args.memory_fraction) counter = int(args.max_scaf2plot) ###Sets the job ID and the prefix name for the job. If job ID is not user defined, it produces a random 6 character string. If prefix name is not defined, it uses job ID### job_ID = args.job_id if args.job_id else id_generator() name = args.output_name if args.output_name else job_ID print ('###############') print ('Config. path: '+str(config_path)) print ("RAM Limit: "+str(ram_limit)+"Gb") print ("Nodes: "+str(n_nodes)) print ("Job ID: "+str(job_ID)) print ("Job name: "+str(name)) print ('###############') config_dict = parse_config(config_path) home = config_dict["karyon"][0] if home[-1] != "/": home = home + "/" prepared_libs = home + "tmp/" + job_ID + "/prepared_libraries.txt" path_tmp_jobid = os.path.join(home, "tmp", job_ID) if not os.path.exists(os.path.join(home, "tmp")): os.mkdir(os.path.join(home, "tmp")) prepared_libs = os.path.join(path_tmp_jobid, "prepared_libraries.txt") ###Checks that the output is not a file. If it does not exist, it creates it.### if not os.path.isdir(args.output_directory): if os.path.isfile == True: message = "Path is a file" #Should raise an exception an exit the program exit_program(message) else: os.mkdir(args.output_directory) elif args.try_again == False: os.rmdir(args.output_directory) os.mkdir(args.output_directory) os.mkdir(path_tmp_jobid) from karyonplots import katplot, allplots katplot("", "", config_dict["KAT"][0], "") ###Parses the libraries and checks their parameters for downstream analyses. Also performs trimming.### print ('###############') print ('Preparing libraries') print ('###############') libs = '' for i in args.libraries: libs = libs + " " + os.path.abspath(i) preparation(libs.split(), 10000, prepared_libs) libs_parsed = '' if not args.no_trimming: print ('###############') print ('Trimmomatic') print ('###############') if config_dict['trimmomatic'][1] == '': trimmo_commands = '' else: trimmo_commands = " -c " + config_dict['trimmomatic'][1] trimming(prepared_libs, config_dict["trimmomatic"][0], trimmo_commands, home + "tmp/"+job_ID+"/trimmomatic.job", true_output, False) os.system("bash " + home + "tmp/"+job_ID+"/trimmomatic.job") for i in os.listdir(args.output_directory): if i.find("parsed_") > -1: libs_parsed = libs_parsed + " " + true_output + i preparation(libs_parsed.split(), 10000, prepared_libs) ###Parsing library names, including putting absolute paths # libstring = '' backstring = '' for i in open(prepared_libs): chunk = i.split() if chunk[5] == "1": libstring = libstring + os.path.abspath(chunk[0]) + " " + os.path.abspath(chunk[6]) + " " elif chunk[5] == "2": continue else: backstring = backstring + os.path.abspath(chunk[0]) + " " libstring = libstring + backstring champion = select_champion(prepared_libs) print ('###############') print ('Params') print ('###############') print (args.window_size) print (true_output+name+".raw.vcf") print (true_output+"redundans_output/scaffolds.filled.fa") print (true_output+name+".sorted.bam") print (true_output+name+".mpileup") print (champion[-1]) print (config_dict['nQuire'][0]) print (config_dict["KAT"][0]) print (home + "tmp/"+job_ID+"/") print (true_output) print (counter) print ('###############') ###Calling spades_recipee.py to generate the assembly job. In the future it should use config file to select the assembly program to use### karyonjobfile = open(true_output+name+"_karyon.job", 'a') karyonjobfile.write("\n") switch = False if args.no_assembly == False: if args.genome_assembler == "dipspades" or args.genome_assembler == 'dipSPAdes': call_SPAdes(prepared_libs, config_dict['SPAdes'][0], true_output, name, config_dict['SPAdes'][1], False, ram_limit, n_nodes) assembly = true_output+"dipspades/consensus_contigs.fasta" no_red_assembly = true_output+"dipspades/consensus_contigs.fasta" elif args.genome_assembler == "spades" or args.genome_assembler == 'SPAdes': call_SPAdes(prepared_libs, config_dict['SPAdes'][0], true_output, name, config_dict['SPAdes'][1], True, ram_limit, n_nodes) assembly = true_output+"spades/scaffolds.fasta" no_red_assembly = true_output+"spades/scaffolds.fasta" elif args.genome_assembler == "platanus" or args.genome_assembler == "Platanus": if args.no_reduction == True: karyonjobfile.write("python2 "+config_dict['redundans'][0]+"redundans.py"+ " -o "+true_output+"redundans_output -i "+libstring+" -t "+str(n_nodes)+" "+config_dict["redundans"][1] + " --noreduction") no_red_assembly = true_output+"redundans_output/scaffolds.filled.fa" else: karyonjobfile.write("python2 "+config_dict['redundans'][0]+"redundans.py"+ " -o "+true_output+"redundans_output -i "+libstring+" -t "+str(n_nodes)+" "+config_dict["redundans"][1]) no_red_assembly = true_output+"redundans_output/contigs.fa" assembly = true_output+"redundans_output/scaffolds.filled.fa" switch = True elif args.genome_assembler == "soapdenovo" or args.genome_assembler == "SOAPdenovo": from soap_recipee import soap_recipee soap_recipee(prepared_libs, name, true_output+"soapdenovo/", config_dict['SOAPdeNovo'][1], karyonjobfile, config_dict['SOAPdeNovo'][0]) print ("python3 "+os.path.dirname(__file__)+"/soap_recipee.py -r "+prepared_libs+" -n "+name+" -o "+true_output+"soapdenovo "+ "-j "+true_output+name+"_karyon.job") os.system("python3 "+os.path.dirname(__file__)+"/soap_recipee.py -r "+prepared_libs+" -n "+name+" -o "+true_output+"soapdenovo "+ "-j "+true_output+name+"_karyon.job") assembly = true_output+"soapdenovo/"+name+".scafSeq" else: pass else: no_red_assembly = args.no_assembly assembly = args.no_assembly if args.no_reduction == False and switch == False: karyonjobfile.write("python2 "+config_dict['redundans'][0]+"redundans.py"+" -f "+ assembly + " -o "+true_output+"redundans_output -i "+libstring+" -t "+str(n_nodes)+" "+config_dict["redundans"][1]) reduced_assembly = true_output+"redundans_output/scaffolds.filled.fa" elif args.no_reduction == False and switch == True: reduced_assembly = assembly else: reduced_assembly = assembly busco_options = "" if args.no_busco == False: for i in config_dict['BUSCO'][1:]: busco_options = busco_options + " " + i[:-1] karyonjobfile.write("\n") karyonjobfile.write(config_dict['BUSCO'][0]+"busco " + "-i " + reduced_assembly + " -o " + name + busco_options + "\n") karyonjobfile.write("mv " + name + " " + true_output+name+"_busco\n") #karyonjobfile.write("cp " + true_output+name+"_busco/short_summary*.txt " + true_output+name+".busco\n") karyonjobfile.write("rm -r busco_downloads\n") if args.no_reduction == False: karyonjobfile.write("\n") karyonjobfile.write(config_dict['BUSCO'][0]+"busco " + "-i " + no_red_assembly + " -o " + name+"_no_reduc" + busco_options + "\n") karyonjobfile.write("mv " + name + "_no_reduc " + true_output+name+"_no_reduc_busco\n") #karyonjobfile.write("cp " + true_output+name+"_busco/short_summary.specific.*.txt " + true_output+name+"_no_reduc.busco\n") karyonjobfile.write("rm -r busco_downloads\n") karyonjobfile.close() #5) Create job file that calls all the programs if args.no_varcall == False: var_call(prepared_libs, config_dict, true_output, name, args.favourite, home, str(ram_limit), str(n_nodes), reduced_assembly, no_red_assembly, args.no_reduction) os.system ("bash "+true_output+name+"_karyon.job") counter = int(args.max_scaf2plot) if args.no_busco != True: from shutil import copyfile mybusco = False for i in os.listdir(true_output+name+"_busco"): if i.find("specific") > -1: mybusco = i break if i.find('short_summary') > -1 and mybusco != False: if i.find("specific") == -1: mybusco = i if mybusco != False: copyfile(true_output+name+"_busco/"+mybusco, true_output+name+".busco") mybusco = true_output+name+".busco" if args.no_reduction != True: noredubusco = False for e in os.listdir(true_output+name+"_no_reduc_busco"): if e.find("specific") > -1: noredubusco = e break if e.find('short_summary') > -1 and noredubusco != False: if e.find("specific") == -1: noredubusco = e if noredubusco != False: copyfile(true_output+name+"_no_reduc_busco/"+noredubusco, true_output+name+"_no_reduc.busco") noredubusco = true_output+name+"_no_reduc.busco" def parse_no_varcall(no_varcall): vcf, bam, mpileup = '', '', '' for i in no_varcall: if i[-4:] == ".bam": bam = i if os.path.isfile(i+".bam") == True: bam = i+".bam" if os.path.isfile(i+".sorted.bam") == True: bam = i+".sorted.bam" if i.find("pileup") > -1: mpileup = i if os.path.isfile(i+".mpileup") == True: mpileup = i+".mpileup" if os.path.isfile(i+".pileup") == True: mpileup = i+".pileup" if i[-4:] == ".vcf": vcf = i if os.path.isfile(i+".vcf") == True: vcf = i+".vcf" if os.path.isfile(i+"raw.vcf") == True: vcf = i+"raw.vcf" return vcf, bam, mpileup os.mkdir(true_output+"Report/") if args.no_varcall == False: from karyonplots import katplot, allplots from report import report, ploidy_veredict katplot(reduced_assembly, champion[1], config_dict["KAT"][0], true_output+"Report/") df = allplots(int(args.window_size), true_output+name+".raw.vcf", reduced_assembly, true_output+name+".sorted.bam", true_output+name+".mpileup", os.path.abspath(champion[-1]), config_dict['nQuire'][0], config_dict["KAT"][0], home + "tmp/"+job_ID+"/", true_output+"Report/", counter, job_ID, name, args.scafminsize, args.scafmaxsize, args.no_plot) else: from karyonplots import katplot, allplots katplot(reduced_assembly, champion[1], config_dict["KAT"][0], true_output+"Report/") vcf, bam, mpileup = parse_no_varcall(args.no_varcall) df = allplots(int(args.window_size), vcf, reduced_assembly, bam, mpileup, os.path.abspath(champion[-1]), config_dict['nQuire'][0], config_dict["KAT"][0], home + "tmp/"+job_ID+"/", true_output, counter, job_ID, name, args.scafminsize, args.scafmaxsize, df, args.no_plot) df2 = ploidy_veredict(df, true_output, name, args.window_size) report(true_output, name, df2, args.no_reduction, no_red_assembly, args.window_size, mybusco, noredubusco) df2.to_csv(true_output+"Report/report"+name+".csv", index=False) ###We clean the tmp directory### if args.keep_tmp == True: existence = open(home + "tmp/" + job_ID + '/_keep_existing_', 'w') existence.close() print ("Now I'm cleaning tmp...") if args.keep_tmp == True: print ("...but keeping what you told me...") for e in os.listdir(home + "tmp/"): for i in os.listdir(home + "tmp/"+e): if '_keep_existing_' in os.listdir(home + "tmp/"+e): continue else: os.remove(home + "tmp/"+e+"/"+i) if '_keep_existing_' in os.listdir(home + "tmp/"+e): continue else: os.rmdir(home + "tmp/"+e) if args.keep_tmp == True: print ("... tmp files havee been kept") else: print ("... removed tmp files!") if __name__ == '__main__': t0 = datetime.now() try: main() except KeyboardInterrupt: sys.stderr.write("\n Ctrl-C pressed! \n") dt = datetime.now()-t0 sys.stderr.write("#Time elapsed: %s\n" % dt)
2.171875
2
setup.py
Johannes-Larsson/codeswapbot
0
12799908
<gh_stars>0 import sqlite3 db = sqlite3.connect('data.db') c=db.cursor() c.execute('create table users (id integer primary key, name text, partner text, recieve_date date, partnered_date date)') db.commit() db.close()
2.859375
3
misc/update_version.py
andyjgf/libcbor
283
12799909
import sys, re from datetime import date version = sys.argv[1] release_date = date.today().strftime('%Y-%m-%d') major, minor, patch = version.split('.') def replace(file_path, pattern, replacement): updated = re.sub(pattern, replacement, open(file_path).read()) with open(file_path, 'w') as f: f.write(updated) # Update changelog SEP = '---------------------' NEXT = f'Next\n{SEP}' changelog_header = f'{NEXT}\n\n{version} ({release_date})\n{SEP}' replace('CHANGELOG.md', NEXT, changelog_header) # Update Doxyfile DOXY_VERSION = 'PROJECT_NUMBER = ' replace('Doxyfile', DOXY_VERSION + '.*', DOXY_VERSION + version) # Update CMakeLists.txt replace('CMakeLists.txt', '''SET\\(CBOR_VERSION_MAJOR "0"\\) SET\\(CBOR_VERSION_MINOR "7"\\) SET\\(CBOR_VERSION_PATCH "0"\\)''', f'''SET(CBOR_VERSION_MAJOR "{major}") SET(CBOR_VERSION_MINOR "{minor}") SET(CBOR_VERSION_PATCH "{patch}")''') # Update Sphinx replace('doc/source/conf.py', """version = '.*' release = '.*'""", f"""version = '{major}.{minor}' release = '{major}.{minor}.{patch}'""")
2.515625
3
OpenGLCffi/GL/EXT/SGIX/reference_plane.py
cydenix/OpenGLCffi
0
12799910
from OpenGLCffi.GL import params @params(api='gl', prms=['equation']) def glReferencePlaneSGIX(equation): pass
1.59375
2
src/models/operation.py
takedarts/DenseResNet
0
12799911
from .modules import DropBlock, SEModule, SKConv2d, BlurPool2d, SplitAttentionModule import torch.nn as nn import collections class BasicOperation(nn.Sequential): def __init__(self, in_channels, out_channels, stride, groups, bottleneck, normalization, activation, dropblock, **kwargs): channels = round(out_channels / bottleneck) super().__init__(collections.OrderedDict(m for m in [ ('conv1', nn.Conv2d( in_channels, channels, kernel_size=3, padding=1, stride=stride, groups=groups, bias=False)), ('norm1', normalization(channels)), ('drop1', None if not dropblock else DropBlock()), ('act1', activation(inplace=True)), ('conv2', nn.Conv2d( channels, out_channels, kernel_size=3, padding=1, stride=1, groups=1, bias=False)), ('norm2', normalization(out_channels)), ('drop2', None if not dropblock else DropBlock()), ] if m[1] is not None)) class BottleneckOperation(nn.Sequential): def __init__(self, in_channels, out_channels, stride, groups, bottleneck, normalization, activation, dropblock, **kwargs): channels = round(out_channels / bottleneck * groups) super().__init__(collections.OrderedDict(m for m in [ ('conv1', nn.Conv2d( in_channels, channels, kernel_size=1, padding=0, stride=stride, groups=1, bias=False)), ('norm1', normalization(channels)), ('drop1', None if not dropblock else DropBlock()), ('act1', activation(inplace=True)), ('conv2', nn.Conv2d( channels, channels, kernel_size=3, padding=1, stride=1, groups=groups, bias=False)), ('norm2', normalization(channels)), ('drop2', None if not dropblock else DropBlock()), ('act2', activation(inplace=True)), ('conv3', nn.Conv2d( channels, out_channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('norm3', normalization(out_channels)), ('drop3', None if not dropblock else DropBlock()), ] if m[1] is not None)) class SelectedKernelOperation(nn.Sequential): def __init__(self, in_channels, out_channels, stride, radix, groups, bottleneck, normalization, activation, dropblock, **kwargs): channels = round(out_channels / bottleneck * groups) super().__init__(collections.OrderedDict(m for m in [ ('conv1', nn.Conv2d( in_channels, channels, kernel_size=1, padding=0, stride=stride, groups=1, bias=False)), ('norm1', normalization(channels)), ('drop1', None if not dropblock else DropBlock()), ('act1', activation(inplace=True)), ('conv2', SKConv2d( channels, channels, kernel_size=3, padding=1, stride=1, radix=radix, groups=groups)), ('norm2', normalization(channels)), ('drop2', None if not dropblock else DropBlock()), ('act2', activation(inplace=True)), ('conv3', nn.Conv2d( channels, out_channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('norm3', normalization(out_channels)), ('drop3', None if not dropblock else DropBlock()), ] if m[1] is not None)) class PreActBasicOperation(nn.Sequential): def __init__(self, in_channels, out_channels, stride, groups, bottleneck, normalization, activation, dropblock, **kwargs): channels = round(out_channels / bottleneck) super().__init__(collections.OrderedDict(m for m in [ ('norm1', normalization(in_channels)), ('drop1', None if not dropblock else DropBlock()), ('act1', activation(inplace=True)), ('conv1', nn.Conv2d( in_channels, channels, kernel_size=3, padding=1, stride=stride, groups=groups, bias=False)), ('norm2', normalization(channels)), ('drop2', None if not dropblock else DropBlock()), ('act2', activation(inplace=True)), ('conv2', nn.Conv2d( channels, out_channels, kernel_size=3, padding=1, stride=1, groups=1, bias=False)), ] if m[1] is not None)) class SingleActBasicOperation(nn.Sequential): def __init__(self, in_channels, out_channels, stride, groups, bottleneck, normalization, activation, dropblock, **kwargs): channels = round(out_channels / bottleneck) super().__init__(collections.OrderedDict(m for m in [ ('norm1', normalization(in_channels)), ('conv1', nn.Conv2d( in_channels, channels, kernel_size=3, padding=1, stride=stride, groups=groups, bias=False)), ('norm2', normalization(channels)), ('drop2', None if not dropblock else DropBlock()), ('act2', activation(inplace=True)), ('conv2', nn.Conv2d( channels, out_channels, kernel_size=3, padding=1, stride=1, groups=1, bias=False)), ('norm3', normalization(out_channels)), ('drop3', None if not dropblock else DropBlock()), ] if m[1] is not None)) class SingleActBottleneckOperation(nn.Sequential): def __init__(self, in_channels, out_channels, stride, groups, bottleneck, normalization, activation, dropblock, **kwargs): channels = round(out_channels / bottleneck * groups) super().__init__(collections.OrderedDict(m for m in [ ('norm1', normalization(in_channels)), ('conv1', nn.Conv2d( in_channels, channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('norm2', normalization(channels)), ('drop2', None if not dropblock else DropBlock()), ('act2', activation(inplace=True)), ('conv2', nn.Conv2d( channels, channels, kernel_size=3, padding=1, stride=stride, groups=groups, bias=False)), ('norm3', normalization(channels)), ('drop3', None if not dropblock else DropBlock()), ('act3', activation(inplace=True)), ('conv3', nn.Conv2d( channels, out_channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('norm4', normalization(out_channels)), ('drop4', None if not dropblock else DropBlock()), ] if m[1] is not None)) class TweakedBottleneckOperation(nn.Sequential): def __init__(self, in_channels, out_channels, stride, groups, bottleneck, normalization, activation, dropblock, **kwargs): channels = round(out_channels / bottleneck) super().__init__(collections.OrderedDict(m for m in [ ('conv1', nn.Conv2d( in_channels, channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('norm1', normalization(channels)), ('drop1', None if not dropblock else DropBlock()), ('act1', activation(inplace=True)), ('conv2', nn.Conv2d( channels, channels, kernel_size=3, padding=1, stride=1, groups=groups, bias=False)), ('norm2', normalization(channels)), ('drop2', None if not dropblock else DropBlock()), ('act2', activation(inplace=True)), ('pool', None if stride == 1 else BlurPool2d(channels, stride=stride)), ('conv3', nn.Conv2d( channels, out_channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('norm3', normalization(channels)), ('drop3', None if not dropblock else DropBlock()), ] if m[1] is not None)) class TweakedSlectedKernelOperation(nn.Sequential): def __init__(self, in_channels, out_channels, stride, radix, groups, bottleneck, normalization, activation, dropblock, **kwargs): channels = round(out_channels / bottleneck) super().__init__(collections.OrderedDict(m for m in [ ('conv1', nn.Conv2d( in_channels, channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('norm1', normalization(channels)), ('drop1', None if not dropblock else DropBlock()), ('act1', activation(inplace=True)), ('conv2', SKConv2d( channels, channels, kernel_size=3, padding=1, stride=1, radix=radix, groups=groups)), ('drop2', None if not dropblock else DropBlock()), ('pool', None if stride == 1 else BlurPool2d(channels, stride=stride)), ('conv3', nn.Conv2d( channels, out_channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('norm3', normalization(out_channels)), ('drop3', None if not dropblock else DropBlock()), ] if m[1] is not None)) class MobileNetOperation(nn.Sequential): def __init__(self, in_channels, out_channels, kernel, stride, expansion, normalization, activation, dropblock, seoperation, sereduction, sesigmoid, **kwargs): channels = int(in_channels * expansion) modules = [] if in_channels != channels: modules.extend([ ('conv1', nn.Conv2d( in_channels, channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('norm1', normalization(channels)), ('drop1', None if not dropblock else DropBlock()), ('act1', activation(inplace=True)), ]) modules.extend([ ('conv2', nn.Conv2d( channels, channels, kernel_size=kernel, padding=kernel // 2, stride=stride, groups=channels, bias=False)), ('norm2', normalization(channels)), ('drop2', None if not dropblock else DropBlock()), ('semodule', None if not seoperation else SEModule( channels, reduction=sereduction, activation=nn.ReLU, sigmoid=sesigmoid)), ('act2', activation(inplace=True)), ('conv3', nn.Conv2d( channels, out_channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('norm3', normalization(out_channels)), ('drop3', None if not dropblock else DropBlock()), ]) super().__init__(collections.OrderedDict(m for m in modules if m[1] is not None)) class SplitAttentionOperation(nn.Sequential): def __init__(self, in_channels, out_channels, stride, radix, groups, bottleneck, normalization, activation, dropblock, **kwargs): channels = round(out_channels / bottleneck) super().__init__(collections.OrderedDict(m for m in [ ('conv1', nn.Conv2d( in_channels, channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('norm1', normalization(channels)), ('drop1', None if not dropblock else DropBlock()), ('act1', activation(inplace=True)), ('conv2', nn.Conv2d( channels, channels * radix, kernel_size=3, padding=1, stride=1, groups=groups * radix, bias=False)), ('norm2', normalization(channels * radix)), ('drop2', None if not dropblock else DropBlock()), ('act2', activation(inplace=True)), ('attention', SplitAttentionModule( channels, radix=radix, groups=groups, normalization=normalization, activation=activation)), ('downsample', None if stride == 1 else nn.AvgPool2d( kernel_size=3, stride=stride, padding=1)), ('conv3', nn.Conv2d( channels, out_channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('norm3', normalization(out_channels)), ('drop3', None if not dropblock else DropBlock()), ] if m[1] is not None)) class DenseNetOperation(nn.Sequential): def __init__(self, in_channels, out_channels, stride, growth, expansion, normalization, activation, dropblock, **kwargs): if stride != 1: super().__init__(collections.OrderedDict(m for m in [ ('norm1', normalization(in_channels)), ('act1', activation(inplace=True)), ('conv1', nn.Conv2d( in_channels, out_channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('pool1', nn.AvgPool2d(kernel_size=2, stride=stride)), ] if m[1] is not None)) else: channels = growth * expansion super().__init__(collections.OrderedDict(m for m in [ ('norm1', normalization(in_channels)), ('drop1', None if not dropblock else DropBlock()), ('act1', activation(inplace=True)), ('conv1', nn.Conv2d( in_channels, channels, kernel_size=1, padding=0, stride=1, groups=1, bias=False)), ('norm2', normalization(channels)), ('drop2', None if not dropblock else DropBlock()), ('act2', activation(inplace=True)), ('conv2', nn.Conv2d( channels, growth, kernel_size=3, padding=1, stride=1, bias=False)), ] if m[1] is not None))
2.4375
2
StkAutomation/IntegrationCertification/IntegrationCert.py
jgonzalesAGI/STKCodeExamples
0
12799912
