dollarstreet / README.md
iamshnoo's picture
Upload README.md with huggingface_hub
c969a91 verified
|
raw
history blame
27.7 kB
metadata
configs:
  - config_name: default
    data_files:
      - split: fishing_equipment
        path: data/fishing_equipment-*
      - split: playgrounds
        path: data/playgrounds-*
      - split: fruit_trees
        path: data/fruit_trees-*
      - split: cleaning_after_toilet
        path: data/cleaning_after_toilet-*
      - split: dinner_guests
        path: data/dinner_guests-*
      - split: idols
        path: data/idols-*
      - split: freezer
        path: data/freezer-*
      - split: hand_washing
        path: data/hand_washing-*
      - split: lock_on_front_door
        path: data/lock_on_front_door-*
      - split: children_room
        path: data/children_room-*
      - split: coats_and_jackets
        path: data/coats_and_jackets-*
      - split: hand_palm
        path: data/hand_palm-*
      - split: play_area
        path: data/play_area-*
      - split: bed
        path: data/bed-*
      - split: car_keys
        path: data/car_keys-*
      - split: meat_markets
        path: data/meat_markets-*
      - split: earings
        path: data/earings-*
      - split: hallway
        path: data/hallway-*
      - split: salt
        path: data/salt-*
      - split: cleaning_equipment
        path: data/cleaning_equipment-*
      - split: water_sources
        path: data/water_sources-*
      - split: chickens
        path: data/chickens-*
      - split: toilet_paper
        path: data/toilet_paper-*
      - split: backyard
        path: data/backyard-*
      - split: living_room
        path: data/living_room-*
      - split: refrigerator
        path: data/refrigerator-*
      - split: bathroom_privacy
        path: data/bathroom_privacy-*
      - split: next_big_thing_you_are_planning_to_buy
        path: data/next_big_thing_you_are_planning_to_buy-*
      - split: nature_sceneries
        path: data/nature_sceneries-*
      - split: bread_bowls
        path: data/bread_bowls-*
      - split: portraits
        path: data/portraits-*
      - split: boat
        path: data/boat-*
      - split: books
        path: data/books-*
      - split: necklaces
        path: data/necklaces-*
      - split: plate_of_food
        path: data/plate_of_food-*
      - split: place_where_serving_guests
        path: data/place_where_serving_guests-*
      - split: medication
        path: data/medication-*
      - split: meat_storages
        path: data/meat_storages-*
      - split: hand_back
        path: data/hand_back-*
      - split: kitchen
        path: data/kitchen-*
      - split: stove_hob
        path: data/stove_hob-*
      - split: jewelry
        path: data/jewelry-*
      - split: sitting_area
        path: data/sitting_area-*
      - split: cattle
        path: data/cattle-*
      - split: source_of_heat
        path: data/source_of_heat-*
      - split: drinks
        path: data/drinks-*
      - split: bowls
        path: data/bowls-*
      - split: tractors
        path: data/tractors-*
      - split: shampoo
        path: data/shampoo-*
      - split: toilet
        path: data/toilet-*
      - split: baking_tables
        path: data/baking_tables-*
      - split: wardrobe
        path: data/wardrobe-*
      - split: arm_watches
        path: data/arm_watches-*
      - split: armchair
        path: data/armchair-*
      - split: shower
        path: data/shower-*
      - split: visit
        path: data/visit-*
      - split: music_equipment
        path: data/music_equipment-*
      - split: bathroom_toilet
        path: data/bathroom_toilet-*
      - split: electric_wires
        path: data/electric_wires-*
      - split: cooking_pots
        path: data/cooking_pots-*
      - split: other_transport
        path: data/other_transport-*
      - split: daylight_ostructions
        path: data/daylight_ostructions-*
      - split: bread_ready
        path: data/bread_ready-*
      - split: work_area
        path: data/work_area-*
      - split: pet_foods
        path: data/pet_foods-*
      - split: air_fresheners_scents
        path: data/air_fresheners_scents-*
      - split: dishwasher
        path: data/dishwasher-*
      - split: street_view
        path: data/street_view-*
      - split: foodstores
        path: data/foodstores-*
