repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
jorisvandenbossche/numpy
numpy/lib/polynomial.py
1
40755
""" Functions to operate on polynomials. """ from __future__ import division, absolute_import, print_function __all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd', 'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d', 'polyfit', 'RankWarning'] import functools import re import warnings import numpy.core.numeric as NX from numpy.core import (isscalar, abs, finfo, atleast_1d, hstack, dot, array, ones) from numpy.core import overrides from numpy.core.overrides import set_module from numpy.lib.twodim_base import diag, vander from numpy.lib.function_base import trim_zeros from numpy.lib.type_check import iscomplex, real, imag, mintypecode from numpy.linalg import eigvals, lstsq, inv array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy') @set_module('numpy') class RankWarning(UserWarning): """ Issued by `polyfit` when the Vandermonde matrix is rank deficient. For more information, a way to suppress the warning, and an example of `RankWarning` being issued, see `polyfit`. """ pass def _poly_dispatcher(seq_of_zeros): return seq_of_zeros @array_function_dispatch(_poly_dispatcher) def poly(seq_of_zeros): """ Find the coefficients of a polynomial with the given sequence of roots. Returns the coefficients of the polynomial whose leading coefficient is one for the given sequence of zeros (multiple roots must be included in the sequence as many times as their multiplicity; see Examples). A square matrix (or array, which will be treated as a matrix) can also be given, in which case the coefficients of the characteristic polynomial of the matrix are returned. Parameters ---------- seq_of_zeros : array_like, shape (N,) or (N, N) A sequence of polynomial roots, or a square array or matrix object. Returns ------- c : ndarray 1D array of polynomial coefficients from highest to lowest degree: ``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]`` where c[0] always equals 1. Raises ------ ValueError If input is the wrong shape (the input must be a 1-D or square 2-D array). See Also -------- polyval : Compute polynomial values. roots : Return the roots of a polynomial. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- Specifying the roots of a polynomial still leaves one degree of freedom, typically represented by an undetermined leading coefficient. [1]_ In the case of this function, that coefficient - the first one in the returned array - is always taken as one. (If for some reason you have one other point, the only automatic way presently to leverage that information is to use ``polyfit``.) The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n` matrix **A** is given by :math:`p_a(t) = \\mathrm{det}(t\\, \\mathbf{I} - \\mathbf{A})`, where **I** is the `n`-by-`n` identity matrix. [2]_ References ---------- .. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trignometry, Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996. .. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition," Academic Press, pg. 182, 1980. Examples -------- Given a sequence of a polynomial's zeros: >>> np.poly((0, 0, 0)) # Multiple root example array([1., 0., 0., 0.]) The line above represents z**3 + 0*z**2 + 0*z + 0. >>> np.poly((-1./2, 0, 1./2)) array([ 1. , 0. , -0.25, 0. ]) The line above represents z**3 - z/4 >>> np.poly((np.random.random(1)[0], 0, np.random.random(1)[0])) array([ 1. , -0.77086955, 0.08618131, 0. ]) # random Given a square array object: >>> P = np.array([[0, 1./3], [-1./2, 0]]) >>> np.poly(P) array([1. , 0. , 0.16666667]) Note how in all cases the leading coefficient is always 1. """ seq_of_zeros = atleast_1d(seq_of_zeros) sh = seq_of_zeros.shape if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0: seq_of_zeros = eigvals(seq_of_zeros) elif len(sh) == 1: dt = seq_of_zeros.dtype # Let object arrays slip through, e.g. for arbitrary precision if dt != object: seq_of_zeros = seq_of_zeros.astype(mintypecode(dt.char)) else: raise ValueError("input must be 1d or non-empty square 2d array.") if len(seq_of_zeros) == 0: return 1.0 dt = seq_of_zeros.dtype a = ones((1,), dtype=dt) for k in range(len(seq_of_zeros)): a = NX.convolve(a, array([1, -seq_of_zeros[k]], dtype=dt), mode='full') if issubclass(a.dtype.type, NX.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = NX.asarray(seq_of_zeros, complex) if NX.all(NX.sort(roots) == NX.sort(roots.conjugate())): a = a.real.copy() return a def _roots_dispatcher(p): return p @array_function_dispatch(_roots_dispatcher) def roots(p): """ Return the roots of a polynomial with coefficients given in p. The values in the rank-1 array `p` are coefficients of a polynomial. If the length of `p` is n+1 then the polynomial is described by:: p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n] Parameters ---------- p : array_like Rank-1 array of polynomial coefficients. Returns ------- out : ndarray An array containing the roots of the polynomial. Raises ------ ValueError When `p` cannot be converted to a rank-1 array. See also -------- poly : Find the coefficients of a polynomial with a given sequence of roots. polyval : Compute polynomial values. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- The algorithm relies on computing the eigenvalues of the companion matrix [1]_. References ---------- .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7. Examples -------- >>> coeff = [3.2, 2, 1] >>> np.roots(coeff) array([-0.3125+0.46351241j, -0.3125-0.46351241j]) """ # If input is scalar, this makes it an array p = atleast_1d(p) if p.ndim != 1: raise ValueError("Input must be a rank-1 array.") # find non-zero array entries non_zero = NX.nonzero(NX.ravel(p))[0] # Return an empty array if polynomial is all zeros if len(non_zero) == 0: return NX.array([]) # find the number of trailing zeros -- this is the number of roots at 0. trailing_zeros = len(p) - non_zero[-1] - 1 # strip leading and trailing zeros p = p[int(non_zero[0]):int(non_zero[-1])+1] # casting: if incoming array isn't floating point, make it floating point. if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)): p = p.astype(float) N = len(p) if N > 1: # build companion matrix and find its eigenvalues (the roots) A = diag(NX.ones((N-2,), p.dtype), -1) A[0,:] = -p[1:] / p[0] roots = eigvals(A) else: roots = NX.array([]) # tack any zeros onto the back of the array roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype))) return roots def _polyint_dispatcher(p, m=None, k=None): return (p,) @array_function_dispatch(_polyint_dispatcher) def polyint(p, m=1, k=None): """ Return an antiderivative (indefinite integral) of a polynomial. The returned order `m` antiderivative `P` of polynomial `p` satisfies :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1` integration constants `k`. The constants determine the low-order polynomial part .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1} of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`. Parameters ---------- p : array_like or poly1d Polynomial to integrate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of the antiderivative. (Default: 1) k : list of `m` scalars or scalar, optional Integration constants. They are given in the order of integration: those corresponding to highest-order terms come first. If ``None`` (default), all constants are assumed to be zero. If `m = 1`, a single scalar can be given instead of a list. See Also -------- polyder : derivative of a polynomial poly1d.integ : equivalent method Examples -------- The defining property of the antiderivative: >>> p = np.poly1d([1,1,1]) >>> P = np.polyint(p) >>> P poly1d([ 0.33333333, 0.5 , 1. , 0. ]) # may vary >>> np.polyder(P) == p True The integration constants default to zero, but can be specified: >>> P = np.polyint(p, 3) >>> P(0) 0.0 >>> np.polyder(P)(0) 0.0 >>> np.polyder(P, 2)(0) 0.0 >>> P = np.polyint(p, 3, k=[6,5,3]) >>> P poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) # may vary Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order polynomial term comes first: >>> np.polyder(P, 2)(0) 6.0 >>> np.polyder(P, 1)(0) 5.0 >>> P(0) 3.0 """ m = int(m) if m < 0: raise ValueError("Order of integral must be positive (see polyder)") if k is None: k = NX.zeros(m, float) k = atleast_1d(k) if len(k) == 1 and m > 1: k = k[0]*NX.ones(m, float) if len(k) < m: raise ValueError( "k must be a scalar or a rank-1 array of length 1 or >m.") truepoly = isinstance(p, poly1d) p = NX.asarray(p) if m == 0: if truepoly: return poly1d(p) return p else: # Note: this must work also with object and integer arrays y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]])) val = polyint(y, m - 1, k=k[1:]) if truepoly: return poly1d(val) return val def _polyder_dispatcher(p, m=None): return (p,) @array_function_dispatch(_polyder_dispatcher) def polyder(p, m=1): """ Return the derivative of the specified order of a polynomial. Parameters ---------- p : poly1d or sequence Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of differentiation (default: 1) Returns ------- der : poly1d A new polynomial representing the derivative. See Also -------- polyint : Anti-derivative of a polynomial. poly1d : Class for one-dimensional polynomials. Examples -------- The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is: >>> p = np.poly1d([1,1,1,1]) >>> p2 = np.polyder(p) >>> p2 poly1d([3, 2, 1]) which evaluates to: >>> p2(2.) 17.0 We can verify this, approximating the derivative with ``(f(x + h) - f(x))/h``: >>> (p(2. + 0.001) - p(2.)) / 0.001 17.007000999997857 The fourth-order derivative of a 3rd-order polynomial is zero: >>> np.polyder(p, 2) poly1d([6, 2]) >>> np.polyder(p, 3) poly1d([6]) >>> np.polyder(p, 4) poly1d([0.]) """ m = int(m) if m < 0: raise ValueError("Order of derivative must be positive (see polyint)") truepoly = isinstance(p, poly1d) p = NX.asarray(p) n = len(p) - 1 y = p[:-1] * NX.arange(n, 0, -1) if m == 0: val = p else: val = polyder(y, m - 1) if truepoly: val = poly1d(val) return val def _polyfit_dispatcher(x, y, deg, rcond=None, full=None, w=None, cov=None): return (x, y, w) @array_function_dispatch(_polyfit_dispatcher) def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): """ Least squares polynomial fit. Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg` to points `(x, y)`. Returns a vector of coefficients `p` that minimises the squared error in the order `deg`, `deg-1`, ... `0`. The `Polynomial.fit <numpy.polynomial.polynomial.Polynomial.fit>` class method is recommended for new code as it is more stable numerically. See the documentation of the method for more information. Parameters ---------- x : array_like, shape (M,) x-coordinates of the M sample points ``(x[i], y[i])``. y : array_like, shape (M,) or (M, K) y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. deg : int Degree of the fitting polynomial rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the relative precision of the float type, about 2e-16 in most cases. full : bool, optional Switch determining nature of return value. When it is False (the default) just the coefficients are returned, when True diagnostic information from the singular value decomposition is also returned. w : array_like, shape (M,), optional Weights to apply to the y-coordinates of the sample points. For gaussian uncertainties, use 1/sigma (not 1/sigma**2). cov : bool or str, optional If given and not `False`, return not just the estimate but also its covariance matrix. By default, the covariance are scaled by chi2/sqrt(N-dof), i.e., the weights are presumed to be unreliable except in a relative sense and everything is scaled such that the reduced chi2 is unity. This scaling is omitted if ``cov='unscaled'``, as is relevant for the case that the weights are 1/sigma**2, with sigma known to be a reliable estimate of the uncertainty. Returns ------- p : ndarray, shape (deg + 1,) or (deg + 1, K) Polynomial coefficients, highest power first. If `y` was 2-D, the coefficients for `k`-th data set are in ``p[:,k]``. residuals, rank, singular_values, rcond Present only if `full` = True. Residuals is sum of squared residuals of the least-squares fit, the effective rank of the scaled Vandermonde coefficient matrix, its singular values, and the specified value of `rcond`. For more details, see `linalg.lstsq`. V : ndarray, shape (M,M) or (M,M,K) Present only if `full` = False and `cov`=True. The covariance matrix of the polynomial coefficient estimates. The diagonal of this matrix are the variance estimates for each coefficient. If y is a 2-D array, then the covariance matrix for the `k`-th data set are in ``V[:,:,k]`` Warns ----- RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised if `full` = False. The warnings can be turned off by >>> import warnings >>> warnings.simplefilter('ignore', np.RankWarning) See Also -------- polyval : Compute polynomial values. linalg.lstsq : Computes a least-squares fit. scipy.interpolate.UnivariateSpline : Computes spline fits. Notes ----- The solution minimizes the squared error .. math :: E = \\sum_{j=0}^k |p(x_j) - y_j|^2 in the equations:: x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0] x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1] ... x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k] The coefficient matrix of the coefficients `p` is a Vandermonde matrix. `polyfit` issues a `RankWarning` when the least-squares fit is badly conditioned. This implies that the best fit is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter can also be set to a value smaller than its default, but the resulting fit may be spurious: including contributions from the small singular values can add numerical noise to the result. Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is large or the interval of sample points is badly centered. The quality of the fit should always be checked in these cases. When polynomial fits are not satisfactory, splines may be a good alternative. References ---------- .. [1] Wikipedia, "Curve fitting", https://en.wikipedia.org/wiki/Curve_fitting .. [2] Wikipedia, "Polynomial interpolation", https://en.wikipedia.org/wiki/Polynomial_interpolation Examples -------- >>> import warnings >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0]) >>> z = np.polyfit(x, y, 3) >>> z array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) # may vary It is convenient to use `poly1d` objects for dealing with polynomials: >>> p = np.poly1d(z) >>> p(0.5) 0.6143849206349179 # may vary >>> p(3.5) -0.34732142857143039 # may vary >>> p(10) 22.579365079365115 # may vary High-order polynomials may oscillate wildly: >>> with warnings.catch_warnings(): ... warnings.simplefilter('ignore', np.RankWarning) ... p30 = np.poly1d(np.polyfit(x, y, 30)) ... >>> p30(4) -0.80000000000000204 # may vary >>> p30(5) -0.99999999999999445 # may vary >>> p30(4.5) -0.10547061179440398 # may vary Illustration: >>> import matplotlib.pyplot as plt >>> xp = np.linspace(-2, 6, 100) >>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--') >>> plt.ylim(-2,2) (-2, 2) >>> plt.show() """ order = int(deg) + 1 x = NX.asarray(x) + 0.0 y = NX.asarray(y) + 0.0 # check arguments. if deg < 0: raise ValueError("expected deg >= 0") if x.ndim != 1: raise TypeError("expected 1D vector for x") if x.size == 0: raise TypeError("expected non-empty vector for x") if y.ndim < 1 or y.ndim > 2: raise TypeError("expected 1D or 2D array for y") if x.shape[0] != y.shape[0]: raise TypeError("expected x and y to have same length") # set rcond if rcond is None: rcond = len(x)*finfo(x.dtype).eps # set up least squares equation for powers of x lhs = vander(x, order) rhs = y # apply weighting if w is not None: w = NX.asarray(w) + 0.0 if w.ndim != 1: raise TypeError("expected a 1-d array for weights") if w.shape[0] != y.shape[0]: raise TypeError("expected w and y to have the same length") lhs *= w[:, NX.newaxis] if rhs.ndim == 2: rhs *= w[:, NX.newaxis] else: rhs *= w # scale lhs to improve condition number and solve scale = NX.sqrt((lhs*lhs).sum(axis=0)) lhs /= scale c, resids, rank, s = lstsq(lhs, rhs, rcond) c = (c.T/scale).T # broadcast scale coefficients # warn on rank reduction, which indicates an ill conditioned matrix if rank != order and not full: msg = "Polyfit may be poorly conditioned" warnings.warn(msg, RankWarning, stacklevel=4) if full: return c, resids, rank, s, rcond elif cov: Vbase = inv(dot(lhs.T, lhs)) Vbase /= NX.outer(scale, scale) if cov == "unscaled": fac = 1 else: if len(x) <= order: raise ValueError("the number of data points must exceed order " "to scale the covariance matrix") # note, this used to be: fac = resids / (len(x) - order - 2.0) # it was deciced that the "- 2" (originally justified by "Bayesian # uncertainty analysis") is not was the user expects # (see gh-11196 and gh-11197) fac = resids / (len(x) - order) if y.ndim == 1: return c, Vbase * fac else: return c, Vbase[:,:, NX.newaxis] * fac else: return c def _polyval_dispatcher(p, x): return (p, x) @array_function_dispatch(_polyval_dispatcher) def polyval(p, x): """ Evaluate a polynomial at specific values. If `p` is of length N, this function returns the value: ``p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]`` If `x` is a sequence, then `p(x)` is returned for each element of `x`. If `x` is another polynomial then the composite polynomial `p(x(t))` is returned. Parameters ---------- p : array_like or poly1d object 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term, or an instance of poly1d. x : array_like or poly1d object A number, an array of numbers, or an instance of poly1d, at which to evaluate `p`. Returns ------- values : ndarray or poly1d If `x` is a poly1d instance, the result is the composition of the two polynomials, i.e., `x` is "substituted" in `p` and the simplified result is returned. In addition, the type of `x` - array_like or poly1d - governs the type of the output: `x` array_like => `values` array_like, `x` a poly1d object => `values` is also. See Also -------- poly1d: A polynomial class. Notes ----- Horner's scheme [1]_ is used to evaluate the polynomial. Even so, for polynomials of high degree the values may be inaccurate due to rounding errors. Use carefully. If `x` is a subtype of `ndarray` the return value will be of the same type. References ---------- .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand Reinhold Co., 1985, pg. 720. Examples -------- >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1 76 >>> np.polyval([3,0,1], np.poly1d(5)) poly1d([76.]) >>> np.polyval(np.poly1d([3,0,1]), 5) 76 >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5)) poly1d([76.]) """ p = NX.asarray(p) if isinstance(x, poly1d): y = 0 else: x = NX.asanyarray(x) y = NX.zeros_like(x) for i in range(len(p)): y = y * x + p[i] return y def _binary_op_dispatcher(a1, a2): return (a1, a2) @array_function_dispatch(_binary_op_dispatcher) def polyadd(a1, a2): """ Find the sum of two polynomials. Returns the polynomial resulting from the sum of two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The sum of the inputs. If either input is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval Examples -------- >>> np.polyadd([1, 2], [9, 5, 4]) array([9, 6, 6]) Using poly1d objects: >>> p1 = np.poly1d([1, 2]) >>> p2 = np.poly1d([9, 5, 4]) >>> print(p1) 1 x + 2 >>> print(p2) 2 9 x + 5 x + 4 >>> print(np.polyadd(p1, p2)) 2 9 x + 6 x + 6 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 + a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) + a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 + NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val @array_function_dispatch(_binary_op_dispatcher) def polysub(a1, a2): """ Difference (subtraction) of two polynomials. Given two polynomials `a1` and `a2`, returns ``a1 - a2``. `a1` and `a2` can be either array_like sequences of the polynomials' coefficients (including coefficients equal to zero), or `poly1d` objects. Parameters ---------- a1, a2 : array_like or poly1d Minuend and subtrahend polynomials, respectively. Returns ------- out : ndarray or poly1d Array or `poly1d` object of the difference polynomial's coefficients. See Also -------- polyval, polydiv, polymul, polyadd Examples -------- .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2) >>> np.polysub([2, 10, -2], [3, 10, -4]) array([-1, 0, 2]) """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 - a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) - a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 - NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val @array_function_dispatch(_binary_op_dispatcher) def polymul(a1, a2): """ Find the product of two polynomials. Finds the polynomial resulting from the multiplication of the two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The polynomial resulting from the multiplication of the inputs. If either inputs is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval convolve : Array convolution. Same output as polymul, but has parameter for overlap mode. Examples -------- >>> np.polymul([1, 2, 3], [9, 5, 1]) array([ 9, 23, 38, 17, 3]) Using poly1d objects: >>> p1 = np.poly1d([1, 2, 3]) >>> p2 = np.poly1d([9, 5, 1]) >>> print(p1) 2 1 x + 2 x + 3 >>> print(p2) 2 9 x + 5 x + 1 >>> print(np.polymul(p1, p2)) 4 3 2 9 x + 23 x + 38 x + 17 x + 3 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1, a2 = poly1d(a1), poly1d(a2) val = NX.convolve(a1, a2) if truepoly: val = poly1d(val) return val def _polydiv_dispatcher(u, v): return (u, v) @array_function_dispatch(_polydiv_dispatcher) def polydiv(u, v): """ Returns the quotient and remainder of polynomial division. The input arrays are the coefficients (including any coefficients equal to zero) of the "numerator" (dividend) and "denominator" (divisor) polynomials, respectively. Parameters ---------- u : array_like or poly1d Dividend polynomial's coefficients. v : array_like or poly1d Divisor polynomial's coefficients. Returns ------- q : ndarray Coefficients, including those equal to zero, of the quotient. r : ndarray Coefficients, including those equal to zero, of the remainder. See Also -------- poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub polyval Notes ----- Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need not equal `v.ndim`. In other words, all four possible combinations - ``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``, ``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work. Examples -------- .. math:: \\frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25 >>> x = np.array([3.0, 5.0, 2.0]) >>> y = np.array([2.0, 1.0]) >>> np.polydiv(x, y) (array([1.5 , 1.75]), array([0.25])) """ truepoly = (isinstance(u, poly1d) or isinstance(u, poly1d)) u = atleast_1d(u) + 0.0 v = atleast_1d(v) + 0.0 # w has the common type w = u[0] + v[0] m = len(u) - 1 n = len(v) - 1 scale = 1. / v[0] q = NX.zeros((max(m - n + 1, 1),), w.dtype) r = u.astype(w.dtype) for k in range(0, m-n+1): d = scale * r[k] q[k] = d r[k:k+n+1] -= d*v while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1): r = r[1:] if truepoly: return poly1d(q), poly1d(r) return q, r _poly_mat = re.compile(r"[*][*]([0-9]*)") def _raise_power(astr, wrap=70): n = 0 line1 = '' line2 = '' output = ' ' while True: mat = _poly_mat.search(astr, n) if mat is None: break span = mat.span() power = mat.groups()[0] partstr = astr[n:span[0]] n = span[1] toadd2 = partstr + ' '*(len(power)-1) toadd1 = ' '*(len(partstr)-1) + power if ((len(line2) + len(toadd2) > wrap) or (len(line1) + len(toadd1) > wrap)): output += line1 + "\n" + line2 + "\n " line1 = toadd1 line2 = toadd2 else: line2 += partstr + ' '*(len(power)-1) line1 += ' '*(len(partstr)-1) + power output += line1 + "\n" + line2 return output + astr[n:] @set_module('numpy') class poly1d(object): """ A one-dimensional polynomial class. A convenience class, used to encapsulate "natural" operations on polynomials so that said operations may take on their customary form in code (see Examples). Parameters ---------- c_or_r : array_like The polynomial's coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial's roots (values where the polynomial evaluates to 0). For example, ``poly1d([1, 2, 3])`` returns an object that represents :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`. r : bool, optional If True, `c_or_r` specifies the polynomial's roots; the default is False. variable : str, optional Changes the variable used when printing `p` from `x` to `variable` (see Examples). Examples -------- Construct the polynomial :math:`x^2 + 2x + 3`: >>> p = np.poly1d([1, 2, 3]) >>> print(np.poly1d(p)) 2 1 x + 2 x + 3 Evaluate the polynomial at :math:`x = 0.5`: >>> p(0.5) 4.25 Find the roots: >>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) # may vary These numbers in the previous line represent (0, 0) to machine precision Show the coefficients: >>> p.c array([1, 2, 3]) Display the order (the leading zero-coefficients are removed): >>> p.order 2 Show the coefficient of the k-th power in the polynomial (which is equivalent to ``p.c[-(i+1)]``): >>> p[1] 2 Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder): >>> p * p poly1d([ 1, 4, 10, 12, 9]) >>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([4.])) ``asarray(p)`` gives the coefficient array, so polynomials can be used in all functions that accept arrays: >>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9]) >>> np.square(p) # square of individual coefficients array([1, 4, 9]) The variable used in the string representation of `p` can be modified, using the `variable` parameter: >>> p = np.poly1d([1,2,3], variable='z') >>> print(p) 2 1 z + 2 z + 3 Construct a polynomial from its roots: >>> np.poly1d([1, 2], True) poly1d([ 1., -3., 2.]) This is the same polynomial as obtained by: >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2]) """ __hash__ = None @property def coeffs(self): """ The polynomial coefficients """ return self._coeffs @coeffs.setter def coeffs(self, value): # allowing this makes p.coeffs *= 2 legal if value is not self._coeffs: raise AttributeError("Cannot set attribute") @property def variable(self): """ The name of the polynomial variable """ return self._variable # calculated attributes @property def order(self): """ The order or degree of the polynomial """ return len(self._coeffs) - 1 @property def roots(self): """ The roots of the polynomial, where self(x) == 0 """ return roots(self._coeffs) # our internal _coeffs property need to be backed by __dict__['coeffs'] for # scipy to work correctly. @property def _coeffs(self): return self.__dict__['coeffs'] @_coeffs.setter def _coeffs(self, coeffs): self.__dict__['coeffs'] = coeffs # alias attributes r = roots c = coef = coefficients = coeffs o = order def __init__(self, c_or_r, r=False, variable=None): if isinstance(c_or_r, poly1d): self._variable = c_or_r._variable self._coeffs = c_or_r._coeffs if set(c_or_r.__dict__) - set(self.__dict__): msg = ("In the future extra properties will not be copied " "across when constructing one poly1d from another") warnings.warn(msg, FutureWarning, stacklevel=2) self.__dict__.update(c_or_r.__dict__) if variable is not None: self._variable = variable return if r: c_or_r = poly(c_or_r) c_or_r = atleast_1d(c_or_r) if c_or_r.ndim > 1: raise ValueError("Polynomial must be 1d only.") c_or_r = trim_zeros(c_or_r, trim='f') if len(c_or_r) == 0: c_or_r = NX.array([0.]) self._coeffs = c_or_r if variable is None: variable = 'x' self._variable = variable def __array__(self, t=None): if t: return NX.asarray(self.coeffs, t) else: return NX.asarray(self.coeffs) def __repr__(self): vals = repr(self.coeffs) vals = vals[6:-1] return "poly1d(%s)" % vals def __len__(self): return self.order def __str__(self): thestr = "0" var = self.variable # Remove leading zeros coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)] N = len(coeffs)-1 def fmt_float(q): s = '%.4g' % q if s.endswith('.0000'): s = s[:-5] return s for k in range(len(coeffs)): if not iscomplex(coeffs[k]): coefstr = fmt_float(real(coeffs[k])) elif real(coeffs[k]) == 0: coefstr = '%sj' % fmt_float(imag(coeffs[k])) else: coefstr = '(%s + %sj)' % (fmt_float(real(coeffs[k])), fmt_float(imag(coeffs[k]))) power = (N-k) if power == 0: if coefstr != '0': newstr = '%s' % (coefstr,) else: if k == 0: newstr = '0' else: newstr = '' elif power == 1: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = var else: newstr = '%s %s' % (coefstr, var) else: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = '%s**%d' % (var, power,) else: newstr = '%s %s**%d' % (coefstr, var, power) if k > 0: if newstr != '': if newstr.startswith('-'): thestr = "%s - %s" % (thestr, newstr[1:]) else: thestr = "%s + %s" % (thestr, newstr) else: thestr = newstr return _raise_power(thestr) def __call__(self, val): return polyval(self.coeffs, val) def __neg__(self): return poly1d(-self.coeffs) def __pos__(self): return self def __mul__(self, other): if isscalar(other): return poly1d(self.coeffs * other) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __rmul__(self, other): if isscalar(other): return poly1d(other * self.coeffs) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __add__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __radd__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __pow__(self, val): if not isscalar(val) or int(val) != val or val < 0: raise ValueError("Power to non-negative integers only.") res = [1] for _ in range(val): res = polymul(self.coeffs, res) return poly1d(res) def __sub__(self, other): other = poly1d(other) return poly1d(polysub(self.coeffs, other.coeffs)) def __rsub__(self, other): other = poly1d(other) return poly1d(polysub(other.coeffs, self.coeffs)) def __div__(self, other): if isscalar(other): return poly1d(self.coeffs/other) else: other = poly1d(other) return polydiv(self, other) __truediv__ = __div__ def __rdiv__(self, other): if isscalar(other): return poly1d(other/self.coeffs) else: other = poly1d(other) return polydiv(other, self) __rtruediv__ = __rdiv__ def __eq__(self, other): if not isinstance(other, poly1d): return NotImplemented if self.coeffs.shape != other.coeffs.shape: return False return (self.coeffs == other.coeffs).all() def __ne__(self, other): if not isinstance(other, poly1d): return NotImplemented return not self.__eq__(other) def __getitem__(self, val): ind = self.order - val if val > self.order: return 0 if val < 0: return 0 return self.coeffs[ind] def __setitem__(self, key, val): ind = self.order - key if key < 0: raise ValueError("Does not support negative powers.") if key > self.order: zr = NX.zeros(key-self.order, self.coeffs.dtype) self._coeffs = NX.concatenate((zr, self.coeffs)) ind = 0 self._coeffs[ind] = val return def __iter__(self): return iter(self.coeffs) def integ(self, m=1, k=0): """ Return an antiderivative (indefinite integral) of this polynomial. Refer to `polyint` for full documentation. See Also -------- polyint : equivalent function """ return poly1d(polyint(self.coeffs, m=m, k=k)) def deriv(self, m=1): """ Return a derivative of this polynomial. Refer to `polyder` for full documentation. See Also -------- polyder : equivalent function """ return poly1d(polyder(self.coeffs, m=m)) # Stuff to do on module import warnings.simplefilter('always', RankWarning)
bsd-3-clause
HIPS/optofit
optofit/neuron/channels.py
1
45372
""" Define the ionic channels used by a neuron """ import numpy as np from numpy import exp from optofit.models.model import * from optofit.models.component import Component from optofit.models.parameters import Parameter from optofit.models.hyperparameters import hypers from optofit.inference.distributions import GammaDistribution from optofit.utils.utils import get_item_at_path # # def make_channel(compartment, model): # """ # Make a channel with the given channel model. # """ # if model['channel_type'].lower() == 'leak': # return LeakChannel(compartment, model) # elif model['channel_type'].lower() == 'na' or \ # model['channel_type'].lower() == 'sodium': # return NaChannel(compartment, model) # # # Hippocampal CA3 style sodium channel # elif model['channel_type'].lower() == 'ca3na' or \ # model['channel_type'].lower() == 'ca3_sodium': # return Ca3NaChannel(compartment, model) # # # Delayed rectification is the default potassium channel # elif model['channel_type'].lower() == 'kdr' or \ # model['channel_type'].lower() == 'k' or \ # model['channel_type'].lower() == 'potassium': # return KdrChannel(compartment, model) # # elif model['channel_type'].lower() == 'ca3kdr': # return Ca3KdrChannel(compartment, model) # # # Delayed rectification is the default potassium channel # elif model['channel_type'].lower() == 'ca3ka': # return Ca3KaChannel(compartment, model) # # # Hippocampal CA3 style calcium channel # elif model['channel_type'].lower() == 'ca3ca' or \ # model['channel_type'].lower() == 'ca3_calcium' or \ # model['channel_type'].lower() == 'calcium': # return Ca3CaChannel(compartment, model) # # elif model['channel_type'].lower() == "kahp" or \ # model['channel_type'].lower() == "ca3kahp": # return Ca3KahpChannel(compartment, model) # # elif model['channel_type'].lower() == "ca3kc": # return Ca3KcChannel(compartment, model) # # elif model['channel_type'].lower() == "chr2": # return ChR2Channel(compartment, model) # # else: # raise Exception("Unrecognized channel type: %s" % model['channel_type']) class Channel(Component): """ Abstract base class for an ion channel. """ def __init__(self, name, compartment): super(Channel, self).__init__() self.parent = compartment self.compartment = self.parent self.name = name # All channels (at least so far!) have a conductance and a reversal # potential self.g = None self.E = None self._latent_dtype = [] self._state_dtype = [] self._input_dtype = None self._latent_lb = [] self._latent_ub = [] self._moves_calcium = False self._calcium_dependent = False @property def moves_calcium(self): return self._moves_calcium @property def calcium_dependent(self): return self._calcium_dependent @property def latent_dtype(self): return self._latent_dtype @latent_dtype.setter def latent_dtype(self, value): self._latent_dtype = value @property def state_dtype(self): return self._state_dtype @state_dtype.setter def state_dtype(self, value): self._state_dtype = value @property def input_dtype(self): return self._input_dtype @input_dtype.setter def input_dtype(self, value): self._input_dtype = value # Add properties for constraints on the latent variables @property def latent_lb(self): return self._latent_lb @latent_lb.setter def latent_lb(self, value): self._latent_lb = value @property def latent_ub(self): return self._latent_ub @latent_ub.setter def latent_ub(self, value): self._latent_ub = value def steady_state(self, V): # Steady state value of the latent vars as a function of voltage return np.array([]) def kinetics(self, latent, inpt, state): pass def IV_plot(self, start=-200, stop=100): comp_state_dt = np.dtype(self.compartment._state_vars) if self.latent_dtype: dt = np.dtype([(self.compartment.name, [('V', np.float64), ('[Ca]', np.float64), (self.name, self.latent_dtype)])]) else: dt = np.dtype([(self.compartment.name, [('V', np.float64), ('[Ca]', np.float64)])]) from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm if self.calcium_dependent: Vs = np.linspace(start, stop, 100) Cas = np.linspace(0, 1000, 100) X, Y = np.meshgrid(Vs, Cas) Z = np.zeros(X.shape) for row in range(X.shape[0]): for col in range(X.shape[1]): state = np.ndarray(buffer = np.array([X[row, col], Y[row, col]]), dtype=comp_state_dt, shape = comp_state_dt.shape) latent = np.ndarray(buffer = np.hstack((np.array([X[row, col], Y[row, col]]), self.steady_state(state))), dtype = dt, shape = dt.shape) Z[row, col] = self.evaluate_state(np.array([latent]), ())[0][0] fig = plt.figure() ax = fig.gca(projection='3d') ax.plot_surface(X, Y, Z, cmap=cm.coolwarm) plt.title(self.name) plt.show() else: ca = 0 Vs = np.linspace(start, stop, 1000) state = np.ndarray(buffer = np.array([Vs[0], ca]), dtype=comp_state_dt, shape = comp_state_dt.shape) latents = np.ndarray(buffer=np.hstack((np.array([Vs[0], ca]), self.steady_state(state))), dtype = dt, shape = dt.shape) for v in Vs[1:]: state = np.ndarray(buffer = np.array([v, ca]), dtype=comp_state_dt, shape = comp_state_dt.shape) latents = np.append(latents, np.ndarray(buffer=np.hstack((np.array([v, ca]), self.steady_state(state))), dtype = dt, shape = dt.shape)) plt.plot(Vs, [self.evaluate_state(l, ()) for l in latents]) plt.title(self.name) plt.show() def _set_defaults(self, g, g_param, E, E_param): if g is None: self.g = g_param else: self.g = g if E is None: self.E = E_param else: self.E = E class LeakChannel(Channel): """ Passive leak channel. """ def __init__(self, name, compartment, g_leak=None, E_leak=None): super(LeakChannel, self).__init__(name, compartment) self.state_dtype = [('I', np.float64)] # By default, g is gamma distributed if g_leak is None: self.g = Parameter('g_leak', distribution=GammaDistribution(hypers['a_g_leak'].value, hypers['b_g_leak'].value), lb=0.0) else: assert isinstance(g_leak, Parameter) self.g = g_leak # By default, E is a hyperparameter if E_leak is None: self.E = hypers['E_leak'] else: assert isinstance(E_leak, Parameter) self.E = E_leak def evaluate_state(self, latent, inpt): """ Evaluate the state of this compartment """ state = np.zeros(latent.shape, dtype=self.state_dtype) x_comp = get_item_at_path(latent, self.compartment.path) state['I'] = x_comp['V'] - self.E.value return state def kinetics(self, latent, inpt, state): """ Compute the state kinetics, d{latent}/dt, according to the Hodgkin-Huxley eqns, given current state x and external or given variables y. latent: latent state variables of the neuron, e.g. voltage per compartment, channel activation variables, etc. inpt: observations, e.g. supplied irradiance, calcium concentration, injected current, etc. state: evaluated state of the neuron including channel currents, etc. returns: dxdt: Rate of change of the latent state variables. """ return None class NaChannel(Channel): """ Sodium channel. """ def __init__(self, name, compartment, g_na=None, E_na=None): super(NaChannel, self).__init__(name, compartment) self.latent_dtype = [('m', np.float64), ('h', np.float64)] self.latent_lb = np.array([0,0]) self.latent_ub = np.array([1,1]) self.state_dtype = [('I', np.float64)] # By default, g is gamma distributed if g_na is None: self.g = Parameter('g_na', distribution=GammaDistribution(hypers['a_g_na'].value, hypers['b_g_na'].value), lb=0.0) else: self.g = g_na # By default, E is a hyperparameter if E_na is None: self.E = hypers['E_Na'] else: self.E = E_na def steady_state(self, state): V = state['V'] # Steady state value of the latent vars # Compute the alpha and beta as a function of V am1 = 0.1*(V+35.)/(1-exp(-(V+35.)/10.)) ah1 = 0.07*exp(-(V+50.)/20.) bm1 = 4.*exp(-(V+65.)/18.) bh1 = 1./(exp(-(V+35)/10.)+1) xss = np.zeros(2) xss[0] = am1/(am1+bm1) xss[1] = ah1/(ah1+bh1) return xss def evaluate_state(self, latent, inpt): """ Evaluate the state of this compartment """ state = np.zeros(latent.shape, dtype=self.state_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) state['I'] = x_ch['m']**3 * x_ch['h'] * (x_comp['V'] - self.E.value) return state def kinetics(self, latent, inpt, state): """ Compute the state kinetics, d{latent}/dt, according to the Hodgkin-Huxley eqns, given current state x and external or given variables y. latent: latent state variables of the neuron, e.g. voltage per compartment, channel activation variables, etc. inpt: observations, e.g. supplied irradiance, calcium concentration, injected current, etc. state: evaluated state of the neuron including channel currents, etc. returns: dxdt: Rate of change of the latent state variables. """ # Initialize dxdt for each latent state dxdt = np.zeros(latent.shape, dtype=self.latent_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) V = x_comp['V'] m = x_ch['m'] h = x_ch['h'] # Compute the alpha and beta as a function of V am1 = 0.1*(V+35.)/(1-exp(-(V+35.)/10.)) ah1 = 0.07*exp(-(V+50.)/20.) bm1 = 4.*exp(-(V+65.)/18.) bh1 = 1./(exp(-(V+35.)/10.)+1.) # Compute the channel state updates dxdt['m'] = am1*(1.-m) - bm1*m dxdt['h'] = ah1*(1.-h) - bh1*h return dxdt class Ca3NaChannel(Channel): """ Sodium channel in a hippocampal CA3 neuron. """ def __init__(self, name, compartment, g_ca3na = None, E_ca3na = None): super(Ca3NaChannel, self).__init__(name, compartment) self._latent_dtype = [('m', np.float64), ('h', np.float64)] self._latent_lb = np.array([0,0]) self._latent_ub = np.array([1,1]) self._state_dtype = [('I', np.float64)] self._input_dtype = None self._set_defaults(g_ca3na, Parameter('g_ca3na', distribution= GammaDistribution( hypers['a_g_ca3na'].value, hypers['b_g_ca3na'].value ), lb=0.0), E_ca3na, hypers['E_Na']) @property def latent_dtype(self): return self._latent_dtype @property def state_dtype(self): return self._state_dtype @property def input_dtype(self): return self._input_dtype @property def latent_lb(self): return self._latent_lb @property def latent_ub(self): return self._latent_ub def steady_state(self, state): V = state['V'] # Steady state value of the latent vars # Compute the alpha and beta as a function of V V_ref = V + 60 am1 = 0.32*(13.1-V_ref)/(exp((13.1-V_ref)/4)-1) ah1 = 0.128*exp((17.0-V_ref)/18.0) bm1 = 0.28*(V_ref-40.1)/(exp((V_ref-40.1)/5.0)-1.0) bh1 = 4.0/(1.0+exp((40.-V_ref)/5.0)) xss = np.zeros(2) xss[0] = am1/(am1+bm1) xss[1] = ah1/(ah1+bh1) return xss def evaluate_state(self, latent, inpt): """ Evaluate the state of this compartment """ state = np.zeros(latent.shape, dtype=self.state_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) state['I'] = x_ch['m']**2 * x_ch['h'] * (x_comp['V'] - self.E.value) return state def kinetics(self, latent, inpt, state): """ Compute the state kinetics, d{latent}/dt, according to the Hodgkin-Huxley eqns, given current state x and external or given variables y. latent: latent state variables of the neuron, e.g. voltage per compartment, channel activation variables, etc. inpt: observations, e.g. supplied irradiance, calcium concentration, injected current, etc. state: evaluated state of the neuron including channel currents, etc. returns: dxdt: Rate of change of the latent state variables. """ # Initialize dxdt for each latent state dxdt = np.zeros(latent.shape, dtype=self.latent_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) V = x_comp['V'] # Use resting potential of zero V_ref = V + 60 m = x_ch['m'] h = x_ch['h'] # Compute the alpha and beta as a function of V am1 = 0.32*(13.1-V_ref)/(exp((13.1-V_ref)/4)-1) ah1 = 0.128*exp((17.0-V_ref)/18.0) bm1 = 0.28*(V_ref-40.1)/(exp((V_ref-40.1)/5.0)-1.0) bh1 = 4.0/(1.0+exp((40.-V_ref)/5.0)) # Compute the channel state updates dxdt['m'] = am1*(1.-m) - bm1*m dxdt['h'] = ah1*(1.-h) - bh1*h return dxdt class KdrChannel(Channel): """ Potassium (delayed rectification) channel. """ def __init__(self, name, compartment, g_kdr=None, E_kdr=None): super(KdrChannel, self).__init__(name, compartment) self.latent_dtype = [('n', np.float64)] self.state_dtype = [('I', np.float64)] self.latent_lb = np.array([0]) self.latent_ub = np.array([1]) # By default, g is gamma distributed if g_kdr is None: self.g = Parameter('g_kdr', distribution=GammaDistribution(hypers['a_g_kdr'].value, hypers['b_g_kdr'].value), lb=0.0) else: self.g = g_kdr # By default, E is a hyperparameter if E_kdr is None: self.E = hypers['E_K'] else: self.E = E_kdr def steady_state(self, state): # Steady state activation values V = state['V'] + 60 an1 = 0.01*(V+55.)/(1-exp(-(V+55.)/10.)) bn1 = 0.125*exp(-(V+65.)/80.) xss = np.zeros(1) xss[0] = an1/(an1+bn1) return xss def evaluate_state(self, latent, inpt): """ Evaluate the state of this compartment """ state = np.zeros(latent.shape, dtype=self.state_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) state['I'] = x_ch['n']**4 * (x_comp['V'] - self.E.value) return state def kinetics(self, latent, inpt, state): """ Compute the state kinetics, d{latent}/dt, according to the Hodgkin-Huxley eqns, given current state x and external or given variables y. latent: latent state variables of the neuron, e.g. voltage per compartment, channel activation variables, etc. inpt: observations, e.g. supplied irradiance, calcium concentration, injected current, etc. state: evaluated state of the neuron including channel currents, etc. returns: dxdt: Rate of change of the latent state variables. """ # Initialize dxdt for each latent state dxdt = np.zeros(latent.shape, dtype=self.latent_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) V = x_comp['V'] + 60 n = x_ch['n'] # Compute the alpha and beta as a function of V an1 = 0.01*(V+55.) /(1-exp(-(V+55.)/10.)) bn1 = 0.125*exp(-(V+65.)/80.) # Compute the channel state updates dxdt['n'] = an1 * (1.0-n) - bn1*n return dxdt class Ca3KdrChannel(Channel): """ Potassium (delayed rectification) channel from Traub. """ def __init__(self, name, compartment, g_ca3kdr = None, E_ca3kdr = None): super(Ca3KdrChannel, self).__init__(name, compartment) self._latent_dtype = [('n', np.float64)] self._state_dtype = [('I', np.float64)] self._input_dtype = None self._latent_lb = np.array([0]) self._latent_ub = np.array([1]) self._set_defaults(g_ca3kdr, Parameter('g_ca3kdr', distribution= GammaDistribution( hypers['a_g_ca3kdr'].value, hypers['b_g_ca3kdr'].value ), lb=0.0), E_ca3kdr, hypers['E_K']) @property def latent_dtype(self): return self._latent_dtype @property def state_dtype(self): return self._state_dtype @property def input_dtype(self): return self._input_dtype @property def latent_lb(self): return self._latent_lb @property def latent_ub(self): return self._latent_ub def alpha_beta(self, state): V = state['V'] + 60 # Traub 1991 alpha = .016*(35.1 - V) / (np.exp((35.1-V)/5)-1) beta = .25 * np.exp((20 - V)/40) """ # Traub 1993 alpha = .03 * (17.2 - V) / (np.exp((17.2 -V) / 5) - 1) beta = .45 * np.exp((12 - V) / 40) """ return alpha, beta def steady_state(self, state): # Steady state activation values alpha, beta = self.alpha_beta(state) xss = np.zeros(1) xss[0] = alpha/(alpha+beta) return xss def evaluate_state(self, latent, inpt): """ Evaluate the state of this compartment """ state = np.zeros(latent.shape, dtype=self.state_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) """ # Traub 1993 state['I'] = x_ch['n']**2 * (x_comp['V'] - self.E.value) """ # Traub 1991 state['I'] = x_ch['n']**4 * (x_comp['V'] - self.E.value) return state def kinetics(self, latent, inpt, state): """ Compute the state kinetics, d{latent}/dt, according to the Hodgkin-Huxley eqns, given current state x and external or given variables y. latent: latent state variables of the neuron, e.g. voltage per compartment, channel activation variables, etc. inpt: observations, e.g. supplied irradiance, calcium concentration, injected current, etc. state: evaluated state of the neuron including channel currents, etc. returns: dxdt: Rate of change of the latent state variables. """ # Initialize dxdt for each latent state dxdt = np.zeros(latent.shape, dtype=self.latent_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) n = x_ch['n'] # Compute the alpha and beta as a function of V alpha, beta = self.alpha_beta(x_comp) # Compute the channel state updates dxdt['n'] = alpha * (1.0-n) - beta*n return dxdt class Ca3KahpChannel(Channel): """ Potassium (after hyperpolarization) channel. """ def __init__(self, name, compartment, g_ca3kahp = None, E_ca3kahp = None): super(Ca3KahpChannel, self).__init__(name, compartment) # Kahp requires Calcium compartment from compartment import CalciumCompartment # TODO: Or observed calcium? assert isinstance(compartment, CalciumCompartment) self._latent_dtype = [('q', np.float64)] self._state_dtype = [('I', np.float64)] self._input_dtype = None self._latent_lb = np.array([0]) self._latent_ub = np.array([1]) self._calcium_dependent = True self._set_defaults(g_ca3kahp, Parameter('g_ca3kahp', distribution= GammaDistribution( hypers['a_g_ca3kahp'].value, hypers['b_g_ca3kahp'].value ), lb=0.0), E_ca3kahp, hypers['E_Kahp']) @property def calcium_dependent(self): return self._calcium_dependent @property def latent_dtype(self): return self._latent_dtype @property def state_dtype(self): return self._state_dtype @property def input_dtype(self): return self._input_dtype @property def latent_lb(self): return self._latent_lb @property def latent_ub(self): return self._latent_ub def steady_state(self, state): c_Ca = state['[Ca]'] # # q = X(1,:); # # % Offset to resting potential of 0 # # % Compute the alpha and beta as a function of V aq1 = np.min((0.2e-4)*c_Ca, 0.01) bq1 = 0.001 return np.array([aq1/(aq1 + bq1)]) def evaluate_state(self, latent, inpt): """ Evaluate the state of this compartment """ state = np.zeros(latent.shape, dtype=self.state_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) state['I'] = x_ch['q'] * (x_comp['V'] - self.E.value) return state def kinetics(self, latent, inpt, state): """ Compute the state kinetics, d{latent}/dt, according to the Hodgkin-Huxley eqns, given current state x and external or given variables y. latent: latent state variables of the neuron, e.g. voltage per compartment, channel activation variables, etc. inpt: observations, e.g. supplied irradiance, calcium concentration, injected current, etc. state: evaluated state of the neuron including channel currents, etc. returns: dxdt: Rate of change of the latent state variables. """ # Initialize dxdt for each latent state dxdt = np.zeros(latent.shape, dtype=self.latent_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) V = x_comp['V'] c_Ca = x_comp['[Ca]'] q = x_ch['q'] # Offset to resting potential of 0 V_ref = 60 + V # % Compute the alpha and beta as a function of V aq1 = np.min((0.2e-4)*c_Ca, 0.01) bq1 = 0.001 # % Compute the channel state updates dxdt['q'] = aq1*(1-q) - bq1*q return dxdt class Ca3KaChannel(Channel): """ Potassium (A-type transient current) channel. """ def __init__(self, name, compartment, g_ca3ka = None, E_ca3ka = None): super(Ca3KaChannel, self).__init__(name, compartment) self._latent_dtype = [('a', np.float64), ('b', np.float64)] self._state_dtype = [('I', np.float64)] self._input_dtype = None self._latent_lb = np.array([0, 0]) self._latent_ub = np.array([1, 1]) self._set_defaults(g_ca3ka, Parameter('g_ca3ka', distribution= GammaDistribution( hypers['a_g_ca3ka'].value, hypers['b_g_ca3ka'].value ), lb=0.0), E_ca3ka, hypers['E_K']) @property def latent_dtype(self): return self._latent_dtype @property def state_dtype(self): return self._state_dtype @property def input_dtype(self): return self._input_dtype @property def latent_lb(self): return self._latent_lb @property def latent_ub(self): return self._latent_ub def steady_state(self, state): V = state['V'] # Steady state activation values # TODO xss = np.zeros(2) # Offset to resting potential of 0 V_ref = 60 + V # Compute the alpha and beta as a function of V aa1 = 0.02*(13.1-V_ref)/(exp((13.1-V_ref)/10.)-1) ba1 = 0.0175*(V_ref-40.1)/(exp((V_ref-40.1)/10.) - 1) # Inactivation variable b ab1 = 0.0016*exp((-13-V_ref)/18.0) bb1 = 0.05/(1+exp((10.1-V_ref)/5.0)) xss[0] = aa1/(aa1+ba1) xss[1] = ab1/(ab1+bb1) return xss def evaluate_state(self, latent, inpt): """ Evaluate the state of this compartment """ state = np.zeros(latent.shape, dtype=self.state_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) state['I'] = x_ch['a'] * x_ch['b'] * (x_comp['V'] - self.E.value) return state def kinetics(self, latent, inpt, state): """ Compute the state kinetics, d{latent}/dt, according to the Hodgkin-Huxley eqns, given current state x and external or given variables y. latent: latent state variables of the neuron, e.g. voltage per compartment, channel activation variables, etc. inpt: observations, e.g. supplied irradiance, calcium concentration, injected current, etc. state: evaluated state of the neuron including channel currents, etc. returns: dxdt: Rate of change of the latent state variables. """ # Initialize dxdt for each latent state dxdt = np.zeros(latent.shape, dtype=self.latent_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) V = x_comp['V'] # Offset to resting potential of 0 V_ref = 60 + V # Compute the alpha and beta as a function of V aa1 = 0.02*(13.1-V_ref)/(exp((13.1-V_ref)/10.)-1) ba1 = 0.0175*(V_ref-40.1)/(exp((V_ref-40.1)/10.)-1) # Inactivation variable b ab1 = 0.0016*exp((-13.0-V_ref)/18.0) bb1 = 0.05/(1+exp((10.1-V_ref)/5.0)) # Compute the channel state updates dxdt['a'] = aa1*(1-x_ch['a']) - ba1*x_ch['a'] dxdt['b'] = ab1*(1-x_ch['b']) - bb1*x_ch['b'] return dxdt class Ca3CaChannel(Channel): """ High Threshold Calcium channel from Traub 1994 """ def __init__(self, name, compartment, g_ca3ca = None, E_ca3ca = None): super(Ca3CaChannel, self).__init__(name, compartment) self._latent_dtype = [('s', np.float64), ('r', np.float64)] self._state_dtype = [('I', np.float64)] self._input_dtype = None self._latent_lb = np.array([0, 0]) self._latent_ub = np.array([1, 1]) self._moves_calcium = True self._set_defaults(g_ca3ca, Parameter('g_ca3ca', distribution= GammaDistribution( hypers['a_g_ca3ca'].value, hypers['b_g_ca3ca'].value ), lb=0.0), E_ca3ca, hypers['E_Ca']) @property def moves_calcium(self): return self._moves_calcium @property def latent_dtype(self): return self._latent_dtype @property def state_dtype(self): return self._state_dtype @property def input_dtype(self): return self._input_dtype @property def latent_lb(self): return self._latent_lb @property def latent_ub(self): return self._latent_ub def steady_state(self, state): V = state['V'] # Steady state activation values V_ref = 60 + V alpha = 1.6 / (1 + np.exp(-.072 * (V_ref - 65))) beta = .02 * (V_ref - 51.1) / (np.exp((V_ref - 51.1) / 5) - 1) if V_ref <= 0: r_alpha = .005 r_beta = 0 else: r_alpha = np.exp(-V_ref / 20) / 200 r_beta = 0.005 - r_alpha return np.array([(alpha / (alpha + beta))[0], r_alpha/(r_alpha + r_beta)]) def evaluate_state(self, latent, inpt): """ Evaluate the state of this compartment """ state = np.zeros(len(latent), dtype=self.state_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) state['I'] = (x_ch['s'] ** 2) * x_ch['r'] * (x_comp['V'] - self.E.value) #print "x_ch: ", x_ch['s'] return state def kinetics(self, latent, inpt, state): """ Compute the state kinetics, d{latent}/dt, according to the Hodgkin-Huxley eqns, given current state x and external or given variables y. latent: latent state variables of the neuron, e.g. voltage per compartment, channel activation variables, etc. inpt: observations, e.g. supplied irradiance, calcium concentration, injected current, etc. state: evaluated state of the neuron including channel currents, etc. returns: dxdt: Rate of change of the latent state variables. """ # Initialize dxdt for each latent state dxdt = np.zeros(latent.shape, dtype=self.latent_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) V = x_comp['V'] # Offset to resting potential of 0 V_ref = 60 + V alpha = 1.6 / (1 + np.exp(-.072 * (V_ref - 65))) beta = .02 * (V_ref - 51.1) / (np.exp((V_ref - 51.1) / 5) - 1) r_alpha = np.exp(-V_ref / 20) / 200 r_alpha[V_ref <= 0] = .005 r_beta = 0.005 - r_alpha dxdt['s'] = alpha * (1 - x_ch['s']) - beta * x_ch['s'] dxdt['r'] = r_alpha * (1 - x_ch['r']) - r_beta * x_ch['r'] return dxdt class Ca3KcChannel(Channel): """ High Threshold Calcium channel from Traub 1994 """ def __init__(self, name, compartment, g_ca3kc = None, E_ca3kc = None): super(Ca3KcChannel, self).__init__(name, compartment) self._latent_dtype = [('c', np.float64)] self._state_dtype = [('I', np.float64)] self._input_dtype = None self._latent_lb = np.array([0]) self._latent_ub = np.array([1]) self._calcium_dependent = True self._set_defaults(g_ca3kc, Parameter('g_ca3kc', distribution= GammaDistribution( hypers['a_g_ca3kc'].value, hypers['b_g_ca3kc'].value ), lb=0.0), E_ca3kc, hypers['E_Ca3Kc']) @property def moves_calcium(self): return self._moves_calcium @property def calcium_dependent(self): return self._calcium_dependent @property def latent_dtype(self): return self._latent_dtype @property def state_dtype(self): return self._state_dtype @property def input_dtype(self): return self._input_dtype @property def latent_lb(self): return self._latent_lb @property def latent_ub(self): return self._latent_ub def alpha_beta(self, state): V = state['V'] V_ref = V + 60 alpha = np.zeros(V_ref.shape) beta = np.zeros(V_ref.shape) if V_ref.size == 1: if V_ref <= 50: alpha = (np.exp(((V_ref - 10)/11) - ((V_ref - 6.5)/27)) / 18.975)[V_ref <= 50] beta = (2 * np.exp(-1 * (V_ref - 6.5) / 27) - alpha) else: alpha = 2 * np.exp(-1 * (V_ref - 6.5) / 27) beta = 0 else: # Condition 1: V_ref <= 50 alpha[V_ref<=50] = np.exp(((V_ref[V_ref<=50] - 10)/11) - ((V_ref[V_ref<=50] - 6.5)/27)) / 18.975 beta[V_ref<=50] = 2 * np.exp(-1 * (V_ref[V_ref<=50] - 6.5) / 27) - alpha[V_ref<=50] # Condition 2: V_ref > 50 alpha[V_ref>50] = 2 * np.exp(-1 * (V_ref[V_ref>50] - 6.5) / 27) beta[V_ref>50] = 0.0 # if V_ref <= 50: # alpha = np.exp(((V_ref - 10)/11) - ((V_ref - 6.5)/27)) / 18.975 # else: # alpha = 2 * np.exp(-1 * (V_ref - 6.5) / 27) # beta = (2 * np.exp(-1 * (V_ref - 6.5) / 27) - alpha) return alpha, beta def steady_state(self, state): alpha, beta = self.alpha_beta(state) # Steady state activation values return np.array(alpha / (alpha + beta)) def evaluate_state(self, latent, inpt): """ Evaluate the state of this compartment """ state = np.zeros(latent.shape, dtype=self.state_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) #print "c: ", x_ch['c'] #print "Ca: ", x_comp['[Ca]'] / 250 #print "min: ", np.min(1, x_comp['[Ca]'] / 250) #print "ans: ", x_ch['c'] * np.min(1, x_comp['[Ca]'] / 250) * (x_comp['V'] - self.E.value) state['I'] = x_ch['c'] * np.minimum(1, x_comp['[Ca]'] / 250) * (x_comp['V'] - self.E.value) return state def kinetics(self, latent, inpt, state): """ Compute the state kinetics, d{latent}/dt, according to the Hodgkin-Huxley eqns, given current state x and external or given variables y. latent: latent state variables of the neuron, e.g. voltage per compartment, channel activation variables, etc. inpt: observations, e.g. supplied irradiance, calcium concentration, injected current, etc. state: evaluated state of the neuron including channel currents, etc. returns: dxdt: Rate of change of the latent state variables. """ # Initialize dxdt for each latent state dxdt = np.zeros(latent.shape, dtype=self.latent_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) alpha, beta = self.alpha_beta(x_comp) dxdt['c'] = alpha * (1 - x_ch['c']) - beta * x_ch['c'] return dxdt class ChR2Channel(Channel): """ Voltage and light gated ChR2 from Williams """ def __init__(self, name, compartment, g_chr2 = None, E_chr2 = None): super(ChR2Channel, self).__init__(name, compartment) self._latent_dtype = [('O1', np.float64), ('O2', np.float64), ('C1', np.float64), ('C2', np.float64), ('p', np.float64)] self._state_dtype = [('I', np.float64)] # self._input_dtype = [] self._latent_lb = np.array([0, 0, 0, 0, 0]) self._latent_ub = np.array([1, 1, 1, 1, 1]) self._set_defaults(g_chr2, Parameter('g_chr2', distribution= GammaDistribution( hypers['a_g_chr2'].value, hypers['b_g_chr2'].value ), lb=0.0), E_chr2, hypers['E_ChR2']) @property def latent_dtype(self): return self._latent_dtype @property def state_dtype(self): return self._state_dtype @property def input_dtype(self): return self._input_dtype @property def latent_lb(self): return self._latent_lb @property def latent_ub(self): return self._latent_ub def steady_state(self, state): ans = np.zeros(5) # start in the closed state ans[2] = 0.99 # ans[3] = 0.99 # Steady state activation values return ans def evaluate_state(self, latent, inpt): """ Evaluate the state of this compartment """ state = np.zeros(latent.shape, dtype=self.state_dtype) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) # Alert: Is this true? V = x_comp['V'] G = (10.6408 - 14.6408*np.exp(-V/42.7671)) / V gam = 0.1 state['I'] = G * (x_ch['O1'] + gam*x_ch['O2']) * (x_comp['V'] - self.E.value) return state def kinetics(self, latent, inpt, state): """ Compute the state kinetics, d{latent}/dt, according to the Hodgkin-Huxley eqns, given current state x and external or given variables y. latent: latent state variables of the neuron, e.g. voltage per compartment, channel activation variables, etc. inpt: observations, e.g. supplied irradiance, calcium concentration, injected current, etc. state: evaluated state of the neuron including channel currents, etc. returns: dxdt: Rate of change of the latent state variables. """ # import pdb; pdb.set_trace() # Initialize dxdt for each latent state dxdt = np.zeros(latent.shape, dtype=self.latent_dtype) i_comp = get_item_at_path(inpt, self.compartment.path) x_comp = get_item_at_path(latent, self.compartment.path) x_ch = get_item_at_path(latent, self.path) I = i_comp['Irr'] V = x_comp['V'] p = x_ch['p'] # Compute the voltage-sensitive rate constants for state transitions Gd1 = 0.075 + 0.043*np.tanh(-(V+20)/20) Gd2 = 0.05 # Gr = 4.34587e5 * np.exp(-0.0211539274*V) Gr = 0.001 # Define a state variable for time and irradiance dependent activation # function for ChR2 (post isomerization) theta = 100*I # Optical stimulation protocol tau_chr2 = 1.3 # Time constant for ChR2 S0 = 0.5*(1+np.tanh(120*(theta-0.1))) dxdt['p'] = (S0-p)/tau_chr2 # Define the light-sensitive rate constants for state transitions lamda = 470 # Wavelength of max absorption for retinal eps1 = 0.8535 # quantum efficiency for photon absorption from C1 eps2 = 0.14 # quantum efficiency for photon absorption from C2 w_loss = 0.77; F = 0.00006*I*lamda/w_loss #Photon flux (molecules/photon/sec) # F = (sig_ret/hc)*I*lamda/w_loss*1e-9; % Photon flux (molecules/photon/sec) # Light sensitive rates for C1->01 and C2->O2 transition k1 = eps1 * F * p k2 = eps2 * F * p # Light sensitive O1->02 transitions e12d = 0.011 e12c1 = 0.005 e12c2 = 0.024 e12 = e12d + e12c1*np.log(1+I/e12c2) # Light sensitive O2->O1 transitions e21d = 0.008 e21c1 = 0.004 e21c2 = 0.024 e21 = e21d + e21c1*np.log(1+I/e21c2) dxdt['O1'] = k1 * x_ch['C1'] - (Gd1 + e12) * x_ch['O1'] + e21 * x_ch['O2'] dxdt['O2'] = k2 * x_ch['C2'] - (Gd2 + e21) * x_ch['O2'] + e12 * x_ch['O1'] dxdt['C1'] = Gr * x_ch['C2'] + Gd1 * x_ch['O1'] - k1 * x_ch['C1'] dxdt['C2'] = Gd2 * x_ch['O2'] + (k2 + Gr) * x_ch['C2'] return dxdt def stationary(self, Irr, V): I = Irr V = V dt = np.dtype(self.latent_dtype) ans = np.zeros(dt.shape, dtype=dt) # Compute the voltage-sensitive rate constants for state transitions Gd1 = 0.075 + 0.043*np.tanh(-(V+20)/20) Gd2 = 0.05 Gr = 4.34587e5 * np.exp(-0.0211539274*V) # Define a state variable for time and irradiance dependent activation # function for ChR2 (post isomerization) theta = 100*I # Optical stimulation protocol S0 = 0.5*(1+np.tanh(120*(theta-0.1))) ans['p'] = S0 # Define the light-sensitive rate constants for state transitions lamda = 470 # Wavelength of max absorption for retinal eps1 = 0.8535 # quantum efficiency for photon absorption from C1 eps2 = 0.14 # quantum efficiency for photon absorption from C2 w_loss = 0.77; F = 0.00006*I*lamda/w_loss #Photon flux (molecules/photon/sec) # F = (sig_ret/hc)*I*lamda/w_loss*1e-9; % Photon flux (molecules/photon/sec) # Light sensitive rates for C1->01 and C2->O2 transition k1 = eps1 * F * S0 k2 = eps2 * F * S0 # Light sensitive O1->02 transitions e12d = 0.011 e12c1 = 0.005 e12c2 = 0.024 e12 = e12d + e12c1*np.log(1+I/e12c2) # Light sensitive O2->O1 transitions e21d = 0.008 e21c1 = 0.004 e21c2 = 0.024 e21 = e21d + e21c1*np.log(1+I/e21c2) mat = np.array([[Gd1 + e12, e12, Gd1, 0], [e21, -(Gd2 + e21), 0, Gd2], [k1, 0, k1, 0], [0, k2, Gd2, (k2 + Gr)]]) import scipy.linalg eigen = scipy.linalg.eig(mat * .01 - np.eye(4), left=True) eigen = eigen[0] #print eigen stationary = eigen / np.sum(np.array(list(eigen)) ** 2) ans['O1'] = stationary[0] ans['O2'] = stationary[1] ans['C1'] = stationary[2] ans['C2'] = stationary[3] return ans def IV_plot(self, start = 0, stop = 2000): dt = np.dtype([(self.compartment.name, [('V', np.float64), ('[Ca]', np.float64), (self.name, self.latent_dtype)])]) import matplotlib.pyplot as plt from matplotlib import cm # from mpl_toolkits.mplot3d import Axes3D Irr = np.linspace(0, 700, 100) V = np.linspace(-500, 1000, 100) X, Y = np.meshgrid(Irr, V) Z = np.zeros(X.shape) for row in range(X.shape[0]): for col in range(X.shape[1]): latent = np.ndarray( buffer = np.hstack(( np.array([[Y[row, col], 0]]), np.array([self.stationary(X[row, col], Y[row, col]).tolist()]) )), dtype = dt, shape = dt.shape ) Z[row, col] = self.evaluate_state(np.array([latent]), ())[0][0] fig = plt.figure() ax = fig.gca(projection='3d') ax.plot_surface(X, Y, Z, cmap=cm.coolwarm) #ax.contour(X, Y, Z, zdir='x', cmap=cm.coolwarm) #ax.contour(X, Y, Z, zdir='y', cmap=cm.coolwarm) #ax.contour(X, Y, Z, zdir='z', cmap=cm.coolwarm) ax.set_xlabel('Irr') ax.set_ylabel('V') plt.title(self.name) plt.show()
gpl-2.0
stylianos-kampakis/scikit-learn
examples/classification/plot_lda_qda.py
78
5046
""" ==================================================================== Linear and Quadratic Discriminant Analysis with confidence ellipsoid ==================================================================== Plot the confidence ellipsoids of each class and decision boundary """ print(__doc__) from scipy import linalg import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis ############################################################################### # colormap cmap = colors.LinearSegmentedColormap( 'red_blue_classes', {'red': [(0, 1, 1), (1, 0.7, 0.7)], 'green': [(0, 0.7, 0.7), (1, 0.7, 0.7)], 'blue': [(0, 0.7, 0.7), (1, 1, 1)]}) plt.cm.register_cmap(cmap=cmap) ############################################################################### # generate datasets def dataset_fixed_cov(): '''Generate 2 Gaussians samples with the same covariance matrix''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -0.23], [0.83, .23]]) X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C) + np.array([1, 1])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y def dataset_cov(): '''Generate 2 Gaussians samples with different covariance matrices''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -1.], [2.5, .7]]) * 2. X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C.T) + np.array([1, 4])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y ############################################################################### # plot functions def plot_data(lda, X, y, y_pred, fig_index): splot = plt.subplot(2, 2, fig_index) if fig_index == 1: plt.title('Linear Discriminant Analysis') plt.ylabel('Data with fixed covariance') elif fig_index == 2: plt.title('Quadratic Discriminant Analysis') elif fig_index == 3: plt.ylabel('Data with varying covariances') tp = (y == y_pred) # True Positive tp0, tp1 = tp[y == 0], tp[y == 1] X0, X1 = X[y == 0], X[y == 1] X0_tp, X0_fp = X0[tp0], X0[~tp0] X1_tp, X1_fp = X1[tp1], X1[~tp1] xmin, xmax = X[:, 0].min(), X[:, 0].max() ymin, ymax = X[:, 1].min(), X[:, 1].max() # class 0: dots plt.plot(X0_tp[:, 0], X0_tp[:, 1], 'o', color='red') plt.plot(X0_fp[:, 0], X0_fp[:, 1], '.', color='#990000') # dark red # class 1: dots plt.plot(X1_tp[:, 0], X1_tp[:, 1], 'o', color='blue') plt.plot(X1_fp[:, 0], X1_fp[:, 1], '.', color='#000099') # dark blue # class 0 and 1 : areas nx, ny = 200, 100 x_min, x_max = plt.xlim() y_min, y_max = plt.ylim() xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx), np.linspace(y_min, y_max, ny)) Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()]) Z = Z[:, 1].reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap='red_blue_classes', norm=colors.Normalize(0., 1.)) plt.contour(xx, yy, Z, [0.5], linewidths=2., colors='k') # means plt.plot(lda.means_[0][0], lda.means_[0][1], 'o', color='black', markersize=10) plt.plot(lda.means_[1][0], lda.means_[1][1], 'o', color='black', markersize=10) return splot def plot_ellipse(splot, mean, cov, color): v, w = linalg.eigh(cov) u = w[0] / linalg.norm(w[0]) angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees # filled Gaussian at 2 standard deviation ell = mpl.patches.Ellipse(mean, 2 * v[0] ** 0.5, 2 * v[1] ** 0.5, 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) splot.set_xticks(()) splot.set_yticks(()) def plot_lda_cov(lda, splot): plot_ellipse(splot, lda.means_[0], lda.covariance_, 'red') plot_ellipse(splot, lda.means_[1], lda.covariance_, 'blue') def plot_qda_cov(qda, splot): plot_ellipse(splot, qda.means_[0], qda.covariances_[0], 'red') plot_ellipse(splot, qda.means_[1], qda.covariances_[1], 'blue') ############################################################################### for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]): # Linear Discriminant Analysis lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True) y_pred = lda.fit(X, y).predict(X) splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1) plot_lda_cov(lda, splot) plt.axis('tight') # Quadratic Discriminant Analysis qda = QuadraticDiscriminantAnalysis() y_pred = qda.fit(X, y, store_covariances=True).predict(X) splot = plot_data(qda, X, y, y_pred, fig_index=2 * i + 2) plot_qda_cov(qda, splot) plt.axis('tight') plt.suptitle('Linear Discriminant Analysis vs Quadratic Discriminant Analysis') plt.show()
bsd-3-clause
trafferty/utils
python/Process_PSD.py
1
7904
import os import sys import argparse import math import time from struct import unpack, pack import numpy as np from PyQt4.QtGui import * from PyQt4.QtCore import * import matplotlib # matplotlib needs a window framework, lets use QT4 matplotlib.use('Qt4Agg') from colors import * import lineplot PrintColors = (BRIGHT_YELLOW, BRIGHT_CYAN) # before use, set an env var pointing to the top of the proto dir, ie, .../TacticalSensorStack/libsensorservice/proto TGI_PROTO_DIR = os.getenv("TGI_PROTO_DIR") # to allow importing of services.sensor.ss_* sys.path.append(os.path.abspath(TGI_PROTO_DIR)) # now import the GPB definitions import services.sensor.ss_pb2 as pb import services.sensor.ss_dataproduct_pb2 as dp # for plot, this is the x-axis tick size xtick_width_MHz = 1.0 def Process_PSD_Stream(inFile, plt): """Processes a stream of PSD data in the form of GPBs according to ss_dataproduct Args: inFile: the file handle for the input stream plt : handle to the lineplot opbject to use (see lineplot.py) Returns: none...returns when stream is empty Raises: none. """ prev_group_id = -1 # create a dict for metrics, and initialize metrics = {} metrics['bytes_read'] = 0 metrics['data_rate_Mbps'] = 0.0 metrics['elapsed_time_s'] = 0.0 metrics['start_time_ts'] = time.time() metrics['sweep_count'] = 0.0 metrics['sweeps_per_sec'] = 0.0 try: in_buf = inFile.read(4) while in_buf != "": size = int(in_buf.encode('hex'), 16) #size = unpack('I', pack('<I', int(data.encode('hex'), 16)))[0] # read in the data_product rawGPB = inFile.read(size) metrics['bytes_read'] += size data_response = pb.DataResponse() data_response.ParseFromString(rawGPB) for data_prod in data_response.data_products: if data_prod.HasExtension(dp.power_spectrum_data): power_spec_data = data_prod.Extensions[dp.power_spectrum_data] # read the data portion into a numpy array data_np = np.frombuffer(power_spec_data.spectrum_data.data, dtype=np.int16) # grab the header data start_freq_mhz = (power_spec_data.header.start_freq_hz / 1.0e6) end_freq_mhz = (power_spec_data.header.end_freq_hz / 1.0e6) inc_mhz = (end_freq_mhz - start_freq_mhz) / len(data_np) # print some stats print_PSD_Stats(data_np, power_spec_data.header, power_spec_data.spectrum_data.format, (prev_group_id < power_spec_data.header.group_id), metrics['data_rate_Mbps'], metrics['sweeps_per_sec']) # now either append to the plot data, or if we have a full spectrum, plot it if prev_group_id < power_spec_data.header.group_id and plt != None: if 'plot_data_np' in locals(): plt.ylim = (min(plot_data_np) - 20, max(plot_data_np) + 20) plt.xlim = (min(x), max(x)) plt.set_data((x, plot_data_np)) plt.xticks = xticks plt.xlabel = "MHz - [Bins: %d, Incr (kHz): %4.1f, GroupId: %d]" % ( len(data_np), (inc_mhz * 1000), power_spec_data.header.group_id ) plt.title = "Power Spectrum Density - [Sweeps per sec: %f, Data rate (Mbps): %f]" % (metrics['sweeps_per_sec'], metrics['data_rate_Mbps']) #print "Starting new plot data..." plot_data_np = data_np x = np.linspace(start_freq_mhz, start_freq_mhz + (len(data_np) * inc_mhz), len(data_np), False) xticks = np.arange(start_freq_mhz, end_freq_mhz, xtick_width_MHz).tolist() metrics['sweep_count'] += 1.0 else: plot_data_np = np.append(plot_data_np, data_np) x = np.append(x, np.linspace(start_freq_mhz, start_freq_mhz + (len(data_np) * inc_mhz), len(data_np), False) ) for xtick in np.arange(start_freq_mhz, end_freq_mhz, xtick_width_MHz).tolist(): xticks.append(xtick) prev_group_id = power_spec_data.header.group_id in_buf = inFile.read(4) # do some metrics on data to determine data rate metrics['elapsed_time_s'] = time.time() - metrics['start_time_ts'] if metrics['elapsed_time_s'] >= 2.0: metrics['data_rate_Mbps'] = ((metrics['bytes_read'] * 8 ) / (metrics['elapsed_time_s'] * 1024 * 1024 )) metrics['sweeps_per_sec'] = ( metrics['sweep_count'] / metrics['elapsed_time_s'] ) metrics['bytes_read'] = 0 metrics['start_time_ts'] = time.time() metrics['elapsed_time_s'] = 0.0 metrics['sweep_count'] = 0 finally: inFile.close() def print_PSD_Stats(data_np, header, format, print_header, data_rate_Mbps, sweeps_per_sec): inc_mhz = ((header.end_freq_hz / 1.0e6) - (header.start_freq_hz / 1.0e6)) / len(data_np) if print_header and not header.group_id % 5: # 123456 12345 123456 12345 12345 12345 12345 1234567 1234567 1234567 1234 1234 1234 1234567 12345 print "%s------------------------------------------------------------------------------------------------------------------------%s" % (WHITE, RESET) print "%s Group Data Bits/ Scaling Start End Incr DataRate Sweeps/ %s" % (WHITE, RESET) print "%s ID Len Value Signed Factor Offset Comp Freq Freq (kHz) Max Min Mean (Mbps) sec %s" % (WHITE, RESET) print "%s------------------------------------------------------------------------------------------------------------------------%s" % (WHITE, RESET) print("%s% 6d % 6d % 5d % 6d % 5d % 5d % 5d %07.3f %07.3f %05.1f % 4d % 4d % 4d %07.3f %04.1f%s" % (PrintColors[header.group_id%2], header.group_id, len(data_np), format.bits_per_value, format.signed, format.scaling_factor, format.offset, format.compression, (header.start_freq_hz / 1.0e6), (header.end_freq_hz / 1.0e6), (inc_mhz * 1000), data_np.max(), data_np.min(), data_np.mean(), data_rate_Mbps, sweeps_per_sec, RESET)) class GPBProcess(QThread): def run(self): Process_PSD_Stream(self.inFile, self.plt) if __name__ == "__main__": ''' process_PSD.py GPBDataFile ''' parser = argparse.ArgumentParser(description='Processes a stream of GPBs, extracting PSD data, from either a file or stdin, analyze and (optionally) plot') parser.add_argument('-i', dest='in_file', type=str, help='input file...if not specified then use stdin') parser.add_argument('-p', dest='do_plot', type=bool, default=True, help='plot data. default is True') args = parser.parse_args() # matplotlib needs a window framework...we use QT4, so we need to create a QApplication qapp = QApplication([]) if args.do_plot: plt = lineplot.LinePlotWidget(title="Power Spectrum") plt.show() else: print "No plotting!" plt = None plt.ylabel = "dBm" plt.xlabel = "MHz" if args.in_file: inFile = open(args.in_file, 'rb') else: inFile = sys.stdin #QTimer.singleShot(1000, lambda: Process_PSD_Stream(inFile, plt)) gpb_process = GPBProcess() gpb_process.inFile = inFile gpb_process.plt = plt QTimer.singleShot(100, gpb_process.start) qapp.exec_()
gpl-2.0
scikit-optimize/scikit-optimize
examples/sampler/sampling_comparison.py
2
6903
""" ========================================== Comparing initial point generation methods ========================================== Holger Nahrstaedt 2020 .. currentmodule:: skopt Bayesian optimization or sequential model-based optimization uses a surrogate model to model the expensive to evaluate function `func`. There are several choices for what kind of surrogate model to use. This notebook compares the performance of: * Halton sequence, * Hammersly sequence, * Sobol' sequence and * Latin hypercube sampling as initial points. The purely random point generation is used as a baseline. """ print(__doc__) import numpy as np np.random.seed(123) import matplotlib.pyplot as plt ############################################################################# # Toy model # ========= # # We will use the :class:`benchmarks.hart6` function as toy model for the expensive function. # In a real world application this function would be unknown and expensive # to evaluate. from skopt.benchmarks import hart6 as hart6_ # redefined `hart6` to allow adding arbitrary "noise" dimensions def hart6(x, noise_level=0.): return hart6_(x[:6]) + noise_level * np.random.randn() from skopt.benchmarks import branin as _branin def branin(x, noise_level=0.): return _branin(x) + noise_level * np.random.randn() ############################################################################# from matplotlib.pyplot import cm import time from skopt import gp_minimize, forest_minimize, dummy_minimize def plot_convergence(result_list, true_minimum=None, yscale=None, title="Convergence plot"): ax = plt.gca() ax.set_title(title) ax.set_xlabel("Number of calls $n$") ax.set_ylabel(r"$\min f(x)$ after $n$ calls") ax.grid() if yscale is not None: ax.set_yscale(yscale) colors = cm.hsv(np.linspace(0.25, 1.0, len(result_list))) for results, color in zip(result_list, colors): name, results = results n_calls = len(results[0].x_iters) iterations = range(1, n_calls + 1) mins = [[np.min(r.func_vals[:i]) for i in iterations] for r in results] ax.plot(iterations, np.mean(mins, axis=0), c=color, label=name) #ax.errorbar(iterations, np.mean(mins, axis=0), # yerr=np.std(mins, axis=0), c=color, label=name) if true_minimum: ax.axhline(true_minimum, linestyle="--", color="r", lw=1, label="True minimum") ax.legend(loc="best") return ax def run(minimizer, initial_point_generator, n_initial_points=10, n_repeats=1): return [minimizer(func, bounds, n_initial_points=n_initial_points, initial_point_generator=initial_point_generator, n_calls=n_calls, random_state=n) for n in range(n_repeats)] def run_measure(initial_point_generator, n_initial_points=10): start = time.time() # n_repeats must set to a much higher value to obtain meaningful results. n_repeats = 1 res = run(gp_minimize, initial_point_generator, n_initial_points=n_initial_points, n_repeats=n_repeats) duration = time.time() - start # print("%s %s: %.2f s" % (initial_point_generator, # str(init_point_gen_kwargs), # duration)) return res ############################################################################# # Objective # ========= # # The objective of this example is to find one of these minima in as # few iterations as possible. One iteration is defined as one call # to the :class:`benchmarks.hart6` function. # # We will evaluate each model several times using a different seed for the # random number generator. Then compare the average performance of these # models. This makes the comparison more robust against models that get # "lucky". from functools import partial example = "hart6" if example == "hart6": func = partial(hart6, noise_level=0.1) bounds = [(0., 1.), ] * 6 true_minimum = -3.32237 n_calls = 40 n_initial_points = 10 yscale = None title = "Convergence plot - hart6" else: func = partial(branin, noise_level=2.0) bounds = [(-5.0, 10.0), (0.0, 15.0)] true_minimum = 0.397887 n_calls = 30 n_initial_points = 10 yscale="log" title = "Convergence plot - branin" ############################################################################# from skopt.utils import cook_initial_point_generator # Random search dummy_res = run_measure("random", n_initial_points) lhs = cook_initial_point_generator( "lhs", lhs_type="classic", criterion=None) lhs_res = run_measure(lhs, n_initial_points) lhs2 = cook_initial_point_generator("lhs", criterion="maximin") lhs2_res = run_measure(lhs2, n_initial_points) sobol = cook_initial_point_generator("sobol", randomize=False, min_skip=1, max_skip=100) sobol_res = run_measure(sobol, n_initial_points) halton_res = run_measure("halton", n_initial_points) hammersly_res = run_measure("hammersly", n_initial_points) grid_res = run_measure("grid", n_initial_points) ############################################################################# # Note that this can take a few minutes. plot = plot_convergence([("random", dummy_res), ("lhs", lhs_res), ("lhs_maximin", lhs2_res), ("sobol'", sobol_res), ("halton", halton_res), ("hammersly", hammersly_res), ("grid", grid_res)], true_minimum=true_minimum, yscale=yscale, title=title) plt.show() ############################################################################# # This plot shows the value of the minimum found (y axis) as a function # of the number of iterations performed so far (x axis). The dashed red line # indicates the true value of the minimum of the :class:`benchmarks.hart6` # function. ############################################################################# # Test with different n_random_starts values lhs2 = cook_initial_point_generator("lhs", criterion="maximin") lhs2_15_res = run_measure(lhs2, 12) lhs2_20_res = run_measure(lhs2, 14) lhs2_25_res = run_measure(lhs2, 16) ############################################################################# # n_random_starts = 10 produces the best results plot = plot_convergence([("random - 10", dummy_res), ("lhs_maximin - 10", lhs2_res), ("lhs_maximin - 12", lhs2_15_res), ("lhs_maximin - 14", lhs2_20_res), ("lhs_maximin - 16", lhs2_25_res)], true_minimum=true_minimum, yscale=yscale, title=title) plt.show()
bsd-3-clause
operalib/operalib
operalib/preprocessing/simplex.py
2
3304
"""Simplex coding module.""" from numpy import dot, array, vstack, hstack, ones, zeros, sqrt, asarray from sklearn.preprocessing import LabelBinarizer from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils.validation import check_is_fitted # pylint: disable=W0201,C0103 class SimplexCoding(BaseEstimator, TransformerMixin): """Simplex coding.""" def __init__(self, binarizer=None): self.binarizer = binarizer # self.simplex_operator_ = None # self.binarizer_ = None @staticmethod def _code_i(dimension): """Simplex coding operator (internal). https://papers.nips.cc/paper/4764-multiclass-learning-with-simplex- coding.pdf """ if dimension > 1: block1 = vstack((ones((1, 1)), zeros((dimension - 1, 1)))) block2 = vstack((-ones((1, dimension)) / dimension, SimplexCoding._code_i(dimension - 1) * sqrt(1. - 1. / (dimension * dimension)))) return hstack((block1, block2)) elif dimension == 1: return array([1., -1.]) else: raise ValueError('dimension should be at least one.') @staticmethod def code(dimension): """Simplex coding operator.""" return SimplexCoding._code_i(dimension - 1) def fit(self, y): """Fit simplex coding Parameters ---------- targets : array, shape = [n_samples,] or [n_samples, n_classes] Target values. The 2-d array represents the simplex coding for multilabel classification. Returns ------- self : returns an instance of self. """ if self.binarizer is None: self.binarizer_ = LabelBinarizer(neg_label=0, pos_label=1, sparse_output=True) self.binarizer_.fit(y) dimension = self.binarizer_.classes_.size if dimension > 2: self.simplex_operator_ = SimplexCoding.code(dimension) else: self.simplex_operator_ = ones((1, 1)) return self def transform(self, y): """Transform multi-class labels to the simplex code. Parameters ---------- targets : array or sparse matrix, shape = [n_samples,] or [n_samples, n_classes] Target values. The 2-d matrix represents the simplex code for multilabel classification. Returns ------- Y : numpy array of shape [n_samples, n_classes - 1] """ check_is_fitted(self, 'simplex_operator_', 'binarizer_') dimension = self.binarizer_.classes_.size if dimension == 2: return self.binarizer_.transform(y).toarray() else: return self.binarizer_.transform(y).dot( asarray(self.simplex_operator_).T) def inverse_transform(self, y): """Inverse transform.""" check_is_fitted(self, 'simplex_operator_', 'binarizer_') dimension = self.binarizer_.classes_.size if dimension == 2: return self.binarizer_.inverse_transform(y) else: return self.binarizer_.inverse_transform( dot(y, self.simplex_operator_))
bsd-3-clause
seaotterman/tensorflow
tensorflow/examples/tutorials/word2vec/word2vec_basic.py
28
9485
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Basic word2vec example.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import math import os import random import zipfile import numpy as np from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf # Step 1: Download the data. url = 'http://mattmahoney.net/dc/' def maybe_download(filename, expected_bytes): """Download a file if not present, and make sure it's the right size.""" if not os.path.exists(filename): filename, _ = urllib.request.urlretrieve(url + filename, filename) statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print('Found and verified', filename) else: print(statinfo.st_size) raise Exception( 'Failed to verify ' + filename + '. Can you get to it with a browser?') return filename filename = maybe_download('text8.zip', 31344016) # Read the data into a list of strings. def read_data(filename): """Extract the first file enclosed in a zip file as a list of words.""" with zipfile.ZipFile(filename) as f: data = tf.compat.as_str(f.read(f.namelist()[0])).split() return data vocabulary = read_data(filename) print('Data size', len(vocabulary)) # Step 2: Build the dictionary and replace rare words with UNK token. vocabulary_size = 50000 def build_dataset(words, n_words): """Process raw inputs into a dataset.""" count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(n_words - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count += 1 data.append(index) count[0][1] = unk_count reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reversed_dictionary data, count, dictionary, reverse_dictionary = build_dataset(vocabulary, vocabulary_size) del vocabulary # Hint to reduce memory. print('Most common words (+UNK)', count[:5]) print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]]) data_index = 0 # Step 3: Function to generate a training batch for the skip-gram model. def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) # Backtrack a little bit to avoid skipping words in the end of a batch data_index = (data_index + len(data) - span) % len(data) return batch, labels batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) for i in range(8): print(batch[i], reverse_dictionary[batch[i]], '->', labels[i, 0], reverse_dictionary[labels[i, 0]]) # Step 4: Build and train a skip-gram model. batch_size = 128 embedding_size = 128 # Dimension of the embedding vector. skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. # We pick a random validation set to sample nearest neighbors. Here we limit the # validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.random.choice(valid_window, valid_size, replace=False) num_sampled = 64 # Number of negative examples to sample. graph = tf.Graph() with graph.as_default(): # Input data. train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation with tf.device('/cpu:0'): # Look up embeddings for inputs. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. loss = tf.reduce_mean( tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) # Construct the SGD optimizer using a learning rate of 1.0. optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) # Compute the cosine similarity between minibatch examples and all embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) similarity = tf.matmul( valid_embeddings, normalized_embeddings, transpose_b=True) # Add variable initializer. init = tf.global_variables_initializer() # Step 5: Begin training. num_steps = 100001 with tf.Session(graph=graph) as session: # We must initialize all variables before we use them. init.run() print('Initialized') average_loss = 0 for step in xrange(num_steps): batch_inputs, batch_labels = generate_batch( batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += loss_val if step % 2000 == 0: if step > 0: average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 batches. print('Average loss at step ', step, ': ', average_loss) average_loss = 0 # Note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k + 1] log_str = 'Nearest to %s:' % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log_str = '%s %s,' % (log_str, close_word) print(log_str) final_embeddings = normalized_embeddings.eval() # Step 6: Visualize the embeddings. def plot_with_labels(low_dim_embs, labels, filename='tsne.png'): assert low_dim_embs.shape[0] >= len(labels), 'More labels than embeddings' plt.figure(figsize=(18, 18)) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.scatter(x, y) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.savefig(filename) try: # pylint: disable=g-import-not-at-top from sklearn.manifold import TSNE import matplotlib.pyplot as plt tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) plot_only = 500 low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :]) labels = [reverse_dictionary[i] for i in xrange(plot_only)] plot_with_labels(low_dim_embs, labels) except ImportError: print('Please install sklearn, matplotlib, and scipy to show embeddings.')