# -*- coding: utf-8 -*- """ Created on Mon May 4 09:33:16 2020 @author: jvergere Ideas: Something similar to the Iridium Constellation: 66 Sats 781 km (7159 semimajor axis) 86.4 inclination 6 Orbit planes 30 degrees apart 11 in each plane """ import datetime as dt import numpy as np import os #Need to cleanup this file before running each time, #or refactor code to avoid writing to file in append mode if os.path.exists("MaxOutageData.txt"): os.remove("MaxOutageData.txt") from comtypes.client import CreateObject # Will allow you to launch STK #from comtypes.client import GetActiveObject #Will allow you to connect a running instance of STK #Start the application, it will return a pointer to the Application Interface app = CreateObject("STK12.Application") #app = GetActiveObject("STK12.Application") #app is a pointer to IAgUiApplication #type info is available with python builtin type method #type(app) #More info is available via python built in dir method, which will list #all the available properties and methods available #dir(app) #Additional useful information is available via the python builtin help #help(app) app.Visible = True app.UserControl = True root = app.Personality2 #root ->IAgStkObjectRoot #These are not available to import until this point if this is the first time #running STK via COM with python....it won't hurt to leave them there, but after running once they can be #included at the top with all the other import statements from comtypes.gen import STKUtil from comtypes.gen import STKObjects root.NewScenario("NewTestScenario") scenario = root.CurrentScenario #scenario -> IAgStkObject scenario2 = scenario.QueryInterface(STKObjects.IAgScenario) #scenaro2 -> IAgScenario scenario2.StartTime = "1 Jun 2016 16:00:00.000" scenario2.StopTime = "2 Jun 2016 16:00:00.000" root.Rewind() #Insert Facilites from text file using connect. Each line of the text file is #formatted: #FacName,Longitude,Latitude with open("Facilities.txt", "r") as faclist: for line in faclist: facData = line.strip().split(",") insertNewFacCmd = "New / */Facility {}".format(facData[0]) root.ExecuteCommand(insertNewFacCmd) setPositionCmd = "SetPosition */Facility/{} Geodetic {} {} Terrain".format(facData[0], facData[2], facData[1]) root.ExecuteCommand(setPositionCmd) setColorCommand = "Graphics */Facility/{} SetColor blue".format(facData[0]) root.ExecuteCommand(setColorCommand) #Create sensor constellation, used later to hold all the sensor objects sensorConst = scenario.Children.New(STKObjects.eConstellation, "SensorConst") sensorConst2 = sensorConst.QueryInterface(STKObjects.IAgConstellation) #Build satellite constellation, attach sensors, assign sensor to constellation object i = 1 for RAAN in range(0,180,45): # 4 orbit planes j = 1 for trueAnomaly in range(0,360,45): # 8 sats per plane #insert satellite newSat = scenario.Children.New(STKObjects.eSatellite, "Sat{}{}".format(i,j)) newSat2 = newSat.QueryInterface(STKObjects.IAgSatellite) #change some basic display attributes newSat2.Graphics.Attributes.QueryInterface(STKObjects.IAgVeGfxAttributesBasic).Color = 65535 newSat2.Graphics.Attributes.QueryInterface(STKObjects.IAgVeGfxAttributesBasic).Line.Width = STKObjects.e1 newSat2.Graphics.Attributes.QueryInterface(STKObjects.IAgVeGfxAttributesBasic).Inherit = False newSat2.Graphics.Attributes.QueryInterface(STKObjects.IAgVeGfxAttributesOrbit).IsGroundTrackVisible = False #Buildup Initial State using TwoBody Propagator and Classical Orbital Elements keplarian = newSat2.Propagator.QueryInterface(STKObjects.IAgVePropagatorTwoBody).InitialState.Representation.ConvertTo(STKUtil.eOrbitStateClassical).QueryInterface(STKObjects.IAgOrbitStateClassical) keplarian.SizeShapeTpye = STKObjects.eSizeShapeSemimajorAxis keplarian.SizeShape.QueryInterface(STKObjects.IAgClassicalSizeShapeSemimajorAxis).SemiMajorAxis = 7159 keplarian.SizeShape.QueryInterface(STKObjects.IAgClassicalSizeShapeSemimajorAxis).Eccentricity = 0 keplarian.Orientation.Inclination = 86.4 keplarian.Orientation.ArgOfPerigee = 0 keplarian.Orientation.AscNodeType = STKObjects.eAscNodeRAAN keplarian.Orientation.AscNode.QueryInterface(STKObjects.IAgOrientationAscNodeRAAN).Value = RAAN keplarian.LocationType = STKObjects.eLocationTrueAnomaly keplarian.Location.QueryInterface(STKObjects.IAgClassicalLocationTrueAnomaly).Value = trueAnomaly + (45/2)*(i%2) #Stagger TrueAnomalies for every other orbital plane newSat2.Propagator.QueryInterface(STKObjects.IAgVePropagatorTwoBody).InitialState.Representation.Assign(keplarian) newSat2.Propagator.QueryInterface(STKObjects.IAgVePropagatorTwoBody).Propagate() #Attach sensors to each satellite sensor = newSat.Children.New(STKObjects.eSensor,"Sensor{}{}".format(i,j)) sensor2 = sensor.QueryInterface(STKObjects.IAgSensor) sensor2.CommonTasks.SetPatternSimpleConic(62.5, 2) #Add the sensor to the SensorConstellation sensorConst2.Objects.Add("Satellite/Sat{0}{1}/Sensor/Sensor{0}{1}".format(i,j)) #Adjust the translucenty of the sensor projections sensor2.VO.PercentTranslucency = 75 sensor2.Graphics.LineStyle = STKUtil.eDotted j+=1 i+=1 #Create a Chain object for each Facility to the constellation. facCount = scenario.Children.GetElements(STKObjects.eFacility).Count for i in range(facCount): #Create Chain facName = scenario.Children.GetElements(STKObjects.eFacility).Item(i).InstanceName chain = scenario.Children.New(STKObjects.eChain, "{}ToSensorConst".format(facName)) chain2 = chain.QueryInterface(STKObjects.IAgChain) #Modify some display properties chain2.Graphics.Animation.Color = 65280 chain2.Graphics.Animation.LineWidth = STKObjects.e1 chain2.Graphics.Animation.IsHighlightVisible = False #Add objects to the chain chain2.Objects.Add("Facility/{}".format(facName)) chain2.Objects.Add("Constellation/SensorConst") #Get complete chain access data compAcc = chain.DataProviders.Item("Complete Access").QueryInterface(STKObjects.IAgDataPrvInterval).Exec(scenario2.StartTime,scenario2.StopTime) el = compAcc.DataSets.ElementNames numRows = compAcc.DataSets.RowCount maxOutage = [] #Save out the report to a text file with open("{}CompleteChainAccess.txt".format(facName),"w") as dataFile: dataFile.write("{},{},{},{}\n".format(el[0],el[1],el[2],el[3])) for row in range(numRows): rowData = compAcc.DataSets.GetRow(row) dataFile.write("{},{},{},{}\n".format(rowData[0],rowData[1],rowData[2],rowData[3])) dataFile.close() #Get max outage time for each chain, print to console and save to file with open("MaxOutageData.txt", "a") as outageFile: if numRows == 1: outageFile.write("{},NA,NA,NA\n".format(facName)) print("{}: No Outage".format(facName)) else: #Get StartTimes and StopTimes as lists startTimes = list(compAcc.DataSets.GetDataSetByName("Start Time").GetValues()) stopTimes = list(compAcc.DataSets.GetDataSetByName("Stop Time").GetValues()) #convert to from strings to datetimes startDatetimes = np.array([dt.datetime.strptime(startTime[:-3], "%d %b %Y %H:%M:%S.%f") for startTime in startTimes]) stopDatetimes = np.array([dt.datetime.strptime(stopTime[:-3], "%d %b %Y %H:%M:%S.%f") for stopTime in stopTimes]) outages = startDatetimes[1:] - stopDatetimes[:-1] maxOutage = np.amax(outages).total_seconds() start = stopTimes[np.argmax(outages)] stop = startTimes[np.argmax(outages)+1] outageFile.write("{},{},{},{}\n".format(facName,maxOutage,start,stop)) print("{}: {} seconds from {} until {}".format(facName, maxOutage, start, stop)) root.Rewind() root.Save()
2.5625
3
example_project/some_modules/third_modules/a55.py
Yuriy-Leonov/cython_imports_limit_issue
0
12799913
class A55: pass
1.054688
1
retrograph/training/preprocessors.py
ai-nikolai/Retrograph-1
14
12799914
##################################################### # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # Copyright 2019 <NAME>, <NAME>, <NAME>, <NAME>, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################### #################################################### # IMPORT STATEMENTS #################################################### # >>>>>> Native Imports <<<<<<< import os # >>>>>> Package Imports <<<<<<< import tensorflow as tf import csv # >>>>>> Local Imports <<<<<<< from retrograph.models import tokenization #################################################### # CODE #################################################### class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for prediction.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with tf.gfile.Open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines class XnliProcessor(DataProcessor): """Processor for the XNLI data set.""" def __init__(self): self.language = "zh" def get_train_examples(self, data_dir): """See base class.""" lines = self._read_tsv( os.path.join(data_dir, "multinli", "multinli.train.%s.tsv" % self.language)) examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "train-%d" % (i) text_a = tokenization.convert_to_unicode(line[0]) text_b = tokenization.convert_to_unicode(line[1]) label = tokenization.convert_to_unicode(line[2]) if label == tokenization.convert_to_unicode("contradictory"): label = tokenization.convert_to_unicode("contradiction") examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_dev_examples(self, data_dir): """See base class.""" lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv")) examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "dev-%d" % (i) language = tokenization.convert_to_unicode(line[0]) if language != tokenization.convert_to_unicode(self.language): continue text_a = tokenization.convert_to_unicode(line[6]) text_b = tokenization.convert_to_unicode(line[7]) label = tokenization.convert_to_unicode(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir, matched=True): """See base class.""" if matched: return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") else: return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_mismatched") def get_test_examples(self, data_dir, matched=True): """See base class.""" if matched: return self._create_examples( self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test") else: return self._create_examples( self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0])) text_a = tokenization.convert_to_unicode(line[8]) text_b = tokenization.convert_to_unicode(line[9]) if set_type == "test": label = "contradiction" else: label = tokenization.convert_to_unicode(line[-1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class DiagnosticProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "diagnostic.tsv")), "test") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0])) text_a = tokenization.convert_to_unicode(line[1]) text_b = tokenization.convert_to_unicode(line[2]) if set_type == "test": label = "contradiction" else: label = tokenization.convert_to_unicode(line[-1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class WNLIProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0])) text_a = tokenization.convert_to_unicode(line[1]) text_b = tokenization.convert_to_unicode(line[2]) if set_type == "test": label = "0" else: label = tokenization.convert_to_unicode(line[-1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = tokenization.convert_to_unicode(line[3]) text_b = tokenization.convert_to_unicode(line[4]) if set_type == "test": label = "0" else: label = tokenization.convert_to_unicode(line[0]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): # Only the test set has a header if set_type == "test" and i == 0: continue guid = "%s-%s" % (set_type, i) if set_type == "test": text_a = tokenization.convert_to_unicode(line[1]) label = "0" else: text_a = tokenization.convert_to_unicode(line[3]) label = tokenization.convert_to_unicode(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples '''Added by Anne''' class SST2Processor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) if set_type == "test": text_a = tokenization.convert_to_unicode(line[1]) label = "0" else: text_a = tokenization.convert_to_unicode(line[0]) label = tokenization.convert_to_unicode(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class QQPProcessor(DataProcessor): """Processor for the QQP data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0])) if set_type == "test": text_a = tokenization.convert_to_unicode(line[1]) text_b = tokenization.convert_to_unicode(line[2]) label = "0" else: if len(line) != 6: # there is a problematic line print(line) continue text_a = tokenization.convert_to_unicode(line[3]) text_b = tokenization.convert_to_unicode(line[4]) label = tokenization.convert_to_unicode(line[5]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QNLIProcessor(DataProcessor): """Processor for the QQP data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0])) text_a = tokenization.convert_to_unicode(line[1]) text_b = tokenization.convert_to_unicode(line[2]) if set_type == "test": label = "entailment" else: label = tokenization.convert_to_unicode(line[3]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class STSBProcessor(DataProcessor): """Processor for the STS-B data set.""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0])) if set_type == 'test': text_a = tokenization.convert_to_unicode(line[-2]) text_b = tokenization.convert_to_unicode(line[-1]) label = 0.0 else: text_a = tokenization.convert_to_unicode(line[-3]) text_b = tokenization.convert_to_unicode(line[-2]) label = float(line[-1]) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class RTEProcessor(DataProcessor): """Processor for the RTE data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0])) text_a = tokenization.convert_to_unicode(line[1]) text_b = tokenization.convert_to_unicode(line[2]) if set_type == "test": label = "entailment" else: label = tokenization.convert_to_unicode(line[3]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class SICKEntailmentProcessor(DataProcessor): """Processor for the SICK data set (SentEval version).""" def loadFile(self, fpath): skipFirstLine = True sick_data = {'X_A': [], 'X_B': [], 'y': []} with os.open(fpath, 'r', encoding='utf-8') as f: for line in f: if skipFirstLine: skipFirstLine = False else: text = line.strip().split('\t') sick_data['X_A'].append(text[1].split()) sick_data['X_B'].append(text[2].split()) sick_data['y'].append(text[4]) return sick_data def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self.loadFile(os.path.join(data_dir, 'SICK_train.txt')), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self.loadFile(os.path.join(data_dir, 'SICK_trial.txt')), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self.loadFile(os.path.join(data_dir, 'SICK_test_annotated.txt')), "test") def get_labels(self): """See base class.""" return ['CONTRADICTION', 'NEUTRAL', 'ENTAILMENT'] def _create_examples(self, dicts, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, dict) in enumerate(dicts): guid = "%s-%s" % (set_type, str(i)) text_a = tokenization.convert_to_unicode(dict['X_A']) text_b = tokenization.convert_to_unicode(dict['X_B']) label = tokenization.convert_to_unicode(dict['y']) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class TRECProcessor(DataProcessor): """Processor for the TREC data set (SentEval version).""" def loadFile(self, fpath): trec_data = {'X': [], 'y': []} with os.open(fpath, 'r', encoding='latin-1') as f: for line in f: target, sample = line.strip().split(':', 1) sample = sample.split(' ', 1)[1].split() trec_data['X'].append(sample) trec_data['y'].append(target) return trec_data def get_train_examples(self, data_dir): """See base class.""" data = self.loadFile(os.path.join(data_dir, 'train_5500.label')) split_index = len(data)*0.7 return self._create_examples(data[:split_index], "train") def get_dev_examples(self, data_dir): """See base class.""" data = self.loadFile(os.path.join(data_dir, 'train_5500.label')) split_index = len(data)*0.7 return self._create_examples(data[split_index:], "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self.loadFile(os.path.join(data_dir, 'TREC_10.label')), "test") def get_labels(self): """See base class.""" return ['ABBR', 'DESC', 'ENTY', 'HUM', 'LOC', 'NUM'] def _create_examples(self, dicts, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, dict) in enumerate(dicts): guid = "%s-%s" % (set_type, str(i)) text_a = tokenization.convert_to_unicode(dict['X']) label = tokenization.convert_to_unicode(dict['y']) examples.append( InputExample(guid=guid, text_a=text_a, label=label)) return examples #################################################### # MAIN #################################################### # EOF
1.367188
1
load_data.py
penguin2048/StockIt
32
12799915
""" handle preprocessing and loading of data. """ import html import os.path import pandas as pd import re from nltk import word_tokenize, pos_tag from nltk.corpus import stopwords, wordnet from nltk.stem.wordnet import WordNetLemmatizer class LoadData: @classmethod def preprocess_stocktwits_data(cls, file_location, columns=['datetime', 'message']): """ preprocess the data in file location and saves it as a csv file (appending '_preprocessed' before '.csv). The preprocessing us in following ways: 1) extract message and datetime columns. 2) sort according to datetime in descending order (newest first) 3) remove links, @ and $ references, extra whitespaces, extra '.', digits, slashes, hyphons 4) decode html entities 5) convert everything to lower case """ if 'datetime' in columns: dataFrame = pd.read_csv(file_location, usecols=columns, parse_dates=['datetime'], infer_datetime_format=True) dataFrame.sort_values(by='datetime', ascending=False) else: dataFrame = pd.read_csv(file_location, usecols=columns) dataFrame['message'] = dataFrame['message'].apply(lambda x: html.unescape(x)) dataFrame['message'] = dataFrame['message'].apply(lambda x: re.sub(r'(www\.|https?://).*?(\s|$)|@.*?(\s|$)|\$.*?(\s|$)|\d|\%|\\|/|-|_', ' ', x)) dataFrame['message'] = dataFrame['message'].apply(lambda x: re.sub(r'\.+', '. ', x)) dataFrame['message'] = dataFrame['message'].apply(lambda x: re.sub(r'\,+', ', ', x)) dataFrame['message'] = dataFrame['message'].apply(lambda x: re.sub(r'\?+', '? ', x)) dataFrame['message'] = dataFrame['message'].apply(lambda x: re.sub(r'\s+', ' ', x)) dataFrame['message'] = dataFrame['message'].apply(lambda x: x.lower()) dataFrame.to_csv(file_location[:-4]+'_preprocessed.csv', index=False) @classmethod def labelled_data_lexicon_analysis(cls): """ extract keywords from labelled stocktwits data for improved accuracy in scoring for each labelled message do 1) tokenize the message 2) perform POS tagging 3) if a sense is present in wordnet then, lemmatize the word and remove stop words else ignore the word remove intersections from the two lists before saving """ dataFrame = LoadData.get_labelled_data() bullish_keywords = set() bearish_keywords = set() lemmatizer = WordNetLemmatizer() stop_words = set(stopwords.words('english')) for index, row in dataFrame.iterrows(): tokens = word_tokenize(row['message']) pos = pos_tag(tokens) selected_tags = set() for i in range(len(pos)): if len(wordnet.synsets(pos[i][0])): if pos[i][1].startswith('J'): selected_tags.add(lemmatizer.lemmatize(pos[i][0], 'a')) elif pos[i][1].startswith('V'): selected_tags.add(lemmatizer.lemmatize(pos[i][0], 'v')) elif pos[i][1].startswith('N'): selected_tags.add(lemmatizer.lemmatize(pos[i][0], 'n')) elif pos[i][1].startswith('R'): selected_tags.add(lemmatizer.lemmatize(pos[i][0], 'r')) selected_tags -= stop_words if row['sentiment'] == 'Bullish': bullish_keywords = bullish_keywords.union(selected_tags) elif row['sentiment'] == 'Bearish': bearish_keywords = bearish_keywords.union(selected_tags) updated_bullish_keywords = bullish_keywords - bearish_keywords updated_bearish_keywords = bearish_keywords - bullish_keywords with open('data-extractor/lexicon_bullish_words.txt', 'a') as file: for word in updated_bullish_keywords: file.write(word+"\n") with open('data-extractor/lexicon_bearish_words.txt', 'a') as file: for word in updated_bearish_keywords: file.write(word+"\n") @classmethod def get_stocktwits_data(cls, symbol): """ get_data loads the preprocessed data of 'symbol' from data-extractor and returns a pandas dataframe with columns [message(object), datetime(datetime64[ns])]. """ file_location = 'data-extractor/stocktwits_'+symbol+'_preprocessed.csv' if os.path.isfile(file_location) is False: LoadData.preprocess_stocktwits_data('data-extractor/stocktwits_'+symbol+'.csv') dataFrame = pd.read_csv(file_location) return dataFrame @classmethod def get_price_data(cls, symbol): """ loads the price data of 'symbol' from data-extractor and returns a pandas dataframe with columns [Date(datetime64[ns]), Opening Price(float64), Closing Price(float64), Volume(float64)]. """ file_location = 'data-extractor/stock_prices_'+symbol+'.csv' dataFrame = pd.read_csv(file_location, usecols=['Date', 'Opening Price', 'Closing Price', 'Volume'], parse_dates=['Date'], infer_datetime_format=True) return dataFrame @classmethod def get_labelled_data(cls, type='complete'): """ get_labelled_data loads the preprocessed labelled data of stocktwits from data-extractor and returns a pandas dataframe with columns [sentiment(object), message(object)]. """ if type == 'complete': file_location = 'data-extractor/labelled_data_complete_preprocessed.csv' if os.path.isfile(file_location) is False: LoadData.preprocess_stocktwits_data('data-extractor/labelled_data_complete.csv', columns=['sentiment', 'message']) elif type == 'training': file_location = 'data-extractor/labelled_data_training_preprocessed.csv' if os.path.isfile(file_location) is False: LoadData.get_training_data() elif type == 'test': file_location = 'data-extractor/labelled_data_test_preprocessed.csv' if os.path.isfile(file_location) is False: LoadData.preprocess_stocktwits_data('data-extractor/labelled_data_test.csv', columns=['sentiment', 'message']) dataFrame = pd.read_csv(file_location) return dataFrame @classmethod def get_custom_lexicon(cls): """ get custom lexicon of bearish and bullish words respectively """ file_location1 = 'data-extractor/lexicon_bearish_words.txt' file_location2 = 'data-extractor/lexicon_bullish_words.txt' if os.path.isfile(file_location1) is False or os.path.isfile(file_location2) is False: LoadData.labelled_data_lexicon_analysis() dataFrameBearish = pd.read_csv(file_location1, header=None, names=['word']) dataFrameBullish = pd.read_csv(file_location2, header=None, names=['word']) return dataFrameBearish, dataFrameBullish @classmethod def get_training_data(cls): """ get labelled training data with equal bearish and bullish messages """ try: os.remove('data-extractor/labelled_data_training.csv') except OSError: pass dataFrame = LoadData.get_labelled_data(type='complete') dataFrameBearish = dataFrame[dataFrame['sentiment']=='Bearish'] dataFrameBullish = dataFrame[dataFrame['sentiment']=='Bullish'] dataFrameBearishTraining = dataFrameBearish dataFrameBullishTraining = dataFrameBullish[:len(dataFrameBearish)] dataFrameTraining = dataFrameBearishTraining.append(dataFrameBullishTraining, ignore_index=True).sample(frac=1).reset_index(drop=True) dataFrameTraining.to_csv('data-extractor/labelled_data_training_preprocessed.csv', index=False) @classmethod def combine_price_and_sentiment(cls, sentimentFrame, priceFrame): from datetime import timedelta """ receive