      - split: shoes
        path: data/shoes-*
      - split: pet
        path: data/pet-*
      - split: couch
        path: data/couch-*
      - split: thing_i_dream_about_having
        path: data/thing_i_dream_about_having-*
      - split: glasses_or_lenses
        path: data/glasses_or_lenses-*
      - split: instrument
        path: data/instrument-*
      - split: vegetable_markets
        path: data/vegetable_markets-*
      - split: washing_clothes_cleaning
        path: data/washing_clothes_cleaning-*
      - split: most_played_songs_on_the_radio
        path: data/most_played_songs_on_the_radio-*
      - split: equipment
        path: data/equipment-*
      - split: car
        path: data/car-*
      - split: table_with_food
        path: data/table_with_food-*
      - split: switch_on_off
        path: data/switch_on_off-*
      - split: coins
        path: data/coins-*
      - split: smoke_and_steam_exit
        path: data/smoke_and_steam_exit-*
      - split: washing_detergent
        path: data/washing_detergent-*
      - split: air_cleaning_equipments
        path: data/air_cleaning_equipments-*
      - split: tv
        path: data/tv-*
      - split: lightsources_by_bed
        path: data/lightsources_by_bed-*
      - split: wall_
        path: data/wall_-*
      - split: floor
        path: data/floor-*
      - split: clothes
        path: data/clothes-*
      - split: tattoos
        path: data/tattoos-*
      - split: toothbrush
        path: data/toothbrush-*
      - split: trash_waste
        path: data/trash_waste-*
      - split: light_source_in_livingroom
        path: data/light_source_in_livingroom-*
      - split: dish_racks
        path: data/dish_racks-*
      - split: drinking_water
        path: data/drinking_water-*
      - split: phone
        path: data/phone-*
      - split: surroundings
        path: data/surroundings-*
      - split: tabloids
        path: data/tabloids-*
      - split: pen_pencils
        path: data/pen_pencils-*
      - split: tooth_paste
        path: data/tooth_paste-*
      - split: make_up
        path: data/make_up-*
      - split: worship_places
        path: data/worship_places-*
      - split: cigarettes
        path: data/cigarettes-*
      - split: sheep
        path: data/sheep-*
      - split: cups_mugs_glasses
        path: data/cups_mugs_glasses-*
      - split: baking_tools
        path: data/baking_tools-*
      - split: goats
        path: data/goats-*
      - split: dish_washing_brush_cloth
        path: data/dish_washing_brush_cloth-*
      - split: plates
        path: data/plates-*
      - split: waste_dumps
        path: data/waste_dumps-*
      - split: icons
        path: data/icons-*
      - split: meat_or_fish
        path: data/meat_or_fish-*
      - split: wheel_barrow
        path: data/wheel_barrow-*
      - split: water_sources_for_doing_dishes
        path: data/water_sources_for_doing_dishes-*
      - split: soccer_balls
        path: data/soccer_balls-*
      - split: wall_decoration
        path: data/wall_decoration-*
      - split: horses
        path: data/horses-*
      - split: bed_kids
        path: data/bed_kids-*
      - split: contraceptives
        path: data/contraceptives-*
      - split: nicest_shoes
        path: data/nicest_shoes-*
      - split: computer
        path: data/computer-*
      - split: baby_powder
        path: data/baby_powder-*
      - split: family_snapshots
        path: data/family_snapshots-*
      - split: moped_motorcycle
        path: data/moped_motorcycle-*
      - split: most_loved_item
        path: data/most_loved_item-*
      - split: menstruation_pads_tampax
        path: data/menstruation_pads_tampax-*
      - split: youth_culture
        path: data/youth_culture-*
      - split: baking_sheets
        path: data/baking_sheets-*
      - split: tools
        path: data/tools-*
      - split: grains
        path: data/grains-*
      - split: radio
        path: data/radio-*
      - split: rug
        path: data/rug-*
      - split: water_outlet
        path: data/water_outlet-*
      - split: milk_cows_or_bulls
        path: data/milk_cows_or_bulls-*
      - split: oven
        path: data/oven-*
      - split: roof
        path: data/roof-*
      - split: dish_washing_soap
        path: data/dish_washing_soap-*