apache-2.0
fja05680/pinkfish
examples/150.scaling-in-out/scaling_in_out.py
1
6538
""" Scaling in and out of using the double-7s strategy. 1. The SPY is above its 200-day moving average. 2. The SPY closes at a X-day low, buy some shares. If it sets further lows, buy some more. 3. If the SPY closes at a X-day high, sell some. If it sets further highs, sell some more, etc... Note: This example help demonstrate using some of the lower level pinkfish API. However, an easier approach using adjust_percent() is given in strategy.py. """ import datetime import matplotlib.pyplot as plt import pandas as pd from talib.abstract import * import pinkfish as pf pf.DEBUG = False default_options = { 'use_adj' : False, 'use_cache' : False, 'stop_loss_pct' : 1.0, 'margin' : 1, 'period' : 7, 'max_open_trades' : 4, 'enable_scale_in' : True, 'enable_scale_out' : True } class Strategy: def __init__(self, symbol, capital, start, end, options=default_options): self.symbol = symbol self.capital = capital self.start = start self.end = end self.options = options,copy() self.ts = None self.rlog = None self.tlog = None self.dbal = None self.stats = None def _algo(self): pf.TradeLog.cash = self.capital pf.TradeLog.margin = self.options['margin'] stop_loss = 0 for i, row in enumerate(self.ts.itertuples()): date = row.Index.to_pydatetime() high = row.high; low = row.low; close = row.close; end_flag = pf.is_last_row(self.ts, i) shares = 0 max_open_trades = self.options['max_open_trades'] enable_scale_in = self.options['enable_scale_in'] enable_scale_out = self.options['enable_scale_out'] max_open_trades_buy = max_open_trades if enable_scale_in else 1 num_open_trades = self.tlog.num_open_trades # Buy Logic # - Buy if still open trades slots left # and bull regime # and price closes at period low # and not end end_flag if (num_open_trades < max_open_trades_buy and row.regime > 0 and close == row.period_low and not end_flag): # Calc number of shares for another cash-equal trade. buying_power = self.tlog.calc_buying_power(close) cash = buying_power / (max_open_trades_buy - num_open_trades) shares = self.tlog.calc_shares(close, cash) # Buy more shares if we have the cash. if shares > 0: # Enter buy in trade log self.tlog.buy(date, close, shares) # Set stop loss stop_loss = (1-self.options['stop_loss_pct'])*close # set sell_parts to max_open_trades num_out_trades = max_open_trades # Sell Logic # First we check if we have any open trades, then # - Sell if price closes at X day high. # - Sell if price closes below stop loss. # - Sell if end of data. elif (num_open_trades > 0 and (close == row.period_high or low < stop_loss or end_flag)): if not enable_scale_out or low < stop_loss or end_flag: # Exit all positions. shares = None elif enable_scale_in: # Exit one position. shares = -1 else: # Scaling out is done here by shares, for example # if there are 100 shares and num trades is 4, # then we reduce by 25 each time. This is # different than scaling out by percentage of # total fund value as is done in strategy.py. shares = int(self.tlog.shares / num_out_trades) num_out_trades -= 1 # Enter sell in trade log. shares = self.tlog.sell(date, close, shares) if shares > 0: pf.DBG("{0} BUY {1} {2} @ {3:.2f}".format( date, shares, self.symbol, close)) elif shares < 0: pf.DBG("{0} SELL {1} {2} @ {3:.2f}".format( date, -shares, self.symbol, close)) # Record daily balance. self.dbal.append(date, high, low, close) def run(self): # Fetch and select timeseries. self.ts = pf.fetch_timeseries(self.symbol, use_cache=self.options['use_cache']) self.ts = pf.select_tradeperiod(self.ts, self.start, self.end, use_adj=self.options['use_adj']) # Add technical indicator: 200 day sma regime filter. self.ts['regime'] = pf.CROSSOVER(self.ts, timeperiod_fast=1, timeperiod_slow=200) # Add technical indicators: X day high, and X day low. self.ts['period_high'] = pd.Series(self.ts.close).rolling(self.options['period']).max() self.ts['period_low'] = pd.Series(self.ts.close).rolling(self.options['period']).min() # Finalize timeseries. self.ts, self.start = pf.finalize_timeseries(self.ts, self.start) # Create tlog and dbal objects. self.tlog = pf.TradeLog(self.symbol) self.dbal = pf.DailyBal() # Run algo, get logs, and get stats. self._algo() self._get_logs() self._get_stats() def _get_logs(self): self.rlog = self.tlog.get_log_raw() self.tlog = self.tlog.get_log() self.dbal = self.dbal.get_log(self.tlog) def _get_stats(self): self.stats = pf.stats(self.ts, self.tlog, self.dbal, self.capital) def summary(strategies, metrics): """ Stores stats summary in a DataFrame. stats() must be called before calling this function. """ index = [] columns = strategies.index data = [] # Add metrics. for metric in metrics: index.append(metric) data.append([strategy.stats[metric] for strategy in strategies]) df = pd.DataFrame(data, columns=columns, index=index) return df def plot_bar_graph(df, metric): """ Plot Bar Graph. stats() must be called before calling this function. """ df = df.loc[[metric]] df = df.transpose() fig = plt.figure() axes = fig.add_subplot(111, ylabel=metric) df.plot(kind='bar', ax=axes, legend=False) axes.set_xticklabels(df.index, rotation=0)
mit
moonbury/pythonanywhere
MasteringMLWithScikit-learn/8365OS_04_Codes/movies.py
3
2223
__author__ = 'gavin' import pandas as pd import sklearn from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model.logistic import LogisticRegression from sklearn.cross_validation import train_test_split from sklearn.metrics.metrics import classification_report, accuracy_score, confusion_matrix from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV import matplotlib.pyplot as plt def main(): pipeline = Pipeline([ ('vect', TfidfVectorizer()), ('clf', LogisticRegression()) ]) parameters = { # 'vect__max_df': (0.25, 0.5, 0.75), 'vect__stop_words': ('english', None), # 'vect__max_features': (5000, 10000, None), # 'vect__ngram_range': ((1, 1), (1, 2)), # 'vect__use_idf': (True, False), # 'vect__norm': ('l1', 'l2'), # 'clf__penalty': ('l1', 'l2'), # 'clf__C': (0.1, 1, 10), } df = pd.read_csv('movie-reviews/train.tsv', header=0, delimiter='\t') X, y = df['Phrase'], df['Sentiment'].as_matrix() X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.5) grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1, scoring='accuracy') grid_search.fit(X_train, y_train) print 'Best score: %0.3f' % grid_search.best_score_ print 'Best parameters set:' best_parameters = grid_search.best_estimator_.get_params() for param_name in sorted(parameters.keys()): print '\t%s: %r' % (param_name, best_parameters[param_name]) predictions = grid_search.predict(X_test) print 'Accuracy:', accuracy_score(y_test, predictions) print 'Classification Report:', classification_report(y_test, predictions) from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, predictions) print cm plt.matshow(cm) plt.title('Confusion matrix') plt.colorbar() plt.ylabel('True label') plt.xlabel('Predicted label') plt.show() predictions = np.ones(len(predictions)) * 2 print 'Accuracy:', accuracy_score(y_test, predictions) print 'Degenerate Classification Report:', classification_report(y_test, predictions) if __name__ == '__main__': main()
gpl-3.0
ryfeus/lambda-packs
LightGBM_sklearn_scipy_numpy/source/sklearn/svm/tests/test_sparse.py
63
13366
import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.exceptions import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import (assert_raises, assert_true, assert_false, assert_warns, assert_raise_message, ignore_warnings) # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) if isinstance(dense_svm, svm.OneClassSVM): msg = "cannot use sparse input in 'OneClassSVM' trained on dense data" else: assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0, decision_function_shape='ovo') sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0, decision_function_shape='ovo') check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: svc = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo') clf = svc.fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict([X[2]]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_oneclasssvm(): """Check that sparse OneClassSVM gives the same result as dense OneClassSVM""" # many class dataset: X_blobs, _ = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, None, T], [X2_sp, None, T2], [X_blobs[:80], None, X_blobs[80:]], [iris.data, None, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.OneClassSVM(kernel=kernel, random_state=0) sp_clf = svm.OneClassSVM(kernel=kernel, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catches some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) with ignore_warnings(category=ConvergenceWarning): proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) with ignore_warnings(category=ConvergenceWarning): proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
mit
kprestel/PyInvestment
pytech/fin/asset/asset.py
2
6592
import datetime as dt import logging from abc import ABCMeta, abstractmethod from typing import Tuple import numpy as np import pandas as pd import pytech.utils as utils from pytech.data._holders import DfLibName from pytech.decorators.decorators import memoize, write_chunks from pytech.data.reader import BarReader from pytech.fin.market_data.market import Market BETA_STORE = 'pytech.beta' def _calc_beta(df: pd.DataFrame) -> pd.Series: """ Calculates beta given a :class:`pd.DataFrame`. It is expected that the df has the stock returns are in column 1 and the market returns in column 0. """ x = df.values[:, [0]] # noinspection PyUnresolvedReferences x = np.concatenate([np.ones_like(x), x], axis=1) beta = np.linalg.pinv(x.T.dot(x)).dot(x.T).dot(df.values[:, 1:]) return pd.Series(beta[1], df.columns[1:], name=df.index[-1]) class Asset(metaclass=ABCMeta): """ This is the base class that all Asset classes should inherit from. Inheriting from it will provide a table name and the proper mapper args required for the db. It will also allow it to have a relationship with the :class:``OwnedAsset``. The child class is responsible for giving each instance a ticker to identify it. If the child class needs any more fields it is responsible for creating them at the class level as well as populating them via the child's constructor, in addition to calling the ``Asset`` constructor. Any child class instance of this base class is considered to be a part of the **Asset Universe** or the assets that are eligible to be traded. If a child instance of an Asset does not yet exist in the universe and the :class:``~pytech.portfolio.Portfolio`` tries to trade it an exception will occur. """ def __init__(self, ticker: str, start_date: dt.datetime, end_date: dt.datetime): self.ticker = ticker self.asset_type = self.__class__.__name__ self.logger = logging.getLogger(self.__class__.__name__) start_date, end_date = utils.sanitize_dates(start_date, end_date) self.start_date = start_date self.end_date = end_date self.market = Market(start_date=self.start_date, end_date=self.end_date) if self.start_date >= self.end_date: raise ValueError('start_date must be older than end_date. ' f'start_date: {start_date} end_date: {end_date}.') @property def df(self): return self.get_data() @df.setter def df(self, ohlcv): if isinstance(ohlcv, pd.DataFrame) or isinstance(ohlcv, pd.Series): self._ohlcv = ohlcv else: raise TypeError('data must be a pandas DataFrame or Series. ' f'{type(ohlcv)} was provided.') @classmethod def get_subclass_dict(cls, subclass_dict=None): """ Get a dictionary of subclasses for :class:`Asset` where the key is the string name of the class and the value is the actual class reference. :param dict subclass_dict: This is used for recursion to maintain the subclass_dict through each call. :return: A dictionary where the key is the string name of the subclass and the value is the reference to the class :rtype: dict """ if subclass_dict is None: subclass_dict = {} else: subclass_dict = subclass_dict for subclass in cls.__subclasses__(): # prevent duplicate keys if subclass.__name__ not in subclass_dict: subclass_dict[subclass.__name__] = subclass subclass.get_subclass_dict(subclass_dict) return subclass_dict @abstractmethod def get_data(self) -> pd.DataFrame: """Must return a :class:`pd.DataFrame` with ticker data.""" raise NotImplementedError class Stock(Asset): def __init__(self, ticker: str, start_date: dt.datetime, end_date: dt.datetime, source: str = 'google', lib_name: str = 'pytech.bars'): self.source = source self.reader = BarReader(lib_name) self.lib_name = lib_name super().__init__(ticker, start_date, end_date) @memoize def get_data(self) -> pd.DataFrame: return self.reader.get_data(self.ticker, self.source, self.start_date, self.end_date) def last_price(self, col=utils.CLOSE_COL): return self.df[col][-1] @write_chunks() def _rolling_beta(self, col=utils.CLOSE_COL, window: int = 30) -> DfLibName: """ Calculate the rolling beta over a given window. :param col: The column to use to get the returns. :param window: The window to use to calculate the rolling beta (days) :return: A DataFrame with the betas. """ stock_pct_change = pd.DataFrame(self.returns(col)) mkt_pct_change = pd.DataFrame(self.market.market[col].pct_change()) df: pd.DataFrame = pd.concat([mkt_pct_change, stock_pct_change], axis=1) betas = pd.concat([_calc_beta(sdf) for sdf in utils.roll(df, window)], axis=1).T betas['ticker'] = self.ticker return DfLibName(betas, BETA_STORE) def rolling_beta(self, col=utils.CLOSE_COL, window: int = 30) -> pd.DataFrame: """ Calculate the rolling beta over a given window. This is a wrapper around `_rolling_beta` to return just a dataframe. :param col: The column to use to get the returns. :param window: The window to use to calculate the rolling beta (days) :return: A DataFrame with the betas. """ df_lib_name = self._rolling_beta(col, window) return df_lib_name.df def returns(self, col=utils.CLOSE_COL) -> pd.Series: return self.df[col].pct_change() def avg_return(self, col=utils.CLOSE_COL): ret = self.returns(col).mean() return ret * 252 def cagr(self, col=utils.CLOSE_COL): """Compounding annual growth rate.""" days = (self.df.index[-1] - self.df.index[0]).days return ((self.df[col][-1] / self.df[col][1]) ** (365.0 / days)) - 1 def std(self, col=utils.CLOSE_COL): """Standard deviation of returns, *annualized*.""" return self.returns(col).std() * np.sqrt(252)
mit
trouden/MultiMediaVerwerking
Labo01/opdracht2RGB.py
1
2398
import math import cv2 from matplotlib import pyplot as plt import numpy as np orig = cv2.imread('contrast.jpg') orig = cv2.resize(orig, (0,0), fx=0.3, fy=0.3) img = cv2.copyMakeBorder(orig,0,0,0,0,cv2.BORDER_REPLICATE) # img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) height = img.shape[1] width = img.shape[0] #print width #print height I = img.mean() / 255.0 print I*255.0 sigma = 0 for w in range(0, width): for h in range(0, height): px = np.array([img.item(w,h,0), img.item(w,h,1), img.item(w,h,2)]) / 255.0 temp = np.average(px) - I temp *= temp #kwadraat sigma += temp sigma /= (width * height) sigma = math.sqrt(sigma) print "I= " + str(I) print "Sigma= " + str(sigma) c = 1 #default waarde gamma = 0 if I > 0.5: gamma = 1 + (math.fabs(0.5 - I) / sigma) else: gamma = 1 / (1 + (math.fabs(0.5 - I ) / sigma)) print "gamma: " + str(gamma) for w in range(0, width): for h in range(0, height): px = np.array([img.item(w,h,0), img.item(w,h,1), img.item(w,h,2)]) / 255.0 G = c * np.power(px, gamma) G = G * 255.0 #print G[0] img.itemset((w,h,0), G[0]) img.itemset((w,h,1), G[1]) img.itemset((w,h,2), G[2]) print str(img.min()) print str(img.max()) ### andere methode ### gemiddelde brightness naar ~128 brengen? #img2 = cv2.copyMakeBorder(orig,0,0,0,0,cv2.BORDER_REPLICATE) #img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # #height = img2.shape[1] #width = img2.shape[0] # # #I = img2.mean() #precisie = 0.1 #10 procent #c = 1 #gamma = 0 #count = 0 ## .9 * I <= I <= 1.1 * I # #while I > (1 + precisie) * 128 or I < (1 - precisie) * 128: # print I # print "gamma: " + str(gamma) # for w in range(0, width): # for h in range(0, height): # px = img2.item(w,h) / 255.0 # # if I > 128: # gamma = 2.5 # else: # gamma = .4 # # G = c * math.pow(px, gamma) # img2.itemset((w,h), G * 255.0) # # I = img2.mean() # count += 1 # #print "image2 average I: " + str(img2.mean()) #print "steps: " + str(count) plt.subplot(131),plt.imshow(orig,'gray'),plt.title('ORIGINAL') plt.subplot(132),plt.imshow(img,'gray'),plt.title('auto gamma correctie 1') #plt.subplot(133),plt.imshow(img2,'gray'),plt.title('auto gamma correctie 2') plt.show() # AAYYY LFMAO DIEDERIK
mit
rrohan/scikit-learn
examples/ensemble/plot_forest_importances_faces.py
403
1519
""" ================================================= Pixel importances with a parallel forest of trees ================================================= This example shows the use of forests of trees to evaluate the importance of the pixels in an image classification task (faces). The hotter the pixel, the more important. The code below also illustrates how the construction and the computation of the predictions can be parallelized within multiple jobs. """ print(__doc__) from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.ensemble import ExtraTreesClassifier # Number of cores to use to perform parallel fitting of the forest model n_jobs = 1 # Load the faces dataset data = fetch_olivetti_faces() X = data.images.reshape((len(data.images), -1)) y = data.target mask = y < 5 # Limit to 5 classes X = X[mask] y = y[mask] # Build a forest and compute the pixel importances print("Fitting ExtraTreesClassifier on faces data with %d cores..." % n_jobs) t0 = time() forest = ExtraTreesClassifier(n_estimators=1000, max_features=128, n_jobs=n_jobs, random_state=0) forest.fit(X, y) print("done in %0.3fs" % (time() - t0)) importances = forest.feature_importances_ importances = importances.reshape(data.images[0].shape) # Plot pixel importances plt.matshow(importances, cmap=plt.cm.hot) plt.title("Pixel importances with forests of trees") plt.show()
bsd-3-clause
pianomania/scikit-learn
sklearn/discriminant_analysis.py
27
26804
""" Linear Discriminant Analysis and Quadratic Discriminant Analysis """ # Authors: Clemens Brunner # Martin Billinger # Matthieu Perrot # Mathieu Blondel # License: BSD 3-Clause from __future__ import print_function import warnings import numpy as np from scipy import linalg from .externals.six import string_types from .externals.six.moves import xrange from .base import BaseEstimator, TransformerMixin, ClassifierMixin from .linear_model.base import LinearClassifierMixin from .covariance import ledoit_wolf, empirical_covariance, shrunk_covariance from .utils.multiclass import unique_labels from .utils import check_array, check_X_y from .utils.validation import check_is_fitted from .utils.fixes import bincount from .utils.multiclass import check_classification_targets from .preprocessing import StandardScaler __all__ = ['LinearDiscriminantAnalysis', 'QuadraticDiscriminantAnalysis'] def _cov(X, shrinkage=None): """Estimate covariance matrix (using optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. shrinkage : string or float, optional Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- s : array, shape (n_features, n_features) Estimated covariance matrix. """ shrinkage = "empirical" if shrinkage is None else shrinkage if isinstance(shrinkage, string_types): if shrinkage == 'auto': sc = StandardScaler() # standardize features X = sc.fit_transform(X) s = ledoit_wolf(X)[0] # rescale s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :] elif shrinkage == 'empirical': s = empirical_covariance(X) else: raise ValueError('unknown shrinkage parameter') elif isinstance(shrinkage, float) or isinstance(shrinkage, int): if shrinkage < 0 or shrinkage > 1: raise ValueError('shrinkage parameter must be between 0 and 1') s = shrunk_covariance(empirical_covariance(X), shrinkage) else: raise TypeError('shrinkage must be of string or int type') return s def _class_means(X, y): """Compute class means. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- means : array-like, shape (n_features,) Class means. """ means = [] classes = np.unique(y) for group in classes: Xg = X[y == group, :] means.append(Xg.mean(0)) return np.asarray(means) def _class_cov(X, y, priors=None, shrinkage=None): """Compute class covariance matrix. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. priors : array-like, shape (n_classes,) Class priors. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- cov : array-like, shape (n_features, n_features) Class covariance matrix. """ classes = np.unique(y) covs = [] for group in classes: Xg = X[y == group, :] covs.append(np.atleast_2d(_cov(Xg, shrinkage))) return np.average(covs, axis=0, weights=priors) class LinearDiscriminantAnalysis(BaseEstimator, LinearClassifierMixin, TransformerMixin): """Linear Discriminant Analysis A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix. The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discriminative directions. .. versionadded:: 0.17 *LinearDiscriminantAnalysis*. Read more in the :ref:`User Guide <lda_qda>`. Parameters ---------- solver : string, optional Solver to use, possible values: - 'svd': Singular value decomposition (default). Does not compute the covariance matrix, therefore this solver is recommended for data with a large number of features. - 'lsqr': Least squares solution, can be combined with shrinkage. - 'eigen': Eigenvalue decomposition, can be combined with shrinkage. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Note that shrinkage works only with 'lsqr' and 'eigen' solvers. priors : array, optional, shape (n_classes,) Class priors. n_components : int, optional Number of components (< n_classes - 1) for dimensionality reduction. store_covariance : bool, optional Additionally compute class covariance matrix (default False). .. versionadded:: 0.17 tol : float, optional Threshold used for rank estimation in SVD solver. .. versionadded:: 0.17 Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : array, shape (n_features,) Intercept term. covariance_ : array-like, shape (n_features, n_features) Covariance matrix (shared by all classes). explained_variance_ratio_ : array, shape (n_components,) Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0. Only available when eigen or svd solver is used. means_ : array-like, shape (n_classes, n_features) Class means. priors_ : array-like, shape (n_classes,) Class priors (sum to 1). scalings_ : array-like, shape (rank, n_classes - 1) Scaling of the features in the space spanned by the class centroids. xbar_ : array-like, shape (n_features,) Overall mean. classes_ : array-like, shape (n_classes,) Unique class labels. See also -------- sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis: Quadratic Discriminant Analysis Notes ----- The default solver is 'svd'. It can perform both classification and transform, and it does not rely on the calculation of the covariance matrix. This can be an advantage in situations where the number of features is large. However, the 'svd' solver cannot be used with shrinkage. The 'lsqr' solver is an efficient algorithm that only works for classification. It supports shrinkage. The 'eigen' solver is based on the optimization of the between class scatter to within class scatter ratio. It can be used for both classification and transform, and it supports shrinkage. However, the 'eigen' solver needs to compute the covariance matrix, so it might not be suitable for situations with a high number of features. Examples -------- >>> import numpy as np >>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = LinearDiscriminantAnalysis() >>> clf.fit(X, y) LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] """ def __init__(self, solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=1e-4): self.solver = solver self.shrinkage = shrinkage self.priors = priors self.n_components = n_components self.store_covariance = store_covariance # used only in svd solver self.tol = tol # used only in svd solver def _solve_lsqr(self, X, y, shrinkage): """Least squares solver. The least squares solver computes a straightforward solution of the optimal decision rule based directly on the discriminant functions. It can only be used for classification (with optional shrinkage), because estimation of eigenvectors is not performed. Therefore, dimensionality reduction with the transform is not supported. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_classes) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Notes ----- This solver is based on [1]_, section 2.6.2, pp. 39-41. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_eigen(self, X, y, shrinkage): """Eigenvalue solver. The eigenvalue solver computes the optimal solution of the Rayleigh coefficient (basically the ratio of between class scatter to within class scatter). This solver supports both classification and dimensionality reduction (with optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage constant. Notes ----- This solver is based on [1]_, section 3.8.3, pp. 121-124. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) Sw = self.covariance_ # within scatter St = _cov(X, shrinkage) # total scatter Sb = St - Sw # between scatter evals, evecs = linalg.eigh(Sb, Sw) self.explained_variance_ratio_ = np.sort(evals / np.sum(evals) )[::-1][:self._max_components] evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors # evecs /= np.linalg.norm(evecs, axis=0) # doesn't work with numpy 1.6 evecs /= np.apply_along_axis(np.linalg.norm, 0, evecs) self.scalings_ = evecs self.coef_ = np.dot(self.means_, evecs).dot(evecs.T) self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_svd(self, X, y): """SVD solver. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. """ n_samples, n_features = X.shape n_classes = len(self.classes_) self.means_ = _class_means(X, y) if self.store_covariance: self.covariance_ = _class_cov(X, y, self.priors_) Xc = [] for idx, group in enumerate(self.classes_): Xg = X[y == group, :] Xc.append(Xg - self.means_[idx]) self.xbar_ = np.dot(self.priors_, self.means_) Xc = np.concatenate(Xc, axis=0) # 1) within (univariate) scaling by with classes std-dev std = Xc.std(axis=0) # avoid division by zero in normalization std[std == 0] = 1. fac = 1. / (n_samples - n_classes) # 2) Within variance scaling X = np.sqrt(fac) * (Xc / std) # SVD of centered (within)scaled data U, S, V = linalg.svd(X, full_matrices=False) rank = np.sum(S > self.tol) if rank < n_features: warnings.warn("Variables are collinear.") # Scaling of within covariance is: V' 1/S scalings = (V[:rank] / std).T / S[:rank] # 3) Between variance scaling # Scale weighted centers X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) * (self.means_ - self.xbar_).T).T, scalings) # Centers are living in a space with n_classes-1 dim (maximum) # Use SVD to find projection in the space spanned by the # (n_classes) centers _, S, V = linalg.svd(X, full_matrices=0) self.explained_variance_ratio_ = (S**2 / np.sum( S**2))[:self._max_components] rank = np.sum(S > self.tol * S[0]) self.scalings_ = np.dot(scalings, V.T[:, :rank]) coef = np.dot(self.means_ - self.xbar_, self.scalings_) self.intercept_ = (-0.5 * np.sum(coef ** 2, axis=1) + np.log(self.priors_)) self.coef_ = np.dot(coef, self.scalings_.T) self.intercept_ -= np.dot(self.xbar_, self.coef_.T) def fit(self, X, y): """Fit LinearDiscriminantAnalysis model according to the given training data and parameters. .. versionchanged:: 0.19 *store_covariance* has been moved to main constructor. .. versionchanged:: 0.19 *tol* has been moved to main constructor. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array, shape (n_samples,) Target values. """ X, y = check_X_y(X, y, ensure_min_samples=2, estimator=self) self.classes_ = unique_labels(y) if self.priors is None: # estimate priors from sample _, y_t = np.unique(y, return_inverse=True) # non-negative ints self.priors_ = bincount(y_t) / float(len(y)) else: self.priors_ = np.asarray(self.priors) if (self.priors_ < 0).any(): raise ValueError("priors must be non-negative") if self.priors_.sum() != 1: warnings.warn("The priors do not sum to 1. Renormalizing", UserWarning) self.priors_ = self.priors_ / self.priors_.sum() # Get the maximum number of components if self.n_components is None: self._max_components = len(self.classes_) - 1 else: self._max_components = min(len(self.classes_) - 1, self.n_components) if self.solver == 'svd': if self.shrinkage is not None: raise NotImplementedError('shrinkage not supported') self._solve_svd(X, y) elif self.solver == 'lsqr': self._solve_lsqr(X, y, shrinkage=self.shrinkage) elif self.solver == 'eigen': self._solve_eigen(X, y, shrinkage=self.shrinkage) else: raise ValueError("unknown solver {} (valid solvers are 'svd', " "'lsqr', and 'eigen').".format(self.solver)) if self.classes_.size == 2: # treat binary case as a special case self.coef_ = np.array(self.coef_[1, :] - self.coef_[0, :], ndmin=2) self.intercept_ = np.array(self.intercept_[1] - self.intercept_[0], ndmin=1) return self def transform(self, X): """Project data to maximize class separation. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data. """ if self.solver == 'lsqr': raise NotImplementedError("transform not implemented for 'lsqr' " "solver (use 'svd' or 'eigen').") check_is_fitted(self, ['xbar_', 'scalings_'], all_or_any=any) X = check_array(X) if self.solver == 'svd': X_new = np.dot(X - self.xbar_, self.scalings_) elif self.solver == 'eigen': X_new = np.dot(X, self.scalings_) return X_new[:, :self._max_components] def predict_proba(self, X): """Estimate probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated probabilities. """ prob = self.decision_function(X) prob *= -1 np.exp(prob, prob) prob += 1 np.reciprocal(prob, prob) if len(self.classes_) == 2: # binary case return np.column_stack([1 - prob, prob]) else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob def predict_log_proba(self, X): """Estimate log probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated log probabilities. """ return np.log(self.predict_proba(X)) class QuadraticDiscriminantAnalysis(BaseEstimator, ClassifierMixin): """Quadratic Discriminant Analysis A classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class. .. versionadded:: 0.17 *QuadraticDiscriminantAnalysis* Read more in the :ref:`User Guide <lda_qda>`. Parameters ---------- priors : array, optional, shape = [n_classes] Priors on classes reg_param : float, optional Regularizes the covariance estimate as ``(1-reg_param)*Sigma + reg_param*np.eye(n_features)`` Attributes ---------- covariances_ : list of array-like, shape = [n_features, n_features] Covariance matrices of each class. means_ : array-like, shape = [n_classes, n_features] Class means. priors_ : array-like, shape = [n_classes] Class priors (sum to 1). rotations_ : list of arrays For each class k an array of shape [n_features, n_k], with ``n_k = min(n_features, number of elements in class k)`` It is the rotation of the Gaussian distribution, i.e. its principal axis. scalings_ : list of arrays For each class k an array of shape [n_k]. It contains the scaling of the Gaussian distributions along its principal axes, i.e. the variance in the rotated coordinate system. store_covariances : boolean If True the covariance matrices are computed and stored in the `self.covariances_` attribute. .. versionadded:: 0.17 tol : float, optional, default 1.0e-4 Threshold used for rank estimation. .. versionadded:: 0.17 Examples -------- >>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = QuadraticDiscriminantAnalysis() >>> clf.fit(X, y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0, store_covariances=False, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.discriminant_analysis.LinearDiscriminantAnalysis: Linear Discriminant Analysis """ def __init__(self, priors=None, reg_param=0., store_covariances=False, tol=1.0e-4): self.priors = np.asarray(priors) if priors is not None else None self.reg_param = reg_param self.store_covariances = store_covariances self.tol = tol def fit(self, X, y): """Fit the model according to the given training data and parameters. .. versionchanged:: 0.19 *store_covariance* has been moved to main constructor. .. versionchanged:: 0.19 *tol* has been moved to main constructor. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) """ X, y = check_X_y(X, y) check_classification_targets(y) self.classes_, y = np.unique(y, return_inverse=True) n_samples, n_features = X.shape n_classes = len(self.classes_) if n_classes < 2: raise ValueError('y has less than 2 classes') if self.priors is None: self.priors_ = bincount(y) / float(n_samples) else: self.priors_ = self.priors cov = None if self.store_covariances: cov = [] means = [] scalings = [] rotations = [] for ind in xrange(n_classes): Xg = X[y == ind, :] meang = Xg.mean(0) means.append(meang) if len(Xg) == 1: raise ValueError('y has only 1 sample in class %s, covariance ' 'is ill defined.' % str(self.classes_[ind])) Xgc = Xg - meang # Xgc = U * S * V.T U, S, Vt = np.linalg.svd(Xgc, full_matrices=False) rank = np.sum(S > self.tol) if rank < n_features: warnings.warn("Variables are collinear") S2 = (S ** 2) / (len(Xg) - 1) S2 = ((1 - self.reg_param) * S2) + self.reg_param if self.store_covariances: # cov = V * (S^2 / (n-1)) * V.T cov.append(np.dot(S2 * Vt.T, Vt)) scalings.append(S2) rotations.append(Vt.T) if self.store_covariances: self.covariances_ = cov self.means_ = np.asarray(means) self.scalings_ = scalings self.rotations_ = rotations return self def _decision_function(self, X): check_is_fitted(self, 'classes_') X = check_array(X) norm2 = [] for i in range(len(self.classes_)): R = self.rotations_[i] S = self.scalings_[i] Xm = X - self.means_[i] X2 = np.dot(Xm, R * (S ** (-0.5))) norm2.append(np.sum(X2 ** 2, 1)) norm2 = np.array(norm2).T # shape = [len(X), n_classes] u = np.asarray([np.sum(np.log(s)) for s in self.scalings_]) return (-0.5 * (norm2 + u) + np.log(self.priors_)) def decision_function(self, X): """Apply decision function to an array of samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples (test vectors). Returns ------- C : array, shape = [n_samples, n_classes] or [n_samples,] Decision function values related to each class, per sample. In the two-class case, the shape is [n_samples,], giving the log likelihood ratio of the positive class. """ dec_func = self._decision_function(X) # handle special case of two classes if len(self.classes_) == 2: return dec_func[:, 1] - dec_func[:, 0] return dec_func def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] """ d = self._decision_function(X) y_pred = self.classes_.take(d.argmax(1)) return y_pred def predict_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior probabilities of classification per class. """ values = self._decision_function(X) # compute the likelihood of the underlying gaussian models # up to a multiplicative constant. likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis]) # compute posterior probabilities return likelihood / likelihood.sum(axis=1)[:, np.newaxis] def predict_log_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior log-probabilities of classification per class. """ # XXX : can do better to avoid precision overflows probas_ = self.predict_proba(X) return np.log(probas_)
bsd-3-clause
NDKoehler/DataScienceBowl2017_7th_place
dsb3_networks/classification/resnet2D_0.5res_80/config_2Dfinal.py
1
3202
from collections import defaultdict from datetime import datetime import json import tensorflow as tf import os, sys import pandas as pd #config dic H = defaultdict(lambda: None) #All possible config options: H['optimizer'] = 'MomentumOptimizer'#'RMSPropOptimizer' H['learning_rate'] = 0.001 H['momentum'] = 0.9 #0.99 H['kernel_num'] = 16 #32 H['dropout_keep_prob'] = 1.0 H['gpu_fraction'] = 0.9 H['num_classes'] = 2 H['model_name'] = 'resnet2D' H['pretrained_checkpoint_dir'] = '../luna_resnet2D/output_dir/gold_prio3_plane_mil0'#../luna_resnet2D/output_dir/gen8_20z_3rot_stage1_deep H['output_dir'] = 'output_dir/old_but_gold_plane_mil0_b4_init_luna' #cross_crop_retrain_zrot H['predictions_dir'] = '' H['allow_soft_placement'] = True H['log_device_placement'] = False H['max_steps'] = 35 H['MOVING_AVERAGE_DECAY'] = 0.9 H['BATCH_NORM_CENTER'] = True H['BATCH_NORM_SCALE'] = True H['weights_initializer'] = 'xavier_initializer' #'xavier_initializer', 'xavier_initializer_conv2d', 'truncated_normal_initializer' H['gpus'] = [0] H['summary_step'] = 10 # list iterator # H['train_lst'] = '../data/multiview-2/tr.lst' # H['val_lst'] = '../data/multiview-2/va.lst' H['train_lst'] = '../../datapipeline_final/dsb3_0/interpolate_candidates_res05/tr_patients_80.lst' H['val_lst'] = '../../datapipeline_final/dsb3_0/interpolate_candidates_res05/va_patients_20.lst' #tr_path = '/media/niklas/Data_3/dsb3/datapipeline_gen9/dsb3_0/interpolate_candidates/cv5/cv/tr' + str(run_id) + '.lst' #va_path = '/media/niklas/Data_3/dsb3/datapipeline_gen9/dsb3_0/interpolate_candidates/cv5/cv/va' + str(run_id) + '.lst' #H['train_lst'] = tr_path #H['val_lst'] = va_path H['candidate_mode'] = False # crossed axes options - cross is centrally cropped -> layers are stacked in z-dim H['num_crossed_layers'] = 1 H['crossed_axes'] = [0,1,2] H['rand_drop_planes']=0 H['plane_mil'] = False # y and x image_shape must be equal -> z has same shape!!! # you can crop if the equal z,y and x in image shape are and smaller than in in_image_shape # images # in_image_shapes[1:] must be equal to len of crop_before_loading_in_RAM_ZminZmaxYminYmaxXminXmax H['in_image_shape'] = [10, 64, 64, 64, 2] #256 # not working #H['crop_before_loading_in_RAM_ZminZmaxYminYmaxXminXmax'] = [False,False,False,False,False,False] # Default = False or None H['image_shape'] = [10, 3*H['num_crossed_layers'], 64, 64, 2] H['label_shape'] = [1] #256 H['batch_size'] = 4 #iterator settings H['load_in_ram'] = True # due to time consuming operation and quality loss only rotation around one axis is processed randomly chosen H['rand_rot_axes'] = [0]#,1,2] # 0: z, 1: y, 2: x (attention: x and y rotation lasts long) H['rand_rot'] = True H['degree_90_rot'] = H['rand_rot'] H['min_rot_angle'] = -10 #degree H['max_rot_angle'] = 10 #degree H['rand_mirror_axes'] = [0,1,2] # 0: z, 1: y, 2: x else False H['rand_cropping_ZminZmaxYminYmaxXminXmax'] = [False,False,False,False,False,False] # crop within given range # default False: full range H['save_step'] = 10 # saving checkpoint H['tr_num_examples'] = len(pd.read_csv(H['train_lst'], header=None, sep='\t')) H['va_num_examples'] = len(pd.read_csv(H['val_lst'], header=None, sep='\t'))
mit
noamraph/dreampie
dreampielib/gui/__init__.py
1
59742
# Copyright 2010 Noam Yorav-Raphael # # This file is part of DreamPie. # # DreamPie is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # DreamPie is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with DreamPie. If not, see <http://www.gnu.org/licenses/>. import sys import os from os import path import time import tempfile from optparse import OptionParser import subprocess import webbrowser import re from keyword import iskeyword import logging from logging import debug #logging.basicConfig(format="dreampie: %(message)s", level=logging.DEBUG) def find_data_dir(): """ Find the data directory in which to find files. If we are inside the source directory, build subp zips. """ # The data directory is normally located at dreampielib/data. # When running under py2exe, it is in the same directory as the executable. # Running inside the source directory is detected by the presence of a # file called 'dreampie' in the same directory as 'dreampielib'. from os.path import join, dirname, abspath, isfile if hasattr(sys, 'frozen'): return abspath(join(dirname(sys.executable), 'data')) dreampielib_dir = dirname(dirname(abspath(__file__))) if isfile(join(dirname(dreampielib_dir), 'dreampie')): # We're in the source path. Build zips if needed, and return the right # dir. from ..subp_lib import build build() return join(dreampielib_dir, 'data') data_dir = find_data_dir() gladefile = path.join(data_dir, 'dreampie.glade') def load_pygtk(): """On win32, load PyGTK from subdirectory, if available.""" from os.path import join, dirname, abspath if hasattr(sys, 'frozen'): pygtk_dir = join(dirname(abspath(sys.executable)), 'gtk-2.0') else: pygtk_dir = join(dirname(dirname(dirname(abspath(__file__)))), 'gtk-2.0') if os.path.isdir(pygtk_dir): sys.path.insert(0, pygtk_dir) import runtime #@UnresolvedImport if sys.platform == 'win32': load_pygtk() import gobject gobject.threads_init() #@UndefinedVariable import gtk from gtk import gdk, glade import pango import gtksourceview2 from . import gtkexcepthook gtkexcepthook.install(gladefile) try: from glib import timeout_add, idle_add except ImportError: # In PyGObject 2.14, it's in gobject. from gobject import timeout_add, idle_add from .. import __version__ from .SimpleGladeApp import SimpleGladeApp from .keyhandler import (make_keyhandler_decorator, handle_keypress, parse_keypress_event) from .config import Config from .config_dialog import ConfigDialog from .write_command import write_command from .newline_and_indent import newline_and_indent from .output import Output from .folding import Folding from .selection import Selection from .status_bar import StatusBar from .vadj_to_bottom import VAdjToBottom from .history import History from .hist_persist import HistPersist from .autocomplete import Autocomplete from .call_tips import CallTips from .autoparen import Autoparen from .crash_workaround import TextViewCrashWorkaround from .subprocess_handler import SubprocessHandler, StartError from .common import beep, get_text, TimeoutError from .file_dialogs import save_dialog from .tags import (OUTPUT, STDIN, STDOUT, STDERR, EXCEPTION, PROMPT, COMMAND, COMMAND_DEFS, COMMAND_SEP, MESSAGE, RESULT_IND, RESULT) from . import tags from .update_check import update_check from . import bug_report INDENT_WIDTH = 4 # Default line length, by which we set the default window size LINE_LEN = 80 # Time to wait before autocompleting, to see if the user continues to type AUTOCOMPLETE_WAIT = 400 # Time to wait for the subprocess for a result. The subprocess may be doing # idle jobs, and so not return a result. SUBP_WAIT_TIMEOUT_S = .5 # Maybe someday we'll want translations... _ = lambda s: s # A decorator for managing sourceview key handlers sourceview_keyhandlers = {} sourceview_keyhandler = make_keyhandler_decorator(sourceview_keyhandlers) def get_widget(name): """Create a widget from the glade file.""" xml = glade.XML(gladefile, name) return xml.get_widget(name) class DreamPie(SimpleGladeApp): def __init__(self, pyexec, runfile): """ pyexec - the Python interpreter executable runfile - a filename to run upon startup, or None. """ SimpleGladeApp.__init__(self, gladefile, 'window_main') self.load_popup_menus() self.set_mac_accelerators() self.config = Config() if self.config.get_bool('start-rpdb2-embedded'): print 'Starting rpdb2 embedded debugger...', sys.stdout.flush() import rpdb2; rpdb2.start_embedded_debugger('1234', timeout=0.1) print 'Done.' self.window_main.set_icon_from_file( path.join(data_dir, 'dreampie.png')) self.textbuffer = tb = self.textview.get_buffer() self.init_textbufferview() # Mark where the cursor was when the popup menu was popped self.popup_mark = tb.create_mark('popup-mark', tb.get_start_iter(), left_gravity=True) # Remove the page in the notebook, which was added because empty # notebooks cause warnings self.notebook.remove_page(0) # A list of callbacks to call when changing the sourcebuffer self.sv_changed = [] self.sourceview = self.create_sourcebufferview() self.sourcebuffer = self.sourceview.get_buffer() # A tuple (page_num, text) of the recently closed tab self.reopen_tab_data = None # last (font, vertical_layout) configured. If they are changed, # configure() will resize the window and place the paned. self.last_configured_layout = (None, None) self.configure() self.output = Output(self.textview) self.folding = Folding(self.textbuffer, LINE_LEN) self.selection = Selection(self.textview, self.sourceview, self.sv_changed, self.on_is_something_selected_changed) self.status_bar = StatusBar(self.sourcebuffer, self.sv_changed, self.statusbar) self.vadj_to_bottom = VAdjToBottom(self.scrolledwindow_textview .get_vadjustment()) self.history = History(self.textview, self.sourceview, self.sv_changed, self.config) self.recent_manager = gtk.recent_manager_get_default() self.menuitem_recent = [self.menuitem_recent0, self.menuitem_recent1, self.menuitem_recent2, self.menuitem_recent3] self.recent_filenames = [None] * len(self.menuitem_recent) self.recent_manager.connect('changed', self.on_recent_manager_changed) self.histpersist = HistPersist(self.window_main, self.textview, self.status_bar, self.recent_manager) self.update_recent() self.autocomplete = Autocomplete(self.sourceview, self.sv_changed, self.window_main, self.complete_attributes, self.complete_firstlevels, self.get_func_args, self.find_modules, self.get_module_members, self.complete_filenames, self.complete_dict_keys, INDENT_WIDTH) # Hack: we connect this signal here, so that it will have lower # priority than the key-press event of autocomplete, when active. self.sourceview_keypress_handler = self.sourceview.connect( 'key-press-event', self.on_sourceview_keypress) self.sv_changed.append(self.on_sv_changed) self.call_tips = CallTips(self.sourceview, self.sv_changed, self.window_main, self.get_func_doc, INDENT_WIDTH) self.autoparen = Autoparen(self.sourcebuffer, self.sv_changed, self.is_callable_only, self.get_expects_str, self.autoparen_show_call_tip, INDENT_WIDTH) self.subp = SubprocessHandler( pyexec, data_dir, self.on_stdout_recv, self.on_stderr_recv, self.on_object_recv, self.on_subp_terminated) # Number of RPC calls that timed out and expecting results self._n_unclaimed_results = 0 try: self.subp.start() except StartError, e: msg = gtk.MessageDialog( None, gtk.DIALOG_MODAL, gtk.MESSAGE_ERROR, gtk.BUTTONS_CLOSE, _("Couldn't start subprocess: %s") % e) _response = msg.run() msg.destroy() print >> sys.stderr, e sys.exit(1) # Is the subprocess executing a command self.set_is_executing(False) # Are we trying to shut down self.is_terminating = False self.window_main.show() self.subp_welcome, self.subp_can_mask_sigint = ( self.call_subp(u'get_subprocess_info')) self.show_welcome() self.configure_subp() self.run_init_code(runfile) bug_report.set_subp_info(pyexec, self.subp_welcome) if self.config.get_bool('show-getting-started'): self.show_getting_started_dialog() self.config.set_bool('show-getting-started', False) self.config.save() update_check(self.on_update_available) def on_sv_changed(self, new_sv): self.sourceview.disconnect(self.sourceview_keypress_handler) self.sourceview = new_sv self.sourcebuffer = new_sv.get_buffer() self.sourceview_keypress_handler = self.sourceview.connect( 'key-press-event', self.on_sourceview_keypress) def load_popup_menus(self): # Load popup menus from the glade file. Would not have been needed if # popup menus could be children of windows. xml = glade.XML(gladefile, 'popup_sel_menu') xml.signal_autoconnect(self) self.popup_sel_menu = xml.get_widget('popup_sel_menu') xml = glade.XML(gladefile, 'popup_nosel_menu') xml.signal_autoconnect(self) self.popup_nosel_menu = xml.get_widget('popup_nosel_menu') self.fold_unfold_section_menu = xml.get_widget('fold_unfold_section_menu') self.copy_section_menu = xml.get_widget('copy_section_menu') self.view_section_menu = xml.get_widget('view_section_menu') self.save_section_menu = xml.get_widget('save_section_menu') def set_mac_accelerators(self): # Set up accelerators suitable for the Mac. # Ctrl-Up and Ctrl-Down are taken by the window manager, so we use # Ctrl-PgUp and Ctrl-PgDn. # We want it to be easy to switch, so both sets of keys are always # active, but only one, most suitable for each platform, is displayed # in the menu. accel_group = gtk.accel_groups_from_object(self.window_main)[0] menu_up = self.menuitem_history_up UP = gdk.keyval_from_name('Up') PGUP = gdk.keyval_from_name('Prior') menu_dn = self.menuitem_history_down DN = gdk.keyval_from_name('Down') PGDN = gdk.keyval_from_name('Next') if sys.platform != 'darwin': menu_up.add_accelerator('activate', accel_group, PGUP, gdk.CONTROL_MASK, 0) menu_dn.add_accelerator('activate', accel_group, PGDN, gdk.CONTROL_MASK, 0) else: menu_up.remove_accelerator(accel_group, UP, gdk.CONTROL_MASK) menu_up.add_accelerator('activate', accel_group, PGUP, gdk.CONTROL_MASK, gtk.ACCEL_VISIBLE) menu_up.add_accelerator('activate', accel_group, UP, gdk.CONTROL_MASK, 0) menu_dn.remove_accelerator(accel_group, DN, gdk.CONTROL_MASK) menu_dn.add_accelerator('activate', accel_group, PGDN, gdk.CONTROL_MASK, gtk.ACCEL_VISIBLE) menu_dn.add_accelerator('activate', accel_group, DN, gdk.CONTROL_MASK, 0) def on_cut(self, _widget): return self.selection.cut() def on_copy(self, _widget): return self.selection.copy() def on_copy_commands_only(self, _widget): return self.selection.copy_commands_only() def on_paste(self, _widget): return self.selection.paste() def on_upward_find(self, _widget): self.find(is_upward=True) def on_downward_find(self, _widget): self.find(is_upward=False) def find(self, is_upward): tb = self.textbuffer sb = self.sourcebuffer search_str = get_text(sb, sb.get_start_iter(), sb.get_end_iter()) if not search_str: self.status_bar.set_status(_( "Type the text you want to search for in the code box, and " "press Ctrl-F")) beep() return if tb.get_has_selection(): sel_start, sel_end = tb.get_selection_bounds() it = sel_start if is_upward else sel_end elif self.textview.has_focus(): it = tb.get_iter_at_mark(tb.get_insert()) else: it = tb.get_end_iter() flags = gtk.TEXT_SEARCH_VISIBLE_ONLY if is_upward: match = it.backward_search(search_str, flags) if match is None: match = tb.get_end_iter().backward_search(search_str, flags) else: match = it.forward_search(search_str, flags) if match is None: match = tb.get_start_iter().forward_search(search_str, flags) if match is None: beep() else: start, end = match tb.select_range(start, end) self.textview.scroll_to_iter(start, 0) def on_is_something_selected_changed(self, is_something_selected): self.menuitem_cut.props.sensitive = is_something_selected self.menuitem_copy.props.sensitive = is_something_selected self.menuitem_copy_commands_only.props.sensitive = is_something_selected self.menuitem_interrupt.props.sensitive = not is_something_selected # Source buffer, Text buffer def init_textbufferview(self): tv = self.textview tb = self.textbuffer tv.set_wrap_mode(gtk.WRAP_CHAR) self.textview_crash_workaround = TextViewCrashWorkaround(tv) tags.add_tags(tb) tv.connect('key-press-event', self.on_textview_keypress) tv.connect('focus-in-event', self.on_textview_focus_in) def get_char_width_height(self): tv = self.textview context = tv.get_pango_context() metrics = context.get_metrics(tv.style.font_desc, context.get_language()) charwidth = pango.PIXELS(metrics.get_approximate_digit_width()) # I don't know why +1 charheight = pango.PIXELS(metrics.get_ascent() + metrics.get_descent())+1 return charwidth, charheight def set_window_size(self, vertical_layout): charwidth, charheight = self.get_char_width_height() if vertical_layout: # I don't know why I have to add 2, but it works. width = charwidth*(LINE_LEN+2) height = charheight*30 else: width = charwidth*((LINE_LEN-10)*2+2) height = charheight*26 self.window_main.resize(width, height) # Set the position of the paned. We wait until it is exposed because # then its max_position is meaningful. # In vertical layout we set it to maximum, since the sourceview has # a minimum height. def callback(_widget, _event): if vertical_layout: pane = self.vpaned_main pane.set_position(pane.props.max_position) else: pane = self.hpaned_main pane.set_position(pane.props.max_position // 2) self.sourceview.disconnect(callback_id) callback_id = self.sourceview.connect('expose-event', callback) def create_sourcebufferview(self, page_num=None): sb = gtksourceview2.Buffer() sv = gtksourceview2.View(sb) sv.show() sv.connect('focus-in-event', self.on_sourceview_focus_in) sv.connect('button-press-event', self.on_sourceview_button_press_event) _charwidth, charheight = self.get_char_width_height() self.configure_sourceview(sv) lm = gtksourceview2.LanguageManager() lm.set_search_path([path.join(data_dir, 'language-specs')]) sb.set_language(lm.get_language('python')) scroll = gtk.ScrolledWindow() scroll.show() scroll.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC) scroll.add(sv) scroll.set_size_request(-1, charheight * 4) lbl = gtk.Label(' ') if page_num is None: page_num = self.notebook.get_current_page() + 1 self.notebook.insert_page(scroll, lbl, page_num) self.notebook.set_current_page(page_num) sv.grab_focus() return sv def sv_scroll_cursor_onscreen(self): self.sourceview.scroll_mark_onscreen(self.sourcebuffer.get_insert()) def on_textview_focus_in(self, _widget, _event): # Clear the selection of the sourcebuffer self.sourcebuffer.move_mark(self.sourcebuffer.get_selection_bound(), self.sourcebuffer.get_iter_at_mark( self.sourcebuffer.get_insert())) def on_sourceview_focus_in(self, _widget, _event): # Clear the selection of the textbuffer self.textbuffer.move_mark(self.textbuffer.get_selection_bound(), self.textbuffer.get_iter_at_mark( self.textbuffer.get_insert())) def on_sourceview_button_press_event(self, _widget, event): if event.button == 2 and self.textbuffer.get_has_selection(): commands = self.selection.get_commands_only() self.sourcebuffer.insert_interactive_at_cursor(commands, True) return True def write(self, data, *tag_names): self.textbuffer.insert_with_tags_by_name( self.textbuffer.get_end_iter(), data, *tag_names) def write_output(self, data, tag_names, onnewline=False, addbreaks=True): """ Call self.output.write with the given arguments, and autofold if needed. """ it = self.output.write(data, tag_names, onnewline, addbreaks) if self.config.get_bool('autofold'): self.folding.autofold(it, self.config.get_int('autofold-numlines')) def set_is_executing(self, is_executing): self.is_executing = is_executing label = _(u'Execute Code') if not is_executing else _(u'Write Input') self.menuitem_execute.child.props.label = label self.menuitem_discard_hist.props.sensitive = not is_executing @staticmethod def replace_gtk_quotes(source): # Work around GTK+ bug https://bugzilla.gnome.org/show_bug.cgi?id=610928 # in order to fix bug #525469 - replace fancy quotes with regular # quotes. return source.replace(u'\xa8', '"').replace(u'\xb4', "'") def execute_source(self): """Execute the source in the source buffer. """ sb = self.sourcebuffer source = get_text(sb, sb.get_start_iter(), sb.get_end_iter()) source = source.rstrip() source = self.replace_gtk_quotes(source) try: # There's a chance that the subprocess won't reply, because it's # busy doing "idle jobs". For most queries we can ask for an answer # and if it doesn't arrive, cancel what we tried to do and ignore # the answer when it comes. However, here we can't let the execute # function run and ignore the result, so we first call 'pause_idle'. # If we don't get a reply for pause_idle, we don't execute. self.call_subp_noblock(u'pause_idle') except TimeoutError: self.subp.send_object((u'resume_idle', ())) self._n_unclaimed_results += 1 self.status_bar.set_status(_("The subprocess is currently busy")) beep() return is_ok, syntax_error_info = self.call_subp(u'execute', source) if not is_ok: if syntax_error_info: msg, lineno, offset = syntax_error_info status_msg = _("Syntax error: %s (at line %d col %d)") % ( msg, lineno+1, offset+1) # Work around a bug: offset may be wrong, which will cause # gtk to crash if using sb.get_iter_at_line_offset. iter = sb.get_iter_at_line(lineno) iter.forward_chars(offset+1) sb.place_cursor(iter) else: # Incomplete status_msg = _("Command is incomplete") sb.place_cursor(sb.get_end_iter()) self.status_bar.set_status(status_msg) beep() else: self.set_is_executing(True) write_command(self.write, source.strip()) self.output.start_new_section() if not self.config.get_bool('leave-code'): sb.delete(sb.get_start_iter(), sb.get_end_iter()) self.vadj_to_bottom.scroll_to_bottom() def send_stdin(self): """Send the contents of the sourcebuffer as stdin.""" sb = self.sourcebuffer s = get_text(sb, sb.get_start_iter(), sb.get_end_iter()) if not s.endswith('\n'): s += '\n' self.write_output(s, [COMMAND, STDIN], addbreaks=False) self.write('\r', COMMAND_SEP) self.output.start_new_section() self.vadj_to_bottom.scroll_to_bottom() if not self.config.get_bool('leave-code'): sb.delete(sb.get_start_iter(), sb.get_end_iter()) self.subp.write(s) @sourceview_keyhandler('Return', 0) def on_sourceview_return(self): sb = self.sourcebuffer # If we are on the first line, and it doesn't end with a ' ': # * If we are not executing, try to execute (if failed, continue # with normal behavior) # * If we are executing, send the line as stdin. insert_iter = sb.get_iter_at_mark(sb.get_insert()) if (insert_iter.equal(sb.get_end_iter()) and insert_iter.get_line() == 0 and insert_iter.get_offset() != 0 and not get_text(sb, sb.get_start_iter(), insert_iter).endswith(' ')): if not self.is_executing: source = get_text(sb, sb.get_start_iter(), sb.get_end_iter()) source = source.rstrip() source = self.replace_gtk_quotes(source) try: is_incomplete = self.call_subp_noblock(u'is_incomplete', source) except TimeoutError: is_incomplete = True if not is_incomplete: self.execute_source() return True else: # is_executing self.send_stdin() return True # If we are after too many newlines, the user probably just wanted to # execute - notify him. # We check if this line is empty and the previous one is. show_execution_tip = False if insert_iter.equal(sb.get_end_iter()): it = sb.get_end_iter() # This goes to the beginning of the line, and another line # backwards, so we get two lines it.backward_lines(1) text = get_text(sb, it, sb.get_end_iter()) if not text.strip(): show_execution_tip = True # We didn't execute, so newline-and-indent. r = newline_and_indent(self.sourceview, INDENT_WIDTH) if show_execution_tip: self.status_bar.set_status(_( "Tip: To execute your code, use Ctrl+Enter.")) return r @sourceview_keyhandler('KP_Enter', 0) def on_sourceview_kp_enter(self): self.on_execute_command(None) return True @sourceview_keyhandler('Tab', 0) def on_sourceview_tab(self): sb = self.sourcebuffer sel = sb.get_selection_bounds() if not sel: insert = sb.get_iter_at_mark(sb.get_insert()) insert_linestart = sb.get_iter_at_line(insert.get_line()) line = get_text(sb, insert_linestart, insert) if not line.strip(): # We are at the beginning of a line, so indent - forward to next # "tab stop" sb.insert_at_cursor(' '*(INDENT_WIDTH - len(line)%INDENT_WIDTH)) else: # Completion should come here self.autocomplete.show_completions(is_auto=False, complete=True) else: # Indent start, end = sel start = sb.get_iter_at_line(start.get_line()) if not end.ends_line(): end.forward_to_line_end() text = get_text(sb, start, end) newtext = '\n'.join(' '+line for line in text.split('\n')) start_offset = start.get_offset() sb.delete(start, end) sb.insert(end, newtext) sb.select_range(sb.get_iter_at_offset(start_offset), end) self.sv_scroll_cursor_onscreen() return True @sourceview_keyhandler('ISO_Left_Tab', 0) def on_sourceview_shift_tab(self): sb = self.sourcebuffer sel = sb.get_selection_bounds() if sel: start, end = sel else: start = end = sb.get_iter_at_mark(sb.get_insert()) start = sb.get_iter_at_line(start.get_line()) if not end.ends_line(): end.forward_to_line_end() text = get_text(sb, start, end) lines = text.split('\n') if not all(line.startswith(' ') for line in lines if line.strip() != ''): beep() else: newlines = [line[4:] for line in lines] newtext = '\n'.join(newlines) start_offset = start.get_offset() sb.delete(start, end) sb.insert(end, newtext) sb.select_range(sb.get_iter_at_offset(start_offset), end) return True @sourceview_keyhandler('Home', 0) def on_sourceview_home(self): # If the cursor is already at the beginning of the line, move to the # beginning of the text. sb = self.sourcebuffer insert = sb.get_iter_at_mark(sb.get_insert()) if insert.starts_line(): while insert.get_char() == ' ': insert.forward_char() sb.place_cursor(insert) return True @sourceview_keyhandler('BackSpace', 0) def on_sourceview_backspace(self): sb = self.sourcebuffer insert = sb.get_iter_at_mark(sb.get_insert()) insert_linestart = sb.get_iter_at_line(insert.get_line()) line = get_text(sb, insert_linestart, insert) if line and not line.strip(): # There are only space before us, so remove spaces up to last # "tab stop" delete_from = ((len(line) - 1) // INDENT_WIDTH) * INDENT_WIDTH it = sb.get_iter_at_line_offset(insert.get_line(), delete_from) sb.delete(it, insert) self.sv_scroll_cursor_onscreen() return True return False # The following 3 handlers are for characters which may trigger automatic # opening of the completion list. (slash and backslash depend on path.sep) # We leave the final decision whether to open the list to the autocompleter. # We just notify it that the char was inserted and the user waited a while. @sourceview_keyhandler('period', 0) def on_sourceview_period(self): timeout_add(AUTOCOMPLETE_WAIT, self.check_autocomplete, '.') @sourceview_keyhandler('slash', 0) def on_sourceview_slash(self): timeout_add(AUTOCOMPLETE_WAIT, self.check_autocomplete, '/') @sourceview_keyhandler('backslash', 0) def on_sourceview_backslash(self): timeout_add(AUTOCOMPLETE_WAIT, self.check_autocomplete, '\\') @sourceview_keyhandler('bracketleft', 0) def on_sourceview_bracketleft(self): timeout_add(AUTOCOMPLETE_WAIT, self.check_autocomplete, '[') def check_autocomplete(self, last_char): """ If the last char in the sourcebuffer is last_char, call show_completions. """ sb = self.sourcebuffer if self.sourceview.is_focus(): it = sb.get_iter_at_mark(sb.get_insert()) it2 = it.copy() it2.backward_chars(1) char = get_text(sb, it2, it) if char == last_char: self.autocomplete.show_completions(is_auto=True, complete=False) # return False so as not to be called repeatedly. return False @sourceview_keyhandler('parenleft', 0) def on_sourceview_parenleft(self): idle_add(self.call_tips.show, True) def on_sourceview_keypress(self, _widget, event): return handle_keypress(self, event, sourceview_keyhandlers) # Autoparen @sourceview_keyhandler('space', 0) def on_sourceview_space(self): """ If a space was hit after a callable-only object, add parentheses. """ if self.is_executing: return False if not self.config.get_bool('autoparen'): return False return self.autoparen.add_parens() def is_callable_only(self, expr): return self.call_subp_catch(u'is_callable_only', expr) def get_expects_str(self): return set(self.config.get('expects-str-2').split()) def autoparen_show_call_tip(self): self.call_tips.show(is_auto=True) # History def on_textview_keypress(self, _widget, event): keyval_name, state = parse_keypress_event(event) if (keyval_name, state) in (('Return', 0), ('KP_Enter', 0)): return self.history.copy_to_sourceview() def on_history_up(self, _widget): self.history.history_up() def on_history_down(self, _widget): self.history.history_down() # Subprocess def show_welcome(self): s = self.subp_welcome + 'DreamPie %s\n' % __version__ self.write(s, MESSAGE) self.output.start_new_section() def configure_subp(self): config = self.config if config.get_bool('use-reshist'): reshist_size = config.get_int('reshist-size') else: reshist_size = 0 self.call_subp(u'set_reshist_size', reshist_size) self.menuitem_clear_reshist.props.sensitive = (reshist_size > 0) self.call_subp(u'set_pprint', config.get_bool('pprint')) self.call_subp(u'set_matplotlib_ia', config.get_bool('matplotlib-ia-switch'), config.get_bool('matplotlib-ia-warn')) def run_init_code(self, runfile=None): """ Runs the init code. This will result in the code being run and a '>>>' printed afterwards. If there's no init code, will just print '>>>'. If runfile is given, will also execute the code in that. """ init_code = unicode(eval(self.config.get('init-code'))) if runfile: msg = "Running %s" % runfile # This should be both valid py3 and py2 code. init_code += ('\n\nprint(%r)\nexec(open(%r).read())\n' % (msg, runfile)) if init_code: is_ok, syntax_error_info = self.call_subp(u'execute', init_code) if not is_ok: msg, lineno, offset = syntax_error_info warning = _( "Could not run initialization code because of a syntax " "error:\n" "%s at line %d col %d.") % (msg, lineno+1, offset+1) msg = gtk.MessageDialog(self.window_main, gtk.DIALOG_MODAL, gtk.MESSAGE_WARNING, gtk.BUTTONS_CLOSE, warning) _response = msg.run() msg.destroy() else: self.set_is_executing(True) if not self.is_executing: self.write('>>> ', COMMAND, PROMPT) def on_subp_terminated(self): if self.is_terminating: return # This may raise an exception if subprocess couldn't be started, # but hopefully if it was started once it will be started again. self._n_unclaimed_results = 0 self.subp.start() self.set_is_executing(False) self.write('\n') self.write( '==================== New Session ====================\n', MESSAGE) self.output.start_new_section() self.configure_subp() self.run_init_code() self.vadj_to_bottom.scroll_to_bottom() self.sourceview.grab_focus() def on_restart_subprocess(self, _widget): self.subp.kill() def on_stdout_recv(self, data): self.write_output(data, STDOUT) def on_stderr_recv(self, data): self.write_output(data, STDERR) def call_subp(self, funcname, *args): """ Make an RPC call, blocking until an answer is received. """ assert not self.is_executing while self._n_unclaimed_results: self.subp.recv_object() self.subp.send_object((funcname, args)) return self.subp.recv_object() def call_subp_noblock(self, funcname, *args): """ Make a non-blocking RPC call. Will wait for SUBP_WAIT_TIMEOUT_S and if no answer is received will raise a TimeoutError. The query will be executed when the subprocess becomes responsive again, but will be discarded. """ assert not self.is_executing while self._n_unclaimed_results: returned = self.subp.wait_for_object(SUBP_WAIT_TIMEOUT_S) if returned: self.subp.recv_object() else: raise TimeoutError self.subp.send_object((funcname, args)) returned = self.subp.wait_for_object(SUBP_WAIT_TIMEOUT_S) if returned: return self.subp.recv_object() else: self._n_unclaimed_results += 1 raise TimeoutError def call_subp_catch(self, funcname, *args): """ Make a non-blocking RPC call. If executing, return None. If a TimeoutError is raised, catch it and return None. """ if self.is_executing: return None try: return self.call_subp_noblock(funcname, *args) except TimeoutError: return None def on_object_recv(self, obj): if self._n_unclaimed_results: self._n_unclaimed_results -= 1 return assert self.is_executing is_success, val_no, val_str, exception_string, rem_stdin = obj if not is_success: self.write_output(exception_string, EXCEPTION, onnewline=True) else: if val_str is not None: if val_no is not None: sep = ' ' if '\n' not in val_str else '\n' self.write_output('%d:%s' % (val_no, sep), RESULT_IND, onnewline=True) self.write_output(val_str+'\n', RESULT) self.write('>>> ', COMMAND, PROMPT) self.set_is_executing(False) self.handle_rem_stdin(rem_stdin) def handle_rem_stdin(self, rem_stdin): """ Add the stdin text that was not processed to the source buffer. Remove it from the text buffer (we check that the STDIN text is consistent with rem_stdin - otherwise we give up) """ if not rem_stdin: return self.sourcebuffer.insert(self.sourcebuffer.get_start_iter(), rem_stdin) self.sv_scroll_cursor_onscreen() tb = self.textbuffer stdin = tb.get_tag_table().lookup(STDIN) it = tb.get_end_iter() if not it.ends_tag(stdin): it.backward_to_tag_toggle(stdin) while True: it2 = it.copy() it2.backward_to_tag_toggle(stdin) cur_stdin = get_text(tb, it2, it, True) min_len = min(len(cur_stdin), len(rem_stdin)) assert min_len > 0 if cur_stdin[-min_len:] != rem_stdin[-min_len:]: debug("rem_stdin doesn't match what's in textview") break it2.forward_chars(len(cur_stdin)-min_len) tb.delete(it2, it) rem_stdin = rem_stdin[:-min_len] if not rem_stdin: break else: it = it2 # if rem_stdin is left, it2 must be at the beginning of the # stdin region. it2.backward_to_tag_toggle(stdin) assert it2.ends_tag(stdin) def on_execute_command(self, _widget): if self.is_executing: self.send_stdin() elif self.sourcebuffer.get_char_count() == 0: beep() else: self.execute_source() return True def on_interrupt(self, _widget): if self.subp_can_mask_sigint or self.is_executing: self.subp.interrupt() else: self.status_bar.set_status( _("A command isn't being executed currently")) beep() # History persistence def on_save_history(self, _widget): self.histpersist.save() def on_save_history_as(self, _widget): self.histpersist.save_as() def on_load_history(self, _widget): self.histpersist.load() # Recent history files def on_recent_manager_changed(self, _recent_manager): self.update_recent() def update_recent(self): """Update the menu and self.recent_filenames""" rman = self.recent_manager recent_items = [it for it in rman.get_items() if it.has_application('dreampie') and it.get_uri().startswith('file://')] # it.get_visited() makes more sense, but since we call RecentManager.add # when we open and when we save, get_modified() does the trick. recent_items.sort(key=lambda it: it.get_modified(), reverse=True) self.menuitem_recentsep.props.visible = (len(recent_items) > 0) for i, menuitem in enumerate(self.menuitem_recent): if i < len(recent_items): it = recent_items[i] fn = it.get_uri()[len('file://'):] menuitem.props.visible = True menuitem.child.props.label = "_%d %s" % (i, fn) self.recent_filenames[i] = fn else: menuitem.props.visible = False self.recent_filenames[i] = None def on_menuitem_recent(self, widget): num = self.menuitem_recent.index(widget) fn = self.recent_filenames[num] self.histpersist.load_filename(fn) # Discard history def discard_hist_before_tag(self, tag): """ Discard history before the given tag. If tag == COMMAND, this discards all history, and if tag == MESSAGE, this discards previous sessions. """ tb = self.textbuffer tag = tb.get_tag_table().lookup(tag) it = tb.get_end_iter() it.backward_to_tag_toggle(tag) if not it.begins_tag(tag): it.backward_to_tag_toggle(tag) tb.delete(tb.get_start_iter(), it) def on_discard_history(self, _widget): xml = glade.XML(gladefile, 'discard_hist_dialog') d = xml.get_widget('discard_hist_dialog') d.set_transient_for(self.window_main) d.set_default_response(gtk.RESPONSE_OK) previous_rad = xml.get_widget('previous_rad') all_rad = xml.get_widget('all_rad') previous_rad.set_group(all_rad) previous_rad.props.active = True r = d.run() d.destroy() if r == gtk.RESPONSE_OK: tb = self.textbuffer if previous_rad.props.active: self.discard_hist_before_tag(MESSAGE) else: self.discard_hist_before_tag(COMMAND) tb.insert_with_tags_by_name( tb.get_start_iter(), '================= History Discarded =================\n', MESSAGE) self.status_bar.set_status(_('History discarded.')) self.histpersist.forget_filename() # Folding def on_section_menu_activate(self, widget): """ Called when the used clicked a section-related item in a popup menu. """ tb = self.textbuffer it = tb.get_iter_at_mark(self.popup_mark) r = self.folding.get_section_status(it) if r is None: # May happen if something was changed in the textbuffer between # popup and activation return typ, is_folded, start_it = r if widget is self.fold_unfold_section_menu: # Fold/Unfold if is_folded is None: # No point in folding. beep() elif not is_folded: self.folding.fold(typ, start_it) else: self.folding.unfold(typ, start_it) else: if typ == COMMAND: text = self.history.iter_get_command(start_it) else: end_it = start_it.copy() end_it.forward_to_tag_toggle(self.folding.get_tag(typ)) text = get_text(tb, start_it, end_it) if sys.platform == 'win32': text = text.replace('\n', '\r\n') if widget is self.copy_section_menu: # Copy self.selection.clipboard.set_text(text) elif widget is self.view_section_menu: # View fd, fn = tempfile.mkstemp() os.write(fd, text) os.close(fd) viewer = eval(self.config.get('viewer')) self.spawn_and_forget('%s %s' % (viewer, fn)) elif widget is self.save_section_menu: # Save def func(filename): f = open(filename, 'wb') f.write(text) f.close() save_dialog(func, _("Choose where to save the section"), self.main_widget, _("All Files"), "*", None) else: assert False, "Unexpected widget" def spawn_and_forget(self, argv): """ Start a process and forget about it. """ if sys.platform == 'linux2': # We use a trick so as not to create zombie processes: we fork, # and let the fork spawn the process (actually another fork). The # (first) fork immediately exists, so the process we spawned is # made the child of process number 1. pid = os.fork() if pid == 0: _p = subprocess.Popen(argv, shell=True) os._exit(0) else: os.waitpid(pid, 0) else: _p = subprocess.Popen(argv, shell=True) def on_double_click(self, event): """If we are on a folded section, unfold it and return True, to avoid event propagation.""" tv = self.textview if tv.get_window(gtk.TEXT_WINDOW_TEXT) is not event.window: # Probably a click on the border or something return x, y = tv.window_to_buffer_coords(gtk.TEXT_WINDOW_TEXT, int(event.x), int(event.y)) it = tv.get_iter_at_location(x, y) r = self.folding.get_section_status(it) if r is not None: typ, is_folded, start_it = r if is_folded: self.folding.unfold(typ, start_it) return True def on_fold_last(self, _widget): self.folding.fold_last() def on_unfold_last(self, _widget): self.folding.unfold_last() # Notebook tabs def on_notebook_switch_page(self, _widget, _page, page_num): new_sv = self.notebook.get_nth_page(page_num).get_child() for cb in self.sv_changed: cb(new_sv) def new_tab(self, index=None): # The following line should result in on_notebook_switch_page, which # will take care of calling on_sv_change functions. self.create_sourcebufferview(index) self.notebook.props.show_tabs = True self.reopen_tab_data = None self.menuitem_reopen_tab.props.sensitive = False def on_new_tab(self, _widget): self.new_tab() def on_reopen_tab(self, _widget): index, text = self.reopen_tab_data self.new_tab(index) self.sourcebuffer.set_text(text) def on_close_tab(self, _widget): if self.notebook.get_n_pages() == 1: beep() return else: self.close_current_tab() def close_current_tab(self): assert self.notebook.get_n_pages() > 1 cur_page = self.notebook.get_current_page() text = get_text(self.sourcebuffer, self.sourcebuffer.get_start_iter(), self.sourcebuffer.get_end_iter()) if text: self.reopen_tab_data = (cur_page, text) self.menuitem_reopen_tab.props.sensitive = True else: self.reopen_tab_data = None self.menuitem_reopen_tab.props.sensitive = False scrolledwin = self.notebook.get_nth_page(cur_page) new_page = cur_page-1 if cur_page > 0 else 1 # This should result in on_notebook_switch_page which will set # everything to use the new sourcebuffer self.notebook.set_current_page(new_page) assert self.sourceview is not scrolledwin.get_child() self.notebook.remove_page(cur_page) if self.notebook.get_n_pages() == 1: self.notebook.props.show_tabs = False if True: scrolledwin.destroy() else: # Verify that the sourceview and sourcebuffer are indeed destroyed, # and not referenced anywhere import weakref, gc r = weakref.ref(scrolledwin.get_child().get_buffer()) scrolledwin.destroy() gc.collect() assert r() is None def on_prev_tab(self, _widget): self.notebook.prev_page() def on_next_tab(self, _widget): self.notebook.next_page() # Other events def on_show_completions(self, _widget): self.autocomplete.show_completions(is_auto=False, complete=False) def complete_dict_keys(self, expr): return self.call_subp_catch(u'complete_dict_keys', expr) def complete_attributes(self, expr): return self.call_subp_catch(u'complete_attributes', expr) def complete_firstlevels(self): return self.call_subp_catch(u'complete_firstlevels') def get_func_args(self, expr): return self.call_subp_catch(u'get_func_args', expr) def find_modules(self, expr): return self.call_subp_catch(u'find_modules', expr) def get_module_members(self, expr): return self.call_subp_catch(u'get_module_members', expr) def complete_filenames(self, str_prefix, text, str_char, add_quote): return self.call_subp_catch(u'complete_filenames', str_prefix, text, str_char, add_quote) def on_show_calltip(self, _widget): self.call_tips.show(is_auto=False) def get_func_doc(self, expr): return self.call_subp_catch(u'get_func_doc', expr) def configure(self): """ Apply configuration. Called on initialization and after configuration was changed by the configuration dialog. """ config = self.config tv = self.textview; tb = self.textbuffer sourceviews = [self.notebook.get_nth_page(i).get_child() for i in range(self.notebook.get_n_pages())] font_name = config.get('font') font = pango.FontDescription(font_name) tv.modify_font(font) for sv in sourceviews: sv.modify_font(font) theme = tags.get_theme(self.config, self.config.get('current-theme')) tags.apply_theme_text(tv, tb, theme) for sv in sourceviews: tags.apply_theme_source(sv.get_buffer(), theme) vertical_layout = self.config.get_bool('vertical-layout') if vertical_layout: pane = self.vpaned_main; other_pane = self.hpaned_main self.notebook.props.tab_pos = gtk.POS_BOTTOM else: pane = self.hpaned_main; other_pane = self.vpaned_main self.notebook.props.tab_pos = gtk.POS_TOP pane.props.visible = True other_pane.props.visible = False if pane.get_child1() is None: child1 = other_pane.get_child1(); other_pane.remove(child1) child2 = other_pane.get_child2(); other_pane.remove(child2) pane.pack1(child1, resize=True, shrink=False) pane.pack2(child2, resize=not vertical_layout, shrink=False) # If the fonts were changed, we might need to enlarge the window last_font, last_vertical = self.last_configured_layout if last_font != font or last_vertical != vertical_layout: self.set_window_size(vertical_layout) self.last_configured_layout = font, vertical_layout command_defs = self.textbuffer.get_tag_table().lookup(COMMAND_DEFS) command_defs.props.invisible = config.get_bool('hide-defs') def configure_sourceview(self, sv): """ Apply configuration to a newly created sourceview. This does the same for a single sourceview as configure() does for all of them. """ font_name = self.config.get('font') font = pango.FontDescription(font_name) sv.modify_font(font) theme = tags.get_theme(self.config, self.config.get('current-theme')) tags.apply_theme_source(sv.get_buffer(), theme) def on_preferences(self, _widget): cd = ConfigDialog(self.config, gladefile, self.window_main) r = cd.run() if r == gtk.RESPONSE_OK: self.configure() self.configure_subp() cd.destroy() def on_clear_reshist(self, _widget): try: self.call_subp_noblock(u'clear_reshist') except TimeoutError: # Will happen anyway when idle job ends pass self.status_bar.set_status(_("Result history cleared.")) def on_close(self, _widget, _event): self.quit() return True def on_quit(self, _widget): self.quit() def quit(self): was_saved = self.histpersist.was_saved() if (self.textbuffer.get_modified() and (was_saved or self.config.get_bool('ask-on-quit'))): d = gtk.MessageDialog( parent=self.window_main, flags=gtk.DIALOG_MODAL | gtk.DIALOG_DESTROY_WITH_PARENT, type=gtk.MESSAGE_WARNING, message_format=_('Save history before closing?')) d.props.secondary_text = _("If you don't save, your history will be lost.") CANCEL, DISCARD, SAVE = range(3) discard_btn = d.add_button(_("Close _without saving"), DISCARD) _cancel_btn = d.add_button(_("_Cancel"), CANCEL) save_btn = d.add_button(_("_Save"), SAVE) if not was_saved: dontask_chk = gtk.CheckButton( _("Don't ask me again when the history was never saved")) dontask_chk.show() d.get_content_area().pack_start(dontask_chk, fill=True, expand=False) d.set_default_response(DISCARD) discard_btn.grab_focus() else: d.set_default_response(SAVE) save_btn.grab_focus() r = d.run() if not was_saved and r == DISCARD and dontask_chk.props.active: self.config.set_bool('ask-on-quit', False) self.config.save() if r == SAVE: saved = self.histpersist.save() quit = saved elif r == DISCARD: quit = True else: quit = False d.destroy() else: quit = True if quit: self.is_terminating = True self.window_main.destroy() self.subp.kill() gtk.main_quit() def on_about(self, _widget): d = get_widget('about_dialog') d.set_transient_for(self.window_main) d.set_version(__version__) d.set_logo(gdk.pixbuf_new_from_file( path.join(data_dir, 'dreampie.png'))) d.run() d.destroy() def on_update_available(self, is_git, latest_name, latest_time): date = time.strftime('%Y/%m/%d', time.localtime(latest_time)) if is_git: msg = _("A new git commit is available, from %s. " "Run 'git pull' to update." % date) else: self.get_update_menu.show() msg = _("A new DreamPie version, %s, is available. " "Click Help->Get New Version to update." % latest_name) self.status_bar.set_status(msg) def on_get_update_menu_activate(self, _widget): webbrowser.open('http://www.dreampie.org/download.html') def on_report_bug(self, _widget): bug_report.bug_report(self.window_main, gladefile, None) def on_homepage(self, _widget): webbrowser.open('http://www.dreampie.org/') def on_getting_started(self, _widget): self.show_getting_started_dialog() def show_getting_started_dialog(self): d = get_widget('getting_started_dialog') d.set_transient_for(self.window_main) d.run() d.destroy() def on_textview_button_press_event(self, _widget, event): if event.button == 3: self.show_popup_menu(event) return True elif event.button == 2: return self.on_sourceview_button_press_event(_widget, event) elif event.type == gdk._2BUTTON_PRESS: return self.on_double_click(event) def show_popup_menu(self, event): tv = self.textview tb = self.textbuffer if tb.get_has_selection(): self.popup_sel_menu.popup(None, None, None, event.button, event.get_time()) else: if tv.get_window(gtk.TEXT_WINDOW_TEXT) is not event.window: # Probably a click on the border or something return x, y = tv.window_to_buffer_coords(gtk.TEXT_WINDOW_TEXT, int(event.x), int(event.y)) it = tv.get_iter_at_location(x, y) r = self.folding.get_section_status(it) if r is not None: typ, is_folded, _start_it = r if typ == OUTPUT: typ_s = _('Output Section') else: typ_s = _('Code Section') self.fold_unfold_section_menu.props.visible = ( is_folded is not None) self.fold_unfold_section_menu.child.props.label = ( _('Unfold %s') if is_folded else _('Fold %s')) % typ_s self.copy_section_menu.child.props.label = _('Copy %s') % typ_s self.view_section_menu.child.props.label = _('View %s') % typ_s self.save_section_menu.child.props.label = _('Save %s') % typ_s self.view_section_menu.props.visible = \ bool(eval(self.config.get('viewer'))) tb.move_mark(self.popup_mark, it) self.popup_nosel_menu.popup(None, None, None, event.button, event.get_time()) else: beep() def main(): usage = "%prog [options] [python-executable]" version = 'DreamPie %s' % __version__ parser = OptionParser(usage=usage, version=version) parser.add_option("--run", dest="runfile", help="A file to run upon initialization. It will be " "run only once.") if sys.platform == 'win32': parser.add_option("--hide-console-window", action="store_true", dest="hide_console", help="Hide the console window") opts, args = parser.parse_args() if len(args) > 1: parser.error("Can accept at most one argument") if len(args) == 1: pyexec = args[0] elif 'dreampie' in sys.executable.lower(): # We are under py2exe. msg = gtk.MessageDialog( None, gtk.DIALOG_MODAL, gtk.MESSAGE_ERROR, gtk.BUTTONS_CLOSE, _("DreamPie must be given the file name of a Python interpreter. " "Please create a shortcut to something like '%s " "--hide-console-window c:\\python26\\python.exe'.") % os.path.abspath(sys.argv[0])) _response = msg.run() msg.destroy() sys.exit(1) else: pyexec = sys.executable if sys.platform == 'win32' and opts.hide_console: from .hide_console_window import hide_console_window hide_console_window() gtk.widget_set_default_direction(gtk.TEXT_DIR_LTR) _dp = DreamPie(pyexec, opts.runfile) gtk.main()
gpl-3.0
huanzhang12/lightgbm-gpu
examples/python-guide/sklearn_example.py
3
1490
# coding: utf-8 # pylint: disable = invalid-name, C0111 import lightgbm as lgb import pandas as pd from sklearn.metrics import mean_squared_error from sklearn.model_selection import GridSearchCV # load or create your dataset print('Load data...') df_train = pd.read_csv('../regression/regression.train', header=None, sep='\t') df_test = pd.read_csv('../regression/regression.test', header=None, sep='\t') y_train = df_train[0].values y_test = df_test[0].values X_train = df_train.drop(0, axis=1).values X_test = df_test.drop(0, axis=1).values print('Start training...') # train gbm = lgb.LGBMRegressor(objective='regression', num_leaves=31, learning_rate=0.05, n_estimators=20) gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], eval_metric='l1', early_stopping_rounds=5) print('Start predicting...') # predict y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration) # eval print('The rmse of prediction is:', mean_squared_error(y_test, y_pred) ** 0.5) print('Calculate feature importances...') # feature importances print('Feature importances:', list(gbm.feature_importances_)) # other scikit-learn modules estimator = lgb.LGBMRegressor(num_leaves=31) param_grid = { 'learning_rate': [0.01, 0.1, 1], 'n_estimators': [20, 40] } gbm = GridSearchCV(estimator, param_grid) gbm.fit(X_train, y_train) print('Best parameters found by grid search are:', gbm.best_params_)
mit
kagayakidan/scikit-learn
sklearn/neighbors/tests/test_nearest_centroid.py
305
4121
""" Testing for the nearest centroid module. """ import numpy as np from scipy import sparse as sp from numpy.testing import assert_array_equal from numpy.testing import assert_equal from sklearn.neighbors import NearestCentroid from sklearn import datasets from sklearn.metrics.pairwise import pairwise_distances # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] X_csr = sp.csr_matrix(X) # Sparse matrix y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] T_csr = sp.csr_matrix(T) true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_classification_toy(): # Check classification on a toy dataset, including sparse versions. clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # Same test, but with a sparse matrix to fit and test. clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit with sparse, test with non-sparse clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T), true_result) # Fit with non-sparse, test with sparse clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit and predict with non-CSR sparse matrices clf = NearestCentroid() clf.fit(X_csr.tocoo(), y) assert_array_equal(clf.predict(T_csr.tolil()), true_result) def test_precomputed(): clf = NearestCentroid(metric="precomputed") clf.fit(X, y) S = pairwise_distances(T, clf.centroids_) assert_array_equal(clf.predict(S), true_result) def test_iris(): # Check consistency on dataset iris. for metric in ('euclidean', 'cosine'): clf = NearestCentroid(metric=metric).fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.9, "Failed with score = " + str(score) def test_iris_shrinkage(): # Check consistency on dataset iris, when using shrinkage. for metric in ('euclidean', 'cosine'): for shrink_threshold in [None, 0.1, 0.5]: clf = NearestCentroid(metric=metric, shrink_threshold=shrink_threshold) clf = clf.fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.8, "Failed with score = " + str(score) def test_pickle(): import pickle # classification obj = NearestCentroid() obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_array_equal(score, score2, "Failed to generate same score" " after pickling (classification).") def test_shrinkage_threshold_decoded_y(): clf = NearestCentroid(shrink_threshold=0.01) y_ind = np.asarray(y) y_ind[y_ind == -1] = 0 clf.fit(X, y_ind) centroid_encoded = clf.centroids_ clf.fit(X, y) assert_array_equal(centroid_encoded, clf.centroids_) def test_predict_translated_data(): # Test that NearestCentroid gives same results on translated data rng = np.random.RandomState(0) X = rng.rand(50, 50) y = rng.randint(0, 3, 50) noise = rng.rand(50) clf = NearestCentroid(shrink_threshold=0.1) clf.fit(X, y) y_init = clf.predict(X) clf = NearestCentroid(shrink_threshold=0.1) X_noise = X + noise clf.fit(X_noise, y) y_translate = clf.predict(X_noise) assert_array_equal(y_init, y_translate) def test_manhattan_metric(): # Test the manhattan metric. clf = NearestCentroid(metric='manhattan') clf.fit(X, y) dense_centroid = clf.centroids_ clf.fit(X_csr, y) assert_array_equal(clf.centroids_, dense_centroid) assert_array_equal(dense_centroid, [[-1, -1], [1, 1]])
bsd-3-clause
brooksandrew/postman_problems
postman_problems/tests/test_example_sleeping_giant.py
1
6009
import math import pkg_resources import itertools import pandas as pd import networkx as nx from postman_problems.viz import add_node_attributes from postman_problems.graph import ( read_edgelist, create_networkx_graph_from_edgelist, get_odd_nodes, get_shortest_paths_distances ) from postman_problems.solver import rpp, cpp # ################### # PARAMETERS / DATA # # ################### EDGELIST = pkg_resources.resource_filename('postman_problems', 'examples/sleeping_giant/edgelist_sleeping_giant.csv') NODELIST = pkg_resources.resource_filename('postman_problems', 'examples/sleeping_giant/nodelist_sleeping_giant.csv') START_NODE = 'b_end_east' ######### # TESTS # ######### def test_read_sleeping_giant_edgelist(): df = read_edgelist(EDGELIST, keep_optional=True) # check that our Sleeping Giant example dataset contains the correct fields and values assert ['node1', 'node2', 'trail', 'color', 'distance', 'estimate', 'required'] in df.columns.values assert math.isclose(df[df['required'] == 1]['distance'].sum(), 26.01) assert math.isclose(df['distance'].sum(), 30.48) df_req = read_edgelist(EDGELIST, keep_optional=False) assert math.isclose(df_req['distance'].sum(), 26.01) assert 'req' not in df_req.columns def test_create_networkx_graph_from_edgelist(): df = read_edgelist(EDGELIST, keep_optional=True) graph = create_networkx_graph_from_edgelist(df, edge_id='id') # check that our starting graph is created correctly assert isinstance(graph, nx.MultiGraph) assert len(graph.edges()) == 133 assert len(graph.nodes()) == 78 assert graph['b_end_east']['b_y'][0]['color'] == 'blue' assert graph['b_end_east']['b_y'][0]['trail'] == 'b' assert graph['b_end_east']['b_y'][0]['distance'] == 1.32 # check that starting graph with required trails only is correct df_req = read_edgelist(EDGELIST, keep_optional=False) graph_req = create_networkx_graph_from_edgelist(df_req, edge_id='id') assert isinstance(graph_req, nx.MultiGraph) assert len(graph_req.edges()) == 121 assert len(graph_req.nodes()) == 74 def test_add_node_attributes(): # create objects for testing df = read_edgelist(EDGELIST) graph = create_networkx_graph_from_edgelist(df, edge_id='id') nodelist_df = pd.read_csv(NODELIST) graph_node_attrs = add_node_attributes(graph, nodelist_df) assert len(graph_node_attrs.nodes()) == 74 # check that each node attribute has an X and Y coordinate for k, v in graph_node_attrs.nodes(data=True): assert 'X' in v assert 'Y' in v # spot check node attributes for first node node_data_from_graph = list(graph_node_attrs.nodes(data=True)) node_names = [n[0] for n in node_data_from_graph] assert 'rs_end_north' in node_names key = node_names.index('rs_end_north') assert node_data_from_graph[key][1]['X'] == 1772 assert node_data_from_graph[key][1]['Y'] == 172 def test_get_shortest_paths_distances(): df = read_edgelist(EDGELIST) graph = create_networkx_graph_from_edgelist(df, edge_id='id') odd_nodes = get_odd_nodes(graph) odd_node_pairs = list(itertools.combinations(odd_nodes, 2)) # coarsely checking structure of `get_shortest_paths_distances` return value odd_node_pairs_shortest_paths = get_shortest_paths_distances(graph, odd_node_pairs, 'distance') assert len(odd_node_pairs_shortest_paths) == 630 assert type(odd_node_pairs_shortest_paths) == dict # check that each node name appears the same number of times in `get_shortest_paths_distances` return value node_names = list(itertools.chain(*[i[0] for i in odd_node_pairs_shortest_paths.items()])) assert set(pd.value_counts(node_names)) == set([35]) def test_nodelist_edgelist_overlap(): """ Test that the nodelist and the edgelist contain the same node names. If using X,Y coordinates for plotting and not all nodes have attributes, this could get messy. """ eldf = read_edgelist(EDGELIST, keep_optional=True) nldf = pd.read_csv(NODELIST) edgelist_nodes = set(eldf['node1'].append(eldf['node2'])) nodelist_nodes = set(nldf['id']) nodes_in_el_but_not_nl = edgelist_nodes - nodelist_nodes assert nodes_in_el_but_not_nl == set(), \ "Warning: The following nodes are in the edgelist, but not the nodelist: {}".format(nodes_in_el_but_not_nl) nodes_in_nl_but_not_el = nodelist_nodes - edgelist_nodes assert nodes_in_nl_but_not_el == set(), \ "Warning: The following nodes are in the nodelist, but not the edgelist: {}".format(nodes_in_nl_but_not_el) def test_sleeping_giant_cpp_solution(): cpp_solution, graph = cpp(edgelist_filename=EDGELIST, start_node=START_NODE) # make number of edges in solution is correct assert len(cpp_solution) == 155 # make sure our total mileage is correct cpp_solution_distance = sum([edge[3]['distance'] for edge in cpp_solution]) assert math.isclose(cpp_solution_distance, 33.25) # make sure our circuit begins and ends at the same place assert cpp_solution[0][0] == cpp_solution[-1][1] == START_NODE # make sure original graph is properly returned assert len(graph.edges()) == 121 [e[2].get('augmented') for e in graph.edges(data=True)].count(True) == 35 def test_sleeping_giant_rpp_solution(): rpp_solution, graph = rpp(edgelist_filename=EDGELIST, start_node=START_NODE) # make number of edges in solution is correct assert len(rpp_solution) == 151 # make sure our total mileage is correct rpp_solution_distance = sum([edge[3]['distance'] for edge in rpp_solution]) assert math.isclose(rpp_solution_distance, 32.12) # make sure our circuit begins and ends at the same place assert rpp_solution[0][0] == rpp_solution[-1][1] == START_NODE # make sure original graph is properly returned assert len(graph.edges()) == 133 [e[3].get('augmented') for e in graph.edges(data=True, keys=True)].count(True) == 30
mit
vipints/oqtans
oqtans_tools/KIRMES/0.8/src/EasySVM.py
2
44265
""" ############################################################################################# # # # This class is part of the MLB-Galaxy package, adding some sequence analysis # # functionality to PSU's Galaxy framework. # # Copyright (C) 2008 Cheng Soon Ong <[email protected]> # # Copyright (C) 2008 Gunnar Raetsch <[email protected]> # # Copyright (C) 2007, 2009 Sebastian J. Schultheiss <[email protected] # # # # This program is free software; you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation; either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program; if not, see http://www.gnu.org/licenses # # or write to the Free Software Foundation, Inc., 51 Franklin Street, # # Fifth Floor, Boston, MA 02110-1301 USA # # # ############################################################################################# # # # Original Author: Sebastian J. Schultheiss, version 0.8.0 # # Please add a notice of any modifications here: # # Gunnar Raetsch: rewrote code for training on sequences to be read from files # # Cheng Soon Ong: Added code for educational toolbox # # Sebastian J. Schultheiss: Class-ified for KIRMES use in 02/2009 # # Sebastian J. Schultheiss: Updated for shogun-0.9.1 in 02/2010 # # Sebastian J. Schultheiss: Tweaks for Galaxy Integration in 12/2010 # # # ############################################################################################# """ __version__ = "EasySVM.py 0.8.0" import os import random import shutil import warnings import numpy from numpy import ones from shogun.Kernel import GaussianKernel, WeightedDegreePositionStringKernel from shogun.Kernel import LinearKernel, PolyKernel, LocalAlignmentStringKernel, LocalityImprovedStringKernel, CommWordStringKernel from shogun.Features import RealFeatures, Labels, StringCharFeatures, DNA, StringWordFeatures from shogun.Classifier import LibSVM from shogun.PreProc import SortWordString from shogun.Evaluation import PerformanceMeasures class EasySVM(object): """A wrapper around shogun SVM objects like the kernel, features ...""" def __init__(self, kparam = {}, kernel_file = None): "Initialize with default parameters (None)" self.kparam = kparam self.kernel = None if kernel_file is not None: self.setKernel(kernel_file) def getKernel(self, kernel_file = None): "Writes the kernel to a file" return pickle.dump(self.kernel, kernel_file) def setKernel(self, kernel_file): "Load a kernel from a file" self.kernel = pickle.load(kernel_file) def getKernelName(self): "Return the kernel parameter \'Kernel name\'" return self.kparam['name'] def setKernelName(self, name): "Set the kernel name/type" self.kparam['name'] = name def getKernelParameter(self, parameter_name = None): """Returns any of the following kernel parameters: kernelname, width, modelsel_name, modelsel_params, degree, scale, inhomogene, normal shift, seqlength, indeg, outdeg, C, poimdegree, ... """ if parameter_name is None: return self.kparam else: return self.kparam[parameter_name] def setKernelParameter(self, parameter_name = None, parameter_value = None): """Set an arbitrary kernel parameter, or set the whole kparam dictionary if parameter_name is empty""" if parameter_name is None and parameter_value is not None: self.kparam = parameter_value elif parameter_name is not None: self.kparam[parameter_name] = parameter_value def parseKernelParameters(self, parameter_string, model_selection = False): """Parse the arguments for a particular kernel""" parameters = parameter_string.split(" ") kernelname = parameters[0] self.kparam = {} self.kparam["name"] = kernelname self.kparam["modelsel_name"] = None self.kparam["modelsel_params"] = None if kernelname == 'gauss': if len(parameters) < 2: raise ValueError('Not enough arguments for a Gauss-type kernel.\nUsage: gauss <width>\n') if model_selection: self.kparam['width'] = None self.kparam["modelsel_name"] = "width" self.kparam["modelsel_params"] = parseFloatList(parameters[1]) else: self.kparam['width'] = float(parameters[1]) elif kernelname == 'linear': self.kparam['scale'] = 1 # no parameters elif kernelname == 'poly': if len(parameters) < 4: raise ValueError('Not enough arguments for a polynomial kernel.\nUsage: poly <degree> <true|false> <true|false>\n') if model_selection: self.kparam['degree'] = None self.kparam["modelsel_name"] = "degree" self.kparam["modelsel_params"] = parseIntList(parameters[1]) else: self.kparam['degree'] = int(parameters[1]) self.kparam['inhomogene'] = (parameters[2] == 'true') self.kparam['normal'] = (parameters[3] == 'true') elif kernelname == 'wd': if len(parameters) < 3: raise ValueError('Not enough arguments for a WD kernel.\nUsage: wd <degree> <shift>\n') if model_selection: self.kparam['degree'] = None self.kparam["modelsel_name"] = "degree" self.kparam["modelsel_params"] = parseIntList(parameters[1]) else: self.kparam['degree'] = int(parameters[1]) if model_selection and len(self.kparam["modelsel_params"]) == 1: self.kparam['degree'] = self.kparam["modelsel_params"][0] self.kparam['shift'] = None self.kparam["modelsel_name"] = "shift" self.kparam["modelsel_params"] = parseIntList(parameters[2]) else: self.kparam['shift'] = int(parameters[2]) elif kernelname == 'spec': if len(parameters) < 2: raise ValueError('Not enough arguments for a Spectrum kernel.\nUsage: spec <degree>\n') if model_selection: self.kparam['degree'] = None self.kparam["modelsel_name"] = "degree" self.kparam["modelsel_params"] = parseIntList(parameters[1]) else: self.kparam['degree'] = int(parameters[1]) elif kernelname == 'localalign': # no parameters pass elif kernelname == 'localimprove': if len(parameters) < 4: raise ValueError('Not enough arguments for a localimprove kernel.\nUsage: localimprove <length> <indegree> <outdegree>\n') self.kparam['length'] = int(parameters[1]) if model_selection: self.kparam['width'] = None self.kparam["modelsel_name"] = "indeg" self.kparam["modelsel_params"] = parseIntList(parameters[2]) else: self.kparam['indeg'] = int(parameters[2]) self.kparam['outdeg'] = int(parameters[3]) else: raise ValueError('Unknown kernel name \"' + kernelname + '\" in the parameter_string\n') def setC(self, C): "Set the oft-used kernel parameter C" self.setKernelParameter('C', C) def getC(self): "Return the current value for kernel parameter C" return self.getKernelParameter('C') def createFeatures(self, examples): """Converts numpy arrays or sequences into shogun features""" if self.kparam['name'] == 'gauss' or self.kparam['name'] == 'linear' or self.kparam['name'] == 'poly': examples = numpy.array(examples) feats = RealFeatures(examples) elif self.kparam['name'] == 'wd' or self.kparam['name'] == 'localalign' or self.kparam['name'] == 'localimprove': #examples = non_atcg_convert(examples, nuc_con) feats = StringCharFeatures(examples, DNA) elif self.kparam['name'] == 'spec': #examples = non_atcg_convert(examples, nuc_con) feats = StringCharFeatures(examples, DNA) wf = StringUlongFeatures( feats.get_alphabet() ) wf.obtain_from_char(feats, kparam['degree']-1, kparam['degree'], 0, kname=='cumspec') del feats if train_mode: preproc = SortUlongString() preproc.init(wf) wf.add_preproc(preproc) ret = wf.apply_preproc() feats = wf else: print 'Unknown kernel %s' % self.kparam['name'] raise ValueError return feats def createKernel(self, feats_train): """Call the corresponding constructor for the kernel""" if self.kparam['name'] == 'gauss': kernel = GaussianKernel(feats_train, feats_train, self.kparam['width']) elif self.kparam['name'] == 'linear': kernel = LinearKernel(feats_train, feats_train, self.kparam['scale']) elif self.kparam['name'] == 'poly': kernel = PolyKernel(feats_train, feats_train, self.kparam['degree'], self.kparam['inhomogene'], self.kparam['normal']) elif self.kparam['name'] == 'wd': kernel = WeightedDegreePositionStringKernel(feats_train, feats_train, self.kparam['degree']) kernel.set_shifts(self.kparam['shift'] * numpy.ones(self.kparam['seqlength'], dtype=numpy.int32)) elif self.kparam['name'] == 'spec': kernel = CommWordStringKernel(feats_train, feats_train) elif self.kparam['name'] == 'localalign': kernel = LocalAlignmentStringKernel(feats_train, feats_train) elif self.kparam['name'] == 'localimprove': kernel = LocalityImprovedStringKernel(feats_train, feats_train, self.kparam['length'], \ self.kparam['indeg'], self.kparam['outdeg']) else: print 'Unknown kernel %s' % self.kparam['name'] raise ValueError self.kernel = kernel return kernel def __str__(self): """Generates a short string describing the model parameters""" if self.kparam["modelsel_name"] is None or len(self.kparam["modelsel_params"]) == 1: string = "\tC=%1.1f" % self.kparam['C'] else: string = "\tC=%1.1f\t%s=%i" % (self.kparam['C'], self.kparam["modelsel_name"]) return string def model2str(self, C, kp): """Generates a string describing the model parameters""" if self.kparam["modelsel_name"] == None or len(self.kparam["modelsel_params"]) == 1: string = "\tC=%1.1f" % C else: if type(kp) == type(int(0)): string = "\tC=%1.1f\t%s=%i" % (C, self.kparam["modelsel_name"], kp) else: string = "\tC=%1.1f\t%s=%1.2f" % (C, self.kparam["modelsel_name"], kp) return string def train(self, trainexamples, trainlabels): """Trains a SVM with the given kernel""" kernel_cache_size = 500 num_threads = 6 feats_train = self.createFeatures(trainexamples) if self.kparam['name'] == 'wd': self.kparam['seqlength'] = len(trainexamples[0]) self.createKernel(feats_train) self.kernel.io.disable_progress() self.kernel.set_cache_size(int(kernel_cache_size)) labels = Labels(numpy.array(trainlabels, numpy.double)) svm = LibSVM(self.getC(), self.kernel, labels) svm.parallel.set_num_threads(num_threads) svm.io.disable_progress() svm.train() return (svm, feats_train) def trainAndTest(self, trainexamples, trainlabels, testexamples): """Trains a SVM with the given kernel, and predict on the test examples""" (svm, feats_train) = self.train(trainexamples, trainlabels) #,C,kname,kparam) feats_test = self.createFeatures(testexamples) self.kernel.init(feats_train, feats_test) output = svm.classify().get_labels() return output def crossvalidation(self, all_examples, all_labels, xval = 5): """Perform cross validation using an SVM xval -- the number of folds """ print 'Using %i-fold crossvalidation' % xval partitions = getPartitionedSet(len(all_labels), xval) all_outputs = [0.0] * len(all_labels) all_split = [-1] * len(all_labels) for repetition in xrange(xval): XT, LT, XTE, LTE = getCurrentSplit(repetition, partitions, all_labels, all_examples) del LTE svmout = self.trainAndTest(XT, LT, XTE) for i in xrange(len(svmout)): all_outputs[partitions[repetition][i]] = svmout[i] all_split[partitions[repetition][i]] = repetition return (all_outputs, all_split) # ################################################################################ # main functions def crossvalidationSVM(self, xval, examples, labels): """A top level member function to run cross validation""" # run cross-validation (all_outputs, all_split) = self.crossvalidation(xval, examples, labels) res_str = '#example\toutput\tsplit\n' for ix in xrange(len(all_outputs)): res_str += '%d\t%2.7f\t%d\n' % (ix, all_outputs[ix], all_split[ix]) return res_str def modelSelectionSVM(self, xval, examples, labels, Crange): """A top level member function to run model selection""" # run cross-validation mean_rocs = [] mean_prcs = [] mean_accs = [] all_Cs = [] all_kparam = [] if self.kparam["modelsel_name"] == None: for C in Crange: self.setC(C) (all_outputs, all_split) = self.crossvalidation(xval, examples, labels) (res_str, mean_roc, mean_prc, mean_acc) = self.evaluate(all_outputs, all_split, labels) del res_str mean_rocs.append(mean_roc) mean_prcs.append(mean_prc) mean_accs.append(mean_acc) all_Cs.append(C) all_kparam.append(None) else: # also optimize one kernel parameter for C in Crange: for kp in self.kparam["modelsel_params"]: self.kparam[self.kparam["modelsel_name"]] = kp self.setC(C) (all_outputs, all_split) = self.crossvalidation(xval, examples, labels) (res_str, mean_roc, mean_prc, mean_acc) = self.evaluate(all_outputs, all_split, labels) del res_str mean_rocs.append(mean_roc) mean_prcs.append(mean_prc) mean_accs.append(mean_acc) all_Cs.append(C) all_kparam.append(kp) max_roc = numpy.max(numpy.array(mean_rocs)) max_prc = numpy.max(numpy.array(mean_prcs)) max_acc = numpy.max(numpy.array(mean_accs)) if self.kparam["modelsel_name"] == None or len(self.kparam["modelsel_params"]) == 1: detail_str = "\tC\tROC\tPRC\tAccuracy (at threshold 0)\n" else: detail_str = "\tC\t%s\tROC\tPRC\tAccuracy (at threshold 0)\n" % self.kparam["modelsel_name"] best_roc_str = '' best_prc_str = '' best_acc_str = '' for i in xrange(len(all_Cs)): # determine the best parameter combinations if mean_rocs[i] == max_roc: rocsym = '+' best_roc_str += self.model2str(all_Cs[i], all_kparam[i])+'\n' else: rocsym = ' ' if mean_prcs[i] == max_prc: prcsym = '+' best_prc_str += self.model2str(all_Cs[i], all_kparam[i])+'\n' else: prcsym = ' ' if mean_accs[i] == max_acc: accsym = '+' best_acc_str += self.model2str(all_Cs[i], all_kparam[i])+'\n' else: accsym = ' ' detail_str += self.model2str(all_Cs[i], all_kparam[i], False)+'\t' if self.kparam["modelsel_name"] == None or len(self.kparam["modelsel_params"]) == 1: detail_str += '%c%2.1f%%\t%c%2.1f%%\t%c%2.1f%%\n' % (rocsym, 100*mean_rocs[i], prcsym, 100*mean_prcs[i], accsym, 100*mean_accs[i]) else: detail_str += '%c%2.1f%%\t%c%2.1f%%\t%c%2.1f%%\n' % (rocsym, 100*mean_rocs[i], prcsym, 100*mean_prcs[i], accsym, 100*mean_accs[i]) detail_str = ('Best model(s) according to ROC measure:\n%s' % best_roc_str) + detail_str detail_str = ('\nBest model(s) according to PRC measure:\n%s' % best_prc_str) + detail_str detail_str = ('\nBest model(s) according to accuracy measure:\n%s' % best_acc_str) + detail_str detail_str = ('\nDetailed results:\n') + detail_str return detail_str def predictSVM(self, trainexamples, trainlabels, testexamples): """A top level script to parse input parameters and train and predict""" # run training and testing svmout = self.trainAndTest(trainexamples, trainlabels, testexamples) # write output file res_str = '#example\toutput\n' for ix in xrange(len(svmout)): res_str += str(ix) + '\t' + str(svmout[ix]) + '\n' return res_str def evaluateSVM(self, trainexamples, trainlabels, prediction_file, roc_or_prc = None): """A top level script to parse input parameters and evaluate""" (predictions, splitassignments) = parsePrediction(prediction_file) roc_fname = None prc_fname = None if roc_or_prc is not None: if roc_or_prc.startswith('roc'): roc_fname = roc_or_prc elif roc_or_prc.startswith('prc'): prc_fname = roc_or_prc # run training and testing (res_str, mean_roc, mean_prc, mean_acc) = evaluate(predictions, splitassignments, trainlabels, roc_fname, prc_fname) del mean_acc del mean_prc del mean_roc return res_str def poimSVM(self, examples, labels, poimfile): """A top level script to parse input parameters and plot poims""" # train svm and compute POIMs (svm, feats_train) = self.train(examples, labels) del feats_train (poim, max_poim, diff_poim, poim_totalmass) = computePOIMs(svm, self.kernel, self.kparam['poimdegree'], len(examples[0])) # plot poims plotPOIMs(poimfile, poim, max_poim, diff_poim, poim_totalmass, self.kparam['poimdegree'], len(examples[0])) # independent functions ............. def computePOIMs(svm, kernel, poimdegree, max_len): """For a trained SVM, compute Position Oligomer Importance Matrices""" distr = ones((max_len, 4))/4 kernel.prepare_POIM2(distr) kernel.compute_POIM2(poimdegree, svm) poim = kernel.get_POIM2() kernel.cleanup_POIM2() (poim, max_poim, diff_poim) = reshapeNormalizeContribs(poim, poimdegree, max_len) (poim_weightmass, poim_totalmass) = computeWeightMass(poim, poimdegree, max_len) del poim_weightmass poim_totalmass = poim_totalmass/numpy.sum(poim_totalmass) return (poim, max_poim, diff_poim, poim_totalmass) def computeWeightMass(C, maxOrder, seqLen): """POIM Function""" mass = numpy.zeros((maxOrder, seqLen), numpy.double) for i in xrange(0, maxOrder): mass[i, :] = sum(numpy.abs(C[i])) total = numpy.sum(mass) return (mass, total) def reshapeNormalizeContribs(C, maxOrder, seqLen): #, background): #opts = {}): """POIM Function""" alphabetSize = 4 Contribs = [] l = 0 for i in xrange(0, maxOrder): L = l + (alphabetSize**(i + 1)) * seqLen vec = C[l:L].copy() Contribs.append(vec.reshape(seqLen, alphabetSize**(i + 1) ).T) l = L assert(l == len(C)) maxContribs = numpy.zeros((maxOrder, seqLen), numpy.double) maxp_str = numpy.zeros((maxOrder, seqLen), numpy.int) for i in xrange(0, maxOrder): con = numpy.abs(Contribs[i]) maxContribs[i, :] = numpy.max(con, axis = 0) maxp_str[i, :] = numpy.argmax(con, axis = 0) diffmaxContribs = numpy.zeros((maxOrder, seqLen), numpy.double) for k in xrange(1, maxOrder ): numsy = 4**(k + 1) for l in xrange(0, seqLen-k): km = maxp_str[k, l] A = numpy.abs(Contribs[k - 1][numpy.floor(km/4), l]) B = numpy.abs(Contribs[k - 1][numpy.mod(km, numsy/4), l + 1]) correction = numpy.max([A, B]) diffmaxContribs[k, l] = maxContribs[k, l] - correction return (Contribs, maxContribs, diffmaxContribs) def plotROC(output, LTE, draw_random = False, figure_fname = "", roc_label = 'ROC'): """Uses matplotlib to plot the area under the ROC curve into a supplied figure_fname file""" from matplotlib import use, font_manager use("Agg") # matplotlib save without display from pylab import figure, plot, xticks, yticks, xlabel, ylabel, legend, savefig, axis figure(1, dpi = 150, figsize = (4, 4)) pm = PerformanceMeasures(Labels(numpy.array(LTE)), Labels(numpy.array(output))) points = pm.get_ROC() points = numpy.array(points).T # for pylab.plot plot(points[0], points[1], 'b-', label = roc_label) if draw_random: plot([0, 1], [0, 1], 'r-', label = 'random guessing') axis([0, 1, 0, 1]) ticks = numpy.arange(0., 1., .1, dtype = numpy.float64) xticks(ticks, size = 10) yticks(ticks, size = 10) xlabel('1 - specificity (false positive rate)', size = 10) ylabel('sensitivity (true positive rate)', size = 10) legend(loc = 'lower right', prop = font_manager.FontProperties('tiny')) if figure_fname != None: warnings.filterwarnings('ignore', 'Could not match*') tempfname = figure_fname + '.png' savefig(tempfname) shutil.move(tempfname, figure_fname) auROC = pm.get_auROC() return auROC def plotPRC(output, LTE, figure_fname = "", prc_label = 'PRC'): """Plots a precision recall curve into the supplied figure_fname file""" from matplotlib import use use("Agg") # matplotlib save without display from pylab import figure, plot, axis, xticks, yticks, ylabel, xlabel, legend, savefig figure(2, dpi = 150, figsize = (4, 4)) pm = PerformanceMeasures(Labels(numpy.array(LTE)), Labels(numpy.array(output))) points = pm.get_PRC() points = numpy.array(points).T # for pylab.plot plot(points[0], points[1], 'b-', label = prc_label) axis([0, 1, 0, 1]) ticks = numpy.arange(0., 1., .1, dtype = numpy.float64) xticks(ticks, size = 10) yticks(ticks, size = 10) xlabel('sensitivity (true positive rate)', size = 10) ylabel('precision (1 - false discovery rate)', size = 10) legend(loc = 'lower right') if figure_fname != None: warnings.filterwarnings('ignore', 'Could not match*') tempfname = figure_fname + '.png' savefig(tempfname) shutil.move(tempfname, figure_fname) auPRC = pm.get_auPRC() return auPRC def weblogoPOIM(logofile, poim, max_len): """instead of plotting the POIM heatmap, create a weblogo from the 1st-degree poim""" warnings.filterwarnings('ignore', ' This call to matplotlib.use()*') from corebio.data import rna_letters, dna_letters, amino_acid_letters from weblogolib import LogoData, LogoOptions, LogoFormat, classic, png_print_formatter #print "WEBLOGO!" #print "Writing ", logofile #print poim[0] positive_logo = [] negative_logo = [] for i in xrange(len(poim[0])): positive_logo.append([]) negative_logo.append([]) for j in xrange(len(poim[0][i])): if poim[0][i][j] < 0: positive_logo[i].append(0) negative_logo[i].append(poim[0][i][j] * -10000) else: negative_logo[i].append(0) positive_logo[i].append(poim[0][i][j] * 1000) #print "Positive logo: ", positive_logo #print "Negative logo: ", negative_logo pos_data = LogoData.from_counts('ACGT', numpy.array(positive_logo).T, None) neg_data = LogoData.from_counts("ACGT", numpy.array(negative_logo).T, None) neg_opt = LogoOptions() neg_opt.fineprint += " from KIRMES POIM data" #logoopt.number_interval = 5 neg_opt.small_fontsize = 4 neg_opt.title_fontsize = 8 neg_opt.scale_width = False title = os.path.split(logofile)[1] title = title[:title.rfind(".")] if "_" in title: title = title[title.rfind("_") + 1:] neg_opt.logo_title = title + " Negative Logo" neg_format = LogoFormat(neg_data, neg_opt) pos_opt = LogoOptions() #pos_opt.show_ends = True pos_opt.scale_width = False pos_opt.logo_title = title + " Positive Sequence Logo" pos_opt.show_fineprint = False pos_opt.color_scheme = classic pos_format = LogoFormat(pos_data, pos_opt) neg_logo = open(logofile + "n.png", 'w') png_print_formatter(neg_data, neg_format, neg_logo) neg_logo.close() pos_logo = open(logofile + "p.png", 'w') png_print_formatter(pos_data, pos_format, pos_logo) pos_logo.close() concatPNG(logofile, (logofile + "p.png", logofile + "n.png")) os.remove(logofile + "n.png") os.remove(logofile + "p.png") def concatPNG(outfilename, infilenames): """Vertically concatenates a list of PNG files and writes them to outfilename. This function uses the width of the first image supplied as""" from PIL import Image total_height = 0 infiles = [] total_imgs = 0 for infilename in infilenames: try: infiles.append(Image.open(infilename)) except: print "Error loading image " + infilename raise total_height += infiles[total_imgs].size[1] total_imgs += 1 im = Image.new("RGB", (infiles[0].size[0], total_height)) insert_at = 0 for i in range(total_imgs): im.paste(infiles[i], (0, insert_at)) insert_at += infiles[i].size[1] im.save(outfilename) def plotPOIMs(poimfile, poim, max_poim, diff_poim, poim_totalmass, poimdegree, max_len): """Plot a summary of the information in poims""" warnings.filterwarnings('ignore', 'Module pytz was already imported*') warnings.filterwarnings('ignore', ' This call to matplotlib.use()*') from matplotlib import use use("Agg") # matplotlib save without display from pylab import figure, savefig, subplot, title, pcolor, colorbar, yticks, ylabel from pylab import axis, plot, xlabel, xticks, subplots_adjust, clf #import matplotlib figure(3, dpi = 150, figsize = (8, 3.5)) # summary figures fontdict = dict(family = "cursive", weight = "bold", size = 12, y = 1.05) #subplot(3, 2, 1) #title('Total POIM Mass', fontdict) #plot(poim_totalmass) #ylabel('weight mass', size = 5) #colorbar() subplot(1, 2, 1) title('POIMs', fontdict) pcolor(max_poim, shading = 'flat') subplots_adjust(wspace = 0.3) colorbar() #subplot(3, 2, 5) #title('Differential POIMs', fontdict) #pcolor(diff_poim, shading = 'flat') #for plot in [3, 5]: # subplot(3, 2, 3) ticks = numpy.arange(1., poimdegree + 1, 1, dtype = numpy.float64) ticks_str = [] for i in xrange(0, poimdegree): ticks_str.append("%i" % (i + 1)) ticks[i] = i + 0.5 yticks(ticks, ticks_str) ylabel('degree', size = 9) # per k-mer figures fontdict = dict(family = "cursive", weight = "bold", size = 12, y = 1.04) # 1-mers #subplot(3, 2, 2) #title('1-mer Positional Importance', fontdict) #pcolor(poim[0], shading = 'flat') #ticks_str = ['A', 'C', 'G', 'T'] #ticks = [0.5, 1.5, 2.5, 3.5] #yticks(ticks, ticks_str, size = 5) #axis([0, max_len, 0, 4]) # 2-mers subplot(1, 2, 2) title('2-mer Positional Importance', fontdict) pcolor(poim[1], shading = 'flat') i = 0 ticks = [] ticks_str = [] for l1 in ['A', 'C', 'G', 'T']: for l2 in ['A', 'C', 'G', 'T']: ticks_str.append(l1 + l2) ticks.append(0.5 + i) i += 1 yticks(ticks, ticks_str, fontsize = 9) axis([0, max_len, 0, 16]) # 3-mers #subplot(3, 2, 6) #title('3-mer Positional Importance', fontdict) #if poimdegree > 2: # pcolor(poim[2], shading = 'flat') # i = 0 # ticks = [] # ticks_str = [] # for l1 in ['A', 'C', 'G', 'T']: # for l2 in ['A', 'C', 'G', 'T']: # for l3 in ['A', 'C', 'G', 'T']: # if numpy.mod(i, 4) == 0: # ticks_str.append(l1 + l2 + l3) # ticks.append(0.5 + i) # i += 1 # yticks(ticks, ticks_str, fontsize = 5) # axis([0, max_len, 0, 64]) # x-axis on last two figures #for plot in [5, 6]: # subplot(3, 2, plot) xlabel('sequence position', size = 9) # finishing up for plot in xrange(1, 3): # 6): subplot(1, 2, plot) xticks(fontsize = 9) for plot in [1]: #, 3, 5]: subplot(1, 2, plot) yticks(fontsize = 9) # write to file warnings.filterwarnings('ignore', 'Could not match*') #savefig('/tmp/temppylabfig.png') savefig(poimfile) clf() def getPartitionedSet(total, crossval_repeat): """Partitions a number of samples into crossvalidation bins""" size = int(total / crossval_repeat) mod = total % crossval_repeat splits = [] for i in range(0, crossval_repeat): if i < mod: splits.append(size + 1) else: splits.append(size) random.seed() ipartition = random.sample(xrange(0, total), total) # random sampling index = 0 partitions = [] for size in splits: partitions.append(ipartition[index:index + size]) index += size return partitions def getCurrentSplit(repetition, partitions, labels, seqs): """Returns the correct features & labels for this partition for this repetition""" X = []; Y = []; XT = []; YT = [] for i in range(0, len(partitions)): if type(seqs) == type(list([])): for j in range(0, len(partitions[i])): if repetition != i: X.append(seqs[partitions[i][j]]) Y.append(labels[partitions[i][j]]) else: XT.append(seqs[partitions[i][j]]) YT.append(labels[partitions[i][j]]) else: if repetition != i: if len(X) == 0: X = seqs.take(partitions[i], axis = 1) Y = labels.take(partitions[i]) else: X = numpy.concatenate((X, seqs.take(partitions[i], axis = 1)), axis = 1) Y = numpy.concatenate((Y, labels.take(partitions[i]))) else: XT = seqs.take(partitions[i], axis = 1) YT = labels.take(partitions[i]) return X, Y, XT, YT def saveSVM(pickle_filename, svm, kernel): """Pickles a Shogun SVM object to a file by saving its settings""" from cPickle import Pickler pickle_file = open(pickle_filename, 'wb') pck = Pickler(pickle_file) pck.dump((__version__, \ svm.get_num_support_vectors(), \ kernel.get_name(), \ svm.get_bias(), \ svm.get_alphas(), \ svm.get_support_vectors())) pickle_file.close() def loadSVM(pickled_svm_filename, C, labels): """Loads a Shogun SVM object which was pickled by saveSVM""" from cPickle import Unpickler, PickleError from shogun.Kernel import CombinedKernel pickle_file = open(pickled_svm_filename, 'rb') unpck = Unpickler(pickle_file) (version, num_sv, name, bias, alphas, svs) = unpck.load() if (version == __version__): svm = LibSVM(num_sv) # same as .create_new_model(num_sv) svm.set_bias(bias) svm.set_alphas(alphas) svm.set_support_vectors(svs) kernel = CombinedKernel() #not sure if this is even required kernel.set_name(name) # maybe not required svm.set_kernel(kernel) else: print "File was pickled by another version of EasySVM.py or is not a kernel:" print "Received from ", pickled_svm_filename, ": ", version, " expected: ", __version__ raise PickleError return svm def confusionMatrix(labels_test, labels_predicted): """Calculates the complete confusion matrix from true/false positives/negatives""" if len(labels_test) != len(labels_predicted): return 0 TP = 0; FP = 0; TN = 0; FN = 0 for i in range(0, len(labels_test)): if labels_test[i] == 0 or labels_predicted[i] == 0: return 0 if labels_test[i] > 0: if labels_predicted[i] > 0: TP += 1 else: FN += 1 else: if labels_predicted[i] > 0: FP += 1 else: TN += 1 return (TP, TN, FP, FN) def accuracy(output, labels_test): """Calculates the accurracy from true/false positives/negatives""" TP, TN, FP, FN = confusionMatrix(labels_test, numpy.sign(output)) return float(TP + TN) / (TP + TN + FP + FN) def calcROC(output, LTE): """Uses shogun functions to calculate the area under the ROC curve""" pm = PerformanceMeasures(Labels(numpy.array(LTE)), Labels(numpy.array(output))) auROC = pm.get_auROC() return auROC def calcPRC(output, LTE): """Uses shogun functions to calculate the precision recall curve""" pm = PerformanceMeasures(Labels(numpy.array(LTE)), Labels(numpy.array(output))) auPRC = pm.get_auPRC() return auPRC def parseRange(string): """Parses a dash-separated string of ints into a tuple""" splitarray = string.split("-") if len(splitarray) == 1: return (int(splitarray[0]), int(splitarray[0])) if len(splitarray) == 2: return (int(splitarray[0]), int(splitarray[1])) raise ValueError("Cannot parse range " + string) def parseFloatList(string): """Parses a comma-separated string of floats into a list""" splitarray = string.split(",") float_list = [] for elem in splitarray: float_list.append(float(elem)) return float_list def parseIntList(string): """Parses a comma-separated string of ints into a list""" splitarray = string.split(",") int_list = [] for elem in splitarray: int_list.append(int(elem)) return int_list def parsePrediction(prediction_file): """Returns the original output and split assignments of a prediction run, from a prediction_file""" outputs = [] splitassignments = [] f = open(prediction_file) lines = f.readlines() num = 0 for line in lines: if len(line) > 0 and line[0] != '#': elems = line.split('\t') assert(len(elems) > 1) assert(int(elems[0]) == num) num += 1 if len(elems) == 2: outputs.append(float(elems[1])) else: assert(len(elems) == 3) outputs.append(float(elems[1])) splitassignments.append(float(elems[2])) f.close() if len(splitassignments) == 0: splitassignments = None return (outputs, splitassignments) def non_atcg_convert(seq, nuc_con): """ Converts Non ATCG characters from DNA sequence """ if nuc_con == '': sys.stderr.write("usage: Provide a choice for non ACGT nucleotide conversion [T|A|C|G|random] at last\n") sys.exit(-1) flag = 0 if len(nuc_con)>1: if nuc_con != 'random': flag = 1 else: if re.match(r'[^ATCG]', nuc_con, re.IGNORECASE): flag = 1 if flag == 1: sys.stderr.write("usage: Conversion nucleotide choice -"+ nuc_con +"- failed. pick from [T|A|C|G|random]\n") sys.exit(-1) nuc_con = nuc_con.upper() mod_seq = [] for i in range(len(seq)): if re.search(r'[^ACTG]', seq[i], re.IGNORECASE): if nuc_con == 'RANDOM': nucleotide = 'ATCG' line = '' for single_nuc in seq[i]: if re.match(r'[^ACGT]', single_nuc, re.IGNORECASE): single = random.choice(nucleotide) line += single else: single_nuc = single_nuc.upper() line += single_nuc mod_seq.append(line) else: seq[i] = re.sub(r'[^ATCG|actg]', nuc_con, seq[i]) seq[i] = seq[i].upper() mod_seq.append(seq[i]) else: seq[i] = seq[i].upper() mod_seq.append(seq[i]) return mod_seq def non_aminoacid_converter(seq, amino_con): """ Converts Non amino acid characters from protein sequence """ if amino_con == '': sys.stderr.write("usage: Provide a choice for replacing non amino acid characters\n") sys.exit(-1) flag = 0 if len(amino_con)>1: if amino_con != 'random': flag = 1 else: if re.match(r'[^GPAVLIMCFYWHKRQNEDST]', amino_con, re.IGNORECASE): flag = 1 if flag == 1: sys.stderr.write("usage: Replace aminoacid chioce -"+ amino_con +"- failed. Pick a valid aminoacid single letter code/random\n") sys.exit(-1) amino_con = amino_con.upper() opt_seq = [] for i in range(len(seq)): if re.search(r'[^GPAVLIMCFYWHKRQNEDST]', seq[i], re.IGNORECASE): if amino_con == 'RANDOM': aminoacid = 'GPAVLIMCFYWHKRQNEDST' line = '' for single_amino in seq[i]: if re.match(r'[^GPAVLIMCFYWHKRQNEDST]', single_amino, re.IGNORECASE): r_amino = random.choice(aminoacid) line += r_amino else: single_amino = single_amino.upper() line += single_amino opt_seq.append(line) else: seq[i] = re.sub(r'[^GPAVLIMCFYWHKRQNEDST|gpavlimcfywhkrqnedst]', amino_con, seq[i]) seq[i] = seq[i].upper() opt_seq.append(seq[i]) else: seq[i] = seq[i].upper() opt_seq.append(seq[i]) return opt_seq def evaluate(predictions, splitassignments, labels, roc_fname = None, prc_fname = None): """Evaluate prediction results""" res_str = "" xval = 1 if splitassignments != None: for split in splitassignments: if split + 1 > xval: xval = int(split + 1) if xval > 1: res_str = "Evaluating on %i examples in %i splits\n" % (len(labels), xval) else: res_str = "Evaluating on %i examples\n" % len(labels) output_splits = xval * [[]] label_splits = xval * [[]] for i in xrange(xval): label_splits[i] = [] output_splits[i] = [] for i in xrange(0, len(labels)): if xval > 1: split = int(splitassignments[i]) else: split = 0 output_splits[split].append(predictions[i]) label_splits[split].append(labels[i]) sum_accuracy = 0.0 sum_roc = 0.0 sum_prc = 0.0 for split in xrange(xval): if xval > 1: res_str += 'Split %d\n' % (split + 1) LTE = label_splits[split] svmout = output_splits[split] numpos = 0 for l in LTE: if l == 1: numpos += 1 istwoclass = numpos > 0 and numpos < len(LTE) if xval > 1: res_str += ' number of positive examples = %i\n' % numpos if xval > 1: res_str += ' number of negative examples = %i\n' % (len(LTE)-numpos) if istwoclass: auROC = calcROC(svmout, LTE) if xval > 1: res_str += ' Area under ROC curve = %2.1f %%\n' % (100.0 * auROC) sum_roc += auROC if roc_fname != None: if split != xval - 1: plotROC(svmout, LTE, split == xval - 1, None, "ROC curve of SVM, split %i" % (split + 1)) else: plotROC(svmout, LTE, split == xval - 1, roc_fname, "ROC curve of SVM, split %i" % (split + 1)) auPRC = calcPRC(svmout, LTE) if xval > 1: res_str += ' Area under PRC curve = %2.1f %%\n' % (100.0 * auPRC) sum_prc += auPRC if prc_fname != None: if split != xval - 1: plotPRC(svmout, LTE, None, "PRC curve of SVM, split %i" % (split + 1)) else: plotPRC(svmout, LTE, prc_fname, "PRC curve of SVM, split %i" % (split + 1)) acc = accuracy(svmout, LTE) if xval > 1: res_str += ' accuracy (at threshold 0) = %2.1f %% \n' % (100.0 * acc) sum_accuracy += acc numpos = 0 for l in labels: if l == 1: numpos += 1 mean_roc = sum_roc/xval mean_prc = sum_prc/xval mean_acc = sum_accuracy/xval res_str += 'Averages\n' res_str += ' number of positive examples = %i\n' % round(numpos/xval) res_str += ' number of negative examples = %i\n' % round((len(labels) - numpos)/xval) res_str += ' Area under ROC curve = %2.1f %%\n' % (100.0 * mean_roc) res_str += ' Area under PRC curve = %2.1f %%\n' % (100.0 * mean_prc) res_str += ' accuracy (at threshold 0) = %2.1f %% \n' % (100.0 * mean_acc) return (res_str, mean_roc, mean_prc, mean_acc)