sentimentFrame as (date, sentiment, message) indexed by date and sentiment and priceFrame as (Date, Opening Price, Closing Price, Volume) and return a combined frame as (sentiment_calculated_bullish, sentiment_calculated_bearish, sentiment_actual_previous, tweet_volume_change, cash_volume, label) """ dataFrame = pd.DataFrame() for date, df in sentimentFrame.groupby(level=0, sort=False): price_current = priceFrame[priceFrame['Date'] == date] if price_current.empty or date-timedelta(days=1) not in sentimentFrame.index: continue tweet_minus1 = sentimentFrame.loc[date-timedelta(days=1)] days = 1 price_plus1 = priceFrame[priceFrame['Date'] == date+timedelta(days=days)] while price_plus1.empty: days += 1 price_plus1 = priceFrame[priceFrame['Date'] == date+timedelta(days=days)] days = 1 price_minus1 = priceFrame[priceFrame['Date'] == date-timedelta(days=days)] while price_minus1.empty: days += 1 price_minus1 = priceFrame[priceFrame['Date'] == date-timedelta(days=days)] new_row = {} new_row['date'] = date new_row['sentiment_calculated_bullish'] = df.loc[(date, 'Bullish')]['message'] new_row['sentiment_calculated_bearish'] = df.loc[(date, 'Bearish')]['message'] new_row['sentiment_actual_previous'] = 1 if ((price_minus1.iloc[0]['Closing Price'] - price_minus1.iloc[0]['Opening Price']) >= 0) else -1 new_row['tweet_volume_change'] = df['message'].sum() - tweet_minus1['message'].sum() new_row['cash_volume'] = price_current['Volume'].iloc[0] new_row['label'] = 1 if ((price_plus1.iloc[0]['Closing Price'] - price_current.iloc[0]['Closing Price']) >= 0) else -1 print(new_row) dataFrame = dataFrame.append(new_row, ignore_index=True) return dataFrame @classmethod def aggregate_stock_price_data(cls): """ compile stocktwits data for stock prediction analysis in the following form (date, sentiment_calculated_bullish, sentiment_calculated_bearish, sentiment_actual_previous, tweet_volume_change, cash_volume, label) we have choice to take previous n days sentiment_calculated and using label of next nth day returns dataframes for AAPL, AMZN, GOOGL respectively """ if not (os.path.isfile('data-extractor/stocktwits_AAPL_sharedata.csv') and os.path.isfile('data-extractor/stocktwits_AMZN_sharedata.csv') and os.path.isfile('data-extractor/stocktwits_GOOGL_sharedata.csv')): from sklearn.externals import joblib file_location = 'naive_bayes_classifier.pkl' priceAAPL = LoadData.get_price_data('AAPL') priceAMZN = LoadData.get_price_data('AMZN') priceGOOGL = LoadData.get_price_data('GOOGL') sentimented_file = 'data-extractor/stocktwits_AAPL_withsentiment.csv' if os.path.isfile(sentimented_file) is False: tweet_classifier = joblib.load(file_location) dataAAPL = LoadData.get_stocktwits_data('AAPL') dataAAPL['sentiment'] = dataAAPL['message'].apply(lambda x: tweet_classifier.predict([x])[0]) dataAAPL['datetime'] = dataAAPL['datetime'].apply(lambda x: x.date()) dataAAPL.rename(columns={'datetime':'date'}, inplace=True) dataAAPL.to_csv('data-extractor/stocktwits_AAPL_withsentiment.csv', index=False) sentimented_file = 'data-extractor/stocktwits_AMZN_withsentiment.csv' if os.path.isfile(sentimented_file) is False: tweet_classifier = joblib.load(file_location) dataAMZN = LoadData.get_stocktwits_data('AMZN') dataAMZN['sentiment'] = dataAMZN['message'].apply(lambda x: tweet_classifier.predict([x])[0]) dataAMZN['datetime'] = dataAMZN['datetime'].apply(lambda x: x.date()) dataAMZN.rename(columns={'datetime':'date'}, inplace=True) dataAMZN.to_csv('data-extractor/stocktwits_AMZN_withsentiment.csv', index=False) sentimented_file = 'data-extractor/stocktwits_GOOGL_withsentiment.csv' if os.path.isfile(sentimented_file) is False: tweet_classifier = joblib.load(file_location) dataGOOGL = LoadData.get_stocktwits_data('GOOGL') dataGOOGL['sentiment'] = dataGOOGL['message'].apply(lambda x: tweet_classifier.predict([x])[0]) dataGOOGL['datetime'] = dataGOOGL['datetime'].apply(lambda x: x.date()) dataGOOGL.rename(columns={'datetime':'date'}, inplace=True) dataGOOGL.to_csv('data-extractor/stocktwits_GOOGL_withsentiment.csv', index=False) dataAAPL = pd.read_csv('data-extractor/stocktwits_AAPL_withsentiment.csv', parse_dates=['date'], infer_datetime_format=True) dataAMZN = pd.read_csv('data-extractor/stocktwits_AMZN_withsentiment.csv', parse_dates=['date'], infer_datetime_format=True) dataGOOGL = pd.read_csv('data-extractor/stocktwits_GOOGL_withsentiment.csv', parse_dates=['date'], infer_datetime_format=True) dataAAPL = dataAAPL.groupby(['date','sentiment'], sort=False).count() dataAMZN = dataAMZN.groupby(['date','sentiment'], sort=False).count() dataGOOGL = dataGOOGL.groupby(['date','sentiment'], sort=False).count() dataAAPL = LoadData.combine_price_and_sentiment(dataAAPL, priceAAPL) dataAMZN = LoadData.combine_price_and_sentiment(dataAMZN, priceAMZN) dataGOOGL = LoadData.combine_price_and_sentiment(dataGOOGL, priceGOOGL) dataAAPL.to_csv('data-extractor/stocktwits_AAPL_sharedata.csv', index=False) dataAMZN.to_csv('data-extractor/stocktwits_AMZN_sharedata.csv', index=False) dataGOOGL.to_csv('data-extractor/stocktwits_GOOGL_sharedata.csv', index=False) dataAAPL = pd.read_csv('data-extractor/stocktwits_AAPL_sharedata.csv', parse_dates=['date'], infer_datetime_format=True) dataAMZN = pd.read_csv('data-extractor/stocktwits_AMZN_sharedata.csv', parse_dates=['date'], infer_datetime_format=True) dataGOOGL = pd.read_csv('data-extractor/stocktwits_GOOGL_sharedata.csv', parse_dates=['date'], infer_datetime_format=True) return dataAAPL, dataAMZN, dataGOOGL @classmethod def get_stock_prediction_data(cls, symbol='ALL', type='training'): """ get the training and test data for stock prediction in format (sentiment_calculated_bullish, sentiment_calculated_bearish, sentiment_actual_previous, tweet_volume_change, cash_volume, label) Standardize the data before using. """ file_location = 'data-extractor/stockdata_'+symbol+'_'+type+'.csv' if not os.path.isfile(file_location): import numpy as np dataAAPL, dataAMZN, dataGOOGL = LoadData.aggregate_stock_price_data() combined_data = dataAAPL.append([dataAMZN, dataGOOGL], ignore_index=True) combined_data.sort_values('date') combined_data.drop(columns='date', inplace=True) combined_training, combined_test = np.split(combined_data.sample(frac=1), [int(.9*len(combined_data))]) combined_training.to_csv('data-extractor/stockdata_ALL_training.csv', index=False) combined_test.to_csv('data-extractor/stockdata_ALL_test.csv', index=False) dataAAPL.sort_values('date') dataAAPL.drop(columns='date', inplace=True) AAPL_training, AAPL_test = np.split(dataAAPL.sample(frac=1), [int(.9*len(dataAAPL))]) AAPL_training.to_csv('data-extractor/stockdata_AAPL_training.csv', index=False) AAPL_test.to_csv('data-extractor/stockdata_AAPL_test.csv', index=False) dataAMZN.sort_values('date') dataAMZN.drop(columns='date', inplace=True) AMZN_training, AMZN_test = np.split(dataAMZN.sample(frac=1), [int(.9*len(dataAMZN))]) AMZN_training.to_csv('data-extractor/stockdata_AMZN_training.csv', index=False) AMZN_test.to_csv('data-extractor/stockdata_AMZN_test.csv', index=False) dataGOOGL.sort_values('date') dataGOOGL.drop(columns='date', inplace=True) GOOGL_training, GOOGL_test = np.split(dataGOOGL.sample(frac=1), [int(.9*len(dataGOOGL))]) GOOGL_training.to_csv('data-extractor/stockdata_GOOGL_training.csv', index=False) GOOGL_test.to_csv('data-extractor/stockdata_GOOGL_test.csv', index=False) data = pd.read_csv(file_location) return data
3.078125
3
tests/component/test_performance_log_dataframe.py
cswarth/whylogs
603
12799916
<filename>tests/component/test_performance_log_dataframe.py import cProfile import json import os import pstats from logging import getLogger from shutil import rmtree from time import sleep from typing import List import pandas as pd import pytest from whylogs.app.config import SessionConfig, WriterConfig from whylogs.app.session import session_from_config script_dir = os.path.dirname(os.path.realpath(__file__)) TEST_LOGGER = getLogger(__name__) def count_features(json_profile_filename): if not os.path.isfile(json_profile_filename): raise ValueError(f"{json_profile_filename} is not a json file but trying to open it to count features") profile = get_json_profile(json_profile_filename) if profile and profile.get("columns"): return len(profile["columns"].keys()) return 0 def get_json_profile(json_profile_filename): profile = {} if os.path.exists(json_profile_filename) and os.stat(json_profile_filename).st_size > 0: with open(json_profile_filename) as profile_file: profile = json.load(profile_file) return profile def assert_all_elements_equal(data: List): if not data or len(data) == 1: return True first = data[0] for element in iter(data): assert first[0] == element[0], f"Found differing feature counts: {first[0]} vs {element[0]} in files {first[1]} and {element[1]}" @pytest.mark.load def test_log_rotation_concurrency(tmpdir): log_rotation_interval = "1s" sleep_interval = 2 test_path = tmpdir.mkdir("log_rotation_concurrency_repro") writer_config = WriterConfig("local", ["json"], test_path.realpath(), filename_template="dataset_summary-$dataset_timestamp") # Load the full lending club 1000 csv, to get a chance at hitting the bug. csv_path = os.path.join(script_dir, "lending_club_1000.csv") full_df = pd.read_csv(csv_path) # full_df has shape (1000, 151) so create a test df with 4x size by iteratively appending to self 2 times for _ in range(2): full_df = full_df.append(full_df) TEST_LOGGER.info(f"test dataframe has shape {full_df.shape}") # Create a whylogs logging session session_config = SessionConfig("project", "pipeline", writers=[writer_config]) session = session_from_config(session_config) TEST_LOGGER.info(f"Running rotate log test with {log_rotation_interval} flush intervals and {sleep_interval}s pause") profiler = cProfile.Profile() profiler.enable() with session.logger(tags={"datasetId": "model-1"}, with_rotation_time=log_rotation_interval) as ylog: ylog.log_dataframe(full_df) # Log a larger dataframe to increase chance of rotation before seeing all columns sleep(sleep_interval) ylog.log_dataframe(full_df.head(n=2)) # Log a smaller dataframe to get more features before rotation sleep(sleep_interval) profiler.disable() stats = pstats.Stats(profiler).sort_stats("cumulative") TEST_LOGGER.info(stats.print_stats(10)) output_files = [] for root, subdir, file_names in os.walk(test_path): if not file_names: continue if subdir: for directory in subdir: for file in file_names: full_file_path = os.path.join(root, directory, file) output_files += [full_file_path] else: for file in file_names: full_file_path = os.path.join(root, file) output_files += [full_file_path] assert len(output_files) > 0, "No output files were generated during stress test" TEST_LOGGER.debug(f"Generated {len(output_files)} dataset summary files.") feature_counts = [] for filename in output_files: feature_count = count_features(filename) if feature_count > 0: feature_counts.append((count_features(filename), filename)) assert len(feature_counts) > 0, f"feature counts are all empty, we expect some empty files with aggressive log rotation but not all empty!" TEST_LOGGER.info(f"Feature counts all same, first file with features was {feature_counts[0]}") TEST_LOGGER.debug(f"There were {len(feature_counts)} files with features.") assert_all_elements_equal(feature_counts) rmtree(test_path, ignore_errors=True) TEST_LOGGER.debug(f"End cleaning up test directory {test_path}")
2.359375
2
thing/models/skillplan.py
Gillingham/evething
33
12799917
# ------------------------------------------------------------------------------ # Copyright (c) 2010-2013, EVEthing team # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY # OF SUCH DAMAGE. # ------------------------------------------------------------------------------ from django.contrib.auth.models import User from django.db import models class SkillPlan(models.Model): PRIVATE_VISIBILITY = 1 PUBLIC_VISIBILITY = 2 GLOBAL_VISIBILITY = 3 MASTERY_VISIBILITY = 99 VISIBILITY_CHOICES = ( (PRIVATE_VISIBILITY, 'Private'), (PUBLIC_VISIBILITY, 'Public'), (GLOBAL_VISIBILITY, 'Global'), ) user = models.ForeignKey(User, null=True, blank=True) name = models.CharField(max_length=64) visibility = models.IntegerField(default=1, choices=VISIBILITY_CHOICES) class Meta: app_label = 'thing' ordering = ('name',) def __unicode__(self): if hasattr(self.user, 'username'): return '%s - %s' % (self.user.username, self.name) else: return '%s' % self.name
1.460938
1
sorting-and-searching/shell-sort.py
rayruicai/coding-interview
0
12799918
import unittest # time complexity O(n**2) # space complexity O(1) def shell_sort(arr): n = len(arr) gap = n//2 while gap >= 1: for start in range(gap): gap_insertion_sort(arr, start, gap) gap = gap//2 return arr def gap_insertion_sort(arr, start, gap): n = len(arr) for i in range(start, n, gap): j = i - gap while (j >= start) and (arr[i] < arr[j]): arr[i], arr[j] = arr[j], arr[i] i = j j -= gap class Test(unittest.TestCase): def test_shell_sort(self): arr = [3,6,9,7,8,4,2,5,1,9,6] self.assertEqual(shell_sort(arr), [1,2,3,4,5,6,6,7,8,9,9]); if __name__ == "__main__": unittest.main()
4.03125
4
tests/test_parameter.py
jlant/gagepy
0
12799919
# -*- coding: utf-8 -*- """ test_parameter ~~~~~~~~~~~~~~~ Tests for `gagepy.parameter` class :copyright: 2015 by <NAME>, see AUTHORS :license: United States Geological Survey (USGS), see LICENSE file """ import pytest import os import numpy as np from datetime import datetime from gagepy.parameter import Parameter def test_parameter_init(dates_daily): parameter = Parameter(name = "Discharge", dates = dates_daily, values = np.array([100, 110, 105, 107, 112]), units = "cubic feet per second (Mean)", code = "06_00060_00003") assert list(parameter.dates) == list(dates_daily) assert parameter.code == "06_00060_00003" assert parameter.name == "Discharge" assert parameter.units == "cubic feet per second (Mean)" assert list(parameter.values) == list(np.array([100, 110, 105, 107, 112])) def test_parameter_values_mean_max_min_without_nan(dates_daily): parameter = Parameter(name = "Discharge", dates = dates_daily, units = "cubic feet per second (Mean)", code = "06_00060_00003", values = np.array([1, 2, 3, 4, 5])) assert parameter.mean == 3.0 assert parameter.max == 5.0 assert parameter.min == 1.0 def test_parameter_values_mean_max_min_with_nan(dates_daily): parameter = Parameter(name = "Discharge", dates = dates_daily, units = "cubic feet per second (Mean)", code = "06_00060_00003", values = np.array([1, 2, 3, np.nan, 12])) assert parameter.mean == 4.5 # sum(values)/len(values) -> 18/4 = 4.5 assert parameter.max == 12.0 assert parameter.min == 1.0 def test_max_min_date(dates_daily): parameter = Parameter(name = "Discharge", dates = dates_daily, units = "cubic feet per second (Mean)", code = "06_00060_00003", values = np.array([1, 2, 3, 4, 5])) assert parameter.max_date == datetime(2015, 8, 5, 0, 0) assert parameter.min_date == datetime(2015, 8, 1, 0, 0) def test_max_min_date_with_nan(dates_daily): parameter = Parameter(name = "Discharge", dates = dates_daily, units = "cubic feet per second (Mean)", code = "06_00060_00003", values = np.array([1, 2, np.nan, 4, 5])) assert parameter.max_date == datetime(2015, 8, 5, 0, 0) assert parameter.min_date == datetime(2015, 8, 1, 0, 0) def test_print_parameter_by_not_capturing_stdout(dates_daily): parameter = Parameter(name = "Discharge", dates = dates_daily, units = "cubic feet per second (Mean)", code = "06_00060_00003", values = np.array([1, 2, 3, 4, 5])) print(parameter)
2.671875
3
Ex5.py
zelfg/Exercicios_LP_1B
0
12799920
algo = bool(input("Digite alguma coisa: ")) print("O valor {} é int?".format(algo).isnumeric())
3.53125
4
3/3_4_2_full_permutation_2.py
DingJunyao/aha-algorithms-py
2
12799921
<gh_stars>1-10 """ 全排列2 求1、2、3、4的全排列 """ k = [1, 2, 3, 4] for a in k: for b in k: for c in k: for d in k: if a != b and a != c and a != d and b != c and b != d and c != d: print("%s%s%s%s" % (a, b, c, d))
3.265625
3
code/haitiwater/apps/consumers/views.py
exavince/HaitiWater
4
12799922
from django.contrib.auth.decorators import login_required from django.http import HttpResponse from django.template import loader from haitiwater.settings import PROJECT_VERSION, PROJECT_NAME from ..utils.get_data import * @login_required(login_url='/login/') def index(request): template = loader.get_template('consumers.html') context = { 'project_version': PROJECT_VERSION, 'project_name': PROJECT_NAME, 'zone_name': get_zone(request), 'current_period': get_current_month_fr(), 'water_outlets': get_outlets(request), 'consumer_groups': get_amount_household(request), 'consumer_individuals': get_total_consumers(request), 'unpaid_bills': 42, # Todo, but for later as we can't mark a payment yet } return HttpResponse(template.render(context, request))
1.953125
2
pyrich/asset.py
choi-jiwoo/pyrich
0
12799923
from datetime import date import pandas as pd from pyrich.record import Record class Asset(Record): def __init__(self, table: str) -> None: super().__init__(table) def record_current_asset(self, current_asset: float) -> None: table = 'current_asset' query = (f'SELECT date FROM {table} ' f'WHERE id=(SELECT MAX(id) FROM {table});') self.db.run_query(query) date_format = '%Y-%m-%d' today = date.today() timestamp = today.strftime(date_format) record = { 'date': timestamp, 'amount': current_asset, } try: latest_date = self.db.cur.fetchone()[0] except TypeError: self.db.insert(table, record, msg=False) else: if today > latest_date: self.db.insert(table, record, msg=False) def __repr__(self) -> str: return f"Asset(table='{self.table}')"
3
3
lib/assets/Lib/browser/timer.py
s6007589/cafe-grader-web
25
12799924
<gh_stars>10-100 from browser import window def wrap(func): # Transforms a function f into another function that prints a # traceback in case of exception def f(*args, **kw): try: return func(*args, **kw) except Exception as exc: msg = '{0.info}\n{0.__name__}: {0.args[0]}'.format(exc) import sys sys.stderr.write(msg) return f clear_interval = window.clearInterval clear_timeout = window.clearTimeout def set_interval(func,interval): return window.setInterval(wrap(func),interval) def set_timeout(func,interval): return int(window.setTimeout(wrap(func),interval)) def request_animation_frame(func): return int(window.requestAnimationFrame(func)) def cancel_animation_frame(int_id): window.cancelAnimationFrame(int_id) def set_loop_timeout(x): # set a variable used to stop loops that last more than x seconds assert isinstance(x, int) __BRYTHON__.loop_timeout = x
2.8125
3
update_daemon.py
dgnorth/drift-serverdaemon
0
12799925
import os, sys, shutil import zipfile, subprocess from serverdaemon.logsetup import setup_logging, logger, log_event import boto3 from boto3.s3.transfer import S3Transfer, TransferConfig REGION = "eu-west-1" BUCKET_NAME = "directive-tiers.dg-api.com" UE4_BUILDS_FOLDER = "ue4-builds" INSTALL_FOLDER = r"c:\drift-serverdaemon" def get_my_version(): t = [0, 0, 0] try: with open("VERSION") as f: version = f.read().strip() # increment version each time the script is called t = [int(p) for p in version.split(".")] except: logger.warning("Old version invalid") return t def kill_python_processes(): command = ["tasklist"] popen = subprocess.Popen(command, stdout=subprocess.PIPE) stdout, stderr = popen.communicate() lst = stdout.split("\n") for l in lst: ll = l.split() if not len(ll): continue name = ll[0] try: pid = int(ll[1]) except: continue if pid == os.getpid(): continue if "python.exe" in l: try: logger.info("Killing task '%s' with pid %s..." % (name, pid)) command = ["taskkill", "/PID", str(pid), "/f"] subprocess.check_call(command, shell=True) except Exception as e: logger.error('Could not kill task. Error = %s' % e) def check_download(): client = boto3.client('s3', REGION) files = client.list_objects(Bucket=BUCKET_NAME, Prefix=UE4_BUILDS_FOLDER)['Contents'] max_version = get_my_version() my_version = max_version logger.info("My version is %s", ".".join(str(p) for p in max_version)) max_key = None for s3_key in files: filename = s3_key['Key'] if "drift-serverdaemon-" in filename: lst = filename.split("-")[-1].split(".") try: file_version = [int(p) for p in lst[0:-1]] except ValueError: continue is_more = False if file_version[0] > max_version[0]: is_more = True elif file_version[1] > max_version[1]: is_more = True elif file_version[2] > max_version[2]: is_more = True if is_more: max_version = file_version max_key = filename if not max_key: logger.info("No new version found. Bailing out.") return None log_event("upgrade_daemon", "Upgrading Serverdaemon from version %s to %s" % (my_version, max_version), severity="WARNING") logger.info("found version %s, %s", max_version, max_key) transfer = S3Transfer(client) out_filename = "c:\\temp\\drift-serverdaemon.zip" transfer.download_file(BUCKET_NAME, max_key, out_filename) return out_filename if __name__ == "__main__": setup_logging("updatedaemon") filename = check_download() if not filename: sys.exit(0) zip_file = zipfile.ZipFile(filename, 'r') for member in zip_file.namelist(): # copy file (taken from zipfile's extract) filename = "/".join(member.split("/")[1:]) source = zip_file.open(member) out_filename = os.path.join(INSTALL_FOLDER, filename) try: out_dirname = os.path.dirname(out_filename) os.makedirs(out_dirname) except: pass target = file(out_filename, "wb") with source, target: shutil.copyfileobj(source, target) zip_file.close() kill_python_processes() log_event("upgrade_daemon_complete", "Done Upgrading Serverdaemon. All python processes have been killed", severity="WARNING")
1.984375
2
app/schemas/email_sub.py
javi-cortes/linkedon
0
12799926
from typing import Optional from pydantic import BaseModel, EmailStr class EmailSub(BaseModel): email: EmailStr = None # search patterns salary_max: Optional[int] = 0 salary_min: Optional[int] = 0 class Config: orm_mode = True
2.53125
3
goatools/ratio.py
ezequieljsosa/goatools
0
12799927
<reponame>ezequieljsosa/goatools #!/usr/bin/env python # -*- coding: UTF-8 -*- __copyright__ = "Copyright (C) 2010-2016, <NAME> al., All rights reserved." __author__ = "various" from collections import defaultdict, Counter def count_terms(geneset, assoc, obo_dag): """count the number of terms in the study group """ term_cnt = Counter() for gene in (g for g in geneset if g in assoc): for x in assoc[gene]: if x in obo_dag: term_cnt[obo_dag[x].id] += 1 return term_cnt def get_terms(desc, geneset, assoc, obo_dag, log): """Get the terms in the study group """ term2itemids = defaultdict(set) genes = [g for g in geneset if g in assoc] for gene in genes: for x in assoc[gene]: if x in obo_dag: term2itemids[obo_dag[x].id].add(gene) log.write("{N:>6,} out of {M:>6,} {DESC} items found in association\n".format( DESC=desc, N=len(genes), M=len(geneset))) return term2itemids def is_ratio_different(min_ratio, study_go, study_n, pop_go, pop_n): """ check if the ratio go /n is different between the study group and the population """ if min_ratio is None: return True s = float(study_go) / study_n p = float(pop_go) / pop_n if s > p: return s / p > min_ratio return p / s > min_ratio # Copyright (C) 2010-2016, <NAME> al., All rights reserved.
