repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
yaojenkuo/BuildingMachineLearningSystemsWithPython
ch03/rel_post_20news.py
24
3903
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License import sklearn.datasets import scipy as sp new_post = \ """Disk drive problems. Hi, I have a problem with my hard disk. After 1 year it is working only sporadically now. I tried to format it, but now it doesn't boot any more. Any ideas? Thanks. """ print("""\ Dear reader of the 1st edition of 'Building Machine Learning Systems with Python'! For the 2nd edition we introduced a couple of changes that will result into results that differ from the results in the 1st edition. E.g. we now fully rely on scikit's fetch_20newsgroups() instead of requiring you to download the data manually from MLCOMP. If you have any questions, please ask at http://www.twotoreal.com """) all_data = sklearn.datasets.fetch_20newsgroups(subset="all") print("Number of total posts: %i" % len(all_data.filenames)) # Number of total posts: 18846 groups = [ 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'sci.space'] train_data = sklearn.datasets.fetch_20newsgroups(subset="train", categories=groups) print("Number of training posts in tech groups:", len(train_data.filenames)) # Number of training posts in tech groups: 3529 labels = train_data.target num_clusters = 50 # sp.unique(labels).shape[0] import nltk.stem english_stemmer = nltk.stem.SnowballStemmer('english') from sklearn.feature_extraction.text import TfidfVectorizer class StemmedTfidfVectorizer(TfidfVectorizer): def build_analyzer(self): analyzer = super(TfidfVectorizer, self).build_analyzer() return lambda doc: (english_stemmer.stem(w) for w in analyzer(doc)) vectorizer = StemmedTfidfVectorizer(min_df=10, max_df=0.5, stop_words='english', decode_error='ignore' ) vectorized = vectorizer.fit_transform(train_data.data) num_samples, num_features = vectorized.shape print("#samples: %d, #features: %d" % (num_samples, num_features)) # samples: 3529, #features: 4712 from sklearn.cluster import KMeans km = KMeans(n_clusters=num_clusters, n_init=1, verbose=1, random_state=3) clustered = km.fit(vectorized) print("km.labels_=%s" % km.labels_) # km.labels_=[ 6 34 22 ..., 2 21 26] print("km.labels_.shape=%s" % km.labels_.shape) # km.labels_.shape=3529 from sklearn import metrics print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)) # Homogeneity: 0.400 print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)) # Completeness: 0.206 print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)) # V-measure: 0.272 print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels, km.labels_)) # Adjusted Rand Index: 0.064 print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels, km.labels_)) # Adjusted Mutual Information: 0.197 print(("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(vectorized, labels, sample_size=1000))) # Silhouette Coefficient: 0.006 new_post_vec = vectorizer.transform([new_post]) new_post_label = km.predict(new_post_vec)[0] similar_indices = (km.labels_ == new_post_label).nonzero()[0] similar = [] for i in similar_indices: dist = sp.linalg.norm((new_post_vec - vectorized[i]).toarray()) similar.append((dist, train_data.data[i])) similar = sorted(similar) print("Count similar: %i" % len(similar)) show_at_1 = similar[0] show_at_2 = similar[int(len(similar) / 10)] show_at_3 = similar[int(len(similar) / 2)] print("=== #1 ===") print(show_at_1) print() print("=== #2 ===") print(show_at_2) print() print("=== #3 ===") print(show_at_3)
mit
hitszxp/scikit-learn
sklearn/linear_model/tests/test_ransac.py
40
12814
import numpy as np from numpy.testing import assert_equal, assert_raises from numpy.testing import assert_array_almost_equal from scipy import sparse from sklearn.utils.testing import assert_less from sklearn.linear_model import LinearRegression, RANSACRegressor from sklearn.linear_model.ransac import _dynamic_max_trials # Generate coordinates of line X = np.arange(-200, 200) y = 0.2 * X + 20 data = np.column_stack([X, y]) # Add some faulty data outliers = np.array((10, 30, 200)) data[outliers[0], :] = (1000, 1000) data[outliers[1], :] = (-1000, -1000) data[outliers[2], :] = (-100, -50) X = data[:, 0][:, np.newaxis] y = data[:, 1] def test_ransac_inliers_outliers(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) # Estimate parameters of corrupted data ransac_estimator.fit(X, y) # Ground truth / reference inlier mask ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_is_data_valid(): def is_data_valid(X, y): assert_equal(X.shape[0], 2) assert_equal(y.shape[0], 2) return False X = np.random.rand(10, 2) y = np.random.rand(10, 1) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, is_data_valid=is_data_valid, random_state=0) assert_raises(ValueError, ransac_estimator.fit, X, y) def test_ransac_is_model_valid(): def is_model_valid(estimator, X, y): assert_equal(X.shape[0], 2) assert_equal(y.shape[0], 2) return False base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, is_model_valid=is_model_valid, random_state=0) assert_raises(ValueError, ransac_estimator.fit, X, y) def test_ransac_max_trials(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, max_trials=0, random_state=0) assert_raises(ValueError, ransac_estimator.fit, X, y) ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, max_trials=11, random_state=0) assert getattr(ransac_estimator, 'n_trials_', None) is None ransac_estimator.fit(X, y) assert_equal(ransac_estimator.n_trials_, 2) def test_ransac_stop_n_inliers(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, stop_n_inliers=2, random_state=0) ransac_estimator.fit(X, y) assert_equal(ransac_estimator.n_trials_, 1) def test_ransac_stop_score(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, stop_score=0, random_state=0) ransac_estimator.fit(X, y) assert_equal(ransac_estimator.n_trials_, 1) def test_ransac_score(): X = np.arange(100)[:, None] y = np.zeros((100, )) y[0] = 1 y[1] = 100 base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=0.5, random_state=0) ransac_estimator.fit(X, y) assert_equal(ransac_estimator.score(X[2:], y[2:]), 1) assert_less(ransac_estimator.score(X[:2], y[:2]), 1) def test_ransac_predict(): X = np.arange(100)[:, None] y = np.zeros((100, )) y[0] = 1 y[1] = 100 base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=0.5, random_state=0) ransac_estimator.fit(X, y) assert_equal(ransac_estimator.predict(X), np.zeros((100, 1))) def test_ransac_sparse_coo(): X_sparse = sparse.coo_matrix(X) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator.fit(X_sparse, y) ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_sparse_csr(): X_sparse = sparse.csr_matrix(X) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator.fit(X_sparse, y) ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_sparse_csc(): X_sparse = sparse.csc_matrix(X) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator.fit(X_sparse, y) ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_none_estimator(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_none_estimator = RANSACRegressor(None, 2, 5, random_state=0) ransac_estimator.fit(X, y) ransac_none_estimator.fit(X, y) assert_array_almost_equal(ransac_estimator.predict(X), ransac_none_estimator.predict(X)) def test_ransac_min_n_samples(): base_estimator = LinearRegression() ransac_estimator1 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator2 = RANSACRegressor(base_estimator, min_samples=2. / X.shape[0], residual_threshold=5, random_state=0) ransac_estimator3 = RANSACRegressor(base_estimator, min_samples=-1, residual_threshold=5, random_state=0) ransac_estimator4 = RANSACRegressor(base_estimator, min_samples=5.2, residual_threshold=5, random_state=0) ransac_estimator5 = RANSACRegressor(base_estimator, min_samples=2.0, residual_threshold=5, random_state=0) ransac_estimator6 = RANSACRegressor(base_estimator, residual_threshold=5, random_state=0) ransac_estimator7 = RANSACRegressor(base_estimator, min_samples=X.shape[0] + 1, residual_threshold=5, random_state=0) ransac_estimator1.fit(X, y) ransac_estimator2.fit(X, y) ransac_estimator5.fit(X, y) ransac_estimator6.fit(X, y) assert_array_almost_equal(ransac_estimator1.predict(X), ransac_estimator2.predict(X)) assert_array_almost_equal(ransac_estimator1.predict(X), ransac_estimator5.predict(X)) assert_array_almost_equal(ransac_estimator1.predict(X), ransac_estimator6.predict(X)) assert_raises(ValueError, ransac_estimator3.fit, X, y) assert_raises(ValueError, ransac_estimator4.fit, X, y) assert_raises(ValueError, ransac_estimator7.fit, X, y) def test_ransac_multi_dimensional_targets(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) # 3-D target values yyy = np.column_stack([y, y, y]) # Estimate parameters of corrupted data ransac_estimator.fit(X, yyy) # Ground truth / reference inlier mask ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_residual_metric(): residual_metric1 = lambda dy: np.sum(np.abs(dy), axis=1) residual_metric2 = lambda dy: np.sum(dy ** 2, axis=1) yyy = np.column_stack([y, y, y]) base_estimator = LinearRegression() ransac_estimator0 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0) ransac_estimator1 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0, residual_metric=residual_metric1) ransac_estimator2 = RANSACRegressor(base_estimator, min_samples=2, residual_threshold=5, random_state=0, residual_metric=residual_metric2) # multi-dimensional ransac_estimator0.fit(X, yyy) ransac_estimator1.fit(X, yyy) ransac_estimator2.fit(X, yyy) assert_array_almost_equal(ransac_estimator0.predict(X), ransac_estimator1.predict(X)) assert_array_almost_equal(ransac_estimator0.predict(X), ransac_estimator2.predict(X)) # one-dimensional ransac_estimator0.fit(X, y) ransac_estimator2.fit(X, y) assert_array_almost_equal(ransac_estimator0.predict(X), ransac_estimator2.predict(X)) def test_ransac_default_residual_threshold(): base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, random_state=0) # Estimate parameters of corrupted data ransac_estimator.fit(X, y) # Ground truth / reference inlier mask ref_inlier_mask = np.ones_like(ransac_estimator.inlier_mask_ ).astype(np.bool_) ref_inlier_mask[outliers] = False assert_equal(ransac_estimator.inlier_mask_, ref_inlier_mask) def test_ransac_dynamic_max_trials(): # Numbers hand-calculated and confirmed on page 119 (Table 4.3) in # Hartley, R.