bsd-3-clause
snfactory/extract-star
scripts/extract_z.py
1
23465
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################## ## Filename: extract_z.py ## Version: $Revision$ ## Description: Extract redshift from galaxy spectrum ## Author: $Author$ ## $Id$ ############################################################################## """Extract redshift on galaxy spectrum from [OII] or Halpha/[NII].""" __version__ = "$Id$" __author__ = "Y. Copin <[email protected]>" import numpy as N import pyfits from pySnurp import Spectrum from pySNIFS import spectrum as SNIFS_spectrum from pySNIFS import SNIFS_cube import pySNIFS_fit from ToolBox.MPL import errorband from matplotlib.mlab import prctile CLIGHT = 299792.458 # km/s def find_max(lbda, flux, lrange): """Look for lbda of maximum flux within wavelength range lrange.""" lmin,lmax = lrange g = (lmin<=lbda) & (lbda<=lmax) if not lbda[g].any(): raise ValueError("Reasearch range %.2f-%.2f incompatible with " "wavelength domaine %.2f-%.2f" % (lmin,lmax,lbda[0],lbda[-1])) return lbda[g][flux[g].argmax()] class PolyBackground: """Polynomial background.""" name = "PolyBackground" def __init__(self, params, cube): self.deg,self.lmin,self.lmax = params self.npar_ind = 0 self.npar_cor = int(self.deg+1) self.npar = self.npar_ind*cube.nslice + self.npar_cor self.l = N.reshape(cube.lbda,cube.data.shape) self.x = (2*self.l - (self.lmin+self.lmax))/(self.lmax - self.lmin) self.parnames = [ 'b%d' % i for i in range(self.npar_cor) ] def __str__(self): return "Polynomial background [deg=%d]" % self.deg def comp(self, param): self.param = param # val = a0 + a1*x + a2*x**2 + ... val = self.param[-1] for par in self.param[-2::-1]: val = val*self.x + par return val def deriv(self, param): self.param = param # val = a0 + a1*x + a2*x**2 + ... grad = N.zeros((self.npar_cor,)+self.l.shape,'d') for i in range(self.npar_cor): grad[i] = self.x**i return grad class AbstractLineSingle: """Simple 1-gaussian emission line ABSTRACT class (without resorting to Python ABC).""" name = "" # Descriptive name l0 = None # Emission line wavelength (std air) parnames = ['1+z','sigma','intensity'] def __init__(self, cube): if self.l0 is None or not self.name: raise TypeError("'%s' should not be instanciated directly" % self.__class__.__name__) self.npar_ind = 0 self.npar_cor = len(self.parnames) # 1+z,sigma,I self.npar = self.npar_ind*cube.nslice + self.npar_cor self.l = N.reshape(cube.lbda,cube.data.shape) def __str__(self): return self.name def comp(self, param): self.param = zp1,sig,i = param return i * N.exp(-0.5*( (self.l - self.l0*zp1)/sig )**2) def deriv(self, param): self.param = zp1,sig,i = param d = (self.l - self.l0*zp1) / sig g = N.exp(-0.5*d**2) grad = N.zeros((self.npar_cor,)+self.l.shape,'d') grad[0] = i*g*self.l0*d/sig # dval/dzp1 grad[1] = i*g*d**2/sig # dval/dsig grad[2] = g # dval/di return grad def SingleLineFactory(name, l0): """Generate a class derived from abstract class EmissionLineSingle.""" class Line(AbstractLineSingle): pass Line.name = name # Descriptive name Line.l0 = float(l0) # Emission line wavelength return Line class LinesOII: """[OII] doublet is described by 2 independant gaussians""" name = "[OII] doublet" l1 = 3726.03 # [OII] doublet l2 = 3728.73 parnames = ['1+z','sigma','[OII]1','[OII]2'] def __init__(self, cube): self.npar_ind = 0 self.npar_cor = len(self.parnames) # 1+z,sigma,I1,I2 self.npar = self.npar_ind*cube.nslice + self.npar_cor self.l = N.reshape(cube.lbda,cube.data.shape) def __str__(self): return "[OII] doublet" def comp(self, param): self.param = zp1,sig,i1,i2 = param val = i1 * N.exp(-0.5*( (self.l - self.l1*zp1)/sig )**2) + \ i2 * N.exp(-0.5*( (self.l - self.l2*zp1)/sig )**2) return val def deriv(self, param): self.param = zp1,sig,i1,i2 = param d1 = (self.l - self.l1*zp1) / sig d2 = (self.l - self.l2*zp1) / sig g1 = N.exp(-0.5*d1**2) g2 = N.exp(-0.5*d2**2) # val = i1*g1(zp1,sig) + i2*g2(zp1,sig) grad = N.zeros((self.npar_cor,)+self.l.shape,'d') grad[0] = i1*g1*self.l1*d1/sig + i2*g2*self.l2*d2/sig # dval/dzp1 grad[1] = i1*g1*d1**2/sig + i2*g2*d2**2/sig # dval/dsig grad[2] = g1 # dval/di1 grad[3] = g2 # dval/di2 return grad class LinesNIIHa: """[NII],Halpha complex is described by 1 gaussian for Ha + 2 correlated gaussians for [NII].""" name = "[NII]+Ha complex" lHa = 6562.80 # Halpha lNII1 = 6547.96 # [NII]1 lNII2 = 6583.34 # [NII]2 rNII = 0.340 # i[NII]1/i[NII]2 parnames = ['1+z','sigma','Halpha','[NII]'] def __init__(self, cube): self.npar_ind = 0 self.npar_cor = len(self.parnames) # 1+z,sigma,I(Ha),I([NII]) self.npar = self.npar_ind*cube.nslice + self.npar_cor self.l = N.reshape(cube.lbda,cube.data.shape) def __str__(self): return "[NII],Ha complex" def comp(self, param): """Halpha(G1) + [NII](G2,G3)""" self.param = zp1,sig,iH,iN = param val = iH*N.exp(-0.5*( (self.l - self.lHa*zp1)/sig )**2) # Halpha val+= ( N.exp(-0.5*( (self.l - self.lNII1*zp1)/sig )**2) * self.rNII + N.exp(-0.5*( (self.l - self.lNII2*zp1)/sig )**2) ) * iN # [NII] return val def deriv(self, param): self.param = zp1,sig,iH,iN = param dH = (self.l - self.lHa*zp1) / sig d1 = (self.l - self.lNII1*zp1) / sig d2 = (self.l - self.lNII2*zp1) / sig gH = N.exp(-0.5*dH**2) g1 = N.exp(-0.5*d1**2) g2 = N.exp(-0.5*d2**2) # val = iH*gH(zp1,sig) + iN*(r*g1(zp1,sig) + g2(zp1,sig)) grad = N.zeros((self.npar_cor,)+self.l.shape,'d') grad[0] = iH * gH * self.lHa*dH/sig + \ iN * ( g1 * self.lNII1*d1/sig * self.rNII + g2 * self.lNII2*d2/sig ) # dval/dzp1 grad[1] = iH * gH * dH**2/sig + \ iN * ( g1 * d1**2/sig * self.rNII + g2 * d2**2/sig ) # dval/dsig grad[2] = gH # dval/diH grad[3] = g1*self.rNII + g2 # dval/diN return grad def flux(self, par, cov=None): """Flux (and error) of Halpha line.""" # par: 0:1+z, 1:sigma, 2:Halpha, 3:[NII] f = N.sqrt(2*N.pi)*par[1] * (par[2] + par[3]*(1+self.rNII)) if cov is not None: # Compute jacobian of f j = N.empty(3, dtype='d') j[0] = (par[2] + par[3]*(1+self.rNII)) j[1] = par[1] j[2] = par[1] * (1+self.rNII) j *= N.sqrt(2*N.pi) c = cov[1:4,1:4] # Select proper submatrix df = N.sqrt(N.dot(j, N.dot(c,j))) return f,df else: return f def addRedshiftedLines(ax, z): lines = [('[OII]', (3726.03,3728.73)), ('[NeIII]', (3868.69,)), ('He', (3970.07,)), ('Hd', (4101.73,)), ('Hg', (4340.46,)), ('[OIII]', (4363.15,)), ('HeII', (4685.74,)), ('Hb', (4861.32,)), ('[OIII]', (4958.83,5006.77)), ('[NI]', (5197.90,5200.39)), ('[OI]', (5577.34,6300.20,)), ('[NII]', (6547.96,6583.34)), ('Ha', (6562.80,)), ('[SII]', (6716.31,6730.68))] lmin,lmax = ax.get_xlim() ymin,ymax = ax.get_ylim() y0 = ymax - (ymax-ymin)/5 for name,lbdas in lines: for i,l in enumerate(lbdas): l *= (1+z) if not lmin<l<lmax: continue ax.axvline(l, ymin=0.2,ymax=0.7, c='0.7', label='_', zorder=1) if i==0: ax.text(l,y0,name, size='x-small', horizontalalignment='center', verticalalignment='center', rotation='vertical') def plot_correlation_matrix(ax, corr, parnames=None): npar = len(corr) im = ax.imshow(N.absolute(corr), norm=P.matplotlib.colors.LogNorm(), origin='upper', extent=(-0.5,npar-0.5,-0.5,npar-0.5)) if parnames: assert len(parnames)==npar ax.set_xticks(range(npar)) # Set the nb of ticks ax.set_xticklabels(parnames, rotation=45, size='smaller') ax.set_yticks(range(npar)) ax.set_yticklabels(parnames[::-1], rotation=45, size='smaller') fig = ax.get_figure() cb = fig.colorbar(im, ax=ax, orientation='horizontal') cb.set_label("|Correlation matrix|") if __name__ == '__main__': import os import optparse usage = "usage: [PYSHOW=1] %prog [options] spec|cube.fits" parser = optparse.OptionParser(usage, version=__version__) parser.add_option("-e", "--emissionline", dest='line', help="Emission line to be adjusted [%default]", default='auto') parser.add_option("-O", "--obsFrame", action='store_true', help="Adjust line in observer frame (not for redshift).", default=False) parser.add_option("-M", "--map", action='store_true', help="Generate spatial map (for cube input).", default=False) parser.add_option("-p", "--plot", action='store_true', help="Plot flag.") opts,args = parser.parse_args() if len(args) != 1: parser.error("No or too many arguments") else: specname = args[0] try: pspec = Spectrum(specname) print pspec isSpec = True step = pspec.step except KeyError: cube = SNIFS_cube(specname) print "Cube %s: %d spx, %d px [%.2f-%.2f]" % \ (specname, cube.nlens, cube.nslice, cube.lstart, cube.lend) isSpec = False step = cube.lstep if isSpec: # Input is a Spectrum lbda = pspec.x resSpec = pspec.y assert pspec.varname, "Input spectrum has no variance extension." resVar = pspec.v X = pspec.readKey('CHANNEL','X')[0].upper() # B or R obj = pspec.readKey('OBJECT', 'Unknown') filename = pspec.readKey('FILENAME', 'Unknown') flxunits = pspec.readKey('FLXUNITS', 'counts') else: # Input is a Cube lbda = cube.lbda resSpec = cube.data.mean(axis=1) # Mean spectrum resVar = N.sqrt(cube.var.sum(axis=1)/cube.nlens**2) X = cube.e3d_data_header.get('CHANNEL','X')[0].upper() # B or R obj = cube.e3d_data_header.get('OBJECT', 'Unknown') filename = cube.e3d_data_header.get('FILENAME', 'Unknown') flxunits = cube.e3d_data_header.get('FLXUNITS', 'counts') print "%s: %s" % (obj, filename) if opts.line=='auto': # Automatic redshift mode: use [OII] for B-channel, and # [NIIHa] for R-channel if X=='B': opts.line = 'OII' elif X=='R': opts.line = 'NIIHa' else: raise IOError("Unrecognized input channel") # Convert array to pySNIFS.spectrum on a restricted range if opts.line=='OII': l0 = find_max(lbda, resSpec, (3700,4200)) # OII from 1+z=1 to 1.13 lmin,lmax = l0-50,l0+50 print "Fit [OII] doublet around %.0f Å (%.0f Å window)" % (l0,100) elif opts.line=='NIIHa': l0 = find_max(lbda, resSpec, (6560,7400)) # Ha from 1+z=1 to 1.13 lmin,lmax = l0-100,l0+100 print "Fit [NII],Ha complex around %.0f Å (%.0f Å window)" % (l0,200) elif opts.line=='OI': Line = SingleLineFactory("night-sky line [OI]", 5577.34) l0 = find_max(lbda, resSpec, (Line.l0-50,Line.l0+50)) lmin,lmax = l0-50,l0+50 print "Fit %s around %.0f Å (%.0f Å window)" % (Line.name,l0,100) else: # Read 'name,l0' from option try: name,l0 = opts.line.split(',') l0 = float(l0) Line = SingleLineFactory(name, l0) l0 = find_max(lbda, resSpec, (Line.l0-50,Line.l0+50)) lmin,lmax = l0-50,l0+50 print "Fit %s around %.0f Å (%.0f Å window)" % (Line.name,l0,100) except ValueError: parser.error("Unknown line '%s' ('OII'|'NIIHa'|'OI'|'name,l0')" % \ opts.line) g = (lmin<=lbda) & (lbda<=lmax) x = lbda[g] bkg = N.median(resSpec[g]) norm = resSpec[g].max() - bkg y = (resSpec[g] - bkg) / norm v = resVar[g] / norm**2 sspec = SNIFS_spectrum(data=y, var=v, start=x[0], step=step) if opts.line=='OII': # [OII] doublet + background funcs = [ LinesOII.name, '%s;1,%f,%f' % (PolyBackground.name,lmin,lmax) ] # 1+z,sigma,I1,I2 + bkgnd(d=1) zp1 = x[resSpec[g].argmax()] / LinesOII.l2 params = [ [zp1, 3, 0.5, 0.5], [0, 0] ] bounds = [ [[1.0,1.13],[2,5],[0,1],[0,1]], [[None,None]]*2] # No constraints on background myfunc = {LinesOII.name: LinesOII, PolyBackground.name: PolyBackground} elif opts.line=='NIIHa': # [NII]+Halpha complex + background funcs = [ LinesNIIHa.name, '%s;1,%f,%f' % (PolyBackground.name,lmin,lmax) ] # 1+z,sigma,IHa,I[NII] + bkgnd(d=1) zp1 = x[resSpec[g].argmax()] / LinesNIIHa.lHa params = [ [zp1, 4, 1, 0.5], [0, 0] ] bounds = [ [[1.0,1.13],[2,5],[0.1,2],[0,1]], [[None,None]]*2] # No constraints on background myfunc = {LinesNIIHa.name: LinesNIIHa, PolyBackground.name: PolyBackground} else: # Single-gaussian emission line funcs = [ Line.name, '%s;1,%f,%f' % (PolyBackground.name,lmin,lmax) ] # 1+z,sigma,I + bkgnd(d=1) zp1 = x[resSpec[g].argmax()] / Line.l0 params = [ [zp1, 4, 1], [0, 0] ] bounds = [ [[0.95,1.05],[2,5],[0.1,2]], [[None,None]]*2] # No constraints on background myfunc = {Line.name: Line, PolyBackground.name: PolyBackground} # Actual fit model = pySNIFS_fit.model(data=sspec, func=funcs, param=params, bounds=bounds, myfunc=myfunc) parnames = [ model.func[i].parnames for i in range(len(funcs)) ] flatparnames = reduce(lambda x,y:x+y, parnames) print "Adjusted parameters:", parnames print "Initial guess:", params model.fit(save=True, msge=False) model.khi2 *= model.dof # True Chi2 print "Status: %d, Chi2/DoF: %.1f/%d" % \ (model.status, model.khi2, model.dof) # Quadratic errors, including correlations (tested against Minuit) hess = pySNIFS_fit.approx_deriv(model.objgrad, model.fitpar, order=3) cov = 2 * N.linalg.inv(hess) # Covariance matrix (for chi2-fit) diag = cov.diagonal() if (diag<0).any(): # Error in fit model.status = 1 dfitpar = N.sqrt(diag) corr = cov/N.outer(dfitpar,dfitpar) # Correlation matrix print "Adjusted parameters (including normalization):" for par,val,dval in zip(flatparnames, model.fitpar, dfitpar): print " %s = %f ± %f" % (par,val,dval) #print "Correlation matrix:" #print N.array2string(corr, 79, 3) # Detection level: flux(Ha) in units of sig(flux). func = model.func[0] if hasattr(func,'flux'): f,df = func.flux(model.fitpar[:func.npar_cor], cov=cov[:func.npar_cor,:func.npar_cor]) nsig = f/df print "Detection level: %.1f-sigma (flux: %f ± %f)" % (nsig, f, df) else: print "WARNING: %s has no flux method, " \ "cannot compute detection level" % func.name nsig = 0 if opts.obsFrame: print "%s@%.2f Å: " \ "obs: %.2f ± %.2f Å, offset: %.2f Å" % \ (Line.name, Line.l0, Line.l0*model.fitpar[0], Line.l0*dfitpar[0], Line.l0*(model.fitpar[0]-1)) zsys0 = zsys = 0 dzsys = 0 label=u"%s@%.2f Å = %.2f ± %.2f Å" % \ (Line.name, Line.l0, Line.l0*model.fitpar[0], Line.l0*dfitpar[0]) else: # Mean redshift zsys0 = model.fitpar[0] - 1 dzsys = dfitpar[0] #print "Estimated redshift: %f ± %f (%.1f ± %.1f km/s)" % \ # (zsys0,dzsys,zsys0*CLIGHT,dzsys*CLIGHT) # Barycentric correction: amount to add to an observed radial # velocity to correct it to the solar system barycenter v = pspec.get_skycalc('baryvcor') # Relative velocity [km/s] print "Barycentric correction: %f (%.1f ± 0.01 km/s)" % (v/CLIGHT,v) zsys = zsys0 + v/CLIGHT # Correction precision: 0.01 km/s dzsys = N.hypot(dzsys, 0.01/CLIGHT) print "Heliocentric redshift: %f ± %f (%.1f ± %.1f km/s)" % \ (zsys,dzsys,zsys*CLIGHT,dzsys*CLIGHT) label = u"z(Helio) = %.5f ± %.1g" % (zsys,dzsys) # Store results in input spectra (awkward way, but pySnurp is # too dumb...) if model.status==0 and isSpec: hdu = pyfits.open(specname, mode='update', ignore_missing_end=True) hdu[0].header.update('CVSEXTZ',__version__) hdu[0].header.update('EXTZ_Z',zsys, "extract_z heliocentric redshift") hdu[0].header.update('EXTZ_DZ',dzsys, "extract_z error on redshift") hdu[0].header.update('EXTZ_K2',model.khi2, "extract_z chi2") if nsig: hdu[0].header.update('EXTZ_NS',nsig, "extract_z detection level") hdu[0].header.update('EXTZ_L',funcs[0], "extract_z lines") hdu.close() if not isSpec and opts.map: ima = cube.slice2d([0,cube.nslice],'p') zmap = ima * N.nan # Redshift map # Use global fit result as initial guess params = model.unflat_param(model.fitpar) for ino,ii,ij in zip(cube.no,cube.i,cube.j): print "Spx #%03d at %+2dx%+2d:" % (ino,ii-7,ij-7), y = cube.spec(no=ino)[g] ibkg = N.median(y) inorm = y.max() - ibkg y = ( y - ibkg ) / inorm v = cube.spec(no=ino, var=True)[g] / inorm**2 ispec = SNIFS_spectrum(data=y, var=v, start=x[0], step=step) imodel = pySNIFS_fit.model(data=ispec, func=funcs, param=params, bounds=bounds, myfunc=myfunc) imodel.fit(msge=False, deriv=False) imodel.khi2 *= imodel.dof # True Chi2 #print " Fitpar:", imodel.fitpar z = imodel.fitpar[0] - 1 if opts.obsFrame: print "Chi2/DoF=%.1f/%d, offset=%+.2f A" % \ (imodel.khi2, imodel.dof, z*Line.l0) else: print "Chi2/DoF=%.1f/%d, v=%+.2f km/s" % \ (imodel.khi2, imodel.dof, (z-zsys0)*CLIGHT) zmap[ij,ii] = z if opts.plot or os.environ.has_key('PYSHOW'): import matplotlib.pyplot as P fig = P.figure(figsize=(12,5)) fig.subplots_adjust(left=0.075, right=0.95) title = "%s [%s]" % (obj, filename) fig.text(0.5,0.94, title, fontsize='large', horizontalalignment='center') ax1 = fig.add_subplot(1,2,1, xlabel=u'Wavelength [Å]', ylabel='Flux [%s]' % flxunits) ax2 = fig.add_subplot(1,4,3, xlabel=u'Wavelength [Å]') # Galaxy spectrum lgal, = ax1.plot(lbda, resSpec, 'g-', label=label) if model.status==0: #ax1.plot(x, model.evalfit()*norm + bkg, 'r-') addRedshiftedLines(ax1, zsys) ax1.legend(prop=dict(size='x-small')) ax1.set_xlim(lbda[0],lbda[-1]) ymin,ymax = ax1.get_ylim() ax1.set_ylim(min(0,ymin/10),ymax) # Zoom on adjusted line ax2.plot(x, resSpec[g], 'g-') errorband(ax2, x, resSpec[g], N.sqrt(resVar[g]), color='g', alpha=0.3) if model.status==0: ax2.plot(x, model.evalfit()*norm + bkg, 'r-') addRedshiftedLines(ax2, zsys) ax2.text(0.1,0.9, "Chi2/DoF=%.1f/%d\nDetection: %.1f sigma" % \ (model.khi2, model.dof, nsig), transform=ax2.transAxes, fontsize='small') else: ax2.plot(x, model.eval(model.flatparam)*norm + bkg, 'm-') ax2.set_xlim(x[0],x[-1]) # Correlation matrix if model.status==0: ax3 = fig.add_subplot(1,4,4) plot_correlation_matrix(ax3, corr, parnames=flatparnames) if not isSpec and opts.map: fig2 = P.figure(figsize=(6,6)) axv = fig2.add_subplot(1,1,1, title=title, xlabel='I [spx]', ylabel='J [spx]', aspect='equal') # Velocity map if opts.obsFrame: vmap = zmap*Line.l0 # Convert to wavelength offset label = u'Offset [Å]' else: vmap = (zmap - zsys0)*CLIGHT # Convert redshift to velocity label = 'Velocity [km/s]' vmin,vmax = prctile(vmap[N.isfinite(zmap)], p=(3,97)) imv = axv.imshow(vmap, vmin=vmin, vmax=vmax, extent=(-7.5,7.5,-7.5,7.5)) cbv = fig2.colorbar(imv, ax=axv, shrink=0.9) cbv.set_label(label) for ino,ii,ij in zip(cube.no,cube.i,cube.j): axv.text(ii-7,ij-7,str(ino), size='x-small', ha='center', va='center') if opts.plot: path,name = os.path.split(specname) figname = 'z_'+os.path.splitext(name)[0]+'.png' print "Saving emission-line figure in", figname fig.savefig(figname) if not isSpec and opts.map: figname = 'v_'+os.path.splitext(name)[0]+'.png' print "Saving velocity-map in", figname fig2.savefig(figname) if os.environ.has_key('PYSHOW'): P.show()
mit
feranick/GES_AT
GridEdgeAT/gridedgeat/fitMethods.py
1
9006
''' fitMethods.py ---------------- Classes for providing advanced fitting for the resultsWindow Copyright (C) 2017-2019 Nicola Ferralis <[email protected]> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ''' import numpy as np import pandas as pd import time, random, math from lmfit import Model from scipy import (special, interpolate) import sympy, scipy from datetime import datetime from PyQt5.QtWidgets import (QApplication,QAbstractItemView) from PyQt5.QtCore import (Qt,QObject, QThread, pyqtSlot, pyqtSignal) #################################################################### # Diode Equation #################################################################### class FitMethods(QThread): results = pyqtSignal(str) func = pyqtSignal(object) JV_fit = pyqtSignal(np.ndarray) def __init__(self, parent=None): super(FitMethods, self).__init__(parent) def __del__(self): self.wait() def stop(self): self.terminate() # fit using Diode Equation # From: https://github.com/mutovis/analysis-software def fitDE(self,JV): #def fitDE(self,cellEqn,JV): def cellEqn(V,n,Rs,Rsh,I0,Iph): ''' cellTemp = 29 #degC all analysis is done assuming the cell is at 29 degC T = 273.15 + cellTemp #cell temp in K K = 1.3806488e-23 #boltzman constant q = 1.60217657e-19 #electron charge thermalVoltage = K*T/q #thermal voltage ~26mv Vth = thermalVoltage #Vth = mpmath.convert(Vth) tol = 1e-15 ''' A = 0.0260372697199036 #this is Vth B = 38.4064846567063 # this is 1/Vth #return (Rs*(I0*Rsh + Iph*Rsh - V) - Vth*n*(Rs + Rsh)*special.lambertw(I0*Rs*Rsh*npexp((Rs*(I0*Rsh + Iph*Rsh - V)/(Rs + Rsh) + V)/(Vth*n))/(Vth*n*(Rs + Rsh)),tol=tol))/(Rs*(Rs + Rsh)) return (Rs*(I0*Rsh + Iph*Rsh - V) - A*n*(Rs + Rsh)*special.lambertw(B*I0*Rs*Rsh*np.exp(B*(Rs*(I0*Rsh + Iph*Rsh - V)/(Rs + Rsh) + V)/n)/(n*(Rs + Rsh))))/(Rs*(Rs + Rsh)) vv_f = JV[:,0] ii_f = JV[:,1] vv_r = JV[:,2] ii_r = JV[:,3] #cellEqn = self.setupEq() cellModel = Model(cellEqn,nan_policy='omit') cellModel.set_param_hint('n',value=1) cellModel.set_param_hint('Rs',value=6) cellModel.set_param_hint('Rsh',value=1e5) cellModel.set_param_hint('Iph',value=20e-3) cellModel.set_param_hint('I0',value=1e-9) try: fitResult_f = cellModel.fit(ii_f, V=vv_f) fitResult_r = cellModel.fit(ii_r, V=vv_r) except Exception as error: print('Caught this error: ' + repr(error)) return resultParams_f = fitResult_f.params resultParams_r = fitResult_r.params self.results.emit("\nForward scan: "+fitResult_f.message) self.results.emit(fitResult_f.fit_report()+"\n") self.results.emit("Backward scan: "+fitResult_r.message) self.results.emit(fitResult_r.fit_report()+"\n") ii_f_fit = cellEqn(vv_f, \ fitResult_f.best_values['n'], \ fitResult_f.best_values['Rs'], \ fitResult_f.best_values['Rsh'],\ fitResult_f.best_values['Iph'],\ fitResult_f.best_values['I0']).real ii_r_fit = cellEqn(vv_r, \ fitResult_r.best_values['n'], \ fitResult_r.best_values['Rs'], \ fitResult_r.best_values['Rsh'],\ fitResult_r.best_values['Iph'],\ fitResult_r.best_values['I0']).real JVnew_f = np.hstack((np.array([vv_f]).T,np.array([ii_f_fit]).T)) JVnew_r = np.hstack((np.array([vv_r]).T,np.array([ii_r_fit]).T)) JVnew = np.hstack((JVnew_f,JVnew_r)) self.JV_fit.emit(JVnew) # fit using scipy interpolate.interp1d def fitInterp(self,JV): vv_f = JV[:,0] ii_f = JV[:,1] vv_r = JV[:,2] ii_r = JV[:,3] f_f = interpolate.interp1d(vv_f,ii_f) f_r = interpolate.interp1d(vv_r,ii_r) JVnew_f = np.hstack((np.array([vv_f]).T,np.array([f_f(vv_f)]).T)) JVnew_r = np.hstack((np.array([vv_r]).T,np.array([f_r(vv_r)]).T)) JVnew = np.hstack((JVnew_f,JVnew_r)) self.JV_fit.emit(JVnew) ''' def getDEeq(self): self.results.emit("Solving calculation for the diode equation. Please wait...") modelSymbols = sympy.symbols('I0 Iph Rs Rsh n I V Vth', real=True, positive=True) I0, Iph, Rs, Rsh, n, I, V, Vth = modelSymbols modelConstants = (Vth,) modelVariables = tuple(set(modelSymbols)-set(modelConstants)) # calculate values for our model's constants now cellTemp = 29 #degC all analysis is done assuming the cell is at 29 degC T = 273.15 + cellTemp #cell temp in K K = 1.3806488e-23 #boltzman constant q = 1.60217657e-19 #electron charge thermalVoltage = K*T/q #thermal voltage ~26mv valuesForConstants = (thermalVoltage,) lhs = I rhs = Iph-((V+I*Rs)/Rsh)-I0*(sympy.exp((V+I*Rs)/(n*Vth))-1) electricalModel = sympy.Eq(lhs,rhs) #electricalModelVarsOnly= electricalModel.subs(zip(modelConstants,valuesForConstants)) symSolutionsNoSubs = {} # all the symbols preserved solveForThese = [I, I0, V, n] for symbol in solveForThese: symSolutionsNoSubs[str(symbol)] = sympy.solve(electricalModel,symbol)[0] Voc_eqn = symSolutionsNoSubs['V'].subs(I,0) # analytical solution for Voc Isc_eqn = symSolutionsNoSubs['I'].subs(V,0) # analytical solution for Isc PB = symSolutionsNoSubs['V']*I # analytical solution for power (current as independant variable) P_primeB = sympy.diff(PB,I) # first derivative of power (WRT I) symSolutions = {} symSolutions['Isc'] = Isc_eqn.subs(zip(modelConstants,valuesForConstants)) symSolutions['Voc'] = Voc_eqn.subs(zip(modelConstants,valuesForConstants)) symSolutions['P_prime'] = P_primeB.subs(zip(modelConstants,valuesForConstants)) symSolutions['I'] = symSolutionsNoSubs['I'].subs(zip(modelConstants,valuesForConstants)) symSolutions['I0'] = symSolutionsNoSubs['I0'].subs(zip(modelConstants,valuesForConstants)) symSolutions['n'] = symSolutionsNoSubs['n'].subs(zip(modelConstants,valuesForConstants)) symSolutions['V'] = symSolutionsNoSubs['V'].subs(zip(modelConstants,valuesForConstants)) results = {} results['symSolutions'] = symSolutions results['modelSymbols'] = modelSymbols results['modelVariables'] = modelVariables print(results) I0, Iph, Rs, Rsh, n, I, V, Vth = modelSymbols # here we define any function substitutions we'll need for lambdification later #if self.isFastAndSloppy: # for fast and inaccurate math functionSubstitutions = {"LambertW" : scipy.special.lambertw, "exp" : np.exp, "log" : np.log} #functionSubstitutions = {"LambertW" : scipy.special.lambertw, "exp" : bigfloat.exp} #else: # this is a massive slowdown (forces a ton of operations into mpmath) # but gives _much_ better accuracy and aviods overflow warnings/errors... #functionSubstitutions = {"LambertW" : mpmath.lambertw, "exp" : mpmath.exp, "log" : mpmath.log} slns = {} solveForThese = [I, I0, V, n] for symbol in solveForThese: remainingVariables = list(set(modelVariables)-set([symbol])) slns[str(symbol)] = sympy.lambdify(remainingVariables,symSolutions[str(symbol)],functionSubstitutions,dummify=False) #slns[str(symbol)] = ufuncify(remainingVariables,self.symSolutions[str(symbol)],helpers=[['LambertW', sympy.LambertW(x), [x]]]) #slns[str(symbol)] = functools.partial(tmp) slns['Voc'] = sympy.lambdify([I0,Rsh,Iph,n],symSolutions['Voc'],functionSubstitutions,dummify=False) slns['P_prime'] = sympy.lambdify([I0,Rsh,Iph,n,Rs,I],symSolutions['P_prime'],functionSubstitutions,dummify=False) slns['Isc'] = sympy.lambdify([I0,Rsh,Iph,n,Rs],symSolutions['Isc'],functionSubstitutions,dummify=False) #slns['I'] = sympy.lambdify([I0,Rsh,Iph,n,Rs,V],symSolutions['I'],functionSubstitutions,dummify=False) slns['I'] = sympy.lambdify([V,n,Rs,Rsh,I0,Iph],symSolutions['I'],functionSubstitutions,dummify=False) #slns['V'] = sympy.lambdify([I0,Rsh,Iph,n,Rs,I],symSolutions['I'],functionSubstitutions,dummify=False) #print(slns['I'](1,2,3,4,5,vv)) #print(slns['V'](1,2,3,4,5,ii)) self.results.emit(" Setup DE: Completed") #return slns['I'] self.func.emit(slns['I']) '''
gpl-3.0
jshiv/turntable
turntable/utils.py
1
10551
'''The utils module provides a collection of methods used across the package or of general utility. ''' import os import re import sys import shutil import errno import fnmatch import traceback import numpy as np import pandas as pd try: import cPickle as pickle except: import pickle import random import time def catch(fcn, *args, **kwargs): '''try: retrun fcn(*args, **kwargs) except: print traceback if 'spit' in kwargs.keys(): return kwargs['spit'] Parameters ---------- fcn : function *args : unnamed parameters of fcn **kwargs : named parameters of fcn spit : returns the parameter named return in the exception Returns ------- The expected output of fcn or prints the exception traceback ''' try: # remove the special kwargs key "spit" and use it to return if it exists spit = kwargs.pop('spit') except: spit = None try: results = fcn(*args, **kwargs) if results: return results except: print traceback.format_exc() if spit: return spit def batch_list(sequence, batch_size, mod = 0, randomize = False): ''' Converts a list into a list of lists with equal batch_size. Parameters ---------- sequence : list list of items to be placed in batches batch_size : int length of each sub list mod : int remainder of list length devided by batch_size mod = len(sequence) % batch_size randomize = bool should the initial sequence be randomized before being batched ''' if randomize: sequence = random.sample(sequence, len(sequence)) return [sequence[x:x + batch_size] for x in xrange(0, len(sequence)-mod, batch_size)] def to_pickle(obj, filename, clean_memory=False): '''http://stackoverflow.com/questions/7900944/read-write-classes-to-files-in-an-efficent-way''' path, filename = path_to_filename(filename) create_dir(path) with open(path + filename, "wb") as output: pickle.dump(obj, output, pickle.HIGHEST_PROTOCOL) if clean_memory: obj = None # setting the global object to None requires a return assignment return obj def from_pickle(filename, clean_disk=False): # to deserialize the object with open(filename, "rb") as input: obj = pickle.load(input) # protocol version is auto detected if clean_disk: os.remove(filename) return obj def path_to_filename(pathfile): ''' Takes a path filename string and returns the split between the path and the filename if filename is not given, filename = '' if path is not given, path = './' ''' path = pathfile[:pathfile.rfind('/') + 1] if path == '': path = './' filename = pathfile[pathfile.rfind('/') + 1:len(pathfile)] if '.' not in filename: path = pathfile filename = '' if (filename == '') and (path[len(path) - 1] != '/'): path += '/' return path, filename def add_path_string(root_path='./results', path_string=None): rootPath = path_to_filename(rootPath)[0] regEx = '[.<>"!,:;*/ -]' if pathString is not None: return path_to_filename(root_path + re.sub(regEx, '_', path_string))[0] else: return root_path def create_dir(path, dir_dict={}): ''' Tries to create a new directory in the given path. **create_dir** can also create subfolders according to the dictionnary given as second argument. Parameters ---------- path : string string giving the path of the location to create the directory, either absolute or relative. dir_dict : dictionary, optional Dictionary ordering the creation of subfolders. Keys must be strings, and values either None or path dictionaries. the default is {}, which means that no subfolders will be created Examples -------- >>> path = './project' >>> dir_dict = {'dir1':None, 'dir2':{'subdir21':None}} >>> utils.create_dir(path, dir_dict) will create: * *project/dir1* * *project/dir2/subdir21* in your parent directory. ''' folders = path.split('/') folders = [i for i in folders if i != ''] rootPath = '' if folders[0] == 'C:': folders = folders[1:] count = 0 for directory in folders: count += 1 # required to handle the dot operators if (directory[0] == '.') & (count == 1): rootPath = directory else: rootPath = rootPath + '/' + directory try: os.makedirs(rootPath) # If the file already exists (EEXIST), raise exception and do nothing except OSError as exception: if exception.errno != errno.EEXIST: raise for key in dir_dict.keys(): rootPath = path + "/" + key try: os.makedirs(rootPath) # If the file already exists (EEXIST), raise exception and do nothing except OSError as exception: if exception.errno != errno.EEXIST: raise if dir_dict[key] is not None: create_dir(rootPath, dir_dict[key]) def Walk(root='.', recurse=True, pattern='*'): ''' Generator for walking a directory tree. Starts at specified root folder, returning files that match our pattern. Optionally will also recurse through sub-folders. Parameters ---------- root : string (default is *'.'*) Path for the root folder to look in. recurse : bool (default is *True*) If *True*, will also look in the subfolders. pattern : string (default is :emphasis:`'*'`, which means all the files are concerned) The pattern to look for in the files' name. Returns ------- generator **Walk** yields a generator from the matching files paths. ''' for path, subdirs, files in os.walk(root): for name in files: if fnmatch.fnmatch(name, pattern): yield os.path.join(path, name) if not recurse: break def scan_path(root='.', recurse=False, pattern='*'): ''' Runs a loop over the :doc:`Walk<relpy.utils.Walk>` Generator to find all file paths in the root directory with the given pattern. If recurse is *True*: matching paths are identified for all sub directories. Parameters ---------- root : string (default is *'.'*) Path for the root folder to look in. recurse : bool (default is *True*) If *True*, will also look in the subfolders. pattern : string (default is :emphasis:`'*'`, which means all the files are concerned) The pattern to look for in the files' name. Returns ------- path_list : list list of all the matching files paths. ''' path_list = [] for path in Walk(root=root, recurse=recurse, pattern=pattern): path_list.append(path) return path_list class Timer: '''Timer that calculates time remaining for a process and the percent complete .. todo:: Ask for details about the usage Parameters ---------- nLoops : integer numPrints : integer (default is *100*) verbose : bool (default is *True*) Attributes ---------- nLoops : integer numPrints : integer verbose : bool if *True*, print values when **loop** is called count : integer elapsed : float elapsed time est_end : float estimated end ti : float initial time tf : float current time display_amt : integer ''' def __init__(self, nLoops, numPrints=100, verbose=True): self.nLoops = nLoops self.numPrints = numPrints self.verbose = verbose self.count = 0 self.elapsed = 1 self.est_end = 1 self.ti = time.time() self.display_amt = 1 def loop(self): ''' Tracks the time in a loop. The estimated time to completion can be calculated and if verbose is set to *True*, the object will print estimated time to completion, and percent complete. Actived in every loop to keep track''' self.count += 1 self.tf = time.time() self.elapsed = self.tf - self.ti if self.verbose: displayAll(self.elapsed, self.display_amt, self.est_end, self.nLoops, self.count, self.numPrints) def fin(self): print "Elapsed time: %s :-)" % str(time.time() - self.ti) def displayAll(elapsed, display_amt, est_end, nLoops, count, numPrints): '''Displays time if verbose is true and count is within the display amount''' if numPrints > nLoops: display_amt = 1 else: display_amt = round(nLoops / numPrints) if count % display_amt == 0: avg = elapsed / count est_end = round(avg * nLoops) (disp_elapsed, disp_avg, disp_est) = timeUnit(int(round(elapsed)), int(round(avg)), int(round(est_end))) print "%s%%" % str(round(count / float(nLoops) * 100)), "@" + str(count), totalTime = disp_est[0] unit = disp_est[1] if str(unit) == "secs": remain = totalTime - round(elapsed) remainUnit = "secs" elif str(unit) == "mins": remain = totalTime - round(elapsed) / 60 remainUnit = "mins" elif str(unit) == "hr": remain = totalTime - round(elapsed) / 3600 remainUnit = "hr" print "ETA: %s %s" % (str(remain), remainUnit) print return def timeUnit(elapsed, avg, est_end): '''calculates unit of time to display''' minute = 60 hr = 3600 day = 86400 if elapsed <= 3 * minute: unit_elapsed = (elapsed, "secs") if elapsed > 3 * minute: unit_elapsed = ((elapsed / 60), "mins") if elapsed > 3 * hr: unit_elapsed = ((elapsed / 3600), "hr") if avg <= 3 * minute: unit_avg = (avg, "secs") if avg > 3 * minute: unit_avg = ((avg / 60), "mins") if avg > 3 * hr: unit_avg = ((avg / 3600), "hr") if est_end <= 3 * minute: unit_estEnd = (est_end, "secs") if est_end > 3 * minute: unit_estEnd = ((est_end / 60), "mins") if est_end > 3 * hr: unit_estEnd = ((est_end / 3600), "hr") return [unit_elapsed, unit_avg, unit_estEnd]
mit
cactusbin/nyt
matplotlib/examples/color/colormaps_reference.py
4
3411
""" Reference for colormaps included with Matplotlib. This reference example shows all colormaps included with Matplotlib. Note that any colormap listed here can be reversed by appending "_r" (e.g., "pink_r"). These colormaps are divided into the following categories: Sequential: These colormaps are approximately monochromatic colormaps varying smoothly between two color tones---usually from low saturation (e.g. white) to high saturation (e.g. a bright blue). Sequential colormaps are ideal for representing most scientific data since they show a clear progression from low-to-high values. Diverging: These colormaps have a median value (usually light in color) and vary smoothly to two different color tones at high and low values. Diverging colormaps are ideal when your data has a median value that is significant (e.g. 0, such that positive and negative values are represented by different colors of the colormap). Qualitative: These colormaps vary rapidly in color. Qualitative colormaps are useful for choosing a set of discrete colors. For example:: color_list = plt.cm.Set3(np.linspace(0, 1, 12)) gives a list of RGB colors that are good for plotting a series of lines on a dark background. Miscellaneous: Colormaps that don't fit into the categories above. """ import numpy as np import matplotlib.pyplot as plt cmaps = [('Sequential', ['binary', 'Blues', 'BuGn', 'BuPu', 'gist_yarg', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu', 'Reds', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd']), ('Sequential (2)', ['afmhot', 'autumn', 'bone', 'cool', 'copper', 'gist_gray', 'gist_heat', 'gray', 'hot', 'pink', 'spring', 'summer', 'winter']), ('Diverging', ['BrBG', 'bwr', 'coolwarm', 'PiYG', 'PRGn', 'PuOr', 'RdBu', 'RdGy', 'RdYlBu', 'RdYlGn', 'seismic']), ('Qualitative', ['Accent', 'Dark2', 'hsv', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3', 'spectral']), ('Miscellaneous', ['gist_earth', 'gist_ncar', 'gist_rainbow', 'gist_stern', 'jet', 'brg', 'CMRmap', 'cubehelix', 'gnuplot', 'gnuplot2', 'ocean', 'rainbow', 'terrain', 'flag', 'prism'])] nrows = max(len(cmap_list) for cmap_category, cmap_list in cmaps) gradient = np.linspace(0, 1, 256) gradient = np.vstack((gradient, gradient)) def plot_color_gradients(cmap_category, cmap_list): fig, axes = plt.subplots(nrows=nrows) fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99) axes[0].set_title(cmap_category + ' colormaps', fontsize=14) for ax, name in zip(axes, cmap_list): ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name)) pos = list(ax.get_position().bounds) x_text = pos[0] - 0.01 y_text = pos[1] + pos[3]/2. fig.text(x_text, y_text, name, va='center', ha='right', fontsize=10) # Turn off *all* ticks & spines, not just the ones with colormaps. for ax in axes: ax.set_axis_off() for cmap_category, cmap_list in cmaps: plot_color_gradients(cmap_category, cmap_list) plt.show()
unlicense
LUTAN/tensorflow
tensorflow/examples/learn/text_classification_character_rnn.py
61
3350
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is an example of using recurrent neural networks over characters for DBpedia dataset to predict class from description of an entity. This model is similar to one described in this paper: "Character-level Convolutional Networks for Text Classification" http://arxiv.org/abs/1509.01626 and is somewhat alternative to the Lua code from here: https://github.com/zhangxiangxiao/Crepe """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf learn = tf.contrib.learn FLAGS = None MAX_DOCUMENT_LENGTH = 100 HIDDEN_SIZE = 20 def char_rnn_model(features, target): """Character level recurrent neural network model to predict classes.""" target = tf.one_hot(target, 15, 1, 0) byte_list = tf.one_hot(features, 256, 1, 0) byte_list = tf.unstack(byte_list, axis=1) cell = tf.contrib.rnn.GRUCell(HIDDEN_SIZE) _, encoding = tf.contrib.rnn.static_rnn(cell, byte_list, dtype=tf.float32) logits = tf.contrib.layers.fully_connected(encoding, 15, activation_fn=None) loss = tf.contrib.losses.softmax_cross_entropy(logits, target) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=0.01) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def main(unused_argv): # Prepare training and testing data dbpedia = learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary char_processor = learn.preprocessing.ByteProcessor(MAX_DOCUMENT_LENGTH) x_train = np.array(list(char_processor.fit_transform(x_train))) x_test = np.array(list(char_processor.transform(x_test))) # Build model classifier = learn.Estimator(model_fn=char_rnn_model) # Train and predict classifier.fit(x_train, y_train, steps=100) y_predicted = [ p['class'] for p in classifier.predict( x_test, as_iterable=True) ] score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
mattip/numpy
doc/neps/conf.py
11
5689
# -*- coding: utf-8 -*- # # NumPy Enhancement Proposals documentation build configuration file, created by # sphinx-quickstart on Mon Dec 11 12:45:09 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.imgmath', 'sphinx.ext.intersphinx', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['../source/_templates/'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'content' # General information about the project. project = u'NumPy Enhancement Proposals' copyright = u'2017-2018, NumPy Developers' author = u'NumPy Developers' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'' # The full version, including alpha/beta/rc tags. release = u'' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False ## -- Options for HTML output ---------------------------------------------- # html_theme = 'pydata_sphinx_theme' html_logo = '../source/_static/numpylogo.svg' html_theme_options = { "github_url": "https://github.com/numpy/numpy", "twitter_url": "https://twitter.com/numpy_team", "external_links": [ {"name": "Wishlist", "url": "https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22", }, ], "show_prev_next": False, } html_title = "%s" % (project) html_static_path = ['../source/_static'] html_last_updated_fmt = '%b %d, %Y' html_use_modindex = True html_copy_source = False html_domain_indices = False html_file_suffix = '.html' htmlhelp_basename = 'numpy' if 'sphinx.ext.pngmath' in extensions: pngmath_use_preview = True pngmath_dvipng_args = ['-gamma', '1.5', '-D', '96', '-bg', 'Transparent'] plot_html_show_formats = False plot_html_show_source_link = False # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'NumPyEnhancementProposalsdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'NumPyEnhancementProposals.tex', u'NumPy Enhancement Proposals Documentation', u'NumPy Developers', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'numpyenhancementproposals', u'NumPy Enhancement Proposals Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'NumPyEnhancementProposals', u'NumPy Enhancement Proposals Documentation', author, 'NumPyEnhancementProposals', 'One line description of project.', 'Miscellaneous'), ] # ----------------------------------------------------------------------------- # Intersphinx configuration # ----------------------------------------------------------------------------- intersphinx_mapping = { 'python': ('https://docs.python.org/dev', None), 'numpy': ('https://numpy.org/devdocs', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference', None), 'matplotlib': ('https://matplotlib.org', None) }
bsd-3-clause
IndraVikas/scikit-neuralnetwork
examples/plot_mlp.py
5
5613
# -*- coding: utf-8 -*- """\ Visualizing Parameters in a Modern Neural Network ================================================= """ from __future__ import (absolute_import, unicode_literals, print_function) print(__doc__) __author__ = 'Alex J. Champandard' import sys import time import logging import argparse import itertools import numpy from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification # The neural network uses the `sknn` logger to output its information. import logging logging.basicConfig(format="%(message)s", level=logging.WARNING, stream=sys.stdout) from sknn.platform import gpu32 from sknn.backend import pylearn2 from sknn import mlp # All possible parameter options that can be plotted, separately or combined. PARAMETERS = { 'activation': ['Rectifier', 'Tanh', 'Sigmoid', 'Maxout'], 'alpha': [0.001, 0.005, 0.01, 0.05, 0.1, 0.2], 'dropout': [None, 0.25, 0.5, 0.75], 'iterations': [100, 200, 500, 1000], 'output': ['Softmax', 'Linear', 'Gaussian'], 'regularize': [None, 'L1', 'L2', 'dropout'], 'rules': ['sgd', 'momentum', 'nesterov', 'adadelta', 'rmsprop'], 'units': [16, 64, 128, 256], } # Grab command line information from the user. parser = argparse.ArgumentParser() parser.add_argument('-p','--params', nargs='+', help='Parameter to visualize.', choices=PARAMETERS.keys(), required=True) args = parser.parse_args() # Build a list of lists containing all parameter combinations to be tested. params = [] for p in sorted(PARAMETERS): values = PARAMETERS[p] # User requested to test against this parameter? if p in args.params: params.append(values) # Otherwise, use the first item of the list as default. else: params.append(values[:1]) # Build the classifiers for all possible combinations of parameters. names = [] classifiers = [] for (activation, alpha, dropout, iterations, output, regularize, rule, units) in itertools.product(*params): params = {'pieces': 2} if activation == "Maxout" else {} classifiers.append(mlp.Classifier( layers=[mlp.Layer(activation, units=units, **params), mlp.Layer(output)], random_state=1, n_iter=iterations, n_stable=iterations, regularize=regularize, dropout_rate=dropout, learning_rule=rule, learning_rate=alpha),) t = [] for k, v in zip(sorted(PARAMETERS), [activation, alpha, dropout, iterations, output, regularize, rule, units]): if k in args.params: t.append(str(v)) names.append(','.join(t)) # Create randomized datasets for visualizations, on three rows. seed = int(time.time()) X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=0, n_clusters_per_class=1) rng = numpy.random.RandomState(seed+1) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=seed+2), make_circles(noise=0.2, factor=0.5, random_state=seed+3), linearly_separable] # Create the figure containing plots for each of the classifiers. GRID_RESOLUTION = .02 figure = plt.figure(figsize=(18, 9)) i = 1 for X, y in datasets: # Preprocess dataset, split into training and test part. X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) # Prepare coordinates of 2D grid to be visualized. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, GRID_RESOLUTION), numpy.arange(y_min, y_max, GRID_RESOLUTION)) # Plot the dataset on its own first. cm = plt.cm.get_cmap("PRGn") cm_bright = ListedColormap(['#FF00FF', '#00FF00']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # Now iterate over every classifier... for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict_proba(numpy.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right', fontweight='bold') i += 1 sys.stdout.write('.'); sys.stdout.flush() sys.stdout.write('\n') figure.subplots_adjust(left=.02, right=.98) plt.show()
bsd-3-clause
adi-sharma/RLIE_A3C
code/predict.py
1
19030
import numpy as np from sklearn.linear_model import LogisticRegression import scipy.sparse import time import itertools import sys import pickle import inflect import train_crf as crf from train import load_data import helper import re, pdb, collections import constants import re p = inflect.engine() int2tags = ['TAG'] + constants.int2tags #since the constants file does not include the 'TAG' tag NUM_ENTITIES = len(constants.int2tags) tags2int = constants.tags2int tags = range(len(int2tags)) helper.load_constants() mode = constants.mode CORRECT = collections.defaultdict(lambda:0.) GOLD = collections.defaultdict(lambda:0.) PRED = collections.defaultdict(lambda:0.) def splitBars(w): return [q.strip() for q in w.split('|')] # main loop def main(trained_model,testing_file,viterbi,output_tags="output.tag", output_predictions="output.pred"): test_data, identifier = load_data(testing_file) evaluate = True ## extract features if not "crf" in trained_model: if not isinstance(trained_model, list): clf, previous_n, next_n, word_vocab,other_features = pickle.load( open( trained_model, "rb" ) ) else: clf, previous_n, next_n, word_vocab,other_features = trained_model tic = time.clock() f = open(output_tags,'w') confidences = [] for i in range(len(test_data)+len(identifier)): if i%2 == 1: if "crf" in trained_model: y, tmp_conf = crf.predict(test_data[i/2][0], trained_model) f.write(" ".join([test_data[i/2][0][j]+"_"+y[j] for j in range(len(test_data[i/2][0]))])) else: y, tmp_conf = predict_tags_n(viterbi, previous_n,next_n, clf, test_data[i/2][0], word_vocab,other_features) f.write(" ".join([test_data[i/2][0][j]+"_"+int2tags[int(y[j])] for j in range(len(test_data[i/2][0]))])) assert(len(y) == len(tmp_conf)) confidences.append(tmp_conf) f.write("\n") else: f.write(identifier[i/2]) f.write("\n") #print time.clock()-tic f.close() if evaluate: eval_mode_batch(output_tags, confidences, helper.cities) else: predict_mode_batch(output_tags, output_predictions, helper.cities) return # Takes in a trained model and predict all the entities # sentence - list of words # viterbi - bool of whether or not to use viterbi decoding # cities - set of cities to match for backup if no city was predicted # Returns comma separated preditions of shooterNames, killedNum, woundedNum and city with shooter names separated by '|' def predict(trained_model, sentence, viterbi, cities): if type(trained_model) == str: clf, previous_n,next_n, word_vocab,other_features = pickle.load( open( trained_model, "rb" ) ) else: #trained_model is an already initialized list of params clf, previous_n,next_n, word_vocab,other_features = trained_model sentence = sentence.replace("_"," ") words = re.findall(r"[\w']+|[.,!?;]", sentence) y, tmp_conf = predict_tags_n(viterbi, previous_n,next_n, clf, words, word_vocab,other_features) tags = [] for i in range(len(y)): tags.append(int(y[i])) pred = predict_mode(words, tags, tmp_conf, cities) return pred def predictWithConfidences(trained_model, sentence, viterbi, cities): sentence = sentence.replace("_"," ") words = re.findall(r"[\w']+|[.,!?;]", sentence) cleanedSentence = [] i = 0 while i < len(words): token = sentence[i] end_token_range = i for j in range(i+1,len(words)): new_token = words[j] if new_token == token: end_token_range = j else: cleanedSentence.append(words[i]) break i = end_token_range + 1 words = cleanedSentence if "crf" in trained_model: return predictCRF(trained_model, words, cities) if type(trained_model) == str: clf, previous_n,next_n, word_vocab,other_features = pickle.load( open( trained_model, "rb" ) ) else: #trained_model is an already initialized list of params clf, previous_n,next_n, word_vocab,other_features = trained_model y, confidences = predict_tags_n(viterbi, previous_n,next_n, clf, words, word_vocab,other_features) tags = [] for i in range(len(y)): tags.append(int(y[i])) pred, conf_scores, conf_cnts = predict_mode(words, tags, confidences, cities) return pred, conf_scores, conf_cnts ## Return tag, conf scores, conf counts for CRF def predictCRF(trained_model, words, cities): tags, confidences = crf.predict(words, trained_model) pred, conf_scores, conf_cnts = predict_mode(words, tags, confidences, cities, True) return pred, conf_scores, conf_cnts count_person = 0 # Make predictions using majority voting of the tag # sentence - list of words # tags - list of tags corresponding to sentence def predict_ema_mode(sentence, tags, confidences): assert len(tags) == len(confidences) original_tags = tags num_tags = len(int2tags) -1 output_entities = {} entity_confidences = [0] * num_tags entity_cnts = [0] * num_tags for tag in int2tags[1:]: output_entities[tag] = [] cleanedSentence = [] cleanedTags = [] cleanedConfidences = [] # Combine consecutive tags (like "United_Location States_Location into # United States_Location") i = 0 while i < len(sentence): tag = int2tags[tags[i]] if not type(tags[i]) == str else tags[i] end_range = i if not tag == "TAG": for j in range(i+1,len(sentence)): new_tag = int2tags[tags[j]] if not type(tags[j]) == str else tags[j] if new_tag == tag: end_range = j else: break cleanedSentence.append( " ".join(sentence[i:end_range+1])) avgConf = sum(confidences[i:end_range+1])/(end_range+1 - i) cleanedConfidences.append(avgConf) cleanedTags.append(tags2int[tag]) i = end_range + 1 sentence = cleanedSentence tags = cleanedTags confidences = cleanedConfidences for j in range(len(sentence)): index = int2tags[tags[j]] if not type(tags[j]) == str else tags[j] if index == "TAG": continue output_entities[index].append((sentence[j], confidences[j])) output_pred_line = "" for tag in int2tags[1:]: # pdb.set_trace() #one idea, if ent isn't in countries, try 1perm, two perm and stop there. then run something akin to #tryCities mode, conf = get_mode(output_entities[tag]) if mode == "": assert not tags2int[tag] in tags assert not tags2int[tag] in original_tags output_pred_line += "unknown" entity_confidences[tags2int[tag]-1] += 0 else: output_pred_line += mode entity_confidences[tags2int[tag]-1] += conf entity_cnts[tags2int[tag]-1] += 1 if not tag == int2tags[-1]: output_pred_line += " ### " return output_pred_line, entity_confidences, entity_cnts def predict_mode(sentence, tags, confidences, cities, crf=False): if constants.mode == "EMA": return predict_ema_mode(sentence, tags, confidences) output_entities = {} entity_confidences = [0,0,0,0] entity_cnts = [0,0,0,0] for tag in int2tags: output_entities[tag] = [] for j in range(len(sentence)): ind = "" if crf: ind = tags[j] else: ind = int2tags[tags[j]] output_entities[ind].append((sentence[j], confidences[j])) output_pred_line = "" #for shooter (OLD) # for shooterName, conf in output_entities["shooterName"]: # output_pred_line += shooterName.lower() # output_pred_line += "|" # entity_confidences[tags2int['shooterName']-1] += conf # entity_cnts[tags2int['shooterName']-1] += 1 # output_pred_line = output_pred_line[:-1] mode, conf = get_mode(output_entities["shooterName"]) output_pred_line += mode entity_confidences[tags2int['shooterName']-1] += conf entity_cnts[tags2int['shooterName']-1] += 1 for tag in int2tags: if tag == "city": output_pred_line += " ### " possible_city_combos = [] # pdb.set_trace() for permutation in itertools.permutations(output_entities[tag],2): if permutation[0][0] in cities: if "" in cities[permutation[0][0]]: possible_city_combos.append((permutation[0][0], permutation[0][1])) if permutation[1][0] in cities[permutation[0][0]]: possible_city_combos.append((permutation[0][0] + " " + permutation[1][0],\ max(permutation[0][1], permutation[1][1]) )) mode, conf = get_mode(possible_city_combos) #try cities automatically if mode == "": possible_cities = [] for i in range(len(sentence)): word1 = sentence[i] if word1 in cities: if "" in cities[word1]: possible_cities.append((word1, 0.)) if i+1 < len(sentence): word2 = sentence[i+1] if word2 in cities[word1]: possible_cities.append((word1 + " " + word2, 0.)) #print possible_cities #print get_mode(possible_cities) mode, conf = get_mode(possible_cities) output_pred_line += mode entity_confidences[tags2int['city']-1] += conf entity_cnts[tags2int['city']-1] += 1 elif tag not in ["TAG", "shooterName"]: output_pred_line += " ### " mode, conf = get_mode(output_entities[tag]) if mode == "": output_pred_line += "zero" entity_confidences[tags2int[tag]-1] += 0 entity_cnts[tags2int[tag]-1] += 1 else: output_pred_line += mode entity_confidences[tags2int[tag]-1] += conf entity_cnts[tags2int[tag]-1] += 1 assert not (output_pred_line.split(" ### ")[0].strip() == "" and len(output_entities["shooterName"]) >0) return output_pred_line, entity_confidences, entity_cnts # Make predictions using majority voting in batch # output_tags - filename of tagged articles # output_predictions - filename to write the predictions to # Returns comma separated preditions of shooterNames, killedNum, woundedNum and city with shooter names separated by '|' def predict_mode_batch(output_tags, output_predictions, cities): tagged_data, identifier = load_data(output_tags) f = open(output_predictions,'w') for i in range(len(tagged_data)+len(identifier)): if i%2 == 1: f.write(predict_mode(tagged_data[i/2][0], tagged_data[i/2][1], cities)) f.write("\n") else: f.write(identifier[i/2]) f.write("\n") return def evaluateArticle(predEntities, goldEntities, shooterLenientEval=True, shooterLastName=False, evalOutFile=None): global PRED, GOLD, CORRECT int2tags = constants.int2tags if constants.mode == 'Shooter': #shooterName first: only add this if gold contains a valid shooter if goldEntities[0]!='': if shooterLastName: gold = set(splitBars(goldEntities[0].lower())[-1:]) else: gold = set(splitBars(goldEntities[0].lower())) pred = set(splitBars(predEntities[0].lower())) correct = len(gold.intersection(pred)) if shooterLenientEval: CORRECT[int2tags[0]] += (1 if correct> 0 else 0) GOLD[int2tags[0]] += (1 if len(gold) > 0 else 0) PRED[int2tags[0]] += (1 if len(pred) > 0 else 0) else: CORRECT[int2tags[0]] += correct GOLD[int2tags[0]] += len(gold) PRED[int2tags[0]] += len(pred) # All other tags. for i in range(1, NUM_ENTITIES): if goldEntities[i] != 'zero': GOLD[int2tags[i]] += 1 PRED[int2tags[i]] += 1 if predEntities[i].lower() == goldEntities[i].lower(): CORRECT[int2tags[i]] += 1 else: # For EMA. for i in range(NUM_ENTITIES): if goldEntities[i] != 'unknown': #old eval gold = set(splitBars(goldEntities[i].lower())) pred = set(splitBars(predEntities[i].lower())) # if 'unknown' in pred: # pred = set() correct = len(gold.intersection(pred)) if shooterLenientEval: CORRECT[int2tags[i]] += (1 if correct> 0 else 0) GOLD[int2tags[i]] += (1 if len(gold) > 0 else 0) PRED[int2tags[i]] += (1 if len(pred) > 0 else 0) else: CORRECT[int2tags[i]] += correct GOLD[int2tags[i]] += len(gold) PRED[int2tags[i]] += len(pred) if evalOutFile: evalOutFile.write("--------------------\n") evalOutFile.write("Gold: "+str(gold)+"\n") evalOutFile.write("Pred: "+str(pred)+"\n") evalOutFile.write("Correct: "+str(correct)+"\n") def eval_mode_batch(output_tags, confidences, cities): tagged_data, identifier = load_data(output_tags) num_tags = len(int2tags) - 1 assert len(tagged_data) == len(confidences) for i in range(len(tagged_data)): sentence = tagged_data[i][0] tags = tagged_data[i][1] tag_confs = confidences[i] ident = identifier[i] gold_ents = ident.split(',')[:num_tags] #Throw away title output_pred_line, entity_confidences, entity_cnts = predict_mode(sentence, tags, tag_confs, cities) predictions = output_pred_line.split(" ### ") # Evaluate the predictions. evaluateArticle(predictions, gold_ents) print "------------\nEvaluation Stats: (Precision, Recall, F1):" for tag in GOLD: prec = CORRECT[tag]/PRED[tag] rec = CORRECT[tag]/GOLD[tag] f1 = (2*prec*rec)/(prec+rec) print tag, prec, rec, f1, "########", CORRECT[tag], PRED[tag], GOLD[tag] # Takes a ,;| seperated list of gold ents and a prediction # Returns 'skip' if gold is unknown, 'no_predict' if no prediction was made, # 1 if prediction in gold, and 0 if prediction not in gold def evaluatePrediction(pred, goldLabel): prediction = pred.strip().lower() gold = goldLabel.strip().lower() if gold == 'unknown' or gold == '': return 'skip' if prediction == 'unknown' or prediction == '': return 'no_predict' mode = "strict" if mode == "strict": gold_set = set([s.strip() for s in gold.split('|')]) return prediction in gold_set elif mode == "loose": return prediction in gold elif mode == 'flex': gold = gold.replace("|", "") gold_set = set([s.strip() for s in gold.split(' ')]) return prediction in gold_set # get mode of list l, returns "" if empty #l consists of tuples (value, confidence) def get_mode(l): counts = collections.defaultdict(lambda:0) Z = collections.defaultdict(lambda:0) curr_max = 0 arg_max = "" for element, conf in l: try: normalised = p.number_to_words(int(element)) except Exception, e: normalised = element.lower() counts[normalised] += conf Z[normalised] += 1 for element in counts: if counts[element] > curr_max and element != "" and element != "zero": curr_max = counts[element] arg_max = element return arg_max, (counts[arg_max]/Z[arg_max] if Z[arg_max] > 0 else counts[arg_max]) # given a classifier and a sentence, predict the tag sequence def predict_tags_n(viterbi, previous_n,next_n, clf, sentence, word_vocab,other_features,first_n = 10): num_features = len(word_vocab) + len(other_features) total_features = (previous_n + next_n + 1)*num_features + len(word_vocab) + previous_n * len(tags) + first_n dataX = np.zeros((len(sentence),total_features)) dataY = np.zeros(len(sentence)) dataYconfidences = [None for i in range(len(sentence))] other_words_lower = set([s.lower() for s in sentence[0]]) for i in range(len(sentence)): word = sentence[i] word_lower = word.lower() if word_lower in word_vocab: dataX[i,word_vocab[word_lower]] = 1 for j in range(previous_n): if i+j+1<len(sentence): dataX[i+j+1,(j+1)*num_features+word_vocab[word_lower]] = 1 for j in range(next_n): if i-j-1 >= 0: dataX[i-j-1,(previous_n+j+1)*num_features+word_vocab[word_lower]] = 1 for (index, feature_func) in enumerate(other_features): if feature_func(word): dataX[i,len(word_vocab)+index] = 1 for j in range(previous_n): if i + j + 1 < len(sentence): dataX[i+j+1,(j+1)*num_features+len(word_vocab)+index] = 1 for j in range(next_n): if i - j - 1 >= 0: dataX[i-j-1,(previous_n+j+1)*num_features+len(word_vocab)+index] = 1 for other_word_lower in other_words_lower: if other_word_lower != word_lower and other_word_lower in word_vocab: dataX[i,(previous_n+next_n+1)*num_features + word_vocab[other_word_lower]] = 1 if i < first_n: dataX[i,(previous_n + next_n + 1)*num_features + len(word_vocab) + previous_n * len(tags)+ i ] = 1 for i in range(len(sentence)): for j in range(previous_n): if j < i: dataX[i,(previous_n+next_n+1)*num_features+len(word_vocab)+len(tags)*j+int(dataY[i-j-1])] = 1 dataYconfidences[i] = clf.predict_proba(dataX[i,:].reshape(1, -1)) dataY[i] = np.argmax(dataYconfidences[i]) dataYconfidences[i] = dataYconfidences[i][0][int(dataY[i])] return dataY, dataYconfidences if __name__ == "__main__": if mode == "EMA": trained_model = "trained_model_crf.EMA.p" testing_file = "../data/tagged_data/EMA/dev.tag" elif mode == "Shooter": trained_model = "trained_model2.p" # testing_file = "../data/tagged_data/shooterLarge/dev.tag" testing_file = "../data/tagged_data/Shootings/dev.tag" viterbi = False #sys.argv[4] main(trained_model,testing_file,viterbi)
mit
LANGFAN/APM
Tools/mavproxy_modules/lib/magcal_graph_ui.py
108
8248
# Copyright (C) 2016 Intel Corporation. All rights reserved. # # This file is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This file is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt from matplotlib.backends.backend_wxagg import FigureCanvas from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection from pymavlink.mavutil import mavlink from MAVProxy.modules.lib import wx_processguard from MAVProxy.modules.lib.wx_loader import wx import geodesic_grid as grid class MagcalPanel(wx.Panel): _status_markup_strings = { mavlink.MAG_CAL_NOT_STARTED: 'Not started', mavlink.MAG_CAL_WAITING_TO_START: 'Waiting to start', mavlink.MAG_CAL_RUNNING_STEP_ONE: 'Step one', mavlink.MAG_CAL_RUNNING_STEP_TWO: 'Step two', mavlink.MAG_CAL_SUCCESS: '<span color="blue">Success</span>', mavlink.MAG_CAL_FAILED: '<span color="red">Failed</span>', } _empty_color = '#7ea6ce' _filled_color = '#4680b9' def __init__(self, *k, **kw): super(MagcalPanel, self).__init__(*k, **kw) facecolor = self.GetBackgroundColour().GetAsString(wx.C2S_HTML_SYNTAX) fig = plt.figure(facecolor=facecolor, figsize=(1,1)) self._canvas = FigureCanvas(self, wx.ID_ANY, fig) self._canvas.SetMinSize((300,300)) self._id_text = wx.StaticText(self, wx.ID_ANY) self._status_text = wx.StaticText(self, wx.ID_ANY) self._completion_pct_text = wx.StaticText(self, wx.ID_ANY) sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(self._id_text) sizer.Add(self._status_text) sizer.Add(self._completion_pct_text) sizer.Add(self._canvas, proportion=1, flag=wx.EXPAND) self.SetSizer(sizer) ax = fig.add_subplot(111, axis_bgcolor=facecolor, projection='3d') self.configure_plot(ax) def configure_plot(self, ax): extra = .5 lim = grid.radius + extra ax.set_xlim3d(-lim, lim) ax.set_ylim3d(-lim, lim) ax.set_zlim3d(-lim, lim) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') ax.invert_zaxis() ax.invert_xaxis() ax.set_aspect('equal') self._polygons_collection = Poly3DCollection( grid.sections_triangles, edgecolors='#386694', ) ax.add_collection3d(self._polygons_collection) def update_status_from_mavlink(self, m): status_string = self._status_markup_strings.get(m.cal_status, '???') self._status_text.SetLabelMarkup( '<b>Status:</b> %s' % status_string, ) def mavlink_magcal_report(self, m): self.update_status_from_mavlink(m) self._completion_pct_text.SetLabel('') def mavlink_magcal_progress(self, m): facecolors = [] for i, mask in enumerate(m.completion_mask): for j in range(8): section = i * 8 + j if mask & 1 << j: facecolor = self._filled_color else: facecolor = self._empty_color facecolors.append(facecolor) self._polygons_collection.set_facecolors(facecolors) self._canvas.draw() self._id_text.SetLabelMarkup( '<b>Compass id:</b> %d' % m.compass_id ) self._completion_pct_text.SetLabelMarkup( '<b>Completion:</b> %d%%' % m.completion_pct ) self.update_status_from_mavlink(m) _legend_panel = None @staticmethod def legend_panel(*k, **kw): if MagcalPanel._legend_panel: return MagcalPanel._legend_panel p = MagcalPanel._legend_panel = wx.Panel(*k, **kw) sizer = wx.BoxSizer(wx.HORIZONTAL) p.SetSizer(sizer) marker = wx.Panel(p, wx.ID_ANY, size=(10, 10)) marker.SetBackgroundColour(MagcalPanel._empty_color) sizer.Add(marker, flag=wx.ALIGN_CENTER) text = wx.StaticText(p, wx.ID_ANY) text.SetLabel('Sections not hit') sizer.Add(text, border=4, flag=wx.ALIGN_CENTER | wx.LEFT) marker = wx.Panel(p, wx.ID_ANY, size=(10, 10)) marker.SetBackgroundColour(MagcalPanel._filled_color) sizer.Add(marker, border=10, flag=wx.ALIGN_CENTER | wx.LEFT) text = wx.StaticText(p, wx.ID_ANY) text.SetLabel('Sections hit') sizer.Add(text, border=4, flag=wx.ALIGN_CENTER | wx.LEFT) return p class MagcalFrame(wx.Frame): def __init__(self, conn): super(MagcalFrame, self).__init__( None, wx.ID_ANY, title='Magcal Graph', ) self.SetMinSize((300, 300)) self._conn = conn self._main_panel = wx.ScrolledWindow(self, wx.ID_ANY) self._main_panel.SetScrollbars(1, 1, 1, 1) self._magcal_panels = {} self._sizer = wx.BoxSizer(wx.VERTICAL) self._main_panel.SetSizer(self._sizer) idle_text = wx.StaticText(self._main_panel, wx.ID_ANY) idle_text.SetLabelMarkup('<i>No calibration messages received yet...</i>') idle_text.SetForegroundColour('#444444') self._sizer.AddStretchSpacer() self._sizer.Add( idle_text, proportion=0, flag=wx.ALIGN_CENTER | wx.ALL, border=10, ) self._sizer.AddStretchSpacer() self._timer = wx.Timer(self) self.Bind(wx.EVT_TIMER, self.timer_callback, self._timer) self._timer.Start(200) def add_compass(self, id): if not self._magcal_panels: self._sizer.Clear(deleteWindows=True) self._magcal_panels_sizer = wx.BoxSizer(wx.HORIZONTAL) self._sizer.Add( self._magcal_panels_sizer, proportion=1, flag=wx.EXPAND, ) legend = MagcalPanel.legend_panel(self._main_panel, wx.ID_ANY) self._sizer.Add( legend, proportion=0, flag=wx.ALIGN_CENTER, ) self._magcal_panels[id] = MagcalPanel(self._main_panel, wx.ID_ANY) self._magcal_panels_sizer.Add( self._magcal_panels[id], proportion=1, border=10, flag=wx.EXPAND | wx.ALL, ) def timer_callback(self, evt): close_requested = False mavlink_msgs = {} while self._conn.poll(): m = self._conn.recv() if isinstance(m, str) and m == 'close': close_requested = True continue if m.compass_id not in mavlink_msgs: # Keep the last two messages so that we get the last progress # if the last message is the calibration report. mavlink_msgs[m.compass_id] = [None, m] else: l = mavlink_msgs[m.compass_id] l[0] = l[1] l[1] = m if close_requested: self._timer.Stop() self.Destroy() return if not mavlink_msgs: return needs_fit = False for k in mavlink_msgs: if k not in self._magcal_panels: self.add_compass(k) needs_fit = True if needs_fit: self._sizer.Fit(self) for k, l in mavlink_msgs.items(): for m in l: if not m: continue panel = self._magcal_panels[k] if m.get_type() == 'MAG_CAL_PROGRESS': panel.mavlink_magcal_progress(m) elif m.get_type() == 'MAG_CAL_REPORT': panel.mavlink_magcal_report(m)
gpl-3.0
Garrett-R/scikit-learn
sklearn/manifold/tests/test_mds.py
324
1862
import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from sklearn.manifold import mds def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
ChristianTremblay/BAC0
BAC0/sql/sql.py
1
8703
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (C) 2015 by Christian Tremblay, P.Eng <[email protected]> # Licensed under LGPLv3, see file LICENSE in this source tree. # """ sql.py - """ # --- standard Python modules --- import pickle import os.path # --- 3rd party modules --- import sqlite3 import contextlib try: import pandas as pd from pandas.io import sql try: from pandas import Timestamp except ImportError: from pandas.lib import Timestamp _PANDAS = True except ImportError: _PANDAS = False from ..core.io.IOExceptions import RemovedPointException # --- this application's modules --- # ------------------------------------------------------------------------------ class SQLMixin(object): """ Use SQL to persist a device's contents. By saving the device contents to an SQL database, you can work with the device's data while offline, or while the device is not available. """ def _read_from_sql(self, request, db_name): """ Using the contextlib, I hope to close the connection to database when not in use """ with contextlib.closing(sqlite3.connect("{}.db".format(db_name))) as con: return sql.read_sql(sql=request, con=con) def dev_properties_df(self): dic = self.properties.asdict.copy() dic.pop("network", None) dic.pop("pss", None) return dic def points_properties_df(self): """ Return a dictionary of point/point_properties in preparation for storage in SQL. """ pprops = {} for each in self.points: p = each.properties.asdict.copy() p.pop("device", None) p.pop("network", None) p.pop("simulated", None) p.pop("overridden", None) pprops[each.properties.name] = p return pd.DataFrame(pprops) def backup_histories_df(self, resampling="1s"): """ Build a dataframe of the point histories By default, dataframe will be resampled for 1sec intervals, NaN will be forward filled then backward filled. This way, no NaN values will remains and analytics will be easier. Please note that this can be disabled using resampling=False In the process of building the dataframe, analog values are resampled using the mean() function. So we have intermediate results between to records. For binary values, we'll use .last() so we won't get a 0.5 value which means nothing in this context. If saving a DB that already exists, previous resampling will survive the merge of old data and new data. """ backup = {} if isinstance(resampling, str): resampling_needed = True resampling_freq = resampling elif resampling in [0, False]: resampling_needed = False # print(resampling, resampling_freq, resampling_needed) for point in self.points: try: if resampling_needed and "binary" in point.properties.type: backup[point.properties.name] = ( point.history.replace(["inactive", "active"], [0, 1]) .resample(resampling_freq) .last() ) elif resampling_needed and "analog" in point.properties.type: backup[point.properties.name] = point.history.resample( resampling_freq ).mean() else: backup[point.properties.name] = point.history.resample( resampling_freq ).last() except Exception as error: self._log.error( "Error in resampling {} | {} (probably not enough points)".format( point, error ) ) if "binary" in point.properties.type: backup[point.properties.name] = point.history.replace( ["inactive", "active"], [0, 1] ) elif "analog" in point.properties.type: backup[point.properties.name] = point.history.resample( resampling_freq ).mean() else: backup[point.properties.name] = point.history df = pd.DataFrame(dict([(k, pd.Series(v)) for k, v in backup.items()])) if resampling_needed: return ( df.resample(resampling_freq) .last() .fillna(method="ffill") .fillna(method="bfill") ) else: return df def save(self, filename=None, resampling=None): """ Save the point histories to sqlite3 database. Save the device object properties to a pickle file so the device can be reloaded. Resampling : valid Pandas resampling frequency. If 0 or False, dataframe will not be resampled on save. """ if filename: if ".db" in filename: filename = filename.split(".")[0] self.properties.db_name = filename else: self.properties.db_name = "Device_{}".format(self.properties.device_id) if resampling is None: resampling = self.properties.save_resampling # Does file exist? If so, append data if os.path.isfile("{}.db".format(self.properties.db_name)): his = self._read_from_sql( 'select * from "{}"'.format("history"), self.properties.db_name ) his.index = his["index"].apply(Timestamp) try: last = his.index[-1] df_to_backup = self.backup_histories_df(resampling=resampling)[last:] except IndexError: df_to_backup = self.backup_histories_df(resampling=resampling) else: self._log.debug("Creating a new backup database") df_to_backup = self.backup_histories_df(resampling=resampling) # DataFrames that will be saved to SQL with contextlib.closing( sqlite3.connect("{}.db".format(self.properties.db_name)) ) as con: try: data = pd.read_sql("SELECT * FROM history", con) df = pd.concat([data, df_to_backup], sort=True) except: df = df_to_backup sql.to_sql( df_to_backup, name="history", con=con, index_label="index", index=True, if_exists="append", ) # Saving other properties to a pickle file... prop_backup = {"device": self.dev_properties_df()} prop_backup["points"] = self.points_properties_df() with open("{}.bin".format(self.properties.db_name), "wb") as file: pickle.dump(prop_backup, file) if self.properties.clear_history_on_save: self.clear_histories() self._log.info("Device saved to {}.db".format(self.properties.db_name)) def points_from_sql(self, db_name): """ Retrieve point list from SQL database """ points = self._read_from_sql("SELECT * FROM history;", db_name) return list(points.columns.values)[1:] def his_from_sql(self, db_name, point): """ Retrive point histories from SQL database """ his = self._read_from_sql('select * from "{}"'.format("history", db_name)) his.index = his["index"].apply(Timestamp) return his.set_index("index")[point] def value_from_sql(self, db_name, point): """ Take last known value as the value """ return self.his_from_sql(db_name, point).last_valid_index() def read_point_prop(self, device_name, point): """ Points properties retrieved from pickle """ with open("{}.bin".format(device_name), "rb") as file: try: _point = pickle.load(file)["points"][point] except KeyError: raise RemovedPointException( "{} not found (probably deleted)".format(point) ) return _point def read_dev_prop(self, device_name): """ Device properties retrieved from pickle """ self._log.debug("Reading prop from DB file") with open("{}.bin".format(device_name), "rb") as file: return pickle.load(file)["device"]
lgpl-3.0
jj-umn/tools-iuc
tools/fsd/fsd.py
17
44897
#!/usr/bin/env python # Family size distribution of SSCSs # # Author: Monika Heinzl, Johannes-Kepler University Linz (Austria) # Contact: [email protected] # # Takes at least one TABULAR file with tags before the alignment to the SSCS, but up to 4 files can be provided, as input. # The program produces a plot which shows the distribution of family sizes of the all SSCSs from the input files and # a tabular file with the data of the plot, as well as a TXT file with all tags of the DCS and their family sizes. # If only one file is provided, then a family size distribution, which is separated after SSCSs without a partner and DCSs, is produced. # Whereas a family size distribution with multiple data in one plot is produced, when more than one file (up to 4) is given. # USAGE: python FSD_Galaxy_1.4_commandLine_FINAL.py --inputFile1 filename --inputName1 filename --inputFile2 filename2 --inputName2 filename2 --inputFile3 filename3 --inputName3 filename3 --inputFile4 filename4 --inputName4 filename4 --log_axis --output_tabular outptufile_name_tabular --output_pdf outptufile_name_pdf import argparse import sys import matplotlib.pyplot as plt import numpy from matplotlib.backends.backend_pdf import PdfPages plt.switch_backend('agg') def readFileReferenceFree(file): with open(file, 'r') as dest_f: data_array = numpy.genfromtxt(dest_f, skip_header=0, delimiter='\t', comments='#', dtype=str) return(data_array) def make_argparser(): parser = argparse.ArgumentParser(description='Family Size Distribution of duplex sequencing data') parser.add_argument('--inputFile1', help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName1') parser.add_argument('--inputFile2', default=None, help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName2') parser.add_argument('--inputFile3', default=None, help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName3') parser.add_argument('--inputFile4', default=None, help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName4') parser.add_argument('--log_axis', action="store_false", help='Transform y axis in log scale.') parser.add_argument('--rel_freq', action="store_false", help='If False, the relative frequencies are displayed.') parser.add_argument('--output_pdf', default="data.pdf", type=str, help='Name of the pdf file.') parser.add_argument('--output_tabular', default="data.tabular", type=str, help='Name of the tabular file.') return parser def compare_read_families(argv): parser = make_argparser() args = parser.parse_args(argv[1:]) firstFile = args.inputFile1 name1 = args.inputName1 secondFile = args.inputFile2 name2 = args.inputName2 thirdFile = args.inputFile3 name3 = args.inputName3 fourthFile = args.inputFile4 name4 = args.inputName4 log_axis = args.log_axis rel_freq = args.rel_freq title_file = args.output_tabular title_file2 = args.output_pdf sep = "\t" plt.rc('figure', figsize=(11.69, 8.27)) # A4 format plt.rcParams['patch.edgecolor'] = "black" plt.rcParams['axes.facecolor'] = "E0E0E0" # grey background color plt.rcParams['xtick.labelsize'] = 14 plt.rcParams['ytick.labelsize'] = 14 list_to_plot = [] label = [] data_array_list = [] list_to_plot_original = [] colors = [] bins = numpy.arange(1, 22) with open(title_file, "w") as output_file, PdfPages(title_file2) as pdf: fig = plt.figure() fig.subplots_adjust(left=0.12, right=0.97, bottom=0.23, top=0.94, hspace=0) fig2 = plt.figure() fig2.subplots_adjust(left=0.12, right=0.97, bottom=0.23, top=0.94, hspace=0) if firstFile is not None: file1 = readFileReferenceFree(firstFile) integers = numpy.array(file1[:, 0]).astype(int) # keep original family sizes list_to_plot_original.append(integers) colors.append("#0000FF") # for plot: replace all big family sizes by 22 data1 = numpy.clip(integers, bins[0], bins[-1]) name1 = name1.split(".tabular")[0] if len(name1) > 40: name1 = name1[:40] list_to_plot.append(data1) label.append(name1) data_array_list.append(file1) legend = "\n\n\n{}".format(name1) fig.text(0.05, 0.11, legend, size=10, transform=plt.gcf().transFigure) fig2.text(0.05, 0.11, legend, size=10, transform=plt.gcf().transFigure) legend1 = "singletons:\nnr. of tags\n{:,} ({:.3f})".format(numpy.bincount(data1)[1], float(numpy.bincount(data1)[1]) / len(data1)) fig.text(0.32, 0.11, legend1, size=10, transform=plt.gcf().transFigure) fig2.text(0.32, 0.11, legend1, size=10, transform=plt.gcf().transFigure) legend3b = "PE reads\n{:,} ({:.3f})".format(numpy.bincount(data1)[1], float(numpy.bincount(data1)[1]) / sum(integers)) fig.text(0.45, 0.11, legend3b, size=10, transform=plt.gcf().transFigure) fig2.text(0.45, 0.11, legend3b, size=10, transform=plt.gcf().transFigure) legend4 = "family size > 20:\nnr. of tags\n{:,} ({:.3f})".format(len(integers[integers > 20]), float(len(integers[integers > 20])) / len(integers)) fig.text(0.58, 0.11, legend4, size=10, transform=plt.gcf().transFigure) fig2.text(0.58, 0.11, legend4, size=10, transform=plt.gcf().transFigure) legend5 = "PE reads\n{:,} ({:.3f})".format(sum(integers[integers > 20]), float(sum(integers[integers > 20])) / sum(integers)) fig.text(0.70, 0.11, legend5, size=10, transform=plt.gcf().transFigure) fig2.text(0.70, 0.11, legend5, size=10, transform=plt.gcf().transFigure) legend6 = "total nr. of\ntags\n{:,}".format(len(data1)) fig.text(0.82, 0.11, legend6, size=10, transform=plt.gcf().transFigure) fig2.text(0.82, 0.11, legend6, size=10, transform=plt.gcf().transFigure) legend6b = "PE reads\n{:,}".format(sum(integers)) fig.text(0.89, 0.11, legend6b, size=10, transform=plt.gcf().transFigure) fig2.text(0.89, 0.11, legend6b, size=10, transform=plt.gcf().transFigure) if secondFile is not None: file2 = readFileReferenceFree(secondFile) integers2 = numpy.array(file2[:, 0]).astype(int) # keep original family sizes list_to_plot_original.append(integers2) colors.append("#298A08") data2 = numpy.clip(integers2, bins[0], bins[-1]) list_to_plot.append(data2) name2 = name2.split(".tabular")[0] if len(name2) > 40: name2 = name2[:40] label.append(name2) data_array_list.append(file2) fig.text(0.05, 0.09, name2, size=10, transform=plt.gcf().transFigure) fig2.text(0.05, 0.09, name2, size=10, transform=plt.gcf().transFigure) legend1 = "{:,} ({:.3f})".format(numpy.bincount(data2)[1], float(numpy.bincount(data2)[1]) / len(data2)) fig.text(0.32, 0.09, legend1, size=10, transform=plt.gcf().transFigure) fig2.text(0.32, 0.09, legend1, size=10, transform=plt.gcf().transFigure) legend3 = "{:,} ({:.3f})".format(numpy.bincount(data2)[1], float(numpy.bincount(data2)[1]) / sum(integers2)) fig.text(0.45, 0.09, legend3, size=10, transform=plt.gcf().transFigure) fig2.text(0.45, 0.09, legend3, size=10, transform=plt.gcf().transFigure) legend4 = "{:,} ({:.3f})".format(len(integers2[integers2 > 20]), float(len(integers2[integers2 > 20])) / len(integers2)) fig.text(0.58, 0.09, legend4, size=10, transform=plt.gcf().transFigure) fig2.text(0.58, 0.09, legend4, size=10, transform=plt.gcf().transFigure) legend5 = "{:,} ({:.3f})".format(sum(integers2[integers2 > 20]), float(sum(integers2[integers2 > 20])) / sum(integers2)) fig.text(0.70, 0.09, legend5, size=10, transform=plt.gcf().transFigure) fig2.text(0.70, 0.09, legend5, size=10, transform=plt.gcf().transFigure) legend6 = "{:,}".format(len(data2)) fig.text(0.82, 0.09, legend6, size=10, transform=plt.gcf().transFigure) fig2.text(0.82, 0.09, legend6, size=10, transform=plt.gcf().transFigure) legend6b = "{:,}".format(sum(integers2)) fig.text(0.89, 0.09, legend6b, size=10, transform=plt.gcf().transFigure) fig2.text(0.89, 0.09, legend6b, size=10, transform=plt.gcf().transFigure) if thirdFile is not None: file3 = readFileReferenceFree(thirdFile) integers3 = numpy.array(file3[:, 0]).astype(int) # keep original family sizes list_to_plot_original.append(integers3) colors.append("#DF0101") data3 = numpy.clip(integers3, bins[0], bins[-1]) list_to_plot.append(data3) name3 = name3.split(".tabular")[0] if len(name3) > 40: name3 = name3[:40] label.append(name3) data_array_list.append(file3) fig.text(0.05, 0.07, name3, size=10, transform=plt.gcf().transFigure) fig2.text(0.05, 0.07, name3, size=10, transform=plt.gcf().transFigure) legend1 = "{:,} ({:.3f})".format(numpy.bincount(data3)[1], float(numpy.bincount(data3)[1]) / len(data3)) fig.text(0.32, 0.07, legend1, size=10, transform=plt.gcf().transFigure) fig2.text(0.32, 0.07, legend1, size=10, transform=plt.gcf().transFigure) legend3b = "{:,} ({:.3f})".format(numpy.bincount(data3)[1], float(numpy.bincount(data3)[1]) / sum(integers3)) fig.text(0.45, 0.07, legend3b, size=10, transform=plt.gcf().transFigure) fig2.text(0.45, 0.07, legend3b, size=10, transform=plt.gcf().transFigure) legend4 = "{:,} ({:.3f})".format(len(integers3[integers3 > 20]), float(len(integers3[integers3 > 20])) / len(integers3)) fig.text(0.58, 0.07, legend4, size=10, transform=plt.gcf().transFigure) fig2.text(0.58, 0.07, legend4, size=10, transform=plt.gcf().transFigure) legend5 = "{:,} ({:.3f})".format(sum(integers3[integers3 > 20]), float(sum(integers3[integers3 > 20])) / sum(integers3)) fig.text(0.70, 0.07, legend5, size=10, transform=plt.gcf().transFigure) fig2.text(0.70, 0.07, legend5, size=10, transform=plt.gcf().transFigure) legend6 = "{:,}".format(len(data3)) fig.text(0.82, 0.07, legend6, size=10, transform=plt.gcf().transFigure) fig2.text(0.82, 0.07, legend6, size=10, transform=plt.gcf().transFigure) legend6b = "{:,}".format(sum(integers3)) fig.text(0.89, 0.07, legend6b, size=10, transform=plt.gcf().transFigure) fig2.text(0.89, 0.07, legend6b, size=10, transform=plt.gcf().transFigure) if fourthFile is not None: file4 = readFileReferenceFree(fourthFile) integers4 = numpy.array(file4[:, 0]).astype(int) # keep original family sizes list_to_plot_original.append(integers4) colors.append("#04cec7") data4 = numpy.clip(integers4, bins[0], bins[-1]) list_to_plot.append(data4) name4 = name4.split(".tabular")[0] if len(name4) > 40: name4 = name4[:40] label.append(name4) data_array_list.append(file4) fig.text(0.05, 0.05, name4, size=10, transform=plt.gcf().transFigure) fig2.text(0.05, 0.05, name4, size=10, transform=plt.gcf().transFigure) legend1 = "{:,} ({:.3f})".format(numpy.bincount(data4)[1], float(numpy.bincount(data4)[1]) / len(data4)) fig.text(0.32, 0.05, legend1, size=10, transform=plt.gcf().transFigure) fig2.text(0.32, 0.05, legend1, size=10, transform=plt.gcf().transFigure) legend3b = "{:,} ({:.3f})".format(numpy.bincount(data4)[1], float(numpy.bincount(data4)[1]) / sum(integers4)) fig.text(0.45, 0.05, legend3b, size=10, transform=plt.gcf().transFigure) fig2.text(0.45, 0.05, legend3b, size=10, transform=plt.gcf().transFigure) legend4 = "{:,} ({:.3f})".format(len(integers4[integers4 > 20]), float(len(integers4[integers4 > 20])) / len(integers4)) fig.text(0.58, 0.05, legend4, size=10, transform=plt.gcf().transFigure) fig2.text(0.58, 0.05, legend4, size=10, transform=plt.gcf().transFigure) legend5 = "{:,} ({:.3f})".format(sum(integers4[integers4 > 20]), float(sum(integers4[integers4 > 20])) / sum(integers4)) fig.text(0.70, 0.05, legend5, size=10, transform=plt.gcf().transFigure) fig2.text(0.70, 0.05, legend5, size=10, transform=plt.gcf().transFigure) legend6 = "{:,}".format(len(data4)) fig.text(0.82, 0.05, legend6, size=10, transform=plt.gcf().transFigure) fig2.text(0.82, 0.05, legend6, size=10, transform=plt.gcf().transFigure) legend6b = "{:,}".format(sum(integers4)) fig.text(0.89, 0.05, legend6b, size=10, transform=plt.gcf().transFigure) fig2.text(0.89, 0.05, legend6b, size=10, transform=plt.gcf().transFigure) list_to_plot2 = list_to_plot if rel_freq: ylab = "Relative Frequency" else: ylab = "Absolute Frequency" # PLOT FSD based on tags fig.suptitle('Family Size Distribution (FSD) based on families', fontsize=14) ax = fig.add_subplot(1, 1, 1) ticks = numpy.arange(1, 22, 1) ticks1 = [str(_) for _ in ticks] ticks1[len(ticks1) - 1] = ">20" ax.set_xticks([], []) if rel_freq: w = [numpy.zeros_like(data) + 1. / len(data) for data in list_to_plot2] counts = ax.hist(list_to_plot2, weights=w, bins=numpy.arange(1, 23), stacked=False, edgecolor="black", color=colors, linewidth=1, label=label, align="left", alpha=0.7, rwidth=0.8) ax.set_ylim(0, 1.07) else: counts = ax.hist(list_to_plot2, bins=numpy.arange(1, 23), stacked=False, edgecolor="black", linewidth=1, label=label, align="left", alpha=0.7, rwidth=0.8, color=colors) ax.set_xticks(numpy.array(ticks)) ax.set_xticklabels(ticks1) ax.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(0.9, 1)) ax.set_ylabel(ylab, fontsize=14) ax.set_xlabel("Family size", fontsize=14) if log_axis: ax.set_yscale('log') ax.grid(b=True, which="major", color="#424242", linestyle=":") ax.margins(0.01, None) pdf.savefig(fig) # PLOT FSD based on PE reads fig2.suptitle('Family Size Distribution (FSD) based on PE reads', fontsize=14) ax2 = fig2.add_subplot(1, 1, 1) ticks = numpy.arange(1, 22) ticks1 = [str(_) for _ in ticks] ticks1[len(ticks1) - 1] = ">20" reads = [] reads_rel = [] barWidth = 0 - (len(list_to_plot) + 1) / 2 * 1. / (len(list_to_plot) + 1) ax2.set_xticks([], []) for i in range(len(list_to_plot2)): x = list(numpy.arange(1, 22).astype(float)) unique, c = numpy.unique(list_to_plot2[i], return_counts=True) y = unique * c if sum(list_to_plot_original[i] > 20) > 0: y[len(y) - 1] = sum(list_to_plot_original[i][list_to_plot_original[i] > 20]) y = [y[x[idx] == unique][0] if x[idx] in unique else 0 for idx in range(len(x))] reads.append(y) reads_rel.append(list(numpy.float_(y)) / sum(y)) if len(list_to_plot2) == 1: x = [xi * 0.5 for xi in x] w = 0.4 else: x = [xi + barWidth for xi in x] w = 1. / (len(list_to_plot) + 1) if rel_freq: ax2.bar(x, list(numpy.float_(y)) / numpy.sum(y), align="edge", width=w, edgecolor="black", label=label[i], linewidth=1, alpha=0.7, color=colors[i]) ax2.set_ylim(0, 1.07) else: ax2.bar(x, y, align="edge", width=w, edgecolor="black", label=label[i], linewidth=1, alpha=0.7, color=colors[i]) if i == len(list_to_plot2) - 1: barWidth += 1. / (len(list_to_plot) + 1) + 1. / (len(list_to_plot) + 1) else: barWidth += 1. / (len(list_to_plot) + 1) ax2.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(0.9, 1)) if len(list_to_plot2) == 1: ax2.set_xticks(numpy.array([xi + 0.2 for xi in x])) else: ax2.set_xticks(numpy.array(ticks)) ax2.set_xticklabels(ticks1) ax2.set_xlabel("Family size", fontsize=14) ax2.set_ylabel(ylab, fontsize=14) if log_axis: ax2.set_yscale('log') ax2.grid(b=True, which="major", color="#424242", linestyle=":") ax2.margins(0.01, None) pdf.savefig(fig2) plt.close() # write data to CSV file tags counts = [numpy.bincount(di, minlength=22)[1:] for di in list_to_plot2] # original counts of family sizes output_file.write("Values from family size distribution with all datasets based on families\n") output_file.write("\nFamily size") for i in label: output_file.write("{}{}".format(sep, i)) output_file.write("\n") j = 0 for fs in bins: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) for n in range(len(label)): output_file.write("{}{}".format(int(counts[n][j]), sep)) output_file.write("\n") j += 1 output_file.write("sum{}".format(sep)) for i in counts: output_file.write("{}{}".format(int(sum(i)), sep)) # write data to CSV file PE reads output_file.write("\n\nValues from family size distribution with all datasets based on PE reads\n") output_file.write("\nFamily size") for i in label: output_file.write("{}{}".format(sep, i)) output_file.write("\n") j = 0 for fs in bins: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) if len(label) == 1: output_file.write("{}{}".format(int(reads[0][j]), sep)) else: for n in range(len(label)): output_file.write("{}{}".format(int(reads[n][j]), sep)) output_file.write("\n") j += 1 output_file.write("sum{}".format(sep)) if len(label) == 1: output_file.write("{}{}".format(int(sum(numpy.concatenate(reads))), sep)) else: for i in reads: output_file.write("{}{}".format(int(sum(i)), sep)) output_file.write("\n") # Family size distribution after DCS and SSCS for dataset, data_o, name_file in zip(list_to_plot, data_array_list, label): tags = numpy.array(data_o[:, 2]) seq = numpy.array(data_o[:, 1]) data = numpy.array(dataset) data_o = numpy.array(data_o[:, 0]).astype(int) # find all unique tags and get the indices for ALL tags, but only once u, index_unique, c = numpy.unique(numpy.array(seq), return_counts=True, return_index=True) d = u[c > 1] # get family sizes, tag for duplicates duplTags_double = data[numpy.in1d(seq, d)] duplTags_double_o = data_o[numpy.in1d(seq, d)] duplTags = duplTags_double[0::2] # ab of DCS duplTags_o = duplTags_double_o[0::2] # ab of DCS duplTagsBA = duplTags_double[1::2] # ba of DCS duplTagsBA_o = duplTags_double_o[1::2] # ba of DCS # get family sizes for SSCS with no partner ab = numpy.where(tags == "ab")[0] abSeq = seq[ab] ab_o = data_o[ab] ab = data[ab] ba = numpy.where(tags == "ba")[0] baSeq = seq[ba] ba_o = data_o[ba] ba = data[ba] dataAB = ab[numpy.in1d(abSeq, d, invert=True)] dataAB_o = ab_o[numpy.in1d(abSeq, d, invert=True)] dataBA = ba[numpy.in1d(baSeq, d, invert=True)] dataBA_o = ba_o[numpy.in1d(baSeq, d, invert=True)] list1 = [duplTags_double, dataAB, dataBA] # list for plotting list1_o = [duplTags_double_o, dataAB_o, dataBA_o] # list for plotting # information for family size >= 3 dataAB_FS3 = dataAB[dataAB >= 3] dataAB_FS3_o = dataAB_o[dataAB_o >= 3] dataBA_FS3 = dataBA[dataBA >= 3] dataBA_FS3_o = dataBA_o[dataBA_o >= 3] duplTags_FS3 = duplTags[(duplTags >= 3) & (duplTagsBA >= 3)] # ab+ba with FS>=3 duplTags_FS3_BA = duplTagsBA[(duplTags >= 3) & (duplTagsBA >= 3)] # ba+ab with FS>=3 duplTags_double_FS3 = len(duplTags_FS3) + len(duplTags_FS3_BA) # both ab and ba strands with FS>=3 # original FS duplTags_FS3_o = duplTags_o[(duplTags_o >= 3) & (duplTagsBA_o >= 3)] # ab+ba with FS>=3 duplTags_FS3_BA_o = duplTagsBA_o[(duplTags_o >= 3) & (duplTagsBA_o >= 3)] # ba+ab with FS>=3 duplTags_double_FS3_o = sum(duplTags_FS3_o) + sum(duplTags_FS3_BA_o) # both ab and ba strands with FS>=3 fig = plt.figure() plt.subplots_adjust(left=0.12, right=0.97, bottom=0.3, top=0.94, hspace=0) if rel_freq: w = [numpy.zeros_like(dj) + 1. / len(numpy.concatenate(list1)) for dj in list1] plt.hist(list1, bins=numpy.arange(1, 23), stacked=True, label=["duplex", "ab", "ba"], weights=w, edgecolor="black", linewidth=1, align="left", color=["#FF0000", "#5FB404", "#FFBF00"], rwidth=0.8) plt.ylim(0, 1.07) else: plt.hist(list1, bins=numpy.arange(1, 23), stacked=True, label=["duplex", "ab", "ba"], edgecolor="black", linewidth=1, align="left", color=["#FF0000", "#5FB404", "#FFBF00"], rwidth=0.8) # tick labels of x axis ticks = numpy.arange(1, 22, 1) ticks1 = [str(_) for _ in ticks] ticks1[len(ticks1) - 1] = ">20" plt.xticks(numpy.array(ticks), ticks1) singl = len(data_o[data_o == 1]) last = len(data_o[data_o > 20]) # large families if log_axis: plt.yscale('log') plt.legend(loc='upper right', fontsize=14, bbox_to_anchor=(0.9, 1), frameon=True) plt.title("{}: FSD based on families".format(name_file), fontsize=14) plt.xlabel("Family size", fontsize=14) plt.ylabel(ylab, fontsize=14) plt.margins(0.01, None) plt.grid(b=True, which="major", color="#424242", linestyle=":") # extra information beneath the plot legend = "SSCS ab= \nSSCS ba= \nDCS (total)= \ntotal nr. of tags=" plt.text(0.1, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "nr. of tags\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,} ({:,})".format(len(dataAB), len(dataBA), len(duplTags), len(duplTags_double), (len(dataAB) + len(dataBA) + len(duplTags)), (len(ab) + len(ba))) plt.text(0.23, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend5 = "PE reads\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,} ({:,})".format(sum(dataAB_o), sum(dataBA_o), sum(duplTags_o), sum(duplTags_double_o), (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), (sum(ab_o) + sum(ba_o))) plt.text(0.38, 0.09, legend5, size=10, transform=plt.gcf().transFigure) legend = "rel. freq. of tags\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format( float(len(dataAB)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(dataBA)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), (len(dataAB) + len(dataBA) + len(duplTags))) plt.text(0.54, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format(float(len(dataAB)) / (len(ab) + len(ba)), float(len(dataBA)) / (len(ab) + len(ba)), float(len(duplTags)) / (len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba)), (len(ab) + len(ba))) plt.text(0.64, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend1 = "\nsingletons:\nfamily size > 20:" plt.text(0.1, 0.03, legend1, size=10, transform=plt.gcf().transFigure) legend4 = "{:,}\n{:,}".format(singl, last) plt.text(0.23, 0.03, legend4, size=10, transform=plt.gcf().transFigure) legend3 = "{:.3f}\n{:.3f}".format(float(singl) / len(data), float(last) / len(data)) plt.text(0.64, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend3 = "\n\n{:,}".format(sum(data_o[data_o > 20])) plt.text(0.38, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend3 = "{:.3f}\n{:.3f}".format(float(singl) / sum(data_o), float(sum(data_o[data_o > 20])) / sum(data_o)) plt.text(0.84, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend = "PE reads\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format( float(sum(dataAB_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), float(sum(dataBA_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), float(sum(duplTags_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o))) plt.text(0.74, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format( float(sum(dataAB_o)) / (sum(ab_o) + sum(ba_o)), float(sum(dataBA_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_double_o)) / (sum(ab_o) + sum(ba_o)), (sum(ab_o) + sum(ba_o))) plt.text(0.84, 0.09, legend, size=10, transform=plt.gcf().transFigure) pdf.savefig(fig) plt.close() # PLOT FSD based on PE reads fig3 = plt.figure() plt.subplots_adjust(left=0.12, right=0.97, bottom=0.3, top=0.94, hspace=0) fig3.suptitle("{}: FSD based on PE reads".format(name_file), fontsize=14) ax2 = fig3.add_subplot(1, 1, 1) ticks = numpy.arange(1, 22) ticks1 = [str(_) for _ in ticks] ticks1[len(ticks1) - 1] = ">20" reads = [] reads_rel = [] # barWidth = 0 - (len(list_to_plot) + 1) / 2 * 1. / (len(list_to_plot) + 1) ax2.set_xticks([], []) list_y = [] label = ["duplex", "ab", "ba"] col = ["#FF0000", "#5FB404", "#FFBF00"] for i in range(len(list1)): x = list(numpy.arange(1, 22).astype(float)) unique, c = numpy.unique(list1[i], return_counts=True) y = unique * c if sum(list1_o[i] > 20) > 0: y[len(y) - 1] = sum(list1_o[i][list1_o[i] > 20]) y = [y[x[idx] == unique][0] if x[idx] in unique else 0 for idx in range(len(x))] reads.append(y) reads_rel.append(list(numpy.float_(y)) / sum(numpy.concatenate(list1_o))) if rel_freq: y = list(numpy.float_(y)) / sum(numpy.concatenate(list1_o)) ax2.set_ylim(0, 1.07) else: y = y list_y.append(y) if i == 0: ax2.bar(x, y, align="center", width=0.8, edgecolor="black", label=label[0], linewidth=1, alpha=1, color=col[0]) elif i == 1: ax2.bar(x, y, bottom=list_y[i - 1], align="center", width=0.8, edgecolor="black", label=label[1], linewidth=1, alpha=1, color=col[1]) elif i == 2: bars = numpy.add(list_y[0], list_y[1]).tolist() ax2.bar(x, y, bottom=bars, align="center", width=0.8, edgecolor="black", label=label[2], linewidth=1, alpha=1, color=col[2]) ax2.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(0.9, 1)) singl = len(data_o[data_o == 1]) last = len(data_o[data_o > 20]) # large families ax2.set_xticks(numpy.array(ticks)) ax2.set_xticklabels(ticks1) ax2.set_xlabel("Family size", fontsize=14) ax2.set_ylabel(ylab, fontsize=14) if log_axis: ax2.set_yscale('log') ax2.grid(b=True, which="major", color="#424242", linestyle=":") ax2.margins(0.01, None) # extra information beneath the plot legend = "SSCS ab= \nSSCS ba= \nDCS (total)= \ntotal nr. of tags=" plt.text(0.1, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "nr. of tags\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,} ({:,})".format(len(dataAB), len(dataBA), len(duplTags), len(duplTags_double), (len(dataAB) + len(dataBA) + len(duplTags)), (len(ab) + len(ba))) plt.text(0.23, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend5 = "PE reads\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,} ({:,})".format(sum(dataAB_o), sum(dataBA_o), sum(duplTags_o), sum(duplTags_double_o), (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), (sum(ab_o) + sum(ba_o))) plt.text(0.38, 0.09, legend5, size=10, transform=plt.gcf().transFigure) legend = "rel. freq. of tags\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format( float(len(dataAB)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(dataBA)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), (len(dataAB) + len(dataBA) + len(duplTags))) plt.text(0.54, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format(float(len(dataAB)) / (len(ab) + len(ba)), float(len(dataBA)) / (len(ab) + len(ba)), float(len(duplTags)) / (len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba)), (len(ab) + len(ba))) plt.text(0.64, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend1 = "\nsingletons:\nfamily size > 20:" plt.text(0.1, 0.03, legend1, size=10, transform=plt.gcf().transFigure) legend4 = "{:,}\n{:,}".format(singl, last) plt.text(0.23, 0.03, legend4, size=10, transform=plt.gcf().transFigure) legend3 = "{:.3f}\n{:.3f}".format(float(singl) / len(data), float(last) / len(data)) plt.text(0.64, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend3 = "\n\n{:,}".format(sum(data_o[data_o > 20])) plt.text(0.38, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend3 = "{:.3f}\n{:.3f}".format(float(singl) / sum(data_o), float(sum(data_o[data_o > 20])) / sum(data_o)) plt.text(0.84, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend = "PE reads\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format( float(sum(dataAB_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), float(sum(dataBA_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), float(sum(duplTags_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o))) plt.text(0.74, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format( float(sum(dataAB_o)) / (sum(ab_o) + sum(ba_o)), float(sum(dataBA_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_double_o)) / (sum(ab_o) + sum(ba_o)), (sum(ab_o) + sum(ba_o))) plt.text(0.84, 0.09, legend, size=10, transform=plt.gcf().transFigure) pdf.savefig(fig3) plt.close() # write same information to a csv file count = numpy.bincount(data_o) # original counts of family sizes output_file.write("\nDataset:{}{}\n".format(sep, name_file)) output_file.write("max. family size:{}{}\n".format(sep, max(data_o))) output_file.write("absolute frequency:{}{}\n".format(sep, count[len(count) - 1])) output_file.write("relative frequency:{}{:.3f}\n\n".format(sep, float(count[len(count) - 1]) / sum(count))) output_file.write("median family size:{}{}\n".format(sep, numpy.median(numpy.array(data_o)))) output_file.write("mean family size:{}{}\n\n".format(sep, numpy.mean(numpy.array(data_o)))) output_file.write( "{}singletons:{}{}{}family size > 20:{}{}{}{}length of dataset:\n".format(sep, sep, sep, sep, sep, sep, sep, sep)) output_file.write( "{}nr. of tags{}rel. freq of tags{}rel.freq of PE reads{}nr. of tags{}rel. freq of tags{}nr. of PE reads{}rel. freq of PE reads{}total nr. of tags{}total nr. of PE reads\n".format( sep, sep, sep, sep, sep, sep, sep, sep, sep)) output_file.write("{}{}{}{}{:.3f}{}{:.3f}{}{}{}{:.3f}{}{}{}{:.3f}{}{}{}{}\n\n".format( name_file, sep, singl, sep, float(singl) / len(data), sep, float(singl) / sum(data_o), sep, last, sep, float(last) / len(data), sep, sum(data_o[data_o > 20]), sep, float(sum(data_o[data_o > 20])) / sum(data_o), sep, len(data), sep, sum(data_o))) # information for FS >= 1 output_file.write( "The unique frequencies were calculated from the dataset where the tags occured only once (=ab without DCS, ba without DCS)\n" "Whereas the total frequencies were calculated from the whole dataset (=including the DCS).\n\n") output_file.write( "FS >= 1{}nr. of tags{}nr. of PE reads{}rel. freq of tags{}{}rel. freq of PE reads:\n".format(sep, sep, sep, sep, sep)) output_file.write("{}{}{}unique:{}total{}unique{}total:\n".format(sep, sep, sep, sep, sep, sep)) output_file.write("SSCS ab{}{}{}{}{}{:.3f}{}{:.3f}{}{:.3f}{}{:.3f}\n".format( sep, len(dataAB), sep, sum(dataAB_o), sep, float(len(dataAB)) / (len(dataAB) + len(dataBA) + len(duplTags)), sep, float(len(dataAB)) / (len(ab) + len(ba)), sep, float(sum(dataAB_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, float(sum(dataAB_o)) / (sum(ab_o) + sum(ba_o)))) output_file.write("SSCS ba{}{}{}{}{}{:.3f}{}{:.3f}{}{:.3f}{}{:.3f}\n".format( sep, len(dataBA), sep, sum(dataBA_o), sep, float(len(dataBA)) / (len(dataAB) + len(dataBA) + len(duplTags)), sep, float(len(dataBA)) / (len(ab) + len(ba)), sep, float(sum(dataBA_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, float(sum(dataBA_o)) / (sum(ab_o) + sum(ba_o)))) output_file.write( "DCS (total){}{} ({}){}{} ({}){}{:.3f}{}{:.3f} ({:.3f}){}{:.3f}{}{:.3f} ({:.3f})\n".format( sep, len(duplTags), len(duplTags_double), sep, sum(duplTags_o), sum(duplTags_double_o), sep, float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), sep, float(len(duplTags)) / (len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba)), sep, float(sum(duplTags_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, float(sum(duplTags_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_double_o)) / (sum(ab_o) + sum(ba_o)))) output_file.write("total nr. of tags{}{}{}{}{}{}{}{}{}{}{}{}\n".format( sep, (len(dataAB) + len(dataBA) + len(duplTags)), sep, (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, (len(dataAB) + len(dataBA) + len(duplTags)), sep, (len(ab) + len(ba)), sep, (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, (sum(ab_o) + sum(ba_o)))) # information for FS >= 3 output_file.write( "\nFS >= 3{}nr. of tags{}nr. of PE reads{}rel. freq of tags{}{}rel. freq of PE reads:\n".format(sep, sep, sep, sep, sep)) output_file.write("{}{}{}unique:{}total{}unique{}total:\n".format(sep, sep, sep, sep, sep, sep)) output_file.write("SSCS ab{}{}{}{}{}{:.3f}{}{:.3f}{}{:.3f}{}{:.3f}\n".format( sep, len(dataAB_FS3), sep, sum(dataAB_FS3_o), sep, float(len(dataAB_FS3)) / (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(dataAB_FS3)) / (len(dataBA_FS3) + len(dataBA_FS3) + duplTags_double_FS3), sep, float(sum(dataAB_FS3_o)) / (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, float(sum(dataAB_FS3_o)) / (sum(dataBA_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o))) output_file.write("SSCS ba{}{}{}{}{}{:.3f}{}{:.3f}{}{:.3f}{}{:.3f}\n".format( sep, len(dataBA_FS3), sep, sum(dataBA_FS3_o), sep, float(len(dataBA_FS3)) / (len(dataBA_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(dataBA_FS3)) / (len(dataBA_FS3) + len(dataBA_FS3) + duplTags_double_FS3), sep, float(sum(dataBA_FS3_o)) / (sum(dataBA_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, float(sum(dataBA_FS3_o)) / (sum(dataBA_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o))) output_file.write( "DCS (total){}{} ({}){}{} ({}){}{:.3f}{}{:.3f} ({:.3f}){}{:.3f}{}{:.3f} ({:.3f})\n".format( sep, len(duplTags_FS3), duplTags_double_FS3, sep, sum(duplTags_FS3_o), duplTags_double_FS3_o, sep, float(len(duplTags_FS3)) / (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(duplTags_FS3)) / (len(dataAB_FS3) + len(dataBA_FS3) + duplTags_double_FS3), float(duplTags_double_FS3) / (len(dataAB_FS3) + len(dataBA_FS3) + duplTags_double_FS3), sep, float(sum(duplTags_FS3_o)) / (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, float(sum(duplTags_FS3_o)) / (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o), float(duplTags_double_FS3_o) / (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o))) output_file.write("total nr. of tags{}{}{}{}{}{}{}{}{}{}{}{}\n".format( sep, (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, (len(dataAB_FS3) + len(dataBA_FS3) + duplTags_double_FS3), sep, (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o))) counts = [numpy.bincount(dk, minlength=22)[1:] for dk in list1] # original counts of family sizes output_file.write("\nValues from family size distribution based on families\n") output_file.write("{}duplex{}ab{}ba{}sum\n".format(sep, sep, sep, sep)) j = 0 for fs in bins: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) for n in range(3): output_file.write("{}{}".format(int(counts[n][j]), sep)) output_file.write("{}\n".format(counts[0][j] + counts[1][j] + counts[2][j])) j += 1 output_file.write("sum{}".format(sep)) for i in counts: output_file.write("{}{}".format(int(sum(i)), sep)) output_file.write("{}\n".format(sum(counts[0] + counts[1] + counts[2]))) output_file.write("\nValues from family size distribution based on PE reads\n") output_file.write("{}duplex{}ab{}ba{}sum\n".format(sep, sep, sep, sep)) j = 0 for fs in bins: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) for n in range(3): output_file.write("{}{}".format(int(reads[n][j]), sep)) output_file.write("{}\n".format(reads[0][j] + reads[1][j] + reads[2][j])) j += 1 output_file.write("sum{}".format(sep)) for i in reads: output_file.write("{}{}".format(int(sum(i)), sep)) output_file.write("{}\n".format(sum(reads[0] + reads[1] + reads[2]))) print("Files successfully created!") if __name__ == '__main__': sys.exit(compare_read_families(sys.argv))
mit
alex-pirozhenko/sklearn-pmml
sklearn_pmml/test/__init__.py
5
3227
import os from unittest import TestCase from sklearn.base import BaseEstimator try: import cPickle as pickle except: import pickle from sklearn_pmml.convert import * from sklearn_pmml import pmml class TestSerializationMeta(type): TEST_DIR = os.path.dirname(__file__) DATA_DIR = os.path.join(TEST_DIR, 'data') ESTIMATOR_FILE_NAME = 'estimator.pkl' PMML_FILE_NAME = 'document.pmml' CONTEXT_FILE_NAME = 'context.pkl' def __new__(mcs, name, bases, d): """ This method overrides default behaviour for creation of new instances. For every directory abc in data it creates a method called test_abc, with the body of load_and_compare function. """ def gen_test(suite_name): def load_and_compare(self): # load the context.pkl, document.pmml and estimator.pkl suite_path = os.path.join(mcs.DATA_DIR, suite_name) content = os.listdir(suite_path) assert len(content) == 3, 'There should be exactly two files in the suite directory' assert mcs.ESTIMATOR_FILE_NAME in content, 'Estimator should be stored in {} file'.format(mcs.ESTIMATOR_FILE_NAME) assert mcs.PMML_FILE_NAME in content, 'PMML should be stored in {} file'.format(mcs.PMML_FILE_NAME) assert mcs.CONTEXT_FILE_NAME in content, 'Context should be stored in {} file'.format(mcs.CONTEXT_FILE_NAME) with open(os.path.join(suite_path, mcs.ESTIMATOR_FILE_NAME), 'r') as est_file: est = pickle.load(est_file) assert isinstance(est, BaseEstimator), '{} should be a trained estimator'.format(mcs.ESTIMATOR_FILE_NAME) with open(os.path.join(suite_path, mcs.CONTEXT_FILE_NAME), 'r') as ctx_file: ctx = pickle.load(ctx_file) assert isinstance(ctx, TransformationContext), '{} should be a transformation context'.format(mcs.CONTEXT_FILE_NAME) converter = find_converter(est) assert converter is not None, 'Can not find converter for {}'.format(est) transformed_pmml = converter(est, ctx).pmml() with open(os.path.join(suite_path, mcs.PMML_FILE_NAME), 'r') as pmml_file: loaded_pmml = pmml.CreateFromDocument('\n'.join(pmml_file.readlines())) self.maxDiff = None # make sure that the expected PMML matches the produced one self.assertEquals(loaded_pmml.toDOM().toprettyxml(), transformed_pmml.toDOM().toprettyxml()) return load_and_compare # for every batch in the data dir create a corresponding test method for case in os.listdir(TestSerializationMeta.DATA_DIR): test_name = 'test_{}'.format(case) d[test_name] = gen_test(case) return type.__new__(mcs, name, bases, d) class TestSerialization(TestCase): """ This is an automated tester for serializers. It uses a custom metaclass to define the test cases based on the content of the data directory. For the logic behind every check see load_and_compare method above. """ __metaclass__ = TestSerializationMeta
mit
subutai/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_macosx.py
69
15397
from __future__ import division import os import numpy from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureManagerBase, FigureCanvasBase, NavigationToolbar2 from matplotlib.cbook import maxdict from matplotlib.figure import Figure from matplotlib.path import Path from matplotlib.mathtext import MathTextParser from matplotlib.colors import colorConverter from matplotlib.widgets import SubplotTool import matplotlib from matplotlib.backends import _macosx def show(): """Show all the figures and enter the Cocoa mainloop. This function will not return until all windows are closed or the interpreter exits.""" # Having a Python-level function "show" wrapping the built-in # function "show" in the _macosx extension module allows us to # to add attributes to "show". This is something ipython does. _macosx.show() class RendererMac(RendererBase): """ The renderer handles drawing/rendering operations. Most of the renderer's methods forwards the command to the renderer's graphics context. The renderer does not wrap a C object and is written in pure Python. """ texd = maxdict(50) # a cache of tex image rasters def __init__(self, dpi, width, height): RendererBase.__init__(self) self.dpi = dpi self.width = width self.height = height self.gc = GraphicsContextMac() self.mathtext_parser = MathTextParser('MacOSX') def set_width_height (self, width, height): self.width, self.height = width, height def draw_path(self, gc, path, transform, rgbFace=None): if rgbFace is not None: rgbFace = tuple(rgbFace) if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc gc.draw_path(path, transform, rgbFace) def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): if rgbFace is not None: rgbFace = tuple(rgbFace) if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc gc.draw_markers(marker_path, marker_trans, path, trans, rgbFace) def draw_path_collection(self, *args): gc = self.gc args = args[:13] gc.draw_path_collection(*args) def draw_quad_mesh(self, *args): gc = self.gc gc.draw_quad_mesh(*args) def new_gc(self): self.gc.reset() return self.gc def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): im.flipud_out() nrows, ncols, data = im.as_rgba_str() self.gc.draw_image(x, y, nrows, ncols, data, bbox, clippath, clippath_trans) im.flipud_out() def draw_tex(self, gc, x, y, s, prop, angle): if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc # todo, handle props, angle, origins size = prop.get_size_in_points() texmanager = self.get_texmanager() key = s, size, self.dpi, angle, texmanager.get_font_config() im = self.texd.get(key) # Not sure what this does; just copied from backend_agg.py if im is None: Z = texmanager.get_grey(s, size, self.dpi) Z = numpy.array(255.0 - Z * 255.0, numpy.uint8) gc.draw_mathtext(x, y, angle, Z) def _draw_mathtext(self, gc, x, y, s, prop, angle): if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc size = prop.get_size_in_points() ox, oy, width, height, descent, image, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) gc.draw_mathtext(x, y, angle, 255 - image.as_array()) def draw_text(self, gc, x, y, s, prop, angle, ismath=False): if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc if ismath: self._draw_mathtext(gc, x, y, s, prop, angle) else: family = prop.get_family() size = prop.get_size_in_points() weight = prop.get_weight() style = prop.get_style() gc.draw_text(x, y, unicode(s), family, size, weight, style, angle) def get_text_width_height_descent(self, s, prop, ismath): if ismath=='TeX': # TODO: handle props size = prop.get_size_in_points() texmanager = self.get_texmanager() Z = texmanager.get_grey(s, size, self.dpi) m,n = Z.shape # TODO: handle descent; This is based on backend_agg.py return n, m, 0 if ismath: ox, oy, width, height, descent, fonts, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) return width, height, descent family = prop.get_family() size = prop.get_size_in_points() weight = prop.get_weight() style = prop.get_style() return self.gc.get_text_width_height_descent(unicode(s), family, size, weight, style) def flipy(self): return False def points_to_pixels(self, points): return points/72.0 * self.dpi def option_image_nocomposite(self): return True class GraphicsContextMac(_macosx.GraphicsContext, GraphicsContextBase): """ The GraphicsContext wraps a Quartz graphics context. All methods are implemented at the C-level in macosx.GraphicsContext. These methods set drawing properties such as the line style, fill color, etc. The actual drawing is done by the Renderer, which draws into the GraphicsContext. """ def __init__(self): GraphicsContextBase.__init__(self) _macosx.GraphicsContext.__init__(self) def set_foreground(self, fg, isRGB=False): if not isRGB: fg = colorConverter.to_rgb(fg) _macosx.GraphicsContext.set_foreground(self, fg) def set_clip_rectangle(self, box): GraphicsContextBase.set_clip_rectangle(self, box) if not box: return _macosx.GraphicsContext.set_clip_rectangle(self, box.bounds) def set_clip_path(self, path): GraphicsContextBase.set_clip_path(self, path) if not path: return path = path.get_fully_transformed_path() _macosx.GraphicsContext.set_clip_path(self, path) ######################################################################## # # The following functions and classes are for pylab and implement # window/figure managers, etc... # ######################################################################## def draw_if_interactive(): """ For performance reasons, we don't want to redraw the figure after each draw command. Instead, we mark the figure as invalid, so that it will be redrawn as soon as the event loop resumes via PyOS_InputHook. This function should be called after each draw event, even if matplotlib is not running interactively. """ figManager = Gcf.get_active() if figManager is not None: figManager.canvas.invalidate() def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) figure = FigureClass(*args, **kwargs) canvas = FigureCanvasMac(figure) manager = FigureManagerMac(canvas, num) return manager class FigureCanvasMac(_macosx.FigureCanvas, FigureCanvasBase): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance Events such as button presses, mouse movements, and key presses are handled in the C code and the base class methods button_press_event, button_release_event, motion_notify_event, key_press_event, and key_release_event are called from there. """ def __init__(self, figure): FigureCanvasBase.__init__(self, figure) width, height = self.get_width_height() self.renderer = RendererMac(figure.dpi, width, height) _macosx.FigureCanvas.__init__(self, width, height) def resize(self, width, height): self.renderer.set_width_height(width, height) dpi = self.figure.dpi width /= dpi height /= dpi self.figure.set_size_inches(width, height) def print_figure(self, filename, dpi=None, facecolor='w', edgecolor='w', orientation='portrait', **kwargs): if dpi is None: dpi = matplotlib.rcParams['savefig.dpi'] filename = unicode(filename) root, ext = os.path.splitext(filename) ext = ext[1:].lower() if not ext: ext = "png" filename = root + "." + ext if ext=="jpg": ext = "jpeg" # save the figure settings origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() # set the new parameters self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) if ext in ('jpeg', 'png', 'tiff', 'gif', 'bmp'): width, height = self.figure.get_size_inches() width, height = width*dpi, height*dpi self.write_bitmap(filename, width, height) elif ext == 'pdf': self.write_pdf(filename) elif ext in ('ps', 'eps'): from backend_ps import FigureCanvasPS # Postscript backend changes figure.dpi, but doesn't change it back origDPI = self.figure.dpi fc = self.switch_backends(FigureCanvasPS) fc.print_figure(filename, dpi, facecolor, edgecolor, orientation, **kwargs) self.figure.dpi = origDPI self.figure.set_canvas(self) elif ext=='svg': from backend_svg import FigureCanvasSVG fc = self.switch_backends(FigureCanvasSVG) fc.print_figure(filename, dpi, facecolor, edgecolor, orientation, **kwargs) self.figure.set_canvas(self) else: raise ValueError("Figure format not available (extension %s)" % ext) # restore original figure settings self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) class FigureManagerMac(_macosx.FigureManager, FigureManagerBase): """ Wrap everything up into a window for the pylab interface """ def __init__(self, canvas, num): FigureManagerBase.__init__(self, canvas, num) title = "Figure %d" % num _macosx.FigureManager.__init__(self, canvas, title) if matplotlib.rcParams['toolbar']=='classic': self.toolbar = NavigationToolbarMac(canvas) elif matplotlib.rcParams['toolbar']=='toolbar2': self.toolbar = NavigationToolbar2Mac(canvas) else: self.toolbar = None if self.toolbar is not None: self.toolbar.update() def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar != None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) # This is ugly, but this is what tkagg and gtk are doing. # It is needed to get ginput() working. self.canvas.figure.show = lambda *args: self.show() def show(self): self.canvas.draw() def close(self): Gcf.destroy(self.num) class NavigationToolbarMac(_macosx.NavigationToolbar): def __init__(self, canvas): self.canvas = canvas basedir = os.path.join(matplotlib.rcParams['datapath'], "images") images = {} for imagename in ("stock_left", "stock_right", "stock_up", "stock_down", "stock_zoom-in", "stock_zoom-out", "stock_save_as"): filename = os.path.join(basedir, imagename+".ppm") images[imagename] = self._read_ppm_image(filename) _macosx.NavigationToolbar.__init__(self, images) self.message = None def _read_ppm_image(self, filename): data = "" imagefile = open(filename) for line in imagefile: if "#" in line: i = line.index("#") line = line[:i] + "\n" data += line imagefile.close() magic, width, height, maxcolor, imagedata = data.split(None, 4) width, height = int(width), int(height) assert magic=="P6" assert len(imagedata)==width*height*3 # 3 colors in RGB return (width, height, imagedata) def panx(self, direction): axes = self.canvas.figure.axes selected = self.get_active() for i in selected: axes[i].xaxis.pan(direction) self.canvas.invalidate() def pany(self, direction): axes = self.canvas.figure.axes selected = self.get_active() for i in selected: axes[i].yaxis.pan(direction) self.canvas.invalidate() def zoomx(self, direction): axes = self.canvas.figure.axes selected = self.get_active() for i in selected: axes[i].xaxis.zoom(direction) self.canvas.invalidate() def zoomy(self, direction): axes = self.canvas.figure.axes selected = self.get_active() for i in selected: axes[i].yaxis.zoom(direction) self.canvas.invalidate() def save_figure(self): filename = _macosx.choose_save_file('Save the figure') if filename is None: # Cancel return self.canvas.print_figure(filename) class NavigationToolbar2Mac(_macosx.NavigationToolbar2, NavigationToolbar2): def __init__(self, canvas): NavigationToolbar2.__init__(self, canvas) def _init_toolbar(self): basedir = os.path.join(matplotlib.rcParams['datapath'], "images") _macosx.NavigationToolbar2.__init__(self, basedir) def draw_rubberband(self, event, x0, y0, x1, y1): self.canvas.set_rubberband(x0, y0, x1, y1) def release(self, event): self.canvas.remove_rubberband() def set_cursor(self, cursor): _macosx.set_cursor(cursor) def save_figure(self): filename = _macosx.choose_save_file('Save the figure') if filename is None: # Cancel return self.canvas.print_figure(filename) def prepare_configure_subplots(self): toolfig = Figure(figsize=(6,3)) canvas = FigureCanvasMac(toolfig) toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) return canvas def set_message(self, message): _macosx.NavigationToolbar2.set_message(self, message.encode('utf-8')) ######################################################################## # # Now just provide the standard names that backend.__init__ is expecting # ######################################################################## FigureManager = FigureManagerMac