      - split: smog_bad_air_breathing_protection
        path: data/smog_bad_air_breathing_protection-*
      - split: parking_lot
        path: data/parking_lot-*
      - split: paper
        path: data/paper-*
      - split: knifes
        path: data/knifes-*
      - split: wall_inside
        path: data/wall_inside-*
      - split: snacks
        path: data/snacks-*
      - split: fishes
        path: data/fishes-*
      - split: frontdoor_keys
        path: data/frontdoor_keys-*
      - split: photo_guide_images
        path: data/photo_guide_images-*
      - split: cutlery
        path: data/cutlery-*
      - split: water_purifier_solutions
        path: data/water_purifier_solutions-*
      - split: place_where_eating_dinner
        path: data/place_where_eating_dinner-*
      - split: front_door
        path: data/front_door-*
      - split: family
        path: data/family-*
      - split: home
        path: data/home-*
      - split: latest_furniture_bought
        path: data/latest_furniture_bought-*
      - split: cooking
        path: data/cooking-*
      - split: sources_of_drinking_water
        path: data/sources_of_drinking_water-*
      - split: vegetables
        path: data/vegetables-*
      - split: everyday_shoes
        path: data/everyday_shoes-*
      - split: elevators
        path: data/elevators-*
      - split: favorite_home_decorations
        path: data/favorite_home_decorations-*
      - split: wedding_photos
        path: data/wedding_photos-*
      - split: bedroom
        path: data/bedroom-*
      - split: carrying_water
        path: data/carrying_water-*
      - split: rehabilitation_technology
        path: data/rehabilitation_technology-*
      - split: markets
        path: data/markets-*
      - split: bike
        path: data/bike-*
      - split: bed_hq
        path: data/bed_hq-*
      - split: mosquito_protection
        path: data/mosquito_protection-*
      - split: kitchen_sink
        path: data/kitchen_sink-*
      - split: get_water
        path: data/get_water-*
      - split: hair_brush_comb
        path: data/hair_brush_comb-*
      - split: spices
        path: data/spices-*
      - split: most_loved_toy
        path: data/most_loved_toy-*
      - split: shaving
        path: data/shaving-*
      - split: teeth
        path: data/teeth-*
      - split: wall_clock
        path: data/wall_clock-*
      - split: drying
        path: data/drying-*
      - split: soap_for_hands_and_body
        path: data/soap_for_hands_and_body-*
      - split: transport_of_heavy_things
        path: data/transport_of_heavy_things-*
      - split: horse_stables
        path: data/horse_stables-*
      - split: newspapers
        path: data/newspapers-*
      - split: car_decorations
        path: data/car_decorations-*
      - split: toys
        path: data/toys-*
      - split: cleaning_floors
        path: data/cleaning_floors-*
      - split: alcoholic_drinks
        path: data/alcoholic_drinks-*
      - split: cosmetics
        path: data/cosmetics-*
      - split: soccer_supporter_items
        path: data/soccer_supporter_items-*
      - split: bad_outdoor_air_obstructions
        path: data/bad_outdoor_air_obstructions-*
      - split: social_drink
        path: data/social_drink-*
      - split: cooking_utensils
        path: data/cooking_utensils-*
      - split: skies_outside
        path: data/skies_outside-*
      - split: arm_watch
        path: data/arm_watch-*
      - split: guest_bed
        path: data/guest_bed-*
      - split: ingredients
        path: data/ingredients-*
      - split: replaced
        path: data/replaced-*
      - split: power_outlet
        path: data/power_outlet-*
      - split: ventilation
        path: data/ventilation-*
      - split: bills_of_money
        path: data/bills_of_money-*
      - split: light_source_in_kitchen
        path: data/light_source_in_kitchen-*
      - split: agriculture_land
        path: data/agriculture_land-*
      - split: street_detail
        path: data/street_detail-*
      - split: light_sources
        path: data/light_sources-*
      - split: ceiling
        path: data/ceiling-*
      - split: things_i_wish_i_had
        path: data/things_i_wish_i_had-*
      - split: wall
        path: data/wall-*
      - split: piercings
        path: data/piercings-*