~I. and Zisserman, A., 2004, # Multiple View Geometry in Computer Vision, Second Edition, # Cambridge University Press, ISBN: 0521540518 # e = 0%, min_samples = X assert_equal(_dynamic_max_trials(100, 100, 2, 0.99), 1) # e = 5%, min_samples = 2 assert_equal(_dynamic_max_trials(95, 100, 2, 0.99), 2) # e = 10%, min_samples = 2 assert_equal(_dynamic_max_trials(90, 100, 2, 0.99), 3) # e = 30%, min_samples = 2 assert_equal(_dynamic_max_trials(70, 100, 2, 0.99), 7) # e = 50%, min_samples = 2 assert_equal(_dynamic_max_trials(50, 100, 2, 0.99), 17) # e = 5%, min_samples = 8 assert_equal(_dynamic_max_trials(95, 100, 8, 0.99), 5) # e = 10%, min_samples = 8 assert_equal(_dynamic_max_trials(90, 100, 8, 0.99), 9) # e = 30%, min_samples = 8 assert_equal(_dynamic_max_trials(70, 100, 8, 0.99), 78) # e = 50%, min_samples = 8 assert_equal(_dynamic_max_trials(50, 100, 8, 0.99), 1177) # e = 0%, min_samples = 10 assert_equal(_dynamic_max_trials(1, 100, 10, 0), 0) assert_equal(_dynamic_max_trials(1, 100, 10, 1), float('inf')) base_estimator = LinearRegression() ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, stop_probability=-0.1) assert_raises(ValueError, ransac_estimator.fit, X, y) ransac_estimator = RANSACRegressor(base_estimator, min_samples=2, stop_probability=1.1) assert_raises(ValueError, ransac_estimator.fit, X, y) if __name__ == "__main__": np.testing.run_module_suite()
bsd-3-clause
ChanChiChoi/scikit-learn
sklearn/covariance/tests/test_covariance.py
142
11068
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn import datasets from sklearn.covariance import empirical_covariance, EmpiricalCovariance, \ ShrunkCovariance, shrunk_covariance, \ LedoitWolf, ledoit_wolf, ledoit_wolf_shrinkage, OAS, oas X = datasets.load_diabetes().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_covariance(): # Tests Covariance module on a simple dataset. # test covariance fit from data cov = EmpiricalCovariance() cov.fit(X) emp_cov = empirical_covariance(X) assert_array_almost_equal(emp_cov, cov.covariance_, 4) assert_almost_equal(cov.error_norm(emp_cov), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='spectral'), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='frobenius'), 0) assert_almost_equal( cov.error_norm(emp_cov, scaling=False), 0) assert_almost_equal( cov.error_norm(emp_cov, squared=False), 0) assert_raises(NotImplementedError, cov.error_norm, emp_cov, norm='foo') # Mahalanobis distances computation test mahal_dist = cov.mahalanobis(X) print(np.amin(mahal_dist), np.amax(mahal_dist)) assert(np.amin(mahal_dist) > 0) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = EmpiricalCovariance() cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) assert_almost_equal(cov.error_norm(empirical_covariance(X_1d)), 0) assert_almost_equal( cov.error_norm(empirical_covariance(X_1d), norm='spectral'), 0) # test with one sample # FIXME I don't know what this test does X_1sample = np.arange(5) cov = EmpiricalCovariance() assert_warns(UserWarning, cov.fit, X_1sample) assert_array_almost_equal(cov.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test integer type X_integer = np.asarray([[0, 1], [1, 0]]) result = np.asarray([[0.25, -0.25], [-0.25, 0.25]]) assert_array_almost_equal(empirical_covariance(X_integer), result) # test centered case cov = EmpiricalCovariance(assume_centered=True) cov.fit(X) assert_array_equal(cov.location_, np.zeros(X.shape[1])) def test_shrunk_covariance(): # Tests ShrunkCovariance module on a simple dataset. # compare shrunk covariance obtained from data and from MLE estimate cov = ShrunkCovariance(shrinkage=0.5) cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X), shrinkage=0.5), cov.covariance_, 4) # same test with shrinkage not provided cov = ShrunkCovariance() cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X)), cov.covariance_, 4) # same test with shrinkage = 0 (<==> empirical_covariance) cov = ShrunkCovariance(shrinkage=0.) cov.fit(X) assert_array_almost_equal(empirical_covariance(X), cov.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = ShrunkCovariance(shrinkage=0.3) cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) cov = ShrunkCovariance(shrinkage=0.5, store_precision=False) cov.fit(X) assert(cov.precision_ is None) def test_ledoit_wolf(): # Tests LedoitWolf module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) lw = LedoitWolf(assume_centered=True) lw.fit(X_centered) shrinkage_ = lw.shrinkage_ score_ = lw.score(X_centered) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True), shrinkage_) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True, block_size=6), shrinkage_) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_centered, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf(assume_centered=True) lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, lw.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X_centered) assert_almost_equal(lw.score(X_centered), score_, 4) assert(lw.precision_ is None) # Same tests without assuming centered data # test shrinkage coeff on a simple data set lw = LedoitWolf() lw.fit(X) assert_almost_equal(lw.shrinkage_, shrinkage_, 4) assert_almost_equal(lw.shrinkage_, ledoit_wolf_shrinkage(X)) assert_almost_equal(lw.shrinkage_, ledoit_wolf(X)[1]) assert_almost_equal(lw.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf() lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), lw.covariance_, 4) # test with one sample # FIXME I don't know what this test does X_1sample = np.arange(5) lw = LedoitWolf() assert_warns(UserWarning, lw.fit, X_1sample) assert_array_almost_equal(lw.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False) lw.fit(X) assert_almost_equal(lw.score(X), score_, 4) assert(lw.precision_ is None) def test_ledoit_wolf_large(): # test that ledoit_wolf doesn't error on data that is wider than block_size rng = np.random.RandomState(0) # use a number of features that is larger than the block-size X = rng.normal(size=(10, 20)) lw = LedoitWolf(block_size=10).fit(X) # check that covariance is about diagonal (random normal noise) assert_almost_equal(lw.covariance_, np.eye(20), 0) cov = lw.covariance_ # check that the result is consistent with not splitting data into blocks. lw = LedoitWolf(block_size=25).fit(X) assert_almost_equal(lw.covariance_, cov) def test_oas(): # Tests OAS module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) oa = OAS(assume_centered=True) oa.fit(X_centered) shrinkage_ = oa.shrinkage_ score_ = oa.score(X_centered) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_centered, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) oa = OAS(assume_centered=True) oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False, assume_centered=True) oa.fit(X_centered) assert_almost_equal(oa.score(X_centered), score_, 4) assert(oa.precision_ is None) # Same tests without assuming centered data-------------------------------- # test shrinkage coeff on a simple data set oa = OAS() oa.fit(X) assert_almost_equal(oa.shrinkage_, shrinkage_, 4) assert_almost_equal(oa.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) oa = OAS() oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4) # test with one sample # FIXME I don't know what this test does X_1sample = np.arange(5) oa = OAS() assert_warns(UserWarning, oa.fit, X_1sample) assert_array_almost_equal(oa.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False) oa.fit(X) assert_almost_equal(oa.score(X), score_, 4) assert(oa.precision_ is None)
bsd-3-clause
rupak0577/ginga
ginga/web/pgw/Plot.py
3
4306
# # Plot.py -- Plotting widget canvas wrapper. # # Copyright (c) Eric R. Jeschke. All rights reserved. # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # from io import BytesIO from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from ginga.web.pgw import Widgets class PlotWidget(Widgets.Canvas): """ This class implements the server-side backend of the surface for a web-based plot viewer. It uses a web socket to connect to an HTML5 canvas with javascript callbacks in a web browser on the client. The viewer is created separately on the backend and connects to this surface via the set_viewer() method. """ def __init__(self, plot, width=500, height=500): super(PlotWidget, self).__init__(width=width, height=height) self.widget = FigureCanvas(plot.get_figure()) self.logger = plot.logger self._configured = False self.refresh_delay = 0.010 self.set_plot(plot) def set_plot(self, plot): self.logger.debug("set_plot called") self.plot = plot self._dispatch_event_table = { "activate": self.ignore_event, "setbounds": self.map_event_cb, "mousedown": self.ignore_event, "mouseup": self.ignore_event, "mousemove": self.ignore_event, "mouseout": self.ignore_event, "mouseover": self.ignore_event, "mousewheel": self.ignore_event, "wheel": self.ignore_event, "click": self.ignore_event, "dblclick": self.ignore_event, "keydown": self.ignore_event, "keyup": self.ignore_event, "keypress": self.ignore_event, "resize": self.resize_event, "focus": self.ignore_event, "focusout": self.ignore_event, "blur": self.ignore_event, "drop": self.ignore_event, "paste": self.ignore_event, # Hammer.js events "pinch": self.ignore_event, "pinchstart": self.ignore_event, "pinchend": self.ignore_event, "rotate": self.ignore_event, "rotatestart": self.ignore_event, "rotateend": self.ignore_event, "tap": self.ignore_event, "pan": self.ignore_event, "panstart": self.ignore_event, "panend": self.ignore_event, "swipe": self.ignore_event, } self.plot.add_callback('draw-canvas', self.draw_cb) self.add_timer('refresh', self.refresh_cb) def get_plot(self): return self.plot def ignore_event(self, event): pass def refresh_cb(self): app = self.get_app() app.do_operation('refresh_canvas', id=self.id) self.reset_timer('refresh', self.refresh_delay) def get_rgb_buffer(self, plot): buf = BytesIO() fig = plot.get_figure() fig.canvas.print_figure(buf, format='png') wd, ht = self.width, self.height return (wd, ht, buf.getvalue()) def draw_cb(self, plot): self.logger.debug("getting RGB buffer") wd, ht, buf = self.get_rgb_buffer(plot) #self.logger.debug("clear_rect") #self.clear_rect(0, 0, wd, ht) self.logger.debug("drawing %dx%d image" % (wd, ht)) self.draw_image(buf, 0, 0, wd, ht) self.reset_timer('refresh', self.refresh_delay) def configure_window(self, wd, ht): self.logger.debug("canvas resized to %dx%d" % (wd, ht)) fig = self.plot.get_figure() fig.set_size_inches(float(wd) / fig.dpi, float(ht) / fig.dpi) def map_event_cb(self, event): wd, ht = event.width, event.height self.configure_window(wd, ht) self.plot.draw() def resize_event(self, event): wd, ht = event.x, event.y self.configure_window(wd, ht) self.plot.draw() def _cb_redirect(self, event): method = self._dispatch_event_table[event.type] try: method(event) except Exception as e: self.logger.error("error redirecting '%s' event: %s" % ( event.type, str(e))) # TODO: dump traceback to debug log #END
bsd-3-clause
