Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
csv
Languages:
Chinese
Size:
10K - 100K
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import datasets | |
import pandas as pd | |
_DESCRIPTION = """\ | |
TMMLU2 data loader | |
""" | |
_DATA_PATH = "data" | |
task_list = [ | |
'dentistry', 'traditional_chinese_medicine_clinical_medicine', 'clinical_psychology', | |
'technical', 'culinary_skills', 'mechanical', 'logic_reasoning', 'real_estate', | |
'general_principles_of_law', 'finance_banking', 'anti_money_laundering', 'ttqav2', | |
'marketing_management', 'business_management', 'organic_chemistry', 'advance_chemistry', | |
'physics', 'secondary_physics', 'human_behavior', 'national_protection', 'jce_humanities', | |
'politic_science', 'agriculture', 'official_document_management', | |
'financial_analysis', 'pharmacy', 'educational_psychology', 'statistics_and_machine_learning', | |
'management_accounting', 'introduction_to_law', 'computer_science', 'veterinary_pathology', | |
'accounting', 'fire_science', 'optometry', 'insurance_studies', 'pharmacology', 'taxation', | |
'education_(profession_level)', 'economics', | |
'veterinary_pharmacology', 'nautical_science', 'occupational_therapy_for_psychological_disorders', | |
'trust_practice', 'geography_of_taiwan', 'physical_education', 'auditing', 'administrative_law', | |
'basic_medical_science', 'macroeconomics', 'trade', 'chinese_language_and_literature', | |
'tve_design', 'junior_science_exam', 'junior_math_exam', 'junior_chinese_exam', | |
'junior_social_studies', 'tve_mathematics', 'tve_chinese_language', | |
'tve_natural_sciences', 'junior_chemistry', 'music', 'education', | |
'three_principles_of_people', 'taiwanese_hokkien', | |
'engineering_math' | |
] | |
_URLs = { | |
task_name: { | |
split_name: [ | |
os.path.join( | |
_DATA_PATH, task_name+"_"+split_name+".csv" | |
), # TODO -> handle multiple shards | |
] | |
for split_name in ['dev', 'test', 'val'] | |
} | |
for task_name in task_list | |
} | |
class TMMLU2Config(datasets.BuilderConfig): | |
def __init__(self, **kwargs): | |
super().__init__(version=datasets.Version("1.0.0"), **kwargs) | |
class TMMLU2(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
TMMLU2Config( | |
name=task_name, | |
) | |
for task_name in task_list | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"question": datasets.Value("string"), | |
"A": datasets.Value("string"), | |
"B": datasets.Value("string"), | |
"C": datasets.Value("string"), | |
"D": datasets.Value("string"), | |
"answer": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
) | |
def _split_generators(self, dl_manager): | |
task_name = self.config.name | |
data_dir = dl_manager.download(_URLs[task_name]) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": data_dir['test'], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": data_dir['val'], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": data_dir['dev'], | |
}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
if isinstance(filepath, list): | |
filepath = filepath[0] | |
df = pd.read_csv(filepath) | |
for i, instance in enumerate(df.to_dict(orient="records")): | |
yield i, {'question': instance['question'], | |
'A': instance['A'], | |
'B': instance['B'], | |
'C': instance['C'], | |
'D': instance['D'], | |
'answer': instance['answer'] | |
} |