2.625
3
old/cartpole_lib/cartpole_ppo.py
mmolnar0/sgillen_research
0
12799928
from baselines.common.cmd_util import make_mujoco_env from baselines.common import tf_util as U from baselines import logger from baselines.ppo1 import pposgd_simple from cartpole.cartpole_sim import cartpole_policy def train(env_id, num_timesteps, seed=0): U.make_session(num_cpu=1).__enter__() def policy_fn(name, ob_space, ac_space): return cartpole_policy.CartPolePolicy(name=name, ob_space=ob_space, ac_space=ac_space, hid_size=6, num_hid_layers=2) env = make_mujoco_env(env_id, seed) pi = pposgd_simple.learn(env, policy_fn, max_timesteps=num_timesteps, timesteps_per_actorbatch=2048, clip_param=0.2, entcoeff=0.0, optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64, gamma=0.99, lam=0.95, schedule='linear', ) env.close() return pi if __name__ == '__main__': logger.configure(dir = "./tensorboard_test", format_strs=["tensorboard"] ) pi = train('InvertedPendulum-v2', num_timesteps=5000, seed=0)
1.945313
2
text_game_map_maker/forms.py
eriknyquist/text_map_builder_gui
0
12799929
from collections import OrderedDict class AutoFormSettings(object): def __init__(self): if not hasattr(self, "spec"): raise RuntimeError("%s instance has no 'spec' attribute" % self.__class__.__name__) for attrname in self.spec.keys(): setattr(self, attrname, None) class WallSettings(AutoFormSettings): spec = OrderedDict([ ("north", {"type": "bool", "tooltip": "Enable/disable wall to the north"}), ("south", {"type": "bool", "tooltip": "Enable/disable wall to the south"}), ("east", {"type": "bool", "tooltip": "Enable/disable wall to the east"}), ("west", {"type": "bool", "tooltip": "Enable/disable wall to the west"}) ]) class DoorSettings(AutoFormSettings): spec = OrderedDict([ ("direction", {"type": "choice", "choices": ["north", "south", "east", "west"], "tooltip": "Set the direction to this door from currently" " selected tile"}), ("prefix", {"type": "str", "tooltip": "Set the word that should precede " "the name of this door, usually 'a' or 'an' (e.g. 'a' " "wooden door, 'an' oak door)"}), ("name", {"type": "str", "tooltip": "name of this door, e.g. " "'wooden door' or 'oak door'"}), ("tile_id", {"type": "str", "label": "tile ID", "tooltip": "unique " "identifier for programmatic access to this door"}) ]) class KeypadDoorSettings(AutoFormSettings): spec = OrderedDict([ ("direction", {"type": "choice", "choices": ["north", "south", "east", "west"], "tooltip": "Set the direction to this door from currently" " selected tile"}), ("prefix", {"type": "str", "tooltip": "Set the word that should precede " "the name of this door, usually 'a' or 'an' (e.g. 'a' " "wooden door, 'an' oak door)"}), ("name", {"type": "str", "tooltip": "name of this door, e.g. " "'wooden door' or 'oak door'"}), ("tile_id", {"type": "str", "label": "tile ID", "tooltip": "unique " "identifier for programmatic access to this door"}), ("code", {"type": "int", "label": "keypad code", "tooltip": "Integer " "code required to unlock this door"}), ("prompt", {"type": "str", "label": "keypad prompt", "tooltip": "String " "used to prompt player for keypad code entry"}) ]) class TileSettings(AutoFormSettings): spec = OrderedDict([ ('tile_id', {'type': 'str', 'label': 'tile ID', "tooltip": "Unique " "identifier for programmatic access to this tile"}), ('name', {'type': 'str', 'tooltip': "Short string used to describe this " "tile to the player from afar, e.g. 'a scary room'"}), ('description', {'type':'long_str', 'tooltip': "String used to describe " "the tile to player when they enter it. Note that this " "string will always be prefixed with 'You are' during " "gameplay"}), ('dark', {'type': 'bool', 'tooltip': "If enabled, player will need a " "light source to see anything on this tile"}), ('first_visit_message', {'type': 'long_str', 'label': 'first visit message', 'tooltip': "String displayed only when player " "enters this tile for the first time"}), ('first_visit_message_in_dark', {'type': 'bool', 'label': 'show first visit message if dark', 'tooltip': "Enable/disable showing the " "first visit message if the current tile " "is dark"}), ('smell_description', {'type': 'str', 'label': 'smell description', 'tooltip': "String displayed when player smells " "the air on the current tile"}), ('ground_smell_description', {'type': 'str', 'label': 'ground smell description', 'tooltip': "String displayed when player " "smells the ground on the current tile"}), ('ground_taste_description', {'type': 'str', 'label': 'ground taste description', 'tooltip': "String displayed when player " "tastes the ground on the current tile"}), ('name_from_north', {'type': 'str', 'label': 'name from south', 'tooltip': 'String used to describe this tile when' ' player is on the adjacent tile to the south'}), ('name_from_south', {'type': 'str', 'label': 'name from south', 'tooltip': 'String used to describe this tile when' ' player is on the adjacent tile to the south'}), ('name_from_east', {'type': 'str', 'label': 'name from east', 'tooltip': 'String used to describe this tile when' ' player is on the adjacent tile to the east'}), ('name_from_west', {'type': 'str', 'label': 'name from west', 'tooltip': 'String used to describe this tile when' ' player is on the adjacent tile to the west'}) ])
2.96875
3
venv/Lib/site-packages/timingsutil/unittests/test_stopwatch.py
avim2809/CameraSiteBlocker
0
12799930
# encoding: utf-8 import time import unittest from timingsutil import Stopwatch import logging_helper logging = logging_helper.setup_logging() class TestConfiguration(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_stopwatch(self): stopwatch = Stopwatch() for _ in range(3): time.sleep(1) self.assertEqual(round(stopwatch.lap()), 1) self.assertEqual(round(stopwatch.stop()), 3) if __name__ == u'__main__': unittest.main()
2.84375
3
model/items/apx_data.py
mlabru/visil
0
12799931
# -*- coding: utf-8 -*- """ apx_data mantém as informações sobre o dicionário de procedimento de aproximação revision 0.2 2015/nov mlabru pep8 style conventions revision 0.1 2014/nov mlabru initial release (Linux/Python) """ # < imports >-------------------------------------------------------------------------------------- # python library import logging import sys # PyQt library from PyQt5 import QtCore # FIXME QtXml is no longer supported. from PyQt5 import QtXml # model import model.items.apx_new as model import model.items.parser_utils as parser # control import control.events.events_basic as events # < class CApxData >------------------------------------------------------------------------------- class CApxData(dict): """ mantém as informações sobre o dicionário de procedimento de aproximação <aproximacao nApx="1"> <descricao>FINAL H3</descricao> <aerodromo>SBSP</aerodromo> <pista>17R</pista> <ils>N</ils> <aproxperd>N</aproxperd> <espera>2</espera> <breakpoint nBrk="1"> ... </breakpoint> </aproximacao> """ # --------------------------------------------------------------------------------------------- def __init__(self, f_model, f_data=None): """ @param f_model: model manager @param f_data: dados dos procedimentos de aproximação """ # check input assert f_model # inicia a super class super(CApxData, self).__init__() # salva o model manager self._model = f_model # salva o event manager self._event = f_model.event # recebeu dados ? if f_data is not None: # recebeu uma lista ? if isinstance(f_data, list): # cria um procedimento de aproximação com os dados da lista pass # self.make_apx(f_data) # recebeu um procedimento de aproximação ? elif isinstance(f_data, CApxData): # copia o procedimento de aproximação pass # self.copy_apx(f_data) # senão, recebeu o pathname de um arquivo de procedimento de aproximação else: # carrega o dicionário de procedimento de aproximação de um arquivo em disco self.load_file(f_data) # --------------------------------------------------------------------------------------------- def load_file(self, fs_apx_pn): """ carrega os dados do procedimento de aproximação de um arquivo em disco @param fs_apx_pn: pathname do arquivo em disco """ # check input assert fs_apx_pn # carrega o arquivo de procedimento de aproximação self.parse_apx_xml(fs_apx_pn + ".xml") # --------------------------------------------------------------------------------------------- def make_apx(self, fdct_root, fdct_data): """ carrega os dados de procedimento de aproximação a partir de um dicionário @param fdct_data: lista de dados de procedimento de aproximação @return flag e mensagem """ # check input assert fdct_root is not None assert fdct_data is not None # é uma procedimento de aproximação do newton ? if "aproximacoes" != fdct_root["tagName"]: # logger l_log = logging.getLogger("CApxData::make_apx") l_log.setLevel(logging.CRITICAL) l_log.critical("<E01: não é um arquivo de procedimentos de aproximação.") # cria um evento de quit l_evt = events.CQuit() assert l_evt # dissemina o evento self._event.post(l_evt) # se não for, cai fora... sys.exit(1) # é um arquivo do newton ? if "NEWTON" != fdct_root["FORMAT"]: # logger l_log = logging.getLogger("CApxData::make_apx") l_log.setLevel(logging.CRITICAL) l_log.critical("<E02: não está em um formato aceito.") # cria um evento de quit l_evt = events.CQuit() assert l_evt # dissemina o evento self._event.post(l_evt) # se não for, cai fora... sys.exit(1) # é a assinatura do newton ? if "1961" != fdct_root["CODE"]: # logger l_log = logging.getLogger("CApxData::make_apx") l_log.setLevel(logging.CRITICAL) l_log.critical("<E03: não tem a assinatura correta.") # cria um evento de quit l_evt = events.CQuit() assert l_evt # dissemina o evento self._event.post(l_evt) # se não for, cai fora... sys.exit(1) # verifica se existe identificação if "nApx" in fdct_data: # cria procedimento de aproximação l_apx = model.CApxNEW(self._model, fdct_data, fdct_root["VERSION"]) assert l_apx # coloca a procedimento de aproximação no dicionário self[fdct_data["nApx"]] = l_apx # senão, não existe identificação else: # monta uma mensagem ls_msg = "não tem identificação. Aproximação não incluída." # logger l_log = logging.getLogger("CApxData::make_apx") l_log.setLevel(logging.WARNING) l_log.warning("<E04: {}".format(ls_msg)) # se não for, cai fora... return False, ls_msg # retorna Ok return True, None # --------------------------------------------------------------------------------------------- def parse_apx_xml(self, fs_apx_pn): """ carrega o arquivo de procedimentos de aproximação @param fs_apx_pn: pathname do arquivo em disco """ # check input assert fs_apx_pn # cria o QFile para o arquivo XML do procedimentos de aproximação l_data_file = QtCore.QFile(fs_apx_pn) assert l_data_file is not None # abre o arquivo XML do procedimentos de aproximação l_data_file.open(QtCore.QIODevice.ReadOnly) # erro na abertura do arquivo ? if not l_data_file.isOpen(): # logger l_log = logging.getLogger("CApxData::make_apx") l_log.setLevel(logging.CRITICAL) l_log.critical("<E01: erro na abertura de {}.".format(fs_apx_pn)) # cria um evento de quit l_evt = events.CQuit() assert l_evt # dissemina o evento self._event.post(l_evt) # termina a aplicação sys.exit(1) # cria o documento XML do procedimento de aproximação # FIXME QtXml is no longer supported. l_xdoc_apx = QtXml.QDomDocument("aproximacoes") assert l_xdoc_apx is not None # erro na carga do documento ? if not l_xdoc_apx.setContent(l_data_file): # fecha o arquivo l_data_file.close() # logger l_log = logging.getLogger("CApxData::make_apx") l_log.setLevel(logging.CRITICAL) l_log.critical("<E02: falha no parse de {}.".format(fs_apx_pn)) # cria um evento de quit l_evt = events.CQuit() assert l_evt # dissemina o evento self._event.post(l_evt) # termina a aplicação sys.exit(1) # fecha o arquivo l_data_file.close() # obtém o elemento raíz do documento l_elem_root = l_xdoc_apx.documentElement() assert l_elem_root is not None # faz o parse dos atributos do elemento raíz ldct_root = parser.parse_root_element(l_elem_root) # cria uma lista com os elementos de procedimento de aproximação l_node_list = l_elem_root.elementsByTagName("aproximacao") # para todos os nós na lista... for li_ndx in range(l_node_list.length()): # inicia o dicionário de dados ldct_data = {} # inicia a lista de breakpoints ldct_data["breakpoints"] = [] # obtém um nó da lista l_element = l_node_list.at(li_ndx).toElement() assert l_element is not None # read identification if available if l_element.hasAttribute("nApx"): ldct_data["nApx"] = int(l_element.attribute("nApx")) # obtém o primeiro nó da sub-árvore l_node = l_element.firstChild() assert l_node is not None # percorre a sub-árvore while not l_node.isNull(): # tenta converter o nó em um elemento l_element = l_node.toElement() assert l_element is not None # o nó é um elemento ? if not l_element.isNull(): # faz o parse do elemento ldct_tmp = parser.parse_aproximacao(l_element) # atualiza o dicionário com o breakpoint if "breakpoint" in ldct_tmp: # atualiza o dicionário com o breakpoint ldct_data["breakpoints"].append(ldct_tmp["breakpoint"]) # apaga este elemento del ldct_tmp["breakpoint"] # atualiza o dicionário de dados ldct_data.update(ldct_tmp) # próximo nó l_node = l_node.nextSibling() assert l_node is not None # carrega os dados de procedimento de aproximação a partir de um dicionário self.make_apx(ldct_root, ldct_data) # --------------------------------------------------------------------------------------------- def save2disk(self, fs_apx_pn=None): """ salva os dados da procedimento de aproximação em um arquivo em disco @param fs_apx_pn: path name do arquivo onde salvar @return flag e mensagem """ # return code lv_ok = True # mensagem ls_msg = "save Ok" # retorna flag e mensagem return lv_ok, ls_msg # < the end >--------------------------------------------------------------------------------------
1.914063
2
autograd_manipulation/sim.py
dawsonc/a_tale_of_two_gradients
2
12799932
<reponame>dawsonc/a_tale_of_two_gradients<filename>autograd_manipulation/sim.py """Automatically-differentiable manipulation simulation engine using JAX""" import jax.numpy as jnp import jax @jax.jit def box_finger_signed_distance(box_pose, finger_pose, box_size): """Compute the signed distance from the box to the finger args: box_pose: current (x, z, theta) state of the box finger_pose: current (x, z) state of the finger box_size: side length of box returns: float signed distance """ # Credit to this stackoverflow answer for the inspiration for this code: # stackoverflow.com/questions/30545052/calculate-signed-distance-between-point-and- # rectangle # First transform the finger (x, z) into the box frame p_WF = finger_pose p_WB = box_pose[:2] theta_B = box_pose[2] p_BF_W = p_WF - p_WB # Rotate p_BF_W by -theta about the z axis to get position in box frame R_WB = jnp.array( [[jnp.cos(theta_B), -jnp.sin(theta_B)], [jnp.sin(theta_B), jnp.cos(theta_B)]] ) R_BW = R_WB.T p_BF = R_BW @ p_BF_W # Now get the signed distance x_dist = jnp.maximum(-(p_BF[0] + box_size / 2.0), p_BF[0] - box_size / 2.0) z_dist = jnp.maximum(-(p_BF[1] + box_size / 2.0), p_BF[1] - box_size / 2.0) # phi = signed distance. phi = jnp.minimum(0.0, jnp.maximum(x_dist, z_dist)) phi = phi + jnp.linalg.norm( jnp.maximum(jnp.array([1e-3, 1e-3]), jnp.array([x_dist, z_dist])) ) return phi @jax.jit def rotation_matrix(theta): """Return the 2D rotation matrix for angle theta""" return jnp.array( [[jnp.cos(theta), -jnp.sin(theta)], [jnp.sin(theta), jnp.cos(theta)]] ) @jax.jit def calc_finger_ground_force(finger_state, mu_d, c, psi_s, contact_k, contact_d): """Compute the contact force between a finger and the ground. args: finger_state: current (x, z, theta, vx, vz, omega) state of the box mu_d: coefficient of friction between box and ground while slipping c: coefficient of tangential velocity in determining sticking friction psi_s: tangential velocity where slipping begins contact_k: spring constant of contact contact_d: damping constant of contact returns: contact force in x and z """ # Get the position and velocity of the finger in the world frame p_WF = finger_state[:2] v_WF = finger_state[2:] # Get penetration into ground phi_finger_ground = jnp.minimum(jnp.zeros(1), p_WF[1]) # Get the contact forces. Approximate ground force as a damped spring, as in # the simplified friction model from eq 21 and 22 in # https://arxiv.org/pdf/2109.05143.pdf, but with damping. normal_velocity = v_WF[1] normal_force = -contact_k * phi_finger_ground normal_force = normal_force - contact_d * normal_velocity * (phi_finger_ground < 0) tangential_velocity = v_WF[0] sticking_mask = jnp.abs(tangential_velocity) <= psi_s slipping_mask = jnp.logical_not(sticking_mask) * jnp.sign(tangential_velocity) mu = sticking_mask * c * tangential_velocity + slipping_mask * mu_d tangent_force = -mu * normal_force contact_force = jnp.array([tangent_force, normal_force]).reshape(2) return contact_force @jax.jit def calc_box_ground_wrench(box_state, box_size, mu_d, c, psi_s, contact_k, contact_d): """Compute the contact wrench between the box and the ground. args: box_state: current (x, z, theta, vx, vz, omega) state of the box box_size: float indicating the side length of the box mu_d: coefficient of friction between box and ground while slipping c: coefficient of tangential velocity in determining sticking friction psi_s: tangential velocity where slipping begins contact_k: spring constant of contact contact_d: damping constant of contact returns: contact wrench in x, z, and theta. """ # Start by finding any box corner points that intersect the ground at z = 0 half_size = box_size / 2.0 p_BC = jnp.array( [ [-half_size, half_size], # top left [half_size, half_size], # top right [-half_size, -half_size], # bottom left [half_size, -half_size], # bottom right ] ) # corner points in box frame # Transform into world frame R_WB = rotation_matrix(box_state[2]) p_BC_W = (R_WB @ p_BC.T).T p_WC = p_BC_W + jnp.tile(box_state[:2], [4, 1]) # Also find the velocities of each corner point r = jnp.sqrt(2) * half_size v_BC = ( box_state[5] * r * jnp.array( [ [-1, -1], # top left [-1, 1], # top right [1, -1], # bottom left [1, 1], # bottom right ] ) ) # corner point velocities in box frame # Transform to world frame v_WC = (R_WB @ v_BC.T).T + jnp.tile(box_state[3:5], [4, 1]) # Find any that have negative z: min(0, signed distance) phi_corner_ground = jnp.minimum(jnp.zeros(4), p_WC[:, 1]) # For each corner, sum up the forces and torques due to penetration with the ground contact_wrench_on_box = jnp.zeros(3) for i in range(4): # Get the friction force. Approximate ground force as a damped spring, as in # the simplified friction model from eq 21 and 22 in # https://arxiv.org/pdf/2109.05143.pdf, but with damping. normal_velocity = v_WC[i, 1] normal_force = -contact_k * phi_corner_ground[i] normal_force = normal_force - contact_d * normal_velocity * ( phi_corner_ground[i] < 0 ) tangential_velocity = v_WC[i, 0] sticking_mask = jnp.abs(tangential_velocity) <= psi_s slipping_mask = jnp.logical_not(sticking_mask) * jnp.sign(tangential_velocity) mu = sticking_mask * c * tangential_velocity + slipping_mask * mu_d tangent_force = -mu * normal_force contact_force = jnp.array([tangent_force, normal_force]) # Add the friction force to the box contact_wrench_on_box = contact_wrench_on_box.at[:2].add(contact_force) # Also add the torque from this interaction contact_wrench_on_box = contact_wrench_on_box.at[2].add( jnp.cross(p_BC_W[i, :], contact_force) ) return contact_wrench_on_box @jax.jit def calc_box_finger_wrench( box_state, finger_state, box_size, mu_d, c, psi_s, contact_k, contact_d ): """Compute the contact wrench between the box and the ground. args: box_state: current (x, z, theta, vx, vz, omega) state of the box finger_state: current (x, z, vx, vz) state of the finger box_size: float indicating the side length of the box mu_d: coefficient of friction between box and ground while slipping c: coefficient of tangential velocity in determining sticking friction psi_s: tangential velocity where slipping begins contact_k: spring constant of contact contact_d: damping constant of contact returns: Tuple of - contact wrench on box in x, z, and theta. - contact force on finger in x and z. """ # Contact point is just the finger point in the box frame p_WF = finger_state[:2] p_WB = box_state[:2] p_BF_W = p_WF - p_WB R_WB = rotation_matrix(box_state[2]) p_BF = R_WB.T @ p_BF_W # Get velocity of the finger in box frame v_WF = finger_state[2:] v_WB = box_state[3:5] v_BF_W = v_WF - v_WB v_BF = R_WB.T @ v_BF_W # Get velocity of contact point in box frame v_Bcontact = box_state[5] * jnp.array([[0, -1], [1, 0]]) @ p_BF # Get velocity of finger relative to contact pt in box frame v_contactF_B = v_BF - v_Bcontact # Get the normal vector of the contact in the box frame right_or_up = p_BF[1] > -p_BF[0] left_or_up = p_BF[1] > p_BF[0] normal_right = jnp.logical_and(right_or_up, jnp.logical_not(left_or_up)) normal_up = jnp.logical_and(right_or_up, left_or_up) normal_left = jnp.logical_and(jnp.logical_not(right_or_up), left_or_up) normal_down = jnp.logical_and( jnp.logical_not(right_or_up), jnp.logical_not(left_or_up) ) normal = normal_right * jnp.array([1.0, 0.0]) normal += normal_left * jnp.array([-1.0, 0.0]) normal += normal_up * jnp.array([0.0, 1.0]) normal += normal_down * jnp.array([0.0, -1.0]) # Get the tangent vector, which is orthogonal to the normal vector # and points in the same direction as the relative velocity tangential_velocity = ( v_contactF_B - v_contactF_B.dot(normal) * normal ) # relative velocity in tangent direction normal_velocity = v_contactF_B.dot(normal) # scalar, along the normal vector tangent = tangential_velocity / (jnp.linalg.norm(tangential_velocity + 1e-3) + 1e-3) # Get signed distance phi_finger_box = box_finger_signed_distance( box_state[:3], finger_state[:2], box_size ) # Clip to only consider negative values phi_finger_box = jnp.minimum(0, phi_finger_box) # Use the same simplified friction model as used for ground contact normal_force = -contact_k * phi_finger_box # scalar, in normal direction normal_force = normal_force - contact_d * normal_velocity * (phi_finger_box < 0) sticking_mask = jnp.linalg.norm(tangential_velocity + 1e-3) <= psi_s slipping_mask = jnp.logical_not(sticking_mask) mu = sticking_mask * c * tangential_velocity + slipping_mask * mu_d * tangent