AlexanderFabisch/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_02_sentiment.py
46
2798
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent pipeline = Pipeline([ ('vect', TfidfVectorizer(min_df=3, max_df=0.95)), ('clf', LinearSVC(C=1000)), ]) # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters parameters = { 'vect__ngram_range': [(1, 1), (1, 2)], } grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1) grid_search.fit(docs_train, y_train) # TASK: print the cross-validated scores for the each parameters set # explored by the grid search print(grid_search.grid_scores_) # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted y_predicted = grid_search.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
paladin74/neural-network-animation
matplotlib/tests/test_dviread.py
15
1788
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from nose.tools import assert_equal import matplotlib.dviread as dr import os.path original_find_tex_file = dr.find_tex_file def setup(): dr.find_tex_file = lambda x: x def teardown(): dr.find_tex_file = original_find_tex_file def test_PsfontsMap(): filename = os.path.join( os.path.dirname(__file__), 'baseline_images', 'dviread', 'test.map') fontmap = dr.PsfontsMap(filename) # Check all properties of a few fonts for n in [1, 2, 3, 4, 5]: key = 'TeXfont%d' % n entry = fontmap[key] assert_equal(entry.texname, key) assert_equal(entry.psname, 'PSfont%d' % n) if n not in [3, 5]: assert_equal(entry.encoding, 'font%d.enc' % n) elif n == 3: assert_equal(entry.encoding, 'enc3.foo') # We don't care about the encoding of TeXfont5, which specifies # multiple encodings. if n not in [1, 5]: assert_equal(entry.filename, 'font%d.pfa' % n) else: assert_equal(entry.filename, 'font%d.pfb' % n) if n == 4: assert_equal(entry.effects, {'slant': -0.1, 'extend': 2.2}) else: assert_equal(entry.effects, {}) # Some special cases entry = fontmap['TeXfont6'] assert_equal(entry.filename, None) assert_equal(entry.encoding, None) entry = fontmap['TeXfont7'] assert_equal(entry.filename, None) assert_equal(entry.encoding, 'font7.enc') entry = fontmap['TeXfont8'] assert_equal(entry.filename, 'font8.pfb') assert_equal(entry.encoding, None) entry = fontmap['TeXfont9'] assert_equal(entry.filename, '/absolute/font9.pfb')
mit
aabadie/scikit-learn
sklearn/utils/tests/test_testing.py
24
7902
import warnings import unittest import sys from nose.tools import assert_raises from sklearn.utils.testing import ( _assert_less, _assert_greater, assert_less_equal, assert_greater_equal, assert_warns, assert_no_warnings, assert_equal, set_random_state, assert_raise_message, ignore_warnings) from sklearn.tree import DecisionTreeClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis try: from nose.tools import assert_less def test_assert_less(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_less(0, 1) _assert_less(0, 1) assert_raises(AssertionError, assert_less, 1, 0) assert_raises(AssertionError, _assert_less, 1, 0) except ImportError: pass try: from nose.tools import assert_greater def test_assert_greater(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_greater(1, 0) _assert_greater(1, 0) assert_raises(AssertionError, assert_greater, 0, 1) assert_raises(AssertionError, _assert_greater, 0, 1) except ImportError: pass def test_assert_less_equal(): assert_less_equal(0, 1) assert_less_equal(1, 1) assert_raises(AssertionError, assert_less_equal, 1, 0) def test_assert_greater_equal(): assert_greater_equal(1, 0) assert_greater_equal(1, 1) assert_raises(AssertionError, assert_greater_equal, 0, 1) def test_set_random_state(): lda = LinearDiscriminantAnalysis() tree = DecisionTreeClassifier() # Linear Discriminant Analysis doesn't have random state: smoke test set_random_state(lda, 3) set_random_state(tree, 3) assert_equal(tree.random_state, 3) def test_assert_raise_message(): def _raise_ValueError(message): raise ValueError(message) def _no_raise(): pass assert_raise_message(ValueError, "test", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "something else", _raise_ValueError, "test") assert_raises(ValueError, assert_raise_message, TypeError, "something else", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "test", _no_raise) # multiple exceptions in a tuple assert_raises(AssertionError, assert_raise_message, (ValueError, AttributeError), "test", _no_raise) def test_ignore_warning(): # This check that ignore_warning decorateur and context manager are working # as expected def _warning_function(): warnings.warn("deprecation warning", DeprecationWarning) def _multiple_warning_function(): warnings.warn("deprecation warning", DeprecationWarning) warnings.warn("deprecation warning") # Check the function directly assert_no_warnings(ignore_warnings(_warning_function)) assert_no_warnings(ignore_warnings(_warning_function, category=DeprecationWarning)) assert_warns(DeprecationWarning, ignore_warnings(_warning_function, category=UserWarning)) assert_warns(UserWarning, ignore_warnings(_multiple_warning_function, category=DeprecationWarning)) assert_warns(DeprecationWarning, ignore_warnings(_multiple_warning_function, category=UserWarning)) assert_no_warnings(ignore_warnings(_warning_function, category=(DeprecationWarning, UserWarning))) # Check the decorator @ignore_warnings def decorator_no_warning(): _warning_function() _multiple_warning_function() @ignore_warnings(category=(DeprecationWarning, UserWarning)) def decorator_no_warning_multiple(): _multiple_warning_function() @ignore_warnings(category=DeprecationWarning) def decorator_no_deprecation_warning(): _warning_function() @ignore_warnings(category=UserWarning) def decorator_no_user_warning(): _warning_function() @ignore_warnings(category=DeprecationWarning) def decorator_no_deprecation_multiple_warning(): _multiple_warning_function() @ignore_warnings(category=UserWarning) def decorator_no_user_multiple_warning(): _multiple_warning_function() assert_no_warnings(decorator_no_warning) assert_no_warnings(decorator_no_warning_multiple) assert_no_warnings(decorator_no_deprecation_warning) assert_warns(DeprecationWarning, decorator_no_user_warning) assert_warns(UserWarning, decorator_no_deprecation_multiple_warning) assert_warns(DeprecationWarning, decorator_no_user_multiple_warning) # Check the context manager def context_manager_no_warning(): with ignore_warnings(): _warning_function() def context_manager_no_warning_multiple(): with ignore_warnings(category=(DeprecationWarning, UserWarning)): _multiple_warning_function() def context_manager_no_deprecation_warning(): with ignore_warnings(category=DeprecationWarning): _warning_function() def context_manager_no_user_warning(): with ignore_warnings(category=UserWarning): _warning_function() def context_manager_no_deprecation_multiple_warning(): with ignore_warnings(category=DeprecationWarning): _multiple_warning_function() def context_manager_no_user_multiple_warning(): with ignore_warnings(category=UserWarning): _multiple_warning_function() assert_no_warnings(context_manager_no_warning) assert_no_warnings(context_manager_no_warning_multiple) assert_no_warnings(context_manager_no_deprecation_warning) assert_warns(DeprecationWarning, context_manager_no_user_warning) assert_warns(UserWarning, context_manager_no_deprecation_multiple_warning) assert_warns(DeprecationWarning, context_manager_no_user_multiple_warning) # This class is inspired from numpy 1.7 with an alteration to check # the reset warning filters after calls to assert_warns. # This assert_warns behavior is specific to scikit-learn because #`clean_warning_registry()` is called internally by assert_warns # and clears all previous filters. class TestWarns(unittest.TestCase): def test_warn(self): def f(): warnings.warn("yo") return 3 # Test that assert_warns is not impacted by externally set # filters and is reset internally. # This is because `clean_warning_registry()` is called internally by # assert_warns and clears all previous filters. warnings.simplefilter("ignore", UserWarning) assert_equal(assert_warns(UserWarning, f), 3) # Test that the warning registry is empty after assert_warns assert_equal(sys.modules['warnings'].filters, []) assert_raises(AssertionError, assert_no_warnings, f) assert_equal(assert_no_warnings(lambda x: x, 1), 1) def test_warn_wrong_warning(self): def f(): warnings.warn("yo", DeprecationWarning) failed = False filters = sys.modules['warnings'].filters[:] try: try: # Should raise an AssertionError assert_warns(UserWarning, f) failed = True except AssertionError: pass finally: sys.modules['warnings'].filters = filters if failed: raise AssertionError("wrong warning caught by assert_warn")
bsd-3-clause
phobson/statsmodels
statsmodels/sandbox/tsa/movstat.py
34
14871