agpl-3.0
ocefpaf/ulmo
ulmo/ncdc/cirs/core.py
1
13471
""" ulmo.ncdc.cirs.core ~~~~~~~~~~~~~~~~~~~ This module provides direct access to the `National Climatic Data Center`_ `Climate Index Reference Sequential (CIRS)`_ drought dataset. .. _National Climatic Data Center: http://www.ncdc.noaa.gov .. _Climate Index Reference Sequential (CIRS): http://www1.ncdc.noaa.gov/pub/data/cirs/ """ from builtins import str from builtins import range from past.builtins import basestring import distutils import os.path import pandas from ulmo import util CIRS_DIR = util.get_ulmo_dir('ncdc/cirs') NO_DATA_VALUES = { 'cddc': '-9999.', 'hddc': '-9999.', 'pcpn': '-9.99', 'pdsi': '-99.99', 'phdi': '-99.99', 'pmdi': '-99.99', 'sp01': '-99.99', 'sp02': '-99.99', 'sp03': '-99.99', 'sp06': '-99.99', 'sp09': '-99.99', 'sp12': '-99.99', 'sp24': '-99.99', 'tmpc': '-99.90', 'zndx': '-99.99', } def get_data(elements=None, by_state=False, location_names='abbr', as_dataframe=False, use_file=None): """Retrieves data. Parameters ---------- elements : ``None`, str or list The element(s) for which to get data for. If ``None`` (default), then all elements are used. An individual element is a string, but a list or tuple of them can be used to specify a set of elements. Elements are: * 'cddc': Cooling Degree Days * 'hddc': Heating Degree Days * 'pcpn': Precipitation * 'pdsi': Palmer Drought Severity Index * 'phdi': Palmer Hydrological Drought Index * 'pmdi': Modified Palmer Drought Severity Index * 'sp01': 1-month Standardized Precipitation Index * 'sp02': 2-month Standardized Precipitation Index * 'sp03': 3-month Standardized Precipitation Index * 'sp06': 6-month Standardized Precipitation Index * 'sp09': 9-month Standardized Precipitation Index * 'sp12': 12-month Standardized Precipitation Index * 'sp24': 24-month Standardized Precipitation Index * 'tmpc': Temperature * 'zndx': ZNDX by_state : bool If False (default), divisional data will be retrieved. If True, then regional data will be retrieved. location_names : str or ``None`` This parameter defines what (if any) type of names will be added to the values. If set to 'abbr' (default), then abbreviated location names will be used. If 'full', then full location names will be used. If set to None, then no location name will be added and the only identifier will be the location_codes (this is the most memory-conservative option). as_dataframe : bool If ``False`` (default), a list of values dicts is returned. If ``True``, a dict with element codes mapped to equivalent pandas.DataFrame objects will be returned. The pandas dataframe is used internally, so setting this to ``True`` is faster as it skips a somewhat expensive serialization step. use_file : ``None``, file-like object or str If ``None`` (default), then data will be automatically retrieved from the web. If a file-like object or a file path string, then the file will be used to read data from. This is intended to be used for reading in previously-downloaded versions of the dataset. Returns ------- data : list or pandas.DataFrame A list of value dicts or a pandas.DataFrame containing data. See the ``as_dataframe`` parameter for more. """ if isinstance(elements, basestring): elements = [elements] elif elements is None: elements = [ 'cddc', 'hddc', 'pcpn', 'pdsi', 'phdi', 'pmdi', 'sp01', 'sp02', 'sp03', 'sp06', 'sp09', 'sp12', 'sp24', 'tmpc', 'zndx', ] df = None for element in elements: element_file = _get_element_file(use_file, element, elements, by_state) element_df = _get_element_data(element, by_state, element_file, location_names) keys = ['location_code', 'year', 'month'] for append_key in ['division', 'state', 'state_code']: if append_key in element_df.columns: keys.append(append_key) element_df.set_index(keys, inplace=True) if df is None: df = element_df else: df = df.join(element_df, how='outer') df = df.reset_index() df = _resolve_location_names(df, location_names, by_state) if as_dataframe: return df else: return list(df.T.to_dict().values()) def _get_element_data(element, by_state, use_file, location_names): if use_file: url = None path = None else: url = _get_url(element, by_state) filename = url.rsplit('/', 1)[-1] path = os.path.join(CIRS_DIR, filename) with util.open_file_for_url(url, path, use_file=use_file) as f: element_df = _parse_values(f, by_state, location_names, element) return element_df def _get_element_file(use_file, element, elements, by_state): if isinstance(use_file, basestring): if os.path.basename(use_file) == '': if len(elements) > 1: assert ValueError( "'use_file' must be a path to a directory if using " "'use_file' with multiple elements") return use_file + _get_filename(element, by_state, os.path.dirname(use_file)) return use_file def _get_filename(element, by_state, dir_path): files = os.listdir(dir_path) return _most_recent(files, element, by_state) def _get_url(element, by_state): ftp_dir = "ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/" files = util.dir_list(ftp_dir) most_recent = _most_recent(files, element, by_state) return ftp_dir + most_recent def _most_recent(files, element, by_state): geographic_extent = 'st' if by_state else 'dv' match_str = 'climdiv-{element}{geographic_extent}'.format( element=element, geographic_extent=geographic_extent, ) matches = [s for s in files if s.startswith(match_str)] return sorted(matches, key=_file_key)[0] def _file_key(filename): version_str = filename.split('-')[2][1:] return distutils.version.StrictVersion(version_str) def _parse_values(file_handle, by_state, location_names, element): if by_state: id_columns = [ ('location_code', 0, 3, None), #('division', 3, 3, None), # ignored in state files #('element', 4, 6, None), # element is redundant ('year', 6, 10, None), ] else: id_columns = [ ('location_code', 0, 2, None), ('division', 2, 4, None), #('element', 4, 6, None), # element is redundant ('year', 6, 10, None), ] year_col_end = id_columns[-1][2] month_columns = [ (str(n), year_col_end - 6 + (7 * n), year_col_end + (7 * n), None) for n in range(1, 13) ] columns = id_columns + month_columns na_values = [NO_DATA_VALUES.get(element)] parsed = util.parse_fwf(file_handle, columns, na_values=na_values) month_columns = [id_column[0] for id_column in id_columns] melted = pandas.melt(parsed, id_vars=month_columns)\ .rename(columns={'variable': 'month'}) melted.month = melted.month.astype(int) # throw away NaNs melted = melted[melted['value'].notnull()] data = melted.rename(columns={ 'value': element, }) return data def _resolve_location_names(df, location_names, by_state): if location_names is None: return df elif location_names not in ('abbr', 'full'): raise ValueError("location_names should be set to either None, 'abbr' or 'full'") else: locations = _states_regions_dataframe()[location_names] with_locations = df.join(locations, on='location_code') if by_state: return with_locations.rename(columns={ location_names: 'location', }) else: return with_locations.rename(columns={ location_names: 'state', 'location_code': 'state_code', }) def _states_regions_dataframe(): """returns a dataframe indexed by state/region code with columns for the name and abbrevitation (abbr) to use """ STATES_REGIONS = { # code: (full name, abbrevation) 1: ("Alabama", "AL"), 2: ("Arizona", "AZ"), 3: ("Arkansas", "AR"), 4: ("California", "CA"), 5: ("Colorado", "CO"), 6: ("Connecticut", "CT"), 7: ("Delaware", "DE"), 8: ("Florida", "FL"), 9: ("Georgia", "GA"), 10: ("Idaho", "ID"), 11: ("Illinois", "IL"), 12: ("Indiana", "IN"), 13: ("Iowa", "IA"), 14: ("Kansas", "KS"), 15: ("Kentucky", "KY"), 16: ("Louisiana", "LA"), 17: ("Maine", "ME"), 18: ("Maryland", "MD"), 19: ("Massachusetts", "MA"), 20: ("Michigan", "MI"), 21: ("Minnesota", "MN"), 22: ("Mississippi", "MS"), 23: ("Missouri", "MO"), 24: ("Montana", "MT"), 25: ("Nebraska", "NE"), 26: ("Nevada", "NV"), 27: ("New Hampshire", "NH"), 28: ("New Jersey", "NJ"), 29: ("New Mexico", "NM"), 30: ("New York", "NY"), 31: ("North Carolina", "NC"), 32: ("North Dakota", "ND"), 33: ("Ohio", "OH"), 34: ("Oklahoma", "OK"), 35: ("Oregon", "OR"), 36: ("Pennsylvania", "PA"), 37: ("Rhode Island", "RI"), 38: ("South Carolina", "SC"), 39: ("South Dakota", "SD"), 40: ("Tennessee", "TN"), 41: ("Texas", "TX"), 42: ("Utah", "UT"), 43: ("Vermont", "VT"), 44: ("Virginia", "VA"), 45: ("Washington", "WA"), 46: ("West Virginia", "WV"), 47: ("Wisconsin", "WI"), 48: ("Wyoming", "WY"), 101: ("Northeast Region", "ner"), 102: ("East North Central Region", "encr"), 103: ("Central Region", "cr"), 104: ("Southeast Region", "ser"), 105: ("West North Central Region", "wncr"), 106: ("South Region", "sr"), 107: ("Southwest Region", "swr"), 108: ("Northwest Region", "nwr"), 109: ("West Region", "wr"), 110: ("National (contiguous 48 States)", "national"), # The following are the range of code values for the National Weather Service Regions, river basins, and agricultural regions. 111: ("NWS: Great Plains", "nws:gp"), 115: ("NWS: Southern Plains and Gulf Coast", "nws:spgc"), 120: ("NWS: US Rockies and Westward", "nws:usrw"), 121: ("NWS: Eastern Region", "nws:er"), 122: ("NWS: Southern Region", "nws:sr"), 123: ("NWS: Central Region", "nws:cr"), 124: ("NWS: Western Region", "nws:wr"), 201: ("NWS: Pacific Northwest Basin", "nws:pnwb"), 202: ("NWS: California River Basin", "nws:crb"), 203: ("NWS: Great Basin", "nws:gb"), 204: ("NWS: Lower Colorado River Basin", "nws:lcrb"), 205: ("NWS: Upper Colorado River Basin", "nws:urcb"), 206: ("NWS: Rio Grande River Basin", "nws:rgrb"), 207: ("NWS: Texas Gulf Coast River Basin", "nws:tgcrb"), 208: ("NWS: Arkansas-White-Red Basin", "nws:awrb"), 209: ("NWS: Lower Mississippi River Basin", "nws:lmrb"), 210: ("NWS: Missouri River Basin", "nws:mrb"), 211: ("NWS: Souris-Red-Rainy Basin", "nws:srrb"), 212: ("NWS: Upper Mississippi River Basin", "nws:umrb"), 213: ("NWS: Great Lakes Basin", "nws:glb"), 214: ("NWS: Tennessee River Basin", "nws:trb"), 215: ("NWS: Ohio River Basin", "nws:ohrb"), 216: ("NWS: South Atlantic-Gulf Basin", "nws:sagb"), 217: ("NWS: Mid-Atlantic Basin", "nws:mab"), 218: ("NWS: New England Basin", "nws:neb"), 220: ("NWS: Mississippi River Basin & Tributaties (N. of Memphis, TN", "nws:mrbt"), # below( codes are weighted by area) 250: ("Area: Spring Wheat Belt", "area:swb"), 255: ("Area: Primary Hard Red Winter Wheat Belt", "area:phrwwb"), 256: ("Area: Winter Wheat Belt", "area:wwb"), 260: ("Area: Primary Corn and Soybean Belt", "area:pcsb"), 261: ("Area: Corn Belt", "area:cb"), 262: ("Area: Soybean Belt", "area:sb"), 265: ("Area: Cotton Belt", "area:cb"), # below( codes are weighted by productivity) 350: ("Prod: Spring Wheat Belt", "prod:swb"), 356: ("Prod: Winter Wheat Belt", "prod:wwb"), 361: ("Prod: Corn Belt", "prod:cb"), 362: ("Prod: Soybean Belt", "prod:sb"), 365: ("Prod: Cotton Belt", "prod:cb"), # below( codes are for percent productivity in the Palmer Z Index categories) 450: ("% Prod: Spring Wheat Belt", "%prod:swb"), 456: ("% Prod: Winter Wheat Belt", "%prod:wwb"), 461: ("% Prod: Corn Belt", "%prod:cb"), 462: ("% Prod: Soybean Belt", "%prod:sb"), 465: ("% Prod: Cotton Belt", "%prod:cb"), } return pandas.DataFrame(STATES_REGIONS).T.rename(columns={0: 'full', 1: 'abbr'})
bsd-3-clause
ppham27/MLaPP-solutions
chap07/linreg.py
1
1795
import numpy as np import matplotlib.pyplot as plt def plot_xy(x, y, ax=None): if ax == None: ax = plt.gca() ax.scatter(x, y) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_title("Training data") ax.grid(True) def plot_abline(slope, intercept, xmin, xmax, ax=None): if ax == None: ax = plt.gca() ax.plot([xmin, xmax], [xmin*slope + intercept, xmax*slope + intercept], linewidth=3, color='red') class SimpleOnlineLinearRegressor: ## keep track of sufficient statistics def __init__(self): self.N = 0 self.x_sum = 0 self.y_sum = 0 self.x_squared_sum = 0 self.y_squared_sum = 0 self.xy_sum = 0 self.w0 = 0 self.w1 = 0 self.sigma2 = 0 def predict(self, X): return self.w0 + self.w1*X def fit(self, X, y): cov = np.cov(X,y,bias=True) self.N = len(y) self.w1 = cov[0,1]/cov[0,0] self.w0 = np.mean(y) - self.w1*np.mean(X) self.sigma2 = np.dot(y - self.w0 - self.w1*X, y - self.w0 - self.w1*X)/self.N def partial_fit(self, x, y): self.N += 1 self.x_sum += x self.y_sum += y self.x_squared_sum += x*x self.y_squared_sum += y*y self.xy_sum += x*y if self.N > 1: self.w1 = (self.xy_sum - self.x_sum*self.y_sum/self.N)/(self.x_squared_sum - self.x_sum*self.x_sum/self.N) self.w0 = (self.y_sum - self.w1*self.x_sum)/self.N self.sigma2 = self.w0*self.w0 + (self.y_squared_sum - 2*self.w0*self.y_sum - 2*self.w1*self.xy_sum + 2*self.w0*self.w1*self.x_sum + self.w1*self.w1*self.x_squared_sum)/self.N def get_params(self): return {'intercept': self.w0, 'slope': self.w1, 'variance': self.sigma2}
mit
postvakje/sympy
examples/intermediate/mplot3d.py
93
1252
#!/usr/bin/env python """Matplotlib 3D plotting example Demonstrates plotting with matplotlib. """ import sys from sample import sample from sympy import sin, Symbol from sympy.external import import_module def mplot3d(f, var1, var2, show=True): """ Plot a 3d function using matplotlib/Tk. """ import warnings warnings.filterwarnings("ignore", "Could not match \S") p = import_module('pylab') # Try newer version first p3 = import_module('mpl_toolkits.mplot3d', __import__kwargs={'fromlist': ['something']}) or import_module('matplotlib.axes3d') if not p or not p3: sys.exit("Matplotlib is required to use mplot3d.") x, y, z = sample(f, var1, var2) fig = p.figure() ax = p3.Axes3D(fig) # ax.plot_surface(x, y, z, rstride=2, cstride=2) ax.plot_wireframe(x, y, z) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') if show: p.show() def main(): x = Symbol('x') y = Symbol('y') mplot3d(x**2 - y**2, (x, -10.0, 10.0, 20), (y, -10.0, 10.0, 20)) # mplot3d(x**2+y**2, (x, -10.0, 10.0, 20), (y, -10.0, 10.0, 20)) # mplot3d(sin(x)+sin(y), (x, -3.14, 3.14, 10), (y, -3.14, 3.14, 10)) if __name__ == "__main__": main()
bsd-3-clause
larsmans/scikit-learn
sklearn/cluster/tests/test_mean_shift.py
19
2844
""" Testing for mean shift clustering methods """ import numpy as np from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.cluster import MeanShift from sklearn.cluster import mean_shift from sklearn.cluster import estimate_bandwidth from sklearn.cluster import get_bin_seeds from sklearn.datasets.samples_generator import make_blobs n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=300, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=11) def test_estimate_bandwidth(): """Test estimate_bandwidth""" bandwidth = estimate_bandwidth(X, n_samples=200) assert_true(0.9 <= bandwidth <= 1.5) def test_mean_shift(): """ Test MeanShift algorithm """ bandwidth = 1.2 ms = MeanShift(bandwidth=bandwidth) labels = ms.fit(X).labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) cluster_centers, labels = mean_shift(X, bandwidth=bandwidth) labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) def test_meanshift_predict(): """Test MeanShift.predict""" ms = MeanShift(bandwidth=1.2) labels = ms.fit_predict(X) labels2 = ms.predict(X) assert_array_equal(labels, labels2) def test_unfitted(): """Non-regression: before fit, there should be not fitted attributes.""" ms = MeanShift() assert_false(hasattr(ms, "cluster_centers_")) assert_false(hasattr(ms, "labels_")) def test_bin_seeds(): """ Test the bin seeding technique which can be used in the mean shift algorithm """ # Data is just 6 points in the plane X = np.array([[1., 1.], [1.5, 1.5], [1.8, 1.2], [2., 1.], [2.1, 1.1], [0., 0.]]) # With a bin coarseness of 1.0 and min_bin_freq of 1, 3 bins should be # found ground_truth = set([(1., 1.), (2., 1.), (0., 0.)]) test_bins = get_bin_seeds(X, 1, 1) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin coarseness of 1.0 and min_bin_freq of 2, 2 bins should be # found ground_truth = set([(1., 1.), (2., 1.)]) test_bins = get_bin_seeds(X, 1, 2) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin size of 0.01 and min_bin_freq of 1, 6 bins should be found test_bins = get_bin_seeds(X, 0.01, 1) test_result = set([tuple(p) for p in test_bins]) assert_true(len(test_result) == 6)
bsd-3-clause
aburrell/davitpy
davitpy/pydarn/plotting/rti.py
1
46845
# -*- coding: utf-8 -*- # Copyright (C) 2012 VT SuperDARN Lab # Full license can be found in LICENSE.txt # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """Range-time-intensity plotting A module for generating rti plots. Module author: AJ, 20130123 Functions -------------------------------------------------- plot_rti range-time-intensity plot plot_freq TX frequency data plot_searchnoise noise panel plot_skynoise sky noise panel plot_cpid control program ID panel plot_nave number of averges panel rti_title title an rti plot draw_axes draw empty axes read_data read data in rti_panel plot the main rti data daynight_terminator calculate day/night terminator -------------------------------------------------- """ import logging def plot_rti(sTime, rad, eTime=None, bmnum=7, fileType='fitacf', params=['power', 'velocity', 'width'], scales=[], channel=None, coords='gate', colors='lasse', yrng=-1, gsct=False, low_gray=False, show=True, filtered=False, fileName=None, txfreq_lims=None, myFile=None, xtick_size=9, ytick_size=9, xticks=None, axvlines=None, plot_terminator=False, cpidchange_lims=20): """ Create an rti plot for a specified radar and time period. Parameters ---------- sTime : datetime a datetime object indicating the start time which you would like to plot rad : str the 3 letter radar code, e.g. 'bks' eTime : Optional[datetime] a datetime object indicating th end time you would like plotted. If this is None, 24 hours will be plotted. default = None. bmnum : Optional[int] The beam to plot. default: 7 fileType : Optional[str] The file type to be plotted, one of ['fitex', 'fitacf', 'lmfit']. default = 'fitex'. params : Optional[list] a list of the fit parameters to plot, allowable values are: ['velocity', 'power', 'width', 'elevation', 'phi0']. default: ['velocity', 'power', 'width'] scales : Optional[list] a list of the min/max values for the color scale for each param. If omitted, default scales will be used. If present, the list should be n x 2 where n is the number of elements in the params list. Use an empty list for default range, e.g. [[-250,300],[],[]]. default: [[-200,200], [0,30],[0,150]] channel : Optional[char] the channel you wish to plot, e.g. 'a', 'b', 'c', ... default: 'a' coords : Optional[str] the coordinates to use for the y axis. The allowable values are 'gate', 'rng', 'geo', 'mag' default: 'gate' colors : Optional[str] a string indicating what color bar to use, valid inputs are 'lasse' or 'aj'. Also can be a list of matplotlib colormaps names, for example ['jet','jet','jet'] if len(param)==3. default: 'lasse'. yrng : Optional[list or -1] a list indicating the min and max values for the y axis in the chosen coordinate system, or a -1 indicating to plot everything. default: -1. gsct : Optional[boolean] a flag indicating whether to plot ground scatter as gray. default: False (ground scatter plotted normally) low_gray : Optional[boolean] a flag indicating whether to plot low velocity scatter as gray. default: False (low velocity scatter plotted normally) show : Optional[boolean] a flag indicating whether to display the figure on the screen. This can cause problems over ssh. default = True filtered : Optional[boolean] a flag indicating whether to boxcar filter the data. default: False (no filter) fileName : Optional[string] If you want to plot for a specific file, indicate the name of the file as fileName. Include the type of the file in custType. txfreq_lims : Optional[list] a list of the min/max values for the transmitter frequencies in kHz. If omitted, the default band will be used. If more than one band is specified, retfig will cause only the last one to be returned. default: [[8000,20000]] myFile : Optional[pydarn.sdio.radDataTypes.radDataPtr] contains the pipeline to the data we want to plot. If specified, data will be plotted from the file pointed to by myFile. default: None xtick_size : Optional[int] fontsize of xtick labels ytick_size : Optional[int] fontsize of ytick labels xticks : Optional[list] datetime.datetime objects indicating the location of xticks axvlines : Optoinal[list] datetime.datetime objects indicating the location vertical lines marking the plot plot_terminator : Optional[boolean] Overlay the day/night terminator. cpidchange_lims : Optional[int] Input the limit on the amount of CPID changes for the CPID panel. Default is 20. Returns ------- A list of figures of length len(tfreqbands) Example ------- import datetime as dt pydarn.plotting.rti.plot_rti(dt.datetime(2013,3,16), 'bks', eTime=dt.datetime(2013,3,16,14,30), bmnum=12, fileType='fitacf', scales=[[-500,500],[],[]], coords='geo', colors='aj', filtered=True, show=True, cpidchange_lims=2) Written by AJ 20121002 Modified by Matt W. 20130715 Modified by Nathaniel F. 20131031 (added plot_terminator) Modified by ASR 20150917 (refactored) """ import os from davitpy import pydarn from davitpy import utils import numpy as np from datetime import datetime, timedelta from matplotlib import pyplot from matplotlib.dates import DateFormatter import matplotlib.cm as cm # Time how long this is going to take timing_start = datetime.now() # NOTE TO DEVS: List of available params. Can be simply expanded # as more parameters are added to SuperDARN data set (like index # of refraction) available_params = ['power', 'velocity', 'width', 'elevation', 'phi0', 'velocity_error'] default_scales = [[0, 30], [-200, 200], [0, 150], [0, 50], [-np.pi, np.pi], [0, 200]] available_text = 'Allowable parameters are ' for p in available_params: available_text = available_text + p + ', ' available_text = available_text[:-2] # Check the inputs assert(isinstance(sTime, datetime)), logging.error( 'sTime must be a datetime object') assert(isinstance(rad, str) and len(rad) == 3), logging.error( 'rad must be a string 3 chars long') assert(isinstance(eTime, datetime) or eTime is None), ( logging.error('eTime must be a datetime object or None')) if eTime is None: eTime = sTime + timedelta(days=1) assert(sTime < eTime), logging.error("eTime must be greater than sTime!") assert(coords == 'gate' or coords == 'rng' or coords == 'geo' or coords == 'mag'), logging.error("coords must be one of 'gate', " "'rng', 'geo', 'mag'") assert(isinstance(bmnum, int)), logging.error('beam must be integer') assert(0 < len(params) < 6), ( logging.error('must input between 1 and 5 params in LIST form')) for i in range(0, len(params)): assert(params[i] in available_params), ( logging.error(available_text)) for i in range(0, len(scales)): assert(isinstance(scales[i], list)), ( logging.error('each item in scales must be a list of upper and ' 'lower bounds on paramaters.')) assert(scales == [] or len(scales) == len(params)), ( logging.error('if present, scales must have same number of elements ' 'as params')) assert(yrng == -1 or (isinstance(yrng, list) and yrng[0] <= yrng[1])), ( logging.error('yrng must equal -1 or be a list with the 2nd element ' 'larger than the first')) assert((colors == 'lasse' or colors == 'aj')) or isinstance(colors, list), ( logging.error("Valid inputs for color are 'lasse' and 'aj' or a list " "of matplotlib colormaps")) assert((isinstance(txfreq_lims, list) and len(txfreq_lims) == 2) or isinstance(txfreq_lims, type(None))), ( logging.error("txfreq_lims must be a list with the start and " "end frequencies")) assert((isinstance(cpidchange_lims, int) and cpidchange_lims > 0)), ( logging.error("cpidchange_lims must be an integer and greater " "than zero")) # Assign any default color scale parameter limits. tscales = [] for i in range(0, len(params)): if(scales == [] or scales[i] == []): if(params[i] in available_params): ind = available_params.index(params[i]) tscales.append(default_scales[ind]) else: tscales.append(scales[i]) scales = tscales # Assign default frequency band. if txfreq_lims is None: tband = [8000, 20000] else: assert(txfreq_lims[0] < txfreq_lims[1]), ( logging.error("Starting frequency must be less " "than ending frequency!")) tband = txfreq_lims # Open the file if a pointer was not given to us # if fileName is specified then it will be read. if not myFile: from davitpy.pydarn.sdio import radDataOpen myFile = radDataOpen(sTime, rad, eTime, channel=channel, bmnum=bmnum, fileType=fileType, filtered=filtered, fileName=fileName) # Check that we have data available now that we may have tried # to read it using radDataOpen. if myFile is None: logging.error('No files available for the requested ' 'time/radar/filetype combination') return None # Make sure that we will only plot data for the time range specified # by sTime and eTime. if (myFile.sTime <= sTime and myFile.eTime > sTime and myFile.eTime >= eTime): myFile.sTime = sTime myFile.eTime = eTime else: # If the times range is not covered by the file, warn the user. logging.warning('Data not available in myFile for the whole of ' 'sTime to eTime!') # Finally we can start reading the data file myBeam = myFile.readRec() if myBeam is None: logging.error('Problem reading the data.') return None # Now read the data that we need to make the plots data_dict = read_data(myFile, bmnum, params, tband) # Check to ensure that data exists for the requested frequency # band else continue on to the next range of frequencies if len(data_dict['freq']) == 0: logging.error('No data found in frequency range ' + str(tband[0]) + ' kHz to ' + str(tband[1]) + ' kHz') return None # Create a figure. rti_fig = pyplot.figure(figsize=(11, 8.5)) # Create the axes for noise, tx freq, and cpid. noise_pos = [.1, .88, .76, .06] freq_pos = [.1, .82, .76, .06] cpid_pos = [.1, .77, .76, .05] skynoise_ax = rti_fig.add_axes(noise_pos, label='sky') searchnoise_ax = rti_fig.add_axes(noise_pos, label='search', frameon=False) freq_ax = rti_fig.add_axes(freq_pos, label='freq') nave_ax = rti_fig.add_axes(freq_pos, label='nave', frameon=False) cpid_ax = rti_fig.add_axes(cpid_pos) # Give the plot a title. rti_title(rti_fig, sTime, rad, fileType, bmnum, eTime=eTime) # Plot the sky noise. plot_skynoise(skynoise_ax, data_dict['times'], data_dict['nsky']) # Plot the search noise. plot_searchnoise(searchnoise_ax, data_dict['times'], data_dict['nsch']) # plot the frequency bar. plot_freq(freq_ax, data_dict['times'], data_dict['freq']) # Plot the nave data. plot_nave(nave_ax, data_dict['times'], data_dict['nave']) # Plot the cpid bar plot_cpid(cpid_ax, data_dict['times'], data_dict['cpid'], data_dict['mode'], cpidchange_lims) # Plot each of the parameter panels. figtop = .77 if ((eTime - sTime) <= timedelta(days=1)) and \ (eTime.day == sTime.day): figheight = .72 / len(params) elif ((eTime - sTime) > timedelta(days=1)) or \ (eTime.day != sTime.day): figheight = .70 / len(params) for p in range(len(params)): # Use draw_axes to create and set formatting of the axes to # plot to. pos = [.1, figtop - figheight * (p + 1) + .02, .76, figheight - .02] ax = draw_axes(rti_fig, data_dict['times'], rad, data_dict['cpid'], bmnum, data_dict['nrang'], data_dict['frang'], data_dict['rsep'], p == len(params) - 1, yrng=yrng, coords=coords, pos=pos, xtick_size=xtick_size, ytick_size=ytick_size, xticks=xticks, axvlines=axvlines) if(params[p] == 'velocity'): pArr = data_dict['vel'] elif(params[p] == 'power'): pArr = data_dict['pow'] elif(params[p] == 'width'): pArr = data_dict['wid'] elif(params[p] == 'elevation'): pArr = data_dict['elev'] elif(params[p] == 'phi0'): pArr = data_dict['phi0'] elif(params[p] == 'velocity_error'): pArr = data_dict['velocity_error'] if(pArr == []): continue # Generate the color map. if colors in ['aj', 'lasse']: cmap, norm, bounds = utils.plotUtils.genCmap(params[p], scales[p], colors=colors, lowGray=low_gray) else: from matplotlib import colors as mpl_colors norm = mpl_colors.Normalize(vmin=scales[p][0], vmax=scales[p][1]) cmap = cm.get_cmap(colors[p]) # Plot the data to the axis object. pcoll = rti_panel(ax, data_dict, pArr, gsct, rad, bmnum, coords, cmap, norm, plot_terminator=plot_terminator) # Set xaxis formatting depending on amount of data plotted. if ((eTime - sTime) <= timedelta(days=1)) and \ (eTime.day == sTime.day): ax.xaxis.set_major_formatter(DateFormatter('%H:%M')) elif ((eTime - sTime) > timedelta(days=1)) or \ (eTime.day != sTime.day): ax.xaxis.set_major_formatter(DateFormatter('%d/%m/%y \n%H:%M')) ax.set_xlabel('UT') # Draw the colorbar. cb = utils.drawCB(rti_fig, pcoll, cmap, norm, map_plot=0, pos=[pos[0] + pos[2] + .02, pos[1], 0.02, pos[3]]) if colors in ['aj', 'lasse']: # Label the colorbar. l = [] # Define the colorbar labels. for i in range(0, len(bounds)): if(params[p] == 'phi0'): ln = 4 if(bounds[i] == 0): ln = 3 elif(bounds[i] < 0): ln = 5 l.append(str(bounds[i])[:ln]) continue if((i == 0 and (params[p] == 'velocity' or params[p] == 'velocity_error')) or i == len(bounds) - 1): l.append(' ') continue l.append(str(int(bounds[i]))) cb.ax.set_yticklabels(l) else: # Turn off the edges that are drawn by drawCB unless we are # doing 'aj' or 'lasse' colors cb.dividers.set_visible(False) # Set colorbar ticklabel size. for t in cb.ax.get_yticklabels(): t.set_fontsize(9) # Set colorbar label. if(params[p] == 'velocity'): cb.set_label('Velocity [m/s]', size=10) if(params[p] == 'grid'): cb.set_label('Velocity [m/s]', size=10) if(params[p] == 'power'): cb.set_label('SNR [dB]', size=10) if(params[p] == 'width'): cb.set_label('Spec Wid [m/s]', size=10) if(params[p] == 'elevation'): cb.set_label('Elev [deg]', size=10) if(params[p] == 'phi0'): cb.set_label('Phi0 [rad]', size=10) if(params[p] == 'velocity_error'): cb.set_label('Velocity Error [m/s]', size=10) if show: rti_fig.show() logging.info('plotting took:' + str(datetime.now() - timing_start)) return rti_fig def draw_axes(myFig, times, rad, cpid, bmnum, nrang, frang, rsep, bottom, yrng=-1, coords='gate', pos=[.1, .05, .76, .72], xtick_size=9, ytick_size=9, xticks=None, axvlines=None): """ Draws empty axes for an rti plot. Parameters ---------- myFig : the MPL figure we are plotting to times : list a list of datetime objects referencing the beam soundings rad : str 3 letter radar code cpid : list list of the cpids or the beam soundings bmnum : int beam number being plotted nrang : list list of nrang for the beam soundings frang : list list of frang of the beam soundings rsep : list list of rsep of the beam soundings bottom : bool flag indicating if we are at the bottom of the figure yrng : Optional[list] range of y axis, -1=autoscale (default) coords : Optional[ ] y axis coordinate system, acceptable values are 'geo', 'mag', 'gate', 'rng' pos : Optional[ ] position of the plot xtick_size : Optional[ ] fontsize of xtick labels ytick_size : Optional[ ] fontsize of ytick labels xticks : Optional[list] datetime.datetime objects indicating the location of xticks axvlines : Optional[list] datetime.datetime objects indicating the location vertical lines marking the plot Returns ------- ax : an axes object Example ------- ax = draw_axes(myFig,times,rad,cpid,beam,nrang,frang,rsep,0) Written by AJ 20121002 Modified by ASR 20150917 (refactored) """ from davitpy import pydarn from matplotlib.ticker import MultipleLocator, FormatStrFormatter from matplotlib.dates import SecondLocator, DateFormatter, date2num from matplotlib.lines import Line2D import numpy as np nrecs = len(times) # Add an axes object to the figure. ax = myFig.add_axes(pos) ax.yaxis.set_tick_params(direction='out') ax.xaxis.set_tick_params(direction='out') ax.yaxis.set_tick_params(direction='out', which='minor') ax.xaxis.set_tick_params(direction='out', which='minor') # Draw the axes. ax.plot_date(date2num(times), np.arange(len(times)), fmt='w', tz=None, xdate=True, ydate=False, alpha=0.0) # Determine the yaxis min/max unless it's been specified if(yrng == -1): ymin, ymax = 99999999, -999999999 if(coords != 'gate'): oldCpid = -99999999 for i in range(len(cpid)): if(cpid[i] == oldCpid): continue oldCpid = cpid[i] if(coords == 'geo' or coords == 'mag'): # HACK NOT SURE IF YOU CAN DO THIS(Formatting)! site = pydarn.radar.network().getRadarByCode(rad) \ .getSiteByDate(times[i]) myFov = pydarn.radar.radFov.fov(site=site, ngates=nrang[i], nbeams=site.maxbeam, rsep=rsep[i], coords=coords, date_time=times[i]) if(myFov.latFull[bmnum].max() > ymax): ymax = myFov.latFull[bmnum].max() if(myFov.latFull[bmnum].min() < ymin): ymin = myFov.latFull[bmnum].min() else: ymin = 0 if(nrang[i] * rsep[i] + frang[i] > ymax): ymax = nrang[i] * rsep[i] + frang[i] else: ymin, ymax = 0, max(nrang) else: ymin, ymax = yrng[0], yrng[1] # Format the xaxis. xmin = date2num(times[0]) xmax = date2num(times[len(times) - 1]) xrng = (xmax - xmin) inter = int(round(xrng / 6. * 86400.)) inter2 = int(round(xrng / 24. * 86400.)) ax.xaxis.set_minor_locator(SecondLocator(interval=inter2)) ax.xaxis.set_major_locator(SecondLocator(interval=inter)) # If axis is at bottom of figure, draw xticks. if(not bottom): for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(0) else: if xticks is not None: ax.xaxis.set_ticks(xticks) if axvlines is not None: for line in axvlines: ax.axvline(line, color='0.25', ls='--') for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(xtick_size) ax.xaxis.set_major_formatter(DateFormatter('%H:%M')) ax.xaxis.set_label_text('UT') # Set ytick size. for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(ytick_size) # Format yaxis depending on coords. if(coords == 'gate'): ax.yaxis.set_label_text('Range gate', size=10) ax.yaxis.set_major_formatter(FormatStrFormatter('%d')) ax.yaxis.set_major_locator(MultipleLocator((ymax - ymin) / 5.)) ax.yaxis.set_minor_locator(MultipleLocator((ymax - ymin) / 25.)) elif(coords == 'geo' or coords == 'mag'): if(coords == 'mag'): ax.yaxis.set_label_text('Mag Lat [deg]', size=10) else: ax.yaxis.set_label_text('Geo Lat [deg]', size=10) elif(coords == 'rng'): ax.yaxis.set_label_text('Slant Range [km]', size=10) ax.yaxis.set_major_formatter(FormatStrFormatter('%d')) ax.yaxis.set_major_locator(MultipleLocator(1000)) ax.yaxis.set_minor_locator(MultipleLocator(250)) ax.set_ylim(bottom=ymin, top=ymax) return ax def rti_title(fig, sTime, rad, fileType, beam, eTime=None, xmin=.1, xmax=.86): """Draws title for an rti plot. Parameters ---------- fig : matplotlib.figure.Figure a matplotlib.figure.Figure object sTime : datetime the start time for the data being plotted as a datetime object rad : str the 3 letter radar code fileType : str the file type being plotted beam : int the beam number being plotted eTime : Optional[datetime] the end time for the data being plotted as a datetime object xmin : Optional[ ] minimum x value o the plot in page coords xmax : Optional[ ] maximum x value o the plot in page coords Returns ------- Nothing. Example ------- import datetime as dt from matplotlib import pyplot fig = pyplot.figure() rti_title(fig,dt.datetime(2011,1,1),'bks','fitex',7) Written by AJ 20121002 Modified by ASR 20150916 """ from davitpy import pydarn from datetime import timedelta import calendar # Obtain the davitpy.pydarn.radar.radStruct.radar object for rad. r = pydarn.radar.network().getRadarByCode(rad) # Plot the main title fig.text(xmin, .95, r.name + ' (' + fileType + ')', ha='left', weight=550) # Determine what time information should be plotted in the secondary title if ((eTime is not None) and (((eTime - sTime) > timedelta(days=1)) or (eTime.day != sTime.day))): title_text = str(sTime.day) + ' ' \ + calendar.month_name[sTime.month][:3] + ' ' \ + str(sTime.year) + ' - ' + str(eTime.day) + ' ' \ + calendar.month_name[eTime.month][:3] + ' ' \ + str(eTime.year) else: title_text = str(sTime.day) + ' ' \ + calendar.month_name[sTime.month][:3] + ' ' \ + str(sTime.year) # Plot the secondary title. fig.text((xmin + xmax) / 2., .95, title_text, weight=550, size='large', ha='center') fig.text(xmax, .95, 'Beam ' + str(beam), weight=550, ha='right') def plot_cpid(ax, times, cpid, mode, cpidchange_lims): """Plots control program ID (cpid) panel at position pos. Parameters ---------- ax : a MPL axis object to plot to times : list a list of the times of the beam soundings cpid : list a list of the cpids of the beam soundings. mode : list a list of the ifmode param cpidchange_lims : int Limit on the number of times the cpid can change Returns ------- Nothing. Example ------- plot_cpid(ax,times,cpid,mode, cpidchange_lims=10) Written by AJ 20121002 Modified by ASR 20150916 """ from davitpy import pydarn from matplotlib.ticker import MultipleLocator from matplotlib.dates import SecondLocator from matplotlib.dates import date2num from datetime import timedelta import numpy as np oldCpid = -9999999 # Format the yaxis. ax.yaxis.tick_left() ax.yaxis.set_tick_params(direction='out') ax.set_ylim(bottom=0, top=1) ax.yaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_tick_params(direction='out', which='minor') # Draw the axes. ax.plot_date(date2num(times), np.arange(len(times)), fmt='w', tz=None, xdate=True, ydate=False, alpha=0.0) # Initialize CPID change counter cpid_change = 0 # Label the CPIDs. for i in range(0, len(times)): if(cpid[i] != oldCpid): cpid_change += 1 # If the cpid is changing too much, it won't be readible if (cpid_change >= cpidchange_lims): # Clear the current axis ax.cla() # Kick out error messages diff_time = (times[-1] - times[0]).total_seconds() / 2. cpid_time = times[0] + timedelta(seconds=diff_time) temp = ', '.join([str(x) for x in list(set(cpid))]) cpid_text = 'CPIDs: ' + temp ax.text(cpid_time, .5, cpid_text, ha='center', va='center', size=10) logging.error('CPID is changing too frequently to be ' 'legibly printed. Please consider using ' 'radDataOpen cp param. CPIDs found: ' + str(list(set(cpid)))) break ax.plot_date([date2num(times[i]), date2num(times[i])], [0, 1], fmt='k-', tz=None, xdate=True, ydate=False) oldCpid = cpid[i] s = ' ' + pydarn.radar.radUtils.getCpName(oldCpid) istr = ' ' if(mode[i] == 1): istr = ' IF' if(mode == 0): istr = ' RF' ax.text(times[i], .5, ' ' + str(oldCpid) + s + istr, ha='left', va='center', size=10) # Format the xaxis. xmin = date2num(times[0]) xmax = date2num(times[len(times) - 1]) xrng = (xmax - xmin) inter = int(round(xrng / 6. * 86400.)) inter2 = int(round(xrng / 24. * 86400.)) ax.xaxis.set_minor_locator(SecondLocator(interval=inter2)) ax.xaxis.set_major_locator(SecondLocator(interval=inter)) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(0) # Identify the CPID axis with a label. fig = ax.get_figure() bb = ax.get_position() x0 = bb.x0 y0 = bb.y0 height = bb.height width = bb.width pos = [x0, y0, width, height] fig.text(pos[0] - .07, pos[1] + pos[3] / 2., 'CPID', ha='center', va='center', size=8.5, rotation='vertical') ax.set_yticks([]) def plot_skynoise(ax, times, sky, xlim=None, xticks=None): """Plots a noise panel at position pos. Parameters ---------- ax : a MPL axis object to plot to times : list a list of the times of the beam soundings sky: list a list of the noise.sky of the beam soundings search : list a list of the noise.search param xlim : Optional[list] 2-element limits of the x-axis. None for default. xticks : Optional[list] List of xtick poisitions. None for default. Returns ------- Nothing Example ------- plot_skynoise(ax,times,sky) Written by AJ 20121002 Modified by NAF 20131101 Modified by ASR 20150916 """ from matplotlib.ticker import MultipleLocator from matplotlib.dates import date2num from matplotlib.lines import Line2D import numpy as np # Format the yaxis. ax.yaxis.tick_left() ax.yaxis.set_tick_params(direction='out') ax.set_ylim(bottom=0, top=6) ax.yaxis.set_minor_locator(MultipleLocator()) ax.yaxis.set_tick_params(direction='out', which='minor') # Plot the sky noise data. ax.plot_date(date2num(times), np.log10(sky), fmt='k-', tz=None, xdate=True, ydate=False) # Format the xaxis. if xlim is not None: ax.set_xlim(xlim) if xticks is not None: ax.set_xticks(xticks) # Add labels to identify the noise axis. fig = ax.get_figure() bb = ax.get_position() x0 = bb.x0 y0 = bb.y0 height = bb.height width = bb.width pos = [x0, y0, width, height] fig.text(pos[0] - .01, pos[1] + .004, '10^0', ha='right', va='bottom', size=8) fig.text(pos[0] - .01, pos[1] + pos[3], '10^6', ha='right', va='top', size=8) fig.text(pos[0] - .07, pos[1] + pos[3] / 2., 'N.Sky', ha='center', va='center', size=8.5, rotation='vertical') l = Line2D([pos[0] - .06, pos[0] - .06], [pos[1] + .01, pos[1] + pos[3] - .01], transform=fig.transFigure, clip_on=False, ls='-', color='k', lw=1.5) ax.add_line(l) ax.set_xticklabels([' ']) # Only use 2 major yticks. ax.set_yticks([0, 6]) ax.set_yticklabels([' ', ' ']) def plot_searchnoise(ax, times, search, xlim=None, xticks=None, ytickside='right'): """Plots a noise panel at position pos. Parameters ---------- ax : a MPL axis object to plot to times : list a list of the times of the beam soundings sky : list a list of the noise.sky of the beam soundings search : list a list of the noise.search param xlim : Optional[list] 2-element limits of the x-axis. None for default. xticks : Optional[list] List of xtick poisitions. None for default. ytickside : Optional[string] Default is right. Returns ------- Nothing Example ------- plot_searchnoise(ax,times,search) Written by AJ 20121002 Modified by NAF 20131101 Modified by ASR 20150916 """ from matplotlib.ticker import MultipleLocator from matplotlib.dates import date2num from matplotlib.lines import Line2D import numpy as np # Format the yaxis. ax.yaxis.tick_left() ax.yaxis.set_tick_params(direction='out') ax.set_ylim(bottom=0, top=6) ax.yaxis.set_minor_locator(MultipleLocator()) ax.yaxis.set_tick_params(direction='out', which='minor') # Plot the search noise data. ax.plot_date(date2num(times), np.log10(search), fmt='k:', tz=None, xdate=True, ydate=False, lw=1.5) # Format the xaxis. if xlim is not None: ax.set_xlim(xlim) if xticks is not None: ax.set_xticks(xticks) # Add labels to identify the noise axis. fig = ax.get_figure() bb = ax.get_position() x0 = bb.x0 y0 = bb.y0 height = bb.height width = bb.width pos = [x0, y0, width, height] fig.text(pos[0] + pos[2] + .01, pos[1] + .004, '10^0', ha='left', va='bottom', size=8) fig.text(pos[0] + pos[2] + .01, pos[1] + pos[3], '10^6', ha='left', va='top', size=8) fig.text(pos[0] + pos[2] + .06, pos[1] + pos[3] / 2., 'N.Sch', ha='center', va='center', size=8.5, rotation='vertical') l = Line2D([pos[0] + pos[2] + .07, pos[0] + pos[2] + .07], [pos[1] + .01, pos[1] + pos[3] - .01], transform=fig.transFigure, clip_on=False, ls=':', color='k', lw=1.5) ax.add_line(l) ax.set_xticklabels([' ']) # use only 2 major yticks ax.set_yticks([0, 6]) ax.set_yticklabels([' ', ' ']) if ytickside == 'right': ax.yaxis.tick_right() def plot_freq(ax, times, freq, xlim=None, xticks=None): """Plots the tx frequency data to an axis object. Parameters ---------- ax : a MPL axis object to plot to times : list a list of the times of the beam soundings freq : list a list of the tfreq of the beam soundings xlim : Optional[list] 2-element limits of the x-axis. None for default. xticks : Optional[list] List of xtick poisitions. None for default. Returns ------- Nothing. Example ------- plot_freq(ax, times, tfreq) Written by AJ 20121002 Modified by NAF 20131101 Modified by ASR 20150916 """ from matplotlib.ticker import MultipleLocator from matplotlib.dates import date2num from matplotlib.lines import Line2D # Format the yaxis. ax.yaxis.tick_left() ax.yaxis.set_tick_params(direction='out') ax.set_ylim(bottom=8, top=20) ax.yaxis.set_minor_locator(MultipleLocator()) ax.yaxis.set_tick_params(direction='out', which='minor') # Plot the TX frequency. ax.plot_date(date2num(times), freq, fmt='k-', tz=None, xdate=True, ydate=False, markersize=2) # Format the xaxis. if xlim is not None: ax.set_xlim(xlim) if xticks is not None: ax.set_xticks(xticks) # Add labels to identify the frequency axis. fig = ax.get_figure() bb = ax.get_position() x0 = bb.x0 y0 = bb.y0 height = bb.height width = bb.width pos = [x0, y0, width, height] fig.text(pos[0] - .01, pos[1] + .005, '10', ha='right', va='bottom', size=8) fig.text(pos[0] - .01, pos[1] + pos[3] - .015, '16', ha='right', va='top', size=8) fig.text(pos[0] - .07, pos[1] + pos[3] / 2., 'Freq', ha='center', va='center', size=9, rotation='vertical') fig.text(pos[0] - .05, pos[1] + pos[3] / 2., '[MHz]', ha='center', va='center', size=7, rotation='vertical') l = Line2D([pos[0] - .04, pos[0] - .04], [pos[1] + .01, pos[1] + pos[3] - .01], transform=fig.transFigure, clip_on=False, ls='-', color='k', lw=1.5) ax.add_line(l) ax.set_xticklabels([' ']) # use only 2 major yticks ax.set_yticks([10, 16]) ax.set_yticklabels([' ', ' ']) def plot_nave(ax, times, nave, xlim=None, xticks=None, ytickside='right'): """Plots the number of averages (nave) data to an axis object. Parameters ---------- ax : a MPL axis object to plot to times : list a list of the times of the beam soundings nave : list a list of the nave of the beam soundings xlim : Optional[list] 2-element limits of the x-axis. None for default. xticks : Optional[list] List of xtick poisitions. None for default. ytickside : Optional[str] Default is right. Returns ------- Nothing. Example ------- plot_nave(ax, times, nave) Written by AJ 20121002 Modified by NAF 20131101 Modified by ASR 20150916 """ from matplotlib.ticker import MultipleLocator from matplotlib.dates import date2num from matplotlib.lines import Line2D # Format the yaxis ax.yaxis.tick_left() ax.yaxis.set_tick_params(direction='out') ax.set_ylim(bottom=0, top=80) ax.yaxis.set_minor_locator(MultipleLocator(base=5)) ax.yaxis.set_tick_params(direction='out', which='minor') # Plot the number of averages. ax.plot_date(date2num(times), nave, fmt='k:', tz=None, xdate=True, ydate=False, markersize=2) # Format the xaxis. if xlim is not None: ax.set_xlim(xlim) if xticks is not None: ax.set_xticks(xticks) # Add labels to identify the nave axis. fig = ax.get_figure() bb = ax.get_position() x0 = bb.x0 y0 = bb.y0 height = bb.height width = bb.width pos = [x0, y0, width, height] fig.text(pos[0] + pos[2] + .01, pos[1] - .004, '0', ha='left', va='bottom', size=8) fig.text(pos[0] + pos[2] + .01, pos[1] + pos[3], '80', ha='left', va='top', size=8) fig.text(pos[0] + pos[2] + .06, pos[1] + pos[3] / 2., 'Nave', ha='center', va='center', size=8.5, rotation='vertical') l = Line2D([pos[0] + pos[2] + .07, pos[0] + pos[2] + .07], [pos[1] + .01, pos[1] + pos[3] - .01], transform=fig.transFigure, clip_on=False, ls=':', color='k', lw=1.5) ax.add_line(l) ax.set_xticklabels([' ']) # use only 2 major yticks ax.set_yticks([0, 80]) ax.set_yticklabels([' ', ' ']) if ytickside == 'right': ax.yaxis.tick_right() def read_data(myPtr, bmnum, params, tbands): """Reads data from the file pointed to by myPtr Parameter --------- myPtr : a davitpy file pointer object bmnum : int beam number of data to read in params : list a list of the parameters to read tbands : list a list of the frequency bands to separate data into Returns ------- A dictionary of the data. Data is stored in lists and separated in to tbands. Example ------- from davitpy import pydarn from datetime import datetime myPtr = pydarn.sdio.radDataOpen(datetime(2012,11,24),'sas') myBeam = myPtr.readRec() data_dict = read_data(myPtr, myBeam, 7, ['velocity'], [8000,20000]) Written by ASR 20150914 """ import numpy as np # Initialize some things. data = dict() data_keys = ['vel', 'pow', 'wid', 'elev', 'phi0', 'times', 'freq', 'cpid', 'nave', 'nsky', 'nsch', 'slist', 'mode', 'rsep', 'nrang', 'frang', 'gsflg', 'velocity_error'] for d in data_keys: data[d] = [] # Read the parameters of interest. myPtr.rewind() myBeam = myPtr.readRec() while(myBeam is not None): if(myBeam.time > myPtr.eTime): break if(myBeam.bmnum == bmnum and (myPtr.sTime <= myBeam.time)): if (myBeam.prm.tfreq >= tbands[0] and myBeam.prm.tfreq <= tbands[1]): data['times'].append(myBeam.time) data['cpid'].append(myBeam.cp) data['nave'].append(myBeam.prm.nave) data['nsky'].append(myBeam.prm.noisesky) data['rsep'].append(myBeam.prm.rsep) data['nrang'].append(myBeam.prm.nrang) data['frang'].append(myBeam.prm.frang) data['nsch'].append(myBeam.prm.noisesearch) data['freq'].append(myBeam.prm.tfreq / 1e3) data['slist'].append(myBeam.fit.slist) data['mode'].append(myBeam.prm.ifmode) data['gsflg'].append(myBeam.fit.gflg) # To save time and RAM, only keep the data specified # in params. if('velocity' in params): data['vel'].append(myBeam.fit.v) if('power' in params): data['pow'].append(myBeam.fit.p_l) if('width' in params): data['wid'].append(myBeam.fit.w_l) if('elevation' in params): data['elev'].append(myBeam.fit.elv) if('phi0' in params): data['phi0'].append(myBeam.fit.phi0) if('velocity_error' in params): data['velocity_error'].append(myBeam.fit.v_e) myBeam = myPtr.readRec() return data def rti_panel(ax, data_dict, pArr, gsct, rad, bmnum, coords, cmap, norm, plot_terminator=True): """Plots the data given by pArr to an axis object. Parameters ---------- ax : a MPL axis object to plot to data_dict : the data dictionary returned by pydarn.plotting.read_data pArr : list the list of data to be plotted (e.g. data_dict['vel'] for velocity) gsct : bool a boolean stating whether to flag ground scatter data or not rad : str the 3 letter radar code bmnum : int The beam number of the data to plot coords : str plotting coordinates ('gate', 'range', 'geo', 'mag') cmap : a matplotlib.colors.ListedColormap (such as that returned by utils.plotUtils.genCmap) norm : a matplotlib.colors.BoundaryNorm (such as that returned by utils.plotUtils.genCmap) plot_terminator : Optional[bool] A boolean stating whether or not to plot the terminator; default is true. Returns ------- pcoll the polygon collection returned by matplotib.pyplot.pcolormesh. Written by ASR 20150916 """ from davitpy import pydarn import matplotlib from matplotlib.dates import date2num, num2date import numpy as np # Initialize things. rmax = max(data_dict['nrang']) tmax = (len(data_dict['times'])) * 2 data = np.zeros((tmax, rmax)) * np.nan x = np.zeros(tmax) tcnt = 0 # Build a list of datetimes to plot each data point at. dt_list = [] for i in range(len(data_dict['times'])): x[tcnt] = date2num(data_dict['times'][i]) dt_list.append(data_dict['times'][i]) if(i < len(data_dict['times']) - 1): if(date2num(data_dict['times'][i + 1]) - x[tcnt] > 4. / 1440.): tcnt += 1 # 1440 minutes in a day, hardcoded 1 minute step per data point # but only if time between data points is > 4 minutes x[tcnt] = x[tcnt - 1] + 1. / 1440. dt_list.append(num2date(x[tcnt])) tcnt += 1 if(pArr[i] == [] or pArr[i] is None): continue if data_dict['slist'][i] is not None: for j in range(len(data_dict['slist'][i])): if(not gsct or data_dict['gsflg'][i][j] == 0): data[tcnt][data_dict['slist'][i][j]] = pArr[i][j] elif gsct and data_dict['gsflg'][i][j] == 1: data[tcnt][data_dict['slist'][i][j]] = -100000. # For geo or mag coords, get radar FOV lats/lons. if (coords != 'gate' and coords != 'rng') or plot_terminator is True: site = pydarn.radar.network().getRadarByCode(rad) \ .getSiteByDate(data_dict['times'][0]) myFov = pydarn.radar.radFov.fov(site=site, ngates=rmax, nbeams=site.maxbeam, rsep=data_dict['rsep'][0], coords=coords, date_time=data_dict['times'][0]) myLat = myFov.latCenter[bmnum] myLon = myFov.lonCenter[bmnum] # Determine the yaxis range limits to plot data to. if(coords == 'gate'): y = np.linspace(0, rmax, rmax + 1) elif(coords == 'rng'): y = np.linspace(data_dict['frang'][0], rmax * data_dict['rsep'][0], rmax + 1) else: y = myFov.latFull[bmnum] # Generate a mesh of x and y coords to plot data to. X, Y = np.meshgrid(x[:tcnt], y) # Calculate terminator as required. if plot_terminator: daylight = np.ones([len(dt_list), len(myLat)], np.bool) for tm_inx in range(len(dt_list)): tm = dt_list[tm_inx] term_lats, tau, dec = daynight_terminator(tm, myLon) if dec > 0: # NH Summer day_inx = np.where(myLat < term_lats)[0] else: day_inx = np.where(myLat > term_lats)[0] if day_inx.size != 0: daylight[tm_inx, day_inx] = False daylight = np.ma.array(daylight, mask=daylight) ax.pcolormesh(X, Y, daylight.T, lw=0, alpha=0.10, cmap=matplotlib.cm.binary_r, zorder=99) # Mask the nan's in the data array so they aren't plotted. Zm = np.ma.masked_where(np.isnan(data[:tcnt][:].T), data[:tcnt][:].T) # Set colormap so that masked data (bad) is transparent. cmap.set_bad('w', alpha=0.0) # Now let's plot all data. pcoll = ax.pcolormesh(X, Y, Zm, lw=0.01, edgecolors='None', cmap=cmap, norm=norm) return pcoll def daynight_terminator(date, lons): """ Return the coordinates of day/night terminator for RTI plotting. Parameters ---------- date : datetime.datetime a datetime.datetime object (assumed UTC) lons : list a numpy array of lons Returns ------- lat the latitude of the day night terminator tau grenwich hour angle dec solar declination """ import mpl_toolkits.basemap.solar as solar import numpy as np dg2rad = np.pi / 180. # compute greenwich hour angle and solar declination # from datetime object (assumed UTC). tau, dec = solar.epem(date) # compute day/night terminator from hour angle, declination. longitude = lons + tau lats = np.arctan(-np.cos(longitude * dg2rad) / np.tan(dec * dg2rad)) / dg2rad return lats, tau, dec
gpl-3.0
rohanp/scikit-learn
sklearn/tests/test_calibration.py
62
12288
# Authors: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import (assert_array_almost_equal, assert_equal, assert_greater, assert_almost_equal, assert_greater_equal, assert_array_equal, assert_raises, ignore_warnings, assert_warns_message) from sklearn.datasets import make_classification, make_blobs from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.svm import LinearSVC from sklearn.linear_model import Ridge from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.metrics import brier_score_loss, log_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.calibration import _sigmoid_calibration, _SigmoidCalibration from sklearn.calibration import calibration_curve @ignore_warnings def test_calibration(): """Test calibration objects with isotonic and sigmoid""" n_samples = 100 X, y = make_classification(n_samples=2 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test, y_test = X[n_samples:], y[n_samples:] # Naive-Bayes clf = MultinomialNB().fit(X_train, y_train, sample_weight=sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] pc_clf = CalibratedClassifierCV(clf, cv=y.size + 1) assert_raises(ValueError, pc_clf.fit, X, y) # Naive Bayes with calibration for this_X_train, this_X_test in [(X_train, X_test), (sparse.csr_matrix(X_train), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: pc_clf = CalibratedClassifierCV(clf, method=method, cv=2) # Note that this fit overwrites the fit on the entire training # set pc_clf.fit(this_X_train, y_train, sample_weight=sw_train) prob_pos_pc_clf = pc_clf.predict_proba(this_X_test)[:, 1] # Check that brier score has improved after calibration assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss(y_test, prob_pos_pc_clf)) # Check invariance against relabeling [0, 1] -> [1, 2] pc_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train) prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_pc_clf, prob_pos_pc_clf_relabeled) # Check invariance against relabeling [0, 1] -> [-1, 1] pc_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train) prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_pc_clf, prob_pos_pc_clf_relabeled) # Check invariance against relabeling [0, 1] -> [1, 0] pc_clf.fit(this_X_train, (y_train + 1) % 2, sample_weight=sw_train) prob_pos_pc_clf_relabeled = \ pc_clf.predict_proba(this_X_test)[:, 1] if method == "sigmoid": assert_array_almost_equal(prob_pos_pc_clf, 1 - prob_pos_pc_clf_relabeled) else: # Isotonic calibration is not invariant against relabeling # but should improve in both cases assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss((y_test + 1) % 2, prob_pos_pc_clf_relabeled)) # check that calibration can also deal with regressors that have # a decision_function clf_base_regressor = CalibratedClassifierCV(Ridge()) clf_base_regressor.fit(X_train, y_train) clf_base_regressor.predict(X_test) # Check failure cases: # only "isotonic" and "sigmoid" should be accepted as methods clf_invalid_method = CalibratedClassifierCV(clf, method="foo") assert_raises(ValueError, clf_invalid_method.fit, X_train, y_train) # base-estimators should provide either decision_function or # predict_proba (most regressors, for instance, should fail) clf_base_regressor = \ CalibratedClassifierCV(RandomForestRegressor(), method="sigmoid") assert_raises(RuntimeError, clf_base_regressor.fit, X_train, y_train) def test_sample_weight_warning(): n_samples = 100 X, y = make_classification(n_samples=2 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=len(y)) X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test = X[n_samples:] for method in ['sigmoid', 'isotonic']: base_estimator = LinearSVC(random_state=42) calibrated_clf = CalibratedClassifierCV(base_estimator, method=method) # LinearSVC does not currently support sample weights but they # can still be used for the calibration step (with a warning) msg = "LinearSVC does not support sample_weight." assert_warns_message( UserWarning, msg, calibrated_clf.fit, X_train, y_train, sample_weight=sw_train) probs_with_sw = calibrated_clf.predict_proba(X_test) # As the weights are used for the calibration, they should still yield # a different predictions calibrated_clf.fit(X_train, y_train) probs_without_sw = calibrated_clf.predict_proba(X_test) diff = np.linalg.norm(probs_with_sw - probs_without_sw) assert_greater(diff, 0.1) def test_calibration_multiclass(): """Test calibration for multiclass """ # test multi-class setting with classifier that implements # only decision function clf = LinearSVC() X, y_idx = make_blobs(n_samples=100, n_features=2, random_state=42, centers=3, cluster_std=3.0) # Use categorical labels to check that CalibratedClassifierCV supports # them correctly target_names = np.array(['a', 'b', 'c']) y = target_names[y_idx] X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf.fit(X_train, y_train) for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv=2) cal_clf.fit(X_train, y_train) probas = cal_clf.predict_proba(X_test) assert_array_almost_equal(np.sum(probas, axis=1), np.ones(len(X_test))) # Check that log-loss of calibrated classifier is smaller than # log-loss of naively turned OvR decision function to probabilities # via softmax def softmax(y_pred): e = np.exp(-y_pred) return e / e.sum(axis=1).reshape(-1, 1) uncalibrated_log_loss = \ log_loss(y_test, softmax(clf.decision_function(X_test))) calibrated_log_loss = log_loss(y_test, probas) assert_greater_equal(uncalibrated_log_loss, calibrated_log_loss) # Test that calibration of a multiclass classifier decreases log-loss # for RandomForestClassifier X, y = make_blobs(n_samples=100, n_features=2, random_state=42, cluster_std=3.0) X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf = RandomForestClassifier(n_estimators=10, random_state=42) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) loss = log_loss(y_test, clf_probs) for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv=3) cal_clf.fit(X_train, y_train) cal_clf_probs = cal_clf.predict_proba(X_test) cal_loss = log_loss(y_test, cal_clf_probs) assert_greater(loss, cal_loss) def test_calibration_prefit(): """Test calibration for prefitted classifiers""" n_samples = 50 X, y = make_classification(n_samples=3 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_calib, y_calib, sw_calib = \ X[n_samples:2 * n_samples], y[n_samples:2 * n_samples], \ sample_weight[n_samples:2 * n_samples] X_test, y_test = X[2 * n_samples:], y[2 * n_samples:] # Naive-Bayes clf = MultinomialNB() clf.fit(X_train, y_train, sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Naive Bayes with calibration for this_X_calib, this_X_test in [(X_calib, X_test), (sparse.csr_matrix(X_calib), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: pc_clf = CalibratedClassifierCV(clf, method=method, cv="prefit") for sw in [sw_calib, None]: pc_clf.fit(this_X_calib, y_calib, sample_weight=sw) y_prob = pc_clf.predict_proba(this_X_test) y_pred = pc_clf.predict(this_X_test) prob_pos_pc_clf = y_prob[:, 1] assert_array_equal(y_pred, np.array([0, 1])[np.argmax(y_prob, axis=1)]) assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss(y_test, prob_pos_pc_clf)) def test_sigmoid_calibration(): """Test calibration values with Platt sigmoid model""" exF = np.array([5, -4, 1.0]) exY = np.array([1, -1, -1]) # computed from my python port of the C++ code in LibSVM AB_lin_libsvm = np.array([-0.20261354391187855, 0.65236314980010512]) assert_array_almost_equal(AB_lin_libsvm, _sigmoid_calibration(exF, exY), 3) lin_prob = 1. / (1. + np.exp(AB_lin_libsvm[0] * exF + AB_lin_libsvm[1])) sk_prob = _SigmoidCalibration().fit(exF, exY).predict(exF) assert_array_almost_equal(lin_prob, sk_prob, 6) # check that _SigmoidCalibration().fit only accepts 1d array or 2d column # arrays assert_raises(ValueError, _SigmoidCalibration().fit, np.vstack((exF, exF)), exY) def test_calibration_curve(): """Check calibration_curve function""" y_true = np.array([0, 0, 0, 1, 1, 1]) y_pred = np.array([0., 0.1, 0.2, 0.8, 0.9, 1.]) prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2) prob_true_unnormalized, prob_pred_unnormalized = \ calibration_curve(y_true, y_pred * 2, n_bins=2, normalize=True) assert_equal(len(prob_true), len(prob_pred)) assert_equal(len(prob_true), 2) assert_almost_equal(prob_true, [0, 1]) assert_almost_equal(prob_pred, [0.1, 0.9]) assert_almost_equal(prob_true, prob_true_unnormalized) assert_almost_equal(prob_pred, prob_pred_unnormalized) # probabilities outside [0, 1] should not be accepted when normalize # is set to False assert_raises(ValueError, calibration_curve, [1.1], [-0.1], normalize=False) def test_calibration_nan_imputer(): """Test that calibration can accept nan""" X, y = make_classification(n_samples=10, n_features=2, n_informative=2, n_redundant=0, random_state=42) X[0, 0] = np.nan clf = Pipeline( [('imputer', Imputer()), ('rf', RandomForestClassifier(n_estimators=1))]) clf_c = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_c.fit(X, y) clf_c.predict(X)
bsd-3-clause
fallen/artiq
artiq/frontend/pdq2_client.py
2
5086
#!/usr/bin/python # Copyright (C) 2012-2015 Robert Jordens <[email protected]> import argparse import time from scipy import interpolate import numpy as np from artiq.protocols.pc_rpc import Client from artiq.tools import verbosity_args, init_logger def get_argparser(): parser = argparse.ArgumentParser(description="""PDQ2 client. Evaluates times and voltages, interpolates and uploads them to the controller.""") parser.add_argument("-s", "--server", default="::1", help="hostname or IP of the controller to connect to") parser.add_argument("--port", default=3252, type=int, help="TCP port to use to connect to the controller") parser.add_argument("-c", "--channel", default=0, type=int, help="channel: 3*board_num+dac_num [%(default)s]") parser.add_argument("-f", "--frame", default=0, type=int, help="frame [%(default)s]") parser.add_argument("-t", "--times", default="np.arange(5)*1e-6", help="sample times (s) [%(default)s]") parser.add_argument("-u", "--voltages", default="(1-np.cos(t/t[-1]*2*np.pi))/2", help="sample voltages (V) [%(default)s]") parser.add_argument("-a", "--aux", default=False, action="store_true", help="axiliary digital output [%(default)%s]") parser.add_argument("-o", "--order", default=3, type=int, help="interpolation (0: const, 1: lin, 2: quad," " 3: cubic) [%(default)s]") parser.add_argument("-p", "--plot", help="plot to file [%(default)s]") parser.add_argument("-r", "--reset", default=False, action="store_true", help="do reset before") parser.add_argument("-m", "--dcm", default=False, action="store_true", help="100MHz clock [%(default)s]") parser.add_argument("-n", "--disarm", default=False, action="store_true", help="disarm group [%(default)s]") parser.add_argument("-e", "--free", default=False, action="store_true", help="software trigger [%(default)s]") parser.add_argument("-x", "--demo", default=False, action="store_true", help="demo mode: pulse and chirp, 1V*ch+0.1V*frame" " [%(default)s]") parser.add_argument("-b", "--bit", default=False, action="store_true", help="do bit test") verbosity_args(parser) return parser def main(): args = get_argparser().parse_args() init_logger(args) dev = Client(args.server, args.port, "pdq2") dev.init() if args.reset: dev.write(b"\x00\x00") # flush any escape dev.cmd("RESET", True) time.sleep(.1) dev.cmd("START", False) dev.cmd("ARM", False) dev.cmd("DCM", args.dcm) freq = 100e6 if args.dcm else 50e6 dev.set_freq(freq) num_channels = dev.get_num_channels() num_frames = dev.get_num_frames() times = eval(args.times, globals(), {}) voltages = eval(args.voltages, globals(), dict(t=times)) if args.demo: for ch, channel in enumerate(dev.channels): entry = [] for fr in range(dev.channels[0].num_frames): vi = .1*fr + ch + voltages entry.append(channel.segment(times, vi, order=args.order, end=False, aux=args.aux)) pi = 2*np.pi*(-.5 + .01*fr + .1*ch + 0*voltages) fi = 10e6*times/times[-1] channel.segment(2*times, voltages, pi, fi, trigger=False, silence=True, aux=args.aux) dev.write_channel(channel, entry) elif args.bit: v = [-1, 0, -1] # for i in range(15): # v.extend([(1 << i) - 1, 1 << i]) v = np.array(v)*dev.channels[0].max_out/dev.channels[0].max_val t = np.arange(len(v)) for channel in dev.channels: s = channel.segment(t, v, order=0, shift=15, stop=False, trigger=False) dev.write_channel(channel, [s for i in range(channel.num_frames)]) else: c = dev.channels[args.channel] map = [None] * c.num_frames map[args.frame] = c.segment(times, voltages, order=args.order, aux=args.aux) dev.write_channel(c, map) dev.cmd("START", True) dev.cmd("ARM", not args.disarm) dev.cmd("TRIGGER", args.free) if args.plot: from matplotlib import pyplot as plt fig, ax = plt.subplots() ax.plot(times, voltages, "xk", label="points") if args.order > 0: spline = interpolate.splrep(times, voltages, k=args.order) ttimes = np.arange(0, times[-1], 1/freq) vvoltages = interpolate.splev(ttimes, spline) ax.plot(ttimes, vvoltages, ",b", label="interpolation") fig.savefig(args.plot) if __name__ == "__main__": main()
gpl-3.0
kubeflow/examples
github_issue_summarization/Pachyderm_Example/code/preprocess_data_for_deep_learning.py
1
1834
import argparse import dill as dpickle import numpy as np from ktext.preprocess import processor import pandas as pd # Parsing flags. parser = argparse.ArgumentParser() parser.add_argument("--input_traindf_csv") parser.add_argument("--output_body_preprocessor_dpkl") parser.add_argument("--output_title_preprocessor_dpkl") parser.add_argument("--output_train_title_vecs_npy") parser.add_argument("--output_train_body_vecs_npy") args = parser.parse_args() print(args) # Read data. traindf = pd.read_csv(args.input_traindf_csv) train_body_raw = traindf.body.tolist() train_title_raw = traindf.issue_title.tolist() # Clean, tokenize, and apply padding / truncating such that each document # length = 70. Also, retain only the top 8,000 words in the vocabulary and set # the remaining words to 1 which will become common index for rare words. body_pp = processor(keep_n=8000, padding_maxlen=70) train_body_vecs = body_pp.fit_transform(train_body_raw) print('Example original body:', train_body_raw[0]) print('Example body after pre-processing:', train_body_vecs[0]) # Instantiate a text processor for the titles, with some different parameters. title_pp = processor(append_indicators=True, keep_n=4500, padding_maxlen=12, padding='post') # process the title data train_title_vecs = title_pp.fit_transform(train_title_raw) print('Example original title:', train_title_raw[0]) print('Example title after pre-processing:', train_title_vecs[0]) # Save the preprocessor. with open(args.output_body_preprocessor_dpkl, 'wb') as f: dpickle.dump(body_pp, f, protocol=2) with open(args.output_title_preprocessor_dpkl, 'wb') as f: dpickle.dump(title_pp, f, protocol=2) # Save the processed data. np.save(args.output_train_title_vecs_npy, train_title_vecs) np.save(args.output_train_body_vecs_npy, train_body_vecs)
apache-2.0
ankurankan/scikit-learn
sklearn/metrics/regression.py
27
9558
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d __ALL__ = [ "mean_absolute_error", "mean_squared_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by ``utils.multiclass.type_of_target`` y_true : array-like of shape = [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples, n_outputs] Estimated target values. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) y_type = 'continuous' if y_true.shape[1] == 1 else 'continuous-multioutput' return y_type, y_true, y_pred def _average_and_variance(values, sample_weight=None): """ Compute the (weighted) average and variance. Parameters ---------- values : array-like of shape = [n_samples] or [n_samples, n_outputs] sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- average : float The weighted average variance : float The weighted variance """ values = np.asarray(values) if values.ndim == 1: values = values.reshape((-1, 1)) if sample_weight is not None: sample_weight = np.asarray(sample_weight) if sample_weight.ndim == 1: sample_weight = sample_weight.reshape((-1, 1)) average = np.average(values, weights=sample_weight) variance = np.average((values - average)**2, weights=sample_weight) return average, variance def mean_absolute_error(y_true, y_pred, sample_weight=None): """Mean absolute error regression loss Parameters ---------- y_true : array-like of shape = [n_samples] or [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs] Estimated target values. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) return np.average(np.abs(y_pred - y_true).mean(axis=1), weights=sample_weight) def mean_squared_error(y_true, y_pred, sample_weight=None): """Mean squared error regression loss Parameters ---------- y_true : array-like of shape = [n_samples] or [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs] Estimated target values. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) return np.average(((y_pred - y_true) ** 2).mean(axis=1), weights=sample_weight) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Parameters ---------- y_true : array-like of shape = [n_samples] or [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs] Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Parameters ---------- y_true : array-like Ground truth (correct) target values. y_pred : array-like Estimated target values. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float The explained variance. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) if y_type != "continuous": raise ValueError("{0} is not supported".format(y_type)) _, numerator = _average_and_variance(y_true - y_pred, sample_weight) _, denominator = _average_and_variance(y_true, sample_weight) if denominator == 0.0: if numerator == 0.0: return 1.0 else: # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway return 0.0 return 1 - numerator / denominator def r2_score(y_true, y_pred, sample_weight=None): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0, lower values are worse. Parameters ---------- y_true : array-like of shape = [n_samples] or [n_samples, n_outputs] Ground truth (correct) target values. y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs] Estimated target values. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- z : float The R^2 score. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.938... """ y_type, y_true, y_pred = _check_reg_targets(y_true, y_pred) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(dtype=np.float64) if denominator == 0.0: if numerator == 0.0: return 1.0 else: # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway return 0.0 return 1 - numerator / denominator
bsd-3-clause
jaeilepp/mne-python
mne/preprocessing/tests/test_ica.py
1
32127
from __future__ import print_function # Author: Denis Engemann <[email protected]> # Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import os import os.path as op import warnings from nose.tools import (assert_true, assert_raises, assert_equal, assert_false, assert_not_equal, assert_is_none) import numpy as np from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_allclose) from scipy import stats from itertools import product from mne import (Epochs, read_events, pick_types, create_info, EpochsArray, EvokedArray, Annotations) from mne.cov import read_cov from mne.preprocessing import (ICA, ica_find_ecg_events, ica_find_eog_events, read_ica, run_ica) from mne.preprocessing.ica import (get_score_funcs, corrmap, _sort_components, _ica_explained_variance) from mne.io import read_raw_fif, Info, RawArray from mne.io.meas_info import _kind_dict from mne.io.pick import _DATA_CH_TYPES_SPLIT from mne.tests.common import assert_naming from mne.utils import (catch_logging, _TempDir, requires_sklearn, slow_test, run_tests_if_main) # Set our plotters to test mode import matplotlib matplotlib.use('Agg') # for testing don't use X server warnings.simplefilter('always') # enable b/c these tests throw warnings data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(data_dir, 'test_raw.fif') event_name = op.join(data_dir, 'test-eve.fif') test_cov_name = op.join(data_dir, 'test-cov.fif') event_id, tmin, tmax = 1, -0.2, 0.2 # if stop is too small pca may fail in some cases, but we're okay on this file start, stop = 0, 6 score_funcs_unsuited = ['pointbiserialr', 'ansari'] try: from sklearn.utils.validation import NonBLASDotWarning warnings.simplefilter('error', NonBLASDotWarning) except Exception: pass @requires_sklearn def test_ica_full_data_recovery(): """Test recovery of full data when no source is rejected.""" # Most basic recovery raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data() events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')[:10] with warnings.catch_warnings(record=True): # bad proj epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) evoked = epochs.average() n_channels = 5 data = raw._data[:n_channels].copy() data_epochs = epochs.get_data() data_evoked = evoked.data raw.annotations = Annotations([0.5], [0.5], ['BAD']) for method in ['fastica']: stuff = [(2, n_channels, True), (2, n_channels // 2, False)] for n_components, n_pca_components, ok in stuff: ica = ICA(n_components=n_components, max_pca_components=n_pca_components, n_pca_components=n_pca_components, method=method, max_iter=1) with warnings.catch_warnings(record=True): ica.fit(raw, picks=list(range(n_channels))) raw2 = ica.apply(raw.copy(), exclude=[]) if ok: assert_allclose(data[:n_channels], raw2._data[:n_channels], rtol=1e-10, atol=1e-15) else: diff = np.abs(data[:n_channels] - raw2._data[:n_channels]) assert_true(np.max(diff) > 1e-14) ica = ICA(n_components=n_components, max_pca_components=n_pca_components, n_pca_components=n_pca_components) with warnings.catch_warnings(record=True): ica.fit(epochs, picks=list(range(n_channels))) epochs2 = ica.apply(epochs.copy(), exclude=[]) data2 = epochs2.get_data()[:, :n_channels] if ok: assert_allclose(data_epochs[:, :n_channels], data2, rtol=1e-10, atol=1e-15) else: diff = np.abs(data_epochs[:, :n_channels] - data2) assert_true(np.max(diff) > 1e-14) evoked2 = ica.apply(evoked.copy(), exclude=[]) data2 = evoked2.data[:n_channels] if ok: assert_allclose(data_evoked[:n_channels], data2, rtol=1e-10, atol=1e-15) else: diff = np.abs(evoked.data[:n_channels] - data2) assert_true(np.max(diff) > 1e-14) assert_raises(ValueError, ICA, method='pizza-decomposision') @requires_sklearn def test_ica_rank_reduction(): """Test recovery ICA rank reduction.""" # Most basic recovery raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data() picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')[:10] n_components = 5 max_pca_components = len(picks) for n_pca_components in [6, 10]: with warnings.catch_warnings(record=True): # non-convergence warnings.simplefilter('always') ica = ICA(n_components=n_components, max_pca_components=max_pca_components, n_pca_components=n_pca_components, method='fastica', max_iter=1).fit(raw, picks=picks) rank_before = raw.estimate_rank(picks=picks) assert_equal(rank_before, len(picks)) raw_clean = ica.apply(raw.copy()) rank_after = raw_clean.estimate_rank(picks=picks) # interaction between ICA rejection and PCA components difficult # to preduct. Rank_after often seems to be 1 higher then # n_pca_components assert_true(n_components < n_pca_components <= rank_after <= rank_before) @requires_sklearn def test_ica_reset(): """Test ICA resetting.""" raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data() picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')[:10] run_time_attrs = ( '_pre_whitener', 'unmixing_matrix_', 'mixing_matrix_', 'n_components_', 'n_samples_', 'pca_components_', 'pca_explained_variance_', 'pca_mean_' ) with warnings.catch_warnings(record=True): # convergence ica = ICA( n_components=3, max_pca_components=3, n_pca_components=3, method='fastica', max_iter=1).fit(raw, picks=picks) assert_true(all(hasattr(ica, attr) for attr in run_time_attrs)) assert_not_equal(ica.labels_, None) ica._reset() assert_true(not any(hasattr(ica, attr) for attr in run_time_attrs)) assert_not_equal(ica.labels_, None) @requires_sklearn def test_ica_core(): """Test ICA on raw and epochs.""" raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() # XXX. The None cases helped revealing bugs but are time consuming. test_cov = read_cov(test_cov_name) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) noise_cov = [None, test_cov] # removed None cases to speed up... n_components = [2, 1.0] # for future dbg add cases max_pca_components = [3] picks_ = [picks] methods = ['fastica'] iter_ica_params = product(noise_cov, n_components, max_pca_components, picks_, methods) # # test init catchers assert_raises(ValueError, ICA, n_components=3, max_pca_components=2) assert_raises(ValueError, ICA, n_components=2.3, max_pca_components=2) # test essential core functionality for n_cov, n_comp, max_n, pcks, method in iter_ica_params: # Test ICA raw ica = ICA(noise_cov=n_cov, n_components=n_comp, max_pca_components=max_n, n_pca_components=max_n, random_state=0, method=method, max_iter=1) assert_raises(ValueError, ica.__contains__, 'mag') print(ica) # to test repr # test fit checker assert_raises(RuntimeError, ica.get_sources, raw) assert_raises(RuntimeError, ica.get_sources, epochs) # test decomposition with warnings.catch_warnings(record=True): # convergence ica.fit(raw, picks=pcks, start=start, stop=stop) repr(ica) # to test repr assert_true('mag' in ica) # should now work without error # test re-fit unmixing1 = ica.unmixing_matrix_ with warnings.catch_warnings(record=True): ica.fit(raw, picks=pcks, start=start, stop=stop) assert_array_almost_equal(unmixing1, ica.unmixing_matrix_) raw_sources = ica.get_sources(raw) # test for #3804 assert_equal(raw_sources._filenames, [None]) print(raw_sources) sources = raw_sources[:, :][0] assert_true(sources.shape[0] == ica.n_components_) # test preload filter raw3 = raw.copy() raw3.preload = False assert_raises(ValueError, ica.apply, raw3, include=[1, 2]) ####################################################################### # test epochs decomposition ica = ICA(noise_cov=n_cov, n_components=n_comp, max_pca_components=max_n, n_pca_components=max_n, random_state=0) with warnings.catch_warnings(record=True): ica.fit(epochs, picks=picks) data = epochs.get_data()[:, 0, :] n_samples = np.prod(data.shape) assert_equal(ica.n_samples_, n_samples) print(ica) # to test repr sources = ica.get_sources(epochs).get_data() assert_true(sources.shape[1] == ica.n_components_) assert_raises(ValueError, ica.score_sources, epochs, target=np.arange(1)) # test preload filter epochs3 = epochs.copy() epochs3.preload = False assert_raises(ValueError, ica.apply, epochs3, include=[1, 2]) # test for bug with whitener updating _pre_whitener = ica._pre_whitener.copy() epochs._data[:, 0, 10:15] *= 1e12 ica.apply(epochs.copy()) assert_array_equal(_pre_whitener, ica._pre_whitener) # test expl. var threshold leading to empty sel ica.n_components = 0.1 assert_raises(RuntimeError, ica.fit, epochs) offender = 1, 2, 3, assert_raises(ValueError, ica.get_sources, offender) assert_raises(ValueError, ica.fit, offender) assert_raises(ValueError, ica.apply, offender) @slow_test @requires_sklearn def test_ica_additional(): """Test additional ICA functionality.""" import matplotlib.pyplot as plt tempdir = _TempDir() stop2 = 500 raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() raw.annotations = Annotations([0.5], [0.5], ['BAD']) # XXX This breaks the tests :( # raw.info['bads'] = [raw.ch_names[1]] test_cov = read_cov(test_cov_name) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) # test if n_components=None works with warnings.catch_warnings(record=True): ica = ICA(n_components=None, max_pca_components=None, n_pca_components=None, random_state=0) ica.fit(epochs, picks=picks, decim=3) # for testing eog functionality picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=True, exclude='bads') epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2, baseline=(None, 0), preload=True) test_cov2 = test_cov.copy() ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4, n_pca_components=4) assert_true(ica.info is None) with warnings.catch_warnings(record=True): ica.fit(raw, picks[:5]) assert_true(isinstance(ica.info, Info)) assert_true(ica.n_components_ < 5) ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) assert_raises(RuntimeError, ica.save, '') with warnings.catch_warnings(record=True): ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2) # check passing a ch_name to find_bads_ecg with warnings.catch_warnings(record=True): # filter length _, scores_1 = ica.find_bads_ecg(raw) _, scores_2 = ica.find_bads_ecg(raw, raw.ch_names[1]) assert_false(scores_1[0] == scores_2[0]) # test corrmap ica2 = ica.copy() ica3 = ica.copy() corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True, ch_type="mag") corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False) assert_true(ica.labels_["blinks"] == ica2.labels_["blinks"]) assert_true(0 in ica.labels_["blinks"]) # test retrieval of component maps as arrays components = ica.get_components() template = components[:, 0] EvokedArray(components, ica.info, tmin=0.).plot_topomap([0]) corrmap([ica, ica3], template, threshold='auto', label='blinks', plot=True, ch_type="mag") assert_true(ica2.labels_["blinks"] == ica3.labels_["blinks"]) plt.close('all') # test warnings on bad filenames with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz') ica.save(ica_badname) read_ica(ica_badname) assert_naming(w, 'test_ica.py', 2) # test decim ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) raw_ = raw.copy() for _ in range(3): raw_.append(raw_) n_samples = raw_._data.shape[1] with warnings.catch_warnings(record=True): ica.fit(raw, picks=None, decim=3) assert_true(raw_._data.shape[1], n_samples) # test expl var ica = ICA(n_components=1.0, max_pca_components=4, n_pca_components=4) with warnings.catch_warnings(record=True): ica.fit(raw, picks=None, decim=3) assert_true(ica.n_components_ == 4) ica_var = _ica_explained_variance(ica, raw, normalize=True) assert_true(np.all(ica_var[:-1] >= ica_var[1:])) # test ica sorting ica.exclude = [0] ica.labels_ = dict(blink=[0], think=[1]) ica_sorted = _sort_components(ica, [3, 2, 1, 0], copy=True) assert_equal(ica_sorted.exclude, [3]) assert_equal(ica_sorted.labels_, dict(blink=[3], think=[2])) # epochs extraction from raw fit assert_raises(RuntimeError, ica.get_sources, epochs) # test reading and writing test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif') for cov in (None, test_cov): ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4, n_pca_components=4) with warnings.catch_warnings(record=True): # ICA does not converge ica.fit(raw, picks=picks, start=start, stop=stop2) sources = ica.get_sources(epochs).get_data() assert_true(ica.mixing_matrix_.shape == (2, 2)) assert_true(ica.unmixing_matrix_.shape == (2, 2)) assert_true(ica.pca_components_.shape == (4, len(picks))) assert_true(sources.shape[1] == ica.n_components_) for exclude in [[], [0]]: ica.exclude = exclude ica.labels_ = {'foo': [0]} ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.exclude == ica_read.exclude) assert_equal(ica.labels_, ica_read.labels_) ica.exclude = [] ica.apply(raw, exclude=[1]) assert_true(ica.exclude == []) ica.exclude = [0, 1] ica.apply(raw, exclude=[1]) assert_true(ica.exclude == [0, 1]) ica_raw = ica.get_sources(raw) assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in ica_raw.info['bads']]) # test filtering d1 = ica_raw._data[0].copy() ica_raw.filter(4, 20, fir_design='firwin2') assert_equal(ica_raw.info['lowpass'], 20.) assert_equal(ica_raw.info['highpass'], 4.) assert_true((d1 != ica_raw._data[0]).any()) d1 = ica_raw._data[0].copy() ica_raw.notch_filter([10], trans_bandwidth=10, fir_design='firwin') assert_true((d1 != ica_raw._data[0]).any()) ica.n_pca_components = 2 ica.method = 'fake' ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) assert_true(ica.n_pca_components == ica_read.n_pca_components) assert_equal(ica.method, ica_read.method) assert_equal(ica.labels_, ica_read.labels_) # check type consistency attrs = ('mixing_matrix_ unmixing_matrix_ pca_components_ ' 'pca_explained_variance_ _pre_whitener') def f(x, y): return getattr(x, y).dtype for attr in attrs.split(): assert_equal(f(ica_read, attr), f(ica, attr)) ica.n_pca_components = 4 ica_read.n_pca_components = 4 ica.exclude = [] ica.save(test_ica_fname) ica_read = read_ica(test_ica_fname) for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_', 'pca_mean_', 'pca_explained_variance_', '_pre_whitener']: assert_array_almost_equal(getattr(ica, attr), getattr(ica_read, attr)) assert_true(ica.ch_names == ica_read.ch_names) assert_true(isinstance(ica_read.info, Info)) sources = ica.get_sources(raw)[:, :][0] sources2 = ica_read.get_sources(raw)[:, :][0] assert_array_almost_equal(sources, sources2) _raw1 = ica.apply(raw, exclude=[1]) _raw2 = ica_read.apply(raw, exclude=[1]) assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0]) os.remove(test_ica_fname) # check score funcs for name, func in get_score_funcs().items(): if name in score_funcs_unsuited: continue scores = ica.score_sources(raw, target='EOG 061', score_func=func, start=0, stop=10) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.score_sources(raw, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.score_sources, raw, target=np.arange(1)) params = [] params += [(None, -1, slice(2), [0, 1])] # varicance, kurtosis idx params params += [(None, 'MEG 1531')] # ECG / EOG channel params for idx, ch_name in product(*params): ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name, eog_ch=ch_name, skew_criterion=idx, var_criterion=idx, kurt_criterion=idx) evoked = epochs.average() evoked_data = evoked.data.copy() raw_data = raw[:][0].copy() epochs_data = epochs.get_data().copy() with warnings.catch_warnings(record=True): idx, scores = ica.find_bads_ecg(raw, method='ctps') assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_ecg(raw, method='correlation') assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_eog(raw) assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_ecg(epochs, method='ctps') assert_equal(len(scores), ica.n_components_) assert_raises(ValueError, ica.find_bads_ecg, epochs.average(), method='ctps') assert_raises(ValueError, ica.find_bads_ecg, raw, method='crazy-coupling') idx, scores = ica.find_bads_eog(raw) assert_equal(len(scores), ica.n_components_) raw.info['chs'][raw.ch_names.index('EOG 061') - 1]['kind'] = 202 idx, scores = ica.find_bads_eog(raw) assert_true(isinstance(scores, list)) assert_equal(len(scores[0]), ica.n_components_) idx, scores = ica.find_bads_eog(evoked, ch_name='MEG 1441') assert_equal(len(scores), ica.n_components_) idx, scores = ica.find_bads_ecg(evoked, method='correlation') assert_equal(len(scores), ica.n_components_) assert_array_equal(raw_data, raw[:][0]) assert_array_equal(epochs_data, epochs.get_data()) assert_array_equal(evoked_data, evoked.data) # check score funcs for name, func in get_score_funcs().items(): if name in score_funcs_unsuited: continue scores = ica.score_sources(epochs_eog, target='EOG 061', score_func=func) assert_true(ica.n_components_ == len(scores)) # check univariate stats scores = ica.score_sources(epochs, score_func=stats.skew) # check exception handling assert_raises(ValueError, ica.score_sources, epochs, target=np.arange(1)) # ecg functionality ecg_scores = ica.score_sources(raw, target='MEG 1531', score_func='pearsonr') with warnings.catch_warnings(record=True): # filter attenuation warning ecg_events = ica_find_ecg_events(raw, sources[np.abs(ecg_scores).argmax()]) assert_true(ecg_events.ndim == 2) # eog functionality eog_scores = ica.score_sources(raw, target='EOG 061', score_func='pearsonr') with warnings.catch_warnings(record=True): # filter attenuation warning eog_events = ica_find_eog_events(raw, sources[np.abs(eog_scores).argmax()]) assert_true(eog_events.ndim == 2) # Test ica fiff export ica_raw = ica.get_sources(raw, start=0, stop=100) assert_true(ica_raw.last_samp - ica_raw.first_samp == 100) assert_equal(len(ica_raw._filenames), 1) # API consistency ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) test_ica_fname = op.join(op.abspath(op.curdir), 'test-ica_raw.fif') ica.n_components = np.int32(ica.n_components) ica_raw.save(test_ica_fname, overwrite=True) ica_raw2 = read_raw_fif(test_ica_fname, preload=True) assert_allclose(ica_raw._data, ica_raw2._data, rtol=1e-5, atol=1e-4) ica_raw2.close() os.remove(test_ica_fname) # Test ica epochs export ica_epochs = ica.get_sources(epochs) assert_true(ica_epochs.events.shape == epochs.events.shape) ica_chans = [ch for ch in ica_epochs.ch_names if 'ICA' in ch] assert_true(ica.n_components_ == len(ica_chans)) assert_true(ica.n_components_ == ica_epochs.get_data().shape[1]) assert_true(ica_epochs._raw is None) assert_true(ica_epochs.preload is True) # test float n pca components ica.pca_explained_variance_ = np.array([0.2] * 5) ica.n_components_ = 0 for ncomps, expected in [[0.3, 1], [0.9, 4], [1, 1]]: ncomps_ = ica._check_n_pca_components(ncomps) assert_true(ncomps_ == expected) ica = ICA() ica.fit(raw, picks=picks[:5]) with warnings.catch_warnings(record=True): # filter length ica.find_bads_ecg(raw) ica.find_bads_eog(epochs, ch_name='MEG 0121') assert_array_equal(raw_data, raw[:][0]) raw.drop_channels(['MEG 0122']) with warnings.catch_warnings(record=True): # filter length assert_raises(RuntimeError, ica.find_bads_eog, raw) assert_raises(RuntimeError, ica.find_bads_ecg, raw) @requires_sklearn def test_run_ica(): """Test run_ica function.""" raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() params = [] params += [(None, -1, slice(2), [0, 1])] # varicance, kurtosis idx params += [(None, 'MEG 1531')] # ECG / EOG channel params for idx, ch_name in product(*params): warnings.simplefilter('always') with warnings.catch_warnings(record=True): run_ica(raw, n_components=2, start=0, stop=6, start_find=0, stop_find=5, ecg_ch=ch_name, eog_ch=ch_name, skew_criterion=idx, var_criterion=idx, kurt_criterion=idx) @requires_sklearn def test_ica_reject_buffer(): """Test ICA data raw buffer rejection.""" raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4) raw._data[2, 1000:1005] = 5e-12 with catch_logging() as drop_log: with warnings.catch_warnings(record=True): ica.fit(raw, picks[:5], reject=dict(mag=2.5e-12), decim=2, tstep=0.01, verbose=True, reject_by_annotation=False) assert_true(raw._data[:5, ::2].shape[1] - 4 == ica.n_samples_) log = [l for l in drop_log.getvalue().split('\n') if 'detected' in l] assert_equal(len(log), 1) @requires_sklearn def test_ica_twice(): """Test running ICA twice.""" raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() picks = pick_types(raw.info, meg='grad', exclude='bads') n_components = 0.9 max_pca_components = None n_pca_components = 1.1 with warnings.catch_warnings(record=True): ica1 = ICA(n_components=n_components, max_pca_components=max_pca_components, n_pca_components=n_pca_components, random_state=0) ica1.fit(raw, picks=picks, decim=3) raw_new = ica1.apply(raw, n_pca_components=n_pca_components) ica2 = ICA(n_components=n_components, max_pca_components=max_pca_components, n_pca_components=1.0, random_state=0) ica2.fit(raw_new, picks=picks, decim=3) assert_equal(ica1.n_components_, ica2.n_components_) @requires_sklearn def test_fit_params(): """Test fit_params for ICA.""" assert_raises(ValueError, ICA, fit_params=dict(extended=True)) fit_params = {} ICA(fit_params=fit_params) # test no side effects assert_equal(fit_params, {}) @requires_sklearn def test_bad_channels(): """Test exception when unsupported channels are used.""" chs = [i for i in _kind_dict] data_chs = _DATA_CH_TYPES_SPLIT + ['eog'] chs_bad = list(set(chs) - set(data_chs)) info = create_info(len(chs), 500, chs) data = np.random.rand(len(chs), 50) raw = RawArray(data, info) data = np.random.rand(100, len(chs), 50) epochs = EpochsArray(data, info) n_components = 0.9 ica = ICA(n_components=n_components, method='fastica') for inst in [raw, epochs]: for ch in chs_bad: # Test case for only bad channels picks_bad1 = pick_types(inst.info, meg=False, **{str(ch): True}) # Test case for good and bad channels picks_bad2 = pick_types(inst.info, meg=True, **{str(ch): True}) assert_raises(ValueError, ica.fit, inst, picks=picks_bad1) assert_raises(ValueError, ica.fit, inst, picks=picks_bad2) assert_raises(ValueError, ica.fit, inst, picks=[]) @requires_sklearn def test_eog_channel(): """Test that EOG channel is included when performing ICA.""" raw = read_raw_fif(raw_fname, preload=True) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=True, ecg=False, eog=True, exclude='bads') epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) n_components = 0.9 ica = ICA(n_components=n_components, method='fastica') # Test case for MEG and EOG data. Should have EOG channel for inst in [raw, epochs]: picks1a = pick_types(inst.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')[:4] picks1b = pick_types(inst.info, meg=False, stim=False, ecg=False, eog=True, exclude='bads') picks1 = np.append(picks1a, picks1b) ica.fit(inst, picks=picks1) assert_true(any('EOG' in ch for ch in ica.ch_names)) # Test case for MEG data. Should have no EOG channel for inst in [raw, epochs]: picks1 = pick_types(inst.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')[:5] ica.fit(inst, picks=picks1) assert_false(any('EOG' in ch for ch in ica.ch_names)) @requires_sklearn def test_max_pca_components_none(): """Test max_pca_components=None.""" raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() events = read_events(event_name) picks = pick_types(raw.info, eeg=True, meg=False) epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) max_pca_components = None n_components = 10 random_state = 12345 tempdir = _TempDir() output_fname = op.join(tempdir, 'test_ica-ica.fif') ica = ICA(max_pca_components=max_pca_components, n_components=n_components, random_state=random_state) with warnings.catch_warnings(record=True): # convergence ica.fit(epochs) ica.save(output_fname) ica = read_ica(output_fname) # ICA.fit() replaced max_pca_components, which was previously None, # with the appropriate integer value. assert_equal(ica.max_pca_components, epochs.info['nchan']) assert_equal(ica.n_components, 10) @requires_sklearn def test_n_components_none(): """Test n_components=None.""" raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() events = read_events(event_name) picks = pick_types(raw.info, eeg=True, meg=False) epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) max_pca_components = 10 n_components = None random_state = 12345 tempdir = _TempDir() output_fname = op.join(tempdir, 'test_ica-ica.fif') ica = ICA(max_pca_components=max_pca_components, n_components=n_components, random_state=random_state) with warnings.catch_warnings(record=True): # convergence ica.fit(epochs) ica.save(output_fname) ica = read_ica(output_fname) # ICA.fit() replaced max_pca_components, which was previously None, # with the appropriate integer value. assert_equal(ica.max_pca_components, 10) assert_is_none(ica.n_components) @requires_sklearn def test_n_components_and_max_pca_components_none(): """Test n_components and max_pca_components=None.""" raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data() events = read_events(event_name) picks = pick_types(raw.info, eeg=True, meg=False) epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) max_pca_components = None n_components = None random_state = 12345 tempdir = _TempDir() output_fname = op.join(tempdir, 'test_ica-ica.fif') ica = ICA(max_pca_components=max_pca_components, n_components=n_components, random_state=random_state) with warnings.catch_warnings(record=True): # convergence ica.fit(epochs) ica.save(output_fname) ica = read_ica(output_fname) # ICA.fit() replaced max_pca_components, which was previously None, # with the appropriate integer value. assert_equal(ica.max_pca_components, epochs.info['nchan']) assert_is_none(ica.n_components) run_tests_if_main()
bsd-3-clause
deot95/Tesis
Proyecto de Grado Ingeniería Electrónica/Workspace/RL/DDPG/plot_reward.py
1
1114
from statsmodels.nonparametric.smoothers_lowess import lowess import numpy as np import matplotlib as mpl import matplotlib.pylab as plt import seaborn as sns sns.set() sns.set_context('poster') sns.set_style('ticks') ans = "" while not (ans == "y" or ans=="n"): ans = input("Flows. y/n:\n") flows = (ans == "y") f2 = plt.figure(figsize=(12,8)) #data = np.load("reward_history_flows_"+str(flows).lower()+".npy") #data = np.load("reward_history_flows_0.npy") data = np.load("reward_small_history_flows_0.npy") x = range(len(data)) yhat = lowess(data,x,0.08) yhat[:,1] = np.insert(np.delete(yhat[:,1],len(yhat[:,1])-1),0,np.min(data)) yhat = lowess(yhat[:,1],x,0.03) #plt.plot(yhat[:,0],yhat[:,1]) p=plt.plot(x,data,alpha=0.5) plt.xlabel("Episodes") plt.ylabel("Reward") plt.title("Reward vs. Episodes for the DDPG algorithm") sns.despine() plt.text(-25, -32700, 'A',bbox={'facecolor':p[0].get_color(), 'alpha':0.9, 'pad':5}) plt.text(300, -20500, 'B',bbox={'facecolor':p[0].get_color(), 'alpha':0.9, 'pad':5}) plt.text(2000, -23000, 'C',bbox={'facecolor':p[0].get_color(), 'alpha':0.9, 'pad':5}) plt.show()
mit
jojow950i/Appliance-Data-Analysis-and-Modification-Toolkit
server.py
1
6670
import tornado.ioloop import tornado.web import tornado.autoreload from tornado.concurrent import Future import os import random import time import json import pandas import datetime import uuid import threading from tornado import gen import generate_order import metadata_import import yaml i = 0 redd_path = '/path/to/REDD/' greend_path = '/path/to/GREEND/' iAWE_path = '/path/to/iAWE/' channels = {} checkboxes = ('REDD', 'GREEND', 'iAWE') waiters = {} class Channel: def __init__(self, channel_name='', datasets={}): self.datasets = datasets self.name = channel_name @property def __repr__(self): return self.name, self.datasets class MainHandler(tornado.web.RequestHandler): def data_received(self, chunk): pass def get(self): client_id = str(uuid.uuid4()) global i i = 0 print("Main Get!") message = {'id': client_id} self.render("index.html", message=message) class EntryAllHandler(tornado.web.RequestHandler): def data_received(self, chunk): pass def post(self): toSend = list() chosen = [] for checkbox in checkboxes: if self.get_argument(checkbox) == 'true': chosen.append(checkbox) for c_channel in channels: s1 = set(channels[c_channel]['datasets'].keys()) aus = set(chosen).intersection(s1) availability = {'small': 0, 'medium': 0, 'large': 0} for a in aus: for part in channels[c_channel]['datasets'][a]: availability[part] += len(channels[c_channel]['datasets'][a][part]) if aus != set([]): message = { "id": str(int(time.time() + int(random.random() * 10000))), "name": c_channel, "from": str((int(time.time() * 1000000) >> 9) + int(random.random() * 100000)), "availability": availability, "small": availability['small'], "medium": availability['medium'], "large": availability['large'], } message["html"] = tornado.escape.to_basestring(self.render_string("entry.html", message=message)) toSend.append(message) self.write(dict({'v': toSend})) class GenerateOrderHandler(tornado.web.RequestHandler): def data_received(self, chunk): pass def post(self): self.write('') gotten_id = self.get_argument('id', None) timeframe = self.get_argument('timeframe', None) apps = json.loads(self.get_argument('appliances', None)) noise = int(self.get_argument('noise', None)) missing = int(self.get_argument('missing', None)) calcTotalComplexity = self.get_argument('calcTotalComplexity', None) print("starting thread now...") order = generate_order.GenerateOrder(gotten_id, timeframe, apps, noise, missing, calcTotalComplexity, waiters, redd_path, channels) c_thread = threading.Thread(target=order.generate, args=()) c_thread.start() class StatusBuffer(object): def __init__(self): self.for_output = [] def output_status(self, message): while len(self.for_output) == 0: pass for future in self.for_output: future.set_result(message) self.for_output = [] def wait_for_output(self): result_future = Future() self.for_output.append(result_future) return result_future class UpdateStatusHandler(tornado.web.RequestHandler): def data_received(self, chunk): pass @gen.coroutine def post(self): global waiters gotten_id = self.get_argument('id', None) last_time = pandas.Timestamp(datetime.datetime.now()) if gotten_id in waiters.keys(): waiters[gotten_id]['last_time'] = last_time else: waiters.update({gotten_id: {'buffer': StatusBuffer(), 'last_time': last_time}}) buffer = waiters[gotten_id]['buffer'] future = buffer.wait_for_output() status_update = yield future self.write({'update': status_update}) class CheckboxesAllHandler(tornado.web.RequestHandler): def data_received(self, chunk): pass def post(self): to_send = list() for checkbox in checkboxes: message = { "dataset": checkbox, } message["html"] = tornado.escape.to_basestring(self.render_string("add_checkboxes.html", message=message)) to_send.append(message) self.write(dict({'v': to_send})) class DownloadHandler(tornado.web.RequestHandler): def data_received(self, chunk): pass def post(self, path): file = open('download/' + path, 'r') print(path) self.set_header('Content-Type', 'text/csv') self.set_header('Content-Disposition', 'attachment; filename=HouseData.csv') self.write(file.read()) application = tornado.web.Application( [ (r"/", MainHandler), (r"/entry/all", EntryAllHandler), (r"/checkboxes/all", CheckboxesAllHandler), (r"/generate", GenerateOrderHandler), (r'/update', UpdateStatusHandler), (r'/download/(.*)', DownloadHandler), # tornado.web.StaticFileHandler, {"path": "./download"}), ], template_path=os.path.join(os.path.dirname(__file__), "templates"), static_path=os.path.join(os.path.dirname(__file__), "static"), ) redd_infos = json.load(open("dataset_infos/REDD_infos.json", "r")) greend_infos = json.load(open("dataset_infos/GREEND_infos.json", "r")) iawe_infos = json.load(open("dataset_infos/iAWE_infos.json", "r")) if __name__ == "__main__": print("Server Started") channels = metadata_import.import_datasets() print(channels) tornado.autoreload.start(io_loop=None, check_time=500) css = os.path.join(os.path.dirname(__file__) + "/static", "index.css") js = os.path.join(os.path.dirname(__file__) + "/static", "main.js") entry = os.path.join(os.path.dirname(__file__) + "/templates", "entry.html") check = os.path.join(os.path.dirname(__file__) + "/templates", "add_checkboxes.html") html = os.path.join(os.path.dirname(__file__) + "/templates", "index.html") tornado.autoreload.watch(css) tornado.autoreload.watch(html) tornado.autoreload.watch(js) tornado.autoreload.watch(entry) tornado.autoreload.watch(check) application.listen(9999) tornado.ioloop.IOLoop.instance().start()
gpl-3.0
cpcloud/ibis
ibis/pandas/execution/util.py
1
1599
import operator import toolz import ibis import ibis.common.exceptions as com from ibis.pandas.core import execute def compute_sort_key(key, data, scope=None, **kwargs): by = key.to_expr() try: if isinstance(by, str): return by, None return by.get_name(), None except com.ExpressionError: new_scope = {t: data for t in by.op().root_tables()} new_column = execute(by, scope=toolz.merge(scope, new_scope), **kwargs) name = ibis.util.guid() new_column.name = name return name, new_column def compute_sorted_frame(df, order_by, group_by=(), **kwargs): computed_sort_keys = [] sort_keys = list(toolz.concatv(group_by, order_by)) ascending = [getattr(key.op(), 'ascending', True) for key in sort_keys] new_columns = {} for i, key in enumerate(map(operator.methodcaller('op'), sort_keys)): computed_sort_key, temporary_column = compute_sort_key( key, df, **kwargs ) computed_sort_keys.append(computed_sort_key) if temporary_column is not None: new_columns[computed_sort_key] = temporary_column result = df.assign(**new_columns) result = result.sort_values( computed_sort_keys, ascending=ascending, kind='mergesort' ) # TODO: we'll eventually need to return this frame with the temporary # columns and drop them in the caller (maybe using post_execute?) ngrouping_keys = len(group_by) return ( result, computed_sort_keys[:ngrouping_keys], computed_sort_keys[ngrouping_keys:], )
apache-2.0
slinderman/pyhawkes
examples/inference/svi_demo.py
1
9080
import numpy as np import os import pickle import gzip # np.seterr(all='raise') import matplotlib.pyplot as plt from sklearn.metrics import adjusted_mutual_info_score, \ adjusted_rand_score, roc_auc_score from pyhawkes.internals.network import StochasticBlockModel from pyhawkes.models import \ DiscreteTimeNetworkHawkesModelGammaMixture, \ DiscreteTimeStandardHawkesModel init_with_map = True def demo(seed=None): """ Fit a weakly sparse :return: """ import warnings warnings.warn("This test runs but the parameters need to be tuned. " "Right now, the SVI algorithm seems to walk away from " "the MAP estimate and yield suboptimal results. " "I'm not convinced the variational inference with the " "gamma mixture provides the best estimates of the sparsity.") if seed is None: seed = np.random.randint(2**32) print("Setting seed to ", seed) np.random.seed(seed) ########################################################### # Load some example data. # See data/synthetic/generate.py to create more. ########################################################### data_path = os.path.join("data", "synthetic", "synthetic_K20_C4_T10000.pkl.gz") with gzip.open(data_path, 'r') as f: S, true_model = pickle.load(f) T = S.shape[0] K = true_model.K B = true_model.B dt = true_model.dt dt_max = true_model.dt_max ########################################################### # Initialize with MAP estimation on a standard Hawkes model ########################################################### if init_with_map: init_len = T print("Initializing with BFGS on first ", init_len, " time bins.") init_model = DiscreteTimeStandardHawkesModel(K=K, dt=dt, dt_max=dt_max, B=B, alpha=1.0, beta=1.0) init_model.add_data(S[:init_len, :]) init_model.initialize_to_background_rate() init_model.fit_with_bfgs() else: init_model = None ########################################################### # Create a test weak spike-and-slab model ########################################################### # Copy the network hypers. # Give the test model p, but not c, v, or m network_hypers = true_model.network_hypers.copy() network_hypers['C'] = 1 network_hypers['c'] = None network_hypers['v'] = None network_hypers['m'] = None test_network = StochasticBlockModel(K=K, **network_hypers) test_model = DiscreteTimeNetworkHawkesModelGammaMixture(K=K, dt=dt, dt_max=dt_max, B=B, basis_hypers=true_model.basis_hypers, bkgd_hypers=true_model.bkgd_hypers, impulse_hypers=true_model.impulse_hypers, weight_hypers=true_model.weight_hypers, network=test_network) test_model.add_data(S) # F_test = test_model.basis.convolve_with_basis(S_test) # Initialize with the standard model parameters if init_model is not None: test_model.initialize_with_standard_model(init_model) ########################################################### # Fit the test model with stochastic variational inference ########################################################### N_iters = 500 minibatchsize = 1000 delay = 1.0 forgetting_rate = 0.5 stepsize = (np.arange(N_iters) + delay)**(-forgetting_rate) samples = [] for itr in range(N_iters): print("SVI Iter: ", itr, "\tStepsize: ", stepsize[itr]) test_model.sgd_step(minibatchsize=minibatchsize, stepsize=stepsize[itr]) test_model.resample_from_mf() samples.append(test_model.copy_sample()) ########################################################### # Analyze the samples ########################################################### analyze_samples(true_model, init_model, samples) # TODO: Update the plotting code as in the Gibbs demo def initialize_plots(true_model, test_model, S): K = true_model.K C = true_model.C R = true_model.compute_rate(S=S) T = S.shape[0] # Plot the true network plt.ion() plot_network(true_model.weight_model.A, true_model.weight_model.W) plt.pause(0.001) # Plot the true and inferred firing rate plt.figure(2) plt.plot(np.arange(T), R[:,0], '-k', lw=2) plt.ion() ln = plt.plot(np.arange(T), test_model.compute_rate()[:,0], '-r')[0] plt.show() # Plot the block affiliations plt.figure(3) KC = np.zeros((K,C)) KC[np.arange(K), test_model.network.c] = 1.0 im_clus = plt.imshow(KC, interpolation="none", cmap="Greys", aspect=float(C)/K) im_net = plot_network(np.ones((K,K)), test_model.weight_model.W_effective, vmax=0.5) plt.pause(0.001) plt.show() plt.pause(0.001) return ln, im_net, im_clus def update_plots(itr, test_model, S, ln, im_clus, im_net): K = test_model.K C = test_model.C T = S.shape[0] plt.figure(2) ln.set_data(np.arange(T), test_model.compute_rate()[:,0]) plt.title("\lambda_{%d}. Iteration %d" % (0, itr)) plt.pause(0.001) plt.figure(3) KC = np.zeros((K,C)) KC[np.arange(K), test_model.network.c] = 1.0 im_clus.set_data(KC) plt.title("KxC: Iteration %d" % itr) plt.pause(0.001) plt.figure(4) plt.title("W: Iteration %d" % itr) im_net.set_data(test_model.weight_model.W_effective) plt.pause(0.001) def analyze_samples(true_model, init_model, samples): N_samples = len(samples) # Compute sample statistics for second half of samples A_samples = np.array([s.weight_model.A for s in samples]) W_samples = np.array([s.weight_model.W for s in samples]) g_samples = np.array([s.impulse_model.g for s in samples]) lambda0_samples = np.array([s.bias_model.lambda0 for s in samples]) c_samples = np.array([s.network.c for s in samples]) p_samples = np.array([s.network.p for s in samples]) v_samples = np.array([s.network.v for s in samples]) offset = N_samples // 2 A_mean = A_samples[offset:, ...].mean(axis=0) W_mean = W_samples[offset:, ...].mean(axis=0) g_mean = g_samples[offset:, ...].mean(axis=0) lambda0_mean = lambda0_samples[offset:, ...].mean(axis=0) p_mean = p_samples[offset:, ...].mean(axis=0) v_mean = v_samples[offset:, ...].mean(axis=0) print("A true: ", true_model.weight_model.A) print("W true: ", true_model.weight_model.W) print("g true: ", true_model.impulse_model.g) print("lambda0 true: ", true_model.bias_model.lambda0) print("") print("A mean: ", A_mean) print("W mean: ", W_mean) print("g mean: ", g_mean) print("lambda0 mean: ", lambda0_mean) print("v mean: ", v_mean) print("p mean: ", p_mean) # # Predictive log likelihood # pll_init = init_model.heldout_log_likelihood(S_test) # plt.figure() # plt.plot(np.arange(N_samples), pll_init * np.ones(N_samples), 'k') # plt.plot(np.arange(N_samples), plls, 'r') # plt.xlabel("Iteration") # plt.ylabel("Predictive log probability") # plt.show() # Compute the link prediction accuracy curves if init_model is not None: auc_init = roc_auc_score(true_model.weight_model.A.ravel(), init_model.W.ravel()) else: auc_init = 0.0 auc_A_mean = roc_auc_score(true_model.weight_model.A.ravel(), A_mean.ravel()) auc_W_mean = roc_auc_score(true_model.weight_model.A.ravel(), W_mean.ravel()) aucs = [] for A in A_samples: aucs.append(roc_auc_score(true_model.weight_model.A.ravel(), A.ravel())) plt.figure() plt.plot(aucs, '-r') plt.plot(auc_A_mean * np.ones_like(aucs), '--r') plt.plot(auc_W_mean * np.ones_like(aucs), '--b') plt.plot(auc_init * np.ones_like(aucs), '--k') plt.xlabel("Iteration") plt.ylabel("Link prediction AUC") plt.ylim(-0.1, 1.1) # Compute the adjusted mutual info score of the clusterings amis = [] arss = [] for c in c_samples: amis.append(adjusted_mutual_info_score(true_model.network.c, c)) arss.append(adjusted_rand_score(true_model.network.c, c)) plt.figure() plt.plot(np.arange(N_samples), amis, '-r') plt.plot(np.arange(N_samples), arss, '-b') plt.xlabel("Iteration") plt.ylabel("Clustering score") plt.ioff() plt.show() # demo(2203329564) # demo(2728679796) demo(11223344)
mit
asurve/systemml
src/main/python/tests/test_mllearn_df.py
12
5320
#!/usr/bin/python #------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- # To run: # - Python 2: `PYSPARK_PYTHON=python2 spark-submit --master local[*] --driver-class-path SystemML.jar test_mllearn_df.py` # - Python 3: `PYSPARK_PYTHON=python3 spark-submit --master local[*] --driver-class-path SystemML.jar test_mllearn_df.py` # Make the `systemml` package importable import os import sys path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../") sys.path.insert(0, path) import unittest import numpy as np from pyspark.ml import Pipeline from pyspark.ml.feature import HashingTF, Tokenizer from pyspark.sql import SparkSession from sklearn import datasets, metrics, neighbors from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn import linear_model from sklearn.metrics import accuracy_score, r2_score from systemml.mllearn import LinearRegression, LogisticRegression, NaiveBayes, SVM sparkSession = SparkSession.builder.getOrCreate() # Currently not integrated with JUnit test # ~/spark-1.6.1-scala-2.11/bin/spark-submit --master local[*] --driver-class-path SystemML.jar test.py class TestMLLearn(unittest.TestCase): def test_logistic_sk2(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] # Convert to DataFrame for i/o: current way to transfer data logistic = LogisticRegression(sparkSession, transferUsingDF=True) logistic.fit(X_train, y_train) mllearn_predicted = logistic.predict(X_test) sklearn_logistic = linear_model.LogisticRegression() sklearn_logistic.fit(X_train, y_train) self.failUnless(accuracy_score(sklearn_logistic.predict(X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_linear_regression(self): diabetes = datasets.load_diabetes() diabetes_X = diabetes.data[:, np.newaxis, 2] diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] regr = LinearRegression(sparkSession, solver='direct-solve', transferUsingDF=True) regr.fit(diabetes_X_train, diabetes_y_train) mllearn_predicted = regr.predict(diabetes_X_test) sklearn_regr = linear_model.LinearRegression() sklearn_regr.fit(diabetes_X_train, diabetes_y_train) self.failUnless(r2_score(sklearn_regr.predict(diabetes_X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_linear_regression_cg(self): diabetes = datasets.load_diabetes() diabetes_X = diabetes.data[:, np.newaxis, 2] diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] regr = LinearRegression(sparkSession, solver='newton-cg', transferUsingDF=True) regr.fit(diabetes_X_train, diabetes_y_train) mllearn_predicted = regr.predict(diabetes_X_test) sklearn_regr = linear_model.LinearRegression() sklearn_regr.fit(diabetes_X_train, diabetes_y_train) self.failUnless(r2_score(sklearn_regr.predict(diabetes_X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_svm_sk2(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] svm = SVM(sparkSession, is_multi_class=True, transferUsingDF=True) mllearn_predicted = svm.fit(X_train, y_train).predict(X_test) from sklearn import linear_model, svm clf = svm.LinearSVC() sklearn_predicted = clf.fit(X_train, y_train).predict(X_test) self.failUnless(accuracy_score(sklearn_predicted, mllearn_predicted) > 0.95 ) if __name__ == '__main__': unittest.main()
apache-2.0
vitaly-krugl/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backend_bases.py
69
69740