      - split: vegetable_plot
        path: data/vegetable_plot-*
      - split: fields
        path: data/fields-*
      - split: source_of_cool
        path: data/source_of_cool-*
      - split: storage_room
        path: data/storage_room-*
      - split: fruits_and_vegetables
        path: data/fruits_and_vegetables-*
      - split: favourite_sports_clubs
        path: data/favourite_sports_clubs-*
      - split: snack_stores
        path: data/snack_stores-*
      - split: electricity_wires
        path: data/electricity_wires-*
      - split: celebrity_posters
        path: data/celebrity_posters-*
dataset_info:
  features:
    - name: id
      dtype: string
    - name: country_name
      dtype: string
    - name: country_id
      dtype: string
    - name: region_id
      dtype: string
    - name: type
      dtype: string
    - name: image
      dtype: image
    - name: topics
      dtype: string
    - name: place
      dtype: string
    - name: income
      dtype: string
  splits:
    - name: fishing_equipment
      num_bytes: 4282534
      num_examples: 1
    - name: playgrounds
      num_bytes: 35287984
      num_examples: 7
    - name: fruit_trees
      num_bytes: 347993315
      num_examples: 100
    - name: cleaning_after_toilet
      num_bytes: 21874227
      num_examples: 14
    - name: dinner_guests
      num_bytes: 142874232
      num_examples: 48
    - name: idols
      num_bytes: 204194164
      num_examples: 65
    - name: freezer
      num_bytes: 515874223
      num_examples: 187
    - name: hand_washing
      num_bytes: 1060102199
      num_examples: 347
    - name: lock_on_front_door
      num_bytes: 1099656984
      num_examples: 362
    - name: children_room
      num_bytes: 677706326
      num_examples: 196
    - name: coats_and_jackets
      num_bytes: 60417863
      num_examples: 26
    - name: hand_palm
      num_bytes: 1045670614
      num_examples: 357
    - name: play_area
      num_bytes: 807546710
      num_examples: 216
    - name: bed
      num_bytes: 2798532320
      num_examples: 832
    - name: car_keys
      num_bytes: 58358512
      num_examples: 58
    - name: meat_markets
      num_bytes: 4634793
      num_examples: 1
    - name: earings
      num_bytes: 395054544
      num_examples: 136
    - name: hallway
      num_bytes: 126639302
      num_examples: 49
    - name: salt
      num_bytes: 997626560
      num_examples: 343
    - name: cleaning_equipment
      num_bytes: 808855439
      num_examples: 240
    - name: water_sources
      num_bytes: 39337550
      num_examples: 12
    - name: chickens
      num_bytes: 271724783
      num_examples: 71
    - name: toilet_paper
      num_bytes: 908650830
      num_examples: 294
    - name: backyard
      num_bytes: 834683499
      num_examples: 208
    - name: living_room
      num_bytes: 976352363
      num_examples: 279
    - name: refrigerator
      num_bytes: 704561864
      num_examples: 262
    - name: bathroom_privacy
      num_bytes: 898900810
      num_examples: 283
    - name: next_big_thing_you_are_planning_to_buy
      num_bytes: 426843198
      num_examples: 153
    - name: nature_sceneries
      num_bytes: 9080831
      num_examples: 3
    - name: bread_bowls
      num_bytes: 4171755
      num_examples: 1
    - name: portraits
      num_bytes: 27532067
      num_examples: 9
    - name: boat
      num_bytes: 23087642
      num_examples: 5
    - name: books
      num_bytes: 1045990947
      num_examples: 315
    - name: necklaces
      num_bytes: 468137237
      num_examples: 139
    - name: plate_of_food
      num_bytes: 965241961
      num_examples: 298
    - name: place_where_serving_guests
      num_bytes: 452285557
      num_examples: 147
    - name: medication
      num_bytes: 935436600
      num_examples: 291
    - name: meat_storages
      num_bytes: 5019867
      num_examples: 2
    - name: hand_back
      num_bytes: 1091816070
      num_examples: 358
    - name: kitchen
      num_bytes: 3049589855
      num_examples: 967
    - name: stove_hob
      num_bytes: 1175724856
      num_examples: 381
    - name: jewelry
      num_bytes: 566520264
      num_examples: 189
    - name: sitting_area
      num_bytes: 1008819886
      num_examples: 299
    - name: cattle
      num_bytes: 33022033
      num_examples: 12
    - name: source_of_heat
      num_bytes: 453347786