'''using scipy signal and numpy correlate to calculate some time series statistics original developer notes see also scikits.timeseries (movstat is partially inspired by it) added 2009-08-29 timeseries moving stats are in c, autocorrelation similar to here I thought I saw moving stats somewhere in python, maybe not) TODO moving statistics - filters don't handle boundary conditions nicely (correctly ?) e.g. minimum order filter uses 0 for out of bounds value -> append and prepend with last resp. first value - enhance for nd arrays, with axis = 0 Note: Equivalence for 1D signals >>> np.all(signal.correlate(x,[1,1,1],'valid')==np.correlate(x,[1,1,1])) True >>> np.all(ndimage.filters.correlate(x,[1,1,1], origin = -1)[:-3+1]==np.correlate(x,[1,1,1])) True # multidimensional, but, it looks like it uses common filter across time series, no VAR ndimage.filters.correlate(np.vstack([x,x]),np.array([[1,1,1],[0,0,0]]), origin = 1) ndimage.filters.correlate(x,[1,1,1],origin = 1)) ndimage.filters.correlate(np.vstack([x,x]),np.array([[0.5,0.5,0.5],[0.5,0.5,0.5]]), \ origin = 1) >>> np.all(ndimage.filters.correlate(np.vstack([x,x]),np.array([[1,1,1],[0,0,0]]), origin = 1)[0]==\ ndimage.filters.correlate(x,[1,1,1],origin = 1)) True >>> np.all(ndimage.filters.correlate(np.vstack([x,x]),np.array([[0.5,0.5,0.5],[0.5,0.5,0.5]]), \ origin = 1)[0]==ndimage.filters.correlate(x,[1,1,1],origin = 1)) update 2009-09-06: cosmetic changes, rearrangements ''' from __future__ import print_function import numpy as np from scipy import signal from numpy.testing import assert_array_equal, assert_array_almost_equal import statsmodels.api as sm def expandarr(x,k): #make it work for 2D or nD with axis kadd = k if np.ndim(x) == 2: kadd = (kadd, np.shape(x)[1]) return np.r_[np.ones(kadd)*x[0],x,np.ones(kadd)*x[-1]] def movorder(x, order = 'med', windsize=3, lag='lagged'): '''moving order statistics Parameters ---------- x : array time series data order : float or 'med', 'min', 'max' which order statistic to calculate windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- filtered array ''' #if windsize is even should it raise ValueError if lag == 'lagged': lead = windsize//2 elif lag == 'centered': lead = 0 elif lag == 'leading': lead = -windsize//2 +1 else: raise ValueError if np.isfinite(order) == True: #if np.isnumber(order): ord = order # note: ord is a builtin function elif order == 'med': ord = (windsize - 1)/2 elif order == 'min': ord = 0 elif order == 'max': ord = windsize - 1 else: raise ValueError #return signal.order_filter(x,np.ones(windsize),ord)[:-lead] xext = expandarr(x, windsize) #np.r_[np.ones(windsize)*x[0],x,np.ones(windsize)*x[-1]] return signal.order_filter(xext,np.ones(windsize),ord)[windsize-lead:-(windsize+lead)] def check_movorder(): '''graphical test for movorder''' import matplotlib.pylab as plt x = np.arange(1,10) xo = movorder(x, order='max') assert_array_equal(xo, x) x = np.arange(10,1,-1) xo = movorder(x, order='min') assert_array_equal(xo, x) assert_array_equal(movorder(x, order='min', lag='centered')[:-1], x[1:]) tt = np.linspace(0,2*np.pi,15) x = np.sin(tt) + 1 xo = movorder(x, order='max') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max lagged') xo = movorder(x, order='max', lag='centered') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max centered') xo = movorder(x, order='max', lag='leading') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max leading') # identity filter ##>>> signal.order_filter(x,np.ones(1),0) ##array([ 1., 2., 3., 4., 5., 6., 7., 8., 9.]) # median filter ##signal.medfilt(np.sin(x), kernel_size=3) ##>>> plt.figure() ##<matplotlib.figure.Figure object at 0x069BBB50> ##>>> x=np.linspace(0,3,100);plt.plot(x,np.sin(x),x,signal.medfilt(np.sin(x), kernel_size=3)) # remove old version ##def movmeanvar(x, windowsize=3, valid='same'): ## ''' ## this should also work along axis or at least for columns ## ''' ## n = x.shape[0] ## x = expandarr(x, windowsize - 1) ## takeslice = slice(windowsize-1, n + windowsize-1) ## avgkern = (np.ones(windowsize)/float(windowsize)) ## m = np.correlate(x, avgkern, 'same')#[takeslice] ## print(m.shape) ## print(x.shape) ## xm = x - m ## v = np.correlate(x*x, avgkern, 'same') - m**2 ## v1 = np.correlate(xm*xm, avgkern, valid) #not correct for var of window ###>>> np.correlate(xm*xm,np.array([1,1,1])/3.0,'valid')-np.correlate(xm*xm,np.array([1,1,1])/3.0,'valid')**2 ## return m[takeslice], v[takeslice], v1 def movmean(x, windowsize=3, lag='lagged'): '''moving window mean Parameters ---------- x : array time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : array moving mean, with same shape as x Notes ----- for leading and lagging the data array x is extended by the closest value of the array ''' return movmoment(x, 1, windowsize=windowsize, lag=lag) def movvar(x, windowsize=3, lag='lagged'): '''moving window variance Parameters ---------- x : array time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : array moving variance, with same shape as x ''' m1 = movmoment(x, 1, windowsize=windowsize, lag=lag) m2 = movmoment(x, 2, windowsize=windowsize, lag=lag) return m2 - m1*m1 def movmoment(x, k, windowsize=3, lag='lagged'): '''non-central moment Parameters ---------- x : array time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : array k-th moving non-central moment, with same shape as x Notes ----- If data x is 2d, then moving moment is calculated for each column. ''' windsize = windowsize #if windsize is even should it raise ValueError if lag == 'lagged': #lead = -0 + windsize #windsize//2 lead = -0# + (windsize-1) + windsize//2 sl = slice((windsize-1) or None, -2*(windsize-1) or None) elif lag == 'centered': lead = -windsize//2 #0#-1 #+ #(windsize-1) sl = slice((windsize-1)+windsize//2 or None, -(windsize-1)-windsize//2 or None) elif lag == 'leading': #lead = -windsize +1#+1 #+ (windsize-1)#//2 +1 lead = -windsize +2 #-windsize//2 +1 sl = slice(2*(windsize-1)+1+lead or None, -(2*(windsize-1)+lead)+1 or None) else: raise ValueError avgkern = (np.ones(windowsize)/float(windowsize)) xext = expandarr(x, windsize-1) #Note: expandarr increases the array size by 2*(windsize-1) #sl = slice(2*(windsize-1)+1+lead or None, -(2*(windsize-1)+lead)+1 or None) print(sl) if xext.ndim == 1: return np.correlate(xext**k, avgkern, 'full')[sl] #return np.correlate(xext**k, avgkern, 'same')[windsize-lead:-(windsize+lead)] else: print(xext.shape) print(avgkern[:,None].shape) # try first with 2d along columns, possibly ndim with axis return signal.correlate(xext**k, avgkern[:,None], 'full')[sl,:] #x=0.5**np.arange(10);xm=x-x.mean();a=np.correlate(xm,[1],'full') #x=0.5**np.arange(3);np.correlate(x,x,'same') ##>>> x=0.5**np.arange(10);xm=x-x.mean();a=np.correlate(xm,xo,'full') ## ##>>> xo=np.ones(10);d=np.correlate(xo,xo,'full') ##>>> xo ##xo=np.ones(10);d=np.correlate(xo,xo,'full') ##>>> x=np.ones(10);xo=x-x.mean();a=np.correlate(xo,xo,'full') ##>>> xo=np.ones(10);d=np.correlate(xo,xo,'full') ##>>> d ##array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 9., ## 8., 7., 6., 5., 4., 3., 2., 1.]) ##def ccovf(): ## pass ## #x=0.5**np.arange(10);xm=x-x.mean();a=np.correlate(xm,xo,'full') __all__ = ['movorder', 'movmean', 'movvar', 'movmoment'] if __name__ == '__main__': print('\ncheckin moving mean and variance') nobs = 10 x = np.arange(nobs) ws = 3 ave = np.array([ 0., 1/3., 1., 2., 3., 4., 5., 6., 7., 8., 26/3., 9]) va = np.array([[ 0. , 0. ], [ 0.22222222, 0.88888889], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.22222222, 0.88888889], [ 0. , 0. ]]) ave2d = np.c_[ave, 2*ave] print(movmean(x, windowsize=ws, lag='lagged')) print(movvar(x, windowsize=ws, lag='lagged')) print([np.var(x[i-ws:i]) for i in range(ws, nobs)]) m1 = movmoment(x, 1, windowsize=3, lag='lagged') m2 = movmoment(x, 2, windowsize=3, lag='lagged') print(m1) print(m2) print(m2 - m1*m1) # this implicitly also tests moment assert_array_almost_equal(va[ws-1:,0], movvar(x, windowsize=3, lag='leading')) assert_array_almost_equal(va[ws//2:-ws//2+1,0], movvar(x, windowsize=3, lag='centered')) assert_array_almost_equal(va[:-ws+1,0], movvar(x, windowsize=ws, lag='lagged')) print('\nchecking moving moment for 2d (columns only)') x2d = np.c_[x, 2*x] print(movmoment(x2d, 1, windowsize=3, lag='centered')) print(movmean(x2d, windowsize=ws, lag='lagged')) print(movvar(x2d, windowsize=ws, lag='lagged')) assert_array_almost_equal(va[ws-1:,:], movvar(x2d, windowsize=3, lag='leading')) assert_array_almost_equal(va[ws//2:-ws//2+1,:], movvar(x2d, windowsize=3, lag='centered')) assert_array_almost_equal(va[:-ws+1,:], movvar(x2d, windowsize=ws, lag='lagged')) assert_array_almost_equal(ave2d[ws-1:], movmoment(x2d, 1, windowsize=3, lag='leading')) assert_array_almost_equal(ave2d[ws//2:-ws//2+1], movmoment(x2d, 1, windowsize=3, lag='centered')) assert_array_almost_equal(ave2d[:-ws+1], movmean(x2d, windowsize=ws, lag='lagged')) from scipy import ndimage print(ndimage.filters.correlate1d(x2d, np.array([1,1,1])/3., axis=0)) #regression test check xg = np.array([ 0. , 0.1, 0.3, 0.6, 1. , 1.5, 2.1, 2.8, 3.6, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5, 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5, 77.5, 78.5, 79.5, 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5, 88.5, 89.5, 90.5, 91.5, 92.5, 93.5, 94.5]) assert_array_almost_equal(xg, movmean(np.arange(100), 10,'lagged')) xd = np.array([ 0.3, 0.6, 1. , 1.5, 2.1, 2.8, 3.6, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5, 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5, 77.5, 78.5, 79.5, 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5, 88.5, 89.5, 90.5, 91.5, 92.5, 93.5, 94.5, 95.4, 96.2, 96.9, 97.5, 98. , 98.4, 98.7, 98.9, 99. ]) assert_array_almost_equal(xd, movmean(np.arange(100), 10,'leading')) xc = np.array([ 1.36363636, 1.90909091, 2.54545455, 3.27272727, 4.09090909, 5. , 6. , 7. , 8. , 9. , 10. , 11. , 12. , 13. , 14. , 15. , 16. , 17. , 18. , 19. , 20. , 21. , 22. , 23. , 24. , 25. , 26. , 27. , 28. , 29. , 30. , 31. , 32. , 33. , 34. , 35. , 36. , 37. , 38. , 39. , 40. , 41. , 42. , 43. , 44. , 45. , 46. , 47. , 48. , 49. , 50. , 51. , 52. , 53. , 54. , 55. , 56. , 57. , 58. , 59. , 60. , 61. , 62. , 63. , 64. , 65. , 66. , 67. , 68. , 69. , 70. , 71. , 72. , 73. , 74. , 75. , 76. , 77. , 78. , 79. , 80. , 81. , 82. , 83. , 84. , 85. , 86. , 87. , 88. , 89. , 90. , 91. , 92. , 93. , 94. , 94.90909091, 95.72727273, 96.45454545, 97.09090909, 97.63636364]) assert_array_almost_equal(xc, movmean(np.arange(100), 11,'centered'))