""" Abstract base classes define the primitives that renderers and graphics contexts must implement to serve as a matplotlib backend :class:`RendererBase` An abstract base class to handle drawing/rendering operations. :class:`FigureCanvasBase` The abstraction layer that separates the :class:`matplotlib.figure.Figure` from the backend specific details like a user interface drawing area :class:`GraphicsContextBase` An abstract base class that provides color, line styles, etc... :class:`Event` The base class for all of the matplotlib event handling. Derived classes suh as :class:`KeyEvent` and :class:`MouseEvent` store the meta data like keys and buttons pressed, x and y locations in pixel and :class:`~matplotlib.axes.Axes` coordinates. """ from __future__ import division import os, warnings, time import numpy as np import matplotlib.cbook as cbook import matplotlib.colors as colors import matplotlib.transforms as transforms import matplotlib.widgets as widgets from matplotlib import rcParams class RendererBase: """An abstract base class to handle drawing/rendering operations. The following methods *must* be implemented in the backend: * :meth:`draw_path` * :meth:`draw_image` * :meth:`draw_text` * :meth:`get_text_width_height_descent` The following methods *should* be implemented in the backend for optimization reasons: * :meth:`draw_markers` * :meth:`draw_path_collection` * :meth:`draw_quad_mesh` """ def __init__(self): self._texmanager = None def open_group(self, s): """ Open a grouping element with label *s*. Is only currently used by :mod:`~matplotlib.backends.backend_svg` """ pass def close_group(self, s): """ Close a grouping element with label *s* Is only currently used by :mod:`~matplotlib.backends.backend_svg` """ pass def draw_path(self, gc, path, transform, rgbFace=None): """ Draws a :class:`~matplotlib.path.Path` instance using the given affine transform. """ raise NotImplementedError def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): """ Draws a marker at each of the vertices in path. This includes all vertices, including control points on curves. To avoid that behavior, those vertices should be removed before calling this function. *gc* the :class:`GraphicsContextBase` instance *marker_trans* is an affine transform applied to the marker. *trans* is an affine transform applied to the path. This provides a fallback implementation of draw_markers that makes multiple calls to :meth:`draw_path`. Some backends may want to override this method in order to draw the marker only once and reuse it multiple times. """ tpath = trans.transform_path(path) for vertices, codes in tpath.iter_segments(): if len(vertices): x,y = vertices[-2:] self.draw_path(gc, marker_path, marker_trans + transforms.Affine2D().translate(x, y), rgbFace) def draw_path_collection(self, master_transform, cliprect, clippath, clippath_trans, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): """ Draws a collection of paths, selecting drawing properties from the lists *facecolors*, *edgecolors*, *linewidths*, *linestyles* and *antialiaseds*. *offsets* is a list of offsets to apply to each of the paths. The offsets in *offsets* are first transformed by *offsetTrans* before being applied. This provides a fallback implementation of :meth:`draw_path_collection` that makes multiple calls to draw_path. Some backends may want to override this in order to render each set of path data only once, and then reference that path multiple times with the different offsets, colors, styles etc. The generator methods :meth:`_iter_collection_raw_paths` and :meth:`_iter_collection` are provided to help with (and standardize) the implementation across backends. It is highly recommended to use those generators, so that changes to the behavior of :meth:`draw_path_collection` can be made globally. """ path_ids = [] for path, transform in self._iter_collection_raw_paths( master_transform, paths, all_transforms): path_ids.append((path, transform)) for xo, yo, path_id, gc, rgbFace in self._iter_collection( path_ids, cliprect, clippath, clippath_trans, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): path, transform = path_id transform = transforms.Affine2D(transform.get_matrix()).translate(xo, yo) self.draw_path(gc, path, transform, rgbFace) def draw_quad_mesh(self, master_transform, cliprect, clippath, clippath_trans, meshWidth, meshHeight, coordinates, offsets, offsetTrans, facecolors, antialiased, showedges): """ This provides a fallback implementation of :meth:`draw_quad_mesh` that generates paths and then calls :meth:`draw_path_collection`. """ from matplotlib.collections import QuadMesh paths = QuadMesh.convert_mesh_to_paths( meshWidth, meshHeight, coordinates) if showedges: edgecolors = np.array([[0.0, 0.0, 0.0, 1.0]], np.float_) linewidths = np.array([1.0], np.float_) else: edgecolors = facecolors linewidths = np.array([0.0], np.float_) return self.draw_path_collection( master_transform, cliprect, clippath, clippath_trans, paths, [], offsets, offsetTrans, facecolors, edgecolors, linewidths, [], [antialiased], [None]) def _iter_collection_raw_paths(self, master_transform, paths, all_transforms): """ This is a helper method (along with :meth:`_iter_collection`) to make it easier to write a space-efficent :meth:`draw_path_collection` implementation in a backend. This method yields all of the base path/transform combinations, given a master transform, a list of paths and list of transforms. The arguments should be exactly what is passed in to :meth:`draw_path_collection`. The backend should take each yielded path and transform and create an object that can be referenced (reused) later. """ Npaths = len(paths) Ntransforms = len(all_transforms) N = max(Npaths, Ntransforms) if Npaths == 0: return transform = transforms.IdentityTransform() for i in xrange(N): path = paths[i % Npaths] if Ntransforms: transform = all_transforms[i % Ntransforms] yield path, transform + master_transform def _iter_collection(self, path_ids, cliprect, clippath, clippath_trans, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): """ This is a helper method (along with :meth:`_iter_collection_raw_paths`) to make it easier to write a space-efficent :meth:`draw_path_collection` implementation in a backend. This method yields all of the path, offset and graphics context combinations to draw the path collection. The caller should already have looped over the results of :meth:`_iter_collection_raw_paths` to draw this collection. The arguments should be the same as that passed into :meth:`draw_path_collection`, with the exception of *path_ids*, which is a list of arbitrary objects that the backend will use to reference one of the paths created in the :meth:`_iter_collection_raw_paths` stage. Each yielded result is of the form:: xo, yo, path_id, gc, rgbFace where *xo*, *yo* is an offset; *path_id* is one of the elements of *path_ids*; *gc* is a graphics context and *rgbFace* is a color to use for filling the path. """ Npaths = len(path_ids) Noffsets = len(offsets) N = max(Npaths, Noffsets) Nfacecolors = len(facecolors) Nedgecolors = len(edgecolors) Nlinewidths = len(linewidths) Nlinestyles = len(linestyles) Naa = len(antialiaseds) Nurls = len(urls) if (Nfacecolors == 0 and Nedgecolors == 0) or Npaths == 0: return if Noffsets: toffsets = offsetTrans.transform(offsets) gc = self.new_gc() gc.set_clip_rectangle(cliprect) if clippath is not None: clippath = transforms.TransformedPath(clippath, clippath_trans) gc.set_clip_path(clippath) if Nfacecolors == 0: rgbFace = None if Nedgecolors == 0: gc.set_linewidth(0.0) xo, yo = 0, 0 for i in xrange(N): path_id = path_ids[i % Npaths] if Noffsets: xo, yo = toffsets[i % Noffsets] if Nfacecolors: rgbFace = facecolors[i % Nfacecolors] if Nedgecolors: gc.set_foreground(edgecolors[i % Nedgecolors]) if Nlinewidths: gc.set_linewidth(linewidths[i % Nlinewidths]) if Nlinestyles: gc.set_dashes(*linestyles[i % Nlinestyles]) if rgbFace is not None and len(rgbFace)==4: gc.set_alpha(rgbFace[-1]) rgbFace = rgbFace[:3] gc.set_antialiased(antialiaseds[i % Naa]) if Nurls: gc.set_url(urls[i % Nurls]) yield xo, yo, path_id, gc, rgbFace def get_image_magnification(self): """ Get the factor by which to magnify images passed to :meth:`draw_image`. Allows a backend to have images at a different resolution to other artists. """ return 1.0 def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): """ Draw the image instance into the current axes; *x* is the distance in pixels from the left hand side of the canvas. *y* the distance from the origin. That is, if origin is upper, y is the distance from top. If origin is lower, y is the distance from bottom *im* the :class:`matplotlib._image.Image` instance *bbox* a :class:`matplotlib.transforms.Bbox` instance for clipping, or None """ raise NotImplementedError def option_image_nocomposite(self): """ overwrite this method for renderers that do not necessarily want to rescale and composite raster images. (like SVG) """ return False def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!'): raise NotImplementedError def draw_text(self, gc, x, y, s, prop, angle, ismath=False): """ Draw the text instance *gc* the :class:`GraphicsContextBase` instance *x* the x location of the text in display coords *y* the y location of the text in display coords *s* a :class:`matplotlib.text.Text` instance *prop* a :class:`matplotlib.font_manager.FontProperties` instance *angle* the rotation angle in degrees **backend implementers note** When you are trying to determine if you have gotten your bounding box right (which is what enables the text layout/alignment to work properly), it helps to change the line in text.py:: if 0: bbox_artist(self, renderer) to if 1, and then the actual bounding box will be blotted along with your text. """ raise NotImplementedError def flipy(self): """ Return true if y small numbers are top for renderer Is used for drawing text (:mod:`matplotlib.text`) and images (:mod:`matplotlib.image`) only """ return True def get_canvas_width_height(self): 'return the canvas width and height in display coords' return 1, 1 def get_texmanager(self): """ return the :class:`matplotlib.texmanager.TexManager` instance """ if self._texmanager is None: from matplotlib.texmanager import TexManager self._texmanager = TexManager() return self._texmanager def get_text_width_height_descent(self, s, prop, ismath): """ get the width and height, and the offset from the bottom to the baseline (descent), in display coords of the string s with :class:`~matplotlib.font_manager.FontProperties` prop """ raise NotImplementedError def new_gc(self): """ Return an instance of a :class:`GraphicsContextBase` """ return GraphicsContextBase() def points_to_pixels(self, points): """ Convert points to display units *points* a float or a numpy array of float return points converted to pixels You need to override this function (unless your backend doesn't have a dpi, eg, postscript or svg). Some imaging systems assume some value for pixels per inch:: points to pixels = points * pixels_per_inch/72.0 * dpi/72.0 """ return points def strip_math(self, s): return cbook.strip_math(s) def start_rasterizing(self): pass def stop_rasterizing(self): pass class GraphicsContextBase: """ An abstract base class that provides color, line styles, etc... """ # a mapping from dash styles to suggested offset, dash pairs dashd = { 'solid' : (None, None), 'dashed' : (0, (6.0, 6.0)), 'dashdot' : (0, (3.0, 5.0, 1.0, 5.0)), 'dotted' : (0, (1.0, 3.0)), } def __init__(self): self._alpha = 1.0 self._antialiased = 1 # use 0,1 not True, False for extension code self._capstyle = 'butt' self._cliprect = None self._clippath = None self._dashes = None, None self._joinstyle = 'miter' self._linestyle = 'solid' self._linewidth = 1 self._rgb = (0.0, 0.0, 0.0) self._hatch = None self._url = None self._snap = None def copy_properties(self, gc): 'Copy properties from gc to self' self._alpha = gc._alpha self._antialiased = gc._antialiased self._capstyle = gc._capstyle self._cliprect = gc._cliprect self._clippath = gc._clippath self._dashes = gc._dashes self._joinstyle = gc._joinstyle self._linestyle = gc._linestyle self._linewidth = gc._linewidth self._rgb = gc._rgb self._hatch = gc._hatch self._url = gc._url self._snap = gc._snap def get_alpha(self): """ Return the alpha value used for blending - not supported on all backends """ return self._alpha def get_antialiased(self): "Return true if the object should try to do antialiased rendering" return self._antialiased def get_capstyle(self): """ Return the capstyle as a string in ('butt', 'round', 'projecting') """ return self._capstyle def get_clip_rectangle(self): """ Return the clip rectangle as a :class:`~matplotlib.transforms.Bbox` instance """ return self._cliprect def get_clip_path(self): """ Return the clip path in the form (path, transform), where path is a :class:`~matplotlib.path.Path` instance, and transform is an affine transform to apply to the path before clipping. """ if self._clippath is not None: return self._clippath.get_transformed_path_and_affine() return None, None def get_dashes(self): """ Return the dash information as an offset dashlist tuple. The dash list is a even size list that gives the ink on, ink off in pixels. See p107 of to PostScript `BLUEBOOK <http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF>`_ for more info. Default value is None """ return self._dashes def get_joinstyle(self): """ Return the line join style as one of ('miter', 'round', 'bevel') """ return self._joinstyle def get_linestyle(self, style): """ Return the linestyle: one of ('solid', 'dashed', 'dashdot', 'dotted'). """ return self._linestyle def get_linewidth(self): """ Return the line width in points as a scalar """ return self._linewidth def get_rgb(self): """ returns a tuple of three floats from 0-1. color can be a matlab format string, a html hex color string, or a rgb tuple """ return self._rgb def get_url(self): """ returns a url if one is set, None otherwise """ return self._url def get_snap(self): """ returns the snap setting which may be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center """ return self._snap def set_alpha(self, alpha): """ Set the alpha value used for blending - not supported on all backends """ self._alpha = alpha def set_antialiased(self, b): """ True if object should be drawn with antialiased rendering """ # use 0, 1 to make life easier on extension code trying to read the gc if b: self._antialiased = 1 else: self._antialiased = 0 def set_capstyle(self, cs): """ Set the capstyle as a string in ('butt', 'round', 'projecting') """ if cs in ('butt', 'round', 'projecting'): self._capstyle = cs else: raise ValueError('Unrecognized cap style. Found %s' % cs) def set_clip_rectangle(self, rectangle): """ Set the clip rectangle with sequence (left, bottom, width, height) """ self._cliprect = rectangle def set_clip_path(self, path): """ Set the clip path and transformation. Path should be a :class:`~matplotlib.transforms.TransformedPath` instance. """ assert path is None or isinstance(path, transforms.TransformedPath) self._clippath = path def set_dashes(self, dash_offset, dash_list): """ Set the dash style for the gc. *dash_offset* is the offset (usually 0). *dash_list* specifies the on-off sequence as points. ``(None, None)`` specifies a solid line """ self._dashes = dash_offset, dash_list def set_foreground(self, fg, isRGB=False): """ Set the foreground color. fg can be a matlab format string, a html hex color string, an rgb unit tuple, or a float between 0 and 1. In the latter case, grayscale is used. The :class:`GraphicsContextBase` converts colors to rgb internally. If you know the color is rgb already, you can set ``isRGB=True`` to avoid the performace hit of the conversion """ if isRGB: self._rgb = fg else: self._rgb = colors.colorConverter.to_rgba(fg) def set_graylevel(self, frac): """ Set the foreground color to be a gray level with *frac* """ self._rgb = (frac, frac, frac) def set_joinstyle(self, js): """ Set the join style to be one of ('miter', 'round', 'bevel') """ if js in ('miter', 'round', 'bevel'): self._joinstyle = js else: raise ValueError('Unrecognized join style. Found %s' % js) def set_linewidth(self, w): """ Set the linewidth in points """ self._linewidth = w def set_linestyle(self, style): """ Set the linestyle to be one of ('solid', 'dashed', 'dashdot', 'dotted'). """ try: offset, dashes = self.dashd[style] except: raise ValueError('Unrecognized linestyle: %s' % style) self._linestyle = style self.set_dashes(offset, dashes) def set_url(self, url): """ Sets the url for links in compatible backends """ self._url = url def set_snap(self, snap): """ Sets the snap setting which may be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center """ self._snap = snap def set_hatch(self, hatch): """ Sets the hatch style for filling """ self._hatch = hatch def get_hatch(self): """ Gets the current hatch style """ return self._hatch class Event: """ A matplotlib event. Attach additional attributes as defined in :meth:`FigureCanvasBase.mpl_connect`. The following attributes are defined and shown with their default values *name* the event name *canvas* the FigureCanvas instance generating the event *guiEvent* the GUI event that triggered the matplotlib event """ def __init__(self, name, canvas,guiEvent=None): self.name = name self.canvas = canvas self.guiEvent = guiEvent class IdleEvent(Event): """ An event triggered by the GUI backend when it is idle -- useful for passive animation """ pass class DrawEvent(Event): """ An event triggered by a draw operation on the canvas In addition to the :class:`Event` attributes, the following event attributes are defined: *renderer* the :class:`RendererBase` instance for the draw event """ def __init__(self, name, canvas, renderer): Event.__init__(self, name, canvas) self.renderer = renderer class ResizeEvent(Event): """ An event triggered by a canvas resize In addition to the :class:`Event` attributes, the following event attributes are defined: *width* width of the canvas in pixels *height* height of the canvas in pixels """ def __init__(self, name, canvas): Event.__init__(self, name, canvas) self.width, self.height = canvas.get_width_height() class LocationEvent(Event): """ A event that has a screen location The following additional attributes are defined and shown with their default values In addition to the :class:`Event` attributes, the following event attributes are defined: *x* x position - pixels from left of canvas *y* y position - pixels from bottom of canvas *inaxes* the :class:`~matplotlib.axes.Axes` instance if mouse is over axes *xdata* x coord of mouse in data coords *ydata* y coord of mouse in data coords """ x = None # x position - pixels from left of canvas y = None # y position - pixels from right of canvas inaxes = None # the Axes instance if mouse us over axes xdata = None # x coord of mouse in data coords ydata = None # y coord of mouse in data coords # the last event that was triggered before this one lastevent = None def __init__(self, name, canvas, x, y,guiEvent=None): """ *x*, *y* in figure coords, 0,0 = bottom, left """ Event.__init__(self, name, canvas,guiEvent=guiEvent) self.x = x self.y = y if x is None or y is None: # cannot check if event was in axes if no x,y info self.inaxes = None self._update_enter_leave() return # Find all axes containing the mouse axes_list = [a for a in self.canvas.figure.get_axes() if a.in_axes(self)] if len(axes_list) == 0: # None found self.inaxes = None self._update_enter_leave() return elif (len(axes_list) > 1): # Overlap, get the highest zorder axCmp = lambda _x,_y: cmp(_x.zorder, _y.zorder) axes_list.sort(axCmp) self.inaxes = axes_list[-1] # Use the highest zorder else: # Just found one hit self.inaxes = axes_list[0] try: xdata, ydata = self.inaxes.transData.inverted().transform_point((x, y)) except ValueError: self.xdata = None self.ydata = None else: self.xdata = xdata self.ydata = ydata self._update_enter_leave() def _update_enter_leave(self): 'process the figure/axes enter leave events' if LocationEvent.lastevent is not None: last = LocationEvent.lastevent if last.inaxes!=self.inaxes: # process axes enter/leave events if last.inaxes is not None: last.canvas.callbacks.process('axes_leave_event', last) if self.inaxes is not None: self.canvas.callbacks.process('axes_enter_event', self) else: # process a figure enter event if self.inaxes is not None: self.canvas.callbacks.process('axes_enter_event', self) LocationEvent.lastevent = self class MouseEvent(LocationEvent): """ A mouse event ('button_press_event', 'button_release_event', 'scroll_event', 'motion_notify_event'). In addition to the :class:`Event` and :class:`LocationEvent` attributes, the following attributes are defined: *button* button pressed None, 1, 2, 3, 'up', 'down' (up and down are used for scroll events) *key* the key pressed: None, chr(range(255), 'shift', 'win', or 'control' *step* number of scroll steps (positive for 'up', negative for 'down') Example usage:: def on_press(event): print 'you pressed', event.button, event.xdata, event.ydata cid = fig.canvas.mpl_connect('button_press_event', on_press) """ x = None # x position - pixels from left of canvas y = None # y position - pixels from right of canvas button = None # button pressed None, 1, 2, 3 inaxes = None # the Axes instance if mouse us over axes xdata = None # x coord of mouse in data coords ydata = None # y coord of mouse in data coords step = None # scroll steps for scroll events def __init__(self, name, canvas, x, y, button=None, key=None, step=0, guiEvent=None): """ x, y in figure coords, 0,0 = bottom, left button pressed None, 1, 2, 3, 'up', 'down' """ LocationEvent.__init__(self, name, canvas, x, y, guiEvent=guiEvent) self.button = button self.key = key self.step = step class PickEvent(Event): """ a pick event, fired when the user picks a location on the canvas sufficiently close to an artist. Attrs: all the :class:`Event` attributes plus *mouseevent* the :class:`MouseEvent` that generated the pick *artist* the :class:`~matplotlib.artist.Artist` picked other extra class dependent attrs -- eg a :class:`~matplotlib.lines.Line2D` pick may define different extra attributes than a :class:`~matplotlib.collections.PatchCollection` pick event Example usage:: line, = ax.plot(rand(100), 'o', picker=5) # 5 points tolerance def on_pick(event): thisline = event.artist xdata, ydata = thisline.get_data() ind = event.ind print 'on pick line:', zip(xdata[ind], ydata[ind]) cid = fig.canvas.mpl_connect('pick_event', on_pick) """ def __init__(self, name, canvas, mouseevent, artist, guiEvent=None, **kwargs): Event.__init__(self, name, canvas, guiEvent) self.mouseevent = mouseevent self.artist = artist self.__dict__.update(kwargs) class KeyEvent(LocationEvent): """ A key event (key press, key release). Attach additional attributes as defined in :meth:`FigureCanvasBase.mpl_connect`. In addition to the :class:`Event` and :class:`LocationEvent` attributes, the following attributes are defined: *key* the key pressed: None, chr(range(255), shift, win, or control This interface may change slightly when better support for modifier keys is included. Example usage:: def on_key(event): print 'you pressed', event.key, event.xdata, event.ydata cid = fig.canvas.mpl_connect('key_press_event', on_key) """ def __init__(self, name, canvas, key, x=0, y=0, guiEvent=None): LocationEvent.__init__(self, name, canvas, x, y, guiEvent=guiEvent) self.key = key class FigureCanvasBase: """ The canvas the figure renders into. Public attributes *figure* A :class:`matplotlib.figure.Figure` instance """ events = [ 'resize_event', 'draw_event', 'key_press_event', 'key_release_event', 'button_press_event', 'button_release_event', 'scroll_event', 'motion_notify_event', 'pick_event', 'idle_event', 'figure_enter_event', 'figure_leave_event', 'axes_enter_event', 'axes_leave_event' ] def __init__(self, figure): figure.set_canvas(self) self.figure = figure # a dictionary from event name to a dictionary that maps cid->func self.callbacks = cbook.CallbackRegistry(self.events) self.widgetlock = widgets.LockDraw() self._button = None # the button pressed self._key = None # the key pressed self._lastx, self._lasty = None, None self.button_pick_id = self.mpl_connect('button_press_event',self.pick) self.scroll_pick_id = self.mpl_connect('scroll_event',self.pick) if False: ## highlight the artists that are hit self.mpl_connect('motion_notify_event',self.onHilite) ## delete the artists that are clicked on #self.mpl_disconnect(self.button_pick_id) #self.mpl_connect('button_press_event',self.onRemove) def onRemove(self, ev): """ Mouse event processor which removes the top artist under the cursor. Connect this to the 'mouse_press_event' using:: canvas.mpl_connect('mouse_press_event',canvas.onRemove) """ def sort_artists(artists): # This depends on stable sort and artists returned # from get_children in z order. L = [ (h.zorder, h) for h in artists ] L.sort() return [ h for zorder, h in L ] # Find the top artist under the cursor under = sort_artists(self.figure.hitlist(ev)) h = None if under: h = under[-1] # Try deleting that artist, or its parent if you # can't delete the artist while h: print "Removing",h if h.remove(): self.draw_idle() break parent = None for p in under: if h in p.get_children(): parent = p break h = parent def onHilite(self, ev): """ Mouse event processor which highlights the artists under the cursor. Connect this to the 'motion_notify_event' using:: canvas.mpl_connect('motion_notify_event',canvas.onHilite) """ if not hasattr(self,'_active'): self._active = dict() under = self.figure.hitlist(ev) enter = [a for a in under if a not in self._active] leave = [a for a in self._active if a not in under] print "within:"," ".join([str(x) for x in under]) #print "entering:",[str(a) for a in enter] #print "leaving:",[str(a) for a in leave] # On leave restore the captured colour for a in leave: if hasattr(a,'get_color'): a.set_color(self._active[a]) elif hasattr(a,'get_edgecolor'): a.set_edgecolor(self._active[a][0]) a.set_facecolor(self._active[a][1]) del self._active[a] # On enter, capture the color and repaint the artist # with the highlight colour. Capturing colour has to # be done first in case the parent recolouring affects # the child. for a in enter: if hasattr(a,'get_color'): self._active[a] = a.get_color() elif hasattr(a,'get_edgecolor'): self._active[a] = (a.get_edgecolor(),a.get_facecolor()) else: self._active[a] = None for a in enter: if hasattr(a,'get_color'): a.set_color('red') elif hasattr(a,'get_edgecolor'): a.set_edgecolor('red') a.set_facecolor('lightblue') else: self._active[a] = None self.draw_idle() def pick(self, mouseevent): if not self.widgetlock.locked(): self.figure.pick(mouseevent) def blit(self, bbox=None): """ blit the canvas in bbox (default entire canvas) """ pass def resize(self, w, h): """ set the canvas size in pixels """ pass def draw_event(self, renderer): """ This method will be call all functions connected to the 'draw_event' with a :class:`DrawEvent` """ s = 'draw_event' event = DrawEvent(s, self, renderer) self.callbacks.process(s, event) def resize_event(self): """ This method will be call all functions connected to the 'resize_event' with a :class:`ResizeEvent` """ s = 'resize_event' event = ResizeEvent(s, self) self.callbacks.process(s, event) def key_press_event(self, key, guiEvent=None): """ This method will be call all functions connected to the 'key_press_event' with a :class:`KeyEvent` """ self._key = key s = 'key_press_event' event = KeyEvent(s, self, key, self._lastx, self._lasty, guiEvent=guiEvent) self.callbacks.process(s, event) def key_release_event(self, key, guiEvent=None): """ This method will be call all functions connected to the 'key_release_event' with a :class:`KeyEvent` """ s = 'key_release_event' event = KeyEvent(s, self, key, self._lastx, self._lasty, guiEvent=guiEvent) self.callbacks.process(s, event) self._key = None def pick_event(self, mouseevent, artist, **kwargs): """ This method will be called by artists who are picked and will fire off :class:`PickEvent` callbacks registered listeners """ s = 'pick_event' event = PickEvent(s, self, mouseevent, artist, **kwargs) self.callbacks.process(s, event) def scroll_event(self, x, y, step, guiEvent=None): """ Backend derived classes should call this function on any scroll wheel event. x,y are the canvas coords: 0,0 is lower, left. button and key are as defined in MouseEvent. This method will be call all functions connected to the 'scroll_event' with a :class:`MouseEvent` instance. """ if step >= 0: self._button = 'up' else: self._button = 'down' s = 'scroll_event' mouseevent = MouseEvent(s, self, x, y, self._button, self._key, step=step, guiEvent=guiEvent) self.callbacks.process(s, mouseevent) def button_press_event(self, x, y, button, guiEvent=None): """ Backend derived classes should call this function on any mouse button press. x,y are the canvas coords: 0,0 is lower, left. button and key are as defined in :class:`MouseEvent`. This method will be call all functions connected to the 'button_press_event' with a :class:`MouseEvent` instance. """ self._button = button s = 'button_press_event' mouseevent = MouseEvent(s, self, x, y, button, self._key, guiEvent=guiEvent) self.callbacks.process(s, mouseevent) def button_release_event(self, x, y, button, guiEvent=None): """ Backend derived classes should call this function on any mouse button release. *x* the canvas coordinates where 0=left *y* the canvas coordinates where 0=bottom *guiEvent* the native UI event that generated the mpl event This method will be call all functions connected to the 'button_release_event' with a :class:`MouseEvent` instance. """ s = 'button_release_event' event = MouseEvent(s, self, x, y, button, self._key, guiEvent=guiEvent) self.callbacks.process(s, event) self._button = None def motion_notify_event(self, x, y, guiEvent=None): """ Backend derived classes should call this function on any motion-notify-event. *x* the canvas coordinates where 0=left *y* the canvas coordinates where 0=bottom *guiEvent* the native UI event that generated the mpl event This method will be call all functions connected to the 'motion_notify_event' with a :class:`MouseEvent` instance. """ self._lastx, self._lasty = x, y s = 'motion_notify_event' event = MouseEvent(s, self, x, y, self._button, self._key, guiEvent=guiEvent) self.callbacks.process(s, event) def leave_notify_event(self, guiEvent=None): """ Backend derived classes should call this function when leaving canvas *guiEvent* the native UI event that generated the mpl event """ self.callbacks.process('figure_leave_event', LocationEvent.lastevent) LocationEvent.lastevent = None def enter_notify_event(self, guiEvent=None): """ Backend derived classes should call this function when entering canvas *guiEvent* the native UI event that generated the mpl event """ event = Event('figure_enter_event', self, guiEvent) self.callbacks.process('figure_enter_event', event) def idle_event(self, guiEvent=None): 'call when GUI is idle' s = 'idle_event' event = IdleEvent(s, self, guiEvent=guiEvent) self.callbacks.process(s, event) def draw(self, *args, **kwargs): """ Render the :class:`~matplotlib.figure.Figure` """ pass def draw_idle(self, *args, **kwargs): """ :meth:`draw` only if idle; defaults to draw but backends can overrride """ self.draw(*args, **kwargs) def draw_cursor(self, event): """ Draw a cursor in the event.axes if inaxes is not None. Use native GUI drawing for efficiency if possible """ pass def get_width_height(self): """ return the figure width and height in points or pixels (depending on the backend), truncated to integers """ return int(self.figure.bbox.width), int(self.figure.bbox.height) filetypes = { 'emf': 'Enhanced Metafile', 'eps': 'Encapsulated Postscript', 'pdf': 'Portable Document Format', 'png': 'Portable Network Graphics', 'ps' : 'Postscript', 'raw': 'Raw RGBA bitmap', 'rgba': 'Raw RGBA bitmap', 'svg': 'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics' } # All of these print_* functions do a lazy import because # a) otherwise we'd have cyclical imports, since all of these # classes inherit from FigureCanvasBase # b) so we don't import a bunch of stuff the user may never use def print_emf(self, *args, **kwargs): from backends.backend_emf import FigureCanvasEMF # lazy import emf = self.switch_backends(FigureCanvasEMF) return emf.print_emf(*args, **kwargs) def print_eps(self, *args, **kwargs): from backends.backend_ps import FigureCanvasPS # lazy import ps = self.switch_backends(FigureCanvasPS) return ps.print_eps(*args, **kwargs) def print_pdf(self, *args, **kwargs): from backends.backend_pdf import FigureCanvasPdf # lazy import pdf = self.switch_backends(FigureCanvasPdf) return pdf.print_pdf(*args, **kwargs) def print_png(self, *args, **kwargs): from backends.backend_agg import FigureCanvasAgg # lazy import agg = self.switch_backends(FigureCanvasAgg) return agg.print_png(*args, **kwargs) def print_ps(self, *args, **kwargs): from backends.backend_ps import FigureCanvasPS # lazy import ps = self.switch_backends(FigureCanvasPS) return ps.print_ps(*args, **kwargs) def print_raw(self, *args, **kwargs): from backends.backend_agg import FigureCanvasAgg # lazy import agg = self.switch_backends(FigureCanvasAgg) return agg.print_raw(*args, **kwargs) print_bmp = print_rgb = print_raw def print_svg(self, *args, **kwargs): from backends.backend_svg import FigureCanvasSVG # lazy import svg = self.switch_backends(FigureCanvasSVG) return svg.print_svg(*args, **kwargs) def print_svgz(self, *args, **kwargs): from backends.backend_svg import FigureCanvasSVG # lazy import svg = self.switch_backends(FigureCanvasSVG) return svg.print_svgz(*args, **kwargs) def get_supported_filetypes(self): return self.filetypes def get_supported_filetypes_grouped(self): groupings = {} for ext, name in self.filetypes.items(): groupings.setdefault(name, []).append(ext) groupings[name].sort() return groupings def print_figure(self, filename, dpi=None, facecolor='w', edgecolor='w', orientation='portrait', format=None, **kwargs): """ Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because some of the GUIs have a gray figure face color background and you'll probably want to override this on hardcopy. Arguments are: *filename* can also be a file object on image backends *orientation* only currently applies to PostScript printing. *dpi* the dots per inch to save the figure in; if None, use savefig.dpi *facecolor* the facecolor of the figure *edgecolor* the edgecolor of the figure *orientation* ' landscape' | 'portrait' (not supported on all backends) *format* when set, forcibly set the file format to save to """ if format is None: if cbook.is_string_like(filename): format = os.path.splitext(filename)[1][1:] if format is None or format == '': format = self.get_default_filetype() if cbook.is_string_like(filename): filename = filename.rstrip('.') + '.' + format format = format.lower() method_name = 'print_%s' % format if (format not in self.filetypes or not hasattr(self, method_name)): formats = self.filetypes.keys() formats.sort() raise ValueError( 'Format "%s" is not supported.\n' 'Supported formats: ' '%s.' % (format, ', '.join(formats))) if dpi is None: dpi = rcParams['savefig.dpi'] origDPI = self.figure.dpi origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() self.figure.dpi = dpi self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) try: result = getattr(self, method_name)( filename, dpi=dpi, facecolor=facecolor, edgecolor=edgecolor, orientation=orientation, **kwargs) finally: self.figure.dpi = origDPI self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) self.figure.set_canvas(self) #self.figure.canvas.draw() ## seems superfluous return result def get_default_filetype(self): raise NotImplementedError def set_window_title(self, title): """ Set the title text of the window containing the figure. Note that this has no effect if there is no window (eg, a PS backend). """ if hasattr(self, "manager"): self.manager.set_window_title(title) def switch_backends(self, FigureCanvasClass): """ instantiate an instance of FigureCanvasClass This is used for backend switching, eg, to instantiate a FigureCanvasPS from a FigureCanvasGTK. Note, deep copying is not done, so any changes to one of the instances (eg, setting figure size or line props), will be reflected in the other """ newCanvas = FigureCanvasClass(self.figure) return newCanvas def mpl_connect(self, s, func): """ Connect event with string *s* to *func*. The signature of *func* is:: def func(event) where event is a :class:`matplotlib.backend_bases.Event`. The following events are recognized - 'button_press_event' - 'button_release_event' - 'draw_event' - 'key_press_event' - 'key_release_event' - 'motion_notify_event' - 'pick_event' - 'resize_event' - 'scroll_event' For the location events (button and key press/release), if the mouse is over the axes, the variable ``event.inaxes`` will be set to the :class:`~matplotlib.axes.Axes` the event occurs is over, and additionally, the variables ``event.xdata`` and ``event.ydata`` will be defined. This is the mouse location in data coords. See :class:`~matplotlib.backend_bases.KeyEvent` and :class:`~matplotlib.backend_bases.MouseEvent` for more info. Return value is a connection id that can be used with :meth:`~matplotlib.backend_bases.Event.mpl_disconnect`. Example usage:: def on_press(event): print 'you pressed', event.button, event.xdata, event.ydata cid = canvas.mpl_connect('button_press_event', on_press) """ return self.callbacks.connect(s, func) def mpl_disconnect(self, cid): """ disconnect callback id cid Example usage:: cid = canvas.mpl_connect('button_press_event', on_press) #...later canvas.mpl_disconnect(cid) """ return self.callbacks.disconnect(cid) def flush_events(self): """ Flush the GUI events for the figure. Implemented only for backends with GUIs. """ raise NotImplementedError def start_event_loop(self,timeout): """ Start an event loop. This is used to start a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main GUI event loop, which is always running and has nothing to do with this. This is implemented only for backends with GUIs. """ raise NotImplementedError def stop_event_loop(self): """ Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This is implemented only for backends with GUIs. """ raise NotImplementedError def start_event_loop_default(self,timeout=0): """ Start an event loop. This is used to start a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main GUI event loop, which is always running and has nothing to do with this. This function provides default event loop functionality based on time.sleep that is meant to be used until event loop functions for each of the GUI backends can be written. As such, it throws a deprecated warning. Call signature:: start_event_loop_default(self,timeout=0) This call blocks until a callback function triggers stop_event_loop() or *timeout* is reached. If *timeout* is <=0, never timeout. """ str = "Using default event loop until function specific" str += " to this GUI is implemented" warnings.warn(str,DeprecationWarning) if timeout <= 0: timeout = np.inf timestep = 0.01 counter = 0 self._looping = True while self._looping and counter*timestep < timeout: self.flush_events() time.sleep(timestep) counter += 1 def stop_event_loop_default(self): """ Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. Call signature:: stop_event_loop_default(self) """ self._looping = False class FigureManagerBase: """ Helper class for matlab mode, wraps everything up into a neat bundle Public attibutes: *canvas* A :class:`FigureCanvasBase` instance *num* The figure nuamber """ def __init__(self, canvas, num): self.canvas = canvas canvas.manager = self # store a pointer to parent self.num = num self.canvas.mpl_connect('key_press_event', self.key_press) def destroy(self): pass def full_screen_toggle (self): pass def resize(self, w, h): 'For gui backends: resize window in pixels' pass def key_press(self, event): # these bindings happen whether you are over an axes or not #if event.key == 'q': # self.destroy() # how cruel to have to destroy oneself! # return if event.key == 'f': self.full_screen_toggle() # *h*ome or *r*eset mnemonic elif event.key == 'h' or event.key == 'r' or event.key == "home": self.canvas.toolbar.home() # c and v to enable left handed quick navigation elif event.key == 'left' or event.key == 'c' or event.key == 'backspace': self.canvas.toolbar.back() elif event.key == 'right' or event.key == 'v': self.canvas.toolbar.forward() # *p*an mnemonic elif event.key == 'p': self.canvas.toolbar.pan() # z*o*om mnemonic elif event.key == 'o': self.canvas.toolbar.zoom() elif event.key == 's': self.canvas.toolbar.save_figure(self.canvas.toolbar) if event.inaxes is None: return # the mouse has to be over an axes to trigger these if event.key == 'g': event.inaxes.grid() self.canvas.draw() elif event.key == 'l': ax = event.inaxes scale = ax.get_yscale() if scale=='log': ax.set_yscale('linear') ax.figure.canvas.draw() elif scale=='linear': ax.set_yscale('log') ax.figure.canvas.draw() elif event.key is not None and (event.key.isdigit() and event.key!='0') or event.key=='a': # 'a' enables all axes if event.key!='a': n=int(event.key)-1 for i, a in enumerate(self.canvas.figure.get_axes()): if event.x is not None and event.y is not None and a.in_axes(event): if event.key=='a': a.set_navigate(True) else: a.set_navigate(i==n) def show_popup(self, msg): """ Display message in a popup -- GUI only """ pass def set_window_title(self, title): """ Set the title text of the window containing the figure. Note that this has no effect if there is no window (eg, a PS backend). """ pass # cursors class Cursors: #namespace HAND, POINTER, SELECT_REGION, MOVE = range(4) cursors = Cursors() class NavigationToolbar2: """ Base class for the navigation cursor, version 2 backends must implement a canvas that handles connections for 'button_press_event' and 'button_release_event'. See :meth:`FigureCanvasBase.mpl_connect` for more information They must also define :meth:`save_figure` save the current figure :meth:`set_cursor` if you want the pointer icon to change :meth:`_init_toolbar` create your toolbar widget :meth:`draw_rubberband` (optional) draw the zoom to rect "rubberband" rectangle :meth:`press` (optional) whenever a mouse button is pressed, you'll be notified with the event :meth:`release` (optional) whenever a mouse button is released, you'll be notified with the event :meth:`dynamic_update` (optional) dynamically update the window while navigating :meth:`set_message` (optional) display message :meth:`set_history_buttons` (optional) you can change the history back / forward buttons to indicate disabled / enabled state. That's it, we'll do the rest! """ def __init__(self, canvas): self.canvas = canvas canvas.toolbar = self # a dict from axes index to a list of view limits self._views = cbook.Stack() self._positions = cbook.Stack() # stack of subplot positions self._xypress = None # the location and axis info at the time of the press self._idPress = None self._idRelease = None self._active = None self._lastCursor = None self._init_toolbar() self._idDrag=self.canvas.mpl_connect('motion_notify_event', self.mouse_move) self._button_pressed = None # determined by the button pressed at start self.mode = '' # a mode string for the status bar self.set_history_buttons() def set_message(self, s): 'display a message on toolbar or in status bar' pass def back(self, *args): 'move back up the view lim stack' self._views.back() self._positions.back() self.set_history_buttons() self._update_view() def dynamic_update(self): pass def draw_rubberband(self, event, x0, y0, x1, y1): 'draw a rectangle rubberband to indicate zoom limits' pass def forward(self, *args): 'move forward in the view lim stack' self._views.forward() self._positions.forward() self.set_history_buttons() self._update_view() def home(self, *args): 'restore the original view' self._views.home() self._positions.home() self.set_history_buttons() self._update_view() def _init_toolbar(self): """ This is where you actually build the GUI widgets (called by __init__). The icons ``home.xpm``, ``back.xpm``, ``forward.xpm``, ``hand.xpm``, ``zoom_to_rect.xpm`` and ``filesave.xpm`` are standard across backends (there are ppm versions in CVS also). You just need to set the callbacks home : self.home back : self.back forward : self.forward hand : self.pan zoom_to_rect : self.zoom filesave : self.save_figure You only need to define the last one - the others are in the base class implementation. """ raise NotImplementedError def mouse_move(self, event): #print 'mouse_move', event.button if not event.inaxes or not self._active: if self._lastCursor != cursors.POINTER: self.set_cursor(cursors.POINTER) self._lastCursor = cursors.POINTER else: if self._active=='ZOOM': if self._lastCursor != cursors.SELECT_REGION: self.set_cursor(cursors.SELECT_REGION) self._lastCursor = cursors.SELECT_REGION if self._xypress: x, y = event.x, event.y lastx, lasty, a, ind, lim, trans = self._xypress[0] self.draw_rubberband(event, x, y, lastx, lasty) elif (self._active=='PAN' and self._lastCursor != cursors.MOVE): self.set_cursor(cursors.MOVE) self._lastCursor = cursors.MOVE if event.inaxes and event.inaxes.get_navigate(): try: s = event.inaxes.format_coord(event.xdata, event.ydata) except ValueError: pass except OverflowError: pass else: if len(self.mode): self.set_message('%s : %s' % (self.mode, s)) else: self.set_message(s) else: self.set_message(self.mode) def pan(self,*args): 'Activate the pan/zoom tool. pan with left button, zoom with right' # set the pointer icon and button press funcs to the # appropriate callbacks if self._active == 'PAN': self._active = None else: self._active = 'PAN' if self._idPress is not None: self._idPress = self.canvas.mpl_disconnect(self._idPress) self.mode = '' if self._idRelease is not None: self._idRelease = self.canvas.mpl_disconnect(self._idRelease) self.mode = '' if self._active: self._idPress = self.canvas.mpl_connect( 'button_press_event', self.press_pan) self._idRelease = self.canvas.mpl_connect( 'button_release_event', self.release_pan) self.mode = 'pan/zoom mode' self.canvas.widgetlock(self) else: self.canvas.widgetlock.release(self) for a in self.canvas.figure.get_axes(): a.set_navigate_mode(self._active) self.set_message(self.mode) def press(self, event): 'this will be called whenver a mouse button is pressed' pass def press_pan(self, event): 'the press mouse button in pan/zoom mode callback' if event.button == 1: self._button_pressed=1 elif event.button == 3: self._button_pressed=3 else: self._button_pressed=None return x, y = event.x, event.y # push the current view to define home if stack is empty if self._views.empty(): self.push_current() self._xypress=[] for i, a in enumerate(self.canvas.figure.get_axes()): if x is not None and y is not None and a.in_axes(event) and a.get_navigate(): a.start_pan(x, y, event.button) self._xypress.append((a, i)) self.canvas.mpl_disconnect(self._idDrag) self._idDrag=self.canvas.mpl_connect('motion_notify_event', self.drag_pan) self.press(event) def press_zoom(self, event): 'the press mouse button in zoom to rect mode callback' if event.button == 1: self._button_pressed=1 elif event.button == 3: self._button_pressed=3 else: self._button_pressed=None return x, y = event.x, event.y # push the current view to define home if stack is empty if self._views.empty(): self.push_current() self._xypress=[] for i, a in enumerate(self.canvas.figure.get_axes()): if x is not None and y is not None and a.in_axes(event) \ and a.get_navigate() and a.can_zoom(): self._xypress.append(( x, y, a, i, a.viewLim.frozen(), a.transData.frozen())) self.press(event) def push_current(self): 'push the current view limits and position onto the stack' lims = []; pos = [] for a in self.canvas.figure.get_axes(): xmin, xmax = a.get_xlim() ymin, ymax = a.get_ylim() lims.append( (xmin, xmax, ymin, ymax) ) # Store both the original and modified positions pos.append( ( a.get_position(True).frozen(), a.get_position().frozen() ) ) self._views.push(lims) self._positions.push(pos) self.set_history_buttons() def release(self, event): 'this will be called whenever mouse button is released' pass def release_pan(self, event): 'the release mouse button callback in pan/zoom mode' self.canvas.mpl_disconnect(self._idDrag) self._idDrag=self.canvas.mpl_connect('motion_notify_event', self.mouse_move) for a, ind in self._xypress: a.end_pan() if not self._xypress: return self._xypress = [] self._button_pressed=None self.push_current() self.release(event) self.draw() def drag_pan(self, event): 'the drag callback in pan/zoom mode' for a, ind in self._xypress: #safer to use the recorded button at the press than current button: #multiple button can get pressed during motion... a.drag_pan(self._button_pressed, event.key, event.x, event.y) self.dynamic_update() def release_zoom(self, event): 'the release mouse button callback in zoom to rect mode' if not self._xypress: return last_a = [] for cur_xypress in self._xypress: x, y = event.x, event.y lastx, lasty, a, ind, lim, trans = cur_xypress # ignore singular clicks - 5 pixels is a threshold if abs(x-lastx)<5 or abs(y-lasty)<5: self._xypress = None self.release(event) self.draw() return x0, y0, x1, y1 = lim.extents # zoom to rect inverse = a.transData.inverted() lastx, lasty = inverse.transform_point( (lastx, lasty) ) x, y = inverse.transform_point( (x, y) ) Xmin,Xmax=a.get_xlim() Ymin,Ymax=a.get_ylim() # detect twinx,y axes and avoid double zooming twinx, twiny = False, False if last_a: for la in last_a: if a.get_shared_x_axes().joined(a,la): twinx=True if a.get_shared_y_axes().joined(a,la): twiny=True last_a.append(a) if twinx: x0, x1 = Xmin, Xmax else: if Xmin < Xmax: if x<lastx: x0, x1 = x, lastx else: x0, x1 = lastx, x if x0 < Xmin: x0=Xmin if x1 > Xmax: x1=Xmax else: if x>lastx: x0, x1 = x, lastx else: x0, x1 = lastx, x if x0 > Xmin: x0=Xmin if x1 < Xmax: x1=Xmax if twiny: y0, y1 = Ymin, Ymax else: if Ymin < Ymax: if y<lasty: y0, y1 = y, lasty else: y0, y1 = lasty, y if y0 < Ymin: y0=Ymin if y1 > Ymax: y1=Ymax else: if y>lasty: y0, y1 = y, lasty else: y0, y1 = lasty, y if y0 > Ymin: y0=Ymin if y1 < Ymax: y1=Ymax if self._button_pressed == 1: a.set_xlim((x0, x1)) a.set_ylim((y0, y1)) elif self._button_pressed == 3: if a.get_xscale()=='log': alpha=np.log(Xmax/Xmin)/np.log(x1/x0) rx1=pow(Xmin/x0,alpha)*Xmin rx2=pow(Xmax/x0,alpha)*Xmin else: alpha=(Xmax-Xmin)/(x1-x0) rx1=alpha*(Xmin-x0)+Xmin rx2=alpha*(Xmax-x0)+Xmin if a.get_yscale()=='log': alpha=np.log(Ymax/Ymin)/np.log(y1/y0) ry1=pow(Ymin/y0,alpha)*Ymin ry2=pow(Ymax/y0,alpha)*Ymin else: alpha=(Ymax-Ymin)/(y1-y0) ry1=alpha*(Ymin-y0)+Ymin ry2=alpha*(Ymax-y0)+Ymin a.set_xlim((rx1, rx2)) a.set_ylim((ry1, ry2)) self.draw() self._xypress = None self._button_pressed = None self.push_current() self.release(event) def draw(self): 'redraw the canvases, update the locators' for a in self.canvas.figure.get_axes(): xaxis = getattr(a, 'xaxis', None) yaxis = getattr(a, 'yaxis', None) locators = [] if xaxis is not None: locators.append(xaxis.get_major_locator()) locators.append(xaxis.get_minor_locator()) if yaxis is not None: locators.append(yaxis.get_major_locator()) locators.append(yaxis.get_minor_locator()) for loc in locators: loc.refresh() self.canvas.draw() def _update_view(self): '''update the viewlim and position from the view and position stack for each axes ''' lims = self._views() if lims is None: return pos = self._positions() if pos is None: return for i, a in enumerate(self.canvas.figure.get_axes()): xmin, xmax, ymin, ymax = lims[i] a.set_xlim((xmin, xmax)) a.set_ylim((ymin, ymax)) # Restore both the original and modified positions a.set_position( pos[i][0], 'original' ) a.set_position( pos[i][1], 'active' ) self.draw() def save_figure(self, *args): 'save the current figure' raise NotImplementedError def set_cursor(self, cursor): """ Set the current cursor to one of the :class:`Cursors` enums values """ pass def update(self): 'reset the axes stack' self._views.clear() self._positions.clear() self.set_history_buttons() def zoom(self, *args): 'activate zoom to rect mode' if self._active == 'ZOOM': self._active = None else: self._active = 'ZOOM' if self._idPress is not None: self._idPress=self.canvas.mpl_disconnect(self._idPress) self.mode = '' if self._idRelease is not None: self._idRelease=self.canvas.mpl_disconnect(self._idRelease) self.mode = '' if self._active: self._idPress = self.canvas.mpl_connect('button_press_event', self.press_zoom) self._idRelease = self.canvas.mpl_connect('button_release_event', self.release_zoom) self.mode = 'Zoom to rect mode' self.canvas.widgetlock(self) else: self.canvas.widgetlock.release(self) for a in self.canvas.figure.get_axes(): a.set_navigate_mode(self._active) self.set_message(self.mode) def set_history_buttons(self): 'enable or disable back/forward button' pass
agpl-3.0
hainn8x/gnuradio
gr-filter/examples/fft_filter_ccc.py
47
4363
#!/usr/bin/env python # # Copyright 2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, filter from gnuradio import analog from gnuradio import blocks from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser import sys try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_fft_filter_ccc(gr.top_block): def __init__(self, N, fs, bw0, bw1, tw, atten, D): gr.top_block.__init__(self) self._nsamps = N self._fs = fs self._bw0 = bw0 self._bw1 = bw1 self._tw = tw self._at = atten self._decim = D taps = filter.firdes.complex_band_pass_2(1, self._fs, self._bw0, self._bw1, self._tw, self._at) print "Num. Taps: ", len(taps) self.src = analog.noise_source_c(analog.GR_GAUSSIAN, 1) self.head = blocks.head(gr.sizeof_gr_complex, self._nsamps) self.filt0 = filter.fft_filter_ccc(self._decim, taps) self.vsnk_src = blocks.vector_sink_c() self.vsnk_out = blocks.vector_sink_c() self.connect(self.src, self.head, self.vsnk_src) self.connect(self.head, self.filt0, self.vsnk_out) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=10000, help="Number of samples to process [default=%default]") parser.add_option("-s", "--samplerate", type="eng_float", default=8000, help="System sample rate [default=%default]") parser.add_option("-S", "--start-pass", type="eng_float", default=1000, help="Start of Passband [default=%default]") parser.add_option("-E", "--end-pass", type="eng_float", default=2000, help="End of Passband [default=%default]") parser.add_option("-T", "--transition", type="eng_float", default=100, help="Transition band [default=%default]") parser.add_option("-A", "--attenuation", type="eng_float", default=80, help="Stopband attenuation [default=%default]") parser.add_option("-D", "--decimation", type="int", default=1, help="Decmation factor [default=%default]") (options, args) = parser.parse_args () put = example_fft_filter_ccc(options.nsamples, options.samplerate, options.start_pass, options.end_pass, options.transition, options.attenuation, options.decimation) put.run() data_src = scipy.array(put.vsnk_src.data()) data_snk = scipy.array(put.vsnk_out.data()) # Plot the signals PSDs nfft = 1024 f1 = pylab.figure(1, figsize=(12,10)) s1 = f1.add_subplot(1,1,1) s1.psd(data_src, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) s1.psd(data_snk, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) f2 = pylab.figure(2, figsize=(12,10)) s2 = f2.add_subplot(1,1,1) s2.plot(data_src) s2.plot(data_snk.real, 'g') pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
nmartensen/pandas
pandas/tests/indexes/test_interval.py
1
43299
from __future__ import division import pytest import numpy as np from datetime import timedelta from pandas import (Interval, IntervalIndex, Index, isna, interval_range, Timestamp, Timedelta, compat, date_range, timedelta_range, DateOffset) from pandas.tseries.offsets import Day from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self): return IntervalIndex.from_breaks(np.arange(10)) def test_constructors(self): expected = self.index actual = IntervalIndex.from_breaks(np.arange(3), closed='right') assert expected.equals(actual) alternate = IntervalIndex.from_breaks(np.arange(3), closed='left') assert not expected.equals(alternate) actual = IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex.from_arrays(np.arange(2), np.arange(2) + 1, closed='right') assert expected.equals(actual) actual = Index([Interval(0, 1), Interval(1, 2)]) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) actual = Index(expected) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) def test_constructors_other(self): # all-nan result = IntervalIndex.from_intervals([np.nan]) expected = np.array([np.nan], dtype=object) tm.assert_numpy_array_equal(result.values, expected) # empty result = IntervalIndex.from_intervals([]) expected = np.array([], dtype=object) tm.assert_numpy_array_equal(result.values, expected) def test_constructors_errors(self): # scalar with pytest.raises(TypeError): IntervalIndex(5) # not an interval with pytest.raises(TypeError): IntervalIndex([0, 1]) with pytest.raises(TypeError): IntervalIndex.from_intervals([0, 1]) # invalid closed with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed with pytest.raises(ValueError): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with pytest.raises(ValueError): IntervalIndex.from_arrays([0, 10], [3, 5]) with pytest.raises(ValueError): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # no point in nesting periods in an IntervalIndex with pytest.raises(ValueError): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) def test_constructors_datetimelike(self): # DTI / TDI for idx in [pd.date_range('20130101', periods=5), pd.timedelta_range('1 day', periods=5)]: result = IntervalIndex.from_breaks(idx) expected = IntervalIndex.from_breaks(idx.values) tm.assert_index_equal(result, expected) expected_scalar_type = type(idx[0]) i = result[0] assert isinstance(i.left, expected_scalar_type) assert isinstance(i.right, expected_scalar_type) def test_constructors_error(self): # non-intervals def f(): IntervalIndex.from_intervals([0.997, 4.0]) pytest.raises(TypeError, f) def test_properties(self): index = self.index assert len(index) == 2 assert index.size == 2 assert index.shape == (2, ) tm.assert_index_equal(index.left, Index([0, 1])) tm.assert_index_equal(index.right, Index([1, 2])) tm.assert_index_equal(index.mid, Index([0.5, 1.5])) assert index.closed == 'right' expected = np.array([Interval(0, 1), Interval(1, 2)], dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) # with nans index = self.index_with_nan assert len(index) == 3 assert index.size == 3 assert index.shape == (3, ) tm.assert_index_equal(index.left, Index([0, np.nan, 1])) tm.assert_index_equal(index.right, Index([1, np.nan, 2])) tm.assert_index_equal(index.mid, Index([0.5, np.nan, 1.5])) assert index.closed == 'right' expected = np.array([Interval(0, 1), np.nan, Interval(1, 2)], dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) def test_with_nans(self): index = self.index assert not index.hasnans tm.assert_numpy_array_equal(index.isna(), np.array([False, False])) tm.assert_numpy_array_equal(index.notna(), np.array([True, True])) index = self.index_with_nan assert index.hasnans tm.assert_numpy_array_equal(index.notna(), np.array([True, False, True])) tm.assert_numpy_array_equal(index.isna(), np.array([False, True, False])) def test_copy(self): actual = self.index.copy() assert actual.equals(self.index) actual = self.index.copy(deep=True) assert actual.equals(self.index) assert actual.left is not self.index.left def test_ensure_copied_data(self): # exercise the copy flag in the constructor # not copying index = self.index result = IntervalIndex(index, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='same') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='same') # by-definition make a copy result = IntervalIndex.from_intervals(index.values, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='copy') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='copy') def test_equals(self): idx = self.index assert idx.equals(idx) assert idx.equals(idx.copy()) assert not idx.equals(idx.astype(object)) assert not idx.equals(np.array(idx)) assert not idx.equals(list(idx)) assert not idx.equals([1, 2]) assert not idx.equals(np.array([1, 2])) assert not idx.equals(pd.date_range('20130101', periods=2)) def test_astype(self): idx = self.index for dtype in [np.int64, np.float64, 'datetime64[ns]', 'datetime64[ns, US/Eastern]', 'timedelta64', 'period[M]']: pytest.raises(ValueError, idx.astype, dtype) result = idx.astype(object) tm.assert_index_equal(result, Index(idx.values, dtype='object')) assert not idx.equals(result) assert idx.equals(IntervalIndex.from_intervals(result)) result = idx.astype('interval') tm.assert_index_equal(result, idx) assert result.equals(idx) result = idx.astype('category') expected = pd.Categorical(idx, ordered=True) tm.assert_categorical_equal(result, expected) def test_where(self): expected = self.index result = self.index.where(self.index.notna()) tm.assert_index_equal(result, expected) idx = IntervalIndex.from_breaks([1, 2]) result = idx.where([True, False]) expected = IntervalIndex.from_intervals( [Interval(1.0, 2.0, closed='right'), np.nan]) tm.assert_index_equal(result, expected) def test_where_array_like(self): pass def test_delete(self): expected = IntervalIndex.from_breaks([1, 2]) actual = self.index.delete(0) assert expected.equals(actual) def test_insert(self): expected = IntervalIndex.from_breaks(range(4)) actual = self.index.insert(2, Interval(2, 3)) assert expected.equals(actual) pytest.raises(ValueError, self.index.insert, 0, 1) pytest.raises(ValueError, self.index.insert, 0, Interval(2, 3, closed='left')) def test_take(self): actual = self.index.take([0, 1]) assert self.index.equals(actual) expected = IntervalIndex.from_arrays([0, 0, 1], [1, 1, 2]) actual = self.index.take([0, 0, 1]) assert expected.equals(actual) def test_monotonic_and_unique(self): assert self.index.is_monotonic assert self.index.is_unique idx = IntervalIndex.from_tuples([(0, 1), (0.5, 1.5)]) assert idx.is_monotonic assert idx.is_unique idx = IntervalIndex.from_tuples([(0, 1), (2, 3), (1, 2)]) assert not idx.is_monotonic assert idx.is_unique idx = IntervalIndex.from_tuples([(0, 2), (0, 2)]) assert not idx.is_unique assert idx.is_monotonic @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr(self): i = IntervalIndex.from_tuples([(0, 1), (1, 2)], closed='right') expected = ("IntervalIndex(left=[0, 1]," "\n right=[1, 2]," "\n closed='right'," "\n dtype='interval[int64]')") assert repr(i) == expected i = IntervalIndex.from_tuples((Timestamp('20130101'), Timestamp('20130102')), (Timestamp('20130102'), Timestamp('20130103')), closed='right') expected = ("IntervalIndex(left=['2013-01-01', '2013-01-02']," "\n right=['2013-01-02', '2013-01-03']," "\n closed='right'," "\n dtype='interval[datetime64[ns]]')") assert repr(i) == expected @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_max_seq_item_setting(self): super(TestIntervalIndex, self).test_repr_max_seq_item_setting() @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_roundtrip(self): super(TestIntervalIndex, self).test_repr_roundtrip() def test_get_item(self): i = IntervalIndex.from_arrays((0, 1, np.nan), (1, 2, np.nan), closed='right') assert i[0] == Interval(0.0, 1.0) assert i[1] == Interval(1.0, 2.0) assert isna(i[2]) result = i[0:1] expected = IntervalIndex.from_arrays((0.,), (1.,), closed='right') tm.assert_index_equal(result, expected) result = i[0:2] expected = IntervalIndex.from_arrays((0., 1), (1., 2.), closed='right') tm.assert_index_equal(result, expected) result = i[1:3] expected = IntervalIndex.from_arrays((1., np.nan), (2., np.nan), closed='right') tm.assert_index_equal(result, expected) def test_get_loc_value(self): pytest.raises(KeyError, self.index.get_loc, 0) assert self.index.get_loc(0.5) == 0 assert self.index.get_loc(1) == 0 assert self.index.get_loc(1.5) == 1 assert self.index.get_loc(2) == 1 pytest.raises(KeyError, self.index.get_loc, -1) pytest.raises(KeyError, self.index.get_loc, 3) idx = IntervalIndex.from_tuples([(0, 2), (1, 3)]) assert idx.get_loc(0.5) == 0 assert idx.get_loc(1) == 0 tm.assert_numpy_array_equal(idx.get_loc(1.5), np.array([0, 1], dtype='int64')) tm.assert_numpy_array_equal(np.sort(idx.get_loc(2)), np.array([0, 1], dtype='int64')) assert idx.get_loc(3) == 1 pytest.raises(KeyError, idx.get_loc, 3.5) idx = IntervalIndex.from_arrays([0, 2], [1, 3]) pytest.raises(KeyError, idx.get_loc, 1.5) def slice_locs_cases(self, breaks): # TODO: same tests for more index types index = IntervalIndex.from_breaks([0, 1, 2], closed='right') assert index.slice_locs() == (0, 2) assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(0, 0.5) == (0, 1) assert index.slice_locs(start=1) == (0, 2) assert index.slice_locs(start=1.2) == (1, 2) assert index.slice_locs(end=1) == (0, 1) assert index.slice_locs(end=1.1) == (0, 2) assert index.slice_locs(end=1.0) == (0, 1) assert index.slice_locs(-1, -1) == (0, 0) index = IntervalIndex.from_breaks([0, 1, 2], closed='neither') assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(1, 1) == (1, 1) assert index.slice_locs(1, 2) == (1, 2) index = IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)], closed='both') assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(1, 2) == (0, 2) def test_slice_locs_int64(self): self.slice_locs_cases([0, 1, 2]) def test_slice_locs_float64(self): self.slice_locs_cases([0.0, 1.0, 2.0]) def slice_locs_decreasing_cases(self, tuples): index = IntervalIndex.from_tuples(tuples) assert index.slice_locs(1.5, 0.5) == (1, 3) assert index.slice_locs(2, 0) == (1, 3) assert index.slice_locs(2, 1) == (1, 3) assert index.slice_locs(3, 1.1) == (0, 3) assert index.slice_locs(3, 3) == (0, 2) assert index.slice_locs(3.5, 3.3) == (0, 1) assert index.slice_locs(1, -3) == (2, 3) slice_locs = index.slice_locs(-1, -1) assert slice_locs[0] == slice_locs[1] def test_slice_locs_decreasing_int64(self): self.slice_locs_cases([(2, 4), (1, 3), (0, 2)]) def test_slice_locs_decreasing_float64(self): self.slice_locs_cases([(2., 4.), (1., 3.), (0., 2.)]) def test_slice_locs_fails(self): index = IntervalIndex.from_tuples([(1, 2), (0, 1), (2, 3)]) with pytest.raises(KeyError): index.slice_locs(1, 2) def test_get_loc_interval(self): assert self.index.get_loc(Interval(0, 1)) == 0 assert self.index.get_loc(Interval(0, 0.5)) == 0 assert self.index.get_loc(Interval(0, 1, 'left')) == 0 pytest.raises(KeyError, self.index.get_loc, Interval(2, 3)) pytest.raises(KeyError, self.index.get_loc, Interval(-1, 0, 'left')) def test_get_indexer(self): actual = self.index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(self.index) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) index = IntervalIndex.from_breaks([0, 1, 2], closed='left') actual = index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, 0, 0, 1, 1, -1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index[:1]) expected = np.array([0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index) expected = np.array([-1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_get_indexer_subintervals(self): # TODO: is this right? # return indexers for wholly contained subintervals target = IntervalIndex.from_breaks(np.linspace(0, 2, 5)) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='p') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.67, 1.33, 2]) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(target[[0, -1]]) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.33, 0.67, 1], closed='left') actual = self.index.get_indexer(target) expected = np.array([0, 0, 0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_contains(self): # Only endpoints are valid. i = IntervalIndex.from_arrays([0, 1], [1, 2]) # Invalid assert 0 not in i assert 1 not in i assert 2 not in i # Valid assert Interval(0, 1) in i assert Interval(0, 2) in i assert Interval(0, 0.5) in i assert Interval(3, 5) not in i assert Interval(-1, 0, closed='left') not in i def testcontains(self): # can select values that are IN the range of a value i = IntervalIndex.from_arrays([0, 1], [1, 2]) assert i.contains(0.1) assert i.contains(0.5) assert i.contains(1) assert i.contains(Interval(0, 1)) assert i.contains(Interval(0, 2)) # these overlaps completely assert i.contains(Interval(0, 3)) assert i.contains(Interval(1, 3)) assert not i.contains(20) assert not i.contains(-20) def test_dropna(self): expected = IntervalIndex.from_tuples([(0.0, 1.0), (1.0, 2.0)]) ii = IntervalIndex.from_tuples([(0, 1), (1, 2), np.nan]) result = ii.dropna() tm.assert_index_equal(result, expected) ii = IntervalIndex.from_arrays([0, 1, np.nan], [1, 2, np.nan]) result = ii.dropna() tm.assert_index_equal(result, expected) def test_non_contiguous(self): index = IntervalIndex.from_tuples([(0, 1), (2, 3)]) target = [0.5, 1.5, 2.5] actual = index.get_indexer(target) expected = np.array([0, -1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) assert 1.5 not in index def test_union(self): other = IntervalIndex.from_arrays([2], [3]) expected = IntervalIndex.from_arrays(range(3), range(1, 4)) actual = self.index.union(other) assert expected.equals(actual) actual = other.union(self.index) assert expected.equals(actual) tm.assert_index_equal(self.index.union(self.index), self.index) tm.assert_index_equal(self.index.union(self.index[:1]), self.index) def test_intersection(self): other = IntervalIndex.from_breaks([1, 2, 3]) expected = IntervalIndex.from_breaks([1, 2]) actual = self.index.intersection(other) assert expected.equals(actual) tm.assert_index_equal(self.index.intersection(self.index), self.index) def test_difference(self): tm.assert_index_equal(self.index.difference(self.index[:1]), self.index[1:]) def test_symmetric_difference(self): result = self.index[:1].symmetric_difference(self.index[1:]) expected = self.index tm.assert_index_equal(result, expected) def test_set_operation_errors(self): pytest.raises(ValueError, self.index.union, self.index.left) other = IntervalIndex.from_breaks([0, 1, 2], closed='neither') pytest.raises(ValueError, self.index.union, other) def test_isin(self): actual = self.index.isin(self.index) tm.assert_numpy_array_equal(np.array([True, True]), actual) actual = self.index.isin(self.index[:1]) tm.assert_numpy_array_equal(np.array([True, False]), actual) def test_comparison(self): actual = Interval(0, 1) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = Interval(0.5, 1.5) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > Interval(0.5, 1.5) tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index expected = np.array([True, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index <= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index >= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index < self.index expected = np.array([False, False]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index == IntervalIndex.from_breaks([0, 1, 2], 'left') tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index.values == self.index tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index <= self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index != self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index > self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index.values > self.index tm.assert_numpy_array_equal(actual, np.array([False, False])) # invalid comparisons actual = self.index == 0 tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index == self.index.left tm.assert_numpy_array_equal(actual, np.array([False, False])) with tm.assert_raises_regex(TypeError, 'unorderable types'): self.index > 0 with tm.assert_raises_regex(TypeError, 'unorderable types'): self.index <= 0 with pytest.raises(TypeError): self.index > np.arange(2) with pytest.raises(ValueError): self.index > np.arange(3) def test_missing_values(self): idx = pd.Index([np.nan, pd.Interval(0, 1), pd.Interval(1, 2)]) idx2 = pd.IntervalIndex.from_arrays([np.nan, 0, 1], [np.nan, 1, 2]) assert idx.equals(idx2) with pytest.raises(ValueError): IntervalIndex.from_arrays([np.nan, 0, 1], np.array([0, 1, 2])) tm.assert_numpy_array_equal(isna(idx), np.array([True, False, False])) def test_sort_values(self): expected = IntervalIndex.from_breaks([1, 2, 3, 4]) actual = IntervalIndex.from_tuples([(3, 4), (1, 2), (2, 3)]).sort_values() tm.assert_index_equal(expected, actual) # nan idx = self.index_with_nan mask = idx.isna() tm.assert_numpy_array_equal(mask, np.array([False, True, False])) result = idx.sort_values() mask = result.isna() tm.assert_numpy_array_equal(mask, np.array([False, False, True])) result = idx.sort_values(ascending=False) mask = result.isna() tm.assert_numpy_array_equal(mask, np.array([True, False, False])) def test_datetime(self): dates = pd.date_range('2000', periods=3) idx = IntervalIndex.from_breaks(dates) tm.assert_index_equal(idx.left, dates[:2]) tm.assert_index_equal(idx.right, dates[-2:]) expected = pd.date_range('2000-01-01T12:00', periods=2) tm.assert_index_equal(idx.mid, expected) assert pd.Timestamp('2000-01-01T12') not in idx assert pd.Timestamp('2000-01-01T12') not in idx target = pd.date_range('1999-12-31T12:00', periods=7, freq='12H') actual = idx.get_indexer(target) expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_append(self): index1 = IntervalIndex.from_arrays([0, 1], [1, 2]) index2 = IntervalIndex.from_arrays([1, 2], [2, 3]) result = index1.append(index2) expected = IntervalIndex.from_arrays([0, 1, 1, 2], [1, 2, 2, 3]) tm.assert_index_equal(result, expected) result = index1.append([index1, index2]) expected = IntervalIndex.from_arrays([0, 1, 0, 1, 1, 2], [1, 2, 1, 2, 2, 3]) tm.assert_index_equal(result, expected) def f(): index1.append(IntervalIndex.from_arrays([0, 1], [1, 2], closed='both')) pytest.raises(ValueError, f) def test_is_non_overlapping_monotonic(self): # Should be True in all cases tpls = [(0, 1), (2, 3), (4, 5), (6, 7)] for closed in ('left', 'right', 'neither', 'both'): idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is True idx = IntervalIndex.from_tuples(reversed(tpls), closed=closed) assert idx.is_non_overlapping_monotonic is True # Should be False in all cases (overlapping) tpls = [(0, 2), (1, 3), (4, 5), (6, 7)] for closed in ('left', 'right', 'neither', 'both'): idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is False idx = IntervalIndex.from_tuples(reversed(tpls), closed=closed) assert idx.is_non_overlapping_monotonic is False # Should be False in all cases (non-monotonic) tpls = [(0, 1), (2, 3), (6, 7), (4, 5)] for closed in ('left', 'right', 'neither', 'both'): idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is False idx = IntervalIndex.from_tuples(reversed(tpls), closed=closed) assert idx.is_non_overlapping_monotonic is False # Should be False for closed='both', overwise True (GH16560) idx = IntervalIndex.from_breaks(range(4), closed='both') assert idx.is_non_overlapping_monotonic is False for closed in ('left', 'right', 'neither'): idx = IntervalIndex.from_breaks(range(4), closed=closed) assert idx.is_non_overlapping_monotonic is True class TestIntervalRange(object): @pytest.mark.parametrize('closed', ['left', 'right', 'neither', 'both']) def test_construction_from_numeric(self, closed): # combinations of start/end/periods without freq expected = IntervalIndex.from_breaks( np.arange(0, 6), name='foo', closed=closed) result = interval_range(start=0, end=5, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=0, periods=5, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=5, periods=5, name='foo', closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with freq expected = IntervalIndex.from_tuples([(0, 2), (2, 4), (4, 6)], name='foo', closed=closed) result = interval_range(start=0, end=6, freq=2, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=0, periods=3, freq=2, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=6, periods=3, freq=2, name='foo', closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. expected = IntervalIndex.from_tuples([(0.0, 1.5), (1.5, 3.0)], name='foo', closed=closed) result = interval_range(start=0, end=4, freq=1.5, name='foo', closed=closed) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('closed', ['left', 'right', 'neither', 'both']) def test_construction_from_timestamp(self, closed): # combinations of start/end/periods without freq start, end = Timestamp('2017-01-01'), Timestamp('2017-01-06') breaks = date_range(start=start, end=end) expected = IntervalIndex.from_breaks(breaks, name='foo', closed=closed) result = interval_range(start=start, end=end, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=5, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=5, name='foo', closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with fixed freq freq = '2D' start, end = Timestamp('2017-01-01'), Timestamp('2017-01-07') breaks = date_range(start=start, end=end, freq=freq) expected = IntervalIndex.from_breaks(breaks, name='foo', closed=closed) result = interval_range(start=start, end=end, freq=freq, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=3, freq=freq, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=3, freq=freq, name='foo', closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. end = Timestamp('2017-01-08') result = interval_range(start=start, end=end, freq=freq, name='foo', closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with non-fixed freq freq = 'M' start, end = Timestamp('2017-01-01'), Timestamp('2017-12-31') breaks = date_range(start=start, end=end, freq=freq) expected = IntervalIndex.from_breaks(breaks, name='foo', closed=closed) result = interval_range(start=start, end=end, freq=freq, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=11, freq=freq, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=11, freq=freq, name='foo', closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. end = Timestamp('2018-01-15') result = interval_range(start=start, end=end, freq=freq, name='foo', closed=closed) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('closed', ['left', 'right', 'neither', 'both']) def test_construction_from_timedelta(self, closed): # combinations of start/end/periods without freq start, end = Timedelta('1 day'), Timedelta('6 days') breaks = timedelta_range(start=start, end=end) expected = IntervalIndex.from_breaks(breaks, name='foo', closed=closed) result = interval_range(start=start, end=end, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=5, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=5, name='foo', closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with fixed freq freq = '2D' start, end = Timedelta('1 day'), Timedelta('7 days') breaks = timedelta_range(start=start, end=end, freq=freq) expected = IntervalIndex.from_breaks(breaks, name='foo', closed=closed) result = interval_range(start=start, end=end, freq=freq, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=3, freq=freq, name='foo', closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=3, freq=freq, name='foo', closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. end = Timedelta('7 days 1 hour') result = interval_range(start=start, end=end, freq=freq, name='foo', closed=closed) tm.assert_index_equal(result, expected) def test_constructor_coverage(self): # float value for periods expected = pd.interval_range(start=0, periods=10) result = pd.interval_range(start=0, periods=10.5) tm.assert_index_equal(result, expected) # equivalent timestamp-like start/end start, end = Timestamp('2017-01-01'), Timestamp('2017-01-15') expected = pd.interval_range(start=start, end=end) result = pd.interval_range(start=start.to_pydatetime(), end=end.to_pydatetime()) tm.assert_index_equal(result, expected) result = pd.interval_range(start=start.tz_localize('UTC'), end=end.tz_localize('UTC')) tm.assert_index_equal(result, expected) result = pd.interval_range(start=start.asm8, end=end.asm8) tm.assert_index_equal(result, expected) # equivalent freq with timestamp equiv_freq = ['D', Day(), Timedelta(days=1), timedelta(days=1), DateOffset(days=1)] for freq in equiv_freq: result = pd.interval_range(start=start, end=end, freq=freq) tm.assert_index_equal(result, expected) # equivalent timedelta-like start/end start, end = Timedelta(days=1), Timedelta(days=10) expected = pd.interval_range(start=start, end=end) result = pd.interval_range(start=start.to_pytimedelta(), end=end.to_pytimedelta()) tm.assert_index_equal(result, expected) result = pd.interval_range(start=start.asm8, end=end.asm8) tm.assert_index_equal(result, expected) # equivalent freq with timedelta equiv_freq = ['D', Day(), Timedelta(days=1), timedelta(days=1)] for freq in equiv_freq: result = pd.interval_range(start=start, end=end, freq=freq) tm.assert_index_equal(result, expected) def test_errors(self): # not enough params msg = ('Of the three parameters: start, end, and periods, ' 'exactly two must be specified') with tm.assert_raises_regex(ValueError, msg): interval_range(start=0) with tm.assert_raises_regex(ValueError, msg): interval_range(end=5) with tm.assert_raises_regex(ValueError, msg): interval_range(periods=2) with tm.assert_raises_regex(ValueError, msg): interval_range() # too many params with tm.assert_raises_regex(ValueError, msg): interval_range(start=0, end=5, periods=6) # mixed units msg = 'start, end, freq need to be type compatible' with tm.assert_raises_regex(TypeError, msg): interval_range(start=0, end=Timestamp('20130101'), freq=2) with tm.assert_raises_regex(TypeError, msg): interval_range(start=0, end=Timedelta('1 day'), freq=2) with tm.assert_raises_regex(TypeError, msg): interval_range(start=0, end=10, freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timestamp('20130101'), end=10, freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timestamp('20130101'), end=Timedelta('1 day'), freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timestamp('20130101'), end=Timestamp('20130110'), freq=2) with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timedelta('1 day'), end=10, freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timedelta('1 day'), end=Timestamp('20130110'), freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timedelta('1 day'), end=Timedelta('10 days'), freq=2) # invalid periods msg = 'periods must be a number, got foo' with tm.assert_raises_regex(TypeError, msg): interval_range(start=0, periods='foo') # invalid start msg = 'start must be numeric or datetime-like, got foo' with tm.assert_raises_regex(ValueError, msg): interval_range(start='foo', periods=10) # invalid end msg = 'end must be numeric or datetime-like, got \(0, 1\]' with tm.assert_raises_regex(ValueError, msg): interval_range(end=Interval(0, 1), periods=10) # invalid freq for datetime-like msg = 'freq must be numeric or convertible to DateOffset, got foo' with tm.assert_raises_regex(ValueError, msg): interval_range(start=0, end=10, freq='foo') with tm.assert_raises_regex(ValueError, msg): interval_range(start=Timestamp('20130101'), periods=10, freq='foo') with tm.assert_raises_regex(ValueError, msg): interval_range(end=Timedelta('1 day'), periods=10, freq='foo') class TestIntervalTree(object): def setup_method(self, method): gentree = lambda dtype: IntervalTree(np.arange(5, dtype=dtype), np.arange(5, dtype=dtype) + 2) self.tree = gentree('int64') self.trees = {dtype: gentree(dtype) for dtype in ['int32', 'int64', 'float32', 'float64']} def test_get_loc(self): for dtype, tree in self.trees.items(): tm.assert_numpy_array_equal(tree.get_loc(1), np.array([0], dtype='int64')) tm.assert_numpy_array_equal(np.sort(tree.get_loc(2)), np.array([0, 1], dtype='int64')) with pytest.raises(KeyError): tree.get_loc(-1) def test_get_indexer(self): for dtype, tree in self.trees.items(): tm.assert_numpy_array_equal( tree.get_indexer(np.array([1.0, 5.5, 6.5])), np.array([0, 4, -1], dtype='int64')) with pytest.raises(KeyError): tree.get_indexer(np.array([3.0])) def test_get_indexer_non_unique(self): indexer, missing = self.tree.get_indexer_non_unique( np.array([1.0, 2.0, 6.5])) tm.assert_numpy_array_equal(indexer[:1], np.array([0], dtype='int64')) tm.assert_numpy_array_equal(np.sort(indexer[1:3]), np.array([0, 1], dtype='int64')) tm.assert_numpy_array_equal(np.sort(indexer[3:]), np.array([-1], dtype='int64')) tm.assert_numpy_array_equal(missing, np.array([2], dtype='int64')) def test_duplicates(self): tree = IntervalTree([0, 0, 0], [1, 1, 1]) tm.assert_numpy_array_equal(np.sort(tree.get_loc(0.5)), np.array([0, 1, 2], dtype='int64')) with pytest.raises(KeyError): tree.get_indexer(np.array([0.5])) indexer, missing = tree.get_indexer_non_unique(np.array([0.5])) tm.assert_numpy_array_equal(np.sort(indexer), np.array([0, 1, 2], dtype='int64')) tm.assert_numpy_array_equal(missing, np.array([], dtype='int64')) def test_get_loc_closed(self): for closed in ['left', 'right', 'both', 'neither']: tree = IntervalTree([0], [1], closed=closed) for p, errors in [(0, tree.open_left), (1, tree.open_right)]: if errors: with pytest.raises(KeyError): tree.get_loc(p) else: tm.assert_numpy_array_equal(tree.get_loc(p), np.array([0], dtype='int64')) @pytest.mark.skipif(compat.is_platform_32bit(), reason="int type mismatch on 32bit") def test_get_indexer_closed(self): x = np.arange(1000, dtype='float64') found = x.astype('intp') not_found = (-1 * np.ones(1000)).astype('intp') for leaf_size in [1, 10, 100, 10000]: for closed in ['left', 'right', 'both', 'neither']: tree = IntervalTree(x, x + 0.5, closed=closed, leaf_size=leaf_size) tm.assert_numpy_array_equal(found, tree.get_indexer(x + 0.25)) expected = found if tree.closed_left else not_found tm.assert_numpy_array_equal(expected, tree.get_indexer(x + 0.0)) expected = found if tree.closed_right else not_found tm.assert_numpy_array_equal(expected, tree.get_indexer(x + 0.5))
bsd-3-clause
pratapvardhan/scikit-learn
examples/manifold/plot_mds.py
45
2731
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Author: Nelle Varoquaux <[email protected]> # Licence: BSD print(__doc__) import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.metrics import euclidean_distances from sklearn.decomposition import PCA n_samples = 20 seed = np.random.RandomState(seed=3) X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() similarities = euclidean_distances(X_true) # Add noise to the similarities noise = np.random.rand(n_samples, n_samples) noise = noise + noise.T noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0 similarities += noise mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) pos = mds.fit(similarities).embedding_ nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1) npos = nmds.fit_transform(similarities, init=pos) # Rescale the data pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum()) npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum()) # Rotate the data clf = PCA(n_components=2) X_true = clf.fit_transform(X_true) pos = clf.fit_transform(pos) npos = clf.fit_transform(npos) fig = plt.figure(1) ax = plt.axes([0., 0., 1., 1.]) s = 100 plt.scatter(X_true[:, 0], X_true[:, 1], color='navy', s=s, lw=0, label='True Position') plt.scatter(pos[:, 0], pos[:, 1], color='turquoise', s=s, lw=0, label='MDS') plt.scatter(npos[:, 0], npos[:, 1], color='darkorange', s=s, lw=0, label='NMDS') plt.legend(scatterpoints=1, loc='best', shadow=False) similarities = similarities.max() / similarities * 100 similarities[np.isinf(similarities)] = 0 # Plot the edges start_idx, end_idx = np.where(pos) # a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos))] values = np.abs(similarities) lc = LineCollection(segments, zorder=0, cmap=plt.cm.Blues, norm=plt.Normalize(0, values.max())) lc.set_array(similarities.flatten()) lc.set_linewidths(0.5 * np.ones(len(segments))) ax.add_collection(lc) plt.show()
bsd-3-clause
vasyarv/edx-ora2
openassessment/assessment/worker/algorithm.py
10
12616
""" Define the ML algorithms used to train text classifiers. """ try: import cPickle as pickle except ImportError: import pickle from abc import ABCMeta, abstractmethod from collections import namedtuple import importlib import traceback import base64 from django.conf import settings DEFAULT_AI_ALGORITHMS = { 'fake': 'openassessment.assessment.worker.algorithm.FakeAIAlgorithm', 'ease': 'openassessment.assessment.worker.algorithm.EaseAIAlgorithm' } class AIAlgorithmError(Exception): """ An error occurred when using an AI algorithm. Superclass for more specific errors below. """ pass class UnknownAlgorithm(AIAlgorithmError): """ Algorithm ID not found in the configuration. """ def __init__(self, algorithm_id): msg = u"Could not find algorithm \"{}\" in the configuration.".format(algorithm_id) super(UnknownAlgorithm, self).__init__(msg) class AlgorithmLoadError(AIAlgorithmError): """ Unable to load the algorithm class. """ def __init__(self, algorithm_id, algorithm_path): msg = ( u"Could not load algorithm \"{algorithm_id}\" from \"{path}\"" ).format(algorithm_id=algorithm_id, path=algorithm_path) super(AlgorithmLoadError, self).__init__(msg) class TrainingError(AIAlgorithmError): """ An error occurred while training a classifier from example essays. """ pass class ScoreError(AIAlgorithmError): """ An error occurred while scoring an essay. """ pass class InvalidClassifier(ScoreError): """ The classifier could not be used by this algorithm to score an essay. """ pass class AIAlgorithm(object): """ Abstract base class for a supervised ML text classification algorithm. """ __metaclass__ = ABCMeta # Example essay used as input to the training algorithm # `text` is a unicode string representing a student essay submission. # `score` is an integer score. # Note that `score` is used as an arbitrary label, so you could # have a set of examples with non-adjacent scores. ExampleEssay = namedtuple('ExampleEssay', ['text', 'score']) @abstractmethod def train_classifier(self, examples): """ Train a classifier based on example essays and scores. Args: examples (list of AIAlgorithm.ExampleEssay): Example essays and scores. Returns: JSON-serializable: The trained classifier. This MUST be JSON-serializable. Raises: TrainingError: The classifier could not be trained successfully. """ pass @abstractmethod def score(self, text, classifier, cache): """ Score an essay using a classifier. Args: text (unicode): The text to classify. classifier (JSON-serializable): A classifier, using the same format as `train_classifier()`. cache (dict): An in-memory cache that persists until all criteria in the rubric have been scored. Raises: InvalidClassifier: The provided classifier cannot be used by this algorithm. ScoreError: An error occurred while scoring. """ pass @classmethod def algorithm_for_id(cls, algorithm_id): """ Load an algorithm based on Django settings configuration. Args: algorithm_id (unicode): The identifier for the algorithm, which should be specified in Django settings. Returns: AIAlgorithm Raises: UnknownAlgorithm """ algorithms = getattr(settings, "ORA2_AI_ALGORITHMS", DEFAULT_AI_ALGORITHMS) cls_path = algorithms.get(algorithm_id) if cls_path is None: raise UnknownAlgorithm(algorithm_id) else: module_path, _, name = cls_path.rpartition('.') try: algorithm_cls = getattr(importlib.import_module(module_path), name) return algorithm_cls() except (ImportError, ValueError, AttributeError): raise AlgorithmLoadError(algorithm_id, cls_path) class FakeAIAlgorithm(AIAlgorithm): """ Fake AI algorithm implementation that assigns scores randomly. We use this for testing the pipeline independently of EASE. """ def train_classifier(self, examples): """ Store the possible score labels, which will allow us to deterministically choose scores for other essays. """ unique_sorted_scores = sorted(list(set(example.score for example in examples))) return {'scores': unique_sorted_scores} def score(self, text, classifier, cache): """ Choose a score for the essay deterministically based on its length. """ if 'scores' not in classifier or len(classifier['scores']) == 0: raise InvalidClassifier("Classifier must provide score labels") else: score_index = len(text) % len(classifier['scores']) return classifier['scores'][score_index] class EaseAIAlgorithm(AIAlgorithm): """ Wrapper for the EASE library. See https://github.com/edx/ease for more information. Since EASE has many system dependencies, we don't include it explicitly in edx-ora2 requirements. When testing locally, we use the fake algorithm implementation instead. """ def train_classifier(self, examples): """ Train a text classifier using the EASE library. The classifier is serialized as a dictionary with keys: * 'feature_extractor': The pickled feature extractor (transforms text into a numeric feature vector). * 'score_classifier': The pickled classifier (uses the feature vector to assign scores to essays). Because we are using `pickle`, the serialized classifiers are unfortunately tied to the particular version of ease/scikit-learn/numpy/scipy/nltk that we have installed at the time of training. Args: examples (list of AIAlgorithm.ExampleEssay): Example essays and scores. Returns: dict: The serializable classifier. Raises: TrainingError: The classifier could not be trained successfully. """ feature_ext, classifier = self._train_classifiers(examples) return self._serialize_classifiers(feature_ext, classifier) def score(self, text, classifier, cache): """ Score essays using EASE. Args: text (unicode): The essay text to score. classifier (dict): The serialized classifiers created during training. cache (dict): An in-memory cache that persists until all criteria in the rubric have been scored. Returns: int Raises: InvalidClassifier ScoreError """ try: from ease.essay_set import EssaySet # pylint:disable=F0401 except ImportError: msg = u"Could not import EASE to grade essays." raise ScoreError(msg) feature_extractor, score_classifier = self._deserialize_classifiers(classifier) # The following is a modified version of `ease.grade.grade()`, # skipping things we don't use (cross-validation, feedback) # and caching essay sets across criteria. This allows us to # avoid some expensive NLTK operations, particularly tagging # parts of speech. try: # Get the essay set from the cache or create it. # Since all essays to be graded are assigned a dummy # score of "0", we can safely re-use the essay set # for each criterion in the rubric. # EASE can't handle non-ASCII unicode, so we need # to strip out non-ASCII chars. essay_set = cache.get('grading_essay_set') if essay_set is None: essay_set = EssaySet(essaytype="test") essay_set.add_essay(text.encode('ascii', 'ignore'), 0) cache['grading_essay_set'] = essay_set # Extract features from the text features = feature_extractor.gen_feats(essay_set) # Predict a score return int(score_classifier.predict(features)[0]) except: msg = ( u"An unexpected error occurred while using " u"EASE to score an essay: {traceback}" ).format(traceback=traceback.format_exc()) raise ScoreError(msg) def _train_classifiers(self, examples): """ Use EASE to train classifiers. Args: examples (list of AIAlgorithm.ExampleEssay): Example essays and scores. Returns: tuple of `feature_extractor` (an `ease.feature_extractor.FeatureExtractor` object) and `classifier` (a `sklearn.ensemble.GradientBoostingClassifier` object). Raises: TrainingError: Could not load EASE or could not complete training. """ try: from ease.create import create # pylint: disable=F0401 except ImportError: msg = u"Could not import EASE to perform training." raise TrainingError(msg) input_essays = [example.text for example in examples] input_scores = [example.score for example in examples] try: # Train the classifiers # The third argument is the essay prompt, which EASE uses # to check if an input essay is too similar to the prompt. # Since we're not using this feature, we pass in an empty string. results = create(input_essays, input_scores, "") except: msg = ( u"An unexpected error occurred while using " u"EASE to train classifiers: {traceback}" ).format(traceback=traceback.format_exc()) raise TrainingError(msg) if not results.get('success', False): msg = ( u"Errors occurred while training classifiers " u"using EASE: {errors}" ).format(errors=results.get('errors', [])) raise TrainingError(msg) return results.get('feature_ext'), results.get('classifier') def _serialize_classifiers(self, feature_ext, classifier): """ Serialize the classifier objects. Args: feature_extractor (ease.feature_extractor.FeatureExtractor) classifier (sklearn.ensemble.GradientBoostingClassifier) Returns: dict containing the pickled classifiers Raises: TrainingError: Could not serialize the classifiers. """ try: return { 'feature_extractor': base64.b64encode(pickle.dumps(feature_ext)), 'score_classifier': base64.b64encode(pickle.dumps(classifier)), } except Exception as ex: msg = ( u"An error occurred while serializing the classifiers " u"created by EASE: {ex}" ).format(ex=ex) raise TrainingError(msg) def _deserialize_classifiers(self, classifier_data): """ Deserialize the classifier objects. Args: classifier_data (dict): The serialized classifiers. Returns: tuple of `(feature_extractor, score_classifier)` Raises: InvalidClassifier """ if not isinstance(classifier_data, dict): raise InvalidClassifier("Classifier must be a dictionary.") try: classifier_str = classifier_data.get('feature_extractor').encode('utf-8') feature_extractor = pickle.loads(base64.b64decode(classifier_str)) except Exception as ex: msg = ( u"An error occurred while deserializing the " u"EASE feature extractor: {ex}" ).format(ex=ex) raise InvalidClassifier(msg) try: score_classifier_str = classifier_data.get('score_classifier').encode('utf-8') score_classifier = pickle.loads(base64.b64decode(score_classifier_str)) except Exception as ex: msg = ( u"An error occurred while deserializing the " u"EASE score classifier: {ex}" ).format(ex=ex) raise InvalidClassifier(msg) return feature_extractor, score_classifier
agpl-3.0
gdetor/SI-RF-Structure
Statistics/weights-evo.py
1
4698
# Copyright (c) 2014, Georgios Is. Detorakis ([email protected]) and # Nicolas P. Rougier ([email protected]) # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # This file is part of the source code accompany the peer-reviewed article: # [1] "Structure of Receptive Fields in a Computational Model of Area 3b of # Primary Sensory Cortex", Georgios Is. Detorakis and Nicolas P. Rougier, # Frontiers in Computational Neuroscience, 2014. # # This script computes the evolution of the raw feed-forward weights as it is # described in [1]. import numpy as np import matplotlib.pylab as plt def mad(x): """ Returns the median absolute deviation. **Parameters** x : double Data array """ return 1.4826 * np.median(np.abs(x - np.median(x))) if __name__ == '__main__': base = '/Users/gdetorak/Desktop/DNF-SOM/REF/' m, n, q = 1024, 16, 256 if 0: epochs = 35000 mean, std, median, mmad = [], [], [], [] for i in range(0, epochs, 50): W = np.load(base+'weights'+str('%06d' % i)+'.npy') mean.append(np.mean(np.mean(W, axis=1))) std.append(np.std(np.std(W, axis=1))) median.append(np.median(np.median(W, axis=1))) mmad.append(np.apply_along_axis(mad, 0, np.apply_along_axis(mad, 1, W))) mean = np.array(mean) std = np.array(std) median = np.array(median) mmad = np.array(mmad) np.save('mean', mean) np.save('std', std) np.save('median', median) np.save('mad', mmad) if 1: mean = np.load('mean.npy') std = np.load('std.npy') # median = np.load('median.npy') # mmad = np.load('mad.npy') fig = plt.figure(figsize=(7, 7)) ax = fig.add_subplot(111) M, target = 200, 100 ax.plot(mean[:M], 'b', lw=2) ax.plot(mean[:M]+std[:M], 'r', ls='--', lw=1.3) ax.plot(mean[:M]-std[:M], 'r', ls='--', lw=1.3) # ax.plot(median[:M], 'k', lw=2) # ax.plot(mmad[:M], 'm', lw=2) ax.set_xlabel('Epochs') ax.set_ylabel('Mean (SD)') plt.xticks([0, 50, 100, 150, 200], ('0', '2500', '5000', '7500', '10000')) plt.title('Evolution of'+r'$\mathbb{E}\{w_f\}$') bx = plt.axes([.19, .70, .15, .15], axisbg='y') W = np.load(base+'weights000000.npy')[target].reshape(n, n) bx.imshow(W, interpolation='bicubic', cmap=plt.cm.Purples) plt.title(r'epoch=0') plt.setp(bx, xticks=[], yticks=[]) cx = plt.axes([.27, .45, .15, .15], axisbg='y') W = np.load(base+'weights002500.npy')[target].reshape(n, n) cx.imshow(W, interpolation='bicubic', cmap=plt.cm.Purples) plt.title(r'epoch=2500') plt.setp(cx, xticks=[], yticks=[]) dx = plt.axes([.63, .3, .15, .15], axisbg='y') W = np.load(base+'weights007500.npy')[target].reshape(n, n) dx.imshow(W, interpolation='bicubic', cmap=plt.cm.Purples) plt.title(r'epoch=7500') plt.setp(dx, xticks=[], yticks=[]) # plt.savefig('evolution-mean-weights.pdf') plt.show()
gpl-3.0
nhejazi/scikit-learn
benchmarks/bench_plot_neighbors.py
101
6469
""" Plot the scaling of the nearest neighbors algorithms with k, D, and N """ from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import ticker from sklearn import neighbors, datasets def get_data(N, D, dataset='dense'): if dataset == 'dense': np.random.seed(0) return np.random.random((N, D)) elif dataset == 'digits': X = datasets.load_digits().data i = np.argsort(X[0])[::-1] X = X[:, i] return X[:N, :D] else: raise ValueError("invalid dataset: %s" % dataset) def barplot_neighbors(Nrange=2 ** np.arange(1, 11), Drange=2 ** np.arange(7), krange=2 ** np.arange(10), N=1000, D=64, k=5, leaf_size=30, dataset='digits'): algorithms = ('kd_tree', 'brute', 'ball_tree') fiducial_values = {'N': N, 'D': D, 'k': k} #------------------------------------------------------------ # varying N N_results_build = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) N_results_query = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) for i, NN in enumerate(Nrange): print("N = %i (%i out of %i)" % (NN, i + 1, len(Nrange))) X = get_data(NN, D, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=min(NN, k), algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() N_results_build[algorithm][i] = (t1 - t0) N_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying D D_results_build = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) D_results_query = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) for i, DD in enumerate(Drange): print("D = %i (%i out of %i)" % (DD, i + 1, len(Drange))) X = get_data(N, DD, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=k, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() D_results_build[algorithm][i] = (t1 - t0) D_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying k k_results_build = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) k_results_query = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) X = get_data(N, DD, dataset) for i, kk in enumerate(krange): print("k = %i (%i out of %i)" % (kk, i + 1, len(krange))) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=kk, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() k_results_build[algorithm][i] = (t1 - t0) k_results_query[algorithm][i] = (t2 - t1) plt.figure(figsize=(8, 11)) for (sbplt, vals, quantity, build_time, query_time) in [(311, Nrange, 'N', N_results_build, N_results_query), (312, Drange, 'D', D_results_build, D_results_query), (313, krange, 'k', k_results_build, k_results_query)]: ax = plt.subplot(sbplt, yscale='log') plt.grid(True) tick_vals = [] tick_labels = [] bottom = 10 ** np.min([min(np.floor(np.log10(build_time[alg]))) for alg in algorithms]) for i, alg in enumerate(algorithms): xvals = 0.1 + i * (1 + len(vals)) + np.arange(len(vals)) width = 0.8 c_bar = plt.bar(xvals, build_time[alg] - bottom, width, bottom, color='r') q_bar = plt.bar(xvals, query_time[alg], width, build_time[alg], color='b') tick_vals += list(xvals + 0.5 * width) tick_labels += ['%i' % val for val in vals] plt.text((i + 0.02) / len(algorithms), 0.98, alg, transform=ax.transAxes, ha='left', va='top', bbox=dict(facecolor='w', edgecolor='w', alpha=0.5)) plt.ylabel('Time (s)') ax.xaxis.set_major_locator(ticker.FixedLocator(tick_vals)) ax.xaxis.set_major_formatter(ticker.FixedFormatter(tick_labels)) for label in ax.get_xticklabels(): label.set_rotation(-90) label.set_fontsize(10) title_string = 'Varying %s' % quantity descr_string = '' for s in 'NDk': if s == quantity: pass else: descr_string += '%s = %i, ' % (s, fiducial_values[s]) descr_string = descr_string[:-2] plt.text(1.01, 0.5, title_string, transform=ax.transAxes, rotation=-90, ha='left', va='center', fontsize=20) plt.text(0.99, 0.5, descr_string, transform=ax.transAxes, rotation=-90, ha='right', va='center') plt.gcf().suptitle("%s data set" % dataset.capitalize(), fontsize=16) plt.figlegend((c_bar, q_bar), ('construction', 'N-point query'), 'upper right') if __name__ == '__main__': barplot_neighbors(dataset='digits') barplot_neighbors(dataset='dense') plt.show()
bsd-3-clause
alfcrisci/word_cloud
doc/sphinxext/numpy_ext/docscrape_sphinx.py
52
8004
import re import inspect import textwrap import pydoc import sphinx from docscrape import NumpyDocString from docscrape import FunctionDoc from docscrape import ClassDoc class SphinxDocString(NumpyDocString): def __init__(self, docstring, config=None): config = {} if config is None else config self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' ' * indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc, 8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: # GAEL: Toctree commented out below because it creates # hundreds of sphinx warnings # out += ['.. autosummary::', ' :toctree:', ''] out += ['.. autosummary::', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "=" * maxlen_0 + " " + "=" * maxlen_1 + " " + "=" * 10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default', '')] for section, references in idx.iteritems(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex', ''] else: out += ['.. latexonly::', ''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Raises'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out, indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config=None): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
mit
INM-6/hybridLFPy
examples/Hagen_et_al_2016_cercor/Fig3/analysis_params.py
2
4334
''' Documentation: ''' import matplotlib.pyplot as plt # global flag for black and white figures bw = False class params(): def __init__(self, textsize=6, titlesize=7,): # label for merged spike files self.pop_spike_file_label = ['population_spikes-th.gdf', 'population_spikes-0-0.gdf', 'population_spikes-0-1.gdf', 'population_spikes-1-0.gdf', 'population_spikes-1-1.gdf', 'population_spikes-2-0.gdf', 'population_spikes-2-1.gdf', 'population_spikes-3-0.gdf', 'population_spikes-3-1.gdf'] # start-up transient that is cut-off self.cutoff = 0 # 200. # bin size self.tbin = 1. # frequency filtering self.Df = 1. self.analysis_folder = 'data_analysis' self.fname_psd = 'psd.h5' self.fname_psd_uncorr = 'psd_uncorr.h5' self.fname_meanInpCurrents = 'meanInpCurrents.h5' self.fname_meanVoltages = 'meanVoltages.h5' self.fname_variances = 'variances.h5' self.scaling = 0.1 self.transient = 200 self.Df = None self.mlab = True self.NFFT = 256 self.noverlap = 128 self.window = plt.mlab.window_hanning self.PLOSwidth1Col = 3.27 * 2 # in inches self.PLOSwidth2Col = 6.83 * 2 self.inchpercm = 2.54 self.frontierswidth = 8.5 * 2 self.PLOSwidth = 6.83 * 2 self.textsize = textsize * 2 self.titlesize = titlesize * 2 # global colormap for populations self.bw = True # default plot parameters goes here, may be overridden by below # functions plt.rcdefaults() plt.rcParams.update({ 'figure.figsize': [self.frontierswidth / self.inchpercm, self.frontierswidth / self.inchpercm], 'figure.dpi': 160, 'xtick.labelsize': self.textsize, 'ytick.labelsize': self.textsize, 'font.size': self.textsize, 'axes.labelsize': self.textsize, 'axes.titlesize': self.titlesize, 'axes.linewidth': 0.75 * 2, 'lines.linewidth': 0.5 * 2, 'legend.fontsize': self.textsize / 1.25, 'savefig.dpi': 300 / 2 }) # Set default plotting parameters self.set_default_fig_style() def set_default_fig_style(self): '''default figure size''' plt.rcParams.update({'figure.figsize': [ self.frontierswidth / self.inchpercm, self.frontierswidth / self.inchpercm], }) def set_large_fig_style(self): '''twice width figure size''' plt.rcParams.update({'figure.figsize': [ self.frontierswidth / self.inchpercm * 2, self.frontierswidth / self.inchpercm], }) def set_broad_fig_style(self): '''4 times width, 1.5 times height''' plt.rcParams.update( { 'figure.figsize': [ self.frontierswidth / self.inchpercm * 4, self.frontierswidth / self.inchpercm * 1.5], }) def set_enormous_fig_style(self): '''2 times width, 2 times height''' plt.rcParams.update( { 'figure.figsize': [ self.frontierswidth / self.inchpercm * 2, self.frontierswidth / self.inchpercm * 2], }) def set_PLOS_1column_fig_style(self, ratio=1): '''figure size corresponding to Plos 1 column''' plt.rcParams.update({ 'figure.figsize': [self.PLOSwidth1Col, self.PLOSwidth1Col * ratio], }) def set_PLOS_2column_fig_style(self, ratio=1): '''figure size corresponding to Plos 2 columns''' plt.rcParams.update({ 'figure.figsize': [self.PLOSwidth2Col, self.PLOSwidth2Col * ratio], })
gpl-3.0
shenzebang/scikit-learn
sklearn/cluster/tests/test_dbscan.py
176
12155
""" Tests for DBSCAN clustering algorithm """ import pickle import numpy as np from scipy.spatial import distance from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.neighbors import NearestNeighbors from sklearn.cluster.dbscan_ import DBSCAN from sklearn.cluster.dbscan_ import dbscan from sklearn.cluster.tests.common import generate_clustered_data from sklearn.metrics.pairwise import pairwise_distances n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) def test_dbscan_similarity(): # Tests the DBSCAN algorithm with a similarity array. # Parameters chosen specifically for this task. eps = 0.15 min_samples = 10 # Compute similarities D = distance.squareform(distance.pdist(X)) D /= np.max(D) # Compute DBSCAN core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) labels = db.fit(D).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_feature(): # Tests the DBSCAN algorithm with a feature vector array. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 metric = 'euclidean' # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_sparse(): core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8, min_samples=10) core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10) assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_sparse_precomputed(): D = pairwise_distances(X) nn = NearestNeighbors(radius=.9).fit(X) D_sparse = nn.radius_neighbors_graph(mode='distance') # Ensure it is sparse not merely on diagonals: assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1) core_sparse, labels_sparse = dbscan(D_sparse, eps=.8, min_samples=10, metric='precomputed') core_dense, labels_dense = dbscan(D, eps=.8, min_samples=10, metric='precomputed') assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_no_core_samples(): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 for X_ in [X, sparse.csr_matrix(X)]: db = DBSCAN(min_samples=6).fit(X_) assert_array_equal(db.components_, np.empty((0, X_.shape[1]))) assert_array_equal(db.labels_, -1) assert_equal(db.core_sample_indices_.shape, (0,)) def test_dbscan_callable(): # Tests the DBSCAN algorithm with a callable metric. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 # metric is the function reference, not the string key. metric = distance.euclidean # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_balltree(): # Tests the DBSCAN algorithm with balltree for neighbor calculation. eps = 0.8 min_samples = 10 D = pairwise_distances(X) core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree') labels = db.fit(X).labels_ n_clusters_3 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_3, n_clusters) db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_4 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_4, n_clusters) db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_5 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_5, n_clusters) def test_input_validation(): # DBSCAN.fit should accept a list of lists. X = [[1., 2.], [3., 4.]] DBSCAN().fit(X) # must not raise exception def test_dbscan_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, dbscan, X, eps=-1.0) assert_raises(ValueError, dbscan, X, algorithm='blah') assert_raises(ValueError, dbscan, X, metric='blah') assert_raises(ValueError, dbscan, X, leaf_size=-1) assert_raises(ValueError, dbscan, X, p=-1) def test_pickle(): obj = DBSCAN() s = pickle.dumps(obj) assert_equal(type(pickle.loads(s)), obj.__class__) def test_boundaries(): # ensure min_samples is inclusive of core point core, _ = dbscan([[0], [1]], eps=2, min_samples=2) assert_in(0, core) # ensure eps is inclusive of circumference core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2) assert_in(0, core) core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2) assert_not_in(0, core) def test_weighted_dbscan(): # ensure sample_weight is validated assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2]) assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4]) # ensure sample_weight has an effect assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0]) assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0]) # points within eps of each other: assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0]) # and effect of non-positive and non-integer sample_weight: assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0]) # for non-negative sample_weight, cores should be identical to repetition rng = np.random.RandomState(42) sample_weight = rng.randint(0, 5, X.shape[0]) core1, label1 = dbscan(X, sample_weight=sample_weight) assert_equal(len(label1), len(X)) X_repeated = np.repeat(X, sample_weight, axis=0) core_repeated, label_repeated = dbscan(X_repeated) core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool) core_repeated_mask[core_repeated] = True core_mask = np.zeros(X.shape[0], dtype=bool) core_mask[core1] = True assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask) # sample_weight should work with precomputed distance matrix D = pairwise_distances(X) core3, label3 = dbscan(D, sample_weight=sample_weight, metric='precomputed') assert_array_equal(core1, core3) assert_array_equal(label1, label3) # sample_weight should work with estimator est = DBSCAN().fit(X, sample_weight=sample_weight) core4 = est.core_sample_indices_ label4 = est.labels_ assert_array_equal(core1, core4) assert_array_equal(label1, label4) est = DBSCAN() label5 = est.fit_predict(X, sample_weight=sample_weight) core5 = est.core_sample_indices_ assert_array_equal(core1, core5) assert_array_equal(label1, label5) assert_array_equal(label1, est.labels_) def test_dbscan_core_samples_toy(): X = [[0], [2], [3], [4], [6], [8], [10]] n_samples = len(X) for algorithm in ['brute', 'kd_tree', 'ball_tree']: # Degenerate case: every sample is a core sample, either with its own # cluster or including other close core samples. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1) assert_array_equal(core_samples, np.arange(n_samples)) assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4]) # With eps=1 and min_samples=2 only the 3 samples from the denser area # are core samples. All other points are isolated and considered noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2) assert_array_equal(core_samples, [1, 2, 3]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # Only the sample in the middle of the dense area is core. Its two # neighbors are edge samples. Remaining samples are noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3) assert_array_equal(core_samples, [2]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # It's no longer possible to extract core samples with eps=1: # everything is noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4) assert_array_equal(core_samples, []) assert_array_equal(labels, -np.ones(n_samples)) def test_dbscan_precomputed_metric_with_degenerate_input_arrays(): # see https://github.com/scikit-learn/scikit-learn/issues/4641 for # more details X = np.eye(10) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1) X = np.zeros((10, 10)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1)
bsd-3-clause
doylew/detectionsc
format_py/n_gram_nb.py
1
5595
################################################## ######scikit_learn to do the classifications###### ################################################## ################################################## from sklearn import svm from sklearn.naive_bayes import GaussianNB ################################################## #####Hard coded (currently) where the datasets#### #################are located###################### ################################################## attack_file = 'C:/Users/will_doyle/Documents/GitHub/datamining/format_py/single_ngram_attack.txt' normal_file = 'C:/Users/will_doyle/Documents/GitHub/datamining/format_py/single_ngram_normal.txt' test_file = 'C:/Users/will_doyle/Documents/GitHub/datamining/format_py/single_ngram_vali.txt' ################################################## ####Create the instances for validation testing### ################################################## ################################################## def makeValiInstance(fileName): if isinstance(fileName,str): my_file = open(str(fileName),"r+") words = my_file.read().split("\n") my_file.close() words.remove('') num_instances = words.count("new") print("Number of Instances to Validate: " + str(num_instances)) instance = [] data = [] for line in words: if line == "new": my_data = [data] instance += (my_data) data = [] data.extend([line.split()]) for i in instance: for entry in i: if '1' in entry: entry.remove('1') if '0' in entry: entry.remove('0') return instance else: return -1 ################################################## #####Create the instances for training############ ################################################## ################################################## def makeFitInstance(fileName): if isinstance(fileName, str): my_file = open(str(fileName), "r+") words = my_file.read().split("\n") my_file.close() words.remove('') data = [] for line in words: data.extend([line.split()]) classi = [] for entry in data: if entry[-1] == '1': classi.extend('a') entry.remove('1') else: classi.extend('n') entry.remove('0') instance = {} instance[0] = data instance[1] = classi return instance else: return -1 ################################################## #######Calculates the class of the subsequences### ########as a ratio################################ ################################################## def calClass(svm,data): normal = ['n'] attack = ['a'] num = 0 total_n = 0 total_a = 0 if ['new'] in data: data.remove(['new']) for x in data: num += 1 if svm.predict(x) == attack: total_a += 1 elif svm.predict(x) == normal: total_n += 1 else: print("OOPS") return nratio = (float(total_n)/float(num)) aratio = (float(total_a)/float(num)) if nratio > 0.9: return 'normal' else: return 'attack' ################################################## #########Percentage validation#################### ###########of the validation data################# ################################################## def validateClass(svm,validation_array): validate = 0.0 num = 0.0 print("length: " + str(len(validation_array))) for data in validation_array: num += 1 if calClass(svm,data) == 'normal': validate += 1 print("NUM: " + str(int(num)) + " CLASSIFIED AS: " + calClass(svm,data)) return float((validate)/(num)) ################################################## ################Main############################## ################################################## ################################################## print("Creating the training data...") ################################################## #############Create the attack and################ #################normal data and combine them##### ################################################## instance_a = makeFitInstance(attack_file) instance_n = makeFitInstance(normal_file) fit_data = instance_a[0] + instance_n[0] fit_classes = instance_a[1] + instance_n[1] print("Training the model....") ################################################## ##############Train the Support Vector############ ######################Machine##################### ################################################## clf = GaussianNB() clf.fit(fit_data,fit_classes) print("Model has been trained, building test dataset...") ################################################## #############Create the validation data########### ################################################## ################################################## instance_v = makeValiInstance(test_file) print("Validating the test dataset...") ################################################## ############Validate the data with the trained#### ###############Support Vector Machine############# ################################################## print("Percentage validated correctly: " + str(validateClass(clf,instance_v)))
mit
lucidfrontier45/scikit-learn
sklearn/mixture/gmm.py
1
26965