tangent_force = -mu * normal_force # vector! # Sum up the contact forces in the box frame contact_force_B = normal_force * normal + tangent_force # transform into the world frame contact_force_W = R_WB @ contact_force_B # Add the contact force to the box and finger box_wrench = jnp.zeros(3) box_wrench = box_wrench.at[:2].add(-contact_force_W) box_wrench = box_wrench.at[2].add(jnp.cross(p_BF_W, -contact_force_W)) finger_forces = contact_force_W return box_wrench, finger_forces @jax.jit def box_single_finger_step( box_state, finger_state, finger_state_desired, finger_control_stiffness, ): """Compute a single discrete-time update for box manipulation with one finger, using the penalty method for contact modelling with a simplified Coulomb friction model args: box_state: current (x, z, theta, vx, vz, omega) state of the box finger_state: current (x, z, vx, vz) state of the finger finger_state_desired: desired (x_d, z_d) state of the finger finger_control_stiffness: the parameter for the finger stiffness control returns: new_box_state, new_finger_state """ ###################################### # define parameters of the simulation ###################################### # Box properties box_mass_kg = 1.0 box_side_m = 0.5 box_inertia = 1 / 6 * box_mass_kg * box_side_m ** 2 # Finger properties finger_mass_kg = 0.1 finger_control_damping = 2 # Contact properties mu_d = 0.7 c = 2.0 psi_s = mu_d / c contact_k = 1000 contact_d = 2 * jnp.sqrt(box_mass_kg * contact_k) # critical damping # General properties g = 9.81 dt = 0.001 # seconds per step ###################################### # Get forces on each body ###################################### finger_forces = jnp.zeros(2) box_forces = jnp.zeros(3) # Gravitational force on each body finger_forces = finger_forces.at[1].add(-g * finger_mass_kg) box_forces = box_forces.at[1].add(-g * box_mass_kg) # Control forces on finger finger_pos_error = finger_state_desired - finger_state[:2] finger_vel_error = -finger_state[2:] finger_forces = finger_forces + finger_control_stiffness * finger_pos_error finger_forces = finger_forces + finger_control_damping * finger_vel_error # Contact forces from the ground. box_forces += calc_box_ground_wrench( box_state, box_side_m, mu_d, c, psi_s, contact_k, contact_d ) finger_forces += calc_finger_ground_force( finger_state, mu_d, c, psi_s, contact_k, contact_d ) # Contact forces between box and finger finger_wrench_on_box, box_force_on_finger = calc_box_finger_wrench( box_state, finger_state, box_side_m, mu_d, c, psi_s, contact_k, contact_d ) box_forces += finger_wrench_on_box finger_forces += box_force_on_finger ###################################### # Numerically integrate ###################################### # Build the derivatives matrix box_state_dot = jnp.zeros(6) finger_state_dot = jnp.zeros(4) # Velocities box_state_dot = box_state_dot.at[:3].add(box_state[3:]) finger_state_dot = finger_state_dot.at[:2].add(finger_state[2:]) # Forces box_state_dot = box_state_dot.at[3:5].add(box_forces[:2] / box_mass_kg) finger_state_dot = finger_state_dot.at[2:].add(finger_forces / finger_mass_kg) # Torques box_state_dot = box_state_dot.at[5].add(box_forces[2] / box_inertia) # Itegrate new_box_state = box_state + dt * box_state_dot new_finger_state = finger_state + dt * finger_state_dot return new_box_state, new_finger_state def box_single_finger_simulate( box_state_initial, finger_state_initial, finger_state_desired_trace, finger_control_stiffness, N_steps, ): """Simulate the evolution of the box-finger system with one finger, starting at the given initial states and applying the specified control inputs args: box_state_initial: initial (x, z, theta, vx, vz, omega) state of the box finger_state_initial: initial (x, z, vx, vz) state of the finger finger_state_desired_trace: N_steps x 2 array of desired (x_d, z_d) state of the finger over time finger_control_stiffness: the parameter for the finger stiffness control N_steps: int specifying the number of discrete time steps to simulate returns: box_state_trace, finger_state_trace """ # Create arrays to store simulation traces box_state_trace = jnp.zeros((N_steps, 6)) finger_state_trace = jnp.zeros((N_steps, 4)) # Store the initial conditions box_state_trace = box_state_trace.at[0, :].set(box_state_initial) finger_state_trace = finger_state_trace.at[0, :].set(finger_state_initial) # Simulate for i in range(1, N_steps): # get currents state current_box_state = box_state_trace[i - 1, :] current_finger_state = finger_state_trace[i - 1, :] current_finger_state_desired = finger_state_desired_trace[i - 1] # get next state next_box_state, next_finger_state = box_single_finger_step( current_box_state, current_finger_state, current_finger_state_desired, finger_control_stiffness, ) # Save box_state_trace = box_state_trace.at[i, :].set(next_box_state) finger_state_trace = finger_state_trace.at[i, :].set(next_finger_state) # Return the simulated values return box_state_trace, finger_state_trace @jax.jit def box_two_finger_step( box_state, finger1_state, finger1_state_desired, finger2_state, finger2_state_desired, finger_control_stiffness, ): """Compute a single discrete-time update for box manipulation with one finger, using the penalty method for contact modelling with a simplified Coulomb friction model args: box_state: current (x, z, theta, vx, vz, omega) state of the box finger1_state: current (x, z, vx, vz) state of the first finger finger1_state_desired: desired (x_d, z_d) state of the first finger finger2_state: current (x, z, vx, vz) state of the second finger finger2_state_desired: desired (x_d, z_d) state of the second finger finger_control_stiffness: the parameter for the finger stiffness control returns: new_box_state, new_finger_state """ ###################################### # define parameters of the simulation ###################################### # Box properties box_mass_kg = 1.0 box_side_m = 0.5 box_inertia = 1 / 6 * box_mass_kg * box_side_m ** 2 # Finger properties finger_mass_kg = 0.1 finger_control_damping = 2 # Contact properties mu_d = 0.7 c = 2.0 psi_s = mu_d / c contact_k = 1000 contact_d = 2 * jnp.sqrt(box_mass_kg * contact_k) # critical damping # General properties g = 9.81 dt = 0.001 # seconds per step ###################################### # Get forces on each body ###################################### finger1_forces = jnp.zeros(2) finger2_forces = jnp.zeros(2) box_forces = jnp.zeros(3) # Gravitational force on each body finger1_forces = finger1_forces.at[1].add(-g * finger_mass_kg) finger2_forces = finger2_forces.at[1].add(-g * finger_mass_kg) box_forces = box_forces.at[1].add(-g * box_mass_kg) # Control forces on fingers finger1_pos_error = finger1_state_desired - finger1_state[:2] finger1_vel_error = -finger1_state[2:] finger1_forces = finger1_forces + finger_control_stiffness * finger1_pos_error finger1_forces = finger1_forces + finger_control_damping * finger1_vel_error finger2_pos_error = finger2_state_desired - finger2_state[:2] finger2_vel_error = -finger2_state[2:] finger2_forces = finger2_forces + finger_control_stiffness * finger2_pos_error finger2_forces = finger2_forces + finger_control_damping * finger2_vel_error # Contact forces from ground. box_forces += calc_box_ground_wrench( box_state, box_side_m, mu_d, c, psi_s, contact_k, contact_d ) finger1_forces += calc_finger_ground_force( finger1_state, mu_d, c, psi_s, contact_k, contact_d ) finger2_forces += calc_finger_ground_force( finger2_state, mu_d, c, psi_s, contact_k, contact_d ) # Contact forces between box and fingers finger1_wrench_on_box, box_force_on_finger1 = calc_box_finger_wrench( box_state, finger1_state, box_side_m, mu_d, c, psi_s, contact_k, contact_d ) box_forces += finger1_wrench_on_box finger1_forces += box_force_on_finger1 finger2_wrench_on_box, box_force_on_finger2 = calc_box_finger_wrench( box_state, finger2_state, box_side_m, mu_d, c, psi_s, contact_k, contact_d ) box_forces += finger2_wrench_on_box finger2_forces += box_force_on_finger2 ###################################### # Numerically integrate ###################################### # Build the derivatives matrix box_state_dot = jnp.zeros(6) finger1_state_dot = jnp.zeros(4) finger2_state_dot = jnp.zeros(4) # Velocities box_state_dot = box_state_dot.at[:3].add(box_state[3:]) finger1_state_dot = finger1_state_dot.at[:2].add(finger1_state[2:]) finger2_state_dot = finger2_state_dot.at[:2].add(finger2_state[2:]) # Forces box_state_dot = box_state_dot.at[3:5].add(box_forces[:2] / box_mass_kg) finger1_state_dot = finger1_state_dot.at[2:].add(finger1_forces / finger_mass_kg) finger2_state_dot = finger2_state_dot.at[2:].add(finger2_forces / finger_mass_kg) # Torques box_state_dot = box_state_dot.at[5].add(box_forces[2] / box_inertia) # Itegrate new_box_state = box_state + dt * box_state_dot new_finger1_state = finger1_state + dt * finger1_state_dot new_finger2_state = finger2_state + dt * finger2_state_dot return new_box_state, new_finger1_state, new_finger2_state def box_two_finger_simulate( box_state_initial, finger1_state_initial, finger1_state_desired_trace, finger2_state_initial, finger2_state_desired_trace, finger_control_stiffness, N_steps, ): """Simulate the evolution of the box-finger system with one finger, starting at the given initial states and applying the specified control inputs args: box_state_initial: initial (x, z, theta, vx, vz, omega) state of the box finger1_state_initial: initial (x, z, vx, vz) state of the finger finger1_state_desired_trace: N_steps x 2 array of desired (x_d, z_d) state of the finger over time finger2_state_initial: initial (x, z, vx, vz) state of the finger finger2_state_desired_trace: N_steps x 2 array of desired (x_d, z_d) state of the finger over time finger_control_stiffness: the parameter for the finger stiffness control N_steps: int specifying the number of discrete time steps to simulate returns: box_state_trace, finger_state_trace """ # Create arrays to store simulation traces box_state_trace = jnp.zeros((N_steps, 6)) finger1_state_trace = jnp.zeros((N_steps, 4)) finger2_state_trace = jnp.zeros((N_steps, 4)) # Store the initial conditions box_state_trace = box_state_trace.at[0, :].set(box_state_initial) finger1_state_trace = finger1_state_trace.at[0, :].set(finger1_state_initial) finger2_state_trace = finger2_state_trace.at[0, :].set(finger2_state_initial) # Simulate for i in range(1, N_steps): # get currents state current_box_state = box_state_trace[i - 1, :] current_finger1_state = finger1_state_trace[i - 1, :] current_finger1_state_desired = finger1_state_desired_trace[i - 1] current_finger2_state = finger2_state_trace[i - 1, :] current_finger2_state_desired = finger2_state_desired_trace[i - 1] # get next state next_box_state, next_finger1_state, next_finger2_state = box_two_finger_step( current_box_state, current_finger1_state, current_finger1_state_desired, current_finger2_state, current_finger2_state_desired, finger_control_stiffness, ) # Save box_state_trace = box_state_trace.at[i, :].set(next_box_state) finger1_state_trace = finger1_state_trace.at[i, :].set(next_finger1_state) finger2_state_trace = finger2_state_trace.at[i, :].set(next_finger2_state) # Return the simulated values return box_state_trace, finger1_state_trace, finger2_state_trace
2.53125
3
prodigy_backend/classes/migrations/0004_auto_20210118_0351.py
Savimaster/Prodigy
4
12799933
# Generated by Django 3.1.5 on 2021-01-18 03:51 import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('classes', '0003_auto_20210117_2058'), ] operations = [ migrations.AlterField( model_name='class', name='cost', field=models.DecimalField(decimal_places=2, max_digits=8), ), migrations.AlterField( model_name='review', name='rating', field=models.DecimalField(decimal_places=1, max_digits=2, validators=[django.core.validators.MaxValueValidator(5), django.core.validators.MinValueValidator(0)]), ), ]
1.59375
2
tests/bugs/core_6108_test.py
reevespaul/firebird-qa
0
12799934
#coding:utf-8 # # id: bugs.core_6108 # title: Regression: FB3 throws "Datatypes are not comparable in expression" in procedure parameters # decription: # Confirmed bug on 4.0.0.1567; 3.0.5.33160. # Works fine on 4.0.0.1573; 3.0.x is still affected # # tracker_id: CORE-6108 # min_versions: ['2.5'] # versions: 2.5 # qmid: None import pytest from firebird.qa import db_factory, isql_act, Action # version: 2.5 # resources: None substitutions_1 = [] init_script_1 = """""" db_1 = db_factory(sql_dialect=3, init=init_script_1) # test_script_1 #--- # # proc_ddl=''' # create or alter procedure test_proc ( a_dts timestamp) returns ( o_dts timestamp) as # begin # o_dts = a_dts; # suspend; # end # ''' # # db_conn.execute_immediate( proc_ddl ) # db_conn.commit() # # cur=db_conn.cursor() # # sttm="select o_dts from test_proc('2019-'|| COALESCE( ?, 1) ||'-01' )" # cur.execute( sttm, ( 3, ) ) # for r in cur: # print(r[0]) # cur.close() # # #--- #act_1 = python_act('db_1', test_script_1, substitutions=substitutions_1) expected_stdout_1 = """ 2019-03-01 00:00:00 """ @pytest.mark.version('>=2.5') @pytest.mark.xfail def test_1(db_1): pytest.fail("Test not IMPLEMENTED")
1.46875
1
test_sample_policies.py
donghun2018/adclick-simulator-v2
0
12799935
<reponame>donghun2018/adclick-simulator-v2 """ Sample bid policy testing script for ORF418 Spring 2019 course """ import numpy as np import pandas as pd def simulator_setup_1day(): """ This is a tool to set up a simulator and problem definition (state set, action set, and attribute set) :return: simulator, state set, action set, attribute set """ from ssa_sim_v2.simulator.modules.auctions.auctions_base_module import AuctionsPoissonModule from ssa_sim_v2.simulator.modules.auction_attributes.auction_attributes_base_module import \ AuctionAttributesModule from ssa_sim_v2.simulator.modules.vickrey_auction.vickrey_auction_module import VickreyAuctionModule from ssa_sim_v2.simulator.modules.competitive_click_probability.competitive_click_probability_base_module import \ CompetitiveClickProbabilityTwoClassGeometricModule from ssa_sim_v2.simulator.modules.competitive_clicks.competitive_clicks_base_module import \ CompetitiveClicksBinomialModule from ssa_sim_v2.simulator.modules.conversion_rate.conversion_rate_base_module import ConversionRateFlatModule from ssa_sim_v2.simulator.modules.conversions.conversions_base_module import ConversionsBinomialModule from ssa_sim_v2.simulator.modules.revenue.revenue_base_module import RevenueGammaNoiseModule from ssa_sim_v2.simulator.modules.competitive_cpc.competitive_cpc_base_module import CompetitiveCPCVickreyModule from ssa_sim_v2.simulator.modules.auctions.auctions_date_how_module import AuctionsDateHoWModule from ssa_sim_v2.simulator.modules.auction_attributes.auction_attributes_date_how_module import \ AuctionAttributesDateHoWModule from ssa_sim_v2.simulator.modules.vickrey_auction.vickrey_auction_date_how_module import \ VickreyAuctionDateHoWModule from ssa_sim_v2.simulator.modules.competitive_click_probability.competitive_click_probability_date_how_module import \ CompetitiveClickProbabilityDateHoWModule from ssa_sim_v2.simulator.modules.competitive_clicks.competitive_clicks_date_how_module import \ CompetitiveClicksDateHoWModule from ssa_sim_v2.simulator.modules.conversion_rate.conversion_rate_date_how_module import \ ConversionRateDateHoWModule from ssa_sim_v2.simulator.modules.conversions.conversions_date_how_module import ConversionsDateHoWModule from ssa_sim_v2.simulator.modules.revenue.revenue_date_how_module import RevenueDateHoWModule from ssa_sim_v2.simulator.modules.competitive_cpc.competitive_cpc_date_how_module import \ CompetitiveCpcDateHoWModule from ssa_sim_v2.simulator.competitive_date_how_simulator import CompetitiveDateHowSimulator from ssa_sim_v2.simulator.state import StateSet from ssa_sim_v2.simulator.action import ActionSet from ssa_sim_v2.simulator.attribute import AttrSet seed = 1111 date_from = "2018-01-01" date_to = "2018-01-02" tmp_df = pd.DataFrame(np.array(range(24)), columns=["hour_of_day"]) tmp_df["key"] = 1 dates = pd.DataFrame(pd.date_range(date_from, date_to), columns=["date"]) dates_list = dates["date"].tolist() dates["key"] = 1 dates = pd.merge(dates, tmp_df, on=["key"], how="left") # columns: ['date', 'hour_of_day'] dates["hour_of_week"] = pd.to_datetime(dates["date"]).dt.dayofweek * 24 + dates["hour_of_day"] dates["date"] = dates["date"].dt.strftime("%Y-%m-%d") dates = dates[["date", "hour_of_week"]] # Initialize state set state_set = StateSet(["date", "how"], ["discrete", "discrete"], [dates_list, list(range(168))]) # Initialize attribute set names = ['gender', 'age'] vals = {'gender': ['M', 'F', 'U'], 'age': ['0-19', '20-29', '30-39', '40-49', '50-59', '60-69', '70-*']} attr_set = AttrSet(names, vals) attr_combinations = attr_set.get_all_attr_tuples() # Initialize action set action_set = ActionSet(attr_set, max_bid=9.99, min_bid=0.01, max_mod=9.0, min_mod=0.1) def initialize_priors(params, base_class): attr_combinations = list(attr_set.get_all_attr_tuples()) priors = dates.copy() priors.loc[:, "prior"] = pd.Series([dict.fromkeys(attr_combinations, params)] * len(priors)) base_classes = dates.copy() base_classes.loc[:, "base_class"] = base_class return priors, base_classes # Initialize auctions priors module_class = AuctionsPoissonModule Params = module_class.Params params = Params(auctions=100) priors = dates.copy() priors.loc[:, "prior"] = [{(): params}] * len(priors) base_classes = dates.copy() base_classes.loc[:, "base_class"] = module_class auctions_priors = priors auctions_base_classes = base_classes # Initialize auction_attributes priors module_class = AuctionAttributesModule Params = module_class.Params params = Params(p=1.0) # Probabilities are normalized auction_attributes_priors, auction_attributes_base_classes \ = initialize_priors(params, module_class) # Initialize vickrey_auction priors module_class = VickreyAuctionModule Params = module_class.Params params = Params() vickrey_auction_priors, vickrey_auction_base_classes \ = initialize_priors(params, module_class) # Initialize competitive_click_probability priors module_class = CompetitiveClickProbabilityTwoClassGeometricModule Params = module_class.Params params = Params(n_pos=8, p=0.5, q=0.5, r_11=0.6, r_12=0.4, r_2=0.5) competitive_click_probability_priors, competitive_click_probability_base_classes \ = initialize_priors(params, module_class) # Initialize competitive_clicks priors module_class = CompetitiveClicksBinomialModule Params = module_class.Params params = Params(noise_level=0.0, noise_type="multiplicative") competitive_clicks_priors, competitive_clicks_base_classes \ = initialize_priors(params, module_class) # Initialize conversion_rate priors module_class = ConversionRateFlatModule Params = module_class.Params params = Params(cvr=0.02, noise_level=0.0, noise_type="multiplicative") conversion_rate_priors, conversion_rate_base_classes \ = initialize_priors(params, module_class) # Initialize conversions priors module_class = ConversionsBinomialModule Params = module_class.Params params = Params(noise_level=0.0, noise_type="multiplicative") conversions_priors, conversions_base_classes \ = initialize_priors(params, module_class) # Initialize revenue priors module_class = RevenueGammaNoiseModule Params = module_class.Params params = Params(avg_rpv=300.0, noise_level=100.0) revenue_priors, revenue_base_classes = initialize_priors( params, module_class) # Initialize competitive_cpc priors module_class = CompetitiveCPCVickreyModule Params = module_class.Params params = Params(n_pos=8, fee=0.01) competitive_cpc_priors, competitive_cpc_base_classes = \ initialize_priors(params, module_class) # Module setup for the simulator mods = \ {"auctions": AuctionsDateHoWModule(auctions_priors, auctions_base_classes, seed), "auction_attributes": AuctionAttributesDateHoWModule(auction_attributes_priors, auction_attributes_base_classes, seed), "vickrey_auction": VickreyAuctionDateHoWModule(vickrey_auction_priors, vickrey_auction_base_classes, seed), "competitive_click_probability": CompetitiveClickProbabilityDateHoWModule( competitive_click_probability_priors, competitive_click_probability_base_classes, seed), "competitive_clicks": CompetitiveClicksDateHoWModule(competitive_clicks_priors, competitive_clicks_base_classes, seed), "conversion_rate": ConversionRateDateHoWModule(conversion_rate_priors, conversion_rate_base_classes, seed), "conversions": ConversionsDateHoWModule(conversions_priors, conversions_base_classes, seed), "revenue": RevenueDateHoWModule(revenue_priors, revenue_base_classes, seed), "competitive_cpc": CompetitiveCpcDateHoWModule(competitive_cpc_priors, competitive_cpc_base_classes, seed) } simulator = CompetitiveDateHowSimulator(state_set, action_set, attr_set, mods, date_from, date_to, income_share=1.0) return simulator, state_set, action_set, attr_set if __name__ == "__main__": """ This script shows how the bidding policies will interact with the simulator The codes are written out for easier understanding and convenient debugging for your policies """ # import policy classes from files from policy2019 import Policy2019 from policy_thompson import PolicyThompsonSamplingSI # handy function that initializes all for you simulator, state_set, action_set, attr_set = simulator_setup_1day() # build "policies" list that contains all bidding policies policy1 = Policy2019(state_set, action_set, attr_set, seed=1234) # this policy is a bare-bone sample policy that bids randomly without learning policy2 = PolicyThompsonSamplingSI(state_set, action_set, attr_set, seed=1234) policy2.initialize({"stp": {"cvr_default": 0.02, "rpv_default": 300.0}}) # this policy is one of production level policies that needs this extra step policies = [] policies.append(policy1) policies.append(policy2) policies.append(Policy2019(state_set, action_set, attr_set, seed=9292)) # adding another policy2019 with different seed on-the-fly # Simulator will run 24 steps (t=0,1,...,23) (corresponding to 1 simulated day) T = 24 # note that this particular setup limits T up to 48. T>48 will cause an error. for t in range(T): s = simulator.state print("t={} of {}".format(t, T)) print(" state={}".format(simulator.state)) actions = [] for p in policies: pol_action = p.act(s) # each policy responds with a bid actions.append(pol_action) print(" Actions={}".format(actions)) results = simulator.step(actions) for ix, p in enumerate(policies): p.learn(s, results[ix]) # each policy will learn with result # note that policy in index ix gets result in index ix. The results can be different