bsd-3-clause
intermezzo-fr/hillary-clinton-emails
scripts/outputCsvs.py
5
3577
import numpy as np import pandas as pd def normalize_address(raw_address): for c in ["'", ",", "°", "•", "`", '"', "‘", "-"]: raw_address = raw_address.replace(c, "") raw_address = raw_address.lower() if "<" in raw_address: prefix = raw_address[:raw_address.index("<")].strip() if prefix: return prefix return raw_address.strip() emails = pd.read_csv("input/emailsNoId.csv") emails["MetadataTo"].replace(np.nan, "", inplace=True) emails["ExtractedTo"].replace(np.nan, "", inplace=True) emails["MetadataFrom"].replace(np.nan, "", inplace=True) emails["ExtractedFrom"].replace(np.nan, "", inplace=True) emails.sort(columns=["DocNumber"], inplace=True) emails.insert(0, "Id", list(range(1, len(emails)+1))) emails.insert(5, "SenderPersonId", np.nan) alias_person = pd.read_csv("versionedInput/alias_person.csv") alias_person["AliasName"] = [normalize_address(alias) for alias in alias_person["AliasName"]] persons = pd.DataFrame(columns=["Id", "Name"]) aliases = pd.DataFrame(columns=["Id", "Alias", "PersonId"]) email_receivers = pd.DataFrame(columns=["Id", "EmailId", "PersonId"]).astype(int) def add_alias(aliases, persons, alias_name, person_name): if len(np.where(aliases["Alias"]==alias_name)[0])>0: return locs = np.where(persons["Name"]==person_name)[0] if len(locs)>0: person_id = persons["Id"][locs[0]] else: person_id = len(persons)+1 persons.loc[person_id-1] = [person_id, person_name] alias_id = len(aliases)+1 aliases.loc[alias_id-1] = [alias_id, alias_name.lower(), person_id] for (i, alias_person) in alias_person.iterrows(): add_alias(aliases, persons, alias_person["AliasName"], alias_person["PersonName"]) log = open("working/outputCsvsLog.txt", "w") for (i, email) in emails.iterrows(): from_person_id = None from_address = normalize_address(email["MetadataFrom"].split(";")[0]) if from_address != "": locs = np.where(aliases["Alias"]==from_address)[0] if len(locs)==0: add_alias(aliases, persons, from_address, from_address) log.write("Added From Person: %s\n" % from_address) loc = np.where(aliases["Alias"]==from_address)[0][0] from_person_id = aliases["PersonId"][loc] from_person_name = persons["Name"][from_person_id-1] emails.loc[i, "SenderPersonId"] = from_person_id if email["ExtractedFrom"] != "": add_alias(aliases, persons, normalize_address(email["ExtractedFrom"]), from_person_name) to_addresses = email["MetadataTo"].split(";") + email["ExtractedTo"].split(";") to_addresses = sorted(list(set([normalize_address(x) for x in to_addresses]))) if "" in to_addresses: to_addresses.remove("") for to_address in to_addresses: locs = np.where(aliases["Alias"]==to_address)[0] if len(locs)==0: add_alias(aliases, persons, to_address, to_address) log.write("Added To Person: %s\n" % to_address) loc = np.where(aliases["Alias"]==to_address)[0][0] # don't add a receiver if they were also the sender if from_person_id != aliases["PersonId"][loc]: email_receivers.loc[len(email_receivers)] = [len(email_receivers)+1, email["Id"], aliases["PersonId"][loc]] persons.to_csv("output/Persons.csv", index=False) aliases.to_csv("output/Aliases.csv", index=False) emails.to_csv("output/Emails.csv", index=False, float_format="%0.0f") email_receivers.to_csv("output/EmailReceivers.csv", index=False, float_format="%0.0f") log.close()
mit
nan86150/ImageFusion
lib/python2.7/site-packages/matplotlib/tests/__init__.py
17
2578
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import difflib import os from matplotlib import rcParams, rcdefaults, use _multiprocess_can_split_ = True # Check that the test directories exist if not os.path.exists(os.path.join( os.path.dirname(__file__), 'baseline_images')): raise IOError( 'The baseline image directory does not exist. ' 'This is most likely because the test data is not installed. ' 'You may need to install matplotlib from source to get the ' 'test data.') def setup(): # The baseline images are created in this locale, so we should use # it during all of the tests. import locale import warnings from matplotlib.backends import backend_agg, backend_pdf, backend_svg try: locale.setlocale(locale.LC_ALL, str('en_US.UTF-8')) except locale.Error: try: locale.setlocale(locale.LC_ALL, str('English_United States.1252')) except locale.Error: warnings.warn( "Could not set locale to English/United States. " "Some date-related tests may fail") use('Agg', warn=False) # use Agg backend for these tests # These settings *must* be hardcoded for running the comparison # tests and are not necessarily the default values as specified in # rcsetup.py rcdefaults() # Start with all defaults rcParams['font.family'] = 'Bitstream Vera Sans' rcParams['text.hinting'] = False rcParams['text.hinting_factor'] = 8 # Clear the font caches. Otherwise, the hinting mode can travel # from one test to another. backend_agg.RendererAgg._fontd.clear() backend_pdf.RendererPdf.truetype_font_cache.clear() backend_svg.RendererSVG.fontd.clear() def assert_str_equal(reference_str, test_str, format_str=('String {str1} and {str2} do not ' 'match:\n{differences}')): """ Assert the two strings are equal. If not, fail and print their diffs using difflib. """ if reference_str != test_str: diff = difflib.unified_diff(reference_str.splitlines(1), test_str.splitlines(1), 'Reference', 'Test result', '', '', 0) raise ValueError(format_str.format(str1=reference_str, str2=test_str, differences=''.join(diff)))
mit
andreugrimalt/Theano-Tutorials
5_convolutional_net.py
1
3899
import theano from theano import tensor as T from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams import numpy as np from load import mnist from theano.tensor.nnet.conv import conv2d from theano.tensor.signal.downsample import max_pool_2d import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import ImageGrid import cPickle srng = RandomStreams() def floatX(X): return np.asarray(X, dtype=theano.config.floatX) def init_weights(shape): return theano.shared(floatX(np.random.randn(*shape) * 0.01)) def rectify(X): return T.maximum(X, 0.) def softmax(X): e_x = T.exp(X - X.max(axis=1).dimshuffle(0, 'x')) return e_x / e_x.sum(axis=1).dimshuffle(0, 'x') def dropout(X, p=0.): if p > 0: retain_prob = 1 - p X *= srng.binomial(X.shape, p=retain_prob, dtype=theano.config.floatX) X /= retain_prob return X def RMSprop(cost, params, lr=0.001, rho=0.9, epsilon=1e-6): grads = T.grad(cost=cost, wrt=params) updates = [] for p, g in zip(params, grads): acc = theano.shared(p.get_value() * 0.) acc_new = rho * acc + (1 - rho) * g ** 2 gradient_scaling = T.sqrt(acc_new + epsilon) g = g / gradient_scaling updates.append((acc, acc_new)) updates.append((p, p - lr * g)) return updates def model(X, w, w2, w3, w4, p_drop_conv, p_drop_hidden): l1a = rectify(conv2d(X, w, border_mode='full')) l1 = max_pool_2d(l1a, (2, 2)) l1 = dropout(l1, p_drop_conv) l2a = rectify(conv2d(l1, w2)) l2 = max_pool_2d(l2a, (2, 2)) l2 = dropout(l2, p_drop_conv) l3a = rectify(conv2d(l2, w3)) l3b = max_pool_2d(l3a, (2, 2)) l3 = T.flatten(l3b, outdim=2) l3 = dropout(l3, p_drop_conv) l4 = rectify(T.dot(l3, w4)) l4 = dropout(l4, p_drop_hidden) pyx = softmax(T.dot(l4, w_o)) return l1, l2, l3, l4, pyx trX, teX, trY, teY = mnist(onehot=True) trX = trX.reshape(-1, 1, 28, 28) teX = teX.reshape(-1, 1, 28, 28) X = T.ftensor4() Y = T.fmatrix() w = init_weights((32, 1, 3, 3)) w2 = init_weights((64, 32, 3, 3)) w3 = init_weights((128, 64, 3, 3)) w4 = init_weights((128 * 3 * 3, 625)) w_o = init_weights((625, 10)) noise_l1, noise_l2, noise_l3, noise_l4, noise_py_x = model(X, w, w2, w3, w4, 0.2, 0.5) l1, l2, l3, l4, py_x = model(X, w, w2, w3, w4, 0., 0.) y_x = T.argmax(py_x, axis=1) cost = T.mean(T.nnet.categorical_crossentropy(noise_py_x, Y)) params = [w, w2, w3, w4, w_o] updates = RMSprop(cost, params, lr=0.001) train = theano.function(inputs=[X, Y], outputs=cost, updates=updates, allow_input_downcast=True) predict = theano.function(inputs=[X], outputs=y_x, allow_input_downcast=True) for i in range(50): for start, end in zip(range(0, len(trX), 128), range(128, len(trX), 128)): cost = train(trX[start:end], trY[start:end]) print np.mean(np.argmax(teY, axis=1) == predict(teX)) f = file('objects.save', 'wb') for obj in [l1, l2, l3, py_x]: cPickle.dump(obj, f, protocol=cPickle.HIGHEST_PROTOCOL) f.close() def fillim(c): im = w[0:784,c].eval()*50 im.shape = 28,28 return im def plotWights(): im = w2[0,c,0:3,0:3].eval()*50 im.shape = 3,3 fig = plt.figure(1, (5., 5.)) grid = ImageGrid(fig, 111, # similar to subplot(111) nrows_ncols = (2, 16), # creates 2x2 grid of axes axes_pad=0.1, # pad between axes in inch. ) for c in range(32): grid[c].imshow(fillim(c),cmap=plt.cm.gray) plt.show() #todo: refactor def plotConvImage(): input=floatX(trX[0:784]) out=conv2d(input, w, border_mode='full') out=out[0,0,0:28,0:28].eval() fig = plt.figure(1, (5., 5.)) grid = ImageGrid(fig, 111, # similar to subplot(111) nrows_ncols = (2, 16), # creates 2x2 grid of axes axes_pad=0.1, # pad between axes in inch. ) grid[0].imshow(out,cmap=plt.cm.gray) plt.show()
mit
leesavide/pythonista-docs
Documentation/matplotlib/mpl_examples/pylab_examples/contourf_log.py
9
1350
''' Demonstrate use of a log color scale in contourf ''' from matplotlib import pyplot as P import numpy as np from numpy import ma from matplotlib import colors, ticker, cm from matplotlib.mlab import bivariate_normal N = 100 x = np.linspace(-3.0, 3.0, N) y = np.linspace(-2.0, 2.0, N) X, Y = np.meshgrid(x, y) # A low hump with a spike coming out of the top right. # Needs to have z/colour axis on a log scale so we see both hump and spike. # linear scale only shows the spike. z = (bivariate_normal(X, Y, 0.1, 0.2, 1.0, 1.0) + 0.1 * bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)) # Put in some negative values (lower left corner) to cause trouble with logs: z[:5, :5] = -1 # The following is not strictly essential, but it will eliminate # a warning. Comment it out to see the warning. z = ma.masked_where(z<= 0, z) # Automatic selection of levels works; setting the # log locator tells contourf to use a log scale: cs = P.contourf(X, Y, z, locator=ticker.LogLocator(), cmap=cm.PuBu_r) # Alternatively, you can manually set the levels # and the norm: #lev_exp = np.arange(np.floor(np.log10(z.min())-1), # np.ceil(np.log10(z.max())+1)) #levs = np.power(10, lev_exp) #cs = P.contourf(X, Y, z, levs, norm=colors.LogNorm()) #The 'extend' kwarg does not work yet with a log scale. cbar = P.colorbar() P.show()
