Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
csv
Languages:
Chinese
Size:
10K - 100K
License:
Revert back to python script based loading, cause hf auto builder is broken
Browse files- tmmluplus.py +124 -0
tmmluplus.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
|
16 |
+
import datasets
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
|
20 |
+
_DESCRIPTION = """\
|
21 |
+
TMMLU2 data loader
|
22 |
+
"""
|
23 |
+
_DATA_PATH = "data"
|
24 |
+
|
25 |
+
task_list = [
|
26 |
+
'dentistry', 'traditional_chinese_medicine_clinical_medicine', 'clinical_psychology',
|
27 |
+
'technical', 'culinary_skills', 'mechanical', 'logic_reasoning', 'real_estate',
|
28 |
+
'general_principles_of_law', 'finance_banking', 'anti_money_laundering', 'ttqav2',
|
29 |
+
'marketing_management', 'business_management', 'organic_chemistry', 'advance_chemistry',
|
30 |
+
'physics', 'secondary_physics', 'human_behavior', 'national_protection', 'jce_humanities',
|
31 |
+
'politic_science', 'agriculture', 'official_document_management',
|
32 |
+
'financial_analysis', 'pharmacy', 'educational_psychology', 'statistics_and_machine_learning',
|
33 |
+
'management_accounting', 'introduction_to_law', 'computer_science', 'veterinary_pathology',
|
34 |
+
'accounting', 'fire_science', 'optometry', 'insurance_studies', 'pharmacology', 'taxation',
|
35 |
+
'education_(profession_level)', 'economics',
|
36 |
+
'veterinary_pharmacology', 'nautical_science', 'occupational_therapy_for_psychological_disorders',
|
37 |
+
'trust_practice', 'geography_of_taiwan', 'physical_education', 'auditing', 'administrative_law',
|
38 |
+
'basic_medical_science', 'macroeconomics', 'trade', 'chinese_language_and_literature',
|
39 |
+
'tve_design', 'junior_science_exam', 'junior_math_exam', 'junior_chinese_exam',
|
40 |
+
'junior_social_studies', 'tve_mathematics', 'tve_chinese_language',
|
41 |
+
'tve_natural_sciences', 'junior_chemistry', 'music', 'education',
|
42 |
+
'three_principles_of_people', 'taiwanese_hokkien',
|
43 |
+
'engineering_math'
|
44 |
+
]
|
45 |
+
|
46 |
+
_URLs = {
|
47 |
+
task_name: {
|
48 |
+
split_name: [
|
49 |
+
os.path.join(
|
50 |
+
_DATA_PATH, task_name+"_"+split_name+".csv"
|
51 |
+
), # TODO -> handle multiple shards
|
52 |
+
]
|
53 |
+
for split_name in ['dev', 'test', 'val']
|
54 |
+
}
|
55 |
+
for task_name in task_list
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
class TMMLU2Config(datasets.BuilderConfig):
|
60 |
+
def __init__(self, **kwargs):
|
61 |
+
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
|
62 |
+
|
63 |
+
|
64 |
+
class TMMLU2(datasets.GeneratorBasedBuilder):
|
65 |
+
BUILDER_CONFIGS = [
|
66 |
+
TMMLU2Config(
|
67 |
+
name=task_name,
|
68 |
+
)
|
69 |
+
for task_name in task_list
|
70 |
+
]
|
71 |
+
|
72 |
+
def _info(self):
|
73 |
+
features = datasets.Features(
|
74 |
+
{
|
75 |
+
"question": datasets.Value("string"),
|
76 |
+
"A": datasets.Value("string"),
|
77 |
+
"B": datasets.Value("string"),
|
78 |
+
"C": datasets.Value("string"),
|
79 |
+
"D": datasets.Value("string"),
|
80 |
+
"answer": datasets.Value("string"),
|
81 |
+
}
|
82 |
+
)
|
83 |
+
return datasets.DatasetInfo(
|
84 |
+
description=_DESCRIPTION,
|
85 |
+
features=features,
|
86 |
+
)
|
87 |
+
|
88 |
+
def _split_generators(self, dl_manager):
|
89 |
+
task_name = self.config.name
|
90 |
+
data_dir = dl_manager.download(_URLs[task_name])
|
91 |
+
return [
|
92 |
+
datasets.SplitGenerator(
|
93 |
+
name=datasets.Split.TEST,
|
94 |
+
gen_kwargs={
|
95 |
+
"filepath": data_dir['test'],
|
96 |
+
},
|
97 |
+
),
|
98 |
+
datasets.SplitGenerator(
|
99 |
+
name=datasets.Split.VALIDATION,
|
100 |
+
gen_kwargs={
|
101 |
+
"filepath": data_dir['val'],
|
102 |
+
},
|
103 |
+
),
|
104 |
+
datasets.SplitGenerator(
|
105 |
+
name=datasets.Split.TRAIN,
|
106 |
+
gen_kwargs={
|
107 |
+
"filepath": data_dir['dev'],
|
108 |
+
},
|
109 |
+
),
|
110 |
+
]
|
111 |
+
|
112 |
+
def _generate_examples(self, filepath):
|
113 |
+
if isinstance(filepath, list):
|
114 |
+
filepath = filepath[0]
|
115 |
+
df = pd.read_csv(filepath)
|
116 |
+
|
117 |
+
for i, instance in enumerate(df.to_dict(orient="records")):
|
118 |
+
yield i, {'question': instance['question'],
|
119 |
+
'A': instance['A'],
|
120 |
+
'B': instance['B'],
|
121 |
+
'C': instance['C'],
|
122 |
+
'D': instance['D'],
|
123 |
+
'answer': instance['answer']
|
124 |
+
}
|