""" Gaussian Mixture Models. This implementation corresponds to frequentist (non-Bayesian) formulation of Gaussian Mixture Models. """ # Author: Ron Weiss <[email protected]> # Fabian Pedregosa <[email protected]> # Bertrand Thirion <[email protected]> import numpy as np from ..base import BaseEstimator from ..utils import check_random_state from ..utils.extmath import logsumexp, pinvh from .. import cluster EPS = np.finfo(float).eps def log_multivariate_normal_density(X, means, covars, covariance_type='diag'): """Compute the log probability under a multivariate Gaussian distribution. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. means : array_like, shape (n_components, n_features) List of n_features-dimensional mean vectors for n_components Gaussians. Each row corresponds to a single mean vector. covars : array_like List of n_components covariance parameters for each Gaussian. The shape depends on `covariance_type`: (n_components, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' covariance_type : string Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. Returns ------- lpr : array_like, shape (n_samples, n_components) Array containing the log probabilities of each data point in X under each of the n_components multivariate Gaussian distributions. """ log_multivariate_normal_density_dict = { 'spherical': _log_multivariate_normal_density_spherical, 'tied': _log_multivariate_normal_density_tied, 'diag': _log_multivariate_normal_density_diag, 'full': _log_multivariate_normal_density_full} return log_multivariate_normal_density_dict[covariance_type]( X, means, covars) def sample_gaussian(mean, covar, covariance_type='diag', n_samples=1, random_state=None): """Generate random samples from a Gaussian distribution. Parameters ---------- mean : array_like, shape (n_features,) Mean of the distribution. covars : array_like, optional Covariance of the distribution. The shape depends on `covariance_type`: scalar if 'spherical', (n_features) if 'diag', (n_features, n_features) if 'tied', or 'full' covariance_type : string, optional Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array, shape (n_features, n_samples) Randomly generated sample """ rng = check_random_state(random_state) n_dim = len(mean) rand = rng.randn(n_dim, n_samples) if n_samples == 1: rand.shape = (n_dim,) if covariance_type == 'spherical': rand *= np.sqrt(covar) elif covariance_type == 'diag': rand = np.dot(np.diag(np.sqrt(covar)), rand) else: from scipy import linalg U, s, V = linalg.svd(covar) sqrtS = np.diag(np.sqrt(s)) sqrt_covar = np.dot(U, np.dot(sqrtS, V)) rand = np.dot(sqrt_covar, rand) return (rand.T + mean).T class GMM(BaseEstimator): """Gaussian Mixture Model Representation of a Gaussian mixture model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a GMM distribution. Initializes parameters such that every mixture component has zero mean and identity covariance. Parameters ---------- n_components : int, optional Number of mixture components. Defaults to 1. covariance_type : string, optional String describing the type of covariance parameters to use. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. random_state: RandomState or an int seed (0 by default) A random number generator instance min_covar : float, optional Floor on the diagonal of the covariance matrix to prevent overfitting. Defaults to 1e-3. thresh : float, optional Convergence threshold. n_iter : int, optional Number of EM iterations to perform. n_init : int, optional Number of initializations to perform. the best results is kept params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. init_params : string, optional Controls which parameters are updated in the initialization process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. Attributes ---------- `weights_` : array, shape (`n_components`,) This attribute stores the mixing weights for each mixture component. `means_` : array, shape (`n_components`, `n_features`) Mean parameters for each mixture component. `covars_` : array Covariance parameters for each mixture component. The shape depends on `covariance_type`:: (n_components, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' `converged_` : bool True when convergence was reached in fit(), False otherwise. See Also -------- DPGMM : Ininite gaussian mixture model, using the dirichlet process, fit with a variational algorithm VBGMM : Finite gaussian mixture model fit with a variational algorithm, better for situations where there might be too little data to get a good estimate of the covariance matrix. Examples -------- >>> import numpy as np >>> from sklearn import mixture >>> np.random.seed(1) >>> g = mixture.GMM(n_components=2) >>> # Generate random observations with two modes centered on 0 >>> # and 10 to use for training. >>> obs = np.concatenate((np.random.randn(100, 1), ... 10 + np.random.randn(300, 1))) >>> g.fit(obs) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, thresh=0.01) >>> np.round(g.weights_, 2) array([ 0.75, 0.25]) >>> np.round(g.means_, 2) array([[ 10.05], [ 0.06]]) >>> np.round(g.covars_, 2) #doctest: +SKIP array([[[ 1.02]], [[ 0.96]]]) >>> g.predict([[0], [2], [9], [10]]) #doctest: +ELLIPSIS array([1, 1, 0, 0]...) >>> np.round(g.score([[0], [2], [9], [10]]), 2) array([-2.19, -4.58, -1.75, -1.21]) >>> # Refit the model on new data (initial parameters remain the >>> # same), this time with an even split between the two modes. >>> g.fit(20 * [[0]] + 20 * [[10]]) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, thresh=0.01) >>> np.round(g.weights_, 2) array([ 0.5, 0.5]) """ def __init__(self, n_components=1, covariance_type='diag', random_state=None, thresh=1e-2, min_covar=1e-3, n_iter=100, n_init=1, params='wmc', init_params='wmc'): self.n_components = n_components self.covariance_type = covariance_type self.thresh = thresh self.min_covar = min_covar self.random_state = random_state self.n_iter = n_iter self.n_init = n_init self.params = params self.init_params = init_params if not covariance_type in ['spherical', 'tied', 'diag', 'full']: raise ValueError('Invalid value for covariance_type: %s' % covariance_type) if n_init < 1: raise ValueError('GMM estimation requires at least one run') self.weights_ = np.ones(self.n_components) / self.n_components # flag to indicate exit status of fit() method: converged (True) or # n_iter reached (False) self.converged_ = False def _get_covars(self): """Covariance parameters for each mixture component. The shape depends on `cvtype`:: (`n_states`, 'n_features') if 'spherical', (`n_features`, `n_features`) if 'tied', (`n_states`, `n_features`) if 'diag', (`n_states`, `n_features`, `n_features`) if 'full' """ if self.covariance_type == 'full': return self.covars_ elif self.covariance_type == 'diag': return [np.diag(cov) for cov in self.covars_] elif self.covariance_type == 'tied': return [self.covars_] * self.n_components elif self.covariance_type == 'spherical': return [np.diag(cov) for cov in self.covars_] def _set_covars(self, covars): """Provide values for covariance""" covars = np.asarray(covars) _validate_covars(covars, self.covariance_type, self.n_components) self.covars_ = covars def eval(self, X): """Evaluate the model on data Compute the log probability of X under the model and return the posterior distribution (responsibilities) of each mixture component for each element of X. Parameters ---------- X: array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob: array_like, shape (n_samples,) Log probabilities of each data point in X responsibilities: array_like, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation """ X = np.asarray(X) if X.ndim == 1: X = X[:, np.newaxis] if X.size == 0: return np.array([]), np.empty((0, self.n_components)) if X.shape[1] != self.means_.shape[1]: raise ValueError('the shape of X is not compatible with self') lpr = (log_multivariate_normal_density(X, self.means_, self.covars_, self.covariance_type) + np.log(self.weights_)) logprob = logsumexp(lpr, axis=1) responsibilities = np.exp(lpr - logprob[:, np.newaxis]) return logprob, responsibilities def score(self, X): """Compute the log probability under the model. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X """ logprob, _ = self.eval(X) return logprob def predict(self, X): """Predict label for data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) """ logprob, responsibilities = self.eval(X) return responsibilities.argmax(axis=1) def predict_proba(self, X): """Predict posterior probability of data under each Gaussian in the model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- responsibilities : array-like, shape = (n_samples, n_components) Returns the probability of the sample for each Gaussian (state) in the model. """ logprob, responsibilities = self.eval(X) return responsibilities def sample(self, n_samples=1, random_state=None): """Generate random samples from the model. Parameters ---------- n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array_like, shape (n_samples, n_features) List of samples """ if random_state is None: random_state = self.random_state random_state = check_random_state(random_state) weight_cdf = np.cumsum(self.weights_) X = np.empty((n_samples, self.means_.shape[1])) rand = random_state.rand(n_samples) # decide which component to use for each sample comps = weight_cdf.searchsorted(rand) # for each component, generate all needed samples for comp in xrange(self.n_components): # occurrences of current component in X comp_in_X = (comp == comps) # number of those occurrences num_comp_in_X = comp_in_X.sum() if num_comp_in_X > 0: if self.covariance_type == 'tied': cv = self.covars_ elif self.covariance_type == 'spherical': cv = self.covars_[comp][0] else: cv = self.covars_[comp] X[comp_in_X] = sample_gaussian( self.means_[comp], cv, self.covariance_type, num_comp_in_X, random_state=random_state).T return X def fit(self, X): """Estimate model parameters with the expectation-maximization algorithm. A initialization step is performed before entering the em algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the GMM object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. """ ## initialization step X = np.asarray(X, dtype=np.float) if X.ndim == 1: X = X[:, np.newaxis] if X.shape[0] < self.n_components: raise ValueError( 'GMM estimation with %s components, but got only %s samples' % (self.n_components, X.shape[0])) max_log_prob = -np.infty for _ in range(self.n_init): if 'm' in self.init_params or not hasattr(self, 'means_'): self.means_ = cluster.KMeans( n_clusters=self.n_components, random_state=self.random_state).fit(X).cluster_centers_ if 'w' in self.init_params or not hasattr(self, 'weights_'): self.weights_ = np.tile(1.0 / self.n_components, self.n_components) if 'c' in self.init_params or not hasattr(self, 'covars_'): cv = np.cov(X.T) + self.min_covar * np.eye(X.shape[1]) if not cv.shape: cv.shape = (1, 1) self.covars_ = \ distribute_covar_matrix_to_match_covariance_type( cv, self.covariance_type, self.n_components) # EM algorithms log_likelihood = [] # reset self.converged_ to False self.converged_ = False for i in xrange(self.n_iter): # Expectation step curr_log_likelihood, responsibilities = self.eval(X) log_likelihood.append(curr_log_likelihood.sum()) # Check for convergence. if i > 0 and abs(log_likelihood[-1] - log_likelihood[-2]) < \ self.thresh: self.converged_ = True break # Maximization step self._do_mstep(X, responsibilities, self.params, self.min_covar) # if the results are better, keep it if self.n_iter: if log_likelihood[-1] > max_log_prob: max_log_prob = log_likelihood[-1] best_params = {'weights': self.weights_, 'means': self.means_, 'covars': self.covars_} # check the existence of an init param that was not subject to # likelihood computation issue. if np.isneginf(max_log_prob) and self.n_iter: raise RuntimeError( "EM algorithm was never able to compute a valid likelihood " + "given initial parameters. Try different init parameters " + "(or increasing n_init) or check for degenerate data.") # self.n_iter == 0 occurs when using GMM within HMM if self.n_iter: self.covars_ = best_params['covars'] self.means_ = best_params['means'] self.weights_ = best_params['weights'] return self def _do_mstep(self, X, responsibilities, params, min_covar=0): """ Perform the Mstep of the EM algorithm and return the class weihgts. """ weights = responsibilities.sum(axis=0) weighted_X_sum = np.dot(responsibilities.T, X) inverse_weights = 1.0 / (weights[:, np.newaxis] + 10 * EPS) if 'w' in params: self.weights_ = (weights / (weights.sum() + 10 * EPS) + EPS) if 'm' in params: self.means_ = weighted_X_sum * inverse_weights if 'c' in params: covar_mstep_func = _covar_mstep_funcs[self.covariance_type] self.covars_ = covar_mstep_func( self, X, responsibilities, weighted_X_sum, inverse_weights, min_covar) return weights def _n_parameters(self): """Return the number of free parameters in the model.""" ndim = self.means_.shape[1] if self.covariance_type == 'full': cov_params = self.n_components * ndim * (ndim + 1) / 2. elif self.covariance_type == 'diag': cov_params = self.n_components * ndim elif self.covariance_type == 'tied': cov_params = ndim * (ndim + 1) / 2. elif self.covariance_type == 'spherical': cov_params = self.n_components mean_params = ndim * self.n_components return int(cov_params + mean_params + self.n_components - 1) def bic(self, X): """Bayesian information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- bic: float (the lower the better) """ return (-2 * self.score(X).sum() + self._n_parameters() * np.log(X.shape[0])) def aic(self, X): """Akaike information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- aic: float (the lower the better) """ return - 2 * self.score(X).sum() + 2 * self._n_parameters() ######################################################################### ## some helper routines ######################################################################### def _log_multivariate_normal_density_diag(X, means=0.0, covars=1.0): """Compute Gaussian log-density at X for a diagonal model""" n_samples, n_dim = X.shape lpr = -0.5 * (n_dim * np.log(2 * np.pi) + np.sum(np.log(covars), 1) + np.sum((means ** 2) / covars, 1) - 2 * np.dot(X, (means / covars).T) + np.dot(X ** 2, (1.0 / covars).T)) return lpr def _log_multivariate_normal_density_spherical(X, means=0.0, covars=1.0): """Compute Gaussian log-density at X for a spherical model""" cv = covars.copy() if covars.ndim == 1: cv = cv[:, np.newaxis] if covars.shape[1] == 1: cv = np.tile(cv, (1, X.shape[-1])) return _log_multivariate_normal_density_diag(X, means, cv) def _log_multivariate_normal_density_tied(X, means, covars): """Compute Gaussian log-density at X for a tied model""" from scipy import linalg n_samples, n_dim = X.shape icv = pinvh(covars) lpr = -0.5 * (n_dim * np.log(2 * np.pi) + np.log(linalg.det(covars) + 0.1) + np.sum(X * np.dot(X, icv), 1)[:, np.newaxis] - 2 * np.dot(np.dot(X, icv), means.T) + np.sum(means * np.dot(means, icv), 1)) return lpr def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7): """Log probability for full covariance matrices. """ from scipy import linalg import itertools if hasattr(linalg, 'solve_triangular'): # only in scipy since 0.9 solve_triangular = linalg.solve_triangular else: # slower, but works solve_triangular = linalg.solve n_samples, n_dim = X.shape nmix = len(means) log_prob = np.empty((n_samples, nmix)) for c, (mu, cv) in enumerate(itertools.izip(means, covars)): try: cv_chol = linalg.cholesky(cv, lower=True) except linalg.LinAlgError: # The model is most probabily stuck in a component with too # few observations, we need to reinitialize this components cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim), lower=True) cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol))) cv_sol = solve_triangular(cv_chol, (X - mu).T, lower=True).T log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) + n_dim * np.log(2 * np.pi) + cv_log_det) return log_prob def _validate_covars(covars, covariance_type, n_components): """Do basic checks on matrix covariance sizes and values """ from scipy import linalg if covariance_type == 'spherical': if len(covars) != n_components: raise ValueError("'spherical' covars have length n_components") elif np.any(covars <= 0): raise ValueError("'spherical' covars must be non-negative") elif covariance_type == 'tied': if covars.shape[0] != covars.shape[1]: raise ValueError("'tied' covars must have shape (n_dim, n_dim)") elif (not np.allclose(covars, covars.T) or np.any(linalg.eigvalsh(covars) <= 0)): raise ValueError("'tied' covars must be symmetric, " "positive-definite") elif covariance_type == 'diag': if len(covars.shape) != 2: raise ValueError("'diag' covars must have shape" "(n_components, n_dim)") elif np.any(covars <= 0): raise ValueError("'diag' covars must be non-negative") elif covariance_type == 'full': if len(covars.shape) != 3: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") elif covars.shape[1] != covars.shape[2]: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") for n, cv in enumerate(covars): if (not np.allclose(cv, cv.T) or np.any(linalg.eigvalsh(cv) <= 0)): raise ValueError("component %d of 'full' covars must be " "symmetric, positive-definite" % n) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") def distribute_covar_matrix_to_match_covariance_type( tied_cv, covariance_type, n_components): """Create all the covariance matrices from a given template """ if covariance_type == 'spherical': cv = np.tile(tied_cv.mean() * np.ones(tied_cv.shape[1]), (n_components, 1)) elif covariance_type == 'tied': cv = tied_cv elif covariance_type == 'diag': cv = np.tile(np.diag(tied_cv), (n_components, 1)) elif covariance_type == 'full': cv = np.tile(tied_cv, (n_components, 1, 1)) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") return cv def _covar_mstep_diag(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for diagonal cases""" avg_X2 = np.dot(responsibilities.T, X * X) * norm avg_means2 = gmm.means_ ** 2 avg_X_means = gmm.means_ * weighted_X_sum * norm return avg_X2 - 2 * avg_X_means + avg_means2 + min_covar def _covar_mstep_spherical(*args): """Performing the covariance M step for spherical cases""" cv = _covar_mstep_diag(*args) return np.tile(cv.mean(axis=1)[:, np.newaxis], (1, cv.shape[1])) def _covar_mstep_full(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for full cases""" # Eq. 12 from K. Murphy, "Fitting a Conditional Linear Gaussian # Distribution" n_features = X.shape[1] cv = np.empty((gmm.n_components, n_features, n_features)) for c in xrange(gmm.n_components): post = responsibilities[:, c] # Underflow Errors in doing post * X.T are not important np.seterr(under='ignore') avg_cv = np.dot(post * X.T, X) / (post.sum() + 10 * EPS) mu = gmm.means_[c][np.newaxis] cv[c] = (avg_cv - np.dot(mu.T, mu) + min_covar * np.eye(n_features)) return cv def _covar_mstep_tied(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): # Eq. 15 from K. Murphy, "Fitting a Conditional Linear Gaussian n_features = X.shape[1] avg_X2 = np.dot(X.T, X) avg_means2 = np.dot(gmm.means_.T, weighted_X_sum) return (avg_X2 - avg_means2 + min_covar * np.eye(n_features)) / X.shape[0] _covar_mstep_funcs = {'spherical': _covar_mstep_spherical, 'diag': _covar_mstep_diag, 'tied': _covar_mstep_tied, 'full': _covar_mstep_full, }
bsd-3-clause
jstoxrocky/statsmodels
statsmodels/datasets/ccard/data.py
25
1635
"""Bill Greene's credit scoring data.""" __docformat__ = 'restructuredtext' COPYRIGHT = """Used with express permission of the original author, who retains all rights.""" TITLE = __doc__ SOURCE = """ William Greene's `Econometric Analysis` More information can be found at the web site of the text: http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm """ DESCRSHORT = """William Greene's credit scoring data""" DESCRLONG = """More information on this data can be found on the homepage for Greene's `Econometric Analysis`. See source. """ NOTE = """:: Number of observations - 72 Number of variables - 5 Variable name definitions - See Source for more information on the variables. """ from numpy import recfromtxt, column_stack, array from statsmodels.datasets import utils as du from os.path import dirname, abspath def load(): """Load the credit card data and returns a Dataset class. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray(data, endog_idx=0, dtype=float) def load_pandas(): """Load the credit card data and returns a Dataset class. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray_pandas(data, endog_idx=0) def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(filepath + '/ccard.csv', 'rb'), delimiter=",", names=True, dtype=float) return data
bsd-3-clause
reuk/wayverb
demo/evaluation/room_materials/rt60.py
2
1970
#!/usr/local/bin/python import numpy as np import matplotlib render = True if render: matplotlib.use('pgf') import matplotlib.pyplot as plt from string import split import scipy.signal as signal import wave import math import os import re import json import sys sys.path.append('python') def get_frequency_rt30_tuple(line): split = line.split() return (float(split[0]), float(split[6])) def read_rt30(fname): with open(fname) as f: lines = f.readlines() return [get_frequency_rt30_tuple(line) for line in lines[14:22]] def main(): files = [ ("0.02", "0.02.txt"), ("0.04", "0.04.txt"), ("0.08", "0.08.txt"), ] for label, fname in files: tuples = read_rt30(fname) x = [freq for freq, _ in tuples] y = [time for _, time in tuples] min_time = min(y) max_time = max(y) average = (max_time - min_time) * 100.0 / ((max_time + min_time) * 0.5) print('file: {}, min: {}, max: {}, average: {}'.format( fname, min_time, max_time, average)) plt.plot(x, y, label=label, marker='o', linestyle='--') plt.xscale('log') plt.axvline(x=500) plt.annotate(xy=(520, 1.4), s='waveguide cutoff') plt.legend(loc='lower center', ncol=3, bbox_to_anchor=(0, -0.05, 1, 1), bbox_transform=plt.gcf().transFigure) plt.title('Octave-band T30 Measurements for Different Surface Absorption Coefficients') plt.xlabel('frequency / Hz') plt.ylabel('time / s') plt.tight_layout() #plt.subplots_adjust(top=0.9) plt.show() if render: plt.savefig('room_absorption_rt30.svg', bbox_inches='tight', dpi=96, format='svg') if __name__ == '__main__': pgf_with_rc_fonts = { 'font.family': 'serif', 'font.serif': [], 'font.sans-serif': ['Helvetica Neue'], 'legend.fontsize': 12, } matplotlib.rcParams.update(pgf_with_rc_fonts) main()
gpl-2.0
bgris/ODL_bgris
lib/python3.5/site-packages/spyder/utils/introspection/test/test_jedi_plugin.py
1
2930
# -*- coding: utf-8 -*- # # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License """Tests for jedi_plugin.py""" from textwrap import dedent import pytest from spyder.utils.introspection.manager import CodeInfo from spyder.utils.introspection import jedi_plugin try: import numpydoc except ImportError: numpydoc = None try: import numpy except ImportError: numpy = None try: import matplotlib except ImportError: matplotlib = None p = jedi_plugin.JediPlugin() p.load_plugin() def test_get_info(): source_code = "import os; os.walk(" docs = p.get_info(CodeInfo('info', source_code, len(source_code))) assert docs['calltip'].startswith('walk(') and docs['name'] == 'walk' def test_get_completions(): source_code = "import o" completions = p.get_completions(CodeInfo('completions', source_code, len(source_code))) assert ('os', 'module') in completions def test_get_definition(): source_code = "import os; os.walk" path, line_nr = p.get_definition(CodeInfo('definition', source_code, len(source_code))) assert 'os.py' in path def test_get_path(): source_code = 'from spyder.utils.introspection.manager import CodeInfo' path, line_nr = p.get_definition(CodeInfo('definition', source_code, len(source_code), __file__)) assert 'utils' in path and 'introspection' in path def test_get_docstring(): source_code = dedent(''' def test(a, b): """Test docstring""" pass test(1,''') path, line = p.get_definition(CodeInfo('definition', source_code, len(source_code), 'dummy.txt', is_python_like=True)) assert line == 2 docs = p.get_info(CodeInfo('info', source_code, len(source_code), __file__)) assert 'Test docstring' in docs['docstring'] @pytest.mark.skipif(not(numpy and numpydoc), reason="numpy and numpydoc required") def test_numpy_returns(): source_code = dedent(''' import numpy as np x = np.array([1,2,3]) x.a''') completions = p.get_completions(CodeInfo('completions', source_code, len(source_code))) assert ('argmax', 'function') in completions @pytest.mark.skipif(not(matplotlib and numpydoc), reason="matplotlib required") def test_matplotlib_fig_returns(): source_code = dedent(''' import matplotlib.pyplot as plt fig = plt.figure() fig.''') completions = p.get_completions(CodeInfo('completions', source_code, len(source_code))) assert ('add_axes', 'function') in completions if __name__ == '__main__': pytest.main()
gpl-3.0
ucloud/uai-sdk
examples/caffe/train/faster-rcnn/code/tools/train_svms.py
16
13480
#!/usr/bin/env python # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """ Train post-hoc SVMs using the algorithm and hyper-parameters from traditional R-CNN. """ import _init_paths from fast_rcnn.config import cfg, cfg_from_file from datasets.factory import get_imdb from fast_rcnn.test import im_detect from utils.timer import Timer import caffe import argparse import pprint import numpy as np import numpy.random as npr import cv2 from sklearn import svm import os, sys class SVMTrainer(object): """ Trains post-hoc detection SVMs for all classes using the algorithm and hyper-parameters of traditional R-CNN. """ def __init__(self, net, imdb): self.imdb = imdb self.net = net self.layer = 'fc7' self.hard_thresh = -1.0001 self.neg_iou_thresh = 0.3 dim = net.params['cls_score'][0].data.shape[1] scale = self._get_feature_scale() print('Feature dim: {}'.format(dim)) print('Feature scale: {:.3f}'.format(scale)) self.trainers = [SVMClassTrainer(cls, dim, feature_scale=scale) for cls in imdb.classes] def _get_feature_scale(self, num_images=100): TARGET_NORM = 20.0 # Magic value from traditional R-CNN _t = Timer() roidb = self.imdb.roidb total_norm = 0.0 count = 0.0 inds = npr.choice(xrange(self.imdb.num_images), size=num_images, replace=False) for i_, i in enumerate(inds): im = cv2.imread(self.imdb.image_path_at(i)) if roidb[i]['flipped']: im = im[:, ::-1, :] _t.tic() scores, boxes = im_detect(self.net, im, roidb[i]['boxes']) _t.toc() feat = self.net.blobs[self.layer].data total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum() count += feat.shape[0] print('{}/{}: avg feature norm: {:.3f}'.format(i_ + 1, num_images, total_norm / count)) return TARGET_NORM * 1.0 / (total_norm / count) def _get_pos_counts(self): counts = np.zeros((len(self.imdb.classes)), dtype=np.int) roidb = self.imdb.roidb for i in xrange(len(roidb)): for j in xrange(1, self.imdb.num_classes): I = np.where(roidb[i]['gt_classes'] == j)[0] counts[j] += len(I) for j in xrange(1, self.imdb.num_classes): print('class {:s} has {:d} positives'. format(self.imdb.classes[j], counts[j])) return counts def get_pos_examples(self): counts = self._get_pos_counts() for i in xrange(len(counts)): self.trainers[i].alloc_pos(counts[i]) _t = Timer() roidb = self.imdb.roidb num_images = len(roidb) # num_images = 100 for i in xrange(num_images): im = cv2.imread(self.imdb.image_path_at(i)) if roidb[i]['flipped']: im = im[:, ::-1, :] gt_inds = np.where(roidb[i]['gt_classes'] > 0)[0] gt_boxes = roidb[i]['boxes'][gt_inds] _t.tic() scores, boxes = im_detect(self.net, im, gt_boxes) _t.toc() feat = self.net.blobs[self.layer].data for j in xrange(1, self.imdb.num_classes): cls_inds = np.where(roidb[i]['gt_classes'][gt_inds] == j)[0] if len(cls_inds) > 0: cls_feat = feat[cls_inds, :] self.trainers[j].append_pos(cls_feat) print 'get_pos_examples: {:d}/{:d} {:.3f}s' \ .format(i + 1, len(roidb), _t.average_time) def initialize_net(self): # Start all SVM parameters at zero self.net.params['cls_score'][0].data[...] = 0 self.net.params['cls_score'][1].data[...] = 0 # Initialize SVMs in a smart way. Not doing this because its such # a good initialization that we might not learn something close to # the SVM solution. # # subtract background weights and biases for the foreground classes # w_bg = self.net.params['cls_score'][0].data[0, :] # b_bg = self.net.params['cls_score'][1].data[0] # self.net.params['cls_score'][0].data[1:, :] -= w_bg # self.net.params['cls_score'][1].data[1:] -= b_bg # # set the background weights and biases to 0 (where they shall remain) # self.net.params['cls_score'][0].data[0, :] = 0 # self.net.params['cls_score'][1].data[0] = 0 def update_net(self, cls_ind, w, b): self.net.params['cls_score'][0].data[cls_ind, :] = w self.net.params['cls_score'][1].data[cls_ind] = b def train_with_hard_negatives(self): _t = Timer() roidb = self.imdb.roidb num_images = len(roidb) # num_images = 100 for i in xrange(num_images): im = cv2.imread(self.imdb.image_path_at(i)) if roidb[i]['flipped']: im = im[:, ::-1, :] _t.tic() scores, boxes = im_detect(self.net, im, roidb[i]['boxes']) _t.toc() feat = self.net.blobs[self.layer].data for j in xrange(1, self.imdb.num_classes): hard_inds = \ np.where((scores[:, j] > self.hard_thresh) & (roidb[i]['gt_overlaps'][:, j].toarray().ravel() < self.neg_iou_thresh))[0] if len(hard_inds) > 0: hard_feat = feat[hard_inds, :].copy() new_w_b = \ self.trainers[j].append_neg_and_retrain(feat=hard_feat) if new_w_b is not None: self.update_net(j, new_w_b[0], new_w_b[1]) print(('train_with_hard_negatives: ' '{:d}/{:d} {:.3f}s').format(i + 1, len(roidb), _t.average_time)) def train(self): # Initialize SVMs using # a. w_i = fc8_w_i - fc8_w_0 # b. b_i = fc8_b_i - fc8_b_0 # c. Install SVMs into net self.initialize_net() # Pass over roidb to count num positives for each class # a. Pre-allocate arrays for positive feature vectors # Pass over roidb, computing features for positives only self.get_pos_examples() # Pass over roidb # a. Compute cls_score with forward pass # b. For each class # i. Select hard negatives # ii. Add them to cache # c. For each class # i. If SVM retrain criteria met, update SVM # ii. Install new SVM into net self.train_with_hard_negatives() # One final SVM retraining for each class # Install SVMs into net for j in xrange(1, self.imdb.num_classes): new_w_b = self.trainers[j].append_neg_and_retrain(force=True) self.update_net(j, new_w_b[0], new_w_b[1]) class SVMClassTrainer(object): """Manages post-hoc SVM training for a single object class.""" def __init__(self, cls, dim, feature_scale=1.0, C=0.001, B=10.0, pos_weight=2.0): self.pos = np.zeros((0, dim), dtype=np.float32) self.neg = np.zeros((0, dim), dtype=np.float32) self.B = B self.C = C self.cls = cls self.pos_weight = pos_weight self.dim = dim self.feature_scale = feature_scale self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1}, intercept_scaling=B, verbose=1, penalty='l2', loss='l1', random_state=cfg.RNG_SEED, dual=True) self.pos_cur = 0 self.num_neg_added = 0 self.retrain_limit = 2000 self.evict_thresh = -1.1 self.loss_history = [] def alloc_pos(self, count): self.pos_cur = 0 self.pos = np.zeros((count, self.dim), dtype=np.float32) def append_pos(self, feat): num = feat.shape[0] self.pos[self.pos_cur:self.pos_cur + num, :] = feat self.pos_cur += num def train(self): print('>>> Updating {} detector <<<'.format(self.cls)) num_pos = self.pos.shape[0] num_neg = self.neg.shape[0] print('Cache holds {} pos examples and {} neg examples'. format(num_pos, num_neg)) X = np.vstack((self.pos, self.neg)) * self.feature_scale y = np.hstack((np.ones(num_pos), -np.ones(num_neg))) self.svm.fit(X, y) w = self.svm.coef_ b = self.svm.intercept_[0] scores = self.svm.decision_function(X) pos_scores = scores[:num_pos] neg_scores = scores[num_pos:] pos_loss = (self.C * self.pos_weight * np.maximum(0, 1 - pos_scores).sum()) neg_loss = self.C * np.maximum(0, 1 + neg_scores).sum() reg_loss = 0.5 * np.dot(w.ravel(), w.ravel()) + 0.5 * b ** 2 tot_loss = pos_loss + neg_loss + reg_loss self.loss_history.append((tot_loss, pos_loss, neg_loss, reg_loss)) for i, losses in enumerate(self.loss_history): print((' {:d}: obj val: {:.3f} = {:.3f} ' '(pos) + {:.3f} (neg) + {:.3f} (reg)').format(i, *losses)) # Sanity check scores_ret = ( X * 1.0 / self.feature_scale).dot(w.T * self.feature_scale) + b assert np.allclose(scores, scores_ret[:, 0], atol=1e-5), \ "Scores from returned model don't match decision function" return ((w * self.feature_scale, b), pos_scores, neg_scores) def append_neg_and_retrain(self, feat=None, force=False): if feat is not None: num = feat.shape[0] self.neg = np.vstack((self.neg, feat)) self.num_neg_added += num if self.num_neg_added > self.retrain_limit or force: self.num_neg_added = 0 new_w_b, pos_scores, neg_scores = self.train() # scores = np.dot(self.neg, new_w_b[0].T) + new_w_b[1] # easy_inds = np.where(neg_scores < self.evict_thresh)[0] not_easy_inds = np.where(neg_scores >= self.evict_thresh)[0] if len(not_easy_inds) > 0: self.neg = self.neg[not_easy_inds, :] # self.neg = np.delete(self.neg, easy_inds) print(' Pruning easy negatives') print(' Cache holds {} pos examples and {} neg examples'. format(self.pos.shape[0], self.neg.shape[0])) print(' {} pos support vectors'.format((pos_scores <= 1).sum())) print(' {} neg support vectors'.format((neg_scores >= -1).sum())) return new_w_b else: return None def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train SVMs (old skool)') parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) parser.add_argument('--def', dest='prototxt', help='prototxt file defining the network', default=None, type=str) parser.add_argument('--net', dest='caffemodel', help='model to test', default=None, type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default=None, type=str) parser.add_argument('--imdb', dest='imdb_name', help='dataset to train on', default='voc_2007_trainval', type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args if __name__ == '__main__': # Must turn this off to prevent issues when digging into the net blobs to # pull out features (tricky!) cfg.DEDUP_BOXES = 0 # Must turn this on because we use the test im_detect() method to harvest # hard negatives cfg.TEST.SVM = True args = parse_args() print('Called with args:') print(args) if args.cfg_file is not None: cfg_from_file(args.cfg_file) print('Using config:') pprint.pprint(cfg) # fix the random seed for reproducibility np.random.seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() if args.gpu_id is not None: caffe.set_device(args.gpu_id) net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) net.name = os.path.splitext(os.path.basename(args.caffemodel))[0] out = os.path.splitext(os.path.basename(args.caffemodel))[0] + '_svm' out_dir = os.path.dirname(args.caffemodel) imdb = get_imdb(args.imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) # enhance roidb to contain flipped examples if cfg.TRAIN.USE_FLIPPED: print 'Appending horizontally-flipped training examples...' imdb.append_flipped_images() print 'done' SVMTrainer(net, imdb).train() filename = '{}/{}.caffemodel'.format(out_dir, out) net.save(filename) print 'Wrote svm model to: {:s}'.format(filename)
apache-2.0
valexandersaulys/prudential_insurance_kaggle
venv/lib/python2.7/site-packages/pandas/io/tests/test_json/test_ujson.py
9
54415
# -*- coding: utf-8 -*- from unittest import TestCase try: import json except ImportError: import simplejson as json import math import nose import platform import sys import time import datetime import calendar import re import decimal from functools import partial from pandas.compat import range, zip, StringIO, u import pandas.json as ujson import pandas.compat as compat import numpy as np from numpy.testing import (assert_array_almost_equal_nulp, assert_approx_equal) import pytz import dateutil from pandas import DataFrame, Series, Index, NaT, DatetimeIndex import pandas.util.testing as tm def _skip_if_python_ver(skip_major, skip_minor=None): major, minor = sys.version_info[:2] if major == skip_major and (skip_minor is None or minor == skip_minor): raise nose.SkipTest("skipping Python version %d.%d" % (major, minor)) json_unicode = (json.dumps if compat.PY3 else partial(json.dumps, encoding="utf-8")) class UltraJSONTests(TestCase): def test_encodeDecimal(self): sut = decimal.Decimal("1337.1337") encoded = ujson.encode(sut, double_precision=15) decoded = ujson.decode(encoded) self.assertEqual(decoded, 1337.1337) def test_encodeStringConversion(self): input = "A string \\ / \b \f \n \r \t </script> &" not_html_encoded = '"A string \\\\ \\/ \\b \\f \\n \\r \\t <\\/script> &"' html_encoded = '"A string \\\\ \\/ \\b \\f \\n \\r \\t \\u003c\\/script\\u003e \\u0026"' def helper(expected_output, **encode_kwargs): output = ujson.encode(input, **encode_kwargs) self.assertEqual(input, json.loads(output)) self.assertEqual(output, expected_output) self.assertEqual(input, ujson.decode(output)) # Default behavior assumes encode_html_chars=False. helper(not_html_encoded, ensure_ascii=True) helper(not_html_encoded, ensure_ascii=False) # Make sure explicit encode_html_chars=False works. helper(not_html_encoded, ensure_ascii=True, encode_html_chars=False) helper(not_html_encoded, ensure_ascii=False, encode_html_chars=False) # Make sure explicit encode_html_chars=True does the encoding. helper(html_encoded, ensure_ascii=True, encode_html_chars=True) helper(html_encoded, ensure_ascii=False, encode_html_chars=True) def test_doubleLongIssue(self): sut = {u('a'): -4342969734183514} encoded = json.dumps(sut) decoded = json.loads(encoded) self.assertEqual(sut, decoded) encoded = ujson.encode(sut, double_precision=15) decoded = ujson.decode(encoded) self.assertEqual(sut, decoded) def test_doubleLongDecimalIssue(self): sut = {u('a'): -12345678901234.56789012} encoded = json.dumps(sut) decoded = json.loads(encoded) self.assertEqual(sut, decoded) encoded = ujson.encode(sut, double_precision=15) decoded = ujson.decode(encoded) self.assertEqual(sut, decoded) def test_encodeNonCLocale(self): import locale savedlocale = locale.getlocale(locale.LC_NUMERIC) try: locale.setlocale(locale.LC_NUMERIC, 'it_IT.UTF-8') except: try: locale.setlocale(locale.LC_NUMERIC, 'Italian_Italy') except: raise nose.SkipTest('Could not set locale for testing') self.assertEqual(ujson.loads(ujson.dumps(4.78e60)), 4.78e60) self.assertEqual(ujson.loads('4.78', precise_float=True), 4.78) locale.setlocale(locale.LC_NUMERIC, savedlocale) def test_encodeDecodeLongDecimal(self): sut = {u('a'): -528656961.4399388} encoded = ujson.dumps(sut, double_precision=15) ujson.decode(encoded) def test_decimalDecodeTestPrecise(self): sut = {u('a'): 4.56} encoded = ujson.encode(sut) decoded = ujson.decode(encoded, precise_float=True) self.assertEqual(sut, decoded) def test_encodeDoubleTinyExponential(self): if compat.is_platform_windows() and not compat.PY3: raise nose.SkipTest("buggy on win-64 for py2") num = 1e-40 self.assertEqual(num, ujson.decode(ujson.encode(num))) num = 1e-100 self.assertEqual(num, ujson.decode(ujson.encode(num))) num = -1e-45 self.assertEqual(num, ujson.decode(ujson.encode(num))) num = -1e-145 self.assertTrue(np.allclose(num, ujson.decode(ujson.encode(num)))) def test_encodeDictWithUnicodeKeys(self): input = {u("key1"): u("value1"), u("key1"): u("value1"), u("key1"): u("value1"), u("key1"): u("value1"), u("key1"): u("value1"), u("key1"): u("value1")} output = ujson.encode(input) input = {u("بن"): u("value1"), u("بن"): u("value1"), u("بن"): u("value1"), u("بن"): u("value1"), u("بن"): u("value1"), u("بن"): u("value1"), u("بن"): u("value1")} output = ujson.encode(input) pass def test_encodeDoubleConversion(self): input = math.pi output = ujson.encode(input) self.assertEqual(round(input, 5), round(json.loads(output), 5)) self.assertEqual(round(input, 5), round(ujson.decode(output), 5)) def test_encodeWithDecimal(self): input = 1.0 output = ujson.encode(input) self.assertEqual(output, "1.0") def test_encodeDoubleNegConversion(self): input = -math.pi output = ujson.encode(input) self.assertEqual(round(input, 5), round(json.loads(output), 5)) self.assertEqual(round(input, 5), round(ujson.decode(output), 5)) def test_encodeArrayOfNestedArrays(self): input = [[[[]]]] * 20 output = ujson.encode(input) self.assertEqual(input, json.loads(output)) #self.assertEqual(output, json.dumps(input)) self.assertEqual(input, ujson.decode(output)) input = np.array(input) tm.assert_numpy_array_equal(input, ujson.decode(output, numpy=True, dtype=input.dtype)) def test_encodeArrayOfDoubles(self): input = [ 31337.31337, 31337.31337, 31337.31337, 31337.31337] * 10 output = ujson.encode(input) self.assertEqual(input, json.loads(output)) #self.assertEqual(output, json.dumps(input)) self.assertEqual(input, ujson.decode(output)) tm.assert_numpy_array_equal(np.array(input), ujson.decode(output, numpy=True)) def test_doublePrecisionTest(self): input = 30.012345678901234 output = ujson.encode(input, double_precision = 15) self.assertEqual(input, json.loads(output)) self.assertEqual(input, ujson.decode(output)) output = ujson.encode(input, double_precision = 9) self.assertEqual(round(input, 9), json.loads(output)) self.assertEqual(round(input, 9), ujson.decode(output)) output = ujson.encode(input, double_precision = 3) self.assertEqual(round(input, 3), json.loads(output)) self.assertEqual(round(input, 3), ujson.decode(output)) def test_invalidDoublePrecision(self): input = 30.12345678901234567890 self.assertRaises(ValueError, ujson.encode, input, double_precision = 20) self.assertRaises(ValueError, ujson.encode, input, double_precision = -1) # will throw typeError self.assertRaises(TypeError, ujson.encode, input, double_precision = '9') # will throw typeError self.assertRaises(TypeError, ujson.encode, input, double_precision = None) def test_encodeStringConversion(self): input = "A string \\ / \b \f \n \r \t" output = ujson.encode(input) self.assertEqual(input, json.loads(output)) self.assertEqual(output, '"A string \\\\ \\/ \\b \\f \\n \\r \\t"') self.assertEqual(input, ujson.decode(output)) pass def test_decodeUnicodeConversion(self): pass def test_encodeUnicodeConversion1(self): input = "Räksmörgås اسامة بن محمد بن عوض بن لادن" enc = ujson.encode(input) dec = ujson.decode(enc) self.assertEqual(enc, json_unicode(input)) self.assertEqual(dec, json.loads(enc)) def test_encodeControlEscaping(self): input = "\x19" enc = ujson.encode(input) dec = ujson.decode(enc) self.assertEqual(input, dec) self.assertEqual(enc, json_unicode(input)) def test_encodeUnicodeConversion2(self): input = "\xe6\x97\xa5\xd1\x88" enc = ujson.encode(input) dec = ujson.decode(enc) self.assertEqual(enc, json_unicode(input)) self.assertEqual(dec, json.loads(enc)) def test_encodeUnicodeSurrogatePair(self): _skip_if_python_ver(2, 5) _skip_if_python_ver(2, 6) input = "\xf0\x90\x8d\x86" enc = ujson.encode(input) dec = ujson.decode(enc) self.assertEqual(enc, json_unicode(input)) self.assertEqual(dec, json.loads(enc)) def test_encodeUnicode4BytesUTF8(self): _skip_if_python_ver(2, 5) _skip_if_python_ver(2, 6) input = "\xf0\x91\x80\xb0TRAILINGNORMAL" enc = ujson.encode(input) dec = ujson.decode(enc) self.assertEqual(enc, json_unicode(input)) self.assertEqual(dec, json.loads(enc)) def test_encodeUnicode4BytesUTF8Highest(self): _skip_if_python_ver(2, 5) _skip_if_python_ver(2, 6) input = "\xf3\xbf\xbf\xbfTRAILINGNORMAL" enc = ujson.encode(input) dec = ujson.decode(enc) self.assertEqual(enc, json_unicode(input)) self.assertEqual(dec, json.loads(enc)) def test_encodeArrayInArray(self): input = [[[[]]]] output = ujson.encode(input) self.assertEqual(input, json.loads(output)) self.assertEqual(output, json.dumps(input)) self.assertEqual(input, ujson.decode(output)) tm.assert_numpy_array_equal(np.array(input), ujson.decode(output, numpy=True)) pass def test_encodeIntConversion(self): input = 31337 output = ujson.encode(input) self.assertEqual(input, json.loads(output)) self.assertEqual(output, json.dumps(input)) self.assertEqual(input, ujson.decode(output)) pass def test_encodeIntNegConversion(self): input = -31337 output = ujson.encode(input) self.assertEqual(input, json.loads(output)) self.assertEqual(output, json.dumps(input)) self.assertEqual(input, ujson.decode(output)) pass def test_encodeLongNegConversion(self): input = -9223372036854775808 output = ujson.encode(input) outputjson = json.loads(output) outputujson = ujson.decode(output) self.assertEqual(input, json.loads(output)) self.assertEqual(output, json.dumps(input)) self.assertEqual(input, ujson.decode(output)) pass def test_encodeListConversion(self): input = [ 1, 2, 3, 4 ] output = ujson.encode(input) self.assertEqual(input, json.loads(output)) self.assertEqual(input, ujson.decode(output)) tm.assert_numpy_array_equal(np.array(input), ujson.decode(output, numpy=True)) pass def test_encodeDictConversion(self): input = { "k1": 1, "k2": 2, "k3": 3, "k4": 4 } output = ujson.encode(input) self.assertEqual(input, json.loads(output)) self.assertEqual(input, ujson.decode(output)) self.assertEqual(input, ujson.decode(output)) pass def test_encodeNoneConversion(self): input = None output = ujson.encode(input) self.assertEqual(input, json.loads(output)) self.assertEqual(output, json.dumps(input)) self.assertEqual(input, ujson.decode(output)) pass def test_encodeTrueConversion(self): input = True output = ujson.encode(input) self.assertEqual(input, json.loads(output)) self.assertEqual(output, json.dumps(input)) self.assertEqual(input, ujson.decode(output)) pass def test_encodeFalseConversion(self): input = False output = ujson.encode(input) self.assertEqual(input, json.loads(output)) self.assertEqual(output, json.dumps(input)) self.assertEqual(input, ujson.decode(output)) def test_encodeDatetimeConversion(self): ts = time.time() input = datetime.datetime.fromtimestamp(ts) output = ujson.encode(input, date_unit='s') expected = calendar.timegm(input.utctimetuple()) self.assertEqual(int(expected), json.loads(output)) self.assertEqual(int(expected), ujson.decode(output)) def test_encodeDateConversion(self): ts = time.time() input = datetime.date.fromtimestamp(ts) output = ujson.encode(input, date_unit='s') tup = (input.year, input.month, input.day, 0, 0, 0) expected = calendar.timegm(tup) self.assertEqual(int(expected), json.loads(output)) self.assertEqual(int(expected), ujson.decode(output)) def test_encodeTimeConversion(self): tests = [ datetime.time(), datetime.time(1, 2, 3), datetime.time(10, 12, 15, 343243), datetime.time(10, 12, 15, 343243, pytz.utc), # datetime.time(10, 12, 15, 343243, dateutil.tz.gettz('UTC')), # this segfaults! No idea why. ] for test in tests: output = ujson.encode(test) expected = '"%s"' % test.isoformat() self.assertEqual(expected, output) def test_nat(self): input = NaT assert ujson.encode(input) == 'null', "Expected null" def test_npy_nat(self): from distutils.version import LooseVersion if LooseVersion(np.__version__) < '1.7.0': raise nose.SkipTest("numpy version < 1.7.0, is " "{0}".format(np.__version__)) input = np.datetime64('NaT') assert ujson.encode(input) == 'null', "Expected null" def test_datetime_units(self): from pandas.lib import Timestamp val = datetime.datetime(2013, 8, 17, 21, 17, 12, 215504) stamp = Timestamp(val) roundtrip = ujson.decode(ujson.encode(val, date_unit='s')) self.assertEqual(roundtrip, stamp.value // 10**9) roundtrip = ujson.decode(ujson.encode(val, date_unit='ms')) self.assertEqual(roundtrip, stamp.value // 10**6) roundtrip = ujson.decode(ujson.encode(val, date_unit='us')) self.assertEqual(roundtrip, stamp.value // 10**3) roundtrip = ujson.decode(ujson.encode(val, date_unit='ns')) self.assertEqual(roundtrip, stamp.value) self.assertRaises(ValueError, ujson.encode, val, date_unit='foo') def test_encodeToUTF8(self): _skip_if_python_ver(2, 5) input = "\xe6\x97\xa5\xd1\x88" enc = ujson.encode(input, ensure_ascii=False) dec = ujson.decode(enc) self.assertEqual(enc, json_unicode(input, ensure_ascii=False)) self.assertEqual(dec, json.loads(enc)) def test_decodeFromUnicode(self): input = u("{\"obj\": 31337}") dec1 = ujson.decode(input) dec2 = ujson.decode(str(input)) self.assertEqual(dec1, dec2) def test_encodeRecursionMax(self): # 8 is the max recursion depth class O2: member = 0 pass class O1: member = 0 pass input = O1() input.member = O2() input.member.member = input try: output = ujson.encode(input) assert False, "Expected overflow exception" except(OverflowError): pass def test_encodeDoubleNan(self): input = np.nan assert ujson.encode(input) == 'null', "Expected null" def test_encodeDoubleInf(self): input = np.inf assert ujson.encode(input) == 'null', "Expected null" def test_encodeDoubleNegInf(self): input = -np.inf assert ujson.encode(input) == 'null', "Expected null" def test_decodeJibberish(self): input = "fdsa sda v9sa fdsa" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeBrokenArrayStart(self): input = "[" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeBrokenObjectStart(self): input = "{" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeBrokenArrayEnd(self): input = "]" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeArrayDepthTooBig(self): input = '[' * (1024 * 1024) try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeBrokenObjectEnd(self): input = "}" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeObjectDepthTooBig(self): input = '{' * (1024 * 1024) try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeStringUnterminated(self): input = "\"TESTING" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeStringUntermEscapeSequence(self): input = "\"TESTING\\\"" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeStringBadEscape(self): input = "\"TESTING\\\"" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeTrueBroken(self): input = "tru" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeFalseBroken(self): input = "fa" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeNullBroken(self): input = "n" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeBrokenDictKeyTypeLeakTest(self): input = '{{1337:""}}' for x in range(1000): try: ujson.decode(input) assert False, "Expected exception!" except ValueError as e: continue assert False, "Wrong exception" def test_decodeBrokenDictLeakTest(self): input = '{{"key":"}' for x in range(1000): try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): continue assert False, "Wrong exception" def test_decodeBrokenListLeakTest(self): input = '[[[true' for x in range(1000): try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): continue assert False, "Wrong exception" def test_decodeDictWithNoKey(self): input = "{{{{31337}}}}" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeDictWithNoColonOrValue(self): input = "{{{{\"key\"}}}}" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeDictWithNoValue(self): input = "{{{{\"key\":}}}}" try: ujson.decode(input) assert False, "Expected exception!" except(ValueError): return assert False, "Wrong exception" def test_decodeNumericIntPos(self): input = "31337" self.assertEqual(31337, ujson.decode(input)) def test_decodeNumericIntNeg(self): input = "-31337" self.assertEqual(-31337, ujson.decode(input)) def test_encodeUnicode4BytesUTF8Fail(self): _skip_if_python_ver(3) input = "\xfd\xbf\xbf\xbf\xbf\xbf" try: enc = ujson.encode(input) assert False, "Expected exception" except OverflowError: pass def test_encodeNullCharacter(self): input = "31337 \x00 1337" output = ujson.encode(input) self.assertEqual(input, json.loads(output)) self.assertEqual(output, json.dumps(input)) self.assertEqual(input, ujson.decode(output)) input = "\x00" output = ujson.encode(input) self.assertEqual(input, json.loads(output)) self.assertEqual(output, json.dumps(input)) self.assertEqual(input, ujson.decode(output)) self.assertEqual('" \\u0000\\r\\n "', ujson.dumps(u(" \u0000\r\n "))) pass def test_decodeNullCharacter(self): input = "\"31337 \\u0000 31337\"" self.assertEqual(ujson.decode(input), json.loads(input)) def test_encodeListLongConversion(self): input = [9223372036854775807, 9223372036854775807, 9223372036854775807, 9223372036854775807, 9223372036854775807, 9223372036854775807 ] output = ujson.encode(input) self.assertEqual(input, json.loads(output)) self.assertEqual(input, ujson.decode(output)) tm.assert_numpy_array_equal(np.array(input), ujson.decode(output, numpy=True, dtype=np.int64)) pass def test_encodeLongConversion(self): input = 9223372036854775807 output = ujson.encode(input) self.assertEqual(input, json.loads(output)) self.assertEqual(output, json.dumps(input)) self.assertEqual(input, ujson.decode(output)) pass def test_numericIntExp(self): input = "1337E40" output = ujson.decode(input) self.assertEqual(output, json.loads(input)) def test_numericIntFrcExp(self): input = "1.337E40" output = ujson.decode(input) self.assertAlmostEqual(output, json.loads(input)) def test_decodeNumericIntExpEPLUS(self): input = "1337E+9" output = ujson.decode(input) self.assertAlmostEqual(output, json.loads(input)) def test_decodeNumericIntExpePLUS(self): input = "1.337e+40" output = ujson.decode(input) self.assertAlmostEqual(output, json.loads(input)) def test_decodeNumericIntExpE(self): input = "1337E40" output = ujson.decode(input) self.assertAlmostEqual(output, json.loads(input)) def test_decodeNumericIntExpe(self): input = "1337e40" output = ujson.decode(input) self.assertAlmostEqual(output, json.loads(input)) def test_decodeNumericIntExpEMinus(self): input = "1.337E-4" output = ujson.decode(input) self.assertAlmostEqual(output, json.loads(input)) def test_decodeNumericIntExpeMinus(self): input = "1.337e-4" output = ujson.decode(input) self.assertAlmostEqual(output, json.loads(input)) def test_dumpToFile(self): f = StringIO() ujson.dump([1, 2, 3], f) self.assertEqual("[1,2,3]", f.getvalue()) def test_dumpToFileLikeObject(self): class filelike: def __init__(self): self.bytes = '' def write(self, bytes): self.bytes += bytes f = filelike() ujson.dump([1, 2, 3], f) self.assertEqual("[1,2,3]", f.bytes) def test_dumpFileArgsError(self): try: ujson.dump([], '') except TypeError: pass else: assert False, 'expected TypeError' def test_loadFile(self): f = StringIO("[1,2,3,4]") self.assertEqual([1, 2, 3, 4], ujson.load(f)) f = StringIO("[1,2,3,4]") tm.assert_numpy_array_equal(np.array([1, 2, 3, 4]), ujson.load(f, numpy=True)) def test_loadFileLikeObject(self): class filelike: def read(self): try: self.end except AttributeError: self.end = True return "[1,2,3,4]" f = filelike() self.assertEqual([1, 2, 3, 4], ujson.load(f)) f = filelike() tm.assert_numpy_array_equal(np.array([1, 2, 3, 4]), ujson.load(f, numpy=True)) def test_loadFileArgsError(self): try: ujson.load("[]") except TypeError: pass else: assert False, "expected TypeError" def test_version(self): assert re.match(r'^\d+\.\d+(\.\d+)?$', ujson.__version__), \ "ujson.__version__ must be a string like '1.4.0'" def test_encodeNumericOverflow(self): try: ujson.encode(12839128391289382193812939) except OverflowError: pass else: assert False, "expected OverflowError" def test_encodeNumericOverflowNested(self): for n in range(0, 100): class Nested: x = 12839128391289382193812939 nested = Nested() try: ujson.encode(nested) except OverflowError: pass else: assert False, "expected OverflowError" def test_decodeNumberWith32bitSignBit(self): #Test that numbers that fit within 32 bits but would have the # sign bit set (2**31 <= x < 2**32) are decoded properly. boundary1 = 2**31 boundary2 = 2**32 docs = ( '{"id": 3590016419}', '{"id": %s}' % 2**31, '{"id": %s}' % 2**32, '{"id": %s}' % ((2**32)-1), ) results = (3590016419, 2**31, 2**32, 2**32-1) for doc,result in zip(docs, results): self.assertEqual(ujson.decode(doc)['id'], result) def test_encodeBigEscape(self): for x in range(10): if compat.PY3: base = '\u00e5'.encode('utf-8') else: base = "\xc3\xa5" input = base * 1024 * 1024 * 2 output = ujson.encode(input) def test_decodeBigEscape(self): for x in range(10): if compat.PY3: base = '\u00e5'.encode('utf-8') else: base = "\xc3\xa5" quote = compat.str_to_bytes("\"") input = quote + (base * 1024 * 1024 * 2) + quote output = ujson.decode(input) def test_toDict(self): d = {u("key"): 31337} class DictTest: def toDict(self): return d o = DictTest() output = ujson.encode(o) dec = ujson.decode(output) self.assertEqual(dec, d) def test_defaultHandler(self): class _TestObject(object): def __init__(self, val): self.val = val @property def recursive_attr(self): return _TestObject("recursive_attr") def __str__(self): return str(self.val) self.assertRaises(OverflowError, ujson.encode, _TestObject("foo")) self.assertEqual('"foo"', ujson.encode(_TestObject("foo"), default_handler=str)) def my_handler(obj): return "foobar" self.assertEqual('"foobar"', ujson.encode(_TestObject("foo"), default_handler=my_handler)) def my_handler_raises(obj): raise TypeError("I raise for anything") with tm.assertRaisesRegexp(TypeError, "I raise for anything"): ujson.encode(_TestObject("foo"), default_handler=my_handler_raises) def my_int_handler(obj): return 42 self.assertEqual( 42, ujson.decode(ujson.encode(_TestObject("foo"), default_handler=my_int_handler))) def my_obj_handler(obj): return datetime.datetime(2013, 2, 3) self.assertEqual( ujson.decode(ujson.encode(datetime.datetime(2013, 2, 3))), ujson.decode(ujson.encode(_TestObject("foo"), default_handler=my_obj_handler))) l = [_TestObject("foo"), _TestObject("bar")] self.assertEqual(json.loads(json.dumps(l, default=str)), ujson.decode(ujson.encode(l, default_handler=str))) class NumpyJSONTests(TestCase): def testBool(self): b = np.bool(True) self.assertEqual(ujson.decode(ujson.encode(b)), b) def testBoolArray(self): inpt = np.array([True, False, True, True, False, True, False , False], dtype=np.bool) outp = np.array(ujson.decode(ujson.encode(inpt)), dtype=np.bool) tm.assert_numpy_array_equal(inpt, outp) def testInt(self): num = np.int(2562010) self.assertEqual(np.int(ujson.decode(ujson.encode(num))), num) num = np.int8(127) self.assertEqual(np.int8(ujson.decode(ujson.encode(num))), num) num = np.int16(2562010) self.assertEqual(np.int16(ujson.decode(ujson.encode(num))), num) num = np.int32(2562010) self.assertEqual(np.int32(ujson.decode(ujson.encode(num))), num) num = np.int64(2562010) self.assertEqual(np.int64(ujson.decode(ujson.encode(num))), num) num = np.uint8(255) self.assertEqual(np.uint8(ujson.decode(ujson.encode(num))), num) num = np.uint16(2562010) self.assertEqual(np.uint16(ujson.decode(ujson.encode(num))), num) num = np.uint32(2562010) self.assertEqual(np.uint32(ujson.decode(ujson.encode(num))), num) num = np.uint64(2562010) self.assertEqual(np.uint64(ujson.decode(ujson.encode(num))), num) def testIntArray(self): arr = np.arange(100, dtype=np.int) dtypes = (np.int, np.int8, np.int16, np.int32, np.int64, np.uint, np.uint8, np.uint16, np.uint32, np.uint64) for dtype in dtypes: inpt = arr.astype(dtype) outp = np.array(ujson.decode(ujson.encode(inpt)), dtype=dtype) tm.assert_numpy_array_equal(inpt, outp) def testIntMax(self): num = np.int(np.iinfo(np.int).max) self.assertEqual(np.int(ujson.decode(ujson.encode(num))), num) num = np.int8(np.iinfo(np.int8).max) self.assertEqual(np.int8(ujson.decode(ujson.encode(num))), num) num = np.int16(np.iinfo(np.int16).max) self.assertEqual(np.int16(ujson.decode(ujson.encode(num))), num) num = np.int32(np.iinfo(np.int32).max) self.assertEqual(np.int32(ujson.decode(ujson.encode(num))), num) num = np.uint8(np.iinfo(np.uint8).max) self.assertEqual(np.uint8(ujson.decode(ujson.encode(num))), num) num = np.uint16(np.iinfo(np.uint16).max) self.assertEqual(np.uint16(ujson.decode(ujson.encode(num))), num) num = np.uint32(np.iinfo(np.uint32).max) self.assertEqual(np.uint32(ujson.decode(ujson.encode(num))), num) if platform.architecture()[0] != '32bit': num = np.int64(np.iinfo(np.int64).max) self.assertEqual(np.int64(ujson.decode(ujson.encode(num))), num) # uint64 max will always overflow as it's encoded to signed num = np.uint64(np.iinfo(np.int64).max) self.assertEqual(np.uint64(ujson.decode(ujson.encode(num))), num) def testFloat(self): num = np.float(256.2013) self.assertEqual(np.float(ujson.decode(ujson.encode(num))), num) num = np.float32(256.2013) self.assertEqual(np.float32(ujson.decode(ujson.encode(num))), num) num = np.float64(256.2013) self.assertEqual(np.float64(ujson.decode(ujson.encode(num))), num) def testFloatArray(self): arr = np.arange(12.5, 185.72, 1.7322, dtype=np.float) dtypes = (np.float, np.float32, np.float64) for dtype in dtypes: inpt = arr.astype(dtype) outp = np.array(ujson.decode(ujson.encode(inpt, double_precision=15)), dtype=dtype) assert_array_almost_equal_nulp(inpt, outp) def testFloatMax(self): num = np.float(np.finfo(np.float).max/10) assert_approx_equal(np.float(ujson.decode(ujson.encode(num, double_precision=15))), num, 15) num = np.float32(np.finfo(np.float32).max/10) assert_approx_equal(np.float32(ujson.decode(ujson.encode(num, double_precision=15))), num, 15) num = np.float64(np.finfo(np.float64).max/10) assert_approx_equal(np.float64(ujson.decode(ujson.encode(num, double_precision=15))), num, 15) def testArrays(self): arr = np.arange(100) arr = arr.reshape((10, 10)) tm.assert_numpy_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr) tm.assert_numpy_array_equal(ujson.decode(ujson.encode(arr), numpy=True), arr) arr = arr.reshape((5, 5, 4)) tm.assert_numpy_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr) tm.assert_numpy_array_equal(ujson.decode(ujson.encode(arr), numpy=True), arr) arr = arr.reshape((100, 1)) tm.assert_numpy_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr) tm.assert_numpy_array_equal(ujson.decode(ujson.encode(arr), numpy=True), arr) arr = np.arange(96) arr = arr.reshape((2, 2, 2, 2, 3, 2)) tm.assert_numpy_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr) tm.assert_numpy_array_equal(ujson.decode(ujson.encode(arr), numpy=True), arr) l = ['a', list(), dict(), dict(), list(), 42, 97.8, ['a', 'b'], {'key': 'val'}] arr = np.array(l) tm.assert_numpy_array_equal(np.array(ujson.decode(ujson.encode(arr))), arr) arr = np.arange(100.202, 200.202, 1, dtype=np.float32) arr = arr.reshape((5, 5, 4)) outp = np.array(ujson.decode(ujson.encode(arr)), dtype=np.float32) assert_array_almost_equal_nulp(arr, outp) outp = ujson.decode(ujson.encode(arr), numpy=True, dtype=np.float32) assert_array_almost_equal_nulp(arr, outp) def testOdArray(self): def will_raise(): ujson.encode(np.array(1)) self.assertRaises(TypeError, will_raise) def testArrayNumpyExcept(self): input = ujson.dumps([42, {}, 'a']) try: ujson.decode(input, numpy=True) assert False, "Expected exception!" except(TypeError): pass except: assert False, "Wrong exception" input = ujson.dumps(['a', 'b', [], 'c']) try: ujson.decode(input, numpy=True) assert False, "Expected exception!" except(ValueError): pass except: assert False, "Wrong exception" input = ujson.dumps([['a'], 42]) try: ujson.decode(input, numpy=True) assert False, "Expected exception!" except(ValueError): pass except: assert False, "Wrong exception" input = ujson.dumps([42, ['a'], 42]) try: ujson.decode(input, numpy=True) assert False, "Expected exception!" except(ValueError): pass except: assert False, "Wrong exception" input = ujson.dumps([{}, []]) try: ujson.decode(input, numpy=True) assert False, "Expected exception!" except(ValueError): pass except: assert False, "Wrong exception" input = ujson.dumps([42, None]) try: ujson.decode(input, numpy=True) assert False, "Expected exception!" except(TypeError): pass except: assert False, "Wrong exception" input = ujson.dumps([{'a': 'b'}]) try: ujson.decode(input, numpy=True, labelled=True) assert False, "Expected exception!" except(ValueError): pass except: assert False, "Wrong exception" input = ujson.dumps({'a': {'b': {'c': 42}}}) try: ujson.decode(input, numpy=True, labelled=True) assert False, "Expected exception!" except(ValueError): pass except: assert False, "Wrong exception" input = ujson.dumps([{'a': 42, 'b': 23}, {'c': 17}]) try: ujson.decode(input, numpy=True, labelled=True) assert False, "Expected exception!" except(ValueError): pass except: assert False, "Wrong exception" def testArrayNumpyLabelled(self): input = {'a': []} output = ujson.loads(ujson.dumps(input), numpy=True, labelled=True) self.assertTrue((np.empty((1, 0)) == output[0]).all()) self.assertTrue((np.array(['a']) == output[1]).all()) self.assertTrue(output[2] is None) input = [{'a': 42}] output = ujson.loads(ujson.dumps(input), numpy=True, labelled=True) self.assertTrue((np.array([42]) == output[0]).all()) self.assertTrue(output[1] is None) self.assertTrue((np.array([u('a')]) == output[2]).all()) # Write out the dump explicitly so there is no dependency on iteration order GH10837 input_dumps = '[{"a": 42, "b":31}, {"a": 24, "c": 99}, {"a": 2.4, "b": 78}]' output = ujson.loads(input_dumps, numpy=True, labelled=True) expectedvals = np.array([42, 31, 24, 99, 2.4, 78], dtype=int).reshape((3, 2)) self.assertTrue((expectedvals == output[0]).all()) self.assertTrue(output[1] is None) self.assertTrue((np.array([u('a'), 'b']) == output[2]).all()) input_dumps = '{"1": {"a": 42, "b":31}, "2": {"a": 24, "c": 99}, "3": {"a": 2.4, "b": 78}}' output = ujson.loads(input_dumps, numpy=True, labelled=True) expectedvals = np.array([42, 31, 24, 99, 2.4, 78], dtype=int).reshape((3, 2)) self.assertTrue((expectedvals == output[0]).all()) self.assertTrue((np.array(['1', '2', '3']) == output[1]).all()) self.assertTrue((np.array(['a', 'b']) == output[2]).all()) class PandasJSONTests(TestCase): def testDataFrame(self): df = DataFrame([[1,2,3], [4,5,6]], index=['a', 'b'], columns=['x', 'y', 'z']) # column indexed outp = DataFrame(ujson.decode(ujson.encode(df))) self.assertTrue((df == outp).values.all()) tm.assert_numpy_array_equal(df.columns, outp.columns) tm.assert_numpy_array_equal(df.index, outp.index) dec = _clean_dict(ujson.decode(ujson.encode(df, orient="split"))) outp = DataFrame(**dec) self.assertTrue((df == outp).values.all()) tm.assert_numpy_array_equal(df.columns, outp.columns) tm.assert_numpy_array_equal(df.index, outp.index) outp = DataFrame(ujson.decode(ujson.encode(df, orient="records"))) outp.index = df.index self.assertTrue((df == outp).values.all()) tm.assert_numpy_array_equal(df.columns, outp.columns) outp = DataFrame(ujson.decode(ujson.encode(df, orient="values"))) outp.index = df.index self.assertTrue((df.values == outp.values).all()) outp = DataFrame(ujson.decode(ujson.encode(df, orient="index"))) self.assertTrue((df.transpose() == outp).values.all()) tm.assert_numpy_array_equal(df.transpose().columns, outp.columns) tm.assert_numpy_array_equal(df.transpose().index, outp.index) def testDataFrameNumpy(self): df = DataFrame([[1,2,3], [4,5,6]], index=['a', 'b'], columns=['x', 'y', 'z']) # column indexed outp = DataFrame(ujson.decode(ujson.encode(df), numpy=True)) self.assertTrue((df == outp).values.all()) tm.assert_numpy_array_equal(df.columns, outp.columns) tm.assert_numpy_array_equal(df.index, outp.index) dec = _clean_dict(ujson.decode(ujson.encode(df, orient="split"), numpy=True)) outp = DataFrame(**dec) self.assertTrue((df == outp).values.all()) tm.assert_numpy_array_equal(df.columns, outp.columns) tm.assert_numpy_array_equal(df.index, outp.index) outp = DataFrame(ujson.decode(ujson.encode(df, orient="index"), numpy=True)) self.assertTrue((df.transpose() == outp).values.all()) tm.assert_numpy_array_equal(df.transpose().columns, outp.columns) tm.assert_numpy_array_equal(df.transpose().index, outp.index) def testDataFrameNested(self): df = DataFrame([[1,2,3], [4,5,6]], index=['a', 'b'], columns=['x', 'y', 'z']) nested = {'df1': df, 'df2': df.copy()} exp = {'df1': ujson.decode(ujson.encode(df)), 'df2': ujson.decode(ujson.encode(df))} self.assertTrue(ujson.decode(ujson.encode(nested)) == exp) exp = {'df1': ujson.decode(ujson.encode(df, orient="index")), 'df2': ujson.decode(ujson.encode(df, orient="index"))} self.assertTrue(ujson.decode(ujson.encode(nested, orient="index")) == exp) exp = {'df1': ujson.decode(ujson.encode(df, orient="records")), 'df2': ujson.decode(ujson.encode(df, orient="records"))} self.assertTrue(ujson.decode(ujson.encode(nested, orient="records")) == exp) exp = {'df1': ujson.decode(ujson.encode(df, orient="values")), 'df2': ujson.decode(ujson.encode(df, orient="values"))} self.assertTrue(ujson.decode(ujson.encode(nested, orient="values")) == exp) exp = {'df1': ujson.decode(ujson.encode(df, orient="split")), 'df2': ujson.decode(ujson.encode(df, orient="split"))} self.assertTrue(ujson.decode(ujson.encode(nested, orient="split")) == exp) def testDataFrameNumpyLabelled(self): df = DataFrame([[1,2,3], [4,5,6]], index=['a', 'b'], columns=['x', 'y', 'z']) # column indexed outp = DataFrame(*ujson.decode(ujson.encode(df), numpy=True, labelled=True)) self.assertTrue((df.T == outp).values.all()) tm.assert_numpy_array_equal(df.T.columns, outp.columns) tm.assert_numpy_array_equal(df.T.index, outp.index) outp = DataFrame(*ujson.decode(ujson.encode(df, orient="records"), numpy=True, labelled=True)) outp.index = df.index self.assertTrue((df == outp).values.all()) tm.assert_numpy_array_equal(df.columns, outp.columns) outp = DataFrame(*ujson.decode(ujson.encode(df, orient="index"), numpy=True, labelled=True)) self.assertTrue((df == outp).values.all()) tm.assert_numpy_array_equal(df.columns, outp.columns) tm.assert_numpy_array_equal(df.index, outp.index) def testSeries(self): s = Series([10, 20, 30, 40, 50, 60], name="series", index=[6,7,8,9,10,15]).sort_values() # column indexed outp = Series(ujson.decode(ujson.encode(s))).sort_values() self.assertTrue((s == outp).values.all()) outp = Series(ujson.decode(ujson.encode(s), numpy=True)).sort_values() self.assertTrue((s == outp).values.all()) dec = _clean_dict(ujson.decode(ujson.encode(s, orient="split"))) outp = Series(**dec) self.assertTrue((s == outp).values.all()) self.assertTrue(s.name == outp.name) dec = _clean_dict(ujson.decode(ujson.encode(s, orient="split"), numpy=True)) outp = Series(**dec) self.assertTrue((s == outp).values.all()) self.assertTrue(s.name == outp.name) outp = Series(ujson.decode(ujson.encode(s, orient="records"), numpy=True)) self.assertTrue((s == outp).values.all()) outp = Series(ujson.decode(ujson.encode(s, orient="records"))) self.assertTrue((s == outp).values.all()) outp = Series(ujson.decode(ujson.encode(s, orient="values"), numpy=True)) self.assertTrue((s == outp).values.all()) outp = Series(ujson.decode(ujson.encode(s, orient="values"))) self.assertTrue((s == outp).values.all()) outp = Series(ujson.decode(ujson.encode(s, orient="index"))).sort_values() self.assertTrue((s == outp).values.all()) outp = Series(ujson.decode(ujson.encode(s, orient="index"), numpy=True)).sort_values() self.assertTrue((s == outp).values.all()) def testSeriesNested(self): s = Series([10, 20, 30, 40, 50, 60], name="series", index=[6,7,8,9,10,15]).sort_values() nested = {'s1': s, 's2': s.copy()} exp = {'s1': ujson.decode(ujson.encode(s)), 's2': ujson.decode(ujson.encode(s))} self.assertTrue(ujson.decode(ujson.encode(nested)) == exp) exp = {'s1': ujson.decode(ujson.encode(s, orient="split")), 's2': ujson.decode(ujson.encode(s, orient="split"))} self.assertTrue(ujson.decode(ujson.encode(nested, orient="split")) == exp) exp = {'s1': ujson.decode(ujson.encode(s, orient="records")), 's2': ujson.decode(ujson.encode(s, orient="records"))} self.assertTrue(ujson.decode(ujson.encode(nested, orient="records")) == exp) exp = {'s1': ujson.decode(ujson.encode(s, orient="values")), 's2': ujson.decode(ujson.encode(s, orient="values"))} self.assertTrue(ujson.decode(ujson.encode(nested, orient="values")) == exp) exp = {'s1': ujson.decode(ujson.encode(s, orient="index")), 's2': ujson.decode(ujson.encode(s, orient="index"))} self.assertTrue(ujson.decode(ujson.encode(nested, orient="index")) == exp) def testIndex(self): i = Index([23, 45, 18, 98, 43, 11], name="index") # column indexed outp = Index(ujson.decode(ujson.encode(i))) self.assertTrue(i.equals(outp)) outp = Index(ujson.decode(ujson.encode(i), numpy=True)) self.assertTrue(i.equals(outp)) dec = _clean_dict(ujson.decode(ujson.encode(i, orient="split"))) outp = Index(**dec) self.assertTrue(i.equals(outp)) self.assertTrue(i.name == outp.name) dec = _clean_dict(ujson.decode(ujson.encode(i, orient="split"), numpy=True)) outp = Index(**dec) self.assertTrue(i.equals(outp)) self.assertTrue(i.name == outp.name) outp = Index(ujson.decode(ujson.encode(i, orient="values"))) self.assertTrue(i.equals(outp)) outp = Index(ujson.decode(ujson.encode(i, orient="values"), numpy=True)) self.assertTrue(i.equals(outp)) outp = Index(ujson.decode(ujson.encode(i, orient="records"))) self.assertTrue(i.equals(outp)) outp = Index(ujson.decode(ujson.encode(i, orient="records"), numpy=True)) self.assertTrue(i.equals(outp)) outp = Index(ujson.decode(ujson.encode(i, orient="index"))) self.assertTrue(i.equals(outp)) outp = Index(ujson.decode(ujson.encode(i, orient="index"), numpy=True)) self.assertTrue(i.equals(outp)) def test_datetimeindex(self): from pandas.tseries.index import date_range rng = date_range('1/1/2000', periods=20) encoded = ujson.encode(rng, date_unit='ns') decoded = DatetimeIndex(np.array(ujson.decode(encoded))) self.assertTrue(rng.equals(decoded)) ts = Series(np.random.randn(len(rng)), index=rng) decoded = Series(ujson.decode(ujson.encode(ts, date_unit='ns'))) idx_values = decoded.index.values.astype(np.int64) decoded.index = DatetimeIndex(idx_values) tm.assert_series_equal(ts, decoded) def test_decodeArrayTrailingCommaFail(self): input = "[31337,]" try: ujson.decode(input) except ValueError: pass else: assert False, "expected ValueError" def test_decodeArrayLeadingCommaFail(self): input = "[,31337]" try: ujson.decode(input) except ValueError: pass else: assert False, "expected ValueError" def test_decodeArrayOnlyCommaFail(self): input = "[,]" try: ujson.decode(input) except ValueError: pass else: assert False, "expected ValueError" def test_decodeArrayUnmatchedBracketFail(self): input = "[]]" try: ujson.decode(input) except ValueError: pass else: assert False, "expected ValueError" def test_decodeArrayEmpty(self): input = "[]" ujson.decode(input) def test_decodeArrayOneItem(self): input = "[31337]" ujson.decode(input) def test_decodeBigValue(self): input = "9223372036854775807" ujson.decode(input) def test_decodeSmallValue(self): input = "-9223372036854775808" ujson.decode(input) def test_decodeTooBigValue(self): try: input = "9223372036854775808" ujson.decode(input) except ValueError as e: pass else: assert False, "expected ValueError" def test_decodeTooSmallValue(self): try: input = "-90223372036854775809" ujson.decode(input) except ValueError as e: pass else: assert False, "expected ValueError" def test_decodeVeryTooBigValue(self): try: input = "9223372036854775808" ujson.decode(input) except ValueError: pass else: assert False, "expected ValueError" def test_decodeVeryTooSmallValue(self): try: input = "-90223372036854775809" ujson.decode(input) except ValueError: pass else: assert False, "expected ValueError" def test_decodeWithTrailingWhitespaces(self): input = "{}\n\t " ujson.decode(input) def test_decodeWithTrailingNonWhitespaces(self): try: input = "{}\n\t a" ujson.decode(input) except ValueError: pass else: assert False, "expected ValueError" def test_decodeArrayWithBigInt(self): try: ujson.loads('[18446098363113800555]') except ValueError: pass else: assert False, "expected ValueError" def test_decodeArrayFaultyUnicode(self): try: ujson.loads('[18446098363113800555]') except ValueError: pass else: assert False, "expected ValueError" def test_decodeFloatingPointAdditionalTests(self): places = 15 self.assertAlmostEqual(-1.1234567893, ujson.loads("-1.1234567893"), places=places) self.assertAlmostEqual(-1.234567893, ujson.loads("-1.234567893"), places=places) self.assertAlmostEqual(-1.34567893, ujson.loads("-1.34567893"), places=places) self.assertAlmostEqual(-1.4567893, ujson.loads("-1.4567893"), places=places) self.assertAlmostEqual(-1.567893, ujson.loads("-1.567893"), places=places) self.assertAlmostEqual(-1.67893, ujson.loads("-1.67893"), places=places) self.assertAlmostEqual(-1.7893, ujson.loads("-1.7893"), places=places) self.assertAlmostEqual(-1.893, ujson.loads("-1.893"), places=places) self.assertAlmostEqual(-1.3, ujson.loads("-1.3"), places=places) self.assertAlmostEqual(1.1234567893, ujson.loads("1.1234567893"), places=places) self.assertAlmostEqual(1.234567893, ujson.loads("1.234567893"), places=places) self.assertAlmostEqual(1.34567893, ujson.loads("1.34567893"), places=places) self.assertAlmostEqual(1.4567893, ujson.loads("1.4567893"), places=places) self.assertAlmostEqual(1.567893, ujson.loads("1.567893"), places=places) self.assertAlmostEqual(1.67893, ujson.loads("1.67893"), places=places) self.assertAlmostEqual(1.7893, ujson.loads("1.7893"), places=places) self.assertAlmostEqual(1.893, ujson.loads("1.893"), places=places) self.assertAlmostEqual(1.3, ujson.loads("1.3"), places=places) def test_encodeBigSet(self): s = set() for x in range(0, 100000): s.add(x) ujson.encode(s) def test_encodeEmptySet(self): s = set() self.assertEqual("[]", ujson.encode(s)) def test_encodeSet(self): s = set([1,2,3,4,5,6,7,8,9]) enc = ujson.encode(s) dec = ujson.decode(enc) for v in dec: self.assertTrue(v in s) def _clean_dict(d): return dict((str(k), v) for k, v in compat.iteritems(d)) if __name__ == '__main__': nose.runmodule(argv=[__file__,'-vvs','-x','--pdb', '--pdb-failure'], exit=False)
gpl-2.0
kobejean/tensorflow
tensorflow/examples/tutorials/input_fn/boston.py
76
2920
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DNNRegressor with custom input_fn for Housing dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import pandas as pd import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio", "medv"] FEATURES = ["crim", "zn", "indus", "nox", "rm", "age", "dis", "tax", "ptratio"] LABEL = "medv" def get_input_fn(data_set, num_epochs=None, shuffle=True): return tf.estimator.inputs.pandas_input_fn( x=pd.DataFrame({k: data_set[k].values for k in FEATURES}), y=pd.Series(data_set[LABEL].values), num_epochs=num_epochs, shuffle=shuffle) def main(unused_argv): # Load datasets training_set = pd.read_csv("boston_train.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) test_set = pd.read_csv("boston_test.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Set of 6 examples for which to predict median house values prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) # Feature cols feature_cols = [tf.feature_column.numeric_column(k) for k in FEATURES] # Build 2 layer fully connected DNN with 10, 10 units respectively. regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols, hidden_units=[10, 10], model_dir="/tmp/boston_model") # Train regressor.train(input_fn=get_input_fn(training_set), steps=5000) # Evaluate loss over one epoch of test_set. ev = regressor.evaluate( input_fn=get_input_fn(test_set, num_epochs=1, shuffle=False)) loss_score = ev["loss"] print("Loss: {0:f}".format(loss_score)) # Print out predictions over a slice of prediction_set. y = regressor.predict( input_fn=get_input_fn(prediction_set, num_epochs=1, shuffle=False)) # .predict() returns an iterator of dicts; convert to a list and print # predictions predictions = list(p["predictions"] for p in itertools.islice(y, 6)) print("Predictions: {}".format(str(predictions))) if __name__ == "__main__": tf.app.run()
apache-2.0
rodluger/everest
everest/standalone.py
1
22154
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' :py:mod:`standalone.py` - Standalone de-trending ------------------------------------------------ Provides the :py:func:`DetrendFITS` function for manual de-trending of user-provided `K2` FITS files. ''' from __future__ import division, print_function, absolute_import import os import shutil import numpy as np import everest from everest.mathutils import Interpolate, SavGol from everest.utils import AP_COLLAPSED_PIXEL, AP_SATURATED_PIXEL, DataContainer from everest.config import EVEREST_DAT from everest.missions.k2.utils import GetHiResImage, GetSources, \ SaturationFlux, RemoveBackground from tempfile import NamedTemporaryFile import matplotlib from matplotlib.widgets import Slider from matplotlib.ticker import FuncFormatter import matplotlib.pyplot as pl from scipy.ndimage import zoom try: import pyfits except ImportError: try: import astropy.io.fits as pyfits except ImportError: raise Exception('Please install the `pyfits` package.') import logging matplotlib.rcParams['xtick.direction'] = 'in' matplotlib.rcParams['ytick.direction'] = 'in' log = logging.getLogger(__name__) def DetrendFITS(fitsfile, raw=False, season=None, clobber=False, **kwargs): """ De-trend a K2 FITS file using :py:class:`everest.detrender.rPLD`. :param str fitsfile: The full path to the FITS file :param ndarray aperture: A 2D integer array corresponding to the \ desired photometric aperture (1 = in aperture, 0 = outside \ aperture). Default is to interactively select an aperture. :param kwargs: Any kwargs accepted by :py:class:`everest.detrender.rPLD`. :returns: An :py:class:`everest.Everest` instance. """ # Get info EPIC = pyfits.getheader(fitsfile, 0)['KEPLERID'] if season is None: season = pyfits.getheader(fitsfile, 0)['CAMPAIGN'] if season is None or season == "": season = 0 everestfile = os.path.join( everest.missions.k2.TargetDirectory(EPIC, season), everest.missions.k2.FITSFile(EPIC, season)) # De-trend? if clobber or not os.path.exists(everestfile): # Get raw data data = GetData(fitsfile, EPIC, season, clobber=clobber, **kwargs) # De-trend model = everest.rPLD(EPIC, data=data, season=season, debug=True, clobber=clobber, **kwargs) # Publish it everest.fits.MakeFITS(model) shutil.copyfile(os.path.join(model.dir, model.name + '.pdf'), os.path.join(model.dir, model._mission.DVSFile(model.ID, model.season, model.cadence))) # Return an Everest instance return everest.Everest(EPIC, season=season) class ApertureSelector(object): ''' ''' def __init__(self, time, images, title='Aperture'): ''' ''' self.cadence = 0 self.time = time self.fig, self.ax = pl.subplots(1, figsize=(10, 7)) self.fig.subplots_adjust(left=0.1, bottom=0.25, top=0.925, right=0.45) self.images = images self.nt, self.ny, self.nx = self.images.shape self.x = np.arange(0, self.nx) self.y = np.arange(0, self.ny) self.aperture = np.zeros((self.ny, self.nx), dtype=int) self.aperture[self.ny // 2 - 2:self.ny // 2 + 2][:, self.nx // 2 - 2:self.nx // 2 + 2] = 1 self.contour = None self.last_j = None self.last_i = None self.title = title # Slider self.axslider = pl.axes([0.105, 0.2, 0.34, 0.03]) self.slider = Slider(self.axslider, '', 0, self.nt - 1, valinit=0, valfmt='%d') self.slider.valtext.set_x(0.5) self.slider.valtext.set_ha('center') self.slider.on_changed(self.replot) # Background self.axbkg = pl.axes([0.105, 0.05, 0.34, 0.125]) bkg = self.colbkg self.bkgplot1, = self.axbkg.plot(self.x, bkg, 'ro') self.bkgplot2, = self.axbkg.plot(self.x, bkg, 'r-', alpha=0.3) pad = 0.2 * (bkg.max() - bkg.min()) self.axbkg.set_ylim(bkg.min() - pad, bkg.max() + pad) self.axbkg.set_xlim(-0.7, self.nx - 0.3) for tick in self.axbkg.get_yticklabels(): tick.set_fontsize(7) self.axbkg.get_yaxis().set_major_formatter( FuncFormatter(lambda x, p: '%.2f' % x)) self.axbkg.set_ylabel('Bkg (%)', fontsize=9) # Light curve self.axlc = pl.axes([0.5, 0.5, 0.4, 0.425]) self.lcplot, = self.axlc.plot( self.time, self.flux, 'k.', alpha=0.3, ms=3) self.axlc.set_xticklabels([]) self.axlc.yaxis.tick_right() self.axlc.set_ylabel('Light curve', fontsize=14) self.lcstdtxt = self.axlc.annotate('%.2f ppm' % self.lcstd, xy=(0.025, 0.975), xycoords='axes fraction', ha='left', va='top', fontsize=12, color='r') # Light curve background self.axlcbkg = pl.axes([0.5, 0.05, 0.4, 0.425]) self.lcbkgplot, = self.axlcbkg.plot( self.time, self.lcbkg, 'k.', alpha=0.3, ms=3) self.axlcbkg.yaxis.tick_right() self.axlcbkg.set_ylabel('Background', fontsize=14) self.bkgstdtxt = self.axlcbkg.annotate('%.2f ppm' % self.bkgstd, xy=(0.025, 0.975), xycoords='axes fraction', ha='left', va='top', fontsize=12, color='r') # Trackers self.tracker1 = self.axlc.axvline( self.time[self.cadence], color='r', alpha=0.5, lw=1) self.tracker2 = self.axlcbkg.axvline( self.time[self.cadence], color='r', alpha=0.5, lw=1) # Appearance self.fig.canvas.set_window_title('Select an aperture') self.ax.axis('off') self.ax.set_xlim(-0.7, self.nx - 0.3) self.ax.set_ylim(-0.7, self.ny - 0.3) self.ax.set_title(title, fontsize=18) # Plot the image try: plasma = pl.get_cmap('plasma') except ValueError: plasma = pl.get_cmap('Greys') plasma.set_bad(alpha=0) self.implot = self.ax.imshow(self.images[self.cadence], aspect='auto', interpolation='nearest', cmap=plasma, picker=True) self.fig.canvas.mpl_connect('motion_notify_event', self.mouse_drag) self.fig.canvas.mpl_connect('pick_event', self.mouse_click) # Update the contour self.update() # Enter interactive mode pl.show() @property def colbkg(self): ''' ''' # Flux in background pixels bkg = np.zeros(self.nx) for col in range(self.nx): b = np.where(self.aperture[:, col] == 0) bkg[col] = np.nanmedian(self.images[self.cadence][b, col]) return 100 * (bkg / np.mean(bkg) - 1.) @property def lcbkg(self): ''' ''' binds = np.where(self.aperture ^ 1) bkg = np.nanmedian( np.array([f[binds] for f in self.images], dtype='float64'), axis=1) return bkg.reshape(-1, 1) @property def flux(self): ''' ''' ap = np.where(self.aperture & 1) fpix2D = np.array([f[ap] for f in self.images], dtype='float64') return np.sum(fpix2D - self.lcbkg, axis=1) @property def lcstd(self): ''' ''' return everest.k2.CDPP(self.flux) @property def bkgstd(self): ''' ''' return everest.k2.CDPP(self.lcbkg) def update_bkg(self): ''' ''' bkg = self.colbkg self.bkgplot1.set_ydata(bkg) self.bkgplot2.set_ydata(bkg) pad = 0.2 * (bkg.max() - bkg.min()) self.axbkg.set_ylim(bkg.min() - pad, bkg.max() + pad) self.axbkg.set_xlim(-0.7, self.nx - 0.3) def update_lc(self): ''' ''' flux = self.flux self.lcplot.set_ydata(flux) pad = 0.2 * (flux.max() - flux.min()) self.axlc.set_ylim(flux.min() - pad, flux.max() + pad) self.axlc.set_xlim(self.time[0], self.time[-1]) self.lcstdtxt.set_text('%.2f ppm' % self.lcstd) def update_lcbkg(self): ''' ''' lcbkg = self.lcbkg self.lcbkgplot.set_ydata(lcbkg) pad = 0.2 * (lcbkg.max() - lcbkg.min()) self.axlcbkg.set_ylim(lcbkg.min() - pad, lcbkg.max() + pad) self.axlcbkg.set_xlim(self.time[0], self.time[-1]) self.bkgstdtxt.set_text('%.2f ppm' % self.bkgstd) def PadWithZeros(self, vector, pad_width, iaxis, kwargs): ''' ''' vector[:pad_width[0]] = 0 vector[-pad_width[1]:] = 0 return vector def mouse_drag(self, event): ''' ''' if event.inaxes == self.ax and event.button == 1: # Index of nearest point i = np.nanargmin(((event.xdata - self.x) / self.nx) ** 2) j = np.nanargmin(((event.ydata - self.y) / self.ny) ** 2) if (i == self.last_i) and (j == self.last_j): return else: self.last_i = i self.last_j = j # Toggle pixel if self.aperture[j, i]: self.aperture[j, i] = 0 else: self.aperture[j, i] = 1 # Update the contour self.update() def mouse_click(self, event): ''' ''' if event.mouseevent.inaxes == self.ax: # Index of nearest point i = np.nanargmin( ((event.mouseevent.xdata - self.x) / self.nx) ** 2) j = np.nanargmin( ((event.mouseevent.ydata - self.y) / self.ny) ** 2) self.last_i = i self.last_j = j # Toggle pixel if self.aperture[j, i]: self.aperture[j, i] = 0 else: self.aperture[j, i] = 1 # Update the contour self.update() def update(self): ''' ''' # Update plot contour = np.zeros((self.ny, self.nx)) contour[np.where(self.aperture)] = 1 contour = np.lib.pad(contour, 1, self.PadWithZeros) highres = zoom(contour, 100, order=0, mode='nearest') extent = np.array([-1, self.nx, -1, self.ny]) if self.contour is not None: for coll in self.contour.collections: self.ax.collections.remove(coll) self.contour = self.ax.contour(highres, levels=[0.5], extent=extent, origin='lower', colors='r', linewidths=2) self.update_bkg() self.update_lc() self.update_lcbkg() self.fig.canvas.draw() def replot(self, val): ''' ''' # Update plot self.cadence = int(val) self.implot.set_data(self.images[int(val)]) self.implot.set_clim(vmin=np.nanmin( self.images[int(val)]), vmax=np.nanmax(self.images[int(val)])) self.tracker1.set_xdata( [self.time[self.cadence], self.time[self.cadence]]) self.tracker2.set_xdata( [self.time[self.cadence], self.time[self.cadence]]) self.update_bkg() self.update_lc() self.update_lcbkg() self.fig.canvas.draw() def GetData(fitsfile, EPIC, campaign, clobber=False, saturation_tolerance=-0.1, bad_bits=[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17], get_hires=False, get_nearby=False, aperture=None, **kwargs): ''' Returns a :py:obj:`DataContainer` instance with the raw data for the target. :param str fitsfile: The full raw target pixel file path :param bool clobber: Overwrite existing files? Default :py:obj:`False` :param float saturation_tolerance: Target is considered saturated \ if flux is within this fraction of the pixel well depth. \ Default -0.1 :param array_like bad_bits: Flagged :py:obj`QUALITY` bits to consider \ outliers when computing the model. \ Default `[1,2,3,4,5,6,7,8,9,11,12,13,14,16,17]` :param bool get_hires: Download a high resolution image of the target? \ Default :py:obj:`True` :param bool get_nearby: Retrieve location of nearby sources? \ Default :py:obj:`True` ''' # Get the npz file name filename = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % campaign, ('%09d' % EPIC)[:4] + '00000', ('%09d' % EPIC)[4:], 'data.npz') # Create the dir if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) # Check for saved data if not os.path.exists(filename) or clobber: log.info("Fetching data for target...") # Load the tpf with pyfits.open(fitsfile) as f: qdata = f[1].data # Get the header info fitsheader = [pyfits.getheader(fitsfile, 0).cards, pyfits.getheader(fitsfile, 1).cards, pyfits.getheader(fitsfile, 2).cards] # Get a hi res image of the target if get_hires: try: hires = GetHiResImage(EPIC) except ValueError: hires = None else: hires = None # Get nearby sources if get_nearby: try: nearby = GetSources(EPIC) except ValueError: nearby = [] else: nearby = [] # Get the arrays cadn = np.array(qdata.field('CADENCENO'), dtype='int32') time = np.array(qdata.field('TIME'), dtype='float64') fpix = np.array(qdata.field('FLUX'), dtype='float64') fpix_err = np.array(qdata.field('FLUX_ERR'), dtype='float64') qual = np.array(qdata.field('QUALITY'), dtype=int) # Get rid of NaNs in the time array by interpolating naninds = np.where(np.isnan(time)) time = Interpolate(np.arange(0, len(time)), naninds, time) # Get the motion vectors (if available!) pc1 = np.array(qdata.field('POS_CORR1'), dtype='float64') pc2 = np.array(qdata.field('POS_CORR2'), dtype='float64') if not np.all(np.isnan(pc1)) and not np.all(np.isnan(pc2)): pc1 = Interpolate(time, np.where(np.isnan(pc1)), pc1) pc2 = Interpolate(time, np.where(np.isnan(pc2)), pc2) else: pc1 = None pc2 = None # Get the static pixel images for plotting pixel_images = [fpix[0], fpix[len(fpix) // 2], fpix[len(fpix) - 1]] # Get the aperture interactively if aperture is None: aperture = ApertureSelector(time[::10], fpix[::10], title='EPIC %d' % EPIC).aperture if np.sum(aperture) == 0: raise ValueError("Empty aperture!") # Atomically write to disk. # http://stackoverflow.com/questions/2333872/ # atomic-writing-to-file-with-python if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) f = NamedTemporaryFile("wb", delete=False) np.savez_compressed(f, cadn=cadn, time=time, fpix=fpix, fpix_err=fpix_err, qual=qual, aperture=aperture, pc1=pc1, pc2=pc2, fitsheader=fitsheader, pixel_images=pixel_images, nearby=nearby, hires=hires) f.flush() os.fsync(f.fileno()) f.close() shutil.move(f.name, filename) # Load data = np.load(filename) aperture = data['aperture'][()] pixel_images = data['pixel_images'] nearby = data['nearby'][()] hires = data['hires'][()] fitsheader = data['fitsheader'] cadn = data['cadn'] time = data['time'] fpix = data['fpix'] fpix_err = data['fpix_err'] qual = data['qual'] pc1 = data['pc1'] pc2 = data['pc2'] # Compute the saturation flux and the 97.5th percentile # flux in each pixel of the aperture. We're going # to compare these to decide if the star is saturated. satflx = SaturationFlux(EPIC, campaign=campaign) * \ (1. + saturation_tolerance) f97 = np.zeros((fpix.shape[1], fpix.shape[2])) for i in range(fpix.shape[1]): for j in range(fpix.shape[2]): if aperture[i, j]: # Let's remove NaNs... tmp = np.delete(fpix[:, i, j], np.where( np.isnan(fpix[:, i, j]))) # ... and really bad outliers... if len(tmp): f = SavGol(tmp) med = np.nanmedian(f) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) bad = np.where((f > med + 10. * MAD) | (f < med - 10. * MAD))[0] np.delete(tmp, bad) # ... so we can compute the 97.5th percentile flux i97 = int(0.975 * len(tmp)) tmp = tmp[np.argsort(tmp)[i97]] f97[i, j] = tmp # Check if any of the pixels are actually saturated if np.nanmax(f97) <= satflx: log.info("No saturated columns detected.") saturated = False aperture[np.isnan(fpix[0])] = 0 ap = np.where(aperture & 1) fpix2D = np.array([f[ap] for f in fpix], dtype='float64') fpix_err2D = np.array([p[ap] for p in fpix_err], dtype='float64') else: # We need to collapse the saturated columns saturated = True ncol = 0 fpixnew = [] ferrnew = [] for j in range(aperture.shape[1]): if np.any(f97[:, j] > satflx): marked = False collapsed = np.zeros(len(fpix[:, 0, 0])) collapsed_err2 = np.zeros(len(fpix[:, 0, 0])) for i in range(aperture.shape[0]): if aperture[i, j]: if not marked: aperture[i, j] = AP_COLLAPSED_PIXEL marked = True else: aperture[i, j] = AP_SATURATED_PIXEL collapsed += fpix[:, i, j] collapsed_err2 += fpix_err[:, i, j] ** 2 if np.any(collapsed): fpixnew.append(collapsed) ferrnew.append(np.sqrt(collapsed_err2)) ncol += 1 else: for i in range(aperture.shape[0]): if aperture[i, j]: fpixnew.append(fpix[:, i, j]) ferrnew.append(fpix_err[:, i, j]) fpix2D = np.array(fpixnew).T fpix_err2D = np.array(ferrnew).T log.info("Collapsed %d saturated column(s)." % ncol) # Compute the background binds = np.where(aperture ^ 1) if RemoveBackground(EPIC, campaign=campaign) and (len(binds[0]) > 0): bkg = np.nanmedian(np.array([f[binds] for f in fpix], dtype='float64'), axis=1) # Uncertainty of the median: # http://davidmlane.com/hyperstat/A106993.html bkg_err = 1.253 * np.nanmedian(np.array([e[binds] for e in fpix_err], dtype='float64'), axis=1) \ / np.sqrt(len(binds[0])) bkg = bkg.reshape(-1, 1) bkg_err = bkg_err.reshape(-1, 1) else: bkg = 0. bkg_err = 0. # Make everything 2D and remove the background fpix = fpix2D - bkg fpix_err = np.sqrt(fpix_err2D ** 2 + bkg_err ** 2) flux = np.sum(fpix, axis=1) # Get NaN data points nanmask = np.where(np.isnan(flux) | (flux == 0))[0] # Get flagged data points -- we won't train our model on them badmask = [] for b in bad_bits: badmask += list(np.where(qual & 2 ** (b - 1))[0]) # Flag >10 sigma outliers -- same thing. tmpmask = np.array(list(set(np.concatenate([badmask, nanmask])))) t = np.delete(time, tmpmask) f = np.delete(flux, tmpmask) f = SavGol(f) med = np.nanmedian(f) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) bad = np.where((f > med + 10. * MAD) | (f < med - 10. * MAD))[0] badmask.extend([np.argmax(time == t[i]) for i in bad]) # Campaign 2 hack: the first day or two are screwed up if campaign == 2: badmask.extend(np.where(time < 2061.5)[0]) # Finalize the mask badmask = np.array(sorted(list(set(badmask)))) # Interpolate the nans fpix = Interpolate(time, nanmask, fpix) fpix_err = Interpolate(time, nanmask, fpix_err) # Return data = DataContainer() data.ID = EPIC data.campaign = campaign data.cadn = cadn data.time = time data.fpix = fpix data.fpix_err = fpix_err data.nanmask = nanmask data.badmask = badmask data.aperture = aperture data.aperture_name = 'custom' data.apertures = dict(custom=aperture) data.quality = qual data.Xpos = pc1 data.Ypos = pc2 data.meta = fitsheader data.mag = fitsheader[0]['KEPMAG'][1] if type(data.mag) is pyfits.card.Undefined: data.mag = np.nan data.pixel_images = pixel_images data.nearby = nearby data.hires = hires data.saturated = saturated data.bkg = bkg return data
mit
ArvinPan/opencog
opencog/python/spatiotemporal/temporal_events/animation.py
34
4896
from matplotlib.lines import Line2D from matplotlib.ticker import AutoMinorLocator from numpy.core.multiarray import zeros from spatiotemporal.temporal_events.trapezium import TemporalEventTrapezium from spatiotemporal.time_intervals import TimeInterval from matplotlib import pyplot as plt from matplotlib import animation __author__ = 'keyvan' x_axis = xrange(13) zeros_13 = zeros(13) class Animation(object): def __init__(self, event_a, event_b, event_c, plt=plt): self.event_a = event_a self.event_c = event_c self.event_b_length_beginning = event_b.beginning - event_b.a self.event_b_length_middle = self.event_b_length_beginning + event_b.ending - event_b.beginning self.event_b_length_total = event_b.b - event_b.ending self.plt = plt self.fig = plt.figure(1) self.ax_a_b = self.fig.add_subplot(4, 1, 1) self.ax_b_c = self.fig.add_subplot(4, 1, 2) self.ax_a_c = self.fig.add_subplot(4, 1, 3) self.ax_relations = self.fig.add_subplot(4, 1, 4) self.ax_a_b.set_xlim(0, 13) self.ax_a_b.set_ylim(0, 1) self.ax_b_c.set_xlim(0, 13) self.ax_b_c.set_ylim(0, 1) self.ax_a_c.set_xlim(0, 13) self.ax_a_c.set_ylim(0, 1) self.rects_a_b = self.ax_a_b.bar(x_axis, zeros_13) self.rects_b_c = self.ax_b_c.bar(x_axis, zeros_13) self.rects_a_c = self.ax_a_c.bar(x_axis, zeros_13) self.line_a = Line2D([], []) self.line_b = Line2D([], []) self.line_c = Line2D([], []) self.ax_relations.add_line(self.line_a) self.ax_relations.add_line(self.line_b) self.ax_relations.add_line(self.line_c) a = min(event_a.a, event_c.a) - self.event_b_length_total b = max(event_a.b, event_c.b) self.ax_relations.set_xlim(a, b + self.event_b_length_total) self.ax_relations.set_ylim(0, 1.1) # self.interval = TimeInterval(a, b, 150) self.interval = TimeInterval(a, b, 2) self.ax_a_b.xaxis.set_minor_formatter(self.ax_a_b.xaxis.get_major_formatter()) self.ax_a_b.xaxis.set_minor_locator(AutoMinorLocator(2)) self.ax_a_b.xaxis.set_ticklabels('poDedOP') self.ax_a_b.xaxis.set_ticklabels('mFsSfM', minor=True) self.ax_b_c.xaxis.set_minor_formatter(self.ax_b_c.xaxis.get_major_formatter()) self.ax_b_c.xaxis.set_minor_locator(AutoMinorLocator(2)) self.ax_b_c.xaxis.set_ticklabels('poDedOP') self.ax_b_c.xaxis.set_ticklabels('mFsSfM', minor=True) self.ax_a_c.xaxis.set_minor_formatter(self.ax_a_c.xaxis.get_major_formatter()) self.ax_a_c.xaxis.set_minor_locator(AutoMinorLocator(2)) self.ax_a_c.xaxis.set_ticklabels('poDedOP') self.ax_a_c.xaxis.set_ticklabels('mFsSfM', minor=True) def init(self): artists = [] self.line_a.set_data(self.event_a, self.event_a.membership_function) self.line_b.set_data([], []) self.line_c.set_data(self.event_c, self.event_c.membership_function) artists.append(self.line_a) artists.append(self.line_b) artists.append(self.line_c) for rect, h in zip(self.rects_a_b, zeros_13): rect.set_height(h) artists.append(rect) for rect, h in zip(self.rects_b_c, zeros_13): rect.set_height(h) artists.append(rect) for rect, h in zip(self.rects_a_c, (self.event_a * self.event_c).to_list()): rect.set_height(h) artists.append(rect) return artists def animate(self, t): interval = self.interval B = TemporalEventTrapezium(interval[t], interval[t] + self.event_b_length_total, interval[t] + self.event_b_length_beginning, interval[t] + self.event_b_length_middle) plt.figure() B.plot().show() a_b = (self.event_a * B).to_list() b_c = (B * self.event_c).to_list() self.line_b.set_data(B, B.membership_function) artists = [] for rect, h in zip(self.rects_a_b, a_b): rect.set_height(h) artists.append(rect) for rect, h in zip(self.rects_b_c, b_c): rect.set_height(h) artists.append(rect) artists.append(self.line_a) artists.append(self.line_b) artists.append(self.line_c) return artists def show(self): fr = len(self.interval) - 1 anim = animation.FuncAnimation(self.fig, self.animate, init_func=self.init, frames=fr, interval=fr, blit=True) self.plt.show() if __name__ == '__main__': anim = Animation(TemporalEventTrapezium(4, 8, 5, 7), TemporalEventTrapezium(0, 10, 6, 9), TemporalEventTrapezium(0.5, 11, 1, 3)) # anim.show()
agpl-3.0
mcdaniel67/sympy
sympy/interactive/printing.py
19
16124
"""Tools for setting up printing in interactive sessions. """ from __future__ import print_function, division import sys from distutils.version import LooseVersion as V from io import BytesIO from sympy import latex as default_latex from sympy import preview from sympy.core.compatibility import integer_types from sympy.utilities.misc import debug def _init_python_printing(stringify_func): """Setup printing in Python interactive session. """ import sys from sympy.core.compatibility import builtins def _displayhook(arg): """Python's pretty-printer display hook. This function was adapted from: http://www.python.org/dev/peps/pep-0217/ """ if arg is not None: builtins._ = None print(stringify_func(arg)) builtins._ = arg sys.displayhook = _displayhook def _init_ipython_printing(ip, stringify_func, use_latex, euler, forecolor, backcolor, fontsize, latex_mode, print_builtin, latex_printer): """Setup printing in IPython interactive session. """ try: from IPython.lib.latextools import latex_to_png except ImportError: pass preamble = "\\documentclass[%s]{article}\n" \ "\\pagestyle{empty}\n" \ "\\usepackage{amsmath,amsfonts}%s\\begin{document}" if euler: addpackages = '\\usepackage{euler}' else: addpackages = '' preamble = preamble % (fontsize, addpackages) imagesize = 'tight' offset = "0cm,0cm" resolution = 150 dvi = r"-T %s -D %d -bg %s -fg %s -O %s" % ( imagesize, resolution, backcolor, forecolor, offset) dvioptions = dvi.split() debug("init_printing: DVIOPTIONS:", dvioptions) debug("init_printing: PREAMBLE:", preamble) latex = latex_printer or default_latex def _print_plain(arg, p, cycle): """caller for pretty, for use in IPython 0.11""" if _can_print_latex(arg): p.text(stringify_func(arg)) else: p.text(IPython.lib.pretty.pretty(arg)) def _preview_wrapper(o): exprbuffer = BytesIO() try: preview(o, output='png', viewer='BytesIO', outputbuffer=exprbuffer, preamble=preamble, dvioptions=dvioptions) except Exception as e: # IPython swallows exceptions debug("png printing:", "_preview_wrapper exception raised:", repr(e)) raise return exprbuffer.getvalue() def _matplotlib_wrapper(o): # mathtext does not understand certain latex flags, so we try to # replace them with suitable subs o = o.replace(r'\operatorname', '') o = o.replace(r'\overline', r'\bar') # mathtext can't render some LaTeX commands. For example, it can't # render any LaTeX environments such as array or matrix. So here we # ensure that if mathtext fails to render, we return None. try: return latex_to_png(o) except ValueError as e: debug('matplotlib exception caught:', repr(e)) return None def _can_print_latex(o): """Return True if type o can be printed with LaTeX. If o is a container type, this is True if and only if every element of o can be printed with LaTeX. """ from sympy import Basic from sympy.matrices import MatrixBase from sympy.physics.vector import Vector, Dyadic if isinstance(o, (list, tuple, set, frozenset)): return all(_can_print_latex(i) for i in o) elif isinstance(o, dict): return all(_can_print_latex(i) and _can_print_latex(o[i]) for i in o) elif isinstance(o, bool): return False # TODO : Investigate if "elif hasattr(o, '_latex')" is more useful # to use here, than these explicit imports. elif isinstance(o, (Basic, MatrixBase, Vector, Dyadic)): return True elif isinstance(o, (float, integer_types)) and print_builtin: return True return False def _print_latex_png(o): """ A function that returns a png rendered by an external latex distribution, falling back to matplotlib rendering """ if _can_print_latex(o): s = latex(o, mode=latex_mode) try: return _preview_wrapper(s) except RuntimeError as e: debug('preview failed with:', repr(e), ' Falling back to matplotlib backend') if latex_mode != 'inline': s = latex(o, mode='inline') return _matplotlib_wrapper(s) def _print_latex_matplotlib(o): """ A function that returns a png rendered by mathtext """ if _can_print_latex(o): s = latex(o, mode='inline') return _matplotlib_wrapper(s) def _print_latex_text(o): """ A function to generate the latex representation of sympy expressions. """ if _can_print_latex(o): s = latex(o, mode='plain') s = s.replace(r'\dag', r'\dagger') s = s.strip('$') return '$$%s$$' % s def _result_display(self, arg): """IPython's pretty-printer display hook, for use in IPython 0.10 This function was adapted from: ipython/IPython/hooks.py:155 """ if self.rc.pprint: out = stringify_func(arg) if '\n' in out: print print(out) else: print(repr(arg)) import IPython if V(IPython.__version__) >= '0.11': from sympy.core.basic import Basic from sympy.matrices.matrices import MatrixBase from sympy.physics.vector import Vector, Dyadic printable_types = [Basic, MatrixBase, float, tuple, list, set, frozenset, dict, Vector, Dyadic] + list(integer_types) plaintext_formatter = ip.display_formatter.formatters['text/plain'] for cls in printable_types: plaintext_formatter.for_type(cls, _print_plain) png_formatter = ip.display_formatter.formatters['image/png'] if use_latex in (True, 'png'): debug("init_printing: using png formatter") for cls in printable_types: png_formatter.for_type(cls, _print_latex_png) elif use_latex == 'matplotlib': debug("init_printing: using matplotlib formatter") for cls in printable_types: png_formatter.for_type(cls, _print_latex_matplotlib) else: debug("init_printing: not using any png formatter") for cls in printable_types: # Better way to set this, but currently does not work in IPython #png_formatter.for_type(cls, None) if cls in png_formatter.type_printers: png_formatter.type_printers.pop(cls) latex_formatter = ip.display_formatter.formatters['text/latex'] if use_latex in (True, 'mathjax'): debug("init_printing: using mathjax formatter") for cls in printable_types: latex_formatter.for_type(cls, _print_latex_text) else: debug("init_printing: not using text/latex formatter") for cls in printable_types: # Better way to set this, but currently does not work in IPython #latex_formatter.for_type(cls, None) if cls in latex_formatter.type_printers: latex_formatter.type_printers.pop(cls) else: ip.set_hook('result_display', _result_display) def _is_ipython(shell): """Is a shell instance an IPython shell?""" # shortcut, so we don't import IPython if we don't have to if 'IPython' not in sys.modules: return False try: from IPython.core.interactiveshell import InteractiveShell except ImportError: # IPython < 0.11 try: from IPython.iplib import InteractiveShell except ImportError: # Reaching this points means IPython has changed in a backward-incompatible way # that we don't know about. Warn? return False return isinstance(shell, InteractiveShell) def init_printing(pretty_print=True, order=None, use_unicode=None, use_latex=None, wrap_line=None, num_columns=None, no_global=False, ip=None, euler=False, forecolor='Black', backcolor='Transparent', fontsize='10pt', latex_mode='equation*', print_builtin=True, str_printer=None, pretty_printer=None, latex_printer=None): """ Initializes pretty-printer depending on the environment. Parameters ========== pretty_print: boolean If True, use pretty_print to stringify or the provided pretty printer; if False, use sstrrepr to stringify or the provided string printer. order: string or None There are a few different settings for this parameter: lex (default), which is lexographic order; grlex, which is graded lexographic order; grevlex, which is reversed graded lexographic order; old, which is used for compatibility reasons and for long expressions; None, which sets it to lex. use_unicode: boolean or None If True, use unicode characters; if False, do not use unicode characters. use_latex: string, boolean, or None If True, use default latex rendering in GUI interfaces (png and mathjax); if False, do not use latex rendering; if 'png', enable latex rendering with an external latex compiler, falling back to matplotlib if external compilation fails; if 'matplotlib', enable latex rendering with matplotlib; if 'mathjax', enable latex text generation, for example MathJax rendering in IPython notebook or text rendering in LaTeX documents wrap_line: boolean If True, lines will wrap at the end; if False, they will not wrap but continue as one line. This is only relevant if `pretty_print` is True. num_columns: int or None If int, number of columns before wrapping is set to num_columns; if None, number of columns before wrapping is set to terminal width. This is only relevant if `pretty_print` is True. no_global: boolean If True, the settings become system wide; if False, use just for this console/session. ip: An interactive console This can either be an instance of IPython, or a class that derives from code.InteractiveConsole. euler: boolean, optional, default=False Loads the euler package in the LaTeX preamble for handwritten style fonts (http://www.ctan.org/pkg/euler). forecolor: string, optional, default='Black' DVI setting for foreground color. backcolor: string, optional, default='Transparent' DVI setting for background color. fontsize: string, optional, default='10pt' A font size to pass to the LaTeX documentclass function in the preamble. latex_mode: string, optional, default='equation*' The mode used in the LaTeX printer. Can be one of: {'inline'|'plain'|'equation'|'equation*'}. print_builtin: boolean, optional, default=True If true then floats and integers will be printed. If false the printer will only print SymPy types. str_printer: function, optional, default=None A custom string printer function. This should mimic sympy.printing.sstrrepr(). pretty_printer: function, optional, default=None A custom pretty printer. This should mimic sympy.printing.pretty(). latex_printer: function, optional, default=None A custom LaTeX printer. This should mimic sympy.printing.latex() This should mimic sympy.printing.latex(). Examples ======== >>> from sympy.interactive import init_printing >>> from sympy import Symbol, sqrt >>> from sympy.abc import x, y >>> sqrt(5) sqrt(5) >>> init_printing(pretty_print=True) # doctest: +SKIP >>> sqrt(5) # doctest: +SKIP ___ \/ 5 >>> theta = Symbol('theta') # doctest: +SKIP >>> init_printing(use_unicode=True) # doctest: +SKIP >>> theta # doctest: +SKIP \u03b8 >>> init_printing(use_unicode=False) # doctest: +SKIP >>> theta # doctest: +SKIP theta >>> init_printing(order='lex') # doctest: +SKIP >>> str(y + x + y**2 + x**2) # doctest: +SKIP x**2 + x + y**2 + y >>> init_printing(order='grlex') # doctest: +SKIP >>> str(y + x + y**2 + x**2) # doctest: +SKIP x**2 + x + y**2 + y >>> init_printing(order='grevlex') # doctest: +SKIP >>> str(y * x**2 + x * y**2) # doctest: +SKIP x**2*y + x*y**2 >>> init_printing(order='old') # doctest: +SKIP >>> str(x**2 + y**2 + x + y) # doctest: +SKIP x**2 + x + y**2 + y >>> init_printing(num_columns=10) # doctest: +SKIP >>> x**2 + x + y**2 + y # doctest: +SKIP x + y + x**2 + y**2 """ import sys from sympy.printing.printer import Printer if pretty_print: if pretty_printer is not None: stringify_func = pretty_printer else: from sympy.printing import pretty as stringify_func else: if str_printer is not None: stringify_func = str_printer else: from sympy.printing import sstrrepr as stringify_func # Even if ip is not passed, double check that not in IPython shell in_ipython = False if ip is None: try: ip = get_ipython() except NameError: pass else: in_ipython = (ip is not None) if ip and not in_ipython: in_ipython = _is_ipython(ip) if in_ipython and pretty_print: try: import IPython # IPython 1.0 deprecates the frontend module, so we import directly # from the terminal module to prevent a deprecation message from being # shown. if V(IPython.__version__) >= '1.0': from IPython.terminal.interactiveshell import TerminalInteractiveShell else: from IPython.frontend.terminal.interactiveshell import TerminalInteractiveShell from code import InteractiveConsole except ImportError: pass else: # This will be True if we are in the qtconsole or notebook if not isinstance(ip, (InteractiveConsole, TerminalInteractiveShell)) \ and 'ipython-console' not in ''.join(sys.argv): if use_unicode is None: debug("init_printing: Setting use_unicode to True") use_unicode = True if use_latex is None: debug("init_printing: Setting use_latex to True") use_latex = True if not no_global: Printer.set_global_settings(order=order, use_unicode=use_unicode, wrap_line=wrap_line, num_columns=num_columns) else: _stringify_func = stringify_func if pretty_print: stringify_func = lambda expr: \ _stringify_func(expr, order=order, use_unicode=use_unicode, wrap_line=wrap_line, num_columns=num_columns) else: stringify_func = lambda expr: _stringify_func(expr, order=order) if in_ipython: _init_ipython_printing(ip, stringify_func, use_latex, euler, forecolor, backcolor, fontsize, latex_mode, print_builtin, latex_printer) else: _init_python_printing(stringify_func)
bsd-3-clause
xubenben/scikit-learn
examples/linear_model/plot_logistic_path.py
349
1195
#!/usr/bin/env python """ ================================= Path with L1- Logistic Regression ================================= Computes path on IRIS dataset. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause from datetime import datetime import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets from sklearn.svm import l1_min_c iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 2] y = y[y != 2] X -= np.mean(X, 0) ############################################################################### # Demo path functions cs = l1_min_c(X, y, loss='log') * np.logspace(0, 3) print("Computing regularization path ...") start = datetime.now() clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6) coefs_ = [] for c in cs: clf.set_params(C=c) clf.fit(X, y) coefs_.append(clf.coef_.ravel().copy()) print("This took ", datetime.now() - start) coefs_ = np.array(coefs_) plt.plot(np.log10(cs), coefs_) ymin, ymax = plt.ylim() plt.xlabel('log(C)') plt.ylabel('Coefficients') plt.title('Logistic Regression Path') plt.axis('tight') plt.show()
bsd-3-clause
OTWillems/GEO1005
SpatialDecision/external/networkx/drawing/nx_pylab.py
20
30247