apache-2.0
uglyboxer/linear_neuron
net-p3/lib/python3.5/site-packages/matplotlib/tests/test_patheffects.py
10
5445
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from matplotlib.testing.decorators import image_comparison, cleanup import matplotlib.pyplot as plt import matplotlib.patheffects as path_effects try: # mock in python 3.3+ from unittest import mock except ImportError: import mock from nose.tools import assert_equal @image_comparison(baseline_images=['patheffect1'], remove_text=True) def test_patheffect1(): ax1 = plt.subplot(111) ax1.imshow([[1, 2], [2, 3]]) txt = ax1.annotate("test", (1., 1.), (0., 0), arrowprops=dict(arrowstyle="->", connectionstyle="angle3", lw=2), size=20, ha="center", path_effects=[path_effects.withStroke(linewidth=3, foreground="w")]) txt.arrow_patch.set_path_effects([path_effects.Stroke(linewidth=5, foreground="w"), path_effects.Normal()]) ax1.grid(True, linestyle="-") pe = [path_effects.withStroke(linewidth=3, foreground="w")] for l in ax1.get_xgridlines() + ax1.get_ygridlines(): l.set_path_effects(pe) @image_comparison(baseline_images=['patheffect2'], remove_text=True) def test_patheffect2(): ax2 = plt.subplot(111) arr = np.arange(25).reshape((5, 5)) ax2.imshow(arr) cntr = ax2.contour(arr, colors="k") plt.setp(cntr.collections, path_effects=[path_effects.withStroke(linewidth=3, foreground="w")]) clbls = ax2.clabel(cntr, fmt="%2.0f", use_clabeltext=True) plt.setp(clbls, path_effects=[path_effects.withStroke(linewidth=3, foreground="w")]) @image_comparison(baseline_images=['patheffect3']) def test_patheffect3(): p1, = plt.plot([1, 3, 5, 4, 3], 'o-b', lw=4) p1.set_path_effects([path_effects.SimpleLineShadow(), path_effects.Normal()]) plt.title(r'testing$^{123}$', path_effects=[path_effects.withStroke(linewidth=1, foreground="r")]) leg = plt.legend([p1], [r'Line 1$^2$'], fancybox=True, loc=2) leg.legendPatch.set_path_effects([path_effects.withSimplePatchShadow()]) text = plt.text(2, 3, 'Drop test', color='white', bbox={'boxstyle': 'circle,pad=0.1', 'color': 'red'}) pe = [path_effects.Stroke(linewidth=3.75, foreground='k'), path_effects.withSimplePatchShadow((6, -3), shadow_rgbFace='blue')] text.set_path_effects(pe) text.get_bbox_patch().set_path_effects(pe) pe = [path_effects.PathPatchEffect(offset=(4, -4), hatch='xxxx', facecolor='gray'), path_effects.PathPatchEffect(edgecolor='white', facecolor='black', lw=1.1)] t = plt.gcf().text(0.02, 0.1, 'Hatch shadow', fontsize=75, weight=1000, va='center') t.set_path_effects(pe) @cleanup def test_PathEffect_get_proxy(): pe = path_effects.AbstractPathEffect() fig = plt.gcf() renderer = fig.canvas.get_renderer() with mock.patch('matplotlib.cbook.deprecated') as dep: proxy_renderer = pe.get_proxy_renderer(renderer) assert_equal(proxy_renderer._renderer, renderer) assert_equal(proxy_renderer._path_effects, [pe]) dep.assert_called() @cleanup def test_PathEffect_points_to_pixels(): fig = plt.figure(dpi=150) p1, = plt.plot(range(10)) p1.set_path_effects([path_effects.SimpleLineShadow(), path_effects.Normal()]) renderer = fig.canvas.get_renderer() pe_renderer = path_effects.SimpleLineShadow().get_proxy_renderer(renderer) assert isinstance(pe_renderer, path_effects.PathEffectRenderer), ( 'Expected a PathEffectRendere instance, got ' 'a {} instance.'.format(type(pe_renderer))) # Confirm that using a path effects renderer maintains point sizes # appropriately. Otherwise rendered font would be the wrong size. assert_equal(renderer.points_to_pixels(15), pe_renderer.points_to_pixels(15)) def test_SimplePatchShadow_offset_xy(): with mock.patch('matplotlib.cbook.deprecated') as dep: pe = path_effects.SimplePatchShadow(offset_xy=(4, 5)) assert_equal(pe._offset, (4, 5)) dep.assert_called() @image_comparison(baseline_images=['collection']) def test_collection(): x, y = np.meshgrid(np.linspace(0, 10, 150), np.linspace(-5, 5, 100)) data = np.sin(x) + np.cos(y) cs = plt.contour(data) pe = [path_effects.PathPatchEffect(edgecolor='black', facecolor='none', linewidth=12), path_effects.Stroke(linewidth=5)] for collection in cs.collections: collection.set_path_effects(pe) for text in plt.clabel(cs, colors='white'): text.set_path_effects([path_effects.withStroke(foreground='k', linewidth=3)]) text.set_bbox({'boxstyle': 'sawtooth', 'facecolor': 'none', 'edgecolor': 'blue'}) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
mit
chaluemwut/fbserver
venv/lib/python2.7/site-packages/sklearn/feature_extraction/text.py
1
49725
# -*- coding: utf-8 -*- # Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # Robert Layton <[email protected]> # Jochen Wersdörfer <[email protected]> # Roman Sinayev <[email protected]> # # License: BSD 3 clause """ The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to build feature vectors from text documents. """ from __future__ import unicode_literals import array from collections import Mapping, defaultdict import numbers from operator import itemgetter import re import unicodedata import warnings import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals.six.moves import xrange from ..preprocessing import normalize from .hashing import FeatureHasher from .stop_words import ENGLISH_STOP_WORDS from ..utils import deprecated from ..externals import six __all__ = ['CountVectorizer', 'ENGLISH_STOP_WORDS', 'TfidfTransformer', 'TfidfVectorizer', 'strip_accents_ascii', 'strip_accents_unicode', 'strip_tags'] def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart Warning: the python-level loop and join operations make this implementation 20 times slower than the strip_accents_ascii basic normalization. See also -------- strip_accents_ascii Remove accentuated char for any unicode symbol that has a direct ASCII equivalent. """ return ''.join([c for c in unicodedata.normalize('NFKD', s) if not unicodedata.combining(c)]) def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing Warning: this solution is only suited for languages that have a direct transliteration to ASCII symbols. See also -------- strip_accents_unicode Remove accentuated char for any unicode symbol. """ nkfd_form = unicodedata.normalize('NFKD', s) return nkfd_form.encode('ASCII', 'ignore').decode('ASCII') def strip_tags(s): """Basic regexp based HTML / XML tag stripper function For serious HTML/XML preprocessing you should rather use an external library such as lxml or BeautifulSoup. """ return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) def _check_stop_list(stop): if stop == "english": return ENGLISH_STOP_WORDS elif isinstance(stop, six.string_types): raise ValueError("not a built-in stop list: %s" % stop) else: # assume it's a collection return stop class VectorizerMixin(object): """Provides common code for text vectorizers (tokenization logic).""" _white_spaces = re.compile(r"\s\s+") def decode(self, doc): """Decode the input into a string of unicode symbols The decoding strategy depends on the vectorizer parameters. """ if self.input == 'filename': with open(doc, 'rb') as fh: doc = fh.read() elif self.input == 'file': doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if doc is np.nan: raise ValueError("np.nan is an invalid document, expected byte or unicode string.") return doc def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens tokens = [] n_original_tokens = len(original_tokens) for n in xrange(min_n, min(max_n + 1, n_original_tokens + 1)): for i in xrange(n_original_tokens - n + 1): tokens.append(" ".join(original_tokens[i: i + n])) return tokens def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) ngrams = [] min_n, max_n = self.ngram_range for n in xrange(min_n, min(max_n + 1, text_len + 1)): for i in xrange(text_len - n + 1): ngrams.append(text_document[i: i + n]) return ngrams def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization. Tokenize text_document into a sequence of character n-grams excluding any whitespace (operating only inside word boundaries)""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] for w in text_document.split(): w = ' ' + w + ' ' w_len = len(w) for n in xrange(min_n, max_n + 1): offset = 0 ngrams.append(w[offset:offset + n]) while offset + n < w_len: offset += 1 ngrams.append(w[offset:offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams def build_preprocessor(self): """Return a function to preprocess the text before tokenization""" if self.preprocessor is not None: return self.preprocessor # unfortunately python functools package does not have an efficient # `compose` function that would have allowed us to chain a dynamic # number of functions. However the cost of a lambda call is a few # hundreds of nanoseconds which is negligible when compared to the # cost of tokenizing a string of 1000 chars for instance. noop = lambda x: x # accent stripping if not self.strip_accents: strip_accents = noop elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == 'ascii': strip_accents = strip_accents_ascii elif self.strip_accents == 'unicode': strip_accents = strip_accents_unicode else: raise ValueError('Invalid value for "strip_accents": %s' % self.strip_accents) if self.lowercase: return lambda x: strip_accents(x.lower()) else: return strip_accents def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens""" if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) return lambda doc: token_pattern.findall(doc) def get_stop_words(self): """Build or fetch the effective stop words list""" return _check_stop_list(self.stop_words) def build_analyzer(self): """Return a callable that handles preprocessing and tokenization""" if callable(self.analyzer): return self.analyzer preprocess = self.build_preprocessor() if self.analyzer == 'char': return lambda doc: self._char_ngrams(preprocess(self.decode(doc))) elif self.analyzer == 'char_wb': return