Datasets:

Modalities:
Text
Formats:
csv
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
jensjorisdecorte commited on
Commit
c5feff1
1 Parent(s): 04aa5bb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md CHANGED
@@ -11,3 +11,36 @@ size_categories:
11
  - n<1K
12
  ---
13
  # Skill Extraction with ESCO skills - TECH subset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  - n<1K
12
  ---
13
  # Skill Extraction with ESCO skills - TECH subset
14
+
15
+ ## Dataset Description
16
+
17
+ - **Paper:** https://arxiv.org/abs/2209.05987
18
+ - **Point of Contact:** [email protected]
19
+
20
+ ## Dataset Summary
21
+
22
+ This dataset contains an extension of the `TECH` subset form the [SkillSpan](https://arxiv.org/abs/2204.12811) dataset, in which spans of skill mentions in sentences have been labeled with corresponding [ESCO](https://esco.ec.europa.eu/en/classification/skill_main) skills (ESCO v1.1.0).
23
+
24
+
25
+ ### Citation Information
26
+
27
+ If you use this dataset, please include the following reference:
28
+
29
+ ```
30
+ @inproceedings{decorte2022design,
31
+ articleno = {{4}},
32
+ author = {{Decorte, Jens-Joris and Van Hautte, Jeroen and Deleu, Johannes and Develder, Chris and Demeester, Thomas}},
33
+ booktitle = {{Proceedings of the 2nd Workshop on Recommender Systems for Human Resources (RecSys-in-HR 2022)}},
34
+ editor = {{Kaya, Mesut and Bogers, Toine and Graus, David and Mesbah, Sepideh and Johnson, Chris and Gutiérrez, Francisco}},
35
+ isbn = {{9781450398565}},
36
+ issn = {{1613-0073}},
37
+ language = {{eng}},
38
+ location = {{Seatle, USA}},
39
+ pages = {{7}},
40
+ publisher = {{CEUR}},
41
+ title = {{Design of negative sampling strategies for distantly supervised skill extraction}},
42
+ url = {{https://ceur-ws.org/Vol-3218/RecSysHR2022-paper_4.pdf}},
43
+ volume = {{3218}},
44
+ year = {{2022}},
45
+ }
46
+ ```