      num_examples: 145
    - name: drinks
      num_bytes: 218115579
      num_examples: 75
    - name: bowls
      num_bytes: 69506612
      num_examples: 24
    - name: tractors
      num_bytes: 8786272
      num_examples: 1
    - name: shampoo
      num_bytes: 1009790811
      num_examples: 339
    - name: toilet
      num_bytes: 2922917220
      num_examples: 943
    - name: baking_tables
      num_bytes: 3017644
      num_examples: 1
    - name: wardrobe
      num_bytes: 1161924263
      num_examples: 362
    - name: arm_watches
      num_bytes: 55557790
      num_examples: 30
    - name: armchair
      num_bytes: 1116948741
      num_examples: 332
    - name: shower
      num_bytes: 995696782
      num_examples: 329
    - name: visit
      num_bytes: 4464796725.109
      num_examples: 1321
    - name: music_equipment
      num_bytes: 517230560
      num_examples: 172
    - name: bathroom_toilet
      num_bytes: 1129143553
      num_examples: 350
    - name: electric_wires
      num_bytes: 8854810
      num_examples: 2
    - name: cooking_pots
      num_bytes: 1263802321
      num_examples: 384
    - name: other_transport
      num_bytes: 20219867
      num_examples: 5
    - name: daylight_ostructions
      num_bytes: 2457632
      num_examples: 6
    - name: bread_ready
      num_bytes: 2912081
      num_examples: 1
    - name: work_area
      num_bytes: 527291086
      num_examples: 168
    - name: pet_foods
      num_bytes: 208829264
      num_examples: 64
    - name: air_fresheners_scents
      num_bytes: 115395
      num_examples: 1
    - name: dishwasher
      num_bytes: 189437189
      num_examples: 55
    - name: street_view
      num_bytes: 1270219060
      num_examples: 353
    - name: foodstores
      num_bytes: 17300865
      num_examples: 3
    - name: shoes
      num_bytes: 2424967583
      num_examples: 709
    - name: pet
      num_bytes: 843309370
      num_examples: 248
    - name: couch
      num_bytes: 1038410012
      num_examples: 306
    - name: thing_i_dream_about_having
      num_bytes: 472486186
      num_examples: 159
    - name: glasses_or_lenses
      num_bytes: 406654084
      num_examples: 148
    - name: instrument
      num_bytes: 201768650
      num_examples: 64
    - name: vegetable_markets
      num_bytes: 3934905
      num_examples: 1
    - name: washing_clothes_cleaning
      num_bytes: 986858417
      num_examples: 314
    - name: most_played_songs_on_the_radio
      num_bytes: 2804770
      num_examples: 1
    - name: equipment
      num_bytes: 1330368532
      num_examples: 413
    - name: car
      num_bytes: 356818254
      num_examples: 154
    - name: table_with_food
      num_bytes: 723749144
      num_examples: 228
    - name: switch_on_off
      num_bytes: 879446769
      num_examples: 297
    - name: coins
      num_bytes: 4296291
      num_examples: 1
    - name: smoke_and_steam_exit
      num_bytes: 735515901
      num_examples: 233
    - name: washing_detergent
      num_bytes: 967584026
      num_examples: 315
    - name: air_cleaning_equipments
      num_bytes: 562027
      num_examples: 4
    - name: tv
      num_bytes: 881350311
      num_examples: 292
    - name: lightsources_by_bed
      num_bytes: 262728699
      num_examples: 92
    - name: wall_
      num_bytes: 2818789640
      num_examples: 877
    - name: floor
      num_bytes: 1330556621
      num_examples: 377
    - name: clothes
      num_bytes: 1022544251
      num_examples: 323
    - name: tattoos
      num_bytes: 175056398
      num_examples: 51
    - name: toothbrush
      num_bytes: 1119100599
      num_examples: 379
    - name: trash_waste
      num_bytes: 964196788
      num_examples: 291
    - name: light_source_in_livingroom
      num_bytes: 895836854
      num_examples: 307
    - name: dish_racks
      num_bytes: 1070639074
      num_examples: 336
    - name: drinking_water
      num_bytes: 958784447
      num_examples: 309
    - name: phone
      num_bytes: 1002531643
      num_examples: 326
    - name: surroundings
      num_bytes: 60100849
      num_examples: 13
    - name: tabloids
      num_bytes: 9384343
      num_examples: 2
    - name: pen_pencils
      num_bytes: 937874666
      num_examples: 288
    - name: tooth_paste
      num_bytes: 992504555
      num_examples: 334
    - name: make_up
      num_bytes: 324344448