""" ********** Matplotlib ********** Draw networks with matplotlib. See Also -------- matplotlib: http://matplotlib.org/ pygraphviz: http://pygraphviz.github.io/ """ # Copyright (C) 2004-2015 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import networkx as nx from networkx.drawing.layout import shell_layout,\ circular_layout,spectral_layout,spring_layout,random_layout __author__ = """Aric Hagberg ([email protected])""" __all__ = ['draw', 'draw_networkx', 'draw_networkx_nodes', 'draw_networkx_edges', 'draw_networkx_labels', 'draw_networkx_edge_labels', 'draw_circular', 'draw_random', 'draw_spectral', 'draw_spring', 'draw_shell', 'draw_graphviz'] def draw(G, pos=None, ax=None, hold=None, **kwds): """Draw the graph G with Matplotlib. Draw the graph as a simple representation with no node labels or edge labels and using the full Matplotlib figure area and no axis labels by default. See draw_networkx() for more full-featured drawing that allows title, axis labels etc. Parameters ---------- G : graph A networkx graph pos : dictionary, optional A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. ax : Matplotlib Axes object, optional Draw the graph in specified Matplotlib axes. hold : bool, optional Set the Matplotlib hold state. If True subsequent draw commands will be added to the current axes. **kwds : optional keywords See networkx.draw_networkx() for a description of optional keywords. Examples -------- >>> G=nx.dodecahedral_graph() >>> nx.draw(G) >>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout See Also -------- draw_networkx() draw_networkx_nodes() draw_networkx_edges() draw_networkx_labels() draw_networkx_edge_labels() Notes ----- This function has the same name as pylab.draw and pyplot.draw so beware when using >>> from networkx import * since you might overwrite the pylab.draw function. With pyplot use >>> import matplotlib.pyplot as plt >>> import networkx as nx >>> G=nx.dodecahedral_graph() >>> nx.draw(G) # networkx draw() >>> plt.draw() # pyplot draw() Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html """ try: import matplotlib.pyplot as plt except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if ax is None: cf = plt.gcf() else: cf = ax.get_figure() cf.set_facecolor('w') if ax is None: if cf._axstack() is None: ax = cf.add_axes((0, 0, 1, 1)) else: ax = cf.gca() if 'with_labels' not in kwds: kwds['with_labels'] = 'labels' in kwds b = plt.ishold() # allow callers to override the hold state by passing hold=True|False h = kwds.pop('hold', None) if h is not None: plt.hold(h) try: draw_networkx(G, pos=pos, ax=ax, **kwds) ax.set_axis_off() plt.draw_if_interactive() except: plt.hold(b) raise plt.hold(b) return def draw_networkx(G, pos=None, arrows=True, with_labels=True, **kwds): """Draw the graph G using Matplotlib. Draw the graph with Matplotlib with options for node positions, labeling, titles, and many other drawing features. See draw() for simple drawing without labels or axes. Parameters ---------- G : graph A networkx graph pos : dictionary, optional A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. arrows : bool, optional (default=True) For directed graphs, if True draw arrowheads. with_labels : bool, optional (default=True) Set to True to draw labels on the nodes. ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. nodelist : list, optional (default G.nodes()) Draw only specified nodes edgelist : list, optional (default=G.edges()) Draw only specified edges node_size : scalar or array, optional (default=300) Size of nodes. If an array is specified it must be the same length as nodelist. node_color : color string, or array of floats, (default='r') Node color. Can be a single color format string, or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more details. node_shape : string, optional (default='o') The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8'. alpha : float, optional (default=1.0) The node and edge transparency cmap : Matplotlib colormap, optional (default=None) Colormap for mapping intensities of nodes vmin,vmax : float, optional (default=None) Minimum and maximum for node colormap scaling linewidths : [None | scalar | sequence] Line width of symbol border (default =1.0) width : float, optional (default=1.0) Line width of edges edge_color : color string, or array of floats (default='r') Edge color. Can be a single color format string, or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters. edge_cmap : Matplotlib colormap, optional (default=None) Colormap for mapping intensities of edges edge_vmin,edge_vmax : floats, optional (default=None) Minimum and maximum for edge colormap scaling style : string, optional (default='solid') Edge line style (solid|dashed|dotted,dashdot) labels : dictionary, optional (default=None) Node labels in a dictionary keyed by node of text labels font_size : int, optional (default=12) Font size for text labels font_color : string, optional (default='k' black) Font color string font_weight : string, optional (default='normal') Font weight font_family : string, optional (default='sans-serif') Font family label : string, optional Label for graph legend Notes ----- For directed graphs, "arrows" (actually just thicker stubs) are drawn at the head end. Arrows can be turned off with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky. Examples -------- >>> G=nx.dodecahedral_graph() >>> nx.draw(G) >>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout >>> import matplotlib.pyplot as plt >>> limits=plt.axis('off') # turn of axis Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html See Also -------- draw() draw_networkx_nodes() draw_networkx_edges() draw_networkx_labels() draw_networkx_edge_labels() """ try: import matplotlib.pyplot as plt except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if pos is None: pos = nx.drawing.spring_layout(G) # default to spring layout node_collection = draw_networkx_nodes(G, pos, **kwds) edge_collection = draw_networkx_edges(G, pos, arrows=arrows, **kwds) if with_labels: draw_networkx_labels(G, pos, **kwds) plt.draw_if_interactive() def draw_networkx_nodes(G, pos, nodelist=None, node_size=300, node_color='r', node_shape='o', alpha=1.0, cmap=None, vmin=None, vmax=None, ax=None, linewidths=None, label=None, **kwds): """Draw the nodes of the graph G. This draws only the nodes of the graph G. Parameters ---------- G : graph A networkx graph pos : dictionary A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2. ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. nodelist : list, optional Draw only specified nodes (default G.nodes()) node_size : scalar or array Size of nodes (default=300). If an array is specified it must be the same length as nodelist. node_color : color string, or array of floats Node color. Can be a single color format string (default='r'), or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more details. node_shape : string The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8' (default='o'). alpha : float The node transparency (default=1.0) cmap : Matplotlib colormap Colormap for mapping intensities of nodes (default=None) vmin,vmax : floats Minimum and maximum for node colormap scaling (default=None) linewidths : [None | scalar | sequence] Line width of symbol border (default =1.0) label : [None| string] Label for legend Returns ------- matplotlib.collections.PathCollection `PathCollection` of the nodes. Examples -------- >>> G=nx.dodecahedral_graph() >>> nodes=nx.draw_networkx_nodes(G,pos=nx.spring_layout(G)) Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html See Also -------- draw() draw_networkx() draw_networkx_edges() draw_networkx_labels() draw_networkx_edge_labels() """ try: import matplotlib.pyplot as plt import numpy except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if ax is None: ax = plt.gca() if nodelist is None: nodelist = G.nodes() if not nodelist or len(nodelist) == 0: # empty nodelist, no drawing return None try: xy = numpy.asarray([pos[v] for v in nodelist]) except KeyError as e: raise nx.NetworkXError('Node %s has no position.'%e) except ValueError: raise nx.NetworkXError('Bad value in node positions.') node_collection = ax.scatter(xy[:, 0], xy[:, 1], s=node_size, c=node_color, marker=node_shape, cmap=cmap, vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths, label=label) node_collection.set_zorder(2) return node_collection def draw_networkx_edges(G, pos, edgelist=None, width=1.0, edge_color='k', style='solid', alpha=1.0, edge_cmap=None, edge_vmin=None, edge_vmax=None, ax=None, arrows=True, label=None, **kwds): """Draw the edges of the graph G. This draws only the edges of the graph G. Parameters ---------- G : graph A networkx graph pos : dictionary A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2. edgelist : collection of edge tuples Draw only specified edges(default=G.edges()) width : float, or array of floats Line width of edges (default=1.0) edge_color : color string, or array of floats Edge color. Can be a single color format string (default='r'), or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters. style : string Edge line style (default='solid') (solid|dashed|dotted,dashdot) alpha : float The edge transparency (default=1.0) edge_ cmap : Matplotlib colormap Colormap for mapping intensities of edges (default=None) edge_vmin,edge_vmax : floats Minimum and maximum for edge colormap scaling (default=None) ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. arrows : bool, optional (default=True) For directed graphs, if True draw arrowheads. label : [None| string] Label for legend Returns ------- matplotlib.collection.LineCollection `LineCollection` of the edges Notes ----- For directed graphs, "arrows" (actually just thicker stubs) are drawn at the head end. Arrows can be turned off with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky. Examples -------- >>> G=nx.dodecahedral_graph() >>> edges=nx.draw_networkx_edges(G,pos=nx.spring_layout(G)) Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html See Also -------- draw() draw_networkx() draw_networkx_nodes() draw_networkx_labels() draw_networkx_edge_labels() """ try: import matplotlib import matplotlib.pyplot as plt import matplotlib.cbook as cb from matplotlib.colors import colorConverter, Colormap from matplotlib.collections import LineCollection import numpy except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if ax is None: ax = plt.gca() if edgelist is None: edgelist = G.edges() if not edgelist or len(edgelist) == 0: # no edges! return None # set edge positions edge_pos = numpy.asarray([(pos[e[0]], pos[e[1]]) for e in edgelist]) if not cb.iterable(width): lw = (width,) else: lw = width if not cb.is_string_like(edge_color) \ and cb.iterable(edge_color) \ and len(edge_color) == len(edge_pos): if numpy.alltrue([cb.is_string_like(c) for c in edge_color]): # (should check ALL elements) # list of color letters such as ['k','r','k',...] edge_colors = tuple([colorConverter.to_rgba(c, alpha) for c in edge_color]) elif numpy.alltrue([not cb.is_string_like(c) for c in edge_color]): # If color specs are given as (rgb) or (rgba) tuples, we're OK if numpy.alltrue([cb.iterable(c) and len(c) in (3, 4) for c in edge_color]): edge_colors = tuple(edge_color) else: # numbers (which are going to be mapped with a colormap) edge_colors = None else: raise ValueError('edge_color must consist of either color names or numbers') else: if cb.is_string_like(edge_color) or len(edge_color) == 1: edge_colors = (colorConverter.to_rgba(edge_color, alpha), ) else: raise ValueError('edge_color must be a single color or list of exactly m colors where m is the number or edges') edge_collection = LineCollection(edge_pos, colors=edge_colors, linewidths=lw, antialiaseds=(1,), linestyle=style, transOffset = ax.transData, ) edge_collection.set_zorder(1) # edges go behind nodes edge_collection.set_label(label) ax.add_collection(edge_collection) # Note: there was a bug in mpl regarding the handling of alpha values for # each line in a LineCollection. It was fixed in matplotlib in r7184 and # r7189 (June 6 2009). We should then not set the alpha value globally, # since the user can instead provide per-edge alphas now. Only set it # globally if provided as a scalar. if cb.is_numlike(alpha): edge_collection.set_alpha(alpha) if edge_colors is None: if edge_cmap is not None: assert(isinstance(edge_cmap, Colormap)) edge_collection.set_array(numpy.asarray(edge_color)) edge_collection.set_cmap(edge_cmap) if edge_vmin is not None or edge_vmax is not None: edge_collection.set_clim(edge_vmin, edge_vmax) else: edge_collection.autoscale() arrow_collection = None if G.is_directed() and arrows: # a directed graph hack # draw thick line segments at head end of edge # waiting for someone else to implement arrows that will work arrow_colors = edge_colors a_pos = [] p = 1.0-0.25 # make head segment 25 percent of edge length for src, dst in edge_pos: x1, y1 = src x2, y2 = dst dx = x2-x1 # x offset dy = y2-y1 # y offset d = numpy.sqrt(float(dx**2 + dy**2)) # length of edge if d == 0: # source and target at same position continue if dx == 0: # vertical edge xa = x2 ya = dy*p+y1 if dy == 0: # horizontal edge ya = y2 xa = dx*p+x1 else: theta = numpy.arctan2(dy, dx) xa = p*d*numpy.cos(theta)+x1 ya = p*d*numpy.sin(theta)+y1 a_pos.append(((xa, ya), (x2, y2))) arrow_collection = LineCollection(a_pos, colors=arrow_colors, linewidths=[4*ww for ww in lw], antialiaseds=(1,), transOffset = ax.transData, ) arrow_collection.set_zorder(1) # edges go behind nodes arrow_collection.set_label(label) ax.add_collection(arrow_collection) # update view minx = numpy.amin(numpy.ravel(edge_pos[:, :, 0])) maxx = numpy.amax(numpy.ravel(edge_pos[:, :, 0])) miny = numpy.amin(numpy.ravel(edge_pos[:, :, 1])) maxy = numpy.amax(numpy.ravel(edge_pos[:, :, 1])) w = maxx-minx h = maxy-miny padx, pady = 0.05*w, 0.05*h corners = (minx-padx, miny-pady), (maxx+padx, maxy+pady) ax.update_datalim(corners) ax.autoscale_view() # if arrow_collection: return edge_collection def draw_networkx_labels(G, pos, labels=None, font_size=12, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, bbox=None, ax=None, **kwds): """Draw node labels on the graph G. Parameters ---------- G : graph A networkx graph pos : dictionary A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2. labels : dictionary, optional (default=None) Node labels in a dictionary keyed by node of text labels font_size : int Font size for text labels (default=12) font_color : string Font color string (default='k' black) font_family : string Font family (default='sans-serif') font_weight : string Font weight (default='normal') alpha : float The text transparency (default=1.0) ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. Returns ------- dict `dict` of labels keyed on the nodes Examples -------- >>> G=nx.dodecahedral_graph() >>> labels=nx.draw_networkx_labels(G,pos=nx.spring_layout(G)) Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html See Also -------- draw() draw_networkx() draw_networkx_nodes() draw_networkx_edges() draw_networkx_edge_labels() """ try: import matplotlib.pyplot as plt import matplotlib.cbook as cb except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if ax is None: ax = plt.gca() if labels is None: labels = dict((n, n) for n in G.nodes()) # set optional alignment horizontalalignment = kwds.get('horizontalalignment', 'center') verticalalignment = kwds.get('verticalalignment', 'center') text_items = {} # there is no text collection so we'll fake one for n, label in labels.items(): (x, y) = pos[n] if not cb.is_string_like(label): label = str(label) # this will cause "1" and 1 to be labeled the same t = ax.text(x, y, label, size=font_size, color=font_color, family=font_family, weight=font_weight, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, transform=ax.transData, bbox=bbox, clip_on=True, ) text_items[n] = t return text_items def draw_networkx_edge_labels(G, pos, edge_labels=None, label_pos=0.5, font_size=10, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, bbox=None, ax=None, rotate=True, **kwds): """Draw edge labels. Parameters ---------- G : graph A networkx graph pos : dictionary A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2. ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. alpha : float The text transparency (default=1.0) edge_labels : dictionary Edge labels in a dictionary keyed by edge two-tuple of text labels (default=None). Only labels for the keys in the dictionary are drawn. label_pos : float Position of edge label along edge (0=head, 0.5=center, 1=tail) font_size : int Font size for text labels (default=12) font_color : string Font color string (default='k' black) font_weight : string Font weight (default='normal') font_family : string Font family (default='sans-serif') bbox : Matplotlib bbox Specify text box shape and colors. clip_on : bool Turn on clipping at axis boundaries (default=True) Returns ------- dict `dict` of labels keyed on the edges Examples -------- >>> G=nx.dodecahedral_graph() >>> edge_labels=nx.draw_networkx_edge_labels(G,pos=nx.spring_layout(G)) Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html See Also -------- draw() draw_networkx() draw_networkx_nodes() draw_networkx_edges() draw_networkx_labels() """ try: import matplotlib.pyplot as plt import matplotlib.cbook as cb import numpy except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if ax is None: ax = plt.gca() if edge_labels is None: labels = dict(((u, v), d) for u, v, d in G.edges(data=True)) else: labels = edge_labels text_items = {} for (n1, n2), label in labels.items(): (x1, y1) = pos[n1] (x2, y2) = pos[n2] (x, y) = (x1 * label_pos + x2 * (1.0 - label_pos), y1 * label_pos + y2 * (1.0 - label_pos)) if rotate: angle = numpy.arctan2(y2-y1, x2-x1)/(2.0*numpy.pi)*360 # degrees # make label orientation "right-side-up" if angle > 90: angle -= 180 if angle < - 90: angle += 180 # transform data coordinate angle to screen coordinate angle xy = numpy.array((x, y)) trans_angle = ax.transData.transform_angles(numpy.array((angle,)), xy.reshape((1, 2)))[0] else: trans_angle = 0.0 # use default box of white with white border if bbox is None: bbox = dict(boxstyle='round', ec=(1.0, 1.0, 1.0), fc=(1.0, 1.0, 1.0), ) if not cb.is_string_like(label): label = str(label) # this will cause "1" and 1 to be labeled the same # set optional alignment horizontalalignment = kwds.get('horizontalalignment', 'center') verticalalignment = kwds.get('verticalalignment', 'center') t = ax.text(x, y, label, size=font_size, color=font_color, family=font_family, weight=font_weight, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, rotation=trans_angle, transform=ax.transData, bbox=bbox, zorder=1, clip_on=True, ) text_items[(n1, n2)] = t return text_items def draw_circular(G, **kwargs): """Draw the graph G with a circular layout. Parameters ---------- G : graph A networkx graph **kwargs : optional keywords See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. """ draw(G, circular_layout(G), **kwargs) def draw_random(G, **kwargs): """Draw the graph G with a random layout. Parameters ---------- G : graph A networkx graph **kwargs : optional keywords See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. """ draw(G, random_layout(G), **kwargs) def draw_spectral(G, **kwargs): """Draw the graph G with a spectral layout. Parameters ---------- G : graph A networkx graph **kwargs : optional keywords See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. """ draw(G, spectral_layout(G), **kwargs) def draw_spring(G, **kwargs): """Draw the graph G with a spring layout. Parameters ---------- G : graph A networkx graph **kwargs : optional keywords See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. """ draw(G, spring_layout(G), **kwargs) def draw_shell(G, **kwargs): """Draw networkx graph with shell layout. Parameters ---------- G : graph A networkx graph **kwargs : optional keywords See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function. """ nlist = kwargs.get('nlist', None) if nlist is not None: del(kwargs['nlist']) draw(G, shell_layout(G, nlist=nlist), **kwargs) def draw_graphviz(G, prog="neato", **kwargs): """Draw networkx graph with graphviz layout. Parameters ---------- G : graph A networkx graph prog : string, optional Name of Graphviz layout program **kwargs : optional keywords See networkx.draw_networkx() for a description of optional keywords. """ pos = nx.drawing.graphviz_layout(G, prog) draw(G, pos, **kwargs) def draw_nx(G, pos, **kwds): """For backward compatibility; use draw or draw_networkx.""" draw(G, pos, **kwds) # fixture for nose tests def setup_module(module): from nose import SkipTest try: import matplotlib as mpl mpl.use('PS', warn=False) import matplotlib.pyplot as plt except: raise SkipTest("matplotlib not available")
gpl-2.0
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/matplotlib/sphinxext/mathmpl.py
12
3822
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os import sys from hashlib import md5 from docutils import nodes from docutils.parsers.rst import directives import warnings from matplotlib import rcParams from matplotlib.mathtext import MathTextParser rcParams['mathtext.fontset'] = 'cm' mathtext_parser = MathTextParser("Bitmap") # Define LaTeX math node: class latex_math(nodes.General, nodes.Element): pass def fontset_choice(arg): return directives.choice(arg, ['cm', 'stix', 'stixsans']) options_spec = {'fontset': fontset_choice} def math_role(role, rawtext, text, lineno, inliner, options={}, content=[]): i = rawtext.find('`') latex = rawtext[i+1:-1] node = latex_math(rawtext) node['latex'] = latex node['fontset'] = options.get('fontset', 'cm') return [node], [] math_role.options = options_spec def math_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): latex = ''.join(content) node = latex_math(block_text) node['latex'] = latex node['fontset'] = options.get('fontset', 'cm') return [node] # This uses mathtext to render the expression def latex2png(latex, filename, fontset='cm'): latex = "$%s$" % latex orig_fontset = rcParams['mathtext.fontset'] rcParams['mathtext.fontset'] = fontset if os.path.exists(filename): depth = mathtext_parser.get_depth(latex, dpi=100) else: try: depth = mathtext_parser.to_png(filename, latex, dpi=100) except: warnings.warn("Could not render math expression %s" % latex, Warning) depth = 0 rcParams['mathtext.fontset'] = orig_fontset sys.stdout.write("#") sys.stdout.flush() return depth # LaTeX to HTML translation stuff: def latex2html(node, source): inline = isinstance(node.parent, nodes.TextElement) latex = node['latex'] name = 'math-%s' % md5(latex.encode()).hexdigest()[-10:] destdir = os.path.join(setup.app.builder.outdir, '_images', 'mathmpl') if not os.path.exists(destdir): os.makedirs(destdir) dest = os.path.join(destdir, '%s.png' % name) path = '/'.join((setup.app.builder.imgpath, 'mathmpl')) depth = latex2png(latex, dest, node['fontset']) if inline: cls = '' else: cls = 'class="center" ' if inline and depth != 0: style = 'style="position: relative; bottom: -%dpx"' % (depth + 1) else: style = '' return '<img src="%s/%s.png" %s%s/>' % (path, name, cls, style) def setup(app): setup.app = app # Add visit/depart methods to HTML-Translator: def visit_latex_math_html(self, node): source = self.document.attributes['source'] self.body.append(latex2html(node, source)) def depart_latex_math_html(self, node): pass # Add visit/depart methods to LaTeX-Translator: def visit_latex_math_latex(self, node): inline = isinstance(node.parent, nodes.TextElement) if inline: self.body.append('$%s$' % node['latex']) else: self.body.extend(['\\begin{equation}', node['latex'], '\\end{equation}']) def depart_latex_math_latex(self, node): pass app.add_node(latex_math, html=(visit_latex_math_html, depart_latex_math_html), latex=(visit_latex_math_latex, depart_latex_math_latex)) app.add_role('math', math_role) app.add_directive('math', math_directive, True, (0, 0, 0), **options_spec) metadata = {'parallel_read_safe': True, 'parallel_write_safe': True} return metadata
mit
cactorium/UCFBrainStuff
seniordesign/emokit/fft2.py
2
1744
# This is an example of popping a packet from the Emotiv class's packet queue # and printing the gyro x and y values to the console. from emokit.emotiv import Emotiv import platform if platform.system() == "Windows": import socket # Needed to prevent gevent crashing on Windows. (surfly / gevent issue #459) import gevent import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation is_running = True # TODO: is_running is not working as expected. But it DOES work! def evt_main(): global is_running ring_buf = np.zeros(x.size) headset = Emotiv() gevent.spawn(headset.setup) gevent.sleep(0) pos = 0 try: while is_running: packet = headset.dequeue() print packet.gyro_x, packet.gyro_y ring_buf[pos] = packet.sensors["O1"]["value"] pos = (pos + 1) % ring_buf.size if pos % 4 == 0: yield np.concatenate((ring_buf[pos:ring_buf.size:1], ring_buf[0:pos:1])) gevent.sleep(0) except KeyboardInterrupt: headset.close() finally: is_running = False headset.close() x = np.arange(0, 1024) test_buf = np.zeros(x.size) fig, ax = plt.subplots() line, = ax.plot(x, test_buf) plt.axis([0, x.size - 1, 0, 80]) def init(): line.set_ydata(np.ma.array(x, mask=True)) return line, def animate(rb): dft = np.fft.fft(rb) line.set_ydata(20*np.log10(np.absolute(dft))) return line, def counter(): global is_running i = 0 while is_running: yield i i = i + 1 ani = animation.FuncAnimation(fig, animate, evt_main, init_func=init, interval=20, blit=True) plt.show() is_running = False while True: gevent.sleep(0)
mit
victorbergelin/scikit-learn
sklearn/utils/tests/test_estimator_checks.py
202
3757
import scipy.sparse as sp import numpy as np import sys from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.testing import assert_raises_regex, assert_true from sklearn.utils.estimator_checks import check_estimator from sklearn.utils.estimator_checks import check_estimators_unfitted from sklearn.linear_model import LogisticRegression from sklearn.utils.validation import check_X_y, check_array class CorrectNotFittedError(ValueError): """Exception class to raise if estimator is used before fitting. Like NotFittedError, it inherits from ValueError, but not from AttributeError. Used for testing only. """ class BaseBadClassifier(BaseEstimator, ClassifierMixin): def fit(self, X, y): return self def predict(self, X): return np.ones(X.shape[0]) class NoCheckinPredict(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) return self class NoSparseClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y, accept_sparse=['csr', 'csc']) if sp.issparse(X): raise ValueError("Nonsensical Error") return self def predict(self, X): X = check_array(X) return np.ones(X.shape[0]) class CorrectNotFittedErrorClassifier(BaseBadClassifier): def fit(self, X, y): X, y = check_X_y(X, y) self.coef_ = np.ones(X.shape[1]) return self def predict(self, X): if not hasattr(self, 'coef_'): raise CorrectNotFittedError("estimator is not fitted yet") X = check_array(X) return np.ones(X.shape[0]) def test_check_estimator(): # tests that the estimator actually fails on "bad" estimators. # not a complete test of all checks, which are very extensive. # check that we have a set_params and can clone msg = "it does not implement a 'get_params' methods" assert_raises_regex(TypeError, msg, check_estimator, object) # check that we have a fit method msg = "object has no attribute 'fit'" assert_raises_regex(AttributeError, msg, check_estimator, BaseEstimator) # check that fit does input validation msg = "TypeError not raised by fit" assert_raises_regex(AssertionError, msg, check_estimator, BaseBadClassifier) # check that predict does input validation (doesn't accept dicts in input) msg = "Estimator doesn't check for NaN and inf in predict" assert_raises_regex(AssertionError, msg, check_estimator, NoCheckinPredict) # check for sparse matrix input handling msg = "Estimator type doesn't seem to fail gracefully on sparse data" # the check for sparse input handling prints to the stdout, # instead of raising an error, so as not to remove the original traceback. # that means we need to jump through some hoops to catch it. old_stdout = sys.stdout string_buffer = StringIO() sys.stdout = string_buffer try: check_estimator(NoSparseClassifier) except: pass finally: sys.stdout = old_stdout assert_true(msg in string_buffer.getvalue()) # doesn't error on actual estimator check_estimator(LogisticRegression) def test_check_estimators_unfitted(): # check that a ValueError/AttributeError is raised when calling predict # on an unfitted estimator msg = "AttributeError or ValueError not raised by predict" assert_raises_regex(AssertionError, msg, check_estimators_unfitted, "estimator", NoSparseClassifier) # check that CorrectNotFittedError inherit from either ValueError # or AttributeError check_estimators_unfitted("estimator", CorrectNotFittedErrorClassifier)
bsd-3-clause
zhongdai/csv2td
csv2td/csv2td.py
1
4292
# coding=utf-8 import csv import os import argparse import configparser import pandas as pd import numpy as np import re from . import __version__ from .filetemp import INI_FILE, INI_FILE_NAME, FASTLOAD_CTL from .filetemp import INI_FILE_KEYS def correct_object_name(object_name): """ Make sure the field name is valid in Teradata, this is also for table name - No more than 32 characters - Not start with numeric - No speical characters - No spaces """ if not isinstance(object_name, str) or len(object_name) == 0: raise TypeError('Please make sure the field_name is a str and not null') MAX_LENGTH = 30 REGEX = re.compile(r"[^a-zA-Z0-9]") no_special_chars = REGEX.sub('_', object_name) if re.match(r"\d+", no_special_chars) is not None: no_special_chars = '_' + no_special_chars return no_special_chars[:MAX_LENGTH] def guess_date_format(list_of_date): """ Check the format for a date string, return one of following yyyymmdd yyyy-mm-dd dd/mm/yyyy ddmmyyyy dd-mm-yyyy or return None if not match any """ assert isinstance(list_of_date,list) matchers = { 'yyyymmdd':re.compile(r"\d{4}[0|1]\d[0|1|2|3]\d"), 'yyyy-mm-dd':re.compile(r"\d{4}\-[0|1]\d\-[0|1|2|3]\d"), 'dd/mm/yyyy':re.compile(r"[0|1|2|3]\d\/[0|1]\d\/\d{4}"), 'dd-mm-yyyy':re.compile(r"[0|1|2|3]\d\-[0|1]\d\-\d{4}") } return_format = None for name, m in matchers.items(): for item in list_of_date: if m.match(item) is None: # if found any not matching (in the middle), set to None # and break the inner loop return_format = None break else: return_format = name # if we matched to any format, just break the outer loop if return_format is not None: break return return_format class CSVField: def __init__(self, name, dtype=None, min_len=None, max_len=None, date_format=None): assert isinstance(name, str) self.name = name self.dtype = dtype self.min_len = min_len self.max_len = max_len self.date_format = date_format def __repr__(self): return 'CSVField({})'.format(self.name) def get_parser(): parser = argparse.ArgumentParser(description='Generate Fastload script') parser.add_argument('filename',type=str, help='The filename of CSV file to be loaded to Teradata') return parser def get_config(): cfg = configparser.ConfigParser() error_message = """ The configuration file name should be csv2td.ini, please make sure it has all required format / data. Please execute `csv2tdinit` to generate a template file under same folder. """ try: cfg.read(INI_FILE_NAME) except Exception as e: raise sections = cfg.sections() if len(sections) != 1: raise SystemExit(error_message) section_name = sections[0] for key in INI_FILE_KEYS: if key not in cfg[section_name]: raise SystemExit(error_message) return cfg[section_name] def generate_init_file(): current_dir = os.getcwd() with open(os.path.join(current_dir, INI_FILE_NAME), 'w') as f: f.write(INI_FILE) print('The template configuration file [{}] has been generated at current folder'.format(INI_FILE_NAME)) return def command_line_runner(): parser = get_parser() args = vars(parser.parse_args()) # File only can be placed under the current folder csv_filename = args['filename'] full_path = os.path.join(os.getcwd(),csv_filename) if not os.path.isfile(full_path): raise ValueError('{} is not a file, please check'.format(full_path)) s = csv.Sniffer() with open(full_path) as f: if not s.has_header(f.read(1024)): has_header = False else: has_header = True if not has_header: raise ValueError('please make sure you have headers in the file') # Get the config object section = get_config() # process data if __name__ == '__main__': command_line_runner()
mit
GbalsaC/bitnamiP
venv/lib/python2.7/site-packages/scipy/stats/kde.py
9
17416
#------------------------------------------------------------------------------- # # Define classes for (uni/multi)-variate kernel density estimation. # # Currently, only Gaussian kernels are implemented. # # Written by: Robert Kern # # Date: 2004-08-09 # # Modified: 2005-02-10 by Robert Kern. # Contributed to Scipy # 2005-10-07 by Robert Kern. # Some fixes to match the new scipy_core # # Copyright 2004-2005 by Enthought, Inc. # #------------------------------------------------------------------------------- from __future__ import division, print_function, absolute_import # Standard library imports. import warnings # Scipy imports. from scipy.lib.six import callable, string_types from scipy import linalg, special from numpy import atleast_2d, reshape, zeros, newaxis, dot, exp, pi, sqrt, \ ravel, power, atleast_1d, squeeze, sum, transpose import numpy as np from numpy.random import randint, multivariate_normal # Local imports. from . import mvn __all__ = ['gaussian_kde'] class gaussian_kde(object): """Representation of a kernel-density estimate using Gaussian kernels. Kernel density estimation is a way to estimate the probability density function (PDF) of a random variable in a non-parametric way. `gaussian_kde` works for both uni-variate and multi-variate data. It includes automatic bandwidth determination. The estimation works best for a unimodal distribution; bimodal or multi-modal distributions tend to be oversmoothed. Parameters ---------- dataset : array_like Datapoints to estimate from. In case of univariate data this is a 1-D array, otherwise a 2-D array with shape (# of dims, # of data). bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), 'scott' is used. See Notes for more details. Attributes ---------- dataset : ndarray The dataset with which `gaussian_kde` was initialized. d : int Number of dimensions. n : int Number of datapoints. factor : float The bandwidth factor, obtained from `kde.covariance_factor`, with which the covariance matrix is multiplied. covariance : ndarray The covariance matrix of `dataset`, scaled by the calculated bandwidth (`kde.factor`). inv_cov : ndarray The inverse of `covariance`. Methods ------- kde.evaluate(points) : ndarray Evaluate the estimated pdf on a provided set of points. kde(points) : ndarray Same as kde.evaluate(points) kde.integrate_gaussian(mean, cov) : float Multiply pdf with a specified Gaussian and integrate over the whole domain. kde.integrate_box_1d(low, high) : float Integrate pdf (1D only) between two bounds. kde.integrate_box(low_bounds, high_bounds) : float Integrate pdf over a rectangular space between low_bounds and high_bounds. kde.integrate_kde(other_kde) : float Integrate two kernel density estimates multiplied together. kde.resample(size=None) : ndarray Randomly sample a dataset from the estimated pdf. kde.set_bandwidth(bw_method='scott') : None Computes the bandwidth, i.e. the coefficient that multiplies the data covariance matrix to obtain the kernel covariance matrix. .. versionadded:: 0.11.0 kde.covariance_factor : float Computes the coefficient (`kde.factor`) that multiplies the data covariance matrix to obtain the kernel covariance matrix. The default is `scotts_factor`. A subclass can overwrite this method to provide a different method, or set it through a call to `kde.set_bandwidth`. Notes ----- Bandwidth selection strongly influences the estimate obtained from the KDE (much more so than the actual shape of the kernel). Bandwidth selection can be done by a "rule of thumb", by cross-validation, by "plug-in methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde` uses a rule of thumb, the default is Scott's Rule. Scott's Rule [1]_, implemented as `scotts_factor`, is:: n**(-1./(d+4)), with ``n`` the number of data points and ``d`` the number of dimensions. Silverman's Rule [2]_, implemented as `silverman_factor`, is:: n * (d + 2) / 4.)**(-1. / (d + 4)). Good general descriptions of kernel density estimation can be found in [1]_ and [2]_, the mathematics for this multi-dimensional implementation can be found in [1]_. References ---------- .. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and Visualization", John Wiley & Sons, New York, Chicester, 1992. .. [2] B.W. Silverman, "Density Estimation for Statistics and Data Analysis", Vol. 26, Monographs on Statistics and Applied Probability, Chapman and Hall, London, 1986. .. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993. .. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel conditional density estimation", Computational Statistics & Data Analysis, Vol. 36, pp. 279-298, 2001. Examples -------- Generate some random two-dimensional data: >>> from scipy import stats >>> def measure(n): >>> "Measurement model, return two coupled measurements." >>> m1 = np.random.normal(size=n) >>> m2 = np.random.normal(scale=0.5, size=n) >>> return m1+m2, m1-m2 >>> m1, m2 = measure(2000) >>> xmin = m1.min() >>> xmax = m1.max() >>> ymin = m2.min() >>> ymax = m2.max() Perform a kernel density estimate on the data: >>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] >>> positions = np.vstack([X.ravel(), Y.ravel()]) >>> values = np.vstack([m1, m2]) >>> kernel = stats.gaussian_kde(values) >>> Z = np.reshape(kernel(positions).T, X.shape) Plot the results: >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r, ... extent=[xmin, xmax, ymin, ymax]) >>> ax.plot(m1, m2, 'k.', markersize=2) >>> ax.set_xlim([xmin, xmax]) >>> ax.set_ylim([ymin, ymax]) >>> plt.show() """ def __init__(self, dataset, bw_method=None): self.dataset = atleast_2d(dataset) if not self.dataset.size > 1: raise ValueError("`dataset` input should have multiple elements.") self.d, self.n = self.dataset.shape self.set_bandwidth(bw_method=bw_method) def evaluate(self, points): """Evaluate the estimated pdf on a set of points. Parameters ---------- points : (# of dimensions, # of points)-array Alternatively, a (# of dimensions,) vector can be passed in and treated as a single point. Returns ------- values : (# of points,)-array The values at each point. Raises ------ ValueError : if the dimensionality of the input points is different than the dimensionality of the KDE. """ points = atleast_2d(points) d, m = points.shape if d != self.d: if d == 1 and m == self.d: # points was passed in as a row vector points = reshape(points, (self.d, 1)) m = 1 else: msg = "points have dimension %s, dataset has dimension %s" % (d, self.d) raise ValueError(msg) result = zeros((m,), dtype=np.float) if m >= self.n: # there are more points than data, so loop over data for i in range(self.n): diff = self.dataset[:, i, newaxis] - points tdiff = dot(self.inv_cov, diff) energy = sum(diff*tdiff,axis=0) / 2.0 result = result + exp(-energy) else: # loop over points for i in range(m): diff = self.dataset - points[:, i, newaxis] tdiff = dot(self.inv_cov, diff) energy = sum(diff * tdiff, axis=0) / 2.0 result[i] = sum(exp(-energy), axis=0) result = result / self._norm_factor return result __call__ = evaluate def integrate_gaussian(self, mean, cov): """ Multiply estimated density by a multivariate Gaussian and integrate over the whole space. Parameters ---------- mean : aray_like A 1-D array, specifying the mean of the Gaussian. cov : array_like A 2-D array, specifying the covariance matrix of the Gaussian. Returns ------- result : scalar The value of the integral. Raises ------ ValueError : If the mean or covariance of the input Gaussian differs from the KDE's dimensionality. """ mean = atleast_1d(squeeze(mean)) cov = atleast_2d(cov) if mean.shape != (self.d,): raise ValueError("mean does not have dimension %s" % self.d) if cov.shape != (self.d, self.d): raise ValueError("covariance does not have dimension %s" % self.d) # make mean a column vector mean = mean[:, newaxis] sum_cov = self.covariance + cov diff = self.dataset - mean tdiff = dot(linalg.inv(sum_cov), diff) energies = sum(diff * tdiff, axis=0) / 2.0 result = sum(exp(-energies), axis=0) / sqrt(linalg.det(2 * pi * sum_cov)) / self.n return result def integrate_box_1d(self, low, high): """ Computes the integral of a 1D pdf between two bounds. Parameters ---------- low : scalar Lower bound of integration. high : scalar Upper bound of integration. Returns ------- value : scalar The result of the integral. Raises ------ ValueError If the KDE is over more than one dimension. """ if self.d != 1: raise ValueError("integrate_box_1d() only handles 1D pdfs") stdev = ravel(sqrt(self.covariance))[0] normalized_low = ravel((low - self.dataset) / stdev) normalized_high = ravel((high - self.dataset) / stdev) value = np.mean(special.ndtr(normalized_high) - special.ndtr(normalized_low)) return value def integrate_box(self, low_bounds, high_bounds, maxpts=None): """Computes the integral of a pdf over a rectangular interval. Parameters ---------- low_bounds : array_like A 1-D array containing the lower bounds of integration. high_bounds : array_like A 1-D array containing the upper bounds of integration. maxpts : int, optional The maximum number of points to use for integration. Returns ------- value : scalar The result of the integral. """ if maxpts is not None: extra_kwds = {'maxpts': maxpts} else: extra_kwds = {} value, inform = mvn.mvnun(low_bounds, high_bounds, self.dataset, self.covariance, **extra_kwds) if inform: msg = ('An integral in mvn.mvnun requires more points than %s' % (self.d * 1000)) warnings.warn(msg) return value def integrate_kde(self, other): """ Computes the integral of the product of this kernel density estimate with another. Parameters ---------- other : gaussian_kde instance The other kde. Returns ------- value : scalar The result of the integral. Raises ------ ValueError If the KDEs have different dimensionality. """ if other.d != self.d: raise ValueError("KDEs are not the same dimensionality") # we want to iterate over the smallest number of points if other.n < self.n: small = other large = self else: small = self large = other sum_cov = small.covariance + large.covariance result = 0.0 for i in range(small.n): mean = small.dataset[:, i, newaxis] diff = large.dataset - mean tdiff = dot(linalg.inv(sum_cov), diff) energies = sum(diff * tdiff, axis=0) / 2.0 result += sum(exp(-energies), axis=0) result /= sqrt(linalg.det(2 * pi * sum_cov)) * large.n * small.n return result def resample(self, size=None): """ Randomly sample a dataset from the estimated pdf. Parameters ---------- size : int, optional The number of samples to draw. If not provided, then the size is the same as the underlying dataset. Returns ------- resample : (self.d, `size`) ndarray The sampled dataset. """ if size is None: size = self.n norm = transpose(multivariate_normal(zeros((self.d,), float), self.covariance, size=size)) indices = randint(0, self.n, size=size) means = self.dataset[:, indices] return means + norm def scotts_factor(self): return power(self.n, -1./(self.d+4)) def silverman_factor(self): return power(self.n*(self.d+2.0)/4.0, -1./(self.d+4)) # Default method to calculate bandwidth, can be overwritten by subclass covariance_factor = scotts_factor def set_bandwidth(self, bw_method=None): """Compute the estimator bandwidth with given method. The new bandwidth calculated after a call to `set_bandwidth` is used for subsequent evaluations of the estimated density. Parameters ---------- bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), nothing happens; the current `kde.covariance_factor` method is kept. Notes ----- .. versionadded:: 0.11 Examples -------- >>> x1 = np.array([-7, -5, 1, 4, 5.]) >>> kde = stats.gaussian_kde(x1) >>> xs = np.linspace(-10, 10, num=50) >>> y1 = kde(xs) >>> kde.set_bandwidth(bw_method='silverman') >>> y2 = kde(xs) >>> kde.set_bandwidth(bw_method=kde.factor / 3.) >>> y3 = kde(xs) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo', ... label='Data points (rescaled)') >>> ax.plot(xs, y1, label='Scott (default)') >>> ax.plot(xs, y2, label='Silverman') >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)') >>> ax.legend() >>> plt.show() """ if bw_method is None: pass elif bw_method == 'scott': self.covariance_factor = self.scotts_factor elif bw_method == 'silverman': self.covariance_factor = self.silverman_factor elif np.isscalar(bw_method) and not isinstance(bw_method, string_types): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: msg = "`bw_method` should be 'scott', 'silverman', a scalar " \ "or a callable." raise ValueError(msg) self._compute_covariance() def _compute_covariance(self): """Computes the covariance matrix for each Gaussian kernel using covariance_factor(). """ self.factor = self.covariance_factor() # Cache covariance and inverse covariance of the data if not hasattr(self, '_data_inv_cov'): self._data_covariance = atleast_2d(np.cov(self.dataset, rowvar=1, bias=False)) self._data_inv_cov = linalg.inv(self._data_covariance) self.covariance = self._data_covariance * self.factor**2 self.inv_cov = self._data_inv_cov / self.factor**2 self._norm_factor = sqrt(linalg.det(2*pi*self.covariance)) * self.n
agpl-3.0
jmschrei/scikit-learn
sklearn/covariance/tests/test_graph_lasso.py
272
5245
""" Test the graph_lasso module. """ import sys import numpy as np from scipy import linalg from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_less from sklearn.covariance import (graph_lasso, GraphLasso, GraphLassoCV, empirical_covariance) from sklearn.datasets.samples_generator import make_sparse_spd_matrix from sklearn.externals.six.moves import StringIO from sklearn.utils import check_random_state from sklearn import datasets def test_graph_lasso(random_state=0): # Sample data from a sparse multivariate normal dim = 20 n_samples = 100 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.95, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) emp_cov = empirical_covariance(X) for alpha in (0., .1, .25): covs = dict() icovs = dict() for method in ('cd', 'lars'): cov_, icov_, costs = graph_lasso(emp_cov, alpha=alpha, mode=method, return_costs=True) covs[method] = cov_ icovs[method] = icov_ costs, dual_gap = np.array(costs).T # Check that the costs always decrease (doesn't hold if alpha == 0) if not alpha == 0: assert_array_less(np.diff(costs), 0) # Check that the 2 approaches give similar results assert_array_almost_equal(covs['cd'], covs['lars'], decimal=4) assert_array_almost_equal(icovs['cd'], icovs['lars'], decimal=4) # Smoke test the estimator model = GraphLasso(alpha=.25).fit(X) model.score(X) assert_array_almost_equal(model.covariance_, covs['cd'], decimal=4) assert_array_almost_equal(model.covariance_, covs['lars'], decimal=4) # For a centered matrix, assume_centered could be chosen True or False # Check that this returns indeed the same result for centered data Z = X - X.mean(0) precs = list() for assume_centered in (False, True): prec_ = GraphLasso(assume_centered=assume_centered).fit(Z).precision_ precs.append(prec_) assert_array_almost_equal(precs[0], precs[1]) def test_graph_lasso_iris(): # Hard-coded solution from R glasso package for alpha=1.0 # The iris datasets in R and sklearn do not match in a few places, these # values are for the sklearn version cov_R = np.array([ [0.68112222, 0.0, 0.2651911, 0.02467558], [0.00, 0.1867507, 0.0, 0.00], [0.26519111, 0.0, 3.0924249, 0.28774489], [0.02467558, 0.0, 0.2877449, 0.57853156] ]) icov_R = np.array([ [1.5188780, 0.0, -0.1302515, 0.0], [0.0, 5.354733, 0.0, 0.0], [-0.1302515, 0.0, 0.3502322, -0.1686399], [0.0, 0.0, -0.1686399, 1.8123908] ]) X = datasets.load_iris().data emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=1.0, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R) assert_array_almost_equal(icov, icov_R) def test_graph_lasso_iris_singular(): # Small subset of rows to test the rank-deficient case # Need to choose samples such that none of the variances are zero indices = np.arange(10, 13) # Hard-coded solution from R glasso package for alpha=0.01 cov_R = np.array([ [0.08, 0.056666662595, 0.00229729713223, 0.00153153142149], [0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222], [0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009], [0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222] ]) icov_R = np.array([ [24.42244057, -16.831679593, 0.0, 0.0], [-16.83168201, 24.351841681, -6.206896552, -12.5], [0.0, -6.206896171, 153.103448276, 0.0], [0.0, -12.499999143, 0.0, 462.5] ]) X = datasets.load_iris().data[indices, :] emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=0.01, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R, decimal=5) assert_array_almost_equal(icov, icov_R, decimal=5) def test_graph_lasso_cv(random_state=1): # Sample data from a sparse multivariate normal dim = 5 n_samples = 6 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.96, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) # Capture stdout, to smoke test the verbose mode orig_stdout = sys.stdout try: sys.stdout = StringIO() # We need verbose very high so that Parallel prints on stdout GraphLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X) finally: sys.stdout = orig_stdout # Smoke test with specified alphas GraphLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1).fit(X)
bsd-3-clause
oliverlee/pydy
examples/chaos_pendulum/chaos_pendulum.py
3
3976
#!/usr/bin/env python # This script generates the equations of motion for a double pendulum where the # bob rotates about the pendulum rod. It can be shown to be chaotic when # simulated. # import sympy and the mechanics module import numpy as np import matplotlib.pyplot as plt import sympy as sym import sympy.physics.mechanics as me from pydy.system import System from pydy.viz import Cylinder, Plane, VisualizationFrame, Scene # Enable pretty printing. me.init_vprinting() # declare the constants # # gravity g = sym.symbols('g') mA, mB, lB = sym.symbols('m_A, m_B, L_B') # plate dimensions w, h = sym.symbols('w, h') # declare the coordinates and speeds and their derivatives # # theta : angle of the rod # phi : angle of the plate relative to the rod # omega : angular speed of the rod # alpha : angular speed of the plate theta, phi, omega, alpha = me.dynamicsymbols('theta phi omega alpha') # reference frames # # create a Newtonian reference frame N = me.ReferenceFrame('N') # create a reference for the rod, A, and the plate, B A = me.ReferenceFrame('A') B = me.ReferenceFrame('B') # orientations # # the rod rotates with respect to the Newtonian reference frame about the x # axis A.orient(N, 'Axis', (theta, N.y)) # the plate rotates about the rod's primay axis B.orient(A, 'Axis', (phi, A.z)) # positions # # origin of the Newtonian reference frame No = me.Point('No') # create a point for the mass centers of the two bodies Ao = me.Point('Ao') Bo = me.Point('Bo') # define the positions of the mass centers relative to the Newtonian origin lA = (lB - h / 2) / 2 Ao.set_pos(No, lA * A.z) Bo.set_pos(No, lB * A.z) # kinematical differential equations # kinDiffs = (omega - theta.diff(), alpha - phi.diff()) # angular velocities A.set_ang_vel(N, omega * N.y) B.set_ang_vel(A, alpha * A.z) # linear velocities and accelerations # No.set_vel(N, 0) # the newtonian origin is fixed Ao.v2pt_theory(No, N, A) Bo.v2pt_theory(No, N, A) # central inertia IAxx = sym.S(1) / 12 * mA * (2 * lA)**2 IAyy = IAxx IAzz = 0 IA = (me.inertia(A, IAxx, IAyy, IAzz), Ao) IBxx = sym.S(1) / 12 * mB * h**2 IByy = sym.S(1) / 12 * mB * (w**2 + h**2) IBzz = sym.S(1) / 12 * mB * w**2 IB = (me.inertia(B, IBxx, IByy, IBzz), Bo) # rigid bodies rod = me.RigidBody('rod', Ao, A, mA, IA) plate = me.RigidBody('plate', Bo, B, mB, IB) # forces # # add the gravitional force to each body rod_gravity = (Ao, mA * g * N.z) plate_gravity = (Bo, mB * g * N.z) # equations of motion with Kane's method # make a tuple of the bodies and forces bodies = (rod, plate) loads = (rod_gravity, plate_gravity) # create a Kane object with respect to the Newtonian reference frame kane = me.KanesMethod(N, q_ind=(theta, phi), u_ind=(omega, alpha), kd_eqs=kinDiffs) # calculate Kane's equations fr, frstar = kane.kanes_equations(loads, bodies) sys = System(kane) sys.constants = {lB: 0.2, # m h: 0.1, # m w: 0.2, # m mA: 0.01, # kg mB: 0.1, # kg g: 9.81, # m/s**2 } sys.initial_conditions = {theta: np.deg2rad(90.0), phi: np.deg2rad(0.5), omega: 0, alpha: 0} sys.times = np.linspace(0, 10, 500) x = sys.integrate() plt.plot(sys.times, x) plt.legend([sym.latex(s, mode='inline') for s in sys.coordinates + sys.speeds]) # visualize rod_shape = Cylinder(2 * lA, 0.005, color='red') plate_shape = Plane(h, w, color='blue') v1 = VisualizationFrame('rod', A.orientnew('rod', 'Axis', (sym.pi / 2, A.x)), Ao, rod_shape) v2 = VisualizationFrame('plate', B.orientnew('plate', 'Body', (sym.pi / 2, sym.pi / 2, 0), 'XZX'), Bo, plate_shape) scene = Scene(N, No, v1, v2, system=sys) scene.display()
bsd-3-clause
jzt5132/scikit-learn
sklearn/neural_network/tests/test_rbm.py
225
6278
import sys import re import numpy as np from scipy.sparse import csc_matrix, csr_matrix, lil_matrix from sklearn.utils.testing import (assert_almost_equal, assert_array_equal, assert_true) from sklearn.datasets import load_digits from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.neural_network import BernoulliRBM from sklearn.utils.validation import assert_all_finite np.seterr(all='warn') Xdigits = load_digits().data Xdigits -= Xdigits.min() Xdigits /= Xdigits.max() def test_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, n_iter=7, random_state=9) rbm.fit(X) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) # in-place tricks shouldn't have modified X assert_array_equal(X, Xdigits) def test_partial_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=20, random_state=9) n_samples = X.shape[0] n_batches = int(np.ceil(float(n_samples) / rbm.batch_size)) batch_slices = np.array_split(X, n_batches) for i in range(7): for batch in batch_slices: rbm.partial_fit(batch) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) assert_array_equal(X, Xdigits) def test_transform(): X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=16, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) Xt1 = rbm1.transform(X) Xt2 = rbm1._mean_hiddens(X) assert_array_equal(Xt1, Xt2) def test_small_sparse(): # BernoulliRBM should work on small sparse matrices. X = csr_matrix(Xdigits[:4]) BernoulliRBM().fit(X) # no exception def test_small_sparse_partial_fit(): for sparse in [csc_matrix, csr_matrix]: X_sparse = sparse(Xdigits[:100]) X = Xdigits[:100].copy() rbm1 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm2 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm1.partial_fit(X_sparse) rbm2.partial_fit(X) assert_almost_equal(rbm1.score_samples(X).mean(), rbm2.score_samples(X).mean(), decimal=0) def test_sample_hiddens(): rng = np.random.RandomState(0) X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=2, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) h = rbm1._mean_hiddens(X[0]) hs = np.mean([rbm1._sample_hiddens(X[0], rng) for i in range(100)], 0) assert_almost_equal(h, hs, decimal=1) def test_fit_gibbs(): # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] # from the same input rng = np.random.RandomState(42) X = np.array([[0.], [1.]]) rbm1 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) # you need that much iters rbm1.fit(X) assert_almost_equal(rbm1.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm1.gibbs(X), X) return rbm1 def test_fit_gibbs_sparse(): # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] from # the same input even when the input is sparse, and test against non-sparse rbm1 = test_fit_gibbs() rng = np.random.RandomState(42) from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm2 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) rbm2.fit(X) assert_almost_equal(rbm2.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm2.gibbs(X), X.toarray()) assert_almost_equal(rbm1.components_, rbm2.components_) def test_gibbs_smoke(): # Check if we don't get NaNs sampling the full digits dataset. # Also check that sampling again will yield different results. X = Xdigits rbm1 = BernoulliRBM(n_components=42, batch_size=40, n_iter=20, random_state=42) rbm1.fit(X) X_sampled = rbm1.gibbs(X) assert_all_finite(X_sampled) X_sampled2 = rbm1.gibbs(X) assert_true(np.all((X_sampled != X_sampled2).max(axis=1))) def test_score_samples(): # Test score_samples (pseudo-likelihood) method. # Assert that pseudo-likelihood is computed without clipping. # See Fabian's blog, http://bit.ly/1iYefRk rng = np.random.RandomState(42) X = np.vstack([np.zeros(1000), np.ones(1000)]) rbm1 = BernoulliRBM(n_components=10, batch_size=2, n_iter=10, random_state=rng) rbm1.fit(X) assert_true((rbm1.score_samples(X) < -300).all()) # Sparse vs. dense should not affect the output. Also test sparse input # validation. rbm1.random_state = 42 d_score = rbm1.score_samples(X) rbm1.random_state = 42 s_score = rbm1.score_samples(lil_matrix(X)) assert_almost_equal(d_score, s_score) # Test numerical stability (#2785): would previously generate infinities # and crash with an exception. with np.errstate(under='ignore'): rbm1.score_samples([np.arange(1000) * 100]) def test_rbm_verbose(): rbm = BernoulliRBM(n_iter=2, verbose=10) old_stdout = sys.stdout sys.stdout = StringIO() try: rbm.fit(Xdigits) finally: sys.stdout = old_stdout def test_sparse_and_verbose(): # Make sure RBM works with sparse input when verbose=True old_stdout = sys.stdout sys.stdout = StringIO() from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm = BernoulliRBM(n_components=2, batch_size=2, n_iter=1, random_state=42, verbose=True) try: rbm.fit(X) s = sys.stdout.getvalue() # make sure output is sound assert_true(re.match(r"\[BernoulliRBM\] Iteration 1," r" pseudo-likelihood = -?(\d)+(\.\d+)?," r" time = (\d|\.)+s", s)) finally: sys.stdout = old_stdout
bsd-3-clause
nguyentu1602/numpy
numpy/lib/twodim_base.py
83
26903
""" Basic functions for manipulating 2d arrays """ from __future__ import division, absolute_import, print_function from numpy.core.numeric import ( asanyarray, arange, zeros, greater_equal, multiply, ones, asarray, where, int8, int16, int32, int64, empty, promote_types, diagonal, ) from numpy.core import iinfo __all__ = [ 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'rot90', 'tri', 'triu', 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] i1 = iinfo(int8) i2 = iinfo(int16) i4 = iinfo(int32) def _min_int(low, high): """ get small int that fits the range """ if high <= i1.max and low >= i1.min: return int8 if high <= i2.max and low >= i2.min: return int16 if high <= i4.max and low >= i4.min: return int32 return int64 def fliplr(m): """ Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array, must be at least 2-D. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to A[:,::-1]. Requires the array to be at least 2-D. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.fliplr(A) array([[ 0., 0., 1.], [ 0., 2., 0.], [ 3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A)==A[:,::-1,...]) True """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must be >= 2-d.") return m[:, ::-1] def flipud(m): """ Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``A[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.0, 2, 3]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.flipud(A) array([[ 0., 0., 3.], [ 0., 2., 0.], [ 1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A)==A[::-1,...]) True >>> np.flipud([1,2]) array([2, 1]) """ m = asanyarray(m) if m.ndim < 1: raise ValueError("Input must be >= 1-d.") return m[::-1, ...] def rot90(m, k=1): """ Rotate an array by 90 degrees in the counter-clockwise direction. The first two dimensions are rotated; therefore, the array must be at least 2-D. Parameters ---------- m : array_like Array of two or more dimensions. k : integer Number of times the array is rotated by 90 degrees. Returns ------- y : ndarray Rotated array. See Also -------- fliplr : Flip an array horizontally. flipud : Flip an array vertically. Examples -------- >>> m = np.array([[1,2],[3,4]], int) >>> m array([[1, 2], [3, 4]]) >>> np.rot90(m) array([[2, 4], [1, 3]]) >>> np.rot90(m, 2) array([[4, 3], [2, 1]]) """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must >= 2-d.") k = k % 4 if k == 0: return m elif k == 1: return fliplr(m).swapaxes(0, 1) elif k == 2: return fliplr(flipud(m)) else: # k == 3 return fliplr(m.swapaxes(0, 1)) def eye(N, M=None, k=0, dtype=float): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- identity : (almost) equivalent function diag : diagonal 2-D array from a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[ 0., 1., 0.], [ 0., 0., 1.], [ 0., 0., 0.]]) """ if M is None: M = N m = zeros((N, M), dtype=dtype) if k >= M: return m if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. See the more detailed documentation for ``numpy.diagonal`` if you use this function to extract a diagonal and wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are using. Parameters ---------- v : array_like If `v` is a 2-D array, return a copy of its `k`-th diagonal. If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th diagonal. k : int, optional Diagonal in question. The default is 0. Use `k>0` for diagonals above the main diagonal, and `k<0` for diagonals below the main diagonal. Returns ------- out : ndarray The extracted diagonal or constructed diagonal array. See Also -------- diagonal : Return specified diagonals. diagflat : Create a 2-D array with the flattened input as a diagonal. trace : Sum along diagonals. triu : Upper triangle of an array. tril : Lower triangle of an array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ v = asanyarray(v) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = zeros((n, n), v.dtype) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: return diagonal(v, k) else: raise ValueError("Input must be 1- or 2-d.") def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ try: wrap = v.__array_wrap__ except AttributeError: wrap = None v = asarray(v).ravel() s = len(v) n = s + abs(k) res = zeros((n, n), v.dtype) if (k >= 0): i = arange(0, n-k) fi = i+k+i*n else: i = arange(0, n+k) fi = i+(i-k)*n res.flat[fi] = v if not wrap: return res return wrap(res) def tri(N, M=None, k=0, dtype=float): """ An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- tri : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[ 0., 0., 0., 0., 0.], [ 1., 0., 0., 0., 0.], [ 1., 1., 0., 0., 0.]]) """ if M is None: M = N m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), arange(-k, M-k, dtype=_min_int(-k, M - k))) # Avoid making a copy if the requested type is already bool m = m.astype(dtype, copy=False) return m def tril(m, k=0): """ Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- tril : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k, dtype=bool) return where(mask, m, zeros(1, m.dtype)) def triu(m, k=0): """ Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k-1, dtype=bool) return where(mask, zeros(1, m.dtype), m) # Originally borrowed from John Hunter and matplotlib def vander(x, N=None, increasing=False): """ Generate a Vandermonde matrix. The columns of the output matrix are powers of the input vector. The order of the powers is determined by the `increasing` boolean argument. Specifically, when `increasing` is False, the `i`-th output column is the input vector raised element-wise to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named for Alexandre- Theophile Vandermonde. Parameters ---------- x : array_like 1-D input array. N : int, optional Number of columns in the output. If `N` is not specified, a square array is returned (``N = len(x)``). increasing : bool, optional Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. .. versionadded:: 1.9.0 Returns ------- out : ndarray Vandermonde matrix. If `increasing` is False, the first column is ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is True, the columns are ``x^0, x^1, ..., x^(N-1)``. See Also -------- polynomial.polynomial.polyvander Examples -------- >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> np.vander(x, increasing=True) array([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: >>> np.linalg.det(np.vander(x)) 48.000000000000043 >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48 """ x = asarray(x) if x.ndim != 1: raise ValueError("x must be a one-dimensional array or sequence.") if N is None: N = len(x) v = empty((len(x), N), dtype=promote_types(x.dtype, int)) tmp = v[:, ::-1] if not increasing else v if N > 0: tmp[:, 0] = 1 if N > 1: tmp[:, 1:] = x[:, None] multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) return v def histogram2d(x, y, bins=10, range=None, normed=False, weights=None): """ Compute the bi-dimensional histogram of two data samples. Parameters ---------- x : array_like, shape (N,) An array containing the x coordinates of the points to be histogrammed. y : array_like, shape (N,) An array containing the y coordinates of the points to be histogrammed. bins : int or array_like or [int, int] or [array, array], optional The bin specification: * If int, the number of bins for the two dimensions (nx=ny=bins). * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). * If [int, int], the number of bins in each dimension (nx, ny = bins). * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). * A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges. range : array_like, shape(2,2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range will be considered outliers and not tallied in the histogram. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density ``bin_count / sample_count / bin_area``. weights : array_like, shape(N,), optional An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights are normalized to 1 if `normed` is True. If `normed` is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray, shape(nx, ny) The bi-dimensional histogram of samples `x` and `y`. Values in `x` are histogrammed along the first dimension and values in `y` are histogrammed along the second dimension. xedges : ndarray, shape(nx,) The bin edges along the first dimension. yedges : ndarray, shape(ny,) The bin edges along the second dimension. See Also -------- histogram : 1D histogram histogramdd : Multidimensional histogram Notes ----- When `normed` is True, then the returned histogram is the sample density, defined such that the sum over bins of the product ``bin_value * bin_area`` is 1. Please note that the histogram does not follow the Cartesian convention where `x` values are on the abscissa and `y` values on the ordinate axis. Rather, `x` is histogrammed along the first dimension of the array (vertical), and `y` along the second dimension of the array (horizontal). This ensures compatibility with `histogramdd`. Examples -------- >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt Construct a 2D-histogram with variable bin width. First define the bin edges: >>> xedges = [0, 1, 1.5, 3, 5] >>> yedges = [0, 2, 3, 4, 6] Next we create a histogram H with random bin content: >>> x = np.random.normal(3, 1, 100) >>> y = np.random.normal(1, 1, 100) >>> H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges)) Or we fill the histogram H with a determined bin content: >>> H = np.ones((4, 4)).cumsum().reshape(4, 4) >>> print H[::-1] # This shows the bin content in the order as plotted [[ 13. 14. 15. 16.] [ 9. 10. 11. 12.] [ 5. 6. 7. 8.] [ 1. 2. 3. 4.]] Imshow can only do an equidistant representation of bins: >>> fig = plt.figure(figsize=(7, 3)) >>> ax = fig.add_subplot(131) >>> ax.set_title('imshow: equidistant') >>> im = plt.imshow(H, interpolation='nearest', origin='low', extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) pcolormesh can display exact bin edges: >>> ax = fig.add_subplot(132) >>> ax.set_title('pcolormesh: exact bin edges') >>> X, Y = np.meshgrid(xedges, yedges) >>> ax.pcolormesh(X, Y, H) >>> ax.set_aspect('equal') NonUniformImage displays exact bin edges with interpolation: >>> ax = fig.add_subplot(133) >>> ax.set_title('NonUniformImage: interpolated') >>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear') >>> xcenters = xedges[:-1] + 0.5 * (xedges[1:] - xedges[:-1]) >>> ycenters = yedges[:-1] + 0.5 * (yedges[1:] - yedges[:-1]) >>> im.set_data(xcenters, ycenters, H) >>> ax.images.append(im) >>> ax.set_xlim(xedges[0], xedges[-1]) >>> ax.set_ylim(yedges[0], yedges[-1]) >>> ax.set_aspect('equal') >>> plt.show() """ from numpy import histogramdd try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins, float) bins = [xedges, yedges] hist, edges = histogramdd([x, y], bins, range, normed, weights) return hist, edges[0], edges[1] def mask_indices(n, mask_func, k=0): """ Return the indices to access (n, n) arrays, given a masking function. Assume `mask_func` is a function that, for a square array a of size ``(n, n)`` with a possible offset argument `k`, when called as ``mask_func(a, k)`` returns a new array with zeros in certain locations (functions like `triu` or `tril` do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of `triu`, `tril`. That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. `k` is an optional argument to the function. k : scalar An optional argument which is passed through to `mask_func`. Functions like `triu`, `tril` take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The `n` arrays of indices corresponding to the locations where ``mask_func(np.ones((n, n)), k)`` is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if `a` is a 3x3 array: >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) """ m = ones((n, n), int) a = mask_func(m, k) return where(a != 0) def tril_indices(n, k=0, m=None): """ Return the indices for the lower-triangle of an (n, m) array. Parameters ---------- n : int The row dimension of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ return where(tri(n, m, k=k, dtype=bool)) def tril_indices_from(arr, k=0): """ Return the indices for the lower-triangle of arr. See `tril_indices` for full details. Parameters ---------- arr : array_like The indices will be valid for square arrays whose dimensions are the same as arr. k : int, optional Diagonal offset (see `tril` for details). See Also -------- tril_indices, tril Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) def triu_indices(n, k=0, m=None): """ Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return where(~tri(n, m, k=k-1, dtype=bool)) def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of arr. See `triu_indices` for full details. Parameters ---------- arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see `triu` for details). Returns ------- triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of `arr`. See Also -------- triu_indices, triu Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
bsd-3-clause
pianomania/scikit-learn
sklearn/model_selection/tests/test_search.py
2
51430
"""Test the search module""" from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from sklearn.externals.joblib._compat import PY3_OR_LATER from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.fixes import in1d from sklearn.utils.fixes import sp_version from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.exceptions import NotFittedError from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import LeaveOneGroupOut from sklearn.model_selection import LeavePGroupsOut from sklearn.model_selection import GroupKFold from sklearn.model_selection import GroupShuffleSplit from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import ParameterGrid from sklearn.model_selection import ParameterSampler from sklearn.model_selection._validation import FitFailedWarning from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline from sklearn.linear_model import Ridge, SGDClassifier from sklearn.model_selection.tests.common import OneTimeSplitter # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the parameter search algorithms""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) self.classes_ = np.unique(Y) return self def predict(self, T): return T.shape[0] predict_proba = predict predict_log_proba = predict decision_function = predict transform = predict inverse_transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) assert_array_equal(grid_search.cv_results_["param_foo_param"].data, [1, 2, 3]) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) def check_hyperparameter_searcher_with_fit_params(klass, **klass_kwargs): X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(expected_fit_params=['spam', 'eggs']) searcher = klass(clf, {'foo_param': [1, 2, 3]}, cv=2, **klass_kwargs) # The CheckingClassifer generates an assertion error if # a parameter is missing or has length != len(X). assert_raise_message(AssertionError, "Expected fit parameter(s) ['eggs'] not seen.", searcher.fit, X, y, spam=np.ones(10)) assert_raise_message(AssertionError, "Fit parameter spam has length 1; expected 4.", searcher.fit, X, y, spam=np.ones(1), eggs=np.zeros(10)) searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10)) def test_grid_search_with_fit_params(): check_hyperparameter_searcher_with_fit_params(GridSearchCV) def test_random_search_with_fit_params(): check_hyperparameter_searcher_with_fit_params(RandomizedSearchCV, n_iter=1) def test_grid_search_fit_params_deprecation(): # NOTE: Remove this test in v0.21 # Use of `fit_params` in the class constructor is deprecated, # but will still work until v0.21. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(expected_fit_params=['spam']) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, fit_params={'spam': np.ones(10)}) assert_warns(DeprecationWarning, grid_search.fit, X, y) def test_grid_search_fit_params_two_places(): # NOTE: Remove this test in v0.21 # If users try to input fit parameters in both # the constructor (deprecated use) and the `fit` # method, we'll ignore the values passed to the constructor. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(expected_fit_params=['spam']) # The "spam" array is too short and will raise an # error in the CheckingClassifier if used. grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, fit_params={'spam': np.ones(1)}) expected_warning = ('Ignoring fit_params passed as a constructor ' 'argument in favor of keyword arguments to ' 'the "fit" method.') assert_warns_message(RuntimeWarning, expected_warning, grid_search.fit, X, y, spam=np.ones(10)) # Verify that `fit` prefers its own kwargs by giving valid # kwargs in the constructor and invalid in the method call grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, fit_params={'spam': np.ones(10)}) assert_raise_message(AssertionError, "Fit parameter spam has length 1", grid_search.fit, X, y, spam=np.ones(1)) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = search_no_scoring.score(X, y) score_accuracy = search_accuracy.score(X, y) score_no_score_auc = search_no_score_method_auc.score(X, y) score_auc = search_auc.score(X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_grid_search_groups(): # Check if ValueError (when groups is None) propagates to GridSearchCV # And also check if groups is correctly passed to the cv object rng = np.random.RandomState(0) X, y = make_classification(n_samples=15, n_classes=2, random_state=0) groups = rng.randint(0, 3, 15) clf = LinearSVC(random_state=0) grid = {'C': [1]} group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2), GroupKFold(), GroupShuffleSplit()] for cv in group_cvs: gs = GridSearchCV(clf, grid, cv=cv) assert_raise_message(ValueError, "The groups parameter should not be None", gs.fit, X, y) gs.fit(X, y, groups=groups) non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()] for cv in non_group_cvs: gs = GridSearchCV(clf, grid, cv=cv) # Should not raise an error gs.fit(X, y) def test_classes__property(): # Test that classes_ property matches best_estimator_.classes_ X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) Cs = [.1, 1, 10] grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs}) grid_search.fit(X, y) assert_array_equal(grid_search.best_estimator_.classes_, grid_search.classes_) # Test that regressors do not have a classes_ attribute grid_search = GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]}) grid_search.fit(X, y) assert_false(hasattr(grid_search, 'classes_')) # Test that the grid searcher has no classes_ attribute before it's fit grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs}) assert_false(hasattr(grid_search, 'classes_')) # Test that the grid searcher has no classes_ attribute without a refit grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs}, refit=False) grid_search.fit(X, y) assert_false(hasattr(grid_search, 'classes_')) def test_trivial_cv_results_attr(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "cv_results_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_no_refit(): # Test that GSCV can be used for model selection alone without refitting clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(not hasattr(grid_search, "best_estimator_") and hasattr(grid_search, "best_index_") and hasattr(grid_search, "best_params_")) # Make sure the predict/transform etc fns raise meaningfull error msg for fn_name in ('predict', 'predict_proba', 'predict_log_proba', 'transform', 'inverse_transform'): assert_raise_message(NotFittedError, ('refit=False. %s is available only after ' 'refitting on the best parameters' % fn_name), getattr(grid_search, fn_name), X) def test_grid_search_error(): # Test that grid search will capture errors on data with different length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_when_param_grid_includes_range(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = None if PY3_OR_LATER: grid_search = GridSearchCV(clf, {'foo_param': range(1, 4)}) else: grid_search = GridSearchCV(clf, {'foo_param': xrange(1, 4)}) grid_search.fit(X, y) assert_equal(grid_search.best_estimator_.foo_param, 2) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a sequence" "(but not a string) or np.ndarray.", GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a non-empty sequence.", GridSearchCV, clf, param_dict) param_dict = {"C": "1,2,3"} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a sequence" "(but not a string) or np.ndarray.", GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) @ignore_warnings def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n_splits=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n_splits=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) @ignore_warnings def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "cv_results_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='fowlkes_mallows_score') grid_search.fit(X, y) # So can FMS ;) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) # test that repeated calls yield identical parameters param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=3, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) if sp_version >= (0, 16): param_distributions = {"C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) def check_cv_results_array_types(cv_results, param_keys, score_keys): # Check if the search `cv_results`'s array are of correct types assert_true(all(isinstance(cv_results[param], np.ma.MaskedArray) for param in param_keys)) assert_true(all(cv_results[key].dtype == object for key in param_keys)) assert_false(any(isinstance(cv_results[key], np.ma.MaskedArray) for key in score_keys)) assert_true(all(cv_results[key].dtype == np.float64 for key in score_keys if not key.startswith('rank'))) assert_true(cv_results['rank_test_score'].dtype == np.int32) def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand): # Test the search.cv_results_ contains all the required results assert_array_equal(sorted(cv_results.keys()), sorted(param_keys + score_keys + ('params',))) assert_true(all(cv_results[key].shape == (n_cand,) for key in param_keys + score_keys)) def check_cv_results_grid_scores_consistency(search): # TODO Remove in 0.20 cv_results = search.cv_results_ res_scores = np.vstack(list([cv_results["split%d_test_score" % i] for i in range(search.n_splits_)])).T res_means = cv_results["mean_test_score"] res_params = cv_results["params"] n_cand = len(res_params) grid_scores = assert_warns(DeprecationWarning, getattr, search, 'grid_scores_') assert_equal(len(grid_scores), n_cand) # Check consistency of the structure of grid_scores for i in range(n_cand): assert_equal(grid_scores[i].parameters, res_params[i]) assert_array_equal(grid_scores[i].cv_validation_scores, res_scores[i, :]) assert_array_equal(grid_scores[i].mean_validation_score, res_means[i]) def test_grid_search_cv_results(): X, y = make_classification(n_samples=50, n_features=4, random_state=42) n_splits = 3 n_grid_points = 6 params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]), dict(kernel=['poly', ], degree=[1, 2])] grid_search = GridSearchCV(SVC(), cv=n_splits, iid=False, param_grid=params) grid_search.fit(X, y) grid_search_iid = GridSearchCV(SVC(), cv=n_splits, iid=True, param_grid=params) grid_search_iid.fit(X, y) param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel') score_keys = ('mean_test_score', 'mean_train_score', 'rank_test_score', 'split0_test_score', 'split1_test_score', 'split2_test_score', 'split0_train_score', 'split1_train_score', 'split2_train_score', 'std_test_score', 'std_train_score', 'mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time') n_candidates = n_grid_points for search, iid in zip((grid_search, grid_search_iid), (False, True)): assert_equal(iid, search.iid) cv_results = search.cv_results_ # Check if score and timing are reasonable assert_true(all(cv_results['rank_test_score'] >= 1)) assert_true(all(cv_results[k] >= 0) for k in score_keys if k is not 'rank_test_score') assert_true(all(cv_results[k] <= 1) for k in score_keys if 'time' not in k and k is not 'rank_test_score') # Check cv_results structure check_cv_results_array_types(cv_results, param_keys, score_keys) check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates) # Check masking cv_results = grid_search.cv_results_ n_candidates = len(grid_search.cv_results_['params']) assert_true(all((cv_results['param_C'].mask[i] and cv_results['param_gamma'].mask[i] and not cv_results['param_degree'].mask[i]) for i in range(n_candidates) if cv_results['param_kernel'][i] == 'linear')) assert_true(all((not cv_results['param_C'].mask[i] and not cv_results['param_gamma'].mask[i] and cv_results['param_degree'].mask[i]) for i in range(n_candidates) if cv_results['param_kernel'][i] == 'rbf')) check_cv_results_grid_scores_consistency(search) def test_random_search_cv_results(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # scipy.stats dists now supports `seed` but we still support scipy 0.12 # which doesn't support the seed. Hence the assertions in the test for # random_search alone should not depend on randomization. n_splits = 3 n_search_iter = 30 params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) random_search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_splits, iid=False, param_distributions=params) random_search.fit(X, y) random_search_iid = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_splits, iid=True, param_distributions=params) random_search_iid.fit(X, y) param_keys = ('param_C', 'param_gamma') score_keys = ('mean_test_score', 'mean_train_score', 'rank_test_score', 'split0_test_score', 'split1_test_score', 'split2_test_score', 'split0_train_score', 'split1_train_score', 'split2_train_score', 'std_test_score', 'std_train_score', 'mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time') n_cand = n_search_iter for search, iid in zip((random_search, random_search_iid), (False, True)): assert_equal(iid, search.iid) cv_results = search.cv_results_ # Check results structure check_cv_results_array_types(cv_results, param_keys, score_keys) check_cv_results_keys(cv_results, param_keys, score_keys, n_cand) # For random_search, all the param array vals should be unmasked assert_false(any(cv_results['param_C'].mask) or any(cv_results['param_gamma'].mask)) check_cv_results_grid_scores_consistency(search) def test_search_iid_param(): # Test the IID parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(SVC(), param_grid={'C': [1, 10]}, cv=cv) random_search = RandomizedSearchCV(SVC(), n_iter=2, param_distributions={'C': [1, 10]}, cv=cv) for search in (grid_search, random_search): search.fit(X, y) assert_true(search.iid) test_cv_scores = np.array(list(search.cv_results_['split%d_test_score' % s_i][0] for s_i in range(search.n_splits_))) train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s_i][0] for s_i in range(search.n_splits_))) test_mean = search.cv_results_['mean_test_score'][0] test_std = search.cv_results_['std_test_score'][0] train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s_i][0] for s_i in range(search.n_splits_))) train_mean = search.cv_results_['mean_train_score'][0] train_std = search.cv_results_['std_train_score'][0] # Test the first candidate assert_equal(search.cv_results_['param_C'][0], 1) assert_array_almost_equal(test_cv_scores, [1, 1. / 3.]) assert_array_almost_equal(train_cv_scores, [1, 1]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average and weighted std expected_test_mean = 1 * 1. / 4. + 1. / 3. * 3. / 4. expected_test_std = np.sqrt(1. / 4 * (expected_test_mean - 1) ** 2 + 3. / 4 * (expected_test_mean - 1. / 3.) ** 2) assert_almost_equal(test_mean, expected_test_mean) assert_almost_equal(test_std, expected_test_std) # For the train scores, we do not take a weighted mean irrespective of # i.i.d. or not assert_almost_equal(train_mean, 1) assert_almost_equal(train_std, 0) # once with iid=False grid_search = GridSearchCV(SVC(), param_grid={'C': [1, 10]}, cv=cv, iid=False) random_search = RandomizedSearchCV(SVC(), n_iter=2, param_distributions={'C': [1, 10]}, cv=cv, iid=False) for search in (grid_search, random_search): search.fit(X, y) assert_false(search.iid) test_cv_scores = np.array(list(search.cv_results_['split%d_test_score' % s][0] for s in range(search.n_splits_))) test_mean = search.cv_results_['mean_test_score'][0] test_std = search.cv_results_['std_test_score'][0] train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s][0] for s in range(search.n_splits_))) train_mean = search.cv_results_['mean_train_score'][0] train_std = search.cv_results_['std_train_score'][0] assert_equal(search.cv_results_['param_C'][0], 1) # scores are the same as above assert_array_almost_equal(test_cv_scores, [1, 1. / 3.]) # Unweighted mean/std is used assert_almost_equal(test_mean, np.mean(test_cv_scores)) assert_almost_equal(test_std, np.std(test_cv_scores)) # For the train scores, we do not take a weighted mean irrespective of # i.i.d. or not assert_almost_equal(train_mean, 1) assert_almost_equal(train_std, 0) def test_search_cv_results_rank_tie_breaking(): X, y = make_blobs(n_samples=50, random_state=42) # The two C values are close enough to give similar models # which would result in a tie of their mean cv-scores param_grid = {'C': [1, 1.001, 0.001]} grid_search = GridSearchCV(SVC(), param_grid=param_grid) random_search = RandomizedSearchCV(SVC(), n_iter=3, param_distributions=param_grid) for search in (grid_search, random_search): search.fit(X, y) cv_results = search.cv_results_ # Check tie breaking strategy - # Check that there is a tie in the mean scores between # candidates 1 and 2 alone assert_almost_equal(cv_results['mean_test_score'][0], cv_results['mean_test_score'][1]) assert_almost_equal(cv_results['mean_train_score'][0], cv_results['mean_train_score'][1]) try: assert_almost_equal(cv_results['mean_test_score'][1], cv_results['mean_test_score'][2]) except AssertionError: pass try: assert_almost_equal(cv_results['mean_train_score'][1], cv_results['mean_train_score'][2]) except AssertionError: pass # 'min' rank should be assigned to the tied candidates assert_almost_equal(search.cv_results_['rank_test_score'], [1, 1, 3]) def test_search_cv_results_none_param(): X, y = [[1], [2], [3], [4], [5]], [0, 0, 0, 0, 1] estimators = (DecisionTreeRegressor(), DecisionTreeClassifier()) est_parameters = {"random_state": [0, None]} cv = KFold(random_state=0) for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv).fit(X, y) assert_array_equal(grid_search.cv_results_['param_random_state'], [0, None]) @ignore_warnings() def test_search_cv_timing(): svc = LinearSVC(random_state=0) X = [[1, ], [2, ], [3, ], [4, ]] y = [0, 1, 1, 0] gs = GridSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0) rs = RandomizedSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0, n_iter=2) for search in (gs, rs): search.fit(X, y) for key in ['mean_fit_time', 'std_fit_time']: # NOTE The precision of time.time in windows is not high # enough for the fit/score times to be non-zero for trivial X and y assert_true(np.all(search.cv_results_[key] >= 0)) assert_true(np.all(search.cv_results_[key] < 1)) for key in ['mean_score_time', 'std_score_time']: assert_true(search.cv_results_[key][1] >= 0) assert_true(search.cv_results_[key][0] == 0.0) assert_true(np.all(search.cv_results_[key] < 1)) def test_grid_search_correct_score_results(): # test that correct scores are used n_splits = 3 clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score, cv=n_splits) cv_results = grid_search.fit(X, y).cv_results_ # Test scorer names result_keys = list(cv_results.keys()) expected_keys = (("mean_test_score", "rank_test_score") + tuple("split%d_test_score" % cv_i for cv_i in range(n_splits))) assert_true(all(in1d(expected_keys, result_keys))) cv = StratifiedKFold(n_splits=n_splits) n_splits = grid_search.n_splits_ for candidate_i, C in enumerate(Cs): clf.set_params(C=C) cv_scores = np.array( list(grid_search.cv_results_['split%d_test_score' % s][candidate_i] for s in range(n_splits))) for i, (train, test) in enumerate(cv.split(X, y)): clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, cv_scores[i]) def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) grid_search_pickled = pickle.loads(pickle.dumps(grid_search)) assert_array_almost_equal(grid_search.predict(X), grid_search_pickled.predict(X)) random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) random_search_pickled = pickle.loads(pickle.dumps(random_search)) assert_array_almost_equal(random_search.predict(X), random_search_pickled.predict(X)) def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(return_indicator=True, random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) res_params = grid_search.cv_results_['params'] for cand_i in range(len(res_params)): est.set_params(**res_params[cand_i]) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal( correct_score, grid_search.cv_results_['split%d_test_score' % i][cand_i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) res_params = random_search.cv_results_['params'] for cand_i in range(len(res_params)): est.set_params(**res_params[cand_i]) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal( correct_score, random_search.cv_results_['split%d_test_score' % i][cand_i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) n_candidates = len(gs.cv_results_['params']) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. def get_cand_scores(i): return np.array(list(gs.cv_results_['split%d_test_score' % s][i] for s in range(gs.n_splits_))) assert all((np.all(get_cand_scores(cand_i) == 0.0) for cand_i in range(n_candidates) if gs.cv_results_['param_parameter'][cand_i] == FailingClassifier.FAILING_PARAMETER)) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) n_candidates = len(gs.cv_results_['params']) assert all(np.all(np.isnan(get_cand_scores(cand_i))) for cand_i in range(n_candidates) if gs.cv_results_['param_parameter'][cand_i] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7) def test_stochastic_gradient_loss_param(): # Make sure the predict_proba works when loss is specified # as one of the parameters in the param_grid. param_grid = { 'loss': ['log'], } X = np.arange(24).reshape(6, -1) y = [0, 0, 0, 1, 1, 1] clf = GridSearchCV(estimator=SGDClassifier(loss='hinge'), param_grid=param_grid) # When the estimator is not fitted, `predict_proba` is not available as the # loss is 'hinge'. assert_false(hasattr(clf, "predict_proba")) clf.fit(X, y) clf.predict_proba(X) clf.predict_log_proba(X) # Make sure `predict_proba` is not available when setting loss=['hinge'] # in param_grid param_grid = { 'loss': ['hinge'], } clf = GridSearchCV(estimator=SGDClassifier(loss='hinge'), param_grid=param_grid) assert_false(hasattr(clf, "predict_proba")) clf.fit(X, y) assert_false(hasattr(clf, "predict_proba")) def test_search_train_scores_set_to_false(): X = np.arange(6).reshape(6, -1) y = [0, 0, 0, 1, 1, 1] clf = LinearSVC(random_state=0) gs = GridSearchCV(clf, param_grid={'C': [0.1, 0.2]}, return_train_score=False) gs.fit(X, y) def test_grid_search_cv_splits_consistency(): # Check if a one time iterable is accepted as a cv parameter. n_samples = 100 n_splits = 5 X, y = make_classification(n_samples=n_samples, random_state=0) gs = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.2, 0.3]}, cv=OneTimeSplitter(n_splits=n_splits, n_samples=n_samples)) gs.fit(X, y) gs2 = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.2, 0.3]}, cv=KFold(n_splits=n_splits)) gs2.fit(X, y) def _pop_time_keys(cv_results): for key in ('mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time'): cv_results.pop(key) return cv_results # OneTimeSplitter is a non-re-entrant cv where split can be called only # once if ``cv.split`` is called once per param setting in GridSearchCV.fit # the 2nd and 3rd parameter will not be evaluated as no train/test indices # will be generated for the 2nd and subsequent cv.split calls. # This is a check to make sure cv.split is not called once per param # setting. np.testing.assert_equal(_pop_time_keys(gs.cv_results_), _pop_time_keys(gs2.cv_results_)) # Check consistency of folds across the parameters gs = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.1, 0.2, 0.2]}, cv=KFold(n_splits=n_splits, shuffle=True)) gs.fit(X, y) # As the first two param settings (C=0.1) and the next two param # settings (C=0.2) are same, the test and train scores must also be # same as long as the same train/test indices are generated for all # the cv splits, for both param setting for score_type in ('train', 'test'): per_param_scores = {} for param_i in range(4): per_param_scores[param_i] = list( gs.cv_results_['split%d_%s_score' % (s, score_type)][param_i] for s in range(5)) assert_array_almost_equal(per_param_scores[0], per_param_scores[1]) assert_array_almost_equal(per_param_scores[2], per_param_scores[3])
bsd-3-clause
ananthamurthy/eyeBlinkBehaviour
analysis/analyze_mouse_performance.py
2
5547
"""analyze_dir.py: Analyze a given directory. All trials are accumulated and plotted. """ __author__ = "Dilawar Singh" __copyright__ = "Copyright 2016, Dilawar Singh " __credits__ = ["NCBS Bangalore"] __license__ = "GNU GPL" __version__ = "1.0.0" __maintainer__ = "Dilawar Singh" __email__ = "[email protected]" __status__ = "Development" import os import sys import numpy as np import dateutil import dateutil.parser import matplotlib import matplotlib.pyplot as plt from collections import defaultdict import logging import re import analyze_trial as at import session_type as st import math matplotlib.rcParams.update( {'font.size' : 10} ) try: plt.style.use('classic') except Exception as e: pass args_ = None csplus, csminus = [], [] csplusIdx, csminusIdx = [], [] distraction = [] distractionIdx = [] probes = [] probesIdx = [] def plot_subplot( ax, data, idx, tVec, aN, bN, title ): csplusData = np.vstack( data ) plt.imshow( csplusData, cmap = "jet" , extent = [tVec[aN], tVec[bN], len(idx), 0] , vmin = data.min(), vmax = data.max() , interpolation = 'none', aspect='auto' ) # ax.set_xticks( range(0,len(idx),2), idx[::2] ) ax.set_xlabel( 'Time (ms)' ) ax.set_ylabel( '# Trial' ) ax.set_title( title ) ax.legend( ) # ax.colorbar( ) def accept( subdir_name, reject_list ): for l in reject_list: if l in subdir_name: print( '[INFO] Dir %s is rejected' % subdir_name ) return False return True def plot_area_under_curve( cspData, normalised = True ): if normalised: outfile = os.path.join( args_.dir, 'area_under_tone_puff_normalised.png' ) else: outfile = os.path.join( args_.dir, 'area_under_tone_puff_raw.png' ) for i, (t, sense, area) in enumerate(cspData): ax = plt.subplot( math.ceil( len(cspData)/ 2.0 ), 2, i + 1 ) area = zip(*area) if not normalised: plt.scatter( area[0] , area[1] ) ax.set_xlim( 0, 3000 ) ax.set_ylim( 0, 3000 ) else: plt.scatter( area[0] / np.max( area[0] ) , area[1] / np.max( area[1])) plt.xlabel( 'Tone AOC' ) plt.ylabel( 'Puff AOC' ) plt.savefig( outfile ) print('[INFO] Saved tone/puff area scatter for all session to %s' % outfile) def plot_performance( cspData ): global args_ outfile = os.path.join( args_.dir, 'performance.png' ) sessions, performances = [], [] for i, (t, sense, area) in enumerate( cspData ): sessions.append( i + 1 ) area = zip( *area ) tone, puff = area performances.append( np.mean(tone) / np.mean( puff) ) plt.plot( sessions, performances , '-*') plt.xlabel( '# Session ' ) plt.ylabel( 'Performance = tone / puff ' ) plt.savefig( outfile ) print( '[INFO] Performance is save to %s' % outfile ) def plot_csp_data( cspData ): """Plot CS_P type of trials from each session """ global args_ allSession = [] allArea = [] for t, sense, area in cspData: allSession.append( np.mean(sense, axis=0) ) for i, sens in enumerate(allSession): plt.subplot( len(allSession), 1, i + 1 ) plt.plot( sens, label = 'Session %s' % (i + 1) ) plt.legend( ) # plt.colorbar( ) outfile = os.path.join( args_.dir, 'all_cs_p.png' ) plt.savefig( outfile ) print( '[INFO] Saved all CS_P to %s' % outfile ) plt.figure( ) plot_area_under_curve( cspData, False ) plt.figure( ) plot_area_under_curve( cspData, True ) # Final performace. plt.figure( ) plot_performance( cspData ) def rank_behaviour( session_type_dirs ): """Rank the behaviour of a given mouse. The directory session_type_dirs contains all the data related to this mouse. """ cspData = [] areaData = [] for sd in session_type_dirs: sessionData = st.session_data( sd ) cspData.append( sessionData['CS_P'] ) plot_csp_data( cspData ) def get_sessions( dir_name, **kwargs ): ignoreSessionTypeList = kwargs.get( 'ignore_session_types', [] ) files = {} validSubDirs = [] for d, sd, fs in os.walk( dir_name ): stPat = re.compile( r'SessionType\d+' ) for sdd in sd: if stPat.search( sdd ): if accept( sdd, ignoreSessionTypeList ): validSubDirs.append( os.path.join(d, sdd) ) rank_behaviour( validSubDirs ) def main( ): global args_ if not args_.output_dir: args_.output_dir = os.path.join(args_.dir, '_plots') if not os.path.isdir( args_.output_dir): os.makedirs( args_.output_dir ) sessions = get_sessions( args_.dir, ignore_session_types=[ 'SessionType12'] ) if __name__ == '__main__': import argparse # Argument parser. description = '''Scoring mouse performance''' parser = argparse.ArgumentParser(description=description) parser.add_argument('--dir', '-d' , required = True , help = 'Directory to seach for behaviour data for a mouse' ) parser.add_argument('--subplots', '-s' , action = 'store_true' , help = 'Each trial in subplot.' ) parser.add_argument('--output_dir', '-o' , required = False , default = '' , help = 'Directory to save results.' ) class Args: pass args_ = Args() parser.parse_args(namespace=args_) main( )
gpl-3.0
ldirer/scikit-learn
sklearn/linear_model/stochastic_gradient.py
5
51103
# Authors: Peter Prettenhofer <[email protected]> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" import numpy as np from abc import ABCMeta, abstractmethod from ..externals.joblib import Parallel, delayed from .base import LinearClassifierMixin, SparseCoefMixin from .base import make_dataset from ..base import BaseEstimator, RegressorMixin from ..utils import check_array, check_random_state, check_X_y from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import _check_partial_fit_first_call from ..utils.validation import check_is_fitted from ..externals import six from .sgd_fast import plain_sgd, average_sgd from ..utils import compute_class_weight from ..utils import deprecated from .sgd_fast import Hinge from .sgd_fast import SquaredHinge from .sgd_fast import Log from .sgd_fast import ModifiedHuber from .sgd_fast import SquaredLoss from .sgd_fast import Huber from .sgd_fast import EpsilonInsensitive from .sgd_fast import SquaredEpsilonInsensitive LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "pa1": 4, "pa2": 5} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} DEFAULT_EPSILON = 0.1 # Default value of ``epsilon`` parameter. class BaseSGD(six.with_metaclass(ABCMeta, BaseEstimator, SparseCoefMixin)): """Base class for SGD classification and regression.""" def __init__(self, loss, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, warm_start=False, average=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.n_iter = n_iter self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.warm_start = warm_start self.average = average self._validate_params() def set_params(self, *args, **kwargs): super(BaseSGD, self).set_params(*args, **kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if self.n_iter <= 0: raise ValueError("n_iter must be > zero") if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.learning_rate in ("constant", "invscaling"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") if self.learning_rate == "optimal" and self.alpha == 0: raise ValueError("alpha must be > 0 since " "learning_rate is 'optimal'. alpha is used " "to compute the optimal learning rate.") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon, ) return loss_class(*args) except KeyError: raise ValueError("The loss %s is not supported. " % loss) def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError: raise ValueError("learning rate %s " "is not supported. " % learning_rate) def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError: raise ValueError("Penalty %s is not supported. " % penalty) def _validate_sample_weight(self, sample_weight, n_samples): """Set the sample weight array.""" if sample_weight is None: # uniform sample weights sample_weight = np.ones(n_samples, dtype=np.float64, order='C') else: # user-provided array sample_weight = np.asarray(sample_weight, dtype=np.float64, order="C") if sample_weight.shape[0] != n_samples: raise ValueError("Shapes of X and sample_weight do not match.") return sample_weight def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided ``coef_`` does not match " "dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes, ): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1,) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") # initialize average parameters if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = np.zeros(self.coef_.shape, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(self.standard_intercept_.shape, dtype=np.float64, order="C") def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 average_intercept = 0 average_coef = None if len(est.classes_) == 2: if not est.average: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est.standard_coef_.ravel() intercept = est.standard_intercept_[0] average_coef = est.average_coef_.ravel() average_intercept = est.average_intercept_[0] else: if not est.average: coef = est.coef_[i] intercept = est.intercept_[i] else: coef = est.standard_coef_[i] intercept = est.standard_intercept_[i] average_coef = est.average_coef_[i] average_intercept = est.average_intercept_[i] return y_i, coef, intercept, average_coef, average_intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, n_iter, pos_weight, neg_weight, sample_weight): """Fit a single binary classifier. The i'th class is considered the "positive" class. """ # if average is not true, average_coef, and average_intercept will be # unused y_i, coef, intercept, average_coef, average_intercept = \ _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] dataset, intercept_decay = make_dataset(X, y_i, sample_weight) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) # XXX should have random_state_! random_state = check_random_state(est.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if not est.average: return plain_sgd(coef, intercept, est.loss_function_, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay) else: standard_coef, standard_intercept, average_coef, \ average_intercept = average_sgd(coef, intercept, average_coef, average_intercept, est.loss_function_, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay, est.average) if len(est.classes_) == 2: est.average_intercept_[0] = average_intercept else: est.average_intercept_[i] = average_intercept return standard_coef, standard_intercept class BaseSGDClassifier(six.with_metaclass(ABCMeta, BaseSGD, LinearClassifierMixin)): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log, ), "modified_huber": (ModifiedHuber, ), "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(BaseSGDClassifier, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) self.class_weight = class_weight self.n_jobs = int(n_jobs) @property @deprecated("Attribute loss_function was deprecated in version 0.19 and " "will be removed in 0.21. Use 'loss_function_' instead") def loss_function(self): return self.loss_function_ def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, classes, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape self._validate_params() _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments self._expanded_class_weight = compute_class_weight(self.class_weight, self.classes_, y) sample_weight = self._validate_sample_weight(sample_weight, n_samples) if getattr(self, "coef_", None) is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) self.loss_function_ = self._get_loss_function(loss) if not hasattr(self, "t_"): self.t_ = 1.0 # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) else: raise ValueError("The number of class labels must be " "greater than one.") return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if hasattr(self, "classes_"): self.classes_ = None X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and hasattr(self, "coef_"): if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = 1.0 self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, classes, sample_weight, coef_init, intercept_init) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, n_iter): """Fit a binary classifier on X and y. """ coef, intercept = fit_binary(self, 1, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight) self.t_ += n_iter * X.shape[0] # need to be 2d if self.average > 0: if self.average <= self.t_ - 1: self.coef_ = self.average_coef_.reshape(1, -1) self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_.reshape(1, -1) self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ else: self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, n_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OVA: One Versus All. """ # Use joblib to fit OvA in parallel. result = Parallel(n_jobs=self.n_jobs, backend="threading", verbose=self.verbose)( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[i], 1., sample_weight) for i in range(len(self.classes_))) for i, (_, intercept) in enumerate(result): self.intercept_[i] = intercept self.t_ += n_iter * X.shape[0] if self.average > 0: if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.standard_intercept_ = np.atleast_1d(self.intercept_) self.intercept_ = self.standard_intercept_ def partial_fit(self, X, y, classes=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data y : numpy array, shape (n_samples,) Subset of the target values classes : array, shape (n_classes,) Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ if self.class_weight in ['balanced']: raise ValueError("class_weight '{0}' is not supported for " "partial_fit. In order to use 'balanced' weights," " use compute_class_weight('{0}', classes, y). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.".format(self.class_weight)) return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_classes, n_features) The initial coefficients to warm-start the optimization. intercept_init : array, shape (n_classes,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the constructor) if class_weight is specified Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier): """Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'hinge', 'log', 'modified_huber', 'squared_hinge',\ 'perceptron', or a regression loss: 'squared_loss', 'huber',\ 'epsilon_insensitive', or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see SGDRegressor for a description. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 Also used to compute learning_rate when set to 'optimal'. l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int, RandomState instance or None, optional (default=None) The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : integer, optional The verbosity level epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. learning_rate : string, optional The learning rate schedule: - 'constant': eta = eta0 - 'optimal': eta = 1.0 / (alpha * (t + t0)) [default] - 'invscaling': eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double The initial learning rate for the 'constant' or 'invscaling' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double The exponent for inverse scaling learning rate [default 0.5]. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10`` will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (1, n_features) if n_classes == 2 else (n_classes,\ n_features) Weights assigned to the features. intercept_ : array, shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. loss_function_ : concrete ``LossFunction`` Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> clf = linear_model.SGDClassifier() >>> clf.fit(X, Y) ... #doctest: +NORMALIZE_WHITESPACE SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1, penalty='l2', power_t=0.5, random_state=None, shuffle=True, verbose=0, warm_start=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- LinearSVC, LogisticRegression, Perceptron """ def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(SGDClassifier, self).__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, class_weight=class_weight, warm_start=warm_start, average=average) def _check_proba(self): check_is_fitted(self, "t_") if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. For other loss functions it is necessary to perform proper probability calibration by wrapping the classifier with :class:`sklearn.calibration.CalibratedClassifierCV` instead. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) class BaseSGDRegressor(BaseSGD, RegressorMixin): loss_functions = { "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(BaseSGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, "csr", copy=False, order='C', dtype=np.float64) y = y.astype(np.float64, copy=False) n_samples, n_features = X.shape self._validate_params() # Allocate datastructures from input arguments sample_weight = self._validate_sample_weight(sample_weight, n_samples) if getattr(self, "coef_", None) is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) if self.average > 0 and getattr(self, "average_coef_", None) is None: self.average_coef_ = np.zeros(n_features, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(1, dtype=np.float64, order="C") self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, n_iter) return self def partial_fit(self, X, y, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of training data y : numpy array of shape (n_samples,) Subset of target values sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if self.warm_start and getattr(self, "coef_", None) is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_intercept_ = self.intercept_ self.standard_coef_ = self.coef_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = 1.0 return self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, sample_weight, coef_init, intercept_init) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_features,) The initial coefficients to warm-start the optimization. intercept_init : array, shape (1,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) def _decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ check_is_fitted(self, ["t_", "coef_", "intercept_"], all_or_any=all) X = check_array(X, accept_sparse='csr') scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, n_iter): dataset, intercept_decay = make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if not hasattr(self, "t_"): self.t_ = 1.0 random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if self.average > 0: self.standard_coef_, self.standard_intercept_, \ self.average_coef_, self.average_intercept_ =\ average_sgd(self.standard_coef_, self.standard_intercept_[0], self.average_coef_, self.average_intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.average_intercept_ = np.atleast_1d(self.average_intercept_) self.standard_intercept_ = np.atleast_1d(self.standard_intercept_) self.t_ += n_iter * X.shape[0] if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.intercept_ = self.standard_intercept_ else: self.coef_, self.intercept_ = \ plain_sgd(self.coef_, self.intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay) self.t_ += n_iter * X.shape[0] self.intercept_ = np.atleast_1d(self.intercept_) class SGDRegressor(BaseSGDRegressor): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'squared_loss', 'huber', 'epsilon_insensitive', \ or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'squared_loss' which refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 Also used to compute learning_rate when set to 'optimal'. l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int, RandomState instance or None, optional (default=None) The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : integer, optional The verbosity level. epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. learning_rate : string, optional The learning rate schedule: - 'constant': eta = eta0 - 'optimal': eta = 1.0 / (alpha * (t + t0)) [default] - 'invscaling': eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double, optional The initial learning rate [default 0.01]. power_t : double, optional The exponent for inverse scaling learning rate [default 0.25]. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10`` will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (n_features,) Weights assigned to the features. intercept_ : array, shape (1,) The intercept term. average_coef_ : array, shape (n_features,) Averaged weights assigned to the features. average_intercept_ : array, shape (1,) The averaged intercept term. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = linear_model.SGDRegressor() >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01, fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling', loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25, random_state=None, shuffle=True, verbose=0, warm_start=False) See also -------- Ridge, ElasticNet, Lasso, SVR """ def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(SGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average)
bsd-3-clause
ellisonbg/altair
altair/sphinxext/altairplot.py
1
11045
""" Altair Plot Sphinx Extension ============================ This extension provides a means of inserting live-rendered Altair plots within sphinx documentation. There are two directives defined: ``altair-setup`` and ``altair-plot``. ``altair-setup`` code is used to set-up various options prior to running the plot code. For example:: .. altair-plot:: :output: none from altair import * import pandas as pd data = pd.DataFrame({'a': list('CCCDDDEEE'), 'b': [2, 7, 4, 1, 2, 6, 8, 4, 7]}) .. altair-plot:: Chart(data).mark_point().encode( x='a', y='b' ) In the case of the ``altair-plot`` code, the *last statement* of the code-block should contain the chart object you wish to be rendered. Options ------- The directives have the following options:: .. altair-plot:: :namespace: # specify a plotting namespace that is persistent within the doc :hide-code: # if set, then hide the code and only show the plot :code-below: # if set, then code is below rather than above the figure :output: [plot|repr|stdout|none] :alt: text # Alternate text when plot cannot be rendered :links: editor source export # specify one or more of these options :chart-var-name: chart # name of variable in namespace containing output Additionally, this extension introduces a global configuration ``altairplot_links``, set in your ``conf.py`` which is a dictionary of links that will appear below plots, unless the ``:links:`` option again overrides it. It should look something like this:: # conf.py # ... altairplot_links = {'editor': True, 'source': True, 'export': True} # ... If this configuration is not specified, all are set to True. """ import contextlib import io import os import json import warnings import jinja2 from docutils import nodes from docutils.parsers.rst import Directive from docutils.parsers.rst.directives import flag, unchanged from sphinx.locale import _ import altair as alt from altair.utils.execeval import eval_block # These default URLs can be changed in conf.py; see setup() below. VEGA_JS_URL_DEFAULT = "https://cdn.jsdelivr.net/npm/vega@3" VEGALITE_JS_URL_DEFAULT = "https://cdn.jsdelivr.net/npm/vega-lite@2" VEGAEMBED_JS_URL_DEFAULT = "https://cdn.jsdelivr.net/npm/vega-embed@3" VGL_TEMPLATE = jinja2.Template(""" <div id="{{ div_id }}"> <script> // embed when document is loaded, to ensure vega library is available // this works on all modern browsers, except IE8 and older document.addEventListener("DOMContentLoaded", function(event) { var spec = {{ spec }}; var opt = { "mode": "{{ mode }}", "renderer": "{{ renderer }}", "actions": {{ actions}} }; vegaEmbed('#{{ div_id }}', {{ spec }}).catch(console.err); }); </script> </div> """) class altair_plot(nodes.General, nodes.Element): pass def purge_altair_namespaces(app, env, docname): if not hasattr(env, '_altair_namespaces'): return env._altair_namespaces.pop(docname, {}) DEFAULT_ALTAIRPLOT_LINKS = {'editor': True, 'source': True, 'export': True} def validate_links(links): if links.strip().lower() == 'none': return {} links = links.strip().split() diff = set(links) - set(DEFAULT_ALTAIRPLOT_LINKS.keys()) if diff: raise ValueError("Following links are invalid: {0}".format(list(diff))) return dict((link, link in links) for link in DEFAULT_ALTAIRPLOT_LINKS) def validate_output(output): output = output.strip().lower() if output not in ['plot', 'repr', 'stdout', 'none']: raise ValueError(":output: flag must be one of [plot|repr|stdout|none]") return output class AltairPlotDirective(Directive): has_content = True option_spec = {'hide-code': flag, 'code-below': flag, 'namespace': unchanged, 'output': validate_output, 'alt': unchanged, 'links': validate_links, 'chart-var-name': unchanged} def run(self): env = self.state.document.settings.env app = env.app show_code = 'hide-code' not in self.options code_below = 'code-below' in self.options if not hasattr(env, '_altair_namespaces'): env._altair_namespaces = {} namespace_id = self.options.get('namespace', 'default') namespace = env._altair_namespaces\ .setdefault(env.docname, {})\ .setdefault(namespace_id, {}) code = '\n'.join(self.content) if show_code: source_literal = nodes.literal_block(code, code) source_literal['language'] = 'python' # get the name of the source file we are currently processing rst_source = self.state_machine.document['source'] rst_dir = os.path.dirname(rst_source) rst_filename = os.path.basename(rst_source) # use the source file name to construct a friendly target_id serialno = env.new_serialno('altair-plot') rst_base = rst_filename.replace('.', '-') div_id = "{0}-altair-plot-{1}".format(rst_base, serialno) target_id = "{0}-altair-source-{1}".format(rst_base, serialno) target_node = nodes.target('', '', ids=[target_id]) # create the node in which the plot will appear; # this will be processed by html_visit_altair_plot plot_node = altair_plot() plot_node['target_id'] = target_id plot_node['div_id'] = div_id plot_node['code'] = code plot_node['namespace'] = namespace plot_node['relpath'] = os.path.relpath(rst_dir, env.srcdir) plot_node['rst_source'] = rst_source plot_node['rst_lineno'] = self.lineno plot_node['links'] = self.options.get('links', app.builder.config.altairplot_links) plot_node['output'] = self.options.get('output', 'plot') plot_node['chart-var-name'] = self.options.get('chart-var-name', None) if 'alt' in self.options: plot_node['alt'] = self.options['alt'] result = [target_node] if code_below: result += [plot_node] if show_code: result += [source_literal] if not code_below: result += [plot_node] return result def html_visit_altair_plot(self, node): # Execute the code, saving output and namespace namespace = node['namespace'] try: f = io.StringIO() with contextlib.redirect_stdout(f): chart = eval_block(node['code'], namespace) stdout = f.getvalue() except Exception as e: warnings.warn("altair-plot: {0}:{1} Code Execution failed:" "{2}: {3}".format(node['rst_source'], node['rst_lineno'], e.__class__.__name__, str(e))) raise nodes.SkipNode chart_name = node['chart-var-name'] if chart_name is not None: if chart_name not in namespace: raise ValueError("chart-var-name='{0}' not present in namespace" "".format(chart_name)) chart = namespace[chart_name] output = node['output'] if output == 'none': raise nodes.SkipNode elif output == 'stdout': if not stdout: raise nodes.SkipNode else: output_literal = nodes.literal_block(stdout, stdout) output_literal['language'] = 'none' node.extend([output_literal]) self.visit_admonition(node) elif output == 'repr': if chart is None: raise nodes.SkipNode else: rep = ' ' + repr(chart).replace('\n', '\n ') repr_literal = nodes.literal_block(rep, rep) repr_literal['language'] = 'none' node.extend([repr_literal]) self.visit_admonition(node) elif output == 'plot': if isinstance(chart, alt.TopLevelMixin): # Last line should be a chart; convert to spec dict spec = chart.to_dict() actions = node['links'] # TODO: add an option to save spects to file & load from there. # TODO: add renderer option # Write spec to a *.vl.json file # dest_dir = os.path.join(self.builder.outdir, node['relpath']) # if not os.path.exists(dest_dir): # os.makedirs(dest_dir) # filename = "{0}.vl.json".format(node['target_id']) # dest_path = os.path.join(dest_dir, filename) # with open(dest_path, 'w') as f: # json.dump(spec, f) # Pass relevant info into the template and append to the output html = VGL_TEMPLATE.render(div_id=node['div_id'], spec=json.dumps(spec), mode='vega-lite', renderer='canvas', actions=json.dumps(actions)) self.body.append(html) else: warnings.warn('altair-plot: {0}:{1} Malformed block. Last line of ' 'code block should define a valid altair Chart object.' ''.format(node['rst_source'], node['rst_lineno'])) raise nodes.SkipNode def generic_visit_altair_plot(self, node): # TODO: generate PNGs and insert them here if 'alt' in node.attributes: self.body.append(_('[ graph: %s ]') % node['alt']) else: self.body.append(_('[ graph ]')) raise nodes.SkipNode def depart_altair_plot(self, node): return def builder_inited(app): app.add_javascript(app.config.altairplot_vega_js_url) app.add_javascript(app.config.altairplot_vegalite_js_url) app.add_javascript(app.config.altairplot_vegaembed_js_url) def setup(app): setup.app = app setup.config = app.config setup.confdir = app.confdir app.add_config_value('altairplot_links', DEFAULT_ALTAIRPLOT_LINKS, 'env') app.add_config_value('altairplot_vega_js_url', VEGA_JS_URL_DEFAULT, 'html') app.add_config_value('altairplot_vegalite_js_url', VEGALITE_JS_URL_DEFAULT, 'html') app.add_config_value('altairplot_vegaembed_js_url', VEGAEMBED_JS_URL_DEFAULT, 'html') app.add_directive('altair-plot', AltairPlotDirective) app.add_stylesheet('altair-plot.css') app.add_node(altair_plot, html=(html_visit_altair_plot, depart_altair_plot), latex=(generic_visit_altair_plot, depart_altair_plot), texinfo=(generic_visit_altair_plot, depart_altair_plot), text=(generic_visit_altair_plot, depart_altair_plot), man=(generic_visit_altair_plot, depart_altair_plot)) app.connect('env-purge-doc', purge_altair_namespaces) app.connect('builder-inited', builder_inited) return {'version': '0.1'}
bsd-3-clause
rmcmillan05/dens_mat-rt
src/non-fortran/fft.py
1
9852
#! /usr/bin/env python from __future__ import print_function import numpy as np from scipy.fftpack import fft import matplotlib.pyplot as plt from scipy.signal import blackman import sys import os.path import math def joinwords(*words): joined = ''.join(words) return joined def message(*objs): print(joinwords(*objs), file=sys.stderr) def out_message(*objs): print(joinwords(*objs), file=sys.stdout) def error(*objs): message("ERROR: ", *objs) sys.exit(0) def warning(*objs): message("WARNING: ", *objs) def read_warning(): warning('In input file "',masterin,'" at line ',str(nl),'. Parameter name "', p, '" not recognised.') def find_nearest(array_in, value): idx = (np.abs(np.asarray(array_in)-value)).argmin() return idx, array_in[idx] narg = len(sys.argv)-1 if narg > 0: masterin = str(sys.argv[1]) else: masterin = 'fft.in' if not os.path.isfile(masterin): fid = open(masterin, 'w') print('# Input file for fft.py',file=fid) print('',file=fid) print('perform fft # max / integrate / average / fft',file=fid) print('infile test.out',file=fid) print('field_file test.field.out',file=fid) print('outfile test.out.ft',file=fid) print('readcol 6',file=fid) print('field_col 2',file=fid) print('delay 50',file=fid) print('from 1900',file=fid) print('to 2000',file=fid) print('#units_time fs',file=fid) print('#damp_factor 0.1 # Lorentzian damping in eV',file=fid) print('#yambo_delta # Correct field to match YPP output',file=fid) print('#yambo_timestep 0.1e-2 # Timestep used in yambo_rt (in fs)',file=fid) print('#EELS # Output 1/FFT also', file=fid) fid.close() os.system('vi '+masterin) exit() # error('Input file "',masterin,'" does not exist. Temporary fft.in written.') #Defaults readcol = 2 outfile = '' field_file = '' start_from = 0.0 go_to = np.inf delay = 0.0 div_by_field = 0 perform = 'fft' time_par_type = 'au' fs_to_au = 1.0 damp_factor = 0.0 damp_function = 1.0 start_id = 0 ################### to shift delta over for yambo speed_of_light = 137.03599911 yambo_delta = 0 yambo_timestep = 1 calc_eels = 0 nl = 0 with open(masterin) as foo: for line in foo: nl = nl + 1 columns = line.split() if len(columns) > 0: p = columns[0] try: a = columns[1] except: a = 0 if p[0] == '#': continue if p == str('infile'): infile = a if not os.path.isfile(infile): error('In input file "',masterin,'" at line ',str(nl),'. File "', infile, '" does not exist.') elif p == 'field_file': field_file = a if not os.path.isfile(field_file): error('In input file "',masterin,'" at line ',str(nl),'. File "', field_file, '" does not exist.') elif p == str('outfile'): outfile = a elif p == 'readcol': readcol = int(a) elif p == 'from': start_from = float(a) elif p == 'to': go_to = float(a) elif p == 'delay': delay = float(a) elif p == 'field_col': field_col = int(a) div_by_field = 1 elif p == 'perform': perform = a elif p == 'units_time': time_par_type = a elif p == 'damp_factor': damp_factor = float(a) elif p == 'yambo_delta': yambo_delta = 1 start_id = 1 elif p == 'yambo_timestep': yambo_timestep = float(a) elif p == 'EELS': calc_eels = 1 else: read_warning() foo.close() #infile = 'ft_00000100.out' #outfile = 'test.dat' #readcol = 2 freq_au_to_ev = 27.2113834 x = [] y = [] if div_by_field == 1: f = [] if time_par_type == 'fs': fs_to_au = 41.341373336561361 delay = delay * fs_to_au start_from = start_from * fs_to_au go_to = go_to * fs_to_au damp_factor = damp_factor / freq_au_to_ev nl = 0 with open(infile) as foo: for line in foo: li = line.strip() if li.startswith("#"): continue nl = nl+1 columns = line.split() if nl == 1: try: xtmp = float(columns[0])*fs_to_au name = joinwords('col_',str(readcol)) except: name = str(columns[readcol - 1]) continue if len(columns) > 0: try: xtmp = float(columns[0])*fs_to_au except: if nl == 2: error('Error in reading input file "',infile,'".') else: message('Input file "',infile,'" read successfully.') break if np.abs(xtmp) >= start_from and np.abs(xtmp) <= go_to : x.append(xtmp) y.append(float(columns[readcol - 1])) if (div_by_field == 1 and field_file==''): f.append(float(columns[field_col - 1])) foo.close() if not field_file == '': with open(field_file) as foo: for line in foo: li = line.strip() if li.startswith("#"): continue nl = nl+1 columns = line.split() if nl == 1: try: xtmp = float(columns[0])*fs_to_au name = joinwords('col_',str(field_col)) except: name = str(columns[field_col - 1]) continue if len(columns) > 0: try: xtmp = float(columns[0])*fs_to_au except: if nl == 2: error('Error in reading input file "',infile,'".') else: message('Input file "',infile,'" read successfully.') break if np.abs(xtmp) >= start_from and np.abs(xtmp) <= go_to : if (div_by_field == 1): f.append(float(columns[field_col - 1])) foo.close() T = x[1] - x[0] delayid, delayapp = find_nearest(x, delay) N = len(y) if perform == 'integrate': area = T*sum(y[0:len(y)-1]) message('Area between ',str(x[0]),' and ',str(x[len(x)-1]), ' is:') out_message(str(area)) elif perform == 'average': av = sum(y)/float(N) message('Average value between ',str(x[0]),' and ',str(x[len(x)-1]), ' is:') out_message(str(av)) elif perform == 'max': maxm = max(y) message('Maximum value between ',str(x[0]),' and ',str(x[len(x)-1]), 'is:') out_message(str(maxm)) elif perform == 'fft': if outfile == '': outfile = joinwords(infile,'.',name,'.fft') fid = open(outfile, 'w') if not damp_factor == 0.0: for i in range(N): y[i] = y[i] * np.exp(-damp_factor * x[i]) if not delay == 0.0: ## ytmp = y[N-delayid:N] ## ytmp = ytmp + y[0:N-delayid] ytmp = y[delayid:N] ytmp = ytmp + y[0:delayid] if div_by_field == 1: ftmp = f[delayid:N] ftmp = ftmp + f[0:delayid] # ytmp = y[delayid:N] # ytmp = ytmp + delayid*[0] # plt.plot(x,ytmp, 'r') # plt.plot(x,y, 'k') # plt.show() else: ytmp = y if (div_by_field == 1): ftmp = f #yf = fft(y) if yambo_delta and div_by_field: ftmp = [ftmp[i]*fs_to_au*yambo_timestep/T/5.14220652e11 for i in range(len(ftmp))] yf = fft(ytmp[start_id:len(ytmp)]) if (div_by_field == 1): ff = fft(ftmp[start_id:len(ftmp)]) N = len(yf) # for i in range(len(ytmp)): print(i,ytmp[i].imag, ytmp[i].real) # for i in range(len(yf)): print(i,yf[i].imag, yf[i].real) if div_by_field: eps = [yf[i]/ff[i] for i in range(len(yf))] else: eps = yf if yambo_delta and div_by_field: eps = [1. + eps[i]*4.*np.pi for i in range(len(eps))] if calc_eels: eels = [1./eps[i] for i in range(len(eps))] #w = blackman(N) #ywf = fft(y*w) xf = np.linspace(0.0, 1.0/(2.0*T ), math.floor(N/2)) # for i in range(N/2): # yf[i] = yf[i]/np.exp(-1j*xf[i]*0.001*fs_to_au)/5.33802520488724E-11*4.*np.pi xf = 2.0*np.pi * freq_au_to_ev * xf xf = [2.*np.pi*freq_au_to_ev*float(n)/T/float(N) for n in range(N)] #### NB Note that we print out the conjugate #### if calc_eels: print("%-22s %-22s %-22s %-22s %-22s %-22s" % ('Freq.', 'FFT.real', 'FFT.imag', 'FFT.abs', 'EELS.real', 'EELS.imag'), file=fid) else: print("%-22s %-22s %-22s %-22s" % ('Freq.', 'FFT.real', 'FFT.imag', 'FFT.abs'), file=fid) if (div_by_field == 1): for i in range(math.floor(N/2)): if calc_eels: print("%22.13G %22.13G %22.13G %22.13G %22.13G %22.13G" % (xf[i], eps[i].real, -eps[i].imag, np.abs(eps[i]), eels[i].real, eels[i].imag), file=fid) else: print("%22.13G %22.13G %22.13G %22.13G" % (xf[i], eps[i].real, -eps[i].imag, np.abs(eps[i])), file=fid) else: for i in range(math.floor(N/2)): print("%22.13G %22.13G %22.13G %22.13G" % (xf[i], 2.0/float(N)*yf[i].real, -2.0/float(N)*yf[i].imag, np.abs(2.0/float(N)*yf[i])), file=fid) if not delay == 0.0: message('Time Delay: ', str(delayapp), '.') message('FFT of column ',str(readcol), ' successfully output to "',outfile,'".') message('Resolution: ',str(xf[1]-xf[0]),' eV.') message('Max Energy: ',str(xf[math.floor(N/2)-1]),' eV.') fid.close() else: error('Perform program: "',perform,'" not recognised.')