1.929688
2
object_classification/batchbald_redux/batchbald.py
YilunZhou/optimal-active-learning
10
12799936
# AUTOGENERATED! DO NOT EDIT! File to edit: 01_batchbald.ipynb (unless otherwise specified). __all__ = ['compute_conditional_entropy', 'compute_entropy', 'CandidateBatch', 'get_batchbald_batch', 'get_bald_batch'] # Cell from dataclasses import dataclass from typing import List import torch import math from tqdm.auto import tqdm from toma import toma from batchbald_redux import joint_entropy # Cell def compute_conditional_entropy(probs_N_K_C: torch.Tensor) -> torch.Tensor: N, K, C = probs_N_K_C.shape entropies_N = torch.empty(N, dtype=torch.double) pbar = tqdm(total=N, desc="Conditional Entropy", leave=False) @toma.execute.chunked(probs_N_K_C, 1024) def compute(probs_n_K_C, start: int, end: int): nats_n_K_C = probs_n_K_C * torch.log(probs_n_K_C) nats_n_K_C[probs_n_K_C ==0] = 0. entropies_N[start:end].copy_(-torch.sum(nats_n_K_C, dim=(1, 2)) / K) pbar.update(end - start) pbar.close() return entropies_N def compute_entropy(probs_N_K_C: torch.Tensor) -> torch.Tensor: N, K, C = probs_N_K_C.shape entropies_N = torch.empty(N, dtype=torch.double) pbar = tqdm(total=N, desc="Entropy", leave=False) @toma.execute.chunked(probs_N_K_C, 1024) def compute(probs_n_K_C, start: int, end: int): mean_probs_n_C = probs_n_K_C.mean(dim=1) nats_n_C = mean_probs_n_C * torch.log(mean_probs_n_C) nats_n_C[mean_probs_n_C ==0] = 0. entropies_N[start:end].copy_(-torch.sum(nats_n_C, dim=1)) pbar.update(end - start) pbar.close() return entropies_N # Internal Cell # Not publishing these at the moment. def compute_conditional_entropy_from_logits(logits_N_K_C: torch.Tensor) -> torch.Tensor: N, K, C = logits_N_K_C.shape entropies_N = torch.empty(N, dtype=torch.double) pbar = tqdm(total=N, desc="Conditional Entropy", leave=False) @toma.execute.chunked(logits_N_K_C, 1024) def compute(logits_n_K_C, start: int, end: int): nats_n_K_C = logits_n_K_C * torch.exp(logits_n_K_C) entropies_N[start:end].copy_( -torch.sum(nats_n_K_C, dim=(1, 2)) / K) pbar.update(end - start) pbar.close() return entropies_N def compute_entropy_from_logits(logits_N_K_C: torch.Tensor) -> torch.Tensor: N, K, C = logits_N_K_C.shape entropies_N = torch.empty(N, dtype=torch.double) pbar = tqdm(total=N, desc="Entropy", leave=False) @toma.execute.chunked(logits_N_K_C, 1024) def compute(logits_n_K_C, start: int, end: int): mean_logits_n_C = torch.logsumexp(logits_n_K_C, dim=1) - math.log(K) nats_n_C = mean_logits_n_C * torch.exp(mean_logits_n_C) entropies_N[start:end].copy_( -torch.sum(nats_n_C, dim=1)) pbar.update(end - start) pbar.close() return entropies_N # Cell @dataclass class CandidateBatch: scores: List[float] indices: List[int] def get_batchbald_batch(probs_N_K_C: torch.Tensor, batch_size: int, num_samples: int, dtype=None, device=None) -> CandidateBatch: N, K, C = probs_N_K_C.shape batch_size = min(batch_size, N) candidate_indices = [] candidate_scores = [] if batch_size == 0: return CandidateBatch(candidate_scores, candidate_indices) conditional_entropies_N = compute_conditional_entropy(probs_N_K_C) batch_joint_entropy = joint_entropy.DynamicJointEntropy(num_samples, batch_size - 1, K, C, dtype=dtype, device=device) # We always keep these on the CPU. scores_N = torch.empty(N, dtype=torch.double, pin_memory=torch.cuda.is_available()) for i in tqdm(range(batch_size), desc="BatchBALD", leave=False): if i > 0: latest_index = candidate_indices[-1] batch_joint_entropy.add_variables( probs_N_K_C[latest_index:latest_index + 1]) shared_conditinal_entropies = conditional_entropies_N[ candidate_indices].sum() batch_joint_entropy.compute_batch(probs_N_K_C, output_entropies_B=scores_N) scores_N -= conditional_entropies_N + shared_conditinal_entropies scores_N[candidate_indices] = -float('inf') candidate_score, candidate_index = scores_N.max(dim=0) candidate_indices.append(candidate_index.item()) candidate_scores.append(candidate_score.item()) return CandidateBatch(candidate_scores, candidate_indices) # Cell def get_bald_batch(probs_N_K_C: torch.Tensor, batch_size: int, dtype=None, device=None) -> CandidateBatch: N, K, C = probs_N_K_C.shape batch_size = min(batch_size, N) candidate_indices = [] candidate_scores = [] scores_N = -compute_conditional_entropy(probs_N_K_C) scores_N += compute_entropy(probs_N_K_C) candiate_scores, candidate_indices = torch.topk(scores_N, batch_size) return CandidateBatch(candiate_scores.tolist(), candidate_indices.tolist())
2.328125
2
extra/unused/check_ntis.py
whyjz/CARST
10
12799937
#/usr/bin/python import re; import subprocess; cmd="\nfind . -name \"*nti21_cut.grd\"\n"; pipe=subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout; ntis=pipe.read().split(); pipe.close(); for nti in ntis: jday=nti[nti.find(".A")+6:nti.find(".A")+9]; vdir=nti[nti.find("/")+1:nti.rfind("/")]; image="data_more/"+nti[nti.rfind("/")+1:nti.find("_cut")]+".grd"; cmd="\ngrdinfo "+nti+"\n"; pipe=subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE).stdout; info=pipe.read().strip(); pipe.close(); zmax=info[re.search("z_max:\s*",info).end(0):re.search("z_max:\s*\S*\s*",info).end(0)].strip(); if zmax != "0": print(jday+" "+zmax+" "+vdir+" "+image); #if zmax != "0" and float(zmax) > -0.861: #print(nti+" "+zmax); exit(); """ exit(); """
2.21875
2
src/__init__.py
btrnt/butternut_backend
0
12799938
<reponame>btrnt/butternut_backend<filename>src/__init__.py from .gltr import *
1.179688
1
main.py
aishmittal/Real-time-Face-Recognition-based-Surveillance-System
10
12799939
#!/usr/bin/python # -*- coding: utf-8 -*- import sys import os import cv2 from PyQt4.QtCore import * from PyQt4.QtGui import * from PyQt4.QtWebKit import * import datetime import string import random import shutil from time import gmtime, strftime, sleep import sqlite3 # import imageUpload.py for uploading captured images to cloudinary import imageUpload as imup # import MSFaceAPI.py for msface api calls import MSFaceAPI as msface large_text_size = 22 medium_text_size = 14 small_text_size = 10 base_path = os.path.dirname(os.path.realpath(__file__)) dataset_path = os.path.join(base_path,'dataset') unknown_user_path=os.path.join(base_path,'unknowns') tmp_path = os.path.join(base_path,'tmp') placeholder_image = os.path.join(base_path,'placeholder_600x400.svg') db_path = os.path.join(base_path,'users.db') cloudinary_dataset = 'http://res.cloudinary.com/aish/image/upload/v1488457817/RTFRSS/dataset' cloudinary_tmp = 'http://res.cloudinary.com/aish/image/upload/v1488457817/RTFRSS/tmp' current_userid = 0 current_userfname = '' detection_interval=10000 capture_interval=30 camera_port = 0 font1 = QFont('Helvetica', small_text_size) font2 = QFont('Helvetica', medium_text_size) font3 = QFont('Helvetica', large_text_size) conn = sqlite3.connect(db_path) cursor = conn.cursor() TABLE_NAME="users" cascPath = 'haarcascade_frontalface_default.xml' faceCascade = cv2.CascadeClassifier(cascPath) # function to generate a random id for image file name def id_generator(size=20, chars=string.ascii_lowercase + string.digits + string.ascii_uppercase): return ''.join(random.choice(chars) for _ in range(size)) def make_dir(path): try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise class DynamicFrame(QWidget): def __init__(self, parent, *args, **kwargs): super(DynamicFrame, self).__init__() self.initUI() self.counter=0 self.capture_cnt=0 self.capture = cv2.VideoCapture(camera_port) def initUI(self): self.video_stream = QLabel() self.video_stream.setScaledContents(True) self.video_stream.setAlignment(Qt.AlignLeft) self.video_stream.setFixedSize(600,450) self.video_stream_label=QLabel('Live Video Stream') self.video_stream_label.setAlignment(Qt.AlignCenter) self.video_stream_label.setFont(font2) self.face_image = QLabel() self.face_image.setScaledContents(True) self.face_image.setFixedSize(600,450) self.face_image.setAlignment(Qt.AlignRight) self.face_image.setPixmap(QPixmap(placeholder_image)) self.face_image_label=QLabel('Last Capture Results') self.face_image_label.setAlignment(Qt.AlignCenter) self.face_image_label.setFont(font2) self.vbox1=QVBoxLayout() self.vbox1.addWidget(self.video_stream) self.vbox1.addWidget(self.video_stream_label) self.vbox2=QVBoxLayout() self.vbox2.addWidget(self.face_image) self.vbox2.addWidget(self.face_image_label) self.hbox=QHBoxLayout() self.hbox.addLayout(self.vbox1) self.hbox.addLayout(self.vbox2) self.hbox.setAlignment(Qt.AlignCenter) self.hbox.setSpacing(20) self.hbox2=QHBoxLayout() self.hbox2.setAlignment(Qt.AlignCenter) self.message_label=QLabel('message') self.message_label.setAlignment(Qt.AlignCenter) self.message_label.setFont(font2) self.hbox2.addWidget(self.message_label) self.hbox2.setContentsMargins(20, 20, 20, 20) self.hbox2.setSpacing(10) self.label1 = QLabel('Real-Time Face Recognition based Surveillance') self.label2 = QLabel('') self.label1.setAlignment(Qt.AlignCenter) self.label2.setAlignment(Qt.AlignCenter) self.label1.setFont(font3) self.label2.setFont(font3) self.fbox = QFormLayout() self.fbox.setAlignment(Qt.AlignCenter) self.fbox.setContentsMargins(20, 20, 20, 20) self.fbox.addRow(self.label1) self.fbox.addRow(self.label2) self.vbox = QVBoxLayout() self.vbox.addLayout(self.fbox) self.vbox.addLayout(self.hbox) self.vbox.addLayout(self.hbox2) self.vbox.setAlignment(Qt.AlignCenter) self.setLayout(self.vbox) self.update_check() def stop_capture(self): if self.capturing: self.capturing = False self.capture.release() self.timer.stop() cv2.destroyAllWindows() def update_check(self): self.video_timer = QTimer(self) self.video_timer.timeout.connect(self.display_video_stream) self.video_timer.start(capture_interval) def display_video_stream(self): ret,frame = self.capture.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(80, 80), flags=cv2.cv.CV_HAAR_SCALE_IMAGE ) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = cv2.flip(frame, 1) image = QImage(frame, frame.shape[1], frame.shape[0], frame.strides[0], QImage.Format_RGB888) self.video_stream.setPixmap(QPixmap.fromImage(image)) self.message_label.setText('Next image capture in %d seconds' % int((detection_interval-self.counter*capture_interval)/1000)) if self.counter==int(detection_interval/capture_interval): self.message_label.setText('Face identification started ...') self.update_dynamic_frame() self.counter=0 else: self.counter=self.counter+1 def update_dynamic_frame(self): global current_userid global current_userfname detected_personid = '' welcome_names='' ramp_frames = 10 print "Face identification started .........." cv2.destroyAllWindows() try: for i in xrange(ramp_frames): s, im = self.capture.read() ret,frame = self.capture.read() #self.message_label.setText('Image Captured') self.capture_cnt+=1 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(80, 80), flags=cv2.cv.CV_HAAR_SCALE_IMAGE ) print "Total Faces in Image = %d " % len(faces) #self.message_label.setText("Total Faces in Image = %d " % len(faces)) if len(faces) > 0: detected_persons = [] persons = [] persons_cnt=0 detected_persons_cnt=0 for (x, y, w, h) in faces: if w*h>500: persons_cnt+=1 image_crop = frame[y:y+h,x:x+w] #self.message_label.setText("Processing.. %d " % persons_cnt) file_name = id_generator()+'.jpg' file = os.path.join(tmp_path,file_name) cloudinary_url=cloudinary_tmp + '/' + file_name cv2.imwrite(file, image_crop) imup.upload_image(file,file_name) faceid=msface.face_detect(cloudinary_url) print "Result for person %d " % persons_cnt print "Image File = " + str(file) print "faceId = " + str(faceid) detected_personid = msface.face_identify(faceid) if detected_personid: print "detected_personid = " + str(detected_personid) comm = "SELECT * FROM %s WHERE personid = '%s'" % (TABLE_NAME,detected_personid) res = cursor.execute(comm) res = cursor.fetchone() if res: userid = res[0] uname = res[1] fname = res[2] lname = res[3] print "Welcome %s !" % (fname+' '+lname) detected_persons_cnt+=1 detected_persons.append(fname) persons.append(fname) now = datetime.datetime.now() comm = "SELECT * FROM users_present WHERE userid = %d and date = '%s' " % (int(userid), now.strftime("%Y-%m-%d")) #print comm res2=cursor.execute(comm) res2=cursor.fetchone() if res2==None: format_str = "INSERT INTO users_present (id, userid) VALUES (NULL,%d)" %(int(userid)) #print format_str conn.execute(format_str) conn.commit() print "Attendance marked for user %s " % uname else print "Attendance already marked for user %s " % uname else: time_str=strftime("%Y-%m-%d_%H:%M:%S", gmtime()) print "Unknown person found" cv2.imwrite(os.path.join(unknown_user_path,'cam1_'+time_str+'.jpg'),image_crop) persons.append('Unknown') if detected_persons_cnt > 1: for i in range(detected_persons_cnt-1): welcome_names = welcome_names + detected_persons[i] + ', ' welcome_names=welcome_names[:-2] welcome_names=welcome_names + ' & ' + detected_persons[detected_persons_cnt-1] elif detected_persons_cnt>0: welcome_names = detected_persons[0] self.label2.setText('Hello '+ welcome_names) else: self.label2.setText('') print "No person in image" k=0 for (x, y, w, h) in faces: if persons[k]!='Unknown': cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.putText(frame, persons[k],(x, y-10), cv2.FONT_HERSHEY_COMPLEX_SMALL , 1,(0,255,0),1) else: cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) cv2.putText(frame, persons[k],(x, y-10), cv2.FONT_HERSHEY_COMPLEX_SMALL , 1,(0,0,255),1) k=k+1 #image=cv2.flip(frame, 1) image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) face_image = QImage(image, image.shape[1], image.shape[0], image.strides[0], QImage.Format_RGB888) self.face_image.setPixmap(QPixmap.fromImage(face_image)) except Exception as e: print "Errors occured !" print e class FullscreenWindow: def __init__(self, parent, *args, **kwargs): self.qt = QWidget() self.qt.showFullScreen() self.qt.pal=QPalette() self.qt.pal.setColor(QPalette.Background,QColor(0,0,0)) self.qt.pal.setColor(QPalette.Foreground,QColor(255,255,255)) self.qt.setPalette(self.qt.pal) self.bg_color=0 self.qt.hbox4 = QHBoxLayout() self.qt.Dynamicframe = DynamicFrame(self.qt) self.qt.hbox4.addWidget(self.qt.Dynamicframe) self.qt.vbox = QVBoxLayout() self.qt.vbox.addLayout(self.qt.hbox4) self.qt.setLayout(self.qt.vbox) if __name__ == '__main__': make_dir(tmp_path) make_dir(unknown_user_path) for root, dirs, files in os.walk(tmp_path): for f in files: os.unlink(os.path.join(root, f)) for d in dirs: shutil.rmtree(os.path.join(root, d)) a = QApplication(sys.argv) w = FullscreenWindow(a) sys.exit(a.exec_()) # command to terminate the running program # killall -9 python
1.898438
2
server/brain/data-cleaner.py
souravchanda001/ratings-predicting-chrome-extension
6
12799940
import re import csv import pandas as pd f= open("data-errors.txt",'r',encoding="utf8") fc = f.read() fcbRegex = re.compile(r"line(\s\d+)") clear = re.findall(fcbRegex,fc) for i in clear: print("lines",i) arr=clear print("array is",arr) count = 1 reader = csv.reader(open('amazon_reviews_us_Watches_v1_00.tsv', 'r',encoding="utf8"), delimiter="\t") writer = csv.writer(open('amazon_reviews_us_Watches_v1_00_clean.tsv', 'w',encoding="utf8"), delimiter="\t") for row in reader: if count in arr: print("skipping ", count) count += 1 continue else: print("writting ", count) writer.writerow(row) count += 1
3.046875
3
drmaa_futures/slave.py
ndevenish/drmaa_futures
0
12799941
# coding: utf-8 """ Running a slave instance. """ import logging import sys import time import traceback import dill as pickle import zmq logger = logging.getLogger(__name__) class ExceptionPicklingError(Exception): """Represent an error attempting to pickle the result of a task""" class TaskSystemExit(Exception): """For when the task raised a SystemExit exception, trying to quit""" def do_task(task_id, task_function): """Do a task, as specified in a pickle bundle. :arg byte data: The pickle-data to load :returns: Pickle data of the result, or an exception """ try: logger.debug("Running task with ID {}".format(task_id)) # Run whatever task we've been given result = task_function() logger.debug("Completed task") # An error pickling here counts as a job failure return b"YAY " + pickle.dumps((task_id, result)) except KeyboardInterrupt: # This is interactive so we want to let it float up - we'll handle the # special case in the parent context raise except BaseException: logger.debug("Exception processing task") # Everything else: We want to pass back across the network (_, exc_value, exc_trace) = sys.exc_info() exc_trace = traceback.format_tb(exc_trace) # We don't want to propagate a SystemExit to the other side if isinstance(exc_value, SystemExit): logger.debug("Intercepted task calling sys.exit") exc_value = TaskSystemExit() # Be careful - we might not be able to pickle the exception?? Go to lengths # to make sure that we pass something sensible back try: pickle.dumps(exc_value) except pickle.PicklingError: exc_value = ExceptionPicklingError("{}: {}".format( str(type(exc_value)), str(exc_value))) return b"ONO " + pickle.dumps((task_id, exc_trace, exc_value)) def _do_handshake(socket, worker_id): logger.debug("Sending hello") socket.send(b"HELO IAM " + worker_id.encode("utf-8")) logger.debug("Awaiting confirmation of hello recieved") assert socket.recv() == b"HAY" logger.debug("Got hello. Going into task loop") def _handle_task(socket, data): """Handle a reply asking us to do a task""" try: (task_id, task_function) = pickle.loads(data) logger.debug("Got task %s (%d bytes)", task_id, len(data)) return do_task(task_id, task_function) except KeyboardInterrupt as exc: # This is a special case; try to tell the master that we failed # to quit, then continue to raise the error. logger.info("Got interrupt while processing task") socket.send(b"ONO " + pickle.dumps((task_id, "", exc))) socket.recv() raise def run_slave(server_url, worker_id, timeout=30): """Run a slave instance and connect it to a specific master URL. :param str server_url: The server string to use to connect :param str worker_if: The worker ID to use when communicating :param timeout: The time (in seconds) to wait with no jobs before terminating """ logger.debug("Running slave {} connect to {}".format(worker_id, server_url)) context = zmq.Context() socket = context.socket(zmq.REQ) logger.debug("Connecting") socket.connect(server_url) socket.RCVTIMEO = int(1000 * timeout) try: _do_handshake(socket, worker_id) except zmq.error.Again: logger.debug("Timed out waiting for handshake.") sys.exit(1) else: # If waiting for the whole timeout, then stop waiting last_job = time.time() while time.time() - last_job < timeout: logger.debug("Asking for a task") socket.send("IZ BORED {}".format(worker_id).encode("UTF-8")) reply = socket.recv() # We get a command returned assert reply.startswith(b"PLZ") if reply == b"PLZ WAIT": logger.debug("No tasks available. Trying again in a few seconds.") time.sleep(min(timeout / 2.0, 5)) elif reply == b"PLZ GOWAY": logger.debug("Got quit signal. ending main loop.") break elif reply.startswith(b"PLZ DO"): try: result = _handle_task(socket, reply[7:]) except KeyboardInterrupt: # Now, we know we want to quit - so send the message letting # the master know. This is a little unclean, but it's only # because we are here that we can guarantee that we weren't in # the middle of a send/recv when the signal was sent logger.debug("Sending quit message after keyboardinterrupt") socket.send(b"IGIVEUP " + worker_id.encode("utf-8")) socket.recv() raise logger.debug("Sending result of %d bytes", len(result)) socket.send(result) # Await the ok assert socket.recv() == b"THX" last_job = time.time() if time.time() - last_job >= timeout: logger.debug("Waited too long for new tasks. Quitting.") socket.send(b"IGIVEUP " + worker_id.encode("utf-8")) socket.recv() finally: logger.debug("Closing socket") socket.LINGER = 300 socket.close() logger.debug("Closing context") context.term() logger.debug("Slave completed.") # Messaging protocol: # Sent Recieved Action # ----------------------- ------------- ---------------------------------- # HELO IAM {id} HAY Negotiation success # IZ BORED {id} PLZ GOWAY Exit # PLZ WAIT Nothing to do; try again soon # PLZ DO {task} Hand off task to runner # YAY {result} THX Task succeeded with result data # ONO {result} THX Task failed - with exception data # IGIVEUP {id} BYE Quitting; given up with processing
2.609375
3
trachours/web_ui.py
t-kenji/trac-hours-plugin
0
12799942