      num_examples: 97
    - name: worship_places
      num_bytes: 269510881
      num_examples: 77
    - name: cigarettes
      num_bytes: 124000767
      num_examples: 30
    - name: sheep
      num_bytes: 12738586
      num_examples: 4
    - name: cups_mugs_glasses
      num_bytes: 994285249
      num_examples: 333
    - name: baking_tools
      num_bytes: 2321733
      num_examples: 1
    - name: goats
      num_bytes: 94614657
      num_examples: 24
    - name: dish_washing_brush_cloth
      num_bytes: 1118661909
      num_examples: 351
    - name: plates
      num_bytes: 1033692373
      num_examples: 342
    - name: waste_dumps
      num_bytes: 484227664
      num_examples: 127
    - name: icons
      num_bytes: 47368214
      num_examples: 188
    - name: meat_or_fish
      num_bytes: 616043178
      num_examples: 192
    - name: wheel_barrow
      num_bytes: 201248243
      num_examples: 45
    - name: water_sources_for_doing_dishes
      num_bytes: 15657524
      num_examples: 7
    - name: soccer_balls
      num_bytes: 11121861
      num_examples: 3
    - name: wall_decoration
      num_bytes: 1133852833
      num_examples: 352
    - name: horses
      num_bytes: 7103900
      num_examples: 3
    - name: bed_kids
      num_bytes: 901139651
      num_examples: 250
    - name: contraceptives
      num_bytes: 56130849
      num_examples: 25
    - name: nicest_shoes
      num_bytes: 1178886748
      num_examples: 350
    - name: computer
      num_bytes: 552454079
      num_examples: 186
    - name: baby_powder
      num_bytes: 7773188
      num_examples: 4
    - name: family_snapshots
      num_bytes: 392643354
      num_examples: 109
    - name: moped_motorcycle
      num_bytes: 244103066
      num_examples: 82
    - name: most_loved_item
      num_bytes: 763492723
      num_examples: 242
    - name: menstruation_pads_tampax
      num_bytes: 400849572
      num_examples: 125
    - name: youth_culture
      num_bytes: 6899000
      num_examples: 1
    - name: baking_sheets
      num_bytes: 2760341
      num_examples: 1
    - name: tools
      num_bytes: 900850525
      num_examples: 252
    - name: grains
      num_bytes: 1066679345
      num_examples: 319
    - name: radio
      num_bytes: 534624094
      num_examples: 164
    - name: rug
      num_bytes: 720029591
      num_examples: 193
    - name: water_outlet
      num_bytes: 967359266
      num_examples: 305
    - name: milk_cows_or_bulls
      num_bytes: 19719273
      num_examples: 6
    - name: oven
      num_bytes: 408380446
      num_examples: 142
    - name: roof
      num_bytes: 983562313
      num_examples: 302
    - name: dish_washing_soap
      num_bytes: 1028112295
      num_examples: 337
    - name: smog_bad_air_breathing_protection
      num_bytes: 240117
      num_examples: 2
    - name: parking_lot
      num_bytes: 448364538
      num_examples: 126
    - name: paper
      num_bytes: 1595217257
      num_examples: 505
    - name: knifes
      num_bytes: 621867863
      num_examples: 181
    - name: wall_inside
      num_bytes: 1174096181
      num_examples: 358
    - name: snacks
      num_bytes: 37990707
      num_examples: 11
    - name: fishes
      num_bytes: 159058192
      num_examples: 58
    - name: frontdoor_keys
      num_bytes: 208792828
      num_examples: 147
    - name: photo_guide_images
      num_bytes: 215474454
      num_examples: 75
    - name: cutlery
      num_bytes: 926351889
      num_examples: 301
    - name: water_purifier_solutions
      num_bytes: 278055
      num_examples: 2
    - name: place_where_eating_dinner
      num_bytes: 1171010449
      num_examples: 369
    - name: front_door
      num_bytes: 2269861804
      num_examples: 732
    - name: family
      num_bytes: 1622349409
      num_examples: 493
    - name: home
      num_bytes: 1873360607
      num_examples: 550
    - name: latest_furniture_bought
      num_bytes: 325501347
      num_examples: 107
    - name: cooking
      num_bytes: 2251982244
      num_examples: 679
    - name: sources_of_drinking_water
      num_bytes: 3045397
      num_examples: 8
    - name: vegetables
      num_bytes: 1619243098
      num_examples: 492
    - name: everyday_shoes
      num_bytes: 1282284689
      num_examples: 365
    - name: elevators
      num_bytes: 3346981
      num_examples: 3
    - name: favorite_home_decorations