lambda doc: self._char_wb_ngrams( preprocess(self.decode(doc))) elif self.analyzer == 'word': stop_words = self.get_stop_words() tokenize = self.build_tokenizer() return lambda doc: self._word_ngrams( tokenize(preprocess(self.decode(doc))), stop_words) else: raise ValueError('%s is not a valid tokenization scheme/analyzer' % self.analyzer) def _check_vocabulary(self): vocabulary = self.vocabulary if vocabulary is not None: if not isinstance(vocabulary, Mapping): vocab = {} for i, t in enumerate(vocabulary): if vocab.setdefault(t, i) != i: msg = "Duplicate term in vocabulary: %r" % t raise ValueError(msg) vocabulary = vocab else: indices = set(six.itervalues(vocabulary)) if len(indices) != len(vocabulary): raise ValueError("Vocabulary contains repeated indices.") for i in xrange(len(vocabulary)): if i not in indices: msg = ("Vocabulary of size %d doesn't contain index " "%d." % (len(vocabulary), i)) raise ValueError(msg) if not vocabulary: raise ValueError("empty vocabulary passed to fit") self.fixed_vocabulary_ = True self.vocabulary_ = dict(vocabulary) else: self.fixed_vocabulary_ = False @property @deprecated("The `fixed_vocabulary` attribute is deprecated and will be " "removed in 0.18. Please use `fixed_vocabulary_` instead.") def fixed_vocabulary(self): return self.fixed_vocabulary_ class HashingVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token occurrences It turns a collection of text documents into a scipy.sparse matrix holding token occurrence counts (or binary occurrence information), possibly normalized as token frequencies if norm='l1' or projected on the euclidean unit sphere if norm='l2'. This text vectorizer implementation uses the hashing trick to find the token string name to feature integer index mapping. This strategy has several advantages: - it is very low memory scalable to large datasets as there is no need to store a vocabulary dictionary in memory - it is fast to pickle and un-pickle as it holds no state besides the constructor parameters - it can be used in a streaming (partial fit) or parallel pipeline as there is no state computed during fit. There are also a couple of cons (vs using a CountVectorizer with an in-memory vocabulary): - there is no way to compute the inverse transform (from feature indices to string feature names) which can be a problem when trying to introspect which features are most important to a model. - there can be collisions: distinct tokens can be mapped to the same feature index. However in practice this is rarely an issue if n_features is large enough (e.g. 2 ** 18 for text classification problems). - no IDF weighting as this would render the transformer stateful. The hash function employed is the signed 32-bit version of Murmurhash3. Parameters ---------- input: string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents: {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer: string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor: callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer: callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. ngram_range: tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words: string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. lowercase: boolean, default True Convert all characters to lowercase before tokenizing. token_pattern: string Regular expression denoting what constitutes a "token", only used if `analyzer == 'word'`. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). n_features : integer, optional, (2 ** 20) by default The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. binary: boolean, False by default. If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype: type, optional Type of the matrix returned by fit_transform() or transform(). non_negative : boolean, optional Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. See also -------- CountVectorizer, TfidfVectorizer """ def __init__(self, input='content', charset=None, encoding='utf-8', decode_error='strict', charset_error=None, strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20), binary=False, norm='l2', non_negative=False, dtype=np.float64): self.input = input self.encoding = encoding self.decode_error = decode_error if charset is not None: warnings.warn("The charset parameter is deprecated as of version " "0.14 and will be removed in 0.16. Use encoding " "instead.", DeprecationWarning) self.encoding = charset if charset_error is not None: warnings.warn("The charset_error parameter is deprecated as of " "version 0.14 and will be removed in 0.16. Use " "decode_error instead.", DeprecationWarning) self.decode_error = charset_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.n_features = n_features self.ngram_range = ngram_range self.binary = binary self.norm = norm self.non_negative = non_negative self.dtype = dtype def partial_fit(self, X, y=None): """Does nothing: this transformer is stateless. This method is just there to mark the fact that this transformer can work in a streaming setup. """ return self def fit(self, X, y=None): """Does nothing: this transformer is stateless.""" # triggers a parameter validation self._get_hasher().fit(X, y=y) return self def transform(self, X, y=None): """Transform a sequence of documents to a document-term matrix. Parameters ---------- X : iterable over raw text documents, length = n_samples Samples. Each sample must be a text document (either bytes or unicode strings, file name or file object depending on the constructor argument) which will be tokenized and hashed. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Document-term matrix. """ analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X.data.fill(1) if self.norm is not None: X = normalize(X, norm=self.norm, copy=False) return X # Alias transform to fit_transform for convenience fit_transform = transform def _get_hasher(self): return FeatureHasher(n_features=self.n_features, input_type='string', dtype=self.dtype, non_negative=self.non_negative) def _document_frequency(X): """Count the number of non-zero values for each feature in sparse X.""" if sp.isspmatrix_csr(X): return np.bincount(X.indices, minlength=X.shape[1]) else: return np.diff(sp.csc_matrix(X, copy=False).indptr) class CountVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token counts This implementation produces a sparse representation of the counts using scipy.sparse.coo_matrix. If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature selection then the number of features will be equal to the vocabulary size found by analyzing the data. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, True by default Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if `tokenize == 'word'`. The default regexp select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, optional, 1.0 by default When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, optional, 1 by default When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : optional, None by default If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. Indices in the mapping should not be repeated and should not have any gap between 0 and the largest index. binary : boolean, False by default. If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype : type, optional Type of the matrix returned by fit_transform() or transform(). Attributes ---------- `vocabulary_` : dict A mapping of terms to feature indices. `stop_words_` : set Terms that were ignored because they occurred in either too many (`max_df`) or in too few (`min_df`) documents. This is only available if no vocabulary was given. See also -------- HashingVectorizer, TfidfVectorizer """ def __init__(self, input='content', encoding='utf-8', charset=None, decode_error='strict', charset_error=None, strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64): self.input = input self.encoding = encoding self.decode_error = decode_error if charset is not None: warnings.warn("The charset parameter is deprecated as of version " "0.14 and will be removed in 0.16. Use encoding " "instead.", DeprecationWarning) self.encoding = charset if charset_error is not None: warnings.warn("The charset_error parameter is deprecated as of " "version 0.14 and will be removed in 0.16. Use " "decode_error instead.", DeprecationWarning) self.decode_error = charset_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.max_df = max_df self.min_df = min_df if max_df < 0 or min_df < 0: raise ValueError("negative value for max_df of min_df") self.max_features = max_features if max_features is not None: if (not isinstance(max_features, numbers.Integral) or max_features <= 0): raise ValueError( "max_features=%r, neither a positive integer nor None" % max_features) self.ngram_range = ngram_range self.vocabulary = vocabulary self.binary = binary self.dtype = dtype def _sort_features(self, X, vocabulary): """Sort features by name Returns a reordered matrix and modifies the vocabulary in place """ sorted_features = sorted(six.iteritems(vocabulary)) map_index = np.empty(len(sorted_features), dtype=np.int32) for new_val, (term, old_val) in enumerate(sorted_features): map_index[new_val] = old_val vocabulary[term] = new_val return X[:, map_index] def _limit_features(self, X, vocabulary, high=None, low=None, limit=None): """Remove too rare or too common features. Prune features that are non zero in more samples than high or less documents than low, modifying the vocabulary, and restricting it to at most the limit most frequent. This does not prune samples with zero features. """ if high is None and low is None and limit is None: return X, set() # Calculate a mask based on document frequencies dfs = _document_frequency(X) tfs = np.asarray(X.sum(axis=0)).ravel() mask = np.ones(len(dfs), dtype=bool) if high is not None: mask &= dfs <= high if low is not None: mask &= dfs >= low if limit is not None and mask.sum() > limit: mask_inds = (-tfs[mask]).argsort()[:limit] new_mask = np.zeros(len(dfs), dtype=bool) new_mask[np.where(mask)[0][mask_inds]] = True mask = new_mask new_indices = np.cumsum(mask) - 1 # maps old indices to new removed_terms = set() for term, old_index in list(six.iteritems(vocabulary)): if mask[old_index]: vocabulary[term] = new_indices[old_index] else: del vocabulary[term] removed_terms.add(term) kept_indices = np.where(mask)[0] if len(kept_indices) == 0: raise ValueError("After pruning, no terms remain. Try a lower" " min_df or a higher max_df.") return X[:, kept_indices], removed_terms def _count_vocab(self, raw_documents, fixed_vocab): """Create sparse feature matrix, and vocabulary where fixed_vocab=False """ if fixed_vocab: vocabulary = self.vocabulary_ else: # Add a new value when a new vocabulary item is seen vocabulary = defaultdict() vocabulary.default_factory = vocabulary.