Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
Skill Extraction
License:
File size: 1,985 Bytes
04aa5bb c5feff1 2797150 c5feff1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: mit
task_categories:
- text-classification
language:
- en
tags:
- Skill Extraction
pretty_name: Skill Extraction - TECH
size_categories:
- n<1K
---
# Skill Extraction with ESCO skills - TECH subset
## Dataset Description
- **Paper:** https://arxiv.org/abs/2209.05987
- **Point of Contact:** [email protected]
## Dataset Summary
This dataset contains an extension of the `TECH` subset form the [SkillSpan](https://arxiv.org/abs/2204.12811) dataset, in which spans of skill mentions in sentences have been labeled with corresponding [ESCO](https://esco.ec.europa.eu/en/classification/skill_main) skills (ESCO v1.1.0).
This dataset is part of a three-part evaluation dataset for skill extraction:
1. [**skill-extraction-tech**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-tech)
2. [**skill-extraction-house**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-house)
3. [**skill-extraction-techwolf**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-techwolf)
### Citation Information
If you use this dataset, please include the following reference:
```
@inproceedings{decorte2022design,
articleno = {{4}},
author = {{Decorte, Jens-Joris and Van Hautte, Jeroen and Deleu, Johannes and Develder, Chris and Demeester, Thomas}},
booktitle = {{Proceedings of the 2nd Workshop on Recommender Systems for Human Resources (RecSys-in-HR 2022)}},
editor = {{Kaya, Mesut and Bogers, Toine and Graus, David and Mesbah, Sepideh and Johnson, Chris and Gutiérrez, Francisco}},
isbn = {{9781450398565}},
issn = {{1613-0073}},
language = {{eng}},
location = {{Seatle, USA}},
pages = {{7}},
publisher = {{CEUR}},
title = {{Design of negative sampling strategies for distantly supervised skill extraction}},
url = {{https://ceur-ws.org/Vol-3218/RecSysHR2022-paper_4.pdf}},
volume = {{3218}},
year = {{2022}},
}
``` |