<gh_stars>0 # -*- coding: utf-8 -*- # # Copyright (C) 2009 <NAME> <<EMAIL>> # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. # import re import calendar import csv import time from StringIO import StringIO from datetime import datetime, timedelta from pkg_resources import parse_version from genshi.filters import Transformer from genshi.filters.transform import StreamBuffer from trac import __version__ as TRAC_VERSION from trac.core import * from trac.ticket import Ticket from trac.ticket.model import Milestone from trac.util.datefmt import format_date, parse_date, user_time from trac.util.html import html as tag from trac.util.translation import _ from trac.web.api import IRequestHandler, ITemplateStreamFilter from trac.web.chrome import ( Chrome, ITemplateProvider, add_ctxtnav, add_link, add_stylesheet ) from hours import TracHoursPlugin, _ from sqlhelper import get_all_dict from utils import hours_format class TracHoursRoadmapFilter(Component): implements(ITemplateStreamFilter) # ITemplateStreamFilter methods def filter_stream(self, req, method, filename, stream, data): """ filter the stream for the roadmap (/roadmap) and milestones /milestone/<milestone> """ if filename in ('roadmap.html', 'milestone_view.html') and \ 'TICKET_VIEW_HOURS' in req.perm: trac_hours = TracHoursPlugin(self.env) hours = {} milestones = data.get('milestones') this_milestone = None if milestones is None: # /milestone view : only one milestone milestones = [data['milestone']] this_milestone = milestones[0].name find_xpath = "//div[@class='milestone']/h1" xpath = "//div[@class='milestone']/div[1]" else: # /roadmap view find_xpath = "//*[@class='milestone']//h2/a" xpath = "//*[@class='milestone']/div[1]" for milestone in milestones: hours[milestone.name] = dict(totalhours=0., estimatedhours=0., ) tickets = [tid for tid, in self.env.db_query(""" SELECT id FROM ticket WHERE milestone=%s """, (milestone.name,))] if tickets: hours[milestone.name]['date'] = \ Ticket(self.env, tickets[0])['time'] for ticket in tickets: ticket = Ticket(self.env, ticket) # estimated hours for the ticket try: estimated_hours = float(ticket['estimatedhours']) except (ValueError, TypeError): estimated_hours = 0. hours[milestone.name]['estimatedhours'] += estimated_hours # total hours for the ticket (seconds -> hours) total_hours = trac_hours.get_total_hours( ticket.id) / 3600.0 hours[milestone.name]['totalhours'] += total_hours # update date for oldest ticket if ticket['time'] < hours[milestone.name]['date']: hours[milestone.name]['date'] = ticket['time'] b = StreamBuffer() stream |= Transformer(find_xpath).copy(b).end().select(xpath). \ append( self.MilestoneMarkup(req, b, hours, req.href, this_milestone)) return stream class MilestoneMarkup(object): """Iterator for Transformer markup injection""" def __init__(self, req, buffer, hours, href, this_milestone): self.req = req self.buffer = buffer self.hours = hours self.href = href self.this_milestone = this_milestone def __iter__(self): if self.this_milestone is not None: # for /milestone/xxx milestone = self.this_milestone else: milestone = self.buffer.events[3][1] if milestone not in self.hours.keys(): return iter([]) hours = self.hours[milestone] estimated_hours = hours['estimatedhours'] total_hours = hours['totalhours'] if not (estimated_hours or total_hours): return iter([]) items = [] if estimated_hours: if parse_version(TRAC_VERSION) < parse_version('1.0'): items.append(tag.dt(_("Estimated Hours:"))) items.append(tag.dd(str(estimated_hours))) else: items.append(tag.span(_("Estimated Hours: "), str(estimated_hours), class_="first interval")) date = hours['date'] link = self.href("hours", milestone=milestone, from_date=user_time(self.req, format_date, date)) if parse_version(TRAC_VERSION) < parse_version('1.0'): items.append(tag.dt(tag.a(_("Total Hours:"), href=link))) items.append( tag.dd(tag.a(hours_format % total_hours, href=link))) return iter(tag.dl(*items)) else: items.append(tag.span(tag.a(_("Total Hours: "), hours_format % total_hours, href=link), class_='interval')) return iter(tag.p(*items, class_='legend')) class TracUserHours(Component): implements(ITemplateProvider, IRequestHandler) # ITemplateProvider methods def get_htdocs_dirs(self): return [] def get_templates_dirs(self): from pkg_resources import resource_filename return [resource_filename(__name__, 'templates')] # IRequestHandler methods def match_request(self, req): return req.path_info == '/hours/user' or \ re.match(r'/hours/user/(?:tickets|dates)/(?:\w+)', req.path_info) is not None def process_request(self, req): req.perm.require('TICKET_VIEW_HOURS') if req.path_info.rstrip('/') == '/hours/user': return self.users(req) m = re.match(r'/hours/user/(?P<field>\w+)/(?P<user>\w+)', req.path_info) field = m.group('field') user = m.group('user') if field == 'tickets': return self.user_by_ticket(req, user) elif field == 'dates': return self.user_by_date(req, user) # Internal methods def date_data(self, req, data): """data for the date""" now = datetime.now() data['days'] = range(1, 32) data['months'] = list(enumerate(calendar.month_name)) data['years'] = range(now.year, now.year - 10, -1) if 'from_date' in req.args: from_date_raw = user_time(req, parse_date, req.args['from_date']) else: from_date_raw = datetime(now.year, now.month, now.day) from_date_raw = from_date_raw - timedelta(days=7) if 'to_date' in req.args: to_date_raw = user_time(req, parse_date, req.args['to_date']) to_date_raw = to_date_raw + timedelta(hours=23, minutes=59, seconds=59) else: to_date_raw = now data['from_date_raw'] = from_date_raw data['from_date'] = user_time(req, format_date, from_date_raw) data['to_date_raw'] = to_date_raw data['to_date'] = user_time(req, format_date, to_date_raw) data['prev_week'] = from_date_raw - timedelta(days=7) args = dict(req.args) args['from_date'] = user_time(req, format_date, data['prev_week']) args['to_date'] = user_time(req, format_date, from_date_raw) data['prev_url'] = req.href('/hours/user', **args) def users(self, req): """hours for all users""" data = {'hours_format': hours_format} # date data self.date_data(req, data) # milestone data milestone = req.args.get('milestone') milestones = Milestone.select(self.env) data['milestones'] = milestones # get the hours # trachours = TracHoursPlugin(self.env) # tickets = trachours.tickets_with_hours() hours = get_all_dict(self.env, """ SELECT * FROM ticket_time WHERE time_started >= %s AND time_started < %s """, *[int(time.mktime(data[i].timetuple())) for i in ('from_date_raw', 'to_date_raw')]) details = req.args.get('details') worker_hours = {} if details != 'date': for entry in hours: worker = entry['worker'] if worker not in worker_hours: worker_hours[worker] = 0 if milestone and milestone != \ Ticket(self.env, entry['ticket']).values.get('milestone'): continue worker_hours[worker] += entry['seconds_worked'] worker_hours = [(worker, seconds / 3600.) for worker, seconds in sorted(worker_hours.items())] else: for entry in hours: date = user_time(req, format_date, entry['time_started']) worker = entry['worker'] key = (date, worker) if key not in worker_hours: worker_hours[key] = 0 if milestone and milestone != \ Ticket(self.env, entry['ticket']).values.get('milestone'): continue worker_hours[key] += entry['seconds_worked'] worker_hours = [(key[0], key[1], seconds / 3600.) for key, seconds in sorted(worker_hours.items())] data['details'] = details data['worker_hours'] = worker_hours data['total_hours'] = sum(hours[-1] for hours in worker_hours) if req.args.get('format') == 'csv': req.send(self.export_csv(req, data)) add_stylesheet(req, 'common/css/report.css') if details == 'date': add_ctxtnav(req, _('Hours summary'), req.href.hours('user', from_date=data['from_date'], to_date=data['to_date'])) else: add_ctxtnav(req, _('Hours by date'), req.href.hours('user', details='date', from_date=data['from_date'], to_date=data['to_date'])) add_link(req, 'alternate', req.href(req.path_info, format='csv'), 'CSV', 'text/csv', 'csv') # add_link(req, 'prev', self.get_href(query, args, context.href), # _('Prev Week')) # add_link(req, 'next', self.get_href(query, args, context.href), # _('Next Week')) # prevnext_nav(req, _('Prev Week'), _('Next Week')) Chrome(self.env).add_jquery_ui(req) return 'hours_users.html', data, 'text/html' def user_by_ticket(self, req, user): """hours page for a single user""" data = {'hours_format': hours_format, 'worker': user} self.date_data(req, data) args = [user] args += [int(time.mktime(data[i].timetuple())) for i in ('from_date_raw', 'to_date_raw')] hours = get_all_dict(self.env, """ SELECT * FROM ticket_time WHERE worker=%s AND time_started >= %s AND time_started < %s """, *args) worker_hours = {} for entry in hours: ticket = entry['ticket'] if ticket not in worker_hours: worker_hours[ticket] = 0 worker_hours[ticket] += entry['seconds_worked'] data['tickets'] = dict([(i, Ticket(self.env, i)) for i in worker_hours.keys()]) # sort by ticket number and convert to hours worker_hours = [(ticket_id, seconds / 3600.) for ticket_id, seconds in sorted(worker_hours.items())] data['worker_hours'] = worker_hours data['total_hours'] = sum(hours[1] for hours in worker_hours) if req.args.get('format') == 'csv': buffer = StringIO() writer = csv.writer(buffer) title = _("Hours for {user}").format(user=user) writer.writerow([title, req.abs_href()]) writer.writerow([]) writer.writerow(['From', 'To']) writer.writerow([data['from_date'], data['to_date']]) writer.writerow([]) writer.writerow(['Ticket', 'Hours']) for ticket, hours in worker_hours: writer.writerow([ticket, hours]) req.send(buffer.getvalue(), 'text/csv') add_stylesheet(req, 'common/css/report.css') add_ctxtnav(req, _('Hours by Query'), req.href.hours(from_date=data['from_date'], to_date=data['to_date'])) add_ctxtnav(req, _('Hours by User'), req.href.hours('user', from_date=data['from_date'], to_date=data['to_date'])) add_ctxtnav(req, _('Hours by date'), req.href.hours('user/dates/{}'.format(user), from_date=data['from_date'], to_date=data['to_date'])) add_link(req, 'alternate', req.href(req.path_info, format='csv'), 'CSV', 'text/csv', 'csv') Chrome(self.env).add_jquery_ui(req) return 'hours_user_by_ticket.html', data, 'text/html' def user_by_date(self, req, user): """hours page for a single user""" data = {'hours_format': hours_format, 'worker': user} self.date_data(req, data) args = [user] args += [int(time.mktime(data[i].timetuple())) for i in ('from_date_raw', 'to_date_raw')] hours = get_all_dict(self.env, """ SELECT * FROM ticket_time WHERE worker=%s AND time_started >= %s AND time_started < %s """, *args) worker_hours = {} for entry in hours: date = user_time(req, format_date, entry['time_started']) ticket = entry['ticket'] if date not in worker_hours: worker_hours[date] = { 'seconds': 0, 'tickets': [], } worker_hours[date]['seconds'] += entry['seconds_worked'] if ticket not in worker_hours[date]['tickets']: worker_hours[date]['tickets'].append(ticket) data['tickets'] = dict([(entry['ticket'], Ticket(self.env, entry['ticket'])) for entry in hours]) # sort by ticket number and convert to hours worker_hours = [(date, details['tickets'], details['seconds'] / 3600.) for date, details in sorted(worker_hours.items())] data['worker_hours'] = worker_hours data['total_hours'] = sum(hours[2] for hours in worker_hours) if req.args.get('format') == 'csv': buffer = StringIO() writer = csv.writer(buffer) title = _("Hours for {user}").format(user=user) writer.writerow([title, req.abs_href()]) writer.writerow([]) writer.writerow(['From', 'To']) writer.writerow([data['from_date'], data['to_date']]) writer.writerow([]) writer.writerow(['Ticket', 'Hours']) for date, tickets, hours in worker_hours: ids = ['#{}'.format(id) for id in tickets] writer.writerow([date, ','.join(ids), hours]) req.send(buffer.getvalue(), 'text/csv') add_stylesheet(req, 'common/css/report.css') add_ctxtnav(req, _('Hours by Query'), req.href.hours(from_date=data['from_date'], to_date=data['to_date'])) add_ctxtnav(req, _('Hours by User'), req.href.hours('user', from_date=data['from_date'], to_date=data['to_date'])) add_ctxtnav(req, _('Hours by ticket'), req.href.hours('user/tickets/{}'.format(user), from_date=data['from_date'], to_date=data['to_date'])) add_link(req, 'alternate', req.href(req.path_info, format='csv', from_date=data['from_date'], to_date=data['to_date']), 'CSV', 'text/csv', 'csv') Chrome(self.env).add_jquery_ui(req) return 'hours_user_by_date.html', data, 'text/html' def export_csv(self, req, data, sep=',', mimetype='text/csv'): content = StringIO() content.write('\xef\xbb\xbf') # BOM writer = csv.writer(content, delimiter=sep, quoting=csv.QUOTE_MINIMAL) title = _("Hours for {project}").format(project=self.env.project_name) writer.writerow([title, req.abs_href()]) writer.writerow([]) writer.writerow(['From', 'To']) writer.writerow([data['from_date'], data['to_date']]) if data['milestone']: writer.writerow(['Milestone', data['milestone']]) writer.writerow([]) writer.writerow(['Worker', 'Hours']) for worker, hours in data['worker_hours']: writer.writerow([worker, hours]) return content.getvalue(), '%s;text/csv' % mimetype
2.140625
2
unittest_reinvent/running_modes/transfer_learning_tests/test_link_invent_transfer_learning.py
lilleswing/Reinvent-1
183
12799943
<gh_stars>100-1000 import shutil import unittest import os from running_modes.configurations import TransferLearningLoggerConfig, GeneralConfigurationEnvelope from running_modes.configurations.transfer_learning.link_invent_learning_rate_configuration import \ LinkInventLearningRateConfiguration from running_modes.configurations.transfer_learning.link_invent_transfer_learning_configuration import \ LinkInventTransferLearningConfiguration from running_modes.constructors.transfer_learning_mode_constructor import TransferLearningModeConstructor from running_modes.utils import set_default_device_cuda from running_modes.enums.logging_mode_enum import LoggingModeEnum from running_modes.enums.running_mode_enum import RunningModeEnum from reinvent_models.model_factory.enums.model_type_enum import ModelTypeEnum from unittest_reinvent.fixtures.paths import MAIN_TEST_PATH, SMILES_SET_LINK_INVENT_PATH, LINK_INVENT_PRIOR_PATH from unittest_reinvent.fixtures.utils import count_empty_files class TestLinkInventTransferLearning(unittest.TestCase): def setUp(self): set_default_device_cuda() lm_enum = LoggingModeEnum() rm_enum = RunningModeEnum() mt_enum = ModelTypeEnum() self.workfolder = os.path.join(MAIN_TEST_PATH, mt_enum.LINK_INVENT + rm_enum.TRANSFER_LEARNING) if not os.path.isdir(self.workfolder): os.makedirs(self.workfolder) self.log_dir = os.path.join(self.workfolder, "test_log") log_config = TransferLearningLoggerConfig(logging_path=self.log_dir, recipient=lm_enum.LOCAL, job_name="test_job") self.lr_config = LinkInventLearningRateConfiguration() self.parameters = LinkInventTransferLearningConfiguration(empty_model=LINK_INVENT_PRIOR_PATH, output_path=self.workfolder, input_smiles_path=SMILES_SET_LINK_INVENT_PATH, validation_smiles_path=None, num_epochs=2, sample_size=10, learning_rate=self.lr_config) self.general_config = GeneralConfigurationEnvelope(model_type=mt_enum.LINK_INVENT, logging=vars(log_config), run_type=rm_enum.TRANSFER_LEARNING, version="3.0", parameters=vars(self.parameters)) self.runner = TransferLearningModeConstructor(self.general_config) def tearDown(self): if os.path.isdir(self.workfolder): shutil.rmtree(self.workfolder) def _model_saved_and_logs_exist(self): self.assertTrue(os.path.isfile(os.path.join(self.workfolder, self.parameters.model_file_name))) self.assertTrue(os.path.isdir(self.log_dir)) self.assertEqual(count_empty_files(self.log_dir), 0) def test_no_validation(self): self.parameters.validation_smiles_path = None self.runner.run() self._model_saved_and_logs_exist() def test_with_validation(self): self.parameters.validation_smiles_path = SMILES_SET_LINK_INVENT_PATH self.runner.run() self._model_saved_and_logs_exist()
1.835938
2
datasets/datasets.py
pengpeg/PFAN_MX
0
12799944
# -*- coding: utf-8 -*- # @Time : 2020/2/12 15:47 # @Author : Chen # @File : datasets.py # @Software: PyCharm import os, warnings from mxnet.gluon.data import dataset, sampler from mxnet import image import numpy as np class IdxSampler(sampler.Sampler): """Samples elements from [0, length) randomly without replacement. Parameters ---------- length : int Length of the sequence. """ def __init__(self, indices_selected): if isinstance(indices_selected, list): indices_selected = np.array(indices_selected) self._indices_selected = indices_selected self._length = indices_selected.shape[0] def __iter__(self): indices = self._indices_selected np.random.shuffle(indices) return iter(indices) def __len__(self): return self._length class ImageFolderDataset(dataset.Dataset): """A dataset for loading image files stored in a folder structure. like:: root/car/0001.jpg root/car/xxxa.jpg root/car/yyyb.jpg root/bus/123.jpg root/bus/023.jpg root/bus/wwww.jpg Parameters ---------- root : str Path to root directory. flag : {0, 1}, default 1 If 0, always convert loaded images to greyscale (1 channel). If 1, always convert loaded images to colored (3 channels). transform : callable, default None A function that takes data and label and transforms them:: transform = lambda data, label: (data.astype(np.float32)/255, label) Attributes ---------- synsets : list List of class names. `synsets[i]` is the name for the integer label `i` items : list of tuples List of all images in (filename, label) pairs. """ def __init__(self, root, flag=1, transform=None, pseudo_labels=None): self._root = os.path.expanduser(root) self._flag = flag self._transform = transform self._exts = ['.jpg', '.jpeg', '.png'] self._list_images(self._root) self._pseudo_labels = pseudo_labels def _list_images(self, root): self.synsets = [] self.items = [] for folder in sorted(os.listdir(root)): path = os.path.join(root, folder) if not os.path.isdir(path): warnings.warn('Ignoring %s, which is not a directory.'%path, stacklevel=3) continue label = len(self.synsets) self.synsets.append(folder) for filename in sorted(os.listdir(path)): filename = os.path.join(path, filename) ext = os.path.splitext(filename)[1] if ext.lower() not in self._exts: warnings.warn('Ignoring %s of type %s. Only support %s'%( filename, ext, ', '.join(self._exts))) continue self.items.append((filename, label)) def __getitem__(self, idx): img = image.imread(self.items[idx][0], self._flag) label = self.items[idx][1] if self._transform is not None: return self._transform(img, label) if self._pseudo_labels is not None: pseudo_label = self._pseudo_labels[idx] return img, label, idx, pseudo_label return img, label, idx def __len__(self): return len(self.items)
2.671875
3
dev/atlas/create_atlas/create_masks_csf_and_gm.py
valosekj/spinalcordtoolbox
1
12799945
<filename>dev/atlas/create_atlas/create_masks_csf_and_gm.py<gh_stars>1-10 #!/usr/bin/env python # create masks of CSF and gray matter # Author: <EMAIL> # Created: 2014-12-06 # TODO: get GM # TODO: add tract corresponding to the undefined values in WM atlas import sys, io, os, glob import numpy as np import nibabel as nib path_sct = os.environ.get("SCT_DIR", os.path.dirname(os.path.dirname(__file__))) # append path that contains scripts, to be able to load modules sys.path.append(os.path.join(path_sct, 'scripts')) import sct_utils as sct # parameters tracts_to_sum_index = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29 folder_atlas = os.path.join("WMtracts_outputs", "final_results") file_csf = "WMtract__csf.nii.gz" file_gm = "WMtract__gm.nii.gz" file_label = 'info_label.txt' def main(): # Extract the tracts from the atlas' folder tracts = get_tracts(folder_atlas) nb_tracts = len(tracts) # Get the sum of the tracts tracts_sum = add_tracts(tracts, tracts_to_sum_index) # Save sum of the tracts to niftii save_3D_nparray_nifti(tracts_sum, 'tmp.WM_all.nii.gz', os.path.join(folder_atlas, "WMtract__00.nii.gz")) # binarize it sct.run('fslmaths tmp.WM_all.nii.gz -thr 0.5 -bin tmp.WM_all_bin.nii.gz') # dilate it sct.run('fslmaths tmp.WM_all_bin.nii.gz -kernel boxv 5x5x1 -dilM tmp.WM_all_bin_dil.nii.gz') # subtract WM mask to obtain CSF mask sct.run('fslmaths tmp.WM_all_bin_dil -sub tmp.WM_all '+os.path.join(os.path.join(folder_atlas, file_csf))) # add line in info_label.txt text_label = '\n'+str(nb_tracts)+', CSF, '+file_csf io.open(os.path.join(folder_atlas, file_label) 'a+b').write(text_label) def get_tracts(tracts_folder): """Loads tracts in an atlas folder and converts them from .nii.gz format to numpy ndarray Save path of each tracts Only the tract must be in tracts_format in the folder""" fname_tract = glob.glob(os.path.join(tracts_folder, "*.nii.gz")) #Initialise tracts variable as object because there are 4 dimensions tracts = np.empty([len(fname_tract), 1], dtype=object) #Load each partial volumes of each tracts for label in range(0, len(fname_tract)): tracts[label, 0] = nib.load(fname_tract[label]).get_data() #Reshape tracts if it is the 2D image instead of 3D for label in range(0, len(fname_tract)): if (tracts[label,0]).ndim == 2: tracts[label,0] = tracts[label,0].reshape(int(np.size(tracts[label,0],0)), int(np.size(tracts[label,0],1)),1) return tracts def save_3D_nparray_nifti(np_matrix_3d, output_image, fname_atlas): # Save 3d numpy matrix to niftii image # np_matrix_3d is a 3D numpy ndarray # output_image is the name of the niftii image created, ex: '3D_matrix.nii.gz' img = nib.Nifti1Image(np_matrix_3d, np.eye(4)) affine = img.get_affine() np_matrix_3d_nii = nib.Nifti1Image(np_matrix_3d,affine) nib.save(np_matrix_3d_nii, output_image) # copy geometric information sct.run('fslcpgeom '+fname_atlas+' '+output_image, verbose=0) def add_tracts(tracts, tracts_to_sum_index): tracts_sum = np.empty((tracts[0, 0]).shape) for i in tracts_to_sum_index: tracts_sum = tracts_sum + tracts[i, 0] return tracts_sum if __name__ == "__main__": main()
2.265625
2
train.py
rodolfo-mendes/diabetes-prediction-api
0
12799946
''' This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. For more information, please refer to <https://unlicense.org> ''' import pandas as pd from sklearn.ensemble import RandomForestClassifier from joblib import dump def train_model(): data = pd.read_csv('data/diabetes.csv') X_train = data.drop(columns='Outcome') y_train = data['Outcome'] rfc = RandomForestClassifier() rfc.fit(X_train, y_train) dump(rfc, 'model/diabetes_predictor.joblib') def main(): train_model() if __name__ == '__main__': main()
1.585938
2
2017/day_03/day_03.py
viddrobnic/adventofcode
0
12799947
<gh_stars>0 from collections import defaultdict number = int(input()) values = defaultdict(int) values[(0, 0)] = 1 x, y = (0, 0) direction = 0 directions = [(1, 0), (0, 1), (-1, 0), (0, -1), (1, 1), (-1, -1), (1, -1), (-1, 1)] data = 1 second_result = 0 length = 1 step = 0 rotations = 0 first, second = False, False while not (first and second): # Add a step d = directions[direction] x += d[0] y += d[1] step += 1 # If number of steps equals length of the current trajectory, then rotate if step >= length: direction = (direction + 1) % 4 step = 0 rotations += 1 # Every two rotations length of the side is 1 longer if rotations == 2: length += 1 rotations = 0 if not first: data += 1 if data == number: first = True # Sum of all adjecant squares adjecant_sum = 0 for d in directions: x_1 = x + d[0] y_1 = y + d[1] adjecant_sum += values[(x_1, y_1)] values[(x, y)] = adjecant_sum if not second and adjecant_sum > number: second_result = adjecant_sum second = True print('Part One: {}\nPart Two: {}'.format(abs(x) + abs(y), second_result))
3.25
3
script.py
Lets7512/Saved_WiFi_Passwords_Scraper_On_Windows
0
12799948