__len__ analyze = self.build_analyzer() j_indices = _make_int_array() indptr = _make_int_array() indptr.append(0) for doc in raw_documents: for feature in analyze(doc): try: j_indices.append(vocabulary[feature]) except KeyError: # Ignore out-of-vocabulary items for fixed_vocab=True continue indptr.append(len(j_indices)) if not fixed_vocab: # disable defaultdict behaviour vocabulary = dict(vocabulary) if not vocabulary: raise ValueError("empty vocabulary; perhaps the documents only" " contain stop words") # some Python/Scipy versions won't accept an array.array: if j_indices: j_indices = np.frombuffer(j_indices, dtype=np.intc) else: j_indices = np.array([], dtype=np.int32) indptr = np.frombuffer(indptr, dtype=np.intc) values = np.ones(len(j_indices)) X = sp.csr_matrix((values, j_indices, indptr), shape=(len(indptr) - 1, len(vocabulary)), dtype=self.dtype) X.sum_duplicates() return vocabulary, X def fit(self, raw_documents, y=None): """Learn a vocabulary dictionary of all tokens in the raw documents. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- self """ self.fit_transform(raw_documents) return self def fit_transform(self, raw_documents, y=None): """Learn the vocabulary dictionary and return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : array, [n_samples, n_features] Document-term matrix. """ # We intentionally don't call the transform method to make # fit_transform overridable without unwanted side effects in # TfidfVectorizer. self._check_vocabulary() max_df = self.max_df min_df = self.min_df max_features = self.max_features vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_) if self.binary: X.data.fill(1) if not self.fixed_vocabulary_: X = self._sort_features(X, vocabulary) n_doc = X.shape[0] max_doc_count = (max_df if isinstance(max_df, numbers.Integral) else max_df * n_doc) min_doc_count = (min_df if isinstance(min_df, numbers.Integral) else min_df * n_doc) if max_doc_count < min_doc_count: raise ValueError( "max_df corresponds to < documents than min_df") X, self.stop_words_ = self._limit_features(X, vocabulary, max_doc_count, min_doc_count, max_features) self.vocabulary_ = vocabulary return X def transform(self, raw_documents): """Transform documents to document-term matrix. Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to the constructor. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : sparse matrix, [n_samples, n_features] Document-term matrix. """ if not hasattr(self, 'vocabulary_'): self._check_vocabulary() if not hasattr(self, 'vocabulary_') or len(self.vocabulary_) == 0: raise ValueError("Vocabulary wasn't fitted or is empty!") # use the same matrix-building strategy as fit_transform _, X = self._count_vocab(raw_documents, fixed_vocab=True) if self.binary: X.data.fill(1) return X def inverse_transform(self, X): """Return terms per document with nonzero entries in X. Parameters ---------- X : {array, sparse matrix}, shape = [n_samples, n_features] Returns ------- X_inv : list of arrays, len = n_samples List of arrays of terms. """ if sp.issparse(X): # We need CSR format for fast row manipulations. X = X.tocsr() else: # We need to convert X to a matrix, so that the indexing # returns 2D objects X = np.asmatrix(X) n_samples = X.shape[0] terms = np.array(list(self.vocabulary_.keys())) indices = np.array(list(self.vocabulary_.values())) inverse_vocabulary = terms[np.argsort(indices)] return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel() for i in range(n_samples)] def get_feature_names(self): """Array mapping from feature integer indices to feature name""" if not hasattr(self, 'vocabulary_') or len(self.vocabulary_) == 0: raise ValueError("Vocabulary wasn't fitted or is empty!") return [t for t, i in sorted(six.iteritems(self.vocabulary_), key=itemgetter(1))] def _make_int_array(): """Construct an array.array of a type suitable for scipy.sparse indices.""" return array.array(str("i")) class TfidfTransformer(BaseEstimator, TransformerMixin): """Transform a count matrix to a normalized tf or tf-idf representation Tf means term-frequency while tf-idf means term-frequency times inverse document-frequency. This is a common term weighting scheme in information retrieval, that has also found good use in document classification. The goal of using tf-idf instead of the raw frequencies of occurrence of a token in a given document is to scale down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less informative than features that occur in a small fraction of the training corpus. The actual formula used for tf-idf is tf * (idf + 1) = tf + tf * idf, instead of tf * idf. The effect of this is that terms with zero idf, i.e. that occur in all documents of a training set, will not be entirely ignored. The formulas used to compute tf and idf depend on parameter settings that correspond to the SMART notation used in IR, as follows: Tf is "n" (natural) by default, "l" (logarithmic) when sublinear_tf=True. Idf is "t" when use_idf is given, "n" (none) otherwise. Normalization is "c" (cosine) when norm='l2', "n" (none) when norm=None. Parameters ---------- norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, optional Enable inverse-document-frequency reweighting. smooth_idf : boolean, optional Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, optional Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). References ---------- .. [Yates2011] `R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 68-74.` .. [MRS2008] `C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 118-120.` """ def __init__(self, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): self.norm = norm self.use_idf = use_idf self.smooth_idf = smooth_idf self.sublinear_tf = sublinear_tf def fit(self, X, y=None): """Learn the idf vector (global term weights) Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts """ if not sp.issparse(X): X = sp.csc_matrix(X) if self.use_idf: n_samples, n_features = X.shape df = _document_frequency(X) # perform idf smoothing if required df += int(self.smooth_idf) n_samples += int(self.smooth_idf) # log1p instead of log makes sure terms with zero idf don't get # suppressed entirely idf = np.log(float(n_samples) / df) + 1.0 self._idf_diag = sp.spdiags(idf, diags=0, m=n_features, n=n_features) return self def transform(self, X, copy=True): """Transform a count matrix to a tf or tf-idf representation Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts Returns ------- vectors : sparse matrix, [n_samples, n_features] """ if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float): # preserve float family dtype X = sp.csr_matrix(X, copy=copy) else: # convert counts or binary occurrences to floats X = sp.csr_matrix(X, dtype=np.float64, copy=copy) n_samples, n_features = X.shape if self.sublinear_tf: np.log(X.data, X.data) X.data += 1 if self.use_idf: if not hasattr(self, "_idf_diag"): raise ValueError("idf vector not fitted") expected_n_features = self._idf_diag.shape[0] if n_features != expected_n_features: raise ValueError("Input has n_features=%d while the model" " has been trained with n_features=%d" % ( n_features, expected_n_features)) # *= doesn't work X = X * self._idf_diag if self.norm: X = normalize(X, norm=self.norm, copy=False) return X @property def idf_(self): if hasattr(self, "_idf_diag"): return np.ravel(self._idf_diag.sum(axis=0)) else: return None class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a matrix of TF-IDF features. Equivalent to CountVectorizer followed by TfidfTransformer. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char'} or callable Whether the feature should be made of word or character n-grams. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If a string, it is passed to _check_stop_list and the appropriate stop list is returned. 'english' is currently the only supported string value. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, default True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if `analyzer == 'word'`. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, optional, 1.0 by default When building the vocabulary ignore terms that have a term frequency strictly higher than the given threshold (corpus specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, optional, 1 by default When building the vocabulary ignore terms that have a term frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : optional, None by default If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. binary : boolean, False by default. If True, all non-zero term counts are set to 1. This does not mean outputs will have only 0/1 values, only that the tf term in tf-idf is binary. (Set idf and normalization to False to get 0/1 outputs.) dtype : type, optional Type of the matrix returned by fit_transform() or transform(). norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, optional Enable inverse-document-frequency reweighting. smooth_idf : boolean, optional Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, optional Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). Attributes ---------- ``idf_`` : array, shape = [n_features], or None The learned idf vector (global term weights) when ``use_idf`` is set to True, None otherwise. See also -------- CountVectorizer Tokenize the documents and count the occurrences of token and return them as a sparse matrix TfidfTransformer Apply Term Frequency Inverse Document Frequency normalization to a sparse matrix of occurrence counts. """ def __init__(self