      num_bytes: 476751718
      num_examples: 151
    - name: wedding_photos
      num_bytes: 266849446
      num_examples: 83
    - name: bedroom
      num_bytes: 1383727529
      num_examples: 399
    - name: carrying_water
      num_bytes: 3082174
      num_examples: 1
    - name: rehabilitation_technology
      num_bytes: 10884034
      num_examples: 8
    - name: markets
      num_bytes: 35468731
      num_examples: 8
    - name: bike
      num_bytes: 536280770
      num_examples: 149
    - name: bed_hq
      num_bytes: 18768649
      num_examples: 4
    - name: mosquito_protection
      num_bytes: 541301592
      num_examples: 163
    - name: kitchen_sink
      num_bytes: 1077526669
      num_examples: 334
    - name: get_water
      num_bytes: 312942447
      num_examples: 80
    - name: hair_brush_comb
      num_bytes: 1069311270
      num_examples: 331
    - name: spices
      num_bytes: 1138126845
      num_examples: 360
    - name: most_loved_toy
      num_bytes: 766935172
      num_examples: 238
    - name: shaving
      num_bytes: 630435242
      num_examples: 216
    - name: teeth
      num_bytes: 908538754
      num_examples: 326
    - name: wall_clock
      num_bytes: 567309624
      num_examples: 184
    - name: drying
      num_bytes: 860669230
      num_examples: 270
    - name: soap_for_hands_and_body
      num_bytes: 1043814773
      num_examples: 363
    - name: transport_of_heavy_things
      num_bytes: 66846208
      num_examples: 21
    - name: horse_stables
      num_bytes: 2030907
      num_examples: 1
    - name: newspapers
      num_bytes: 25233082
      num_examples: 7
    - name: car_decorations
      num_bytes: 5448714
      num_examples: 1
    - name: toys
      num_bytes: 904248551
      num_examples: 286
    - name: cleaning_floors
      num_bytes: 422989995
      num_examples: 124
    - name: alcoholic_drinks
      num_bytes: 206764191
      num_examples: 72
    - name: cosmetics
      num_bytes: 362582452
      num_examples: 123
    - name: soccer_supporter_items
      num_bytes: 3500438
      num_examples: 3
    - name: bad_outdoor_air_obstructions
      num_bytes: 1141009
      num_examples: 6
    - name: social_drink
      num_bytes: 865071477
      num_examples: 280
    - name: cooking_utensils
      num_bytes: 1023598264
      num_examples: 301
    - name: skies_outside
      num_bytes: 3351593
      num_examples: 7
    - name: arm_watch
      num_bytes: 298661802
      num_examples: 101
    - name: guest_bed
      num_bytes: 504616118
      num_examples: 164
    - name: ingredients
      num_bytes: 17779940
      num_examples: 3
    - name: replaced
      num_bytes: 4438189
      num_examples: 3
    - name: power_outlet
      num_bytes: 875197741
      num_examples: 298
    - name: ventilation
      num_bytes: 24058628
      num_examples: 10
    - name: bills_of_money
      num_bytes: 11163171
      num_examples: 2
    - name: light_source_in_kitchen
      num_bytes: 883391525
      num_examples: 304
    - name: agriculture_land
      num_bytes: 237876904
      num_examples: 53
    - name: street_detail
      num_bytes: 1168591117
      num_examples: 290
    - name: light_sources
      num_bytes: 707637325
      num_examples: 220
    - name: ceiling
      num_bytes: 1154394188
      num_examples: 362
    - name: things_i_wish_i_had
      num_bytes: 13208034
      num_examples: 5
    - name: wall
      num_bytes: 3920557387.358
      num_examples: 1154
    - name: piercings
      num_bytes: 181157725
      num_examples: 68
    - name: vegetable_plot
      num_bytes: 283618018
      num_examples: 71
    - name: fields
      num_bytes: 5822273
      num_examples: 1
    - name: source_of_cool
      num_bytes: 786516004
      num_examples: 250
    - name: storage_room
      num_bytes: 772429217
      num_examples: 225
    - name: fruits_and_vegetables
      num_bytes: 664452138
      num_examples: 210
    - name: favourite_sports_clubs
      num_bytes: 135961086
      num_examples: 46
    - name: snack_stores
      num_bytes: 288627
      num_examples: 1
    - name: electricity_wires
      num_bytes: 2244483
      num_examples: 1
    - name: celebrity_posters
      num_bytes: 6966565
      num_examples: 1
  download_size: 7376078939
  dataset_size: 134294971337.46701

Dataset Card for "dollarstreet"

More Information needed