gpl-2.0
cduff4464/2016_summer_XPD
out_of_date/roi/plotting_interface.py
2
4085
""" This file is meant to be a prototype for defining ROI's to be used in later applications """ import matplotlib.pyplot as plt from matplotlib.widgets import Slider, RadioButtons, Button from matplotlib.colorbar import ColorbarBase from matplotlib.colors import Normalize import numpy as np from roi_definer import ROI from file_finder import FileFinder start = FileFinder() start.get_name() plt.figure(1) axpic = plt.subplot2grid((20, 20), (0, 0), rowspan=14, colspan=14) axps = plt.subplot2grid((20, 20), (19, 10), rowspan=1, colspan=10) axrb = plt.subplot2grid((20, 20), (15, 10), rowspan=1, colspan=10) axre = plt.subplot2grid((20, 20), (16, 10), rowspan=1, colspan=10) axcb = plt.subplot2grid((20, 20), (17, 10), rowspan=1, colspan=10) axce = plt.subplot2grid((20, 20), (18, 10), rowspan=1, colspan=10) axgray = plt.subplot2grid((20, 20), (0, 15), rowspan=6, colspan=5) axskipf = plt.subplot2grid((20, 20), (19, 5), rowspan=1, colspan=2) axskipb = plt.subplot2grid((20, 20), (19, 3), rowspan=1, colspan=2) axvmin = plt.subplot2grid((20, 20), (15, 0), rowspan=2, colspan=5) axvmax = plt.subplot2grid((20, 20), (17, 0), rowspan=2, colspan=5) axbar = plt.subplot2grid((20, 20), (7, 14), rowspan=3, colspan=8) axzoom = plt.subplot2grid((20, 20), (11, 14), rowspan=3, colspan=8) pic_swap = Slider(axps, 'Pic Index', 0, len(start.pic_list)-1, valinit=0) rb = Slider(axrb, 'Row Begin', 0, 2047, valinit=100) re = Slider(axre, 'Row End', 0, 2047, valinit=1900) cb = Slider(axcb, 'Col Begin', 0, 2047, valinit=100) ce = Slider(axce, 'Col End', 0, 2047, valinit=1900) gray = RadioButtons(axgray, ('RdBu', 'BrBG', 'RdYlGn', 'Greys_r')) skipf = Button(axskipf, '>') skipb = Button(axskipb, '<') abs_min_V = np.min(start.pic_list[int(pic_swap.val)]) abs_max_V = np.max(start.pic_list[int(pic_swap.val)]) vmin = Slider(axvmin, 'Vmin', abs_min_V, abs_max_V, abs_min_V) vmax = Slider(axvmax, 'Vmax', abs_min_V, abs_max_V, abs_max_V) zoom = RadioButtons(axzoom, ('Home', 'Zoom')) im = None def pic_switch(event): bounds = roi1.export() if zoom.value_selected == 'Zoom': axpic.cla() axpic.imshow(start.pic_list[int(pic_swap.val)], vmin=vmin.val, vmax=vmax.val, cmap=gray.value_selected) axpic.set_title(start.file_list[int(pic_swap.val)]) axpic.set_xlim(bounds[2], bounds[3]) axpic.set_ylim(bounds[1], bounds[0]) axpic.axvline(x=bounds[2]) axpic.axvline(x=bounds[3]) axpic.axhline(y=bounds[0]) axpic.axhline(y=bounds[1]) axbar.cla() norm = Normalize(vmin=vmin.val, vmax=vmax.val) col = ColorbarBase(axbar, cmap=gray.value_selected, norm=norm, orientation='horizontal') col.set_ticks([vmin.val, vmax.val], update_ticks=True) else: axpic.cla() axpic.imshow(start.pic_list[int(pic_swap.val)], vmin=vmin.val, vmax=vmax.val, cmap=gray.value_selected) axpic.set_title(start.file_list[int(pic_swap.val)]) axpic.axvline(x=bounds[2]) axpic.axvline(x=bounds[3]) axpic.axhline(y=bounds[0]) axpic.axhline(y=bounds[1]) axbar.cla() norm = Normalize(vmin=vmin.val, vmax=vmax.val) col = ColorbarBase(axbar, cmap=gray.value_selected, norm=norm, orientation='horizontal') col.set_ticks([vmin.val, vmax.val], update_ticks=True) def forward(event): if pic_swap.val + 1 > len(start.pic_list) - 1: pass else: x = pic_swap.val + 1 pic_swap.set_val(x) def backward(event): if pic_swap.val - 1 < 0: pass else: x = pic_swap.val - 1 pic_swap.set_val(x) roi1 = ROI(start.pic_list[0]) def update_values(event): roi1.update(rb.val, re.val, cb.val, ce.val) pic_switch(None) rb.on_changed(update_values) re.on_changed(update_values) cb.on_changed(update_values) ce.on_changed(update_values) pic_swap.on_changed(pic_switch) gray.on_clicked(pic_switch) skipf.on_clicked(forward) skipb.on_clicked(backward) vmin.on_changed(pic_switch) vmax.on_changed(pic_switch) zoom.on_clicked(pic_switch) update_values(None) pic_switch(None) plt.show()
bsd-2-clause
yunque/sms-tools
lectures/05-Sinusoidal-model/plots-code/sineModelAnal-bendir.py
24
1245
import numpy as np import matplotlib.pyplot as plt import sys, os, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import stft as STFT import sineModel as SM import utilFunctions as UF (fs, x) = UF.wavread(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../sounds/bendir.wav')) w = np.hamming(2001) N = 2048 H = 200 t = -80 minSineDur = .02 maxnSines = 150 freqDevOffset = 10 freqDevSlope = 0.001 mX, pX = STFT.stftAnal(x, fs, w, N, H) tfreq, tmag, tphase = SM.sineModelAnal(x, fs, w, N, H, t, maxnSines, minSineDur, freqDevOffset, freqDevSlope) plt.figure(1, figsize=(9.5, 7)) maxplotfreq = 800.0 maxplotbin = int(N*maxplotfreq/fs) numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(maxplotbin+1)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX[:,:maxplotbin+1])) plt.autoscale(tight=True) tracks = tfreq*np.less(tfreq, maxplotfreq) tracks[tracks<=0] = np.nan plt.plot(frmTime, tracks, color='k', lw=1.5) plt.autoscale(tight=True) plt.title('mX + sinusoidal tracks (bendir.wav)') plt.tight_layout() plt.savefig('sineModelAnal-bendir.png') plt.show()
agpl-3.0
pekkaroi/bldc-drive
gui/ServoGui.py
1
10906
#!/usr/bin/python from Tkinter import Tk, Label, BOTH, Y, LEFT, RIGHT, X, RAISED, SUNKEN, StringVar, END, DISABLED, NORMAL, TOP from ttk import Frame, Button, Entry, OptionMenu import serial import serial.tools.list_ports import threading import Queue import time import matplotlib from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg # implement the default mpl key bindings from matplotlib.backend_bases import key_press_handler from matplotlib.figure import Figure matplotlib.use('TkAgg') drivesettings = [ "commutationMethod", "inputMethod", "encoder_PPR", "encoder_poles", "encoder_counts_per_step", "pid_Kp", "pid_Ki", "pid_Kd", "pid_FF1", "pid_FF2", "pid_deadband", "usart_baud", "max_current", "max_error", "invert_dirstepena", "commutation_offset" ] class SerialThread(threading.Thread): def __init__(self, queue, writequeue, ser): threading.Thread.__init__(self) self.ser = ser self.queue = queue self.writequeue = writequeue self.buffer = "" def stop(self): self.running = False def run(self): self.running = True while self.running: while self.ser.inWaiting(): ch = self.ser.read(1) if ch == '\n' or ch == '\r': self.queue.put(self.buffer) self.buffer = "" else: self.buffer += ch while self.writequeue.qsize(): try: line = self.writequeue.get() self.ser.write(line) except Queue.Empty: pass class topFrame(Frame): def __init__(self, parent): Frame.__init__(self, parent) self.parent = parent self.setUI() def setUI(self): self.parent.title("ServoGui") self.pack(fill=BOTH, expand=1) self.comPort = StringVar(self) self.laststrm = StringVar(self) settingFrame = Frame(self, borderwidth=1, relief=RAISED) settingFrame.pack(fill=Y, side=LEFT) Label(settingFrame, width=50, text="Port Settings", bg="green", fg="black").pack(fill=X) ports = self.getComPorts() w = apply(OptionMenu, (settingFrame, self.comPort) + tuple(ports)) w.pack(fill=X) BaudFrame = Frame(settingFrame) BaudFrame.pack(fill=X) Label(BaudFrame, text="Baud:").pack(side=LEFT) self.baud_entry = Entry(BaudFrame, width=15, validate="focusout", validatecommand=self.baudValidate) self.baud_entry.pack(side=LEFT, expand=True) self.baud_entry.insert(0, "115200") Button(settingFrame, text="Open Port", command=self.openPort). pack(fill=X) Button(settingFrame, text="Close Port", command=self.closePort). pack(fill=X) StreamFrame = Frame(settingFrame) StreamFrame.pack() self.btnStartStream = Button(StreamFrame, text="Start Stream", command=self.startStream, state=DISABLED) self.btnStopStream = Button(StreamFrame, text="Stop Stream", command=self.stopStream, state=DISABLED) self.btnGetConfig = Button(StreamFrame, text="Get Config", command=self.getConfig, state=DISABLED) self.btnStartStream.pack(side=LEFT) self.btnStopStream.pack(side=LEFT) self.btnGetConfig.pack(side=LEFT) self.queue = Queue.Queue() self.writequeue = Queue.Queue() Label(settingFrame, width=50, text="Drive Settings", bg="green", fg="black").pack(fill=X) DriveSettingsFrame = Frame(settingFrame, relief=SUNKEN) DriveSettingsFrame.pack(fill=X) driveSettingsFrames = [] self.driveSettingsEntries = [] for drivesetting in drivesettings: driveSettingsFrames.append(Frame(DriveSettingsFrame)) driveSettingsFrames[-1].pack(fill=X) Label(driveSettingsFrames[-1], text=drivesetting).pack(side=LEFT) self.driveSettingsEntries.append(Entry(driveSettingsFrames[-1])) self.driveSettingsEntries[-1].pack(side=RIGHT) Button(DriveSettingsFrame, text="Send to drive", command=self.sendConfig).pack(fill=X) Button(DriveSettingsFrame, text="Save config in drive", command=self.saveConfig).pack(fill=X) Label(settingFrame, width=50, textvariable=self.laststrm, bg="green", fg="black").pack(fill=X) # MatplotLib stuff f = Figure(figsize=(5, 4), dpi=100) self.a = f.add_subplot(411) self.a.set_title("Requested and actual position") self.b = f.add_subplot(412) self.b.set_title("Error") self.c = f.add_subplot(413) self.c.set_title("Current meas ADC value") self.d = f.add_subplot(414) self.d.set_title("HALL") self.canvas = FigureCanvasTkAgg(f, master=self) self.canvas.show() self.canvas.get_tk_widget().pack(side=TOP, fill=BOTH, expand=1) toolbar = NavigationToolbar2TkAgg(self.canvas, self) toolbar.update() self.canvas._tkcanvas.pack(side=TOP, fill=BOTH, expand=1) self.hall = [] self.encoder_count = [] self.pos_error = [] self.requested_position = [] self.requested_delta = [] self.adc_value = [] self.pid_output = [] self.a.set_autoscaley_on(True) self.encoder_line, = self.a.plot([], []) self.error_line, = self.d.plot([], []) self.reqpos_line, = self.a.plot([], []) self.ADC_line, = self.c.plot([], []) self.hall_line, = self.d.plot([], []) self.pwm_line, = self.b.plot([], []) self.updateCanvas() def baudValidate(self): sVal = self.baud_entry.get() try: iVal = int(sVal) except ValueError: print "Illegal baud value" self.baud_entry.delete(0, END) self.baud_entry.insert(0, "115200") return False return True def openPort(self): try: self.ser = serial.Serial(self.comPort.get(), int(self.baud_entry.get()), timeout=0) except serial.SerialException: print "unable to open" return self.btnStartStream['state'] = NORMAL self.btnStopStream['state'] = NORMAL self.btnGetConfig['state'] = NORMAL self.thread = SerialThread(self.queue, self.writequeue, self.ser) self.thread.daemon = True self.thread.start() self.process_serial() def closePort(self): self.thread.stop() self.thread.join() self.ser.closePort() self.btnStartStream['state'] = DISABLED self.btnStopStream['state'] = DISABLED self.btnGetConfig['state'] = DISABLED def process_serial(self): while self.queue.qsize(): try: line = self.queue.get() self.handleLine(line) except Queue.Empty: pass self.after(100, self.process_serial) def startStream(self): self.writequeue.put(b"STREAM START \r") def stopStream(self): self.writequeue.put(b"STREAM DIE \r") def getConfig(self): self.writequeue.put(b"GET\r") def saveConfig(self): self.writequeue.put(b"SAVE \r") def sendConfig(self): for setting in drivesettings: dataToSend = b"SET " + setting + " " + self.driveSettingsEntries[drivesettings.index(setting)].get() + "\r" print dataToSend self.writequeue.put(dataToSend) time.sleep(0.2) def getComPorts(self): ports = serial.tools.list_ports.comports() portNames = [] for port in ports: portNames.append(port[0]) return portNames def handleLine(self, line): line = line.replace(" ", "") line = line.replace("/n", "") line = line.replace("/r", "") parts = line.split(":") if len(parts) > 1: if parts[0] == "STR": self.handleStr(parts[1]) return if parts[0] in drivesettings: self.driveSettingsEntries[drivesettings.index(parts[0])].delete(0, END) self.driveSettingsEntries[drivesettings.index(parts[0])].insert(0, parts[1]) def handleStr(self, strm): # format of the stream line: STR:hall;count;requestedPosition;requestedDelta;error parts = strm.split(";") self.laststrm.set(strm) self.hall.append(int(parts[0])) if len(self.hall) > 5000: self.hall.pop(0) self.encoder_count.append(parts[1]) if len(self.encoder_count) > 5000: self.encoder_count.pop(0) self.requested_position.append(parts[2]) if len(self.requested_position) > 5000: self.requested_position.pop(0) self.requested_delta.append(parts[3]) if len(self.requested_delta) > 5000: self.requested_delta.pop(0) self.pos_error.append(parts[4]) if len(self.pos_error) > 5000: self.pos_error.pop(0) self.adc_value.append(parts[5]) if len(self.adc_value) > 5000: self.adc_value.pop(0) self.pid_output.append(parts[6]) if len(self.pid_output) > 5000: self.pid_output.pop(0) def updateCanvas(self): self.encoder_line.set_xdata(range(len(self.encoder_count))) self.encoder_line.set_ydata(self.encoder_count) self.error_line.set_xdata(range(len(self.pos_error))) self.error_line.set_ydata(self.pos_error) self.reqpos_line.set_xdata(range(len(self.requested_position))) self.reqpos_line.set_ydata(self.requested_position) self.ADC_line.set_xdata(range(len(self.adc_value))) self.ADC_line.set_ydata(self.adc_value) self.hall_line.set_xdata(range(len(self.hall))) self.hall_line.set_ydata(self.hall) self.pwm_line.set_xdata(range(len(self.pid_output))) self.pwm_line.set_ydata(self.pid_output) self.a.relim() self.a.autoscale_view() self.b.relim() self.b.autoscale_view() self.c.relim() self.c.autoscale_view() self.d.relim() self.d.autoscale_view() self.canvas.draw() self.after(100, self.updateCanvas) def main(): root = Tk() root.geometry("300x280+300+300") app = topFrame(root) root.mainloop() if __name__ == '__main__': main()
gpl-2.0
ebilionis/variational-reformulation-of-inverse-problems
unittests/test_optimize_diffusion_leftboundarydata.py
1
5954
""" A first test for the ELBO on the diffusion problem. The target is consisted of an and a Gaussian likelihood. The approximating mixture has two components. Author: Panagiotis Tsilifis Date: 6/16/2014 """ import numpy as np import matplotlib.pyplot as plt import os import cPickle as pickle from scipy.stats.distributions import norm import math from vuq import GammaPDF from vuq import UniformND from vuq import PDFCollection from vuq import IsotropicGaussianLikelihood from vuq import MultivariateNormal from vuq import Joint from vuq import MixturePDF from vuq import MixtureOfMultivariateNormals from vuq import FirstOrderEntropyApproximation from vuq import ThirdOrderExpectationFunctional from vuq import EvidenceLowerBound from vuq import Optimizer import sys sys.path.insert(0,'demos/') from diffusion import ContaminantTransportModelLeft # Number of dimensions num_dim = 3 # The number of components to use for the mixture num_comp = 1 #-------- The (hypothetical) joint distribution ---------------- # The prior collection = [UniformND(1), UniformND(1), GammaPDF(1,0.05,1)] prior = PDFCollection(collection) # The data data = np.load('data_concentrations_left_corners.npy') # The forward model diff_model = ContaminantTransportModelLeft() print 'Num_input' print str(diff_model.num_input) + '\n' # The isotropic Likelihood IsotropicL = IsotropicGaussianLikelihood(data[:], diff_model) # The joint log_p = Joint(IsotropicL, prior) print 'Target:' print str(log_p) # The approximating distribution comp = [MultivariateNormal(np.random.gamma(10,1,num_dim))]#, MultivariateNormal(np.random.gamma(10,1,num_dim))] log_q = MixtureOfMultivariateNormals(comp) log_q.comp[0].mu = np.ones(log_q.comp[0].mu.shape) * 0.5 #log_q.comp[1].mu = np.ones(log_q.comp[0].mu.shape) * 0.5 log_q.comp[0].C = np.eye(num_dim) * 1e-4 #log_q.comp[1].C = np.eye(num_dim) * 1e-4 print 'Initial:' print log_q # Pick an entropy approximation entropy = FirstOrderEntropyApproximation() # Pick an approximation for the expectation of the joint expectation_functional = ThirdOrderExpectationFunctional(log_p) # Restrictions for mu mu_bounds = (tuple((0., 1.) for i in xrange(log_q.num_dim - 1)) + ((1e-6, None), )) C_bounds = tuple((1e-32, None) for i in xrange(log_q.num_comp * log_q.num_dim)) # Build the ELBO elbo = EvidenceLowerBound(entropy, expectation_functional) print 'ELBO:' print str(elbo) # Optimize the elbo optimizer = Optimizer(elbo) results_file = os.path.join('demos', 'diffusion_left_new_2_cali.pcl') if os.path.exists(results_file): print 'I found:', results_file print 'I am skipping the experiment.' print 'Delete the file if you want to repeat it.' with open(results_file, 'rb') as fd: results = pickle.load(fd) L = results['L'] log_q = results['log_q'] else: L = optimizer.optimize(log_q, tol=1e-3, max_it=10, mu_bounds=mu_bounds, mu_constraints=None, C_bounds=C_bounds) result = {} result['L'] = L result['log_q'] = log_q with open(os.path.join('demos', 'diffusion_left_new_2_cali.pcl'), 'wb') as fd: pickle.dump(result, fd) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(L, linewidth=2) ax.set_xlabel('Iteration', fontsize=16) ax.set_ylabel('ELBO', fontsize=16) plt.setp(ax.get_xticklabels(), fontsize=16) plt.setp(ax.get_yticklabels(), fontsize=16) png_file = os.path.join('figures', 'diffusion_left_new_2_elbo.png') print 'Writing:', png_file plt.savefig(png_file) for i in xrange(log_q.num_dim): mu = log_q.comp[0].mu[i] s = math.sqrt(log_q.comp[0].C[i, i]) if i < 2: name = 'x_{%s}' % (i+1) else: name = 'sigma^2' print name, '=', mu, '+-', s # Plot the calibration result t = np.array([ 0.075, 0.15, 0.225, 0.3]) fig = plt.figure() ax = fig.add_subplot(111) f = diff_model._eval_u(log_q.comp[0].mu[:2]) Y = f.reshape(4, 2) data = data.reshape(4, 2) styles = ['b', 'r'] for i in xrange(2): ax.plot(t, Y[:, i], styles[i], linewidth=2) ax.plot(t, data[:,i], '+' + styles[i], markersize=10, markeredgewidth=2) ax.set_xlabel('Time (t)', fontsize=16) ax.set_ylabel('Concentration', fontsize=16) plt.setp(ax.get_xticklabels(), fontsize=16) plt.setp(ax.get_yticklabels(), fontsize=16) png_file = os.path.join('figures', 'diffusion_left_new_2_cali_output.png') print 'Writing:', png_file plt.savefig(png_file) # Do an uncertainty propagation test. uq_file = os.path.join('demos', 'diffusion_left_new_2_cali_uq.pcl') if os.path.exists(uq_file): with open(uq_file, 'rb') as fd: uq_results = pickle.load(fd) Y_m = uq_results['Y_m'] Y_p05 = uq_results['Y_p05'] Y_p95 = uq_results['Y_p95'] else: num_mcmc = 100 Y_s = [] for i in xrange(num_mcmc): print 'taking sample', i + 1 omega = log_q.sample().flatten() x = omega[:2] sigma = omega[2] y = diff_model._eval_u(x) Y_s.append(y + sigma * np.random.randn(*y.shape)) Y_s = np.vstack(Y_s) Y_m = np.percentile(Y_s, 50, axis=0).reshape(Y.shape) Y_p05 = np.percentile(Y_s, 5, axis=0).reshape(Y.shape) Y_p95 = np.percentile(Y_s, 95, axis=0).reshape(Y.shape) uq_results = {} uq_results['Y_m'] = Y_m uq_results['Y_p05'] = Y_p05 uq_results['Y_p95'] = Y_p95 with open(uq_file, 'wb') as fd: pickle.dump(uq_results, fd) fig = plt.figure() ax = fig.add_subplot(111) for i in xrange(2): ax.plot(t, Y_m[:, i], styles[i], linewidth=2) ax.fill_between(t, Y_p05[:, i], Y_p95[:, i], color=styles[i], alpha=0.5) ax.plot(t, data[:, i], '+' + styles[i], markersize=10, markeredgewidth=2) ax.set_xlabel('Time (t)', fontsize=16) ax.set_ylabel('Concentration', fontsize=16) plt.setp(ax.get_xticklabels(), fontsize=16) plt.setp(ax.get_yticklabels(), fontsize=16) png_file = os.path.join('figures', 'diffusion_left_new_2_cali_uq.png') print 'Writing:', png_file plt.savefig(png_file) print str(log_q) + '\n'
gpl-2.0
vkscool/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/colorbar.py
69
27260
''' Colorbar toolkit with two classes and a function: :class:`ColorbarBase` the base class with full colorbar drawing functionality. It can be used as-is to make a colorbar for a given colormap; a mappable object (e.g., image) is not needed. :class:`Colorbar` the derived class for use with images or contour plots. :func:`make_axes` a function for resizing an axes and adding a second axes suitable for a colorbar The :meth:`~matplotlib.figure.Figure.colorbar` method uses :func:`make_axes` and :class:`Colorbar`; the :func:`~matplotlib.pyplot.colorbar` function is a thin wrapper over :meth:`~matplotlib.figure.Figure.colorbar`. ''' import numpy as np import matplotlib as mpl import matplotlib.colors as colors import matplotlib.cm as cm import matplotlib.ticker as ticker import matplotlib.cbook as cbook import matplotlib.lines as lines import matplotlib.patches as patches import matplotlib.collections as collections import matplotlib.contour as contour make_axes_kw_doc = ''' ========== ==================================================== Property Description ========== ==================================================== *fraction* 0.15; fraction of original axes to use for colorbar *pad* 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new image axes *shrink* 1.0; fraction by which to shrink the colorbar *aspect* 20; ratio of long to short dimensions ========== ==================================================== ''' colormap_kw_doc = ''' =========== ==================================================== Property Description =========== ==================================================== *extend* [ 'neither' | 'both' | 'min' | 'max' ] If not 'neither', make pointed end(s) for out-of- range values. These are set for a given colormap using the colormap set_under and set_over methods. *spacing* [ 'uniform' | 'proportional' ] Uniform spacing gives each discrete color the same space; proportional makes the space proportional to the data interval. *ticks* [ None | list of ticks | Locator object ] If None, ticks are determined automatically from the input. *format* [ None | format string | Formatter object ] If None, the :class:`~matplotlib.ticker.ScalarFormatter` is used. If a format string is given, e.g. '%.3f', that is used. An alternative :class:`~matplotlib.ticker.Formatter` object may be given instead. *drawedges* [ False | True ] If true, draw lines at color boundaries. =========== ==================================================== The following will probably be useful only in the context of indexed colors (that is, when the mappable has norm=NoNorm()), or other unusual circumstances. ============ =================================================== Property Description ============ =================================================== *boundaries* None or a sequence *values* None or a sequence which must be of length 1 less than the sequence of *boundaries*. For each region delimited by adjacent entries in *boundaries*, the color mapped to the corresponding value in values will be used. ============ =================================================== ''' colorbar_doc = ''' Add a colorbar to a plot. Function signatures for the :mod:`~matplotlib.pyplot` interface; all but the first are also method signatures for the :meth:`~matplotlib.figure.Figure.colorbar` method:: colorbar(**kwargs) colorbar(mappable, **kwargs) colorbar(mappable, cax=cax, **kwargs) colorbar(mappable, ax=ax, **kwargs) arguments: *mappable* the :class:`~matplotlib.image.Image`, :class:`~matplotlib.contour.ContourSet`, etc. to which the colorbar applies; this argument is mandatory for the :meth:`~matplotlib.figure.Figure.colorbar` method but optional for the :func:`~matplotlib.pyplot.colorbar` function, which sets the default to the current image. keyword arguments: *cax* None | axes object into which the colorbar will be drawn *ax* None | parent axes object from which space for a new colorbar axes will be stolen Additional keyword arguments are of two kinds: axes properties: %s colorbar properties: %s If *mappable* is a :class:`~matplotlib.contours.ContourSet`, its *extend* kwarg is included automatically. Note that the *shrink* kwarg provides a simple way to keep a vertical colorbar, for example, from being taller than the axes of the mappable to which the colorbar is attached; but it is a manual method requiring some trial and error. If the colorbar is too tall (or a horizontal colorbar is too wide) use a smaller value of *shrink*. For more precise control, you can manually specify the positions of the axes objects in which the mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs. returns: :class:`~matplotlib.colorbar.Colorbar` instance; see also its base class, :class:`~matplotlib.colorbar.ColorbarBase`. Call the :meth:`~matplotlib.colorbar.ColorbarBase.set_label` method to label the colorbar. ''' % (make_axes_kw_doc, colormap_kw_doc) class ColorbarBase(cm.ScalarMappable): ''' Draw a colorbar in an existing axes. This is a base class for the :class:`Colorbar` class, which is the basis for the :func:`~matplotlib.pyplot.colorbar` method and pylab function. It is also useful by itself for showing a colormap. If the *cmap* kwarg is given but *boundaries* and *values* are left as None, then the colormap will be displayed on a 0-1 scale. To show the under- and over-value colors, specify the *norm* as:: colors.Normalize(clip=False) To show the colors versus index instead of on the 0-1 scale, use:: norm=colors.NoNorm. Useful attributes: :attr:`ax` the Axes instance in which the colorbar is drawn :attr:`lines` a LineCollection if lines were drawn, otherwise None :attr:`dividers` a LineCollection if *drawedges* is True, otherwise None Useful public methods are :meth:`set_label` and :meth:`add_lines`. ''' _slice_dict = {'neither': slice(0,1000000), 'both': slice(1,-1), 'min': slice(1,1000000), 'max': slice(0,-1)} def __init__(self, ax, cmap=None, norm=None, alpha=1.0, values=None, boundaries=None, orientation='vertical', extend='neither', spacing='uniform', # uniform or proportional ticks=None, format=None, drawedges=False, filled=True, ): self.ax = ax if cmap is None: cmap = cm.get_cmap() if norm is None: norm = colors.Normalize() self.alpha = alpha cm.ScalarMappable.__init__(self, cmap=cmap, norm=norm) self.values = values self.boundaries = boundaries self.extend = extend self._inside = self._slice_dict[extend] self.spacing = spacing self.orientation = orientation self.drawedges = drawedges self.filled = filled self.solids = None self.lines = None self.dividers = None self.set_label('') if cbook.iterable(ticks): self.locator = ticker.FixedLocator(ticks, nbins=len(ticks)) else: self.locator = ticks # Handle default in _ticker() if format is None: if isinstance(self.norm, colors.LogNorm): self.formatter = ticker.LogFormatter() else: self.formatter = ticker.ScalarFormatter() elif cbook.is_string_like(format): self.formatter = ticker.FormatStrFormatter(format) else: self.formatter = format # Assume it is a Formatter # The rest is in a method so we can recalculate when clim changes. self.draw_all() def draw_all(self): ''' Calculate any free parameters based on the current cmap and norm, and do all the drawing. ''' self._process_values() self._find_range() X, Y = self._mesh() C = self._values[:,np.newaxis] self._config_axes(X, Y) if self.filled: self._add_solids(X, Y, C) self._set_label() def _config_axes(self, X, Y): ''' Make an axes patch and outline. ''' ax = self.ax ax.set_frame_on(False) ax.set_navigate(False) xy = self._outline(X, Y) ax.update_datalim(xy) ax.set_xlim(*ax.dataLim.intervalx) ax.set_ylim(*ax.dataLim.intervaly) self.outline = lines.Line2D(xy[:, 0], xy[:, 1], color=mpl.rcParams['axes.edgecolor'], linewidth=mpl.rcParams['axes.linewidth']) ax.add_artist(self.outline) self.outline.set_clip_box(None) self.outline.set_clip_path(None) c = mpl.rcParams['axes.facecolor'] self.patch = patches.Polygon(xy, edgecolor=c, facecolor=c, linewidth=0.01, zorder=-1) ax.add_artist(self.patch) ticks, ticklabels, offset_string = self._ticker() if self.orientation == 'vertical': ax.set_xticks([]) ax.yaxis.set_label_position('right') ax.yaxis.set_ticks_position('right') ax.set_yticks(ticks) ax.set_yticklabels(ticklabels) ax.yaxis.get_major_formatter().set_offset_string(offset_string) else: ax.set_yticks([]) ax.xaxis.set_label_position('bottom') ax.set_xticks(ticks) ax.set_xticklabels(ticklabels) ax.xaxis.get_major_formatter().set_offset_string(offset_string) def _set_label(self): if self.orientation == 'vertical': self.ax.set_ylabel(self._label, **self._labelkw) else: self.ax.set_xlabel(self._label, **self._labelkw) def set_label(self, label, **kw): ''' Label the long axis of the colorbar ''' self._label = label self._labelkw = kw self._set_label() def _outline(self, X, Y): ''' Return *x*, *y* arrays of colorbar bounding polygon, taking orientation into account. ''' N = X.shape[0] ii = [0, 1, N-2, N-1, 2*N-1, 2*N-2, N+1, N, 0] x = np.take(np.ravel(np.transpose(X)), ii) y = np.take(np.ravel(np.transpose(Y)), ii) x = x.reshape((len(x), 1)) y = y.reshape((len(y), 1)) if self.orientation == 'horizontal': return np.hstack((y, x)) return np.hstack((x, y)) def _edges(self, X, Y): ''' Return the separator line segments; helper for _add_solids. ''' N = X.shape[0] # Using the non-array form of these line segments is much # simpler than making them into arrays. if self.orientation == 'vertical': return [zip(X[i], Y[i]) for i in range(1, N-1)] else: return [zip(Y[i], X[i]) for i in range(1, N-1)] def _add_solids(self, X, Y, C): ''' Draw the colors using :meth:`~matplotlib.axes.Axes.pcolor`; optionally add separators. ''' ## Change to pcolorfast after fixing bugs in some backends... if self.orientation == 'vertical': args = (X, Y, C) else: args = (np.transpose(Y), np.transpose(X), np.transpose(C)) kw = {'cmap':self.cmap, 'norm':self.norm, 'shading':'flat', 'alpha':self.alpha} # Save, set, and restore hold state to keep pcolor from # clearing the axes. Ordinarily this will not be needed, # since the axes object should already have hold set. _hold = self.ax.ishold() self.ax.hold(True) col = self.ax.pcolor(*args, **kw) self.ax.hold(_hold) #self.add_observer(col) # We should observe, not be observed... self.solids = col if self.drawedges: self.dividers = collections.LineCollection(self._edges(X,Y), colors=(mpl.rcParams['axes.edgecolor'],), linewidths=(0.5*mpl.rcParams['axes.linewidth'],) ) self.ax.add_collection(self.dividers) def add_lines(self, levels, colors, linewidths): ''' Draw lines on the colorbar. ''' N = len(levels) dummy, y = self._locate(levels) if len(y) <> N: raise ValueError("levels are outside colorbar range") x = np.array([0.0, 1.0]) X, Y = np.meshgrid(x,y) if self.orientation == 'vertical': xy = [zip(X[i], Y[i]) for i in range(N)] else: xy = [zip(Y[i], X[i]) for i in range(N)] col = collections.LineCollection(xy, linewidths=linewidths) self.lines = col col.set_color(colors) self.ax.add_collection(col) def _ticker(self): ''' Return two sequences: ticks (colorbar data locations) and ticklabels (strings). ''' locator = self.locator formatter = self.formatter if locator is None: if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv/10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = ticker.LogLocator() else: locator = ticker.MaxNLocator() else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b, nbins=10) if isinstance(self.norm, colors.NoNorm): intv = self._values[0], self._values[-1] else: intv = self.vmin, self.vmax locator.create_dummy_axis() formatter.create_dummy_axis() locator.set_view_interval(*intv) locator.set_data_interval(*intv) formatter.set_view_interval(*intv) formatter.set_data_interval(*intv) b = np.array(locator()) b, ticks = self._locate(b) formatter.set_locs(b) ticklabels = [formatter(t, i) for i, t in enumerate(b)] offset_string = formatter.get_offset() return ticks, ticklabels, offset_string def _process_values(self, b=None): ''' Set the :attr:`_boundaries` and :attr:`_values` attributes based on the input boundaries and values. Input boundaries can be *self.boundaries* or the argument *b*. ''' if b is None: b = self.boundaries if b is not None: self._boundaries = np.asarray(b, dtype=float) if self.values is None: self._values = 0.5*(self._boundaries[:-1] + self._boundaries[1:]) if isinstance(self.norm, colors.NoNorm): self._values = (self._values + 0.00001).astype(np.int16) return self._values = np.array(self.values) return if self.values is not None: self._values = np.array(self.values) if self.boundaries is None: b = np.zeros(len(self.values)+1, 'd') b[1:-1] = 0.5*(self._values[:-1] - self._values[1:]) b[0] = 2.0*b[1] - b[2] b[-1] = 2.0*b[-2] - b[-3] self._boundaries = b return self._boundaries = np.array(self.boundaries) return # Neither boundaries nor values are specified; # make reasonable ones based on cmap and norm. if isinstance(self.norm, colors.NoNorm): b = self._uniform_y(self.cmap.N+1) * self.cmap.N - 0.5 v = np.zeros((len(b)-1,), dtype=np.int16) v[self._inside] = np.arange(self.cmap.N, dtype=np.int16) if self.extend in ('both', 'min'): v[0] = -1 if self.extend in ('both', 'max'): v[-1] = self.cmap.N self._boundaries = b self._values = v return elif isinstance(self.norm, colors.BoundaryNorm): b = list(self.norm.boundaries) if self.extend in ('both', 'min'): b = [b[0]-1] + b if self.extend in ('both', 'max'): b = b + [b[-1] + 1] b = np.array(b) v = np.zeros((len(b)-1,), dtype=float) bi = self.norm.boundaries v[self._inside] = 0.5*(bi[:-1] + bi[1:]) if self.extend in ('both', 'min'): v[0] = b[0] - 1 if self.extend in ('both', 'max'): v[-1] = b[-1] + 1 self._boundaries = b self._values = v return else: if not self.norm.scaled(): self.norm.vmin = 0 self.norm.vmax = 1 b = self.norm.inverse(self._uniform_y(self.cmap.N+1)) if self.extend in ('both', 'min'): b[0] = b[0] - 1 if self.extend in ('both', 'max'): b[-1] = b[-1] + 1 self._process_values(b) def _find_range(self): ''' Set :attr:`vmin` and :attr:`vmax` attributes to the first and last boundary excluding extended end boundaries. ''' b = self._boundaries[self._inside] self.vmin = b[0] self.vmax = b[-1] def _central_N(self): '''number of boundaries **before** extension of ends''' nb = len(self._boundaries) if self.extend == 'both': nb -= 2 elif self.extend in ('min', 'max'): nb -= 1 return nb def _extended_N(self): ''' Based on the colormap and extend variable, return the number of boundaries. ''' N = self.cmap.N + 1 if self.extend == 'both': N += 2 elif self.extend in ('min', 'max'): N += 1 return N def _uniform_y(self, N): ''' Return colorbar data coordinates for *N* uniformly spaced boundaries, plus ends if required. ''' if self.extend == 'neither': y = np.linspace(0, 1, N) else: if self.extend == 'both': y = np.zeros(N + 2, 'd') y[0] = -0.05 y[-1] = 1.05 elif self.extend == 'min': y = np.zeros(N + 1, 'd') y[0] = -0.05 else: y = np.zeros(N + 1, 'd') y[-1] = 1.05 y[self._inside] = np.linspace(0, 1, N) return y def _proportional_y(self): ''' Return colorbar data coordinates for the boundaries of a proportional colorbar. ''' if isinstance(self.norm, colors.BoundaryNorm): b = self._boundaries[self._inside] y = (self._boundaries - self._boundaries[0]) y = y / (self._boundaries[-1] - self._boundaries[0]) else: y = self.norm(self._boundaries.copy()) if self.extend in ('both', 'min'): y[0] = -0.05 if self.extend in ('both', 'max'): y[-1] = 1.05 yi = y[self._inside] norm = colors.Normalize(yi[0], yi[-1]) y[self._inside] = norm(yi) return y def _mesh(self): ''' Return X,Y, the coordinate arrays for the colorbar pcolormesh. These are suitable for a vertical colorbar; swapping and transposition for a horizontal colorbar are done outside this function. ''' x = np.array([0.0, 1.0]) if self.spacing == 'uniform': y = self._uniform_y(self._central_N()) else: y = self._proportional_y() self._y = y X, Y = np.meshgrid(x,y) if self.extend in ('min', 'both'): X[0,:] = 0.5 if self.extend in ('max', 'both'): X[-1,:] = 0.5 return X, Y def _locate(self, x): ''' Given a possible set of color data values, return the ones within range, together with their corresponding colorbar data coordinates. ''' if isinstance(self.norm, (colors.NoNorm, colors.BoundaryNorm)): b = self._boundaries xn = x xout = x else: # Do calculations using normalized coordinates so # as to make the interpolation more accurate. b = self.norm(self._boundaries, clip=False).filled() # We do our own clipping so that we can allow a tiny # bit of slop in the end point ticks to allow for # floating point errors. xn = self.norm(x, clip=False).filled() in_cond = (xn > -0.001) & (xn < 1.001) xn = np.compress(in_cond, xn) xout = np.compress(in_cond, x) # The rest is linear interpolation with clipping. y = self._y N = len(b) ii = np.minimum(np.searchsorted(b, xn), N-1) i0 = np.maximum(ii - 1, 0) #db = b[ii] - b[i0] db = np.take(b, ii) - np.take(b, i0) db = np.where(i0==ii, 1.0, db) #dy = y[ii] - y[i0] dy = np.take(y, ii) - np.take(y, i0) z = np.take(y, i0) + (xn-np.take(b,i0))*dy/db return xout, z def set_alpha(self, alpha): self.alpha = alpha class Colorbar(ColorbarBase): def __init__(self, ax, mappable, **kw): mappable.autoscale_None() # Ensure mappable.norm.vmin, vmax # are set when colorbar is called, # even if mappable.draw has not yet # been called. This will not change # vmin, vmax if they are already set. self.mappable = mappable kw['cmap'] = mappable.cmap kw['norm'] = mappable.norm kw['alpha'] = mappable.get_alpha() if isinstance(mappable, contour.ContourSet): CS = mappable kw['boundaries'] = CS._levels kw['values'] = CS.cvalues kw['extend'] = CS.extend #kw['ticks'] = CS._levels kw.setdefault('ticks', ticker.FixedLocator(CS.levels, nbins=10)) kw['filled'] = CS.filled ColorbarBase.__init__(self, ax, **kw) if not CS.filled: self.add_lines(CS) else: ColorbarBase.__init__(self, ax, **kw) def add_lines(self, CS): ''' Add the lines from a non-filled :class:`~matplotlib.contour.ContourSet` to the colorbar. ''' if not isinstance(CS, contour.ContourSet) or CS.filled: raise ValueError('add_lines is only for a ContourSet of lines') tcolors = [c[0] for c in CS.tcolors] tlinewidths = [t[0] for t in CS.tlinewidths] # The following was an attempt to get the colorbar lines # to follow subsequent changes in the contour lines, # but more work is needed: specifically, a careful # look at event sequences, and at how # to make one object track another automatically. #tcolors = [col.get_colors()[0] for col in CS.collections] #tlinewidths = [col.get_linewidth()[0] for lw in CS.collections] #print 'tlinewidths:', tlinewidths ColorbarBase.add_lines(self, CS.levels, tcolors, tlinewidths) def update_bruteforce(self, mappable): ''' Manually change any contour line colors. This is called when the image or contour plot to which this colorbar belongs is changed. ''' # We are using an ugly brute-force method: clearing and # redrawing the whole thing. The problem is that if any # properties have been changed by methods other than the # colorbar methods, those changes will be lost. self.ax.cla() self.draw_all() #if self.vmin != self.norm.vmin or self.vmax != self.norm.vmax: # self.ax.cla() # self.draw_all() if isinstance(self.mappable, contour.ContourSet): CS = self.mappable if not CS.filled: self.add_lines(CS) #if self.lines is not None: # tcolors = [c[0] for c in CS.tcolors] # self.lines.set_color(tcolors) #Fixme? Recalculate boundaries, ticks if vmin, vmax have changed. #Fixme: Some refactoring may be needed; we should not # be recalculating everything if there was a simple alpha # change. def make_axes(parent, **kw): orientation = kw.setdefault('orientation', 'vertical') fraction = kw.pop('fraction', 0.15) shrink = kw.pop('shrink', 1.0) aspect = kw.pop('aspect', 20) #pb = transforms.PBox(parent.get_position()) pb = parent.get_position(original=True).frozen() if orientation == 'vertical': pad = kw.pop('pad', 0.05) x1 = 1.0-fraction pb1, pbx, pbcb = pb.splitx(x1-pad, x1) pbcb = pbcb.shrunk(1.0, shrink).anchored('C', pbcb) anchor = (0.0, 0.5) panchor = (1.0, 0.5) else: pad = kw.pop('pad', 0.15) pbcb, pbx, pb1 = pb.splity(fraction, fraction+pad) pbcb = pbcb.shrunk(shrink, 1.0).anchored('C', pbcb) aspect = 1.0/aspect anchor = (0.5, 1.0) panchor = (0.5, 0.0) parent.set_position(pb1) parent.set_anchor(panchor) fig = parent.get_figure() cax = fig.add_axes(pbcb) cax.set_aspect(aspect, anchor=anchor, adjustable='box') return cax, kw make_axes.__doc__ =''' Resize and reposition a parent axes, and return a child axes suitable for a colorbar:: cax, kw = make_axes(parent, **kw) Keyword arguments may include the following (with defaults): *orientation* 'vertical' or 'horizontal' %s All but the first of these are stripped from the input kw set. Returns (cax, kw), the child axes and the reduced kw dictionary. ''' % make_axes_kw_doc
gpl-3.0
vbalderdash/LMAsimulation
read_logs.py
1
6370
import pandas as pd import numpy as np import subprocess import os def hex2page(value): new_value = -111+int(value, 16)*0.488 return new_value def check_log(filename,form='wtreg'): """Checks to make sure the lines in the file have the correct length. Files with less than 26 errored lines will be copied to [filename]_original and [filename] will be rewritten without the errored lines. This function will not run on a Windows platform! """ i=0 j=0 f=open(filename) if form=='wtreg': len_arrays = np.array([47, 83]) if form=='old7': len_arrays = np.array([42, 78]) if form=='newok': len_arrays = np.array([47, 88]) for line_no, line in enumerate(f): if np.all(len(line.strip()) != len_arrays): print (line) i+=1 f.close() if i>26: print ("%s may be in a different format!" %(filename)) print ("Moving to '_original' and ignoring!") subprocess.call(['mv', filename, filename+'_original']) if (i>0) & (i<26): if os.path.isfile(filename+'_original'): print ("Original copies already exists for %s!" %(filename)) else: f = open(filename) print ("%s has some bad lines," %(filename)) print ("original copy will be made and bad lines will be removed" ) subprocess.call(['cp', filename, filename+'_original']) for line_no, line in enumerate(f): if np.all(len(line.strip()) != len_arrays): subprocess.call(['sed', '-i.bak', "%s d" %(line_no+1-j), filename]) j+=1 subprocess.call(['rm', filename+'.bak']) f.close() def parsing(filename, T_set='False',form='wtreg'): """filename must be in path/TxYYMMDD format. Returns Pandas dataframe The log file will be run through a checker to make sure that there are no bad lines. Thresholds will be converted from hex format to dBm If T_set is set to 'True' only the thresholds, latitudes, longitudes and altitudes will be returned with the station identifier as a suffix, otherwise the entire log file will be parsed. """ check_log(filename,form) if os.path.isfile(filename): dateparse = lambda x: pd.datetime.strptime(x, '%m/%d/%y %H:%M:%S') namelist = ['ID','Datetime','Version','Threshold','?', 'Triggers','GPS_Number','GPS_Mode','Temp', 'Lat','Lon','Alt'] if form=='wtreg': widths_list = [1,18,4,5,12,7,3,3,3,9,10,8] collist = [1,3,9,10,11] if form=='old7': widths_list = [1,18,4,5,7,7,3,3,3,9,10,8] collist = [1,3,9,10,11] if form=='newok': widths_list = [1,18,4,5,12,7,3,3,4,4,9,10,8] collist = [1,3,10,11,12] namelist = ['ID','Datetime','Version','Threshold','???', 'Triggers','GPS_Number','GPS_Mode','Temp','Batt', 'Lat','Lon','Alt'] if T_set=='True': df = pd.read_fwf(filename, widths=widths_list, names=namelist, usecols=collist, parse_dates = [0], date_parser = dateparse, na_values='\n') station=filename[-7] df['Threshold'] = df['Threshold'].apply(hex2page) df=df.rename(columns = {'Threshold':'Threshold_%s'%station, 'Lat':'Lat_%s'%station, 'Lon':'Lon_%s'%station, 'Alt':'Alt_%s'%station}) else: df = pd.read_fwf(filename, widths=widths_list, names=namelist, parse_dates = [1], date_parser = dateparse, na_values='\n') df['Threshold'] = df['Threshold'].apply(hex2page) df=df.set_index('Datetime') return df def parsing_variable(filename, T_set='False'): """filename must be in path/TxYYMMDD format. Returns Pandas dataframe The log file will NOT be run through a checker to make sure that there are no bad lines as not all files will be the same widths for the quick check used in the check_log function. Thresholds will be converted from hex format to dBm If T_set is set to 'True' only the thresholds, latitudes, longitudes and altitudes will be returned with the station identifier as a suffix, otherwise the entire log file will be parsed. """ if os.path.isfile(filename): dateparse = lambda x: pd.datetime.strptime(x, '%m/%d/%y %H:%M:%S') namelist = ['ID','Date','time','Version','Threshold','?','??' 'Triggers','GPS_Number','GPS_Mode','Temp', 'Lat','Lon','Alt'] collist = [1,2,4,12,13,14] namelist = ['ID','Date','time','Version','Threshold','?','??', 'Triggers','GPS_Number','GPS_Mode','Temp','Batt', 'Lat','Lon','Alt'] if T_set=='True': df = pd.read_fwf(filename, names=namelist, usecols=collist, parse_dates = [[0,1]], date_parser = dateparse, na_values='\n') station=filename[-7] df['Threshold'] = df['Threshold'].apply(hex2page) df=df.rename(columns = {'Threshold':'Threshold_%s'%station, 'Lat':'Lat_%s'%station, 'Lon':'Lon_%s'%station, 'Alt':'Alt_%s'%station}) else: df = pd.read_fwf(filename, names=namelist, parse_dates = [[0,1]], date_parser = dateparse, na_values='\n') df['Threshold'] = df['Threshold'].apply(hex2page) df=df.set_index('Date_time') return df
mit
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/matplotlib/delaunay/testfuncs.py
21
21168
"""Some test functions for bivariate interpolation. Most of these have been yoinked from ACM TOMS 792. http://netlib.org/toms/792 """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange import numpy as np from .triangulate import Triangulation class TestData(dict): def __init__(self, *args, **kwds): dict.__init__(self, *args, **kwds) self.__dict__ = self class TestDataSet(object): def __init__(self, **kwds): self.__dict__.update(kwds) data = TestData( franke100=TestDataSet( x=np.array([0.0227035, 0.0539888, 0.0217008, 0.0175129, 0.0019029, -0.0509685, 0.0395408, -0.0487061, 0.0315828, -0.0418785, 0.1324189, 0.1090271, 0.1254439, 0.093454, 0.0767578, 0.1451874, 0.0626494, 0.1452734, 0.0958668, 0.0695559, 0.2645602, 0.2391645, 0.208899, 0.2767329, 0.1714726, 0.2266781, 0.1909212, 0.1867647, 0.2304634, 0.2426219, 0.3663168, 0.3857662, 0.3832392, 0.3179087, 0.3466321, 0.3776591, 0.3873159, 0.3812917, 0.3795364, 0.2803515, 0.4149771, 0.4277679, 0.420001, 0.4663631, 0.4855658, 0.4092026, 0.4792578, 0.4812279, 0.3977761, 0.4027321, 0.5848691, 0.5730076, 0.6063893, 0.5013894, 0.5741311, 0.6106955, 0.5990105, 0.5380621, 0.6096967, 0.5026188, 0.6616928, 0.6427836, 0.6396475, 0.6703963, 0.7001181, 0.633359, 0.6908947, 0.6895638, 0.6718889, 0.6837675, 0.7736939, 0.7635332, 0.7410424, 0.8258981, 0.7306034, 0.8086609, 0.8214531, 0.729064, 0.8076643, 0.8170951, 0.8424572, 0.8684053, 0.8366923, 0.9418461, 0.8478122, 0.8599583, 0.91757, 0.8596328, 0.9279871, 0.8512805, 1.044982, 0.9670631, 0.9857884, 0.9676313, 1.0129299, 0.965704, 1.0019855, 1.0359297, 1.0414677, 0.9471506]), y=np.array([-0.0310206, 0.1586742, 0.2576924, 0.3414014, 0.4943596, 0.5782854, 0.6993418, 0.7470194, 0.9107649, 0.996289, 0.050133, 0.0918555, 0.2592973, 0.3381592, 0.4171125, 0.5615563, 0.6552235, 0.7524066, 0.9146523, 0.9632421, 0.0292939, 0.0602303, 0.2668783, 0.3696044, 0.4801738, 0.5940595, 0.6878797, 0.8185576, 0.9046507, 0.9805412, 0.0396955, 0.0684484, 0.2389548, 0.3124129, 0.4902989, 0.5199303, 0.6445227, 0.8203789, 0.8938079, 0.9711719, -0.0284618, 0.1560965, 0.2262471, 0.3175094, 0.3891417, 0.5084949, 0.6324247, 0.7511007, 0.8489712, 0.9978728, -0.0271948, 0.127243, 0.2709269, 0.3477728, 0.4259422, 0.6084711, 0.6733781, 0.7235242, 0.9242411, 1.0308762, 0.0255959, 0.0707835, 0.2008336, 0.3259843, 0.4890704, 0.5096324, 0.669788, 0.7759569, 0.9366096, 1.0064516, 0.0285374, 0.1021403, 0.1936581, 0.3235775, 0.4714228, 0.6091595, 0.6685053, 0.8022808, 0.847679, 1.0512371, 0.0380499, 0.0902048, 0.2083092, 0.3318491, 0.4335632, 0.5910139, 0.6307383, 0.8144841, 0.904231, 0.969603, -0.01209, 0.1334114, 0.2695844, 0.3795281, 0.4396054, 0.5044425, 0.6941519, 0.7459923, 0.8682081, 0.9801409])), franke33=TestDataSet( x=np.array([5.00000000e-02, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e-01, 1.00000000e-01, 1.50000000e-01, 2.00000000e-01, 2.50000000e-01, 3.00000000e-01, 3.50000000e-01, 5.00000000e-01, 5.00000000e-01, 5.50000000e-01, 6.00000000e-01, 6.00000000e-01, 6.00000000e-01, 6.50000000e-01, 7.00000000e-01, 7.00000000e-01, 7.00000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 8.00000000e-01, 8.00000000e-01, 8.50000000e-01, 9.00000000e-01, 9.00000000e-01, 9.50000000e-01, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]), y=np.array([4.50000000e-01, 5.00000000e-01, 1.00000000e+00, 0.00000000e+00, 1.50000000e-01, 7.50000000e-01, 3.00000000e-01, 1.00000000e-01, 2.00000000e-01, 3.50000000e-01, 8.50000000e-01, 0.00000000e+00, 1.00000000e+00, 9.50000000e-01, 2.50000000e-01, 6.50000000e-01, 8.50000000e-01, 7.00000000e-01, 2.00000000e-01, 6.50000000e-01, 9.00000000e-01, 1.00000000e-01, 3.50000000e-01, 8.50000000e-01, 4.00000000e-01, 6.50000000e-01, 2.50000000e-01, 3.50000000e-01, 8.00000000e-01, 9.00000000e-01, 0.00000000e+00, 5.00000000e-01, 1.00000000e+00])), lawson25=TestDataSet( x=np.array([0.1375, 0.9125, 0.7125, 0.225, -0.05, 0.475, 0.05, 0.45, 1.0875, 0.5375, -0.0375, 0.1875, 0.7125, 0.85, 0.7, 0.275, 0.45, 0.8125, 0.45, 1., 0.5, 0.1875, 0.5875, 1.05, 0.1]), y=np.array([0.975, 0.9875, 0.7625, 0.8375, 0.4125, 0.6375, -0.05, 1.0375, 0.55, 0.8, 0.75, 0.575, 0.55, 0.4375, 0.3125, 0.425, 0.2875, 0.1875, -0.0375, 0.2625, 0.4625, 0.2625, 0.125, -0.06125, 0.1125])), random100=TestDataSet( x=np.array([0.0096326, 0.0216348, 0.029836, 0.0417447, 0.0470462, 0.0562965, 0.0646857, 0.0740377, 0.0873907, 0.0934832, 0.1032216, 0.1110176, 0.1181193, 0.1251704, 0.132733, 0.1439536, 0.1564861, 0.1651043, 0.1786039, 0.1886405, 0.2016706, 0.2099886, 0.2147003, 0.2204141, 0.2343715, 0.240966, 0.252774, 0.2570839, 0.2733365, 0.2853833, 0.2901755, 0.2964854, 0.3019725, 0.3125695, 0.3307163, 0.3378504, 0.3439061, 0.3529922, 0.3635507, 0.3766172, 0.3822429, 0.3869838, 0.3973137, 0.4170708, 0.4255588, 0.4299218, 0.4372839, 0.4705033, 0.4736655, 0.4879299, 0.494026, 0.5055324, 0.5162593, 0.5219219, 0.5348529, 0.5483213, 0.5569571, 0.5638611, 0.5784908, 0.586395, 0.5929148, 0.5987839, 0.6117561, 0.6252296, 0.6331381, 0.6399048, 0.6488972, 0.6558537, 0.6677405, 0.6814074, 0.6887812, 0.6940896, 0.7061687, 0.7160957, 0.7317445, 0.7370798, 0.746203, 0.7566957, 0.7699998, 0.7879347, 0.7944014, 0.8164468, 0.8192794, 0.8368405, 0.8500993, 0.8588255, 0.8646496, 0.8792329, 0.8837536, 0.8900077, 0.8969894, 0.9044917, 0.9083947, 0.9203972, 0.9347906, 0.9434519, 0.9490328, 0.9569571, 0.9772067, 0.9983493]), y=np.array([0.3083158, 0.2450434, 0.8613847, 0.0977864, 0.3648355, 0.7156339, 0.5311312, 0.9755672, 0.1781117, 0.5452797, 0.1603881, 0.7837139, 0.9982015, 0.6910589, 0.104958, 0.8184662, 0.7086405, 0.4456593, 0.1178342, 0.3189021, 0.9668446, 0.7571834, 0.2016598, 0.3232444, 0.4368583, 0.8907869, 0.064726, 0.5692618, 0.2947027, 0.4332426, 0.3347464, 0.7436284, 0.1066265, 0.8845357, 0.515873, 0.9425637, 0.4799701, 0.1783069, 0.114676, 0.8225797, 0.2270688, 0.4073598, 0.887508, 0.7631616, 0.9972804, 0.4959884, 0.3410421, 0.249812, 0.6409007, 0.105869, 0.5411969, 0.0089792, 0.8784268, 0.5515874, 0.4038952, 0.1654023, 0.2965158, 0.3660356, 0.0366554, 0.950242, 0.2638101, 0.9277386, 0.5377694, 0.7374676, 0.4674627, 0.9186109, 0.0416884, 0.1291029, 0.6763676, 0.8444238, 0.3273328, 0.1893879, 0.0645923, 0.0180147, 0.8904992, 0.4160648, 0.4688995, 0.2174508, 0.5734231, 0.8853319, 0.8018436, 0.6388941, 0.8931002, 0.1000558, 0.2789506, 0.9082948, 0.3259159, 0.8318747, 0.0508513, 0.970845, 0.5120548, 0.2859716, 0.9581641, 0.6183429, 0.3779934, 0.4010423, 0.9478657, 0.7425486, 0.8883287, 0.549675])), uniform9=TestDataSet( x=np.array([1.25000000e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]), y=np.array([0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00])), ) def constant(x, y): return np.ones(x.shape, x.dtype) constant.title = 'Constant' def xramp(x, y): return x xramp.title = 'X Ramp' def yramp(x, y): return y yramp.title = 'Y Ramp' def exponential(x, y): x = x * 9 y = y * 9 x1 = x + 1.0 x2 = x - 2.0 x4 = x - 4.0 x7 = x - 7.0 y1 = x + 1.0 y2 = y - 2.0 y3 = y - 3.0 y7 = y - 7.0 f = (0.75 * np.exp(-(x2 * x2 + y2 * y2) / 4.0) + 0.75 * np.exp(-x1 * x1 / 49.0 - y1 / 10.0) + 0.5 * np.exp(-(x7 * x7 + y3 * y3) / 4.0) - 0.2 * np.exp(-x4 * x4 - y7 * y7)) return f exponential.title = 'Exponential and Some Gaussians' def cliff(x, y): f = np.tanh(9.0 * (y - x) + 1.0) / 9.0 return f cliff.title = 'Cliff' def saddle(x, y): f = (1.25 + np.cos(5.4 * y)) / (6.0 + 6.0 * (3 * x - 1.0) ** 2) return f saddle.title = 'Saddle' def gentle(x, y): f = np.exp(-5.0625 * ((x - 0.5) ** 2 + (y - 0.5) ** 2)) / 3.0 return f gentle.title = 'Gentle Peak' def steep(x, y): f = np.exp(-20.25 * ((x - 0.5) ** 2 + (y - 0.5) ** 2)) / 3.0 return f steep.title = 'Steep Peak' def sphere(x, y): circle = 64 - 81 * ((x - 0.5) ** 2 + (y - 0.5) ** 2) f = np.where(circle >= 0, np.sqrt(np.clip(circle, 0, 100)) - 0.5, 0.0) return f sphere.title = 'Sphere' def trig(x, y): f = 2.0 * np.cos(10.0 * x) * np.sin(10.0 * y) + np.sin(10.0 * x * y) return f trig.title = 'Cosines and Sines' def gauss(x, y): x = 5.0 - 10.0 * x y = 5.0 - 10.0 * y g1 = np.exp(-x * x / 2) g2 = np.exp(-y * y / 2) f = g1 + 0.75 * g2 * (1 + g1) return f gauss.title = 'Gaussian Peak and Gaussian Ridges' def cloverleaf(x, y): ex = np.exp((10.0 - 20.0 * x) / 3.0) ey = np.exp((10.0 - 20.0 * y) / 3.0) logitx = 1.0 / (1.0 + ex) logity = 1.0 / (1.0 + ey) f = (((20.0 / 3.0) ** 3 * ex * ey) ** 2 * (logitx * logity) ** 5 * (ex - 2.0 * logitx) * (ey - 2.0 * logity)) return f cloverleaf.title = 'Cloverleaf' def cosine_peak(x, y): circle = np.hypot(80 * x - 40.0, 90 * y - 45.) f = np.exp(-0.04 * circle) * np.cos(0.15 * circle) return f cosine_peak.title = 'Cosine Peak' allfuncs = [exponential, cliff, saddle, gentle, steep, sphere, trig, gauss, cloverleaf, cosine_peak] class LinearTester(object): name = 'Linear' def __init__(self, xrange=(0.0, 1.0), yrange=(0.0, 1.0), nrange=101, npoints=250): self.xrange = xrange self.yrange = yrange self.nrange = nrange self.npoints = npoints rng = np.random.RandomState(1234567890) self.x = rng.uniform(xrange[0], xrange[1], size=npoints) self.y = rng.uniform(yrange[0], yrange[1], size=npoints) self.tri = Triangulation(self.x, self.y) def replace_data(self, dataset): self.x = dataset.x self.y = dataset.y self.tri = Triangulation(self.x, self.y) def interpolator(self, func): z = func(self.x, self.y) return self.tri.linear_extrapolator(z, bbox=self.xrange + self.yrange) def plot(self, func, interp=True, plotter='imshow'): import matplotlib as mpl from matplotlib import pylab as pl if interp: lpi = self.interpolator(func) z = lpi[self.yrange[0]:self.yrange[1]:complex(0, self.nrange), self.xrange[0]:self.xrange[1]:complex(0, self.nrange)] else: y, x = np.mgrid[ self.yrange[0]:self.yrange[1]:complex(0, self.nrange), self.xrange[0]:self.xrange[1]:complex(0, self.nrange)] z = func(x, y) z = np.where(np.isinf(z), 0.0, z) extent = (self.xrange[0], self.xrange[1], self.yrange[0], self.yrange[1]) pl.ioff() pl.clf() pl.hot() # Some like it hot if plotter == 'imshow': pl.imshow(np.nan_to_num(z), interpolation='nearest', extent=extent, origin='lower') elif plotter == 'contour': Y, X = np.ogrid[ self.yrange[0]:self.yrange[1]:complex(0, self.nrange), self.xrange[0]:self.xrange[1]:complex(0, self.nrange)] pl.contour(np.ravel(X), np.ravel(Y), z, 20) x = self.x y = self.y lc = mpl.collections.LineCollection( np.array([((x[i], y[i]), (x[j], y[j])) for i, j in self.tri.edge_db]), colors=[(0, 0, 0, 0.2)]) ax = pl.gca() ax.add_collection(lc) if interp: title = '%s Interpolant' % self.name else: title = 'Reference' if hasattr(func, 'title'): pl.title('%s: %s' % (func.title, title)) else: pl.title(title) pl.show() pl.ion() class NNTester(LinearTester): name = 'Natural Neighbors' def interpolator(self, func): z = func(self.x, self.y) return self.tri.nn_extrapolator(z, bbox=self.xrange + self.yrange) def plotallfuncs(allfuncs=allfuncs): from matplotlib import pylab as pl pl.ioff() nnt = NNTester(npoints=1000) lpt = LinearTester(npoints=1000) for func in allfuncs: print(func.title) nnt.plot(func, interp=False, plotter='imshow') pl.savefig('%s-ref-img.png' % func.__name__) nnt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-nn-img.png' % func.__name__) lpt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-lin-img.png' % func.__name__) nnt.plot(func, interp=False, plotter='contour') pl.savefig('%s-ref-con.png' % func.__name__) nnt.plot(func, interp=True, plotter='contour') pl.savefig('%s-nn-con.png' % func.__name__) lpt.plot(func, interp=True, plotter='contour') pl.savefig('%s-lin-con.png' % func.__name__) pl.ion() def plot_dt(tri, colors=None): import matplotlib as mpl from matplotlib import pylab as pl if colors is None: colors = [(0, 0, 0, 0.2)] lc = mpl.collections.LineCollection( np.array([((tri.x[i], tri.y[i]), (tri.x[j], tri.y[j])) for i, j in tri.edge_db]), colors=colors) ax = pl.gca() ax.add_collection(lc) pl.draw_if_interactive() def plot_vo(tri, colors=None): import matplotlib as mpl from matplotlib import pylab as pl if colors is None: colors = [(0, 1, 0, 0.2)] lc = mpl.collections.LineCollection(np.array( [(tri.circumcenters[i], tri.circumcenters[j]) for i in xrange(len(tri.circumcenters)) for j in tri.triangle_neighbors[i] if j != -1]), colors=colors) ax = pl.gca() ax.add_collection(lc) pl.draw_if_interactive() def plot_cc(tri, edgecolor=None): import matplotlib as mpl from matplotlib import pylab as pl if edgecolor is None: edgecolor = (0, 0, 1, 0.2) dxy = (np.array([(tri.x[i], tri.y[i]) for i, j, k in tri.triangle_nodes]) - tri.circumcenters) r = np.hypot(dxy[:, 0], dxy[:, 1]) ax = pl.gca() for i in xrange(len(r)): p = mpl.patches.Circle(tri.circumcenters[i], r[i], resolution=100, edgecolor=edgecolor, facecolor=(1, 1, 1, 0), linewidth=0.2) ax.add_patch(p) pl.draw_if_interactive() def quality(func, mesh, interpolator='nn', n=33): """Compute a quality factor (the quantity r**2 from TOMS792). interpolator must be in ('linear', 'nn'). """ fz = func(mesh.x, mesh.y) tri = Triangulation(mesh.x, mesh.y) intp = getattr(tri, interpolator + '_extrapolator')(fz, bbox=(0., 1., 0., 1.)) Y, X = np.mgrid[0:1:complex(0, n), 0:1:complex(0, n)] Z = func(X, Y) iz = intp[0:1:complex(0, n), 0:1:complex(0, n)] #nans = np.isnan(iz) #numgood = n*n - np.sum(np.array(nans.flat, np.int32)) numgood = n * n SE = (Z - iz) ** 2 SSE = np.sum(SE.flat) meanZ = np.sum(Z.flat) / numgood SM = (Z - meanZ) ** 2 SSM = np.sum(SM.flat) r2 = 1.0 - SSE / SSM print(func.__name__, r2, SSE, SSM, numgood) return r2 def allquality(interpolator='nn', allfuncs=allfuncs, data=data, n=33): results = {} kv = list(six.iteritems(data)) kv.sort() for name, mesh in kv: reslist = results.setdefault(name, []) for func in allfuncs: reslist.append(quality(func, mesh, interpolator, n)) return results def funky(): x0 = np.array([0.25, 0.3, 0.5, 0.6, 0.6]) y0 = np.array([0.2, 0.35, 0.0, 0.25, 0.65]) tx = 0.46 ty = 0.23 t0 = Triangulation(x0, y0) t1 = Triangulation(np.hstack((x0, [tx])), np.hstack((y0, [ty]))) return t0, t1
mit
gamahead/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backend_bases.py
69
69740
""" Abstract base classes define the primitives that renderers and graphics contexts must implement to serve as a matplotlib backend :class:`RendererBase` An abstract base class to handle drawing/rendering operations. :class:`FigureCanvasBase` The abstraction layer that separates the :class:`matplotlib.figure.Figure` from the backend specific details like a user interface drawing area :class:`GraphicsContextBase` An abstract base class that provides color, line styles, etc... :class:`Event` The base class for all of the matplotlib event handling. Derived classes suh as :class:`KeyEvent` and :class:`MouseEvent` store the meta data like keys and buttons pressed, x and y locations in pixel and :class:`~matplotlib.axes.Axes` coordinates. """ from __future__ import division import os, warnings, time import numpy as np import matplotlib.cbook as cbook import matplotlib.colors as colors import matplotlib.transforms as transforms import matplotlib.widgets as widgets from matplotlib import rcParams class RendererBase: """An abstract base class to handle drawing/rendering operations. The following methods *must* be implemented in the backend: * :meth:`draw_path` * :meth:`draw_image` * :meth:`draw_text` * :meth:`get_text_width_height_descent` The following methods *should* be implemented in the backend for optimization reasons: * :meth:`draw_markers` * :meth:`draw_path_collection` * :meth:`draw_quad_mesh` """ def __init__(self): self._texmanager = None def open_group(self, s): """ Open a grouping element with label *s*. Is only currently used by :mod:`~matplotlib.backends.backend_svg` """ pass def close_group(self, s): """ Close a grouping element with label *s* Is only currently used by :mod:`~matplotlib.backends.backend_svg` """ pass def draw_path(self, gc, path, transform, rgbFace=None): """ Draws a :class:`~matplotlib.path.Path` instance using the given affine transform. """ raise NotImplementedError def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): """ Draws a marker at each of the vertices in path. This includes all vertices, including control points on curves. To avoid that behavior, those vertices should be removed before calling this function. *gc* the :class:`GraphicsContextBase` instance *marker_trans* is an affine transform applied to the marker. *trans* is an affine transform applied to the path. This provides a fallback implementation of draw_markers that makes multiple calls to :meth:`draw_path`. Some backends may want to override this method in order to draw the marker only once and reuse it multiple times. """ tpath = trans.transform_path(path) for vertices, codes in tpath.iter_segments(): if len(vertices): x,y = vertices[-2:] self.draw_path(gc, marker_path, marker_trans + transforms.Affine2D().translate(x, y), rgbFace) def draw_path_collection(self, master_transform, cliprect, clippath, clippath_trans, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): """ Draws a collection of paths, selecting drawing properties from the lists *facecolors*, *edgecolors*, *linewidths*, *linestyles* and *antialiaseds*. *offsets* is a list of offsets to apply to each of the paths. The offsets in *offsets* are first transformed by *offsetTrans* before being applied. This provides a fallback implementation of :meth:`draw_path_collection` that makes multiple calls to draw_path. Some backends may want to override this in order to render each set of path data only once, and then reference that path multiple times with the different offsets, colors, styles etc. The generator methods :meth:`_iter_collection_raw_paths` and :meth:`_iter_collection` are provided to help with (and standardize) the implementation across backends. It is highly recommended to use those generators, so that changes to the behavior of :meth:`draw_path_collection` can be made globally. """ path_ids = [] for path, transform in self._iter_collection_raw_paths( master_transform, paths, all_transforms): path_ids.append((path, transform)) for xo, yo, path_id, gc, rgbFace in self._iter_collection( path_ids, cliprect, clippath, clippath_trans, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): path, transform = path_id transform = transforms.Affine2D(transform.get_matrix()).translate(xo, yo) self.draw_path(gc, path, transform, rgbFace) def draw_quad_mesh(self, master_transform, cliprect, clippath, clippath_trans, meshWidth, meshHeight, coordinates, offsets, offsetTrans, facecolors, antialiased, showedges): """ This provides a fallback implementation of :meth:`draw_quad_mesh` that generates paths and then calls :meth:`draw_path_collection`. """ from matplotlib.collections import QuadMesh paths = QuadMesh.convert_mesh_to_paths( meshWidth, meshHeight, coordinates) if showedges: edgecolors = np.array([[0.0, 0.0, 0.0, 1.0]], np.float_) linewidths = np.array([1.0], np.float_) else: edgecolors = facecolors linewidths = np.array([0.0], np.float_) return self.draw_path_collection( master_transform, cliprect, clippath, clippath_trans, paths, [], offsets, offsetTrans, facecolors, edgecolors, linewidths, [], [antialiased], [None]) def _iter_collection_raw_paths(self, master_transform, paths, all_transforms): """ This is a helper method (along with :meth:`_iter_collection`) to make it easier to write a space-efficent :meth:`draw_path_collection` implementation in a backend. This method yields all of the base path/transform combinations, given a master transform, a list of paths and list of transforms. The arguments should be exactly what is passed in to :meth:`draw_path_collection`. The backend should take each yielded path and transform and create an object that can be referenced (reused) later. """ Npaths = len(paths) Ntransforms = len(all_transforms) N = max(Npaths, Ntransforms) if Npaths == 0: return transform = transforms.IdentityTransform() for i in xrange(N): path = paths[i % Npaths] if Ntransforms: transform = all_transforms[i % Ntransforms] yield path, transform + master_transform def _iter_collection(self, path_ids, cliprect, clippath, clippath_trans, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): """ This is a helper method (along with :meth:`_iter_collection_raw_paths`) to make it easier to write a space-efficent :meth:`draw_path_collection` implementation in a backend. This method yields all of the path, offset and graphics context combinations to draw the path collection. The caller should already have looped over the results of :meth:`_iter_collection_raw_paths` to draw this collection. The arguments should be the same as that passed into :meth:`draw_path_collection`, with the exception of *path_ids*, which is a list of arbitrary objects that the backend will use to reference one of the paths created in the :meth:`_iter_collection_raw_paths` stage. Each yielded result is of the form:: xo, yo, path_id, gc, rgbFace where *xo*, *yo* is an offset; *path_id* is one of the elements of *path_ids*; *gc* is a graphics context and *rgbFace* is a color to use for filling the path. """ Npaths = len(path_ids) Noffsets = len(offsets) N = max(Npaths, Noffsets) Nfacecolors = len(facecolors) Nedgecolors = len(edgecolors) Nlinewidths = len(linewidths) Nlinestyles = len(linestyles) Naa = len(antialiaseds) Nurls = len(urls) if (Nfacecolors == 0 and Nedgecolors == 0) or Npaths == 0: return if Noffsets: toffsets = offsetTrans.transform(offsets) gc = self.new_gc() gc.set_clip_rectangle(cliprect) if clippath is not None: clippath = transforms.TransformedPath(clippath, clippath_trans) gc.set_clip_path(clippath) if Nfacecolors == 0: rgbFace = None if Nedgecolors == 0: gc.set_linewidth(0.0) xo, yo = 0, 0 for i in xrange(N): path_id = path_ids[i % Npaths] if Noffsets: xo, yo = toffsets[i % Noffsets] if Nfacecolors: rgbFace = facecolors[i % Nfacecolors] if Nedgecolors: gc.set_foreground(edgecolors[i % Nedgecolors]) if Nlinewidths: gc.set_linewidth(linewidths[i % Nlinewidths]) if Nlinestyles: gc.set_dashes(*linestyles[i % Nlinestyles]) if rgbFace is not None and len(rgbFace)==4: gc.set_alpha(rgbFace[-1]) rgbFace = rgbFace[:3] gc.set_antialiased(antialiaseds[i % Naa]) if Nurls: gc.set_url(urls[i % Nurls]) yield xo, yo, path_id, gc, rgbFace def get_image_magnification(self): """ Get the factor by which to magnify images passed to :meth:`draw_image`. Allows a backend to have images at a different resolution to other artists. """ return 1.0 def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): """ Draw the image instance into the current axes; *x* is the distance in pixels from the left hand side of the canvas. *y* the distance from the origin. That is, if origin is upper, y is the distance from top. If origin is lower, y is the distance from bottom *im* the :class:`matplotlib._image.Image` instance *bbox* a :class:`matplotlib.transforms.Bbox` instance for clipping, or None """ raise NotImplementedError def option_image_nocomposite(self): """ overwrite this method for renderers that do not necessarily want to rescale and composite raster images. (like SVG) """ return False def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!'): raise NotImplementedError def draw_text(self, gc, x, y, s, prop, angle, ismath=False): """ Draw the text instance *gc* the :class:`GraphicsContextBase` instance *x* the x location of the text in display coords *y* the y location of the text in display coords *s* a :class:`matplotlib.text.Text` instance *prop* a :class:`matplotlib.font_manager.FontProperties` instance *angle* the rotation angle in degrees **backend implementers note** When you are trying to determine if you have gotten your bounding box right (which is what enables the text layout/alignment to work properly), it helps to change the line in text.py:: if 0: bbox_artist(self, renderer) to if 1, and then the actual bounding box will be blotted along with your text. """ raise NotImplementedError def flipy(self): """ Return true if y small numbers are top for renderer Is used for drawing text (:mod:`matplotlib.text`) and images (:mod:`matplotlib.image`) only """ return True def get_canvas_width_height(self): 'return the canvas width and height in display coords' return 1, 1 def get_texmanager(self): """ return the :class:`matplotlib.texmanager.TexManager` instance """ if self._texmanager is None: from matplotlib.texmanager import TexManager self._texmanager = TexManager() return self._texmanager def get_text_width_height_descent(self, s, prop, ismath): """ get the width and height, and the offset from the bottom to the baseline (descent), in display coords of the string s with :class:`~matplotlib.font_manager.FontProperties` prop """ raise NotImplementedError def new_gc(self): """ Return an instance of a :class:`GraphicsContextBase` """ return GraphicsContextBase() def points_to_pixels(self, points): """ Convert points to display units *points* a float or a numpy array of float return points converted to pixels You need to override this function (unless your backend doesn't have a dpi, eg, postscript or svg). Some imaging systems assume some value for pixels per inch:: points to pixels = points * pixels_per_inch/72.0 * dpi/72.0 """ return points def strip_math(self, s): return cbook.strip_math(s) def start_rasterizing(self): pass def stop_rasterizing(self): pass class GraphicsContextBase: """ An abstract base class that provides color, line styles, etc... """ # a mapping from dash styles to suggested offset, dash pairs dashd = { 'solid' : (None, None), 'dashed' : (0, (6.0, 6.0)), 'dashdot' : (0, (3.0, 5.0, 1.0, 5.0)), 'dotted' : (0, (1.0, 3.0)), } def __init__(self): self._alpha = 1.0 self._antialiased = 1 # use 0,1 not True, False for extension code self._capstyle = 'butt' self._cliprect = None self._clippath = None self._dashes = None, None self._joinstyle = 'miter' self._linestyle = 'solid' self._linewidth = 1 self._rgb = (0.0, 0.0, 0.0) self._hatch = None self._url = None self._snap = None def copy_properties(self, gc): 'Copy properties from gc to self' self._alpha = gc._alpha self._antialiased = gc._antialiased self._capstyle = gc._capstyle self._cliprect = gc._cliprect self._clippath = gc._clippath self._dashes = gc._dashes self._joinstyle = gc._joinstyle self._linestyle = gc._linestyle self._linewidth = gc._linewidth self._rgb = gc._rgb self._hatch = gc._hatch self._url = gc._url self._snap = gc._snap def get_alpha(self): """ Return the alpha value used for blending - not supported on all backends """ return self._alpha def get_antialiased(self): "Return true if the object should try to do antialiased rendering" return self._antialiased def get_capstyle(self): """ Return the capstyle as a string in ('butt', 'round', 'projecting') """ return self._capstyle def get_clip_rectangle(self): """ Return the clip rectangle as a :class:`~matplotlib.transforms.Bbox` instance """ return self._cliprect def get_clip_path(self): """ Return the clip path in the form (path, transform), where path is a :class:`~matplotlib.path.Path` instance, and transform is an affine transform to apply to the path before clipping. """ if self._clippath is not None: return self._clippath.get_transformed_path_and_affine() return None, None def get_dashes(self): """ Return the dash information as an offset dashlist tuple. The dash list is a even size list that gives the ink on, ink off in pixels. See p107 of to PostScript `BLUEBOOK <http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF>`_ for more info. Default value is None """ return self._dashes def get_joinstyle(self): """ Return the line join style as one of ('miter', 'round', 'bevel') """ return self._joinstyle def get_linestyle(self, style): """ Return the linestyle: one of ('solid', 'dashed', 'dashdot', 'dotted'). """ return self._linestyle def get_linewidth(self): """ Return the line width in points as a scalar """ return self._linewidth def get_rgb(self): """ returns a tuple of three floats from 0-1. color can be a matlab format string, a html hex color string, or a rgb tuple """ return self._rgb def get_url(self): """ returns a url if one is set, None otherwise """ return self._url def get_snap(self): """ returns the snap setting which may be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center """ return self._snap def set_alpha(self, alpha): """ Set the alpha value used for blending - not supported on all backends """ self._alpha = alpha def set_antialiased(self, b): """ True if object should be drawn with antialiased rendering """ # use 0, 1 to make life easier on extension code trying to read the gc if b: self._antialiased = 1 else: self._antialiased = 0 def set_capstyle(self, cs): """ Set the capstyle as a string in ('butt', 'round', 'projecting') """ if cs in ('butt', 'round', 'projecting'): self._capstyle = cs else: raise ValueError('Unrecognized cap style. Found %s' % cs) def set_clip_rectangle(self, rectangle): """ Set the clip rectangle with sequence (left, bottom, width, height) """ self._cliprect = rectangle def set_clip_path(self, path): """ Set the clip path and transformation. Path should be a :class:`~matplotlib.transforms.TransformedPath` instance. """ assert path is None or isinstance(path, transforms.TransformedPath) self._clippath = path def set_dashes(self, dash_offset, dash_list): """ Set the dash style for the gc. *dash_offset* is the offset (usually 0). *dash_list* specifies the on-off sequence as points. ``(None, None)`` specifies a solid line """ self._dashes = dash_offset, dash_list def set_foreground(self, fg, isRGB=False): """ Set the foreground color. fg can be a matlab format string, a html hex color string, an rgb unit tuple, or a float between 0 and 1. In the latter case, grayscale is used. The :class:`GraphicsContextBase` converts colors to rgb internally. If you know the color is rgb already, you can set ``isRGB=True`` to avoid the performace hit of the conversion """ if isRGB: self._rgb = fg else: self._rgb = colors.colorConverter.to_rgba(fg) def set_graylevel(self, frac): """ Set the foreground color to be a gray level with *frac* """ self._rgb = (frac, frac, frac) def set_joinstyle(self, js): """ Set the join style to be one of ('miter', 'round', 'bevel') """ if js in ('miter', 'round', 'bevel'): self._joinstyle = js else: raise ValueError('Unrecognized join style. Found %s' % js) def set_linewidth(self, w): """ Set the linewidth in points """ self._linewidth = w def set_linestyle(self, style): """ Set the linestyle to be one of ('solid', 'dashed', 'dashdot', 'dotted'). """ try: offset, dashes = self.dashd[style] except: raise ValueError('Unrecognized linestyle: %s' % style) self._linestyle = style self.set_dashes(offset, dashes) def set_url(self, url): """ Sets the url for links in compatible backends """ self._url = url def set_snap(self, snap): """ Sets the snap setting which may be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center """ self._snap = snap def set_hatch(self, hatch): """ Sets the hatch style for filling """ self._hatch = hatch def get_hatch(self): """ Gets the current hatch style """ return self._hatch class Event: """ A matplotlib event. Attach additional attributes as defined in :meth:`FigureCanvasBase.mpl_connect`. The following attributes are defined and shown with their default values *name* the event name *canvas* the FigureCanvas instance generating the event *guiEvent* the GUI event that triggered the matplotlib event """ def __init__(self, name, canvas,guiEvent=None): self.name = name self.canvas = canvas self.guiEvent = guiEvent class IdleEvent(Event): """ An event triggered by the GUI backend when it is idle -- useful for passive animation """ pass class DrawEvent(Event): """ An event triggered by a draw operation on the canvas In addition to the :class:`Event` attributes, the following event attributes are defined: *renderer* the :class:`RendererBase` instance for the draw event """ def __init__(self, name, canvas, renderer): Event.__init__(self, name, canvas) self.renderer = renderer class ResizeEvent(Event): """ An event triggered by a canvas resize In addition to the :class:`Event` attributes, the following event attributes are defined: *width* width of the canvas in pixels *height* height of the canvas in pixels """ def __init__(self, name, canvas): Event.__init__(self, name, canvas) self.width, self.height = canvas.get_width_height() class LocationEvent(Event): """ A event that has a screen location The following additional attributes are defined and shown with their default values In addition to the :class:`Event` attributes, the following event attributes are defined: *x* x position - pixels from left of canvas *y* y position - pixels from bottom of canvas *inaxes* the :class:`~matplotlib.axes.Axes` instance if mouse is over axes *xdata* x coord of mouse in data coords *ydata* y coord of mouse in data coords """ x = None # x position - pixels from left of canvas y = None # y position - pixels from right of canvas inaxes = None # the Axes instance if mouse us over axes xdata = None # x coord of mouse in data coords ydata = None # y coord of mouse in data coords # the last event that was triggered before this one lastevent = None def __init__(self, name, canvas, x, y,guiEvent=None): """ *x*, *y* in figure coords, 0,0 = bottom, left """ Event.__init__(self, name, canvas,guiEvent=guiEvent) self.x = x self.y = y if x is None or y is None: # cannot check if event was in axes if no x,y info self.inaxes = None self._update_enter_leave() return # Find all axes containing the mouse axes_list = [a for a in self.canvas.figure.get_axes() if a.in_axes(self)] if len(axes_list) == 0: # None found self.inaxes = None self._update_enter_leave() return elif (len(axes_list) > 1): # Overlap, get the highest zorder axCmp = lambda _x,_y: cmp(_x.zorder, _y.zorder) axes_list.sort(axCmp) self.inaxes = axes_list[-1] # Use the highest zorder else: # Just found one hit self.inaxes = axes_list[0] try: xdata, ydata = self.inaxes.transData.inverted().transform_point((x, y)) except ValueError: self.xdata = None self.ydata = None else: self.xdata = xdata self.ydata = ydata self._update_enter_leave() def _update_enter_leave(self): 'process the figure/axes enter leave events' if LocationEvent.lastevent is not None: last = LocationEvent.lastevent if last.inaxes!=self.inaxes: # process axes enter/leave events if last.inaxes is not None: last.canvas.callbacks.process('axes_leave_event', last) if self.inaxes is not None: self.canvas.callbacks.process('axes_enter_event', self) else: # process a figure enter event if self.inaxes is not None: self.canvas.callbacks.process('axes_enter_event', self) LocationEvent.lastevent = self class MouseEvent(LocationEvent): """ A mouse event ('button_press_event', 'button_release_event', 'scroll_event', 'motion_notify_event'). In addition to the :class:`Event` and :class:`LocationEvent` attributes, the following attributes are defined: *button* button pressed None, 1, 2, 3, 'up', 'down' (up and down are used for scroll events) *key* the key pressed: None, chr(range(255), 'shift', 'win', or 'control' *step* number of scroll steps (positive for 'up', negative for 'down') Example usage:: def on_press(event): print 'you pressed', event.button, event.xdata, event.ydata cid = fig.canvas.mpl_connect('button_press_event', on_press) """ x = None # x position - pixels from left of canvas y = None # y position - pixels from right of canvas button = None # button pressed None, 1, 2, 3 inaxes = None # the Axes instance if mouse us over axes xdata = None # x coord of mouse in data coords ydata = None # y coord of mouse in data coords step = None # scroll steps for scroll events def __init__(self, name, canvas, x, y, button=None, key=None, step=0, guiEvent=None): """ x, y in figure coords, 0,0 = bottom, left button pressed None, 1, 2, 3, 'up', 'down' """ LocationEvent.__init__(self, name, canvas, x, y, guiEvent=guiEvent) self.button = button self.key = key self.step = step class PickEvent(Event): """ a pick event, fired when the user picks a location on the canvas sufficiently close to an artist. Attrs: all the :class:`Event` attributes plus *mouseevent* the :class:`MouseEvent` that generated the pick *artist* the :class:`~matplotlib.artist.Artist` picked other extra class dependent attrs -- eg a :class:`~matplotlib.lines.Line2D` pick may define different extra attributes than a :class:`~matplotlib.collections.PatchCollection` pick event Example usage:: line, = ax.plot(rand(100), 'o', picker=5) # 5 points tolerance def on_pick(event): thisline = event.artist xdata, ydata = thisline.get_data() ind = event.ind print 'on pick line:', zip(xdata[ind], ydata[ind]) cid = fig.canvas.mpl_connect('pick_event', on_pick) """ def __init__(self, name, canvas, mouseevent, artist, guiEvent=None, **kwargs): Event.__init__(self, name, canvas, guiEvent) self.mouseevent = mouseevent self.artist = artist self.__dict__.update(kwargs) class KeyEvent(LocationEvent): """ A key event (key press, key release). Attach additional attributes as defined in :meth:`FigureCanvasBase.mpl_connect`. In addition to the :class:`Event` and :class:`LocationEvent` attributes, the following attributes are defined: *key* the key pressed: None, chr(range(255), shift, win, or control This interface may change slightly when better support for modifier keys is included. Example usage:: def on_key(event): print 'you pressed', event.key, event.xdata, event.ydata cid = fig.canvas.mpl_connect('key_press_event', on_key) """ def __init__(self, name, canvas, key, x=0, y=0, guiEvent=None): LocationEvent.__init__(self, name, canvas, x, y, guiEvent=guiEvent) self.key = key class FigureCanvasBase: """ The canvas the figure renders into. Public attributes *figure* A :class:`matplotlib.figure.Figure` instance """ events = [ 'resize_event', 'draw_event', 'key_press_event', 'key_release_event', 'button_press_event', 'button_release_event', 'scroll_event', 'motion_notify_event', 'pick_event', 'idle_event', 'figure_enter_event', 'figure_leave_event', 'axes_enter_event', 'axes_leave_event' ] def __init__(self, figure): figure.set_canvas(self) self.figure = figure # a dictionary from event name to a dictionary that maps cid->func self.callbacks = cbook.CallbackRegistry(self.events) self.widgetlock = widgets.LockDraw() self._button = None # the button pressed self._key = None # the key pressed self._lastx, self._lasty = None, None self.button_pick_id = self.mpl_connect('button_press_event',self.pick) self.scroll_pick_id = self.mpl_connect('scroll_event',self.pick) if False: ## highlight the artists that are hit self.mpl_connect('motion_notify_event',self.onHilite) ## delete the artists that are clicked on #self.mpl_disconnect(self.button_pick_id) #self.mpl_connect('button_press_event',self.onRemove) def onRemove(self, ev): """ Mouse event processor which removes the top artist under the cursor. Connect this to the 'mouse_press_event' using:: canvas.mpl_connect('mouse_press_event',canvas.onRemove) """ def sort_artists(artists): # This depends on stable sort and artists returned # from get_children in z order. L = [ (h.zorder, h) for h in artists ] L.sort() return [ h for zorder, h in L ] # Find the top artist under the cursor under = sort_artists(self.figure.hitlist(ev)) h = None if under: h = under[-1] # Try deleting that artist, or its parent if you # can't delete the artist while h: print "Removing",h if h.remove(): self.draw_idle() break parent = None for p in under: if h in p.get_children(): parent = p break h = parent def onHilite(self, ev): """ Mouse event processor which highlights the artists under the cursor. Connect this to the 'motion_notify_event' using:: canvas.mpl_connect('motion_notify_event',canvas.onHilite) """ if not hasattr(self,'_active'): self._active = dict() under = self.figure.hitlist(ev) enter = [a for a in under if a not in self._active] leave = [a for a in self._active if a not in under] print "within:"," ".join([str(x) for x in under]) #print "entering:",[str(a) for a in enter] #print "leaving:",[str(a) for a in leave] # On leave restore the captured colour for a in leave: if hasattr(a,'get_color'): a.set_color(self._active[a]) elif hasattr(a,'get_edgecolor'): a.set_edgecolor(self._active[a][0]) a.set_facecolor(self._active[a][1]) del self._active[a] # On enter, capture the color and repaint the artist # with the highlight colour. Capturing colour has to # be done first in case the parent recolouring affects # the child. for a in enter: if hasattr(a,'get_color'): self._active[a] = a.get_color() elif hasattr(a,'get_edgecolor'): self._active[a] = (a.get_edgecolor(),a.get_facecolor()) else: self._active[a] = None for a in enter: if hasattr(a,'get_color'): a.set_color('red') elif hasattr(a,'get_edgecolor'): a.set_edgecolor('red') a.set_facecolor('lightblue') else: self._active[a] = None self.draw_idle() def pick(self, mouseevent): if not self.widgetlock.locked(): self.figure.pick(mouseevent) def blit(self, bbox=None): """ blit the canvas in bbox (default entire canvas) """ pass def resize(self, w, h): """ set the canvas size in pixels """ pass def draw_event(self, renderer): """ This method will be call all functions connected to the 'draw_event' with a :class:`DrawEvent` """ s = 'draw_event' event = DrawEvent(s, self, renderer) self.callbacks.process(s, event) def resize_event(self): """ This method will be call all functions connected to the 'resize_event' with a :class:`ResizeEvent` """ s = 'resize_event' event = ResizeEvent(s, self) self.callbacks.process(s, event) def key_press_event(self, key, guiEvent=None): """ This method will be call all functions connected to the 'key_press_event' with a :class:`KeyEvent` """ self._key = key s = 'key_press_event' event = KeyEvent(s, self, key, self._lastx, self._lasty, guiEvent=guiEvent) self.callbacks.process(s, event) def key_release_event(self, key, guiEvent=None): """ This method will be call all functions connected to the 'key_release_event' with a :class:`KeyEvent` """ s = 'key_release_event' event = KeyEvent(s, self, key, self._lastx, self._lasty, guiEvent=guiEvent) self.callbacks.process(s, event) self._key = None def pick_event(self, mouseevent, artist, **kwargs): """ This method will be called by artists who are picked and will fire off :class:`PickEvent` callbacks registered listeners """ s = 'pick_event' event = PickEvent(s, self, mouseevent, artist, **kwargs) self.callbacks.process(s, event) def scroll_event(self, x, y, step, guiEvent=None): """ Backend derived classes should call this function on any scroll wheel event. x,y are the canvas coords: 0,0 is lower, left. button and key are as defined in MouseEvent. This method will be call all functions connected to the 'scroll_event' with a :class:`MouseEvent` instance. """ if step >= 0: self._button = 'up' else: self._button = 'down' s = 'scroll_event' mouseevent = MouseEvent(s, self, x, y, self._button, self._key, step=step, guiEvent=guiEvent) self.callbacks.process(s, mouseevent) def button_press_event(self, x, y, button, guiEvent=None): """ Backend derived classes should call this function on any mouse button press. x,y are the canvas coords: 0,0 is lower, left. button and key are as defined in :class:`MouseEvent`. This method will be call all functions connected to the 'button_press_event' with a :class:`MouseEvent` instance. """ self._button = button s = 'button_press_event' mouseevent = MouseEvent(s, self, x, y, button, self._key, guiEvent=guiEvent) self.callbacks.process(s, mouseevent) def button_release_event(self, x, y, button, guiEvent=None): """ Backend derived classes should call this function on any mouse button release. *x* the canvas coordinates where 0=left *y* the canvas coordinates where 0=bottom *guiEvent* the native UI event that generated the mpl event This method will be call all functions connected to the 'button_release_event' with a :class:`MouseEvent` instance. """ s = 'button_release_event' event = MouseEvent(s, self, x, y, button, self._key, guiEvent=guiEvent) self.callbacks.process(s, event) self._button = None def motion_notify_event(self, x, y, guiEvent=None): """ Backend derived classes should call this function on any motion-notify-event. *x* the canvas coordinates where 0=left *y* the canvas coordinates where 0=bottom *guiEvent* the native UI event that generated the mpl event This method will be call all functions connected to the 'motion_notify_event' with a :class:`MouseEvent` instance. """ self._lastx, self._lasty = x, y s = 'motion_notify_event' event = MouseEvent(s, self, x, y, self._button, self._key, guiEvent=guiEvent) self.callbacks.process(s, event) def leave_notify_event(self, guiEvent=None): """ Backend derived classes should call this function when leaving canvas *guiEvent* the native UI event that generated the mpl event """ self.callbacks.process('figure_leave_event', LocationEvent.lastevent) LocationEvent.lastevent = None def enter_notify_event(self, guiEvent=None): """ Backend derived classes should call this function when entering canvas *guiEvent* the native UI event that generated the mpl event """ event = Event('figure_enter_event', self, guiEvent) self.callbacks.process('figure_enter_event', event) def idle_event(self, guiEvent=None): 'call when GUI is idle' s = 'idle_event' event = IdleEvent(s, self, guiEvent=guiEvent) self.callbacks.process(s, event) def draw(self, *args, **kwargs): """ Render the :class:`~matplotlib.figure.Figure` """ pass def draw_idle(self, *args, **kwargs): """ :meth:`draw` only if idle; defaults to draw but backends can overrride """ self.draw(*args, **kwargs) def draw_cursor(self, event): """ Draw a cursor in the event.axes if inaxes is not None. Use native GUI drawing for efficiency if possible """ pass def get_width_height(self): """ return the figure width and height in points or pixels (depending on the backend), truncated to integers """ return int(self.figure.bbox.width), int(self.figure.bbox.height) filetypes = { 'emf': 'Enhanced Metafile', 'eps': 'Encapsulated Postscript', 'pdf': 'Portable Document Format', 'png': 'Portable Network Graphics', 'ps' : 'Postscript', 'raw': 'Raw RGBA bitmap', 'rgba': 'Raw RGBA bitmap', 'svg': 'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics' } # All of these print_* functions do a lazy import because # a) otherwise we'd have cyclical imports, since all of these # classes inherit from FigureCanvasBase # b) so we don't import a bunch of stuff the user may never use def print_emf(self, *args, **kwargs): from backends.backend_emf import FigureCanvasEMF # lazy import emf = self.switch_backends(FigureCanvasEMF) return emf.print_emf(*args, **kwargs) def print_eps(self, *args, **kwargs): from backends.backend_ps import FigureCanvasPS # lazy import ps = self.switch_backends(FigureCanvasPS) return ps.print_eps(*args, **kwargs) def print_pdf(self, *args, **kwargs): from backends.backend_pdf import FigureCanvasPdf # lazy import pdf = self.switch_backends(FigureCanvasPdf) return pdf.print_pdf(*args, **kwargs) def print_png(self, *args, **kwargs): from backends.backend_agg import FigureCanvasAgg # lazy import agg = self.switch_backends(FigureCanvasAgg) return agg.print_png(*args, **kwargs) def print_ps(self, *args, **kwargs): from backends.backend_ps import FigureCanvasPS # lazy import ps = self.switch_backends(FigureCanvasPS) return ps.print_ps(*args, **kwargs) def print_raw(self, *args, **kwargs): from backends.backend_agg import FigureCanvasAgg # lazy import agg = self.switch_backends(FigureCanvasAgg) return agg.print_raw(*args, **kwargs) print_bmp = print_rgb = print_raw def print_svg(self, *args, **kwargs): from backends.backend_svg import FigureCanvasSVG # lazy import svg = self.switch_backends(FigureCanvasSVG) return svg.print_svg(*args, **kwargs) def print_svgz(self, *args, **kwargs): from backends.backend_svg import FigureCanvasSVG # lazy import svg = self.switch_backends(FigureCanvasSVG) return svg.print_svgz(*args, **kwargs) def get_supported_filetypes(self): return self.filetypes def get_supported_filetypes_grouped(self): groupings = {} for ext, name in self.filetypes.items(): groupings.setdefault(name, []).append(ext) groupings[name].sort() return groupings def print_figure(self, filename, dpi=None, facecolor='w', edgecolor='w', orientation='portrait', format=None, **kwargs): """ Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because some of the GUIs have a gray figure face color background and you'll probably want to override this on hardcopy. Arguments are: *filename* can also be a file object on image backends *orientation* only currently applies to PostScript printing. *dpi* the dots per inch to save the figure in; if None, use savefig.dpi *facecolor* the facecolor of the figure *edgecolor* the edgecolor of the figure *orientation* ' landscape' | 'portrait' (not supported on all backends) *format* when set, forcibly set the file format to save to """ if format is None: if cbook.is_string_like(filename): format = os.path.splitext(filename)[1][1:] if format is None or format == '': format = self.get_default_filetype() if cbook.is_string_like(filename): filename = filename.rstrip('.') + '.' + format format = format.lower() method_name = 'print_%s' % format if (format not in self.filetypes or not hasattr(self, method_name)): formats = self.filetypes.keys() formats.sort() raise ValueError( 'Format "%s" is not supported.\n' 'Supported formats: ' '%s.' % (format, ', '.join(formats))) if dpi is None: dpi = rcParams['savefig.dpi'] origDPI = self.figure.dpi origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() self.figure.dpi = dpi self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) try: result = getattr(self, method_name)( filename, dpi=dpi, facecolor=facecolor, edgecolor=edgecolor, orientation=orientation, **kwargs) finally: self.figure.dpi = origDPI self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) self.figure.set_canvas(self) #self.figure.canvas.draw() ## seems superfluous return result def get_default_filetype(self): raise NotImplementedError def set_window_title(self, title): """ Set the title text of the window containing the figure. Note that this has no effect if there is no window (eg, a PS backend). """ if hasattr(self, "manager"): self.manager.set_window_title(title) def switch_backends(self, FigureCanvasClass): """ instantiate an instance of FigureCanvasClass This is used for backend switching, eg, to instantiate a FigureCanvasPS from a FigureCanvasGTK. Note, deep copying is not done, so any changes to one of the instances (eg, setting figure size or line props), will be reflected in the other """ newCanvas = FigureCanvasClass(self.figure) return newCanvas def mpl_connect(self, s, func): """ Connect event with string *s* to *func*. The signature of *func* is:: def func(event) where event is a :class:`matplotlib.backend_bases.Event`. The following events are recognized - 'button_press_event' - 'button_release_event' - 'draw_event' - 'key_press_event' - 'key_release_event' - 'motion_notify_event' - 'pick_event' - 'resize_event' - 'scroll_event' For the location events (button and key press/release), if the mouse is over the axes, the variable ``event.inaxes`` will be set to the :class:`~matplotlib.axes.Axes` the event occurs is over, and additionally, the variables ``event.xdata`` and ``event.ydata`` will be defined. This is the mouse location in data coords. See :class:`~matplotlib.backend_bases.KeyEvent` and :class:`~matplotlib.backend_bases.MouseEvent` for more info. Return value is a connection id that can be used with :meth:`~matplotlib.backend_bases.Event.mpl_disconnect`. Example usage:: def on_press(event): print 'you pressed', event.button, event.xdata, event.ydata cid = canvas.mpl_connect('button_press_event', on_press) """ return self.callbacks.connect(s, func) def mpl_disconnect(self, cid): """ disconnect callback id cid Example usage:: cid = canvas.mpl_connect('button_press_event', on_press) #...later canvas.mpl_disconnect(cid) """ return self.callbacks.disconnect(cid) def flush_events(self): """ Flush the GUI events for the figure. Implemented only for backends with GUIs. """ raise NotImplementedError def start_event_loop(self,timeout): """ Start an event loop. This is used to start a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main GUI event loop, which is always running and has nothing to do with this. This is implemented only for backends with GUIs. """ raise NotImplementedError def stop_event_loop(self): """ Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This is implemented only for backends with GUIs. """ raise NotImplementedError def start_event_loop_default(self,timeout=0): """ Start an event loop. This is used to start a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main GUI event loop, which is always running and has nothing to do with this. This function provides default event loop functionality based on time.sleep that is meant to be used until event loop functions for each of the GUI backends can be written. As such, it throws a deprecated warning. Call signature:: start_event_loop_default(self,timeout=0) This call blocks until a callback function triggers stop_event_loop() or *timeout* is reached. If *timeout* is <=0, never timeout. """ str = "Using default event loop until function specific" str += " to this GUI is implemented" warnings.warn(str,DeprecationWarning) if timeout <= 0: timeout = np.inf timestep = 0.01 counter = 0 self._looping = True while self._looping and counter*timestep < timeout: self.flush_events() time.sleep(timestep) counter += 1 def stop_event_loop_default(self): """ Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. Call signature:: stop_event_loop_default(self) """ self._looping = False class FigureManagerBase: """ Helper class for matlab mode, wraps everything up into a neat bundle Public attibutes: *canvas* A :class:`FigureCanvasBase` instance *num* The figure nuamber """ def __init__(self, canvas, num): self.canvas = canvas canvas.manager = self # store a pointer to parent self.num = num self.canvas.mpl_connect('key_press_event', self.key_press) def destroy(self): pass def full_screen_toggle (self): pass def resize(self, w, h): 'For gui backends: resize window in pixels' pass def key_press(self, event): # these bindings happen whether you are over an axes or not #if event.key == 'q': # self.destroy() # how cruel to have to destroy oneself! # return if event.key == 'f': self.full_screen_toggle() # *h*ome or *r*eset mnemonic elif event.key == 'h' or event.key == 'r' or event.key == "home": self.canvas.toolbar.home() # c and v to enable left handed quick navigation elif event.key == 'left' or event.key == 'c' or event.key == 'backspace': self.canvas.toolbar.back() elif event.key == 'right' or event.key == 'v': self.canvas.toolbar.forward() # *p*an mnemonic elif event.key == 'p': self.canvas.toolbar.pan() # z*o*om mnemonic elif event.key == 'o': self.canvas.toolbar.zoom() elif event.key == 's': self.canvas.toolbar.save_figure(self.canvas.toolbar) if event.inaxes is None: return # the mouse has to be over an axes to trigger these if event.key == 'g': event.inaxes.grid() self.canvas.draw() elif event.key == 'l': ax = event.inaxes scale = ax.get_yscale() if scale=='log': ax.set_yscale('linear') ax.figure.canvas.draw() elif scale=='linear': ax.set_yscale('log') ax.figure.canvas.draw() elif event.key is not None and (event.key.isdigit() and event.key!='0') or event.key=='a': # 'a' enables all axes if event.key!='a': n=int(event.key)-1 for i, a in enumerate(self.canvas.figure.get_axes()): if event.x is not None and event.y is not None and a.in_axes(event): if event.key=='a': a.set_navigate(True) else: a.set_navigate(i==n) def show_popup(self, msg): """ Display message in a popup -- GUI only """ pass def set_window_title(self, title): """ Set the title text of the window containing the figure. Note that this has no effect if there is no window (eg, a PS backend). """ pass # cursors class Cursors: #namespace HAND, POINTER, SELECT_REGION, MOVE = range(4) cursors = Cursors() class NavigationToolbar2: """ Base class for the navigation cursor, version 2 backends must implement a canvas that handles connections for 'button_press_event' and 'button_release_event'. See :meth:`FigureCanvasBase.mpl_connect` for more information They must also define :meth:`save_figure` save the current figure :meth:`set_cursor` if you want the pointer icon to change :meth:`_init_toolbar` create your toolbar widget :meth:`draw_rubberband` (optional) draw the zoom to rect "rubberband" rectangle :meth:`press` (optional) whenever a mouse button is pressed, you'll be notified with the event :meth:`release` (optional) whenever a mouse button is released, you'll be notified with the event :meth:`dynamic_update` (optional) dynamically update the window while navigating :meth:`set_message` (optional) display message :meth:`set_history_buttons` (optional) you can change the history back / forward buttons to indicate disabled / enabled state. That's it, we'll do the rest! """ def __init__(self, canvas): self.canvas = canvas canvas.toolbar = self # a dict from axes index to a list of view limits self._views = cbook.Stack() self._positions = cbook.Stack() # stack of subplot positions self._xypress = None # the location and axis info at the time of the press self._idPress = None self._idRelease = None self._active = None self._lastCursor = None self._init_toolbar() self._idDrag=self.canvas.mpl_connect('motion_notify_event', self.mouse_move) self._button_pressed = None # determined by the button pressed at start self.mode = '' # a mode string for the status bar self.set_history_buttons() def set_message(self, s): 'display a message on toolbar or in status bar' pass def back(self, *args): 'move back up the view lim stack' self._views.back() self._positions.back() self.set_history_buttons() self._update_view() def dynamic_update(self): pass def draw_rubberband(self, event, x0, y0, x1, y1): 'draw a rectangle rubberband to indicate zoom limits' pass def forward(self, *args): 'move forward in the view lim stack' self._views.forward() self._positions.forward() self.set_history_buttons() self._update_view() def home(self, *args): 'restore the original view' self._views.home() self._positions.home() self.set_history_buttons() self._update_view() def _init_toolbar(self): """ This is where you actually build the GUI widgets (called by __init__). The icons ``home.xpm``, ``back.xpm``, ``forward.xpm``, ``hand.xpm``, ``zoom_to_rect.xpm`` and ``filesave.xpm`` are standard across backends (there are ppm versions in CVS also). You just need to set the callbacks home : self.home back : self.back forward : self.forward hand : self.pan zoom_to_rect : self.zoom filesave : self.save_figure You only need to define the last one - the others are in the base class implementation. """ raise NotImplementedError def mouse_move(self, event): #print 'mouse_move', event.button if not event.inaxes or not self._active: if self._lastCursor != cursors.POINTER: self.set_cursor(cursors.POINTER) self._lastCursor = cursors.POINTER else: if self._active=='ZOOM': if self._lastCursor != cursors.SELECT_REGION: self.set_cursor(cursors.SELECT_REGION) self._lastCursor = cursors.SELECT_REGION if self._xypress: x, y = event.x, event.y lastx, lasty, a, ind, lim, trans = self._xypress[0] self.draw_rubberband(event, x, y, lastx, lasty) elif (self._active=='PAN' and self._lastCursor != cursors.MOVE): self.set_cursor(cursors.MOVE) self._lastCursor = cursors.MOVE if event.inaxes and event.inaxes.get_navigate(): try: s = event.inaxes.format_coord(event.xdata, event.ydata) except ValueError: pass except OverflowError: pass else: if len(self.mode): self.set_message('%s : %s' % (self.mode, s)) else: self.set_message(s) else: self.set_message(self.mode) def pan(self,*args): 'Activate the pan/zoom tool. pan with left button, zoom with right' # set the pointer icon and button press funcs to the # appropriate callbacks if self._active == 'PAN': self._active = None else: self._active = 'PAN' if self._idPress is not None: self._idPress = self.canvas.mpl_disconnect(self._idPress) self.mode = '' if self._idRelease is not None: self._idRelease = self.canvas.mpl_disconnect(self._idRelease) self.mode = '' if self._active: self._idPress = self.canvas.mpl_connect( 'button_press_event', self.press_pan) self._idRelease = self.canvas.mpl_connect( 'button_release_event', self.release_pan) self.mode = 'pan/zoom mode' self.canvas.widgetlock(self) else: self.canvas.widgetlock.release(self) for a in self.canvas.figure.get_axes(): a.set_navigate_mode(self._active) self.set_message(self.mode) def press(self, event): 'this will be called whenver a mouse button is pressed' pass def press_pan(self, event): 'the press mouse button in pan/zoom mode callback' if event.button == 1: self._button_pressed=1 elif event.button == 3: self._button_pressed=3 else: self._button_pressed=None return x, y = event.x, event.y # push the current view to define home if stack is empty if self._views.empty(): self.push_current() self._xypress=[] for i, a in enumerate(self.canvas.figure.get_axes()): if x is not None and y is not None and a.in_axes(event) and a.get_navigate(): a.start_pan(x, y, event.button) self._xypress.append((a, i)) self.canvas.mpl_disconnect(self._idDrag) self._idDrag=self.canvas.mpl_connect('motion_notify_event', self.drag_pan) self.press(event) def press_zoom(self, event): 'the press mouse button in zoom to rect mode callback' if event.button == 1: self._button_pressed=1 elif event.button == 3: self._button_pressed=3 else: self._button_pressed=None return x, y = event.x, event.y # push the current view to define home if stack is empty if self._views.empty(): self.push_current() self._xypress=[] for i, a in enumerate(self.canvas.figure.get_axes()): if x is not None and y is not None and a.in_axes(event) \ and a.get_navigate() and a.can_zoom(): self._xypress.append(( x, y, a, i, a.viewLim.frozen(), a.transData.frozen())) self.press(event) def push_current(self): 'push the current view limits and position onto the stack' lims = []; pos = [] for a in self.canvas.figure.get_axes(): xmin, xmax = a.get_xlim() ymin, ymax = a.get_ylim() lims.append( (xmin, xmax, ymin, ymax) ) # Store both the original and modified positions pos.append( ( a.get_position(True).frozen(), a.get_position().frozen() ) ) self._views.push(lims) self._positions.push(pos) self.set_history_buttons() def release(self, event): 'this will be called whenever mouse button is released' pass def release_pan(self, event): 'the release mouse button callback in pan/zoom mode' self.canvas.mpl_disconnect(self._idDrag) self._idDrag=self.canvas.mpl_connect('motion_notify_event', self.mouse_move) for a, ind in self._xypress: a.end_pan() if not self._xypress: return self._xypress = [] self._button_pressed=None self.push_current() self.release(event) self.draw() def drag_pan(self, event): 'the drag callback in pan/zoom mode' for a, ind in self._xypress: #safer to use the recorded button at the press than current button: #multiple button can get pressed during motion... a.drag_pan(self._button_pressed, event.key, event.x, event.y) self.dynamic_update() def release_zoom(self, event): 'the release mouse button callback in zoom to rect mode' if not self._xypress: return last_a = [] for cur_xypress in self._xypress: x, y = event.x, event.y lastx, lasty, a, ind, lim, trans = cur_xypress # ignore singular clicks - 5 pixels is a threshold if abs(x-lastx)<5 or abs(y-lasty)<5: self._xypress = None self.release(event) self.draw() return x0, y0, x1, y1 = lim.extents # zoom to rect inverse = a.transData.inverted() lastx, lasty = inverse.transform_point( (lastx, lasty) ) x, y = inverse.transform_point( (x, y) ) Xmin,Xmax=a.get_xlim() Ymin,Ymax=a.get_ylim() # detect twinx,y axes and avoid double zooming twinx, twiny = False, False if last_a: for la in last_a: if a.get_shared_x_axes().joined(a,la): twinx=True if a.get_shared_y_axes().joined(a,la): twiny=True last_a.append(a) if twinx: x0, x1 = Xmin, Xmax else: if Xmin < Xmax: if x<lastx: x0, x1 = x, lastx else: x0, x1 = lastx, x if x0 < Xmin: x0=Xmin if x1 > Xmax: x1=Xmax else: if x>lastx: x0, x1 = x, lastx else: x0, x1 = lastx, x if x0 > Xmin: x0=Xmin if x1 < Xmax: x1=Xmax if twiny: y0, y1 = Ymin, Ymax else: if Ymin < Ymax: if y<lasty: y0, y1 = y, lasty else: y0, y1 = lasty, y if y0 < Ymin: y0=Ymin if y1 > Ymax: y1=Ymax else: if y>lasty: y0, y1 = y, lasty else: y0, y1 = lasty, y if y0 > Ymin: y0=Ymin if y1 < Ymax: y1=Ymax if self._button_pressed == 1: a.set_xlim((x0, x1)) a.set_ylim((y0, y1)) elif self._button_pressed == 3: if a.get_xscale()=='log': alpha=np.log(Xmax/Xmin)/np.log(x1/x0) rx1=pow(Xmin/x0,alpha)*Xmin rx2=pow(Xmax/x0,alpha)*Xmin else: alpha=(Xmax-Xmin)/(x1-x0) rx1=alpha*(Xmin-x0)+Xmin rx2=alpha*(Xmax-x0)+Xmin if a.get_yscale()=='log': alpha=np.log(Ymax/Ymin)/np.log(y1/y0) ry1=pow(Ymin/y0,alpha)*Ymin ry2=pow(Ymax/y0,alpha)*Ymin else: alpha=(Ymax-Ymin)/(y1-y0) ry1=alpha*(Ymin-y0)+Ymin ry2=alpha*(Ymax-y0)+Ymin a.set_xlim((rx1, rx2)) a.set_ylim((ry1, ry2)) self.draw() self._xypress = None self._button_pressed = None self.push_current() self.release(event) def draw(self): 'redraw the canvases, update the locators' for a in self.canvas.figure.get_axes(): xaxis = getattr(a, 'xaxis', None) yaxis = getattr(a, 'yaxis', None) locators = [] if xaxis is not None: locators.append(xaxis.get_major_locator()) locators.append(xaxis.get_minor_locator()) if yaxis is not None: locators.append(yaxis.get_major_locator()) locators.append(yaxis.get_minor_locator()) for loc in locators: loc.refresh() self.canvas.draw() def _update_view(self): '''update the viewlim and position from the view and position stack for each axes ''' lims = self._views() if lims is None: return pos = self._positions() if pos is None: return for i, a in enumerate(self.canvas.figure.get_axes()): xmin, xmax, ymin, ymax = lims[i] a.set_xlim((xmin, xmax)) a.set_ylim((ymin, ymax)) # Restore both the original and modified positions a.set_position( pos[i][0], 'original' ) a.set_position( pos[i][1], 'active' ) self.draw() def save_figure(self, *args): 'save the current figure' raise NotImplementedError def set_cursor(self, cursor): """ Set the current cursor to one of the :class:`Cursors` enums values """ pass def update(self): 'reset the axes stack' self._views.clear() self._positions.clear() self.set_history_buttons() def zoom(self, *args): 'activate zoom to rect mode' if self._active == 'ZOOM': self._active = None else: self._active = 'ZOOM' if self._idPress is not None: self._idPress=self.canvas.mpl_disconnect(self._idPress) self.mode = '' if self._idRelease is not None: self._idRelease=self.canvas.mpl_disconnect(self._idRelease) self.mode = '' if self._active: self._idPress = self.canvas.mpl_connect('button_press_event', self.press_zoom) self._idRelease = self.canvas.mpl_connect('button_release_event', self.release_zoom) self.mode = 'Zoom to rect mode' self.canvas.widgetlock(self) else: self.canvas.widgetlock.release(self) for a in self.canvas.figure.get_axes(): a.set_navigate_mode(self._active) self.set_message(self.mode) def set_history_buttons(self): 'enable or disable back/forward button' pass
gpl-3.0
corochann/chainer-hands-on-tutorial
src/05_ptb_rnn/ptb/predict_ptb.py
2
3356
"""Inference/predict code for simple_sequence dataset model must be trained before inference, train_simple_sequence.py must be executed beforehand. """ from __future__ import print_function import argparse import os import sys import matplotlib import numpy as np matplotlib.use('Agg') import matplotlib.pyplot as plt import chainer import chainer.functions as F import chainer.links as L from chainer import training, iterators, serializers, optimizers, Variable, cuda from chainer.training import extensions sys.path.append(os.pardir) from RNN import RNN from RNN2 import RNN2 from RNN3 import RNN3 from RNNForLM import RNNForLM def main(): archs = { 'rnn': RNN, 'rnn2': RNN2, 'rnn3': RNN3, 'lstm': RNNForLM } parser = argparse.ArgumentParser(description='simple_sequence RNN predict code') parser.add_argument('--arch', '-a', choices=archs.keys(), default='rnn', help='Net architecture') #parser.add_argument('--batchsize', '-b', type=int, default=64, # help='Number of images in each mini-batch') parser.add_argument('--unit', '-u', type=int, default=100, help='Number of LSTM units in each layer') parser.add_argument('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)') parser.add_argument('--primeindex', '-p', type=int, default=1, help='base index data, used for sequence generation') parser.add_argument('--length', '-l', type=int, default=100, help='length of the generated sequence') parser.add_argument('--modelpath', '-m', default='', help='Model path to be loaded') args = parser.parse_args() print('GPU: {}'.format(args.gpu)) #print('# Minibatch-size: {}'.format(args.batchsize)) print('') train, val, test = chainer.datasets.get_ptb_words() n_vocab = max(train) + 1 # train is just an array of integers print('#vocab =', n_vocab) print('') # load vocabulary ptb_word_id_dict = chainer.datasets.get_ptb_words_vocabulary() ptb_id_word_dict = dict((v, k) for k, v in ptb_word_id_dict.items()) # Model Setup model = archs[args.arch](n_vocab=n_vocab, n_units=args.unit) classifier_model = L.Classifier(model) if args.gpu >= 0: chainer.cuda.get_device(args.gpu).use() # Make a specified GPU current classifier_model.to_gpu() # Copy the model to the GPU xp = np if args.gpu < 0 else cuda.cupy if args.modelpath: serializers.load_npz(args.modelpath, model) else: serializers.load_npz('result/{}_ptb.model'.format(args.arch), model) # Dataset preparation prev_index = args.primeindex # Predict predicted_sequence = [prev_index] for i in range(args.length): prev = chainer.Variable(xp.array([prev_index], dtype=xp.int32)) current = model(prev) current_index = np.argmax(cuda.to_cpu(current.data)) predicted_sequence.append(current_index) prev_index = current_index predicted_text_list = [ptb_id_word_dict[i] for i in predicted_sequence] print('Predicted sequence: ', predicted_sequence) print('Predicted text: ', ' '.join(predicted_text_list)) if __name__ == '__main__': main()
mit
dsm054/pandas
pandas/io/formats/csvs.py
3
11465
# -*- coding: utf-8 -*- """ Module for formatting output data into CSV files. """ from __future__ import print_function import csv as csvlib import os import warnings from zipfile import ZipFile import numpy as np from pandas._libs import writers as libwriters from pandas.compat import StringIO, range, zip from pandas.core.dtypes.generic import ( ABCDatetimeIndex, ABCIndexClass, ABCMultiIndex, ABCPeriodIndex) from pandas.core.dtypes.missing import notna from pandas import compat from pandas.io.common import ( UnicodeWriter, _get_handle, _infer_compression, get_filepath_or_buffer) class CSVFormatter(object): def __init__(self, obj, path_or_buf=None, sep=",", na_rep='', float_format=None, cols=None, header=True, index=True, index_label=None, mode='w', nanRep=None, encoding=None, compression='infer', quoting=None, line_terminator='\n', chunksize=None, tupleize_cols=False, quotechar='"', date_format=None, doublequote=True, escapechar=None, decimal='.'): self.obj = obj if path_or_buf is None: path_or_buf = StringIO() self.path_or_buf, _, _, _ = get_filepath_or_buffer( path_or_buf, encoding=encoding, compression=compression, mode=mode ) self.sep = sep self.na_rep = na_rep self.float_format = float_format self.decimal = decimal self.header = header self.index = index self.index_label = index_label self.mode = mode if encoding is None: encoding = 'ascii' if compat.PY2 else 'utf-8' self.encoding = encoding self.compression = _infer_compression(self.path_or_buf, compression) if quoting is None: quoting = csvlib.QUOTE_MINIMAL self.quoting = quoting if quoting == csvlib.QUOTE_NONE: # prevents crash in _csv quotechar = None self.quotechar = quotechar self.doublequote = doublequote self.escapechar = escapechar self.line_terminator = line_terminator or os.linesep self.date_format = date_format self.tupleize_cols = tupleize_cols self.has_mi_columns = (isinstance(obj.columns, ABCMultiIndex) and not self.tupleize_cols) # validate mi options if self.has_mi_columns: if cols is not None: raise TypeError("cannot specify cols with a MultiIndex on the " "columns") if cols is not None: if isinstance(cols, ABCIndexClass): cols = cols.to_native_types(na_rep=na_rep, float_format=float_format, date_format=date_format, quoting=self.quoting) else: cols = list(cols) self.obj = self.obj.loc[:, cols] # update columns to include possible multiplicity of dupes # and make sure sure cols is just a list of labels cols = self.obj.columns if isinstance(cols, ABCIndexClass): cols = cols.to_native_types(na_rep=na_rep, float_format=float_format, date_format=date_format, quoting=self.quoting) else: cols = list(cols) # save it self.cols = cols # preallocate data 2d list self.blocks = self.obj._data.blocks ncols = sum(b.shape[0] for b in self.blocks) self.data = [None] * ncols if chunksize is None: chunksize = (100000 // (len(self.cols) or 1)) or 1 self.chunksize = int(chunksize) self.data_index = obj.index if (isinstance(self.data_index, (ABCDatetimeIndex, ABCPeriodIndex)) and date_format is not None): from pandas import Index self.data_index = Index([x.strftime(date_format) if notna(x) else '' for x in self.data_index]) self.nlevels = getattr(self.data_index, 'nlevels', 1) if not index: self.nlevels = 0 def save(self): """ Create the writer & save """ # GH21227 internal compression is not used when file-like passed. if self.compression and hasattr(self.path_or_buf, 'write'): msg = ("compression has no effect when passing file-like " "object as input.") warnings.warn(msg, RuntimeWarning, stacklevel=2) # when zip compression is called. is_zip = isinstance(self.path_or_buf, ZipFile) or ( not hasattr(self.path_or_buf, 'write') and self.compression == 'zip') if is_zip: # zipfile doesn't support writing string to archive. uses string # buffer to receive csv writing and dump into zip compression # file handle. GH21241, GH21118 f = StringIO() close = False elif hasattr(self.path_or_buf, 'write'): f = self.path_or_buf close = False else: f, handles = _get_handle(self.path_or_buf, self.mode, encoding=self.encoding, compression=self.compression) close = True try: writer_kwargs = dict(lineterminator=self.line_terminator, delimiter=self.sep, quoting=self.quoting, doublequote=self.doublequote, escapechar=self.escapechar, quotechar=self.quotechar) if self.encoding == 'ascii': self.writer = csvlib.writer(f, **writer_kwargs) else: writer_kwargs['encoding'] = self.encoding self.writer = UnicodeWriter(f, **writer_kwargs) self._save() finally: if is_zip: # GH17778 handles zip compression separately. buf = f.getvalue() if hasattr(self.path_or_buf, 'write'): self.path_or_buf.write(buf) else: f, handles = _get_handle(self.path_or_buf, self.mode, encoding=self.encoding, compression=self.compression) f.write(buf) close = True if close: f.close() for _fh in handles: _fh.close() def _save_header(self): writer = self.writer obj = self.obj index_label = self.index_label cols = self.cols has_mi_columns = self.has_mi_columns header = self.header encoded_labels = [] has_aliases = isinstance(header, (tuple, list, np.ndarray, ABCIndexClass)) if not (has_aliases or self.header): return if has_aliases: if len(header) != len(cols): raise ValueError(('Writing {ncols} cols but got {nalias} ' 'aliases'.format(ncols=len(cols), nalias=len(header)))) else: write_cols = header else: write_cols = cols if self.index: # should write something for index label if index_label is not False: if index_label is None: if isinstance(obj.index, ABCMultiIndex): index_label = [] for i, name in enumerate(obj.index.names): if name is None: name = '' index_label.append(name) else: index_label = obj.index.name if index_label is None: index_label = [''] else: index_label = [index_label] elif not isinstance(index_label, (list, tuple, np.ndarray, ABCIndexClass)): # given a string for a DF with Index index_label = [index_label] encoded_labels = list(index_label) else: encoded_labels = [] if not has_mi_columns or has_aliases: encoded_labels += list(write_cols) writer.writerow(encoded_labels) else: # write out the mi columns = obj.columns # write out the names for each level, then ALL of the values for # each level for i in range(columns.nlevels): # we need at least 1 index column to write our col names col_line = [] if self.index: # name is the first column col_line.append(columns.names[i]) if isinstance(index_label, list) and len(index_label) > 1: col_line.extend([''] * (len(index_label) - 1)) col_line.extend(columns._get_level_values(i)) writer.writerow(col_line) # Write out the index line if it's not empty. # Otherwise, we will print out an extraneous # blank line between the mi and the data rows. if encoded_labels and set(encoded_labels) != {''}: encoded_labels.extend([''] * len(columns)) writer.writerow(encoded_labels) def _save(self): self._save_header() nrows = len(self.data_index) # write in chunksize bites chunksize = self.chunksize chunks = int(nrows / chunksize) + 1 for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, nrows) if start_i >= end_i: break self._save_chunk(start_i, end_i) def _save_chunk(self, start_i, end_i): data_index = self.data_index # create the data for a chunk slicer = slice(start_i, end_i) for i in range(len(self.blocks)): b = self.blocks[i] d = b.to_native_types(slicer=slicer, na_rep=self.na_rep, float_format=self.float_format, decimal=self.decimal, date_format=self.date_format, quoting=self.quoting) for col_loc, col in zip(b.mgr_locs, d): # self.data is a preallocated list self.data[col_loc] = col ix = data_index.to_native_types(slicer=slicer, na_rep=self.na_rep, float_format=self.float_format, decimal=self.decimal, date_format=self.date_format, quoting=self.quoting) libwriters.write_csv_rows(self.data, ix, self.nlevels, self.cols, self.writer)
bsd-3-clause
andyh616/mne-python
mne/viz/tests/test_topo.py
5
4767
# Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # Eric Larson <[email protected]> # # License: Simplified BSD import os.path as op import warnings from collections import namedtuple import numpy as np from numpy.testing import assert_raises from mne import io, read_events, Epochs from mne import pick_channels_evoked from mne.channels import read_layout from mne.time_frequency.tfr import AverageTFR from mne.utils import run_tests_if_main from mne.viz import (plot_topo, plot_topo_image_epochs, _get_presser, mne_analyze_colormap, plot_evoked_topo) from mne.viz.topo import _plot_update_evoked_topo # Set our plotters to test mode import matplotlib matplotlib.use('Agg') # for testing don't use X server warnings.simplefilter('always') # enable b/c these tests throw warnings base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') evoked_fname = op.join(base_dir, 'test-ave.fif') raw_fname = op.join(base_dir, 'test_raw.fif') event_name = op.join(base_dir, 'test-eve.fif') event_id, tmin, tmax = 1, -0.2, 0.2 layout = read_layout('Vectorview-all') def _get_raw(): return io.Raw(raw_fname, preload=False) def _get_events(): return read_events(event_name) def _get_picks(raw): return [0, 1, 2, 6, 7, 8, 340, 341, 342] # take a only few channels def _get_epochs(): raw = _get_raw() events = _get_events() picks = _get_picks(raw) epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) return epochs def _get_epochs_delayed_ssp(): raw = _get_raw() events = _get_events() picks = _get_picks(raw) reject = dict(mag=4e-12) epochs_delayed_ssp = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0), proj='delayed', reject=reject) return epochs_delayed_ssp def test_plot_topo(): """Test plotting of ERP topography """ import matplotlib.pyplot as plt # Show topography evoked = _get_epochs().average() plot_evoked_topo(evoked) # should auto-find layout warnings.simplefilter('always', UserWarning) picked_evoked = evoked.pick_channels(evoked.ch_names[:3], copy=True) picked_evoked_eeg = evoked.pick_types(meg=False, eeg=True, copy=True) picked_evoked_eeg.pick_channels(picked_evoked_eeg.ch_names[:3]) # test scaling with warnings.catch_warnings(record=True): for ylim in [dict(mag=[-600, 600]), None]: plot_topo([picked_evoked] * 2, layout, ylim=ylim) for evo in [evoked, [evoked, picked_evoked]]: assert_raises(ValueError, plot_topo, evo, layout, color=['y', 'b']) evoked_delayed_ssp = _get_epochs_delayed_ssp().average() ch_names = evoked_delayed_ssp.ch_names[:3] # make it faster picked_evoked_delayed_ssp = pick_channels_evoked(evoked_delayed_ssp, ch_names) fig = plot_topo(picked_evoked_delayed_ssp, layout, proj='interactive') func = _get_presser(fig) event = namedtuple('Event', 'inaxes') func(event(inaxes=fig.axes[0])) params = dict(evokeds=[picked_evoked_delayed_ssp], times=picked_evoked_delayed_ssp.times, fig=fig, projs=picked_evoked_delayed_ssp.info['projs']) bools = [True] * len(params['projs']) _plot_update_evoked_topo(params, bools) # should auto-generate layout plot_evoked_topo(picked_evoked_eeg.copy(), fig_background=np.zeros((4, 3, 3)), proj=True) plt.close('all') def test_plot_topo_image_epochs(): """Test plotting of epochs image topography """ import matplotlib.pyplot as plt title = 'ERF images - MNE sample data' epochs = _get_epochs() cmap = mne_analyze_colormap(format='matplotlib') plot_topo_image_epochs(epochs, sigma=0.5, vmin=-200, vmax=200, colorbar=True, title=title, cmap=cmap) plt.close('all') def test_plot_tfr_topo(): """Test plotting of TFR data """ epochs = _get_epochs() n_freqs = 3 nave = 1 data = np.random.RandomState(0).randn(len(epochs.ch_names), n_freqs, len(epochs.times)) tfr = AverageTFR(epochs.info, data, epochs.times, np.arange(n_freqs), nave) tfr.plot_topo(baseline=(None, 0), mode='ratio', title='Average power', vmin=0., vmax=14., show=False) tfr.plot([4], baseline=(None, 0), mode='ratio', show=False, title='foo') run_tests_if_main()
bsd-3-clause
IssamLaradji/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
15
2130
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 4)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i+1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree %d" % degrees[i]) plt.show()
bsd-3-clause
hchauvet/beampy
beampy/modules/animatesvg.py
1
5180
# -*- coding: utf-8 -*- """ Created on Sun Oct 25 19:05:18 2015 @author: hugo Class to manage text for beampy """ from beampy import document from beampy.modules.figure import figure from beampy.modules.core import beampy_module from beampy.functions import convert_unit, gcs import glob import re import sys class animatesvg(beampy_module): """ Create svg animation from a folder containing svg files (or any files that figure function can handle) or a list of matplotlib figures. Parameters ---------- files_in : str or list of matplotlib figures or list of file names List of figures to animate. List could be generated using a string containing UNIX willcard like '/my/folder/*.svg', or using a list of file names or matplotlib figure object. x : int or float or {'center', 'auto'} or str, optional Horizontal position for the animation (the default theme sets this to 'center'). See positioning system of Beampy. y : int or float or {'center', 'auto'} or str, optional Vertical position for the animation (the default theme sets this to 'auto'). See positioning system of Beampy. start : integer, optional Start position of the image sequence (the default theme sets this to 0). end : int or 'end', optional End position of the image sequence (the default theme sets this to 'end', which implies that the animation end at the last item of the files_in ). width : int or float or None, optional Width of the figure (the default is None, which implies that the width is width of the image). fps : int, optional Animation frame-rate (the default theme sets this to 25). autoplay : boolean, optional Automatically start the animation when the slide is shown on screen (the default theme sets this to False). """ def __init__(self, files_in, **kwargs): # Add type self.type = 'animatesvg' # Check input args for this module self.check_args_from_theme(kwargs) # Cache is useless because we call figure function which handle the cache for each figures self.cache = False slide = document._slides[gcs()] # Add +1 to counter self.anim_num = slide.cpt_anim slide.cpt_anim += 1 input_width = self.width # Save the input width for mpl figures if self.width is None: self.width = slide.curwidth # Read all files from a given wildcard if isinstance(files_in, str): svg_files = glob.glob(files_in) # Need to sort using the first digits finded in the name svg_files = sorted(svg_files, key=lambda x: int(''.join(re.findall(r'\d+', x)))) # If the input is a list of names or mpl figures or other compatible with figure elif isinstance(files_in, list): svg_files = files_in if input_width is None: width_inch, height_inch = files_in[0].get_size_inches() self.width = convert_unit("%fin"%(width_inch)) else: print('Unknown input type for files_folder') sys.exit(0) # check how many images we wants if self.end == 'end': self.end = len(svg_files) # Add content self.content = svg_files[self.start:self.end] # Register the module self.register() def render(self): """ Render several images as an animation in html """ # Read all files and store their content svgcontent = [] # Render each figure in a group output = [] fig_args = {"width": self.width.value, "height": self.height.value, "x": 0, "y": 0} if len(self.content)>0: #Test if output format support video if document._output_format=='html5': for iframe, svgfile in enumerate(self.content): #print iframe img = figure(svgfile, **fig_args) img.positionner = self.positionner img.call_cmd = str(iframe)+'->'+self.call_cmd.strip() img.call_lines = self.call_lines img.run_render() if iframe == 0: self.update_size(img.width, img.height) # parse the svg tmpout = '''<g id="frame_%i">%s</g>'''%(iframe, img.svgout) output += [tmpout] img.delete() self.animout = output else: # Check if pdf_animations is True img = figure(self.content[0], **fig_args) img.positionner = self.positionner img.render() self.update_size(img.width, img.height) self.svgout = img.svgout img.delete() # return output # Update the rendered state of the module self.rendered = True else: print('nothing found')
gpl-3.0
terhorstd/nest-simulator
pynest/examples/hh_psc_alpha.py
1
2263
# -*- coding: utf-8 -*- # # hh_psc_alpha.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """Example using hh_psc_alpha ------------------------------- This example produces a rate-response (FI) curve of the Hodgkin-Huxley neuron in response to a range of different current (DC) stimulations. The result is plotted using matplotlib. Since a DC input affetcs only the neuron's channel dynamics, this routine does not yet check correctness of synaptic response. References ~~~~~~~~~~~ See Also ~~~~~~~~~~ :Authors: KEYWORDS: """ import nest import numpy as np import matplotlib.pyplot as plt nest.hl_api.set_verbosity('M_WARNING') nest.ResetKernel() simtime = 1000 # Amplitude range, in pA dcfrom = 0 dcstep = 20 dcto = 2000 h = 0.1 # simulation step size in mS neuron = nest.Create('hh_psc_alpha') sd = nest.Create('spike_detector') nest.SetStatus(sd, {'to_memory': False}) nest.Connect(neuron, sd, syn_spec={'weight': 1.0, 'delay': h}) # Simulation loop n_data = int(dcto / float(dcstep)) amplitudes = np.zeros(n_data) event_freqs = np.zeros(n_data) for i, amp in enumerate(range(dcfrom, dcto, dcstep)): nest.SetStatus(neuron, {'I_e': float(amp)}) print("Simulating with current I={} pA".format(amp)) nest.Simulate(1000) # one second warm-up time for equilibrium state nest.SetStatus(sd, {'n_events': 0}) # then reset spike counts nest.Simulate(simtime) # another simulation call to record firing rate n_events = nest.GetStatus(sd, keys={'n_events'})[0][0] amplitudes[i] = amp event_freqs[i] = n_events / (simtime / 1000.) plt.plot(amplitudes, event_freqs) plt.show()
gpl-2.0