<reponame>Lets7512/Saved_WiFi_Passwords_Scraper_On_Windows import os,platform,subprocess from sys import exit def main(): startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW txt=subprocess.check_output('netsh wlan show profiles', shell=False, startupinfo=startupinfo).decode() txt=txt.splitlines() users=[] for i in txt[9:]: try: users.append(i[27:]) except: pass with open("keys.txt",'a') as w: w.write("-------------------------\n") for e in users: if e in [""," "]: continue e=("\""+e+"\"") pro=subprocess.check_output("netsh wlan show profile {} key=clear".format(e), shell=False, startupinfo=startupinfo).decode('windows-1252') pro=pro.splitlines() passwrd="" for i in pro: if ' Key Content : ' in i: passwrd=i break passwrd=passwrd[29:] to_w=e+' : '+passwrd+"\n" w.write(to_w) if __name__ == "__main__": main() exit()
2.609375
3
setup.py
zain/pyr
1
12799949
#!/usr/bin/env python from setuptools import setup setup( name='pyr', version='0.4.1', description='A nicer REPL for Python.', author='<NAME>', author_email='<EMAIL>', url='https://github.com/zain/pyr', packages=['pyr'], install_requires=['pygments'], scripts=['bin/pyr'], )
0.964844
1
charis/primitives/locate_psflets.py
thaynecurrie/charis-dep
0
12799950
#!/usr/bin/env python import copy import glob import logging import os import re import numpy as np from astropy.io import fits from scipy import interpolate, ndimage, optimize, signal try: from charis.image import Image except: from image import Image log = logging.getLogger('main') class PSFLets: """ Helper class to deal with the PSFLets on the detector. Does most of the heavy lifting during the wavelength calibration step. """ def __init__(self, load=False, infile=None, infiledir='.'): ''' Initialize the class Parameters ---------- load: Boolean Whether to load an already-existing wavelength calibration file infile: String If load is True, this is the name of the file infiledir: String If load is True, this is the directory in which the file resides ''' self.xindx = None self.yindx = None self.lam_indx = None self.nlam = None self.nlam_max = None self.interp_arr = None self.order = None if load: self.loadpixsol(infile, infiledir) def loadpixsol(self, infile=None, infiledir='./calibrations'): ''' Loads existing wavelength calibration file Parameters ---------- infile: String Name of the file infiledir: String Directory in which the file resides ''' if infile is None: infile = re.sub('//', '/', infiledir + '/PSFloc.fits') hdulist = fits.open(infile) try: self.xindx = hdulist[0].data self.yindx = hdulist[1].data self.lam_indx = hdulist[2].data self.nlam = hdulist[3].data.astype(int) except: raise RuntimeError("File " + infile + " does not appear to contain a CHARIS wavelength solution in the appropriate format.") self.nlam_max = np.amax(self.nlam) def savepixsol(self, outdir="calibrations/"): ''' Saves wavelength calibration file Parameters ---------- outdir: String Directory in which to put the file. The file is name PSFloc.fits and is a multi-extension FITS file, each extension corresponding to: 0. the list of wavelengths at which the calibration is done 1. a 2D ndarray with the X position of all lenslets 2. a 2D ndarray with the Y position of all lenslets 3. a 2D ndarray with the number of valid wavelengths for a given lenslet (some wavelengths fall outside of the detector area) ''' if not os.path.isdir(outdir): raise IOError("Attempting to save pixel solution to directory " + outdir + ". Directory does not exist.") outfile = re.sub('//', '/', outdir + '/PSFloc.fits') out = fits.HDUList(fits.PrimaryHDU(self.xindx)) out.append(fits.PrimaryHDU(self.yindx)) out.append(fits.PrimaryHDU(self.lam_indx)) out.append(fits.PrimaryHDU(self.nlam.astype(int))) try: out.writeto(outfile, overwrite=True) except: raise def geninterparray(self, lam, allcoef, order=3): ''' Set up array to solve for best-fit polynomial fits to the coefficients of the wavelength solution. These will be used to smooth/interpolate the wavelength solution, and ultimately to compute its inverse. Parameters ---------- lam: float Wavelength in nm allcoef: list of lists floats Polynomial coefficients of wavelength solution order: int Order of polynomial wavelength solution Notes ----- Populates the attribute interp_arr in PSFLet class ''' self.interp_arr = np.zeros((order + 1, allcoef.shape[1])) self.order = order xarr = np.ones((lam.shape[0], order + 1)) for i in range(1, order + 1): xarr[:, i] = np.log(lam)**i for i in range(self.interp_arr.shape[1]): coef = np.linalg.lstsq(xarr, allcoef[:, i])[0] self.interp_arr[:, i] = coef def return_locations_short(self, coef, xindx, yindx): ''' Returns the x,y detector location of a given lenslet for a given polynomial fit Parameters ---------- coef: lists floats Polynomial coefficients of fit for a single wavelength xindx: int X index of lenslet in lenslet array yindx: int Y index of lenslet in lenslet array Returns ------- interp_x: float X coordinate on the detector interp_y: float Y coordinate on the detector ''' coeforder = int(np.sqrt(coef.shape[0])) - 1 interp_x, interp_y = _transform(xindx, yindx, coeforder, coef) return interp_x, interp_y def return_res(self, lam, allcoef, xindx, yindx, order=3, lam1=None, lam2=None): ''' Returns the spectral resolution and interpolated wavelength array Parameters ---------- lam: float Wavelength in nm allcoef: list of lists floats Polynomial coefficients of wavelength solution xindx: int X index of lenslet in lenslet array yindx: int Y index of lenslet in lenslet array order: int Order of polynomial wavelength solution lam1: float Shortest wavelength in nm lam2: float Longest wavelength in nm Returns ------- interp_lam: array Array of wavelengths R: float Effective spectral resolution ''' if lam1 is None: lam1 = np.amin(lam) / 1.04 if lam2 is None: lam2 = np.amax(lam) * 1.03 interporder = order if self.interp_arr is None: self.geninterparray(lam, allcoef, order=order) coeforder = int(np.sqrt(allcoef.shape[1])) - 1 n_spline = 100 interp_lam = np.linspace(lam1, lam2, n_spline) dy = [] dx = [] for i in range(n_spline): coef = np.zeros((coeforder + 1) * (coeforder + 2)) for k in range(1, interporder + 1): coef += k * self.interp_arr[k] * np.log(interp_lam[i])**(k - 1) _dx, _dy = _transform(xindx, yindx, coeforder, coef) dx += [_dx] dy += [_dy] R = np.sqrt(np.asarray(dy)**2 + np.asarray(dx)**2) return interp_lam, R def monochrome_coef(self, lam, alllam=None, allcoef=None, order=3): if self.interp_arr is None: if alllam is None or allcoef is None: raise ValueError("Interpolation array has not been computed. Must call monochrome_coef with arrays.") self.geninterparray(alllam, allcoef, order=order) coef = np.zeros(self.interp_arr[0].shape) for k in range(self.order + 1): coef += self.interp_arr[k] * np.log(lam)**k return coef def return_locations(self, lam, allcoef, xindx, yindx, order=3): ''' Calculates the detector coordinates of lenslet located at `xindx`, `yindx` for desired wavelength `lam` Parameters ---------- lam: float Wavelength in nm allcoef: list of floats Polynomial coefficients of wavelength solution xindx: int X index of lenslet in lenslet array yindx: int Y index of lenslet in lenslet array order: int Order of polynomial wavelength solution Returns ------- interp_x: float X coordinate on the detector interp_y: float Y coordinate on the detector ''' if len(allcoef.shape) == 1: coeforder = int(np.sqrt(allcoef.shape[0])) - 1 interp_x, interp_y = _transform(xindx, yindx, coeforder, allcoef) return interp_x, interp_y if self.interp_arr is None: self.geninterparray(lam, allcoef, order=order) coeforder = int(np.sqrt(allcoef.shape[1])) - 1 if not (coeforder + 1) * (coeforder + 2) == allcoef.shape[1]: raise ValueError("Number of coefficients incorrect for polynomial order.") coef = np.zeros((coeforder + 1) * (coeforder + 2)) for k in range(self.order + 1): coef += self.interp_arr[k] * np.log(lam)**k interp_x, interp_y = _transform(xindx, yindx, coeforder, coef) return interp_x, interp_y def genpixsol(self, lam, allcoef, order=3, lam1=None, lam2=None): """ Calculates the wavelength at the center of each pixel within a microspectrum Parameters ---------- lam: float Wavelength in nm allcoef: list of floats List describing the polynomial coefficients that best fit the lenslets, for all wavelengths order: int Order of the polynomical fit lam1: float Lowest wavelength in nm lam2: float Highest wavelength in nm Notes ----- This functions fills in most of the fields of the PSFLet class: the array of xindx, yindx, nlam, lam_indx and nlam_max """ ################################################################### # Read in wavelengths of spots, coefficients of wavelength # solution. Obtain extrapolated limits of wavlength solution # to 4% below and 3% above limits of the coefficient file by # default. ################################################################### if lam1 is None: lam1 = np.amin(lam) / 1.04 if lam2 is None: lam2 = np.amax(lam) * 1.03 interporder = order if self.interp_arr is None: self.geninterparray(lam, allcoef, order=order) coeforder = int(np.sqrt(allcoef.shape[1])) - 1 if not (coeforder + 1) * (coeforder + 2) == allcoef.shape[1]: raise ValueError("Number of coefficients incorrect for polynomial order.") xindx = np.arange(-100, 101) xindx, yindx = np.meshgrid(xindx, xindx) n_spline = 100 interp_x = np.zeros(tuple([n_spline] + list(xindx.shape))) interp_y = np.zeros(interp_x.shape) interp_lam = np.linspace(lam1, lam2, n_spline) for i in range(n_spline): coef = np.zeros((coeforder + 1) * (coeforder + 2)) for k in range(interporder + 1): coef += self.interp_arr[k] * np.log(interp_lam[i])**k interp_x[i], interp_y[i] = _transform(xindx, yindx, coeforder, coef) x = np.zeros(tuple(list(xindx.shape) + [1000])) y = np.zeros(x.shape) nlam = np.zeros(xindx.shape, np.int) lam_out = np.zeros(y.shape) good = np.zeros(xindx.shape) for ix in range(xindx.shape[0]): for iy in range(xindx.shape[1]): pix_x = interp_x[:, ix, iy] pix_y = interp_y[:, ix, iy] if np.all(pix_x < 0) or np.all(pix_x > 2048) or np.all(pix_y < 0) or np.all(pix_y > 2048): continue if pix_y[-1] < pix_y[0]: try: tck_y = interpolate.splrep(pix_y[::-1], interp_lam[::-1], k=1, s=0) except: print(pix_x, pix_y) raise else: tck_y = interpolate.splrep(pix_y, interp_lam, k=1, s=0) y1, y2 = [int(np.amin(pix_y)) + 1, int(np.amax(pix_y))] tck_x = interpolate.splrep(interp_lam, pix_x, k=1, s=0) nlam[ix, iy] = y2 - y1 + 1 y[ix, iy, :nlam[ix, iy]] = np.arange(y1, y2 + 1) lam_out[ix, iy, :nlam[ix, iy]] = interpolate.splev(y[ix, iy, :nlam[ix, iy]], tck_y) x[ix, iy, :nlam[ix, iy]] = interpolate.splev(lam_out[ix, iy, :nlam[ix, iy]], tck_x) for nlam_max in range(x.shape[-1]): if np.all(y[:, :, nlam_max] == 0): break self.xindx = x[:, :, :nlam_max] self.yindx = y[:, :, :nlam_max] self.nlam = nlam self.lam_indx = lam_out[:, :, :nlam_max] self.nlam_max = np.amax(nlam) def _initcoef(order, scale=15.02, phi=np.arctan2(1.926, -1), x0=0, y0=0): """ Private function _initcoef in locate_psflets Create a set of coefficients including a rotation matrix plus zeros. Parameters ---------- order: int The polynomial order of the grid distortion scale: float The linear separation in pixels of the PSFlets. Default 15.02. phi: float The pitch angle of the lenslets. Default atan(1.926) x0: float x offset to apply to the central pixel. Default 0 y0: float y offset to apply to the central pixel. Default 0 Returns ------- coef: list of floats A list of length (order+1)*(order+2) to be optimized. Notes ----- The list of coefficients has space for a polynomial fit of the input order (i.e., for order 3, up to terms like x**3 and x**2*y, but not x**3*y). It is all zeros in the output apart from the rotation matrix given by scale and phi. """ try: if not order == int(order): raise ValueError("Polynomial order must be integer") else: if order < 1 or order > 5: raise ValueError("Polynomial order must be >0, <=5") except: raise ValueError("Polynomial order must be integer") n = (order + 1) * (order + 2) coef = np.zeros((n)) coef[0] = x0 coef[1] = scale * np.cos(phi) coef[order + 1] = -scale * np.sin(phi) coef[n / 2] = y0 coef[n / 2 + 1] = scale * np.sin(phi) coef[n / 2 + order + 1] = scale * np.cos(phi) return list(coef) def _pullorder(coef, order=1): coeforder = int(np.sqrt(len(coef) + 0.25) - 1.5 + 1e-12) coef_short = [] i = 0 for ix in range(coeforder + 1): for iy in range(coeforder - ix + 1): if ix + iy <= order: coef_short += [coef[i]] i += 1 for ix in range(coeforder + 1): for iy in range(coeforder - ix + 1): if ix + iy <= order: coef_short += [coef[i]] i += 1 return coef_short def _insertorder(coefshort, coef): coeforder = int(np.sqrt(len(coef) + 0.25) - 1.5 + 1e-12) shortorder = int(np.sqrt(len(coefshort) + 0.25) - 1.5 + 1e-12) i = 0 j = 0 for ix in range(coeforder + 1): for iy in range(coeforder - ix + 1): if ix + iy <= shortorder: coef[i] = coefshort[j] j += 1 i += 1 for ix in range(coeforder + 1): for iy in range(coeforder - ix + 1): if ix + iy <= shortorder: coef[i] = coefshort[j] j += 1 i += 1 return coef def _transform(x, y, order, coef, highordercoef=None): """ Private function _transform in locate_psflets Apply the coefficients given to transform the coordinates using a polynomial. Parameters ---------- x: ndarray Rectilinear grid y: ndarray of floats Rectilinear grid order: int Order of the polynomial fit coef: list of floats List of the coefficients. Must match the length required by order = (order+1)*(order+2) highordercoef: Boolean Returns ------- _x: ndarray Transformed coordinates _y: ndarray Transformed coordinates """ try: if not len(coef) == (order + 1) * (order + 2): pass # raise ValueError("Number of coefficients incorrect for polynomial order.") except: raise AttributeError("order must be integer, coef should be a list.") try: if not order == int(order): raise ValueError("Polynomial order must be integer") else: if order < 1 or order > 5: raise ValueError("Polynomial order must be >0, <=5") except: raise ValueError("Polynomial order must be integer") # n**2 + 3*n + 2 = (n + 1.5)**2 - 0.25 # = (1/4)*((2*n + 3)**2 - 1) = len(coef) order1 = int(np.sqrt(len(coef) + 0.25) - 1.5 + 1e-12) _x = np.zeros(np.asarray(x).shape) _y = np.zeros(np.asarray(y).shape) i = 0 for ix in range(order1 + 1): for iy in range(order1 - ix + 1): _x += coef[i] * x**ix * y**iy i += 1 for ix in range(order1 + 1): for iy in range(order1 - ix + 1): _y += coef[i] * x**ix * y**iy i += 1 if highordercoef is None: return [_x, _y] else: order2 = int(np.sqrt(len(highordercoef) + 0.25) - 1.5 + 1e-12) i = 0 for ix in range(order2 + 1): for iy in range(order1 - ix + 1): if ix + iy <= order1: continue _x += coef[i] * x**ix * y**iy i += 1 for ix in range(order2 + 1): for iy in range(order1 - ix + 1): if ix + iy <= order1: continue _y += coef[i] * x**ix * y**iy i += 1 return [_x, _y] def _corrval(coef, x, y, filtered, order, trimfrac=0.1, highordercoef=None): """ Private function _corrval in locate_psflets Return the negative of the sum of the middle XX% of the PSFlet spot fluxes (disregarding those with the most and the least flux to limit the impact of outliers). Analogous to the trimmed mean. Parameters ---------- coef: list of floats coefficients for polynomial transformation x: ndarray coordinates of lenslets y: ndarray coordinates of lenslets filtered: ndarray image convolved with gaussian PSFlet order: int order of the polynomial fit trimfrac: float fraction of outliers (high & low combined) to trim Default 0.1 (5% trimmed on the high end, 5% on the low end) highordercoef: boolean Returns ------- score: float Negative sum of PSFlet fluxes, to be minimized """ ################################################################# # Use np.nan for lenslet coordinates outside the CHARIS FOV, # discard these from the calculation before trimming. ################################################################# _x, _y = _transform(x, y, order, coef, highordercoef) vals = ndimage.map_coordinates(filtered, [_y, _x], mode='constant', cval=np.nan, prefilter=False) vals_ok = vals[np.where(np.isfinite(vals))] iclip = int(vals_ok.shape[0] * trimfrac / 2) vals_sorted = np.sort(vals_ok) score = -1 * np.sum(vals_sorted[iclip:-iclip]) return score def locatePSFlets(inImage, polyorder=2, sig=0.7, coef=None, trimfrac=0.1, phi=np.arctan2(1.926, -1), scale=15.02, fitorder=None): """ function locatePSFlets takes an Image class, assumed to be a monochromatic grid of spots with read noise and shot noise, and returns the esimated positions of the spot centroids. This is designed to constrain the domain of the PSF-let fitting later in the pipeline. Parameters ---------- imImage: Image class Assumed to be a monochromatic grid of spots polyorder: float order of the polynomial coordinate transformation. Default 2. sig: float standard deviation of convolving Gaussian used for estimating the grid of centroids. Should be close to the true value for the PSF-let spots. Default 0.7. coef: list initial guess of the coefficients of polynomial coordinate transformation trimfrac: float fraction of lenslet outliers (high & low combined) to trim in the minimization. Default 0.1 (5% trimmed on the high end, 5% on the low end) Returns ------- x: 2D ndarray Estimated spot centroids in x. y: 2D ndarray Estimated spot centroids in y. good:2D boolean ndarray True for lenslets with spots inside the detector footprint coef: list of floats List of best-fit polynomial coefficients Notes ----- the coefficients, if not supplied, are initially set to the known pitch angle and scale. A loop then does a quick check to find reasonable offsets in x and y. With all of the first-order polynomial coefficients set, the optimizer refines these and the higher-order coefficients. This routine seems to be relatively robust down to per-lenslet signal-to-noise ratios of order unity (or even a little less). Important note: as of now (09/2015), the number of lenslets to grid is hard-coded as 1/10 the dimensionality of the final array. This is sufficient to cover the detector for the fiducial lenslet spacing. """ ############################################################# # Convolve with a Gaussian, centroid the filtered image. ############################################################# x = np.arange(-1 * int(3 * sig + 1), int(3 * sig + 1) + 1) x, y = np.meshgrid(x, x) gaussian = np.exp(-(x**2 + y**2) / (2 * sig**2)) if inImage.ivar is None: unfiltered = signal.convolve2d(inImage.data, gaussian, mode='same') else: unfiltered = signal.convolve2d(inImage.data * inImage.ivar, gaussian, mode='same') unfiltered /= signal.convolve2d(inImage.ivar, gaussian, mode='same') + 1e-10 filtered = ndimage.interpolation.spline_filter(unfiltered) ############################################################# # x, y: Grid of lenslet IDs, Lenslet (0, 0) is the center. ############################################################# gridfrac = 20 ydim, xdim = inImage.data.shape x = np.arange(-(ydim // gridfrac), ydim // gridfrac + 1) x, y = np.meshgrid(x, x) ############################################################# # Set up polynomial coefficients, convert from lenslet # coordinates to coordinates on the detector array. # Then optimize the coefficients. # We want to start with a decent guess, so we use a grid of # offsets. Seems to be robust down to SNR/PSFlet ~ 1 # Create slice indices for subimages to perform the intial # fits on. The new dimensionality in both x and y is 2*subsize ############################################################# if coef is None: ix_arr = np.arange(0, 14, 0.5) iy_arr = np.arange(0, 25, 0.5) log.info("Initializing PSFlet location transformation coefficients") init = True else: ix_arr = np.arange(-3.0, 3.05, 0.2) iy_arr = np.arange(-3.0, 3.05, 0.2) coef_save = list(coef[:]) log.info("Initializing transformation coefficients with previous values") init = False bestval = 0 subshape = xdim * 3 // 8 _s = x.shape[0] * 3 // 8 subfiltered = ndimage.interpolation.spline_filter(unfiltered[subshape:-subshape, subshape:-subshape]) for ix in ix_arr: for iy in iy_arr: if init: coef = _initcoef(polyorder, x0=ix + xdim / 2. - subshape, y0=iy + ydim / 2. - subshape, scale=scale, phi=phi) else: coef = copy.deepcopy(coef_save) coef[0] += ix - subshape coef[(polyorder + 1) * (polyorder + 2) / 2] += iy - subshape newval = _corrval(coef, x[_s:-_s, _s:-_s], y[_s:-_s, _s:-_s], subfiltered, polyorder, trimfrac) if newval < bestval: bestval = newval coef_opt = copy.deepcopy(coef) if init: log.info("Performing initial optimization of PSFlet location transformation coefficients for frame " + inImage.filename) res = optimize.minimize(_corrval, coef_opt, args=( x[_s:-_s, _s:-_s], y[_s:-_s, _s:-_s], subfiltered, polyorder, trimfrac), method='Powell') coef_opt = res.x else: log.info("Performing initial optimization of PSFlet location transformation coefficients for frame " + inImage.filename) coef_lin = _pullorder(coef_opt, 1) res = optimize.minimize(_corrval, coef_lin, args=( x[_s:-_s, _s:-_s], y[_s:-_s, _s:-_s], subfiltered, polyorder, trimfrac, coef_opt), method='Powell', options={'xtol': 1e-6, 'ftol': 1e-6}) coef_lin = res.x coef_opt = _insertorder(coef_lin, coef_opt) coef_opt[0] += subshape coef_opt[(polyorder + 1) * (polyorder + 2) / 2] += subshape ############################################################# # If we have coefficients from last time, we assume that we # are now at a slightly higher wavelength, so try out offsets # that are slightly to the right to get a good initial guess. ############################################################# log.info("Performing final optimization of PSFlet location transformation coefficients for frame " + inImage.filename) if not init and fitorder is not None: coef_lin = _pullorder(coef_opt, fitorder) res = optimize.minimize(_corrval, coef_lin, args=(x, y, filtered, polyorder, trimfrac, coef_opt), method='Powell', options={'xtol': 1e-5, 'ftol': 1e-5}) coef_lin = res.x coef_opt = _insertorder(coef_lin, coef_opt) else: res = optimize.minimize(_corrval, coef_opt, args=(x, y, filtered, polyorder, trimfrac), method='Powell', options={'xtol': 1e-5, 'ftol': 1e-5}) coef_opt = res.x if not res.success: log.info("Optimizing PSFlet location transformation coefficients may have failed for frame " + inImage.filename) _x, _y = _transform(x, y, polyorder, coef_opt) ############################################################# # Boolean: do the lenslet PSFlets lie within the detector? ############################################################# good = (_x > 5) * (_x < xdim - 5) * (_y > 5) * (_y < ydim - 5) return [_x, _y, good, coef_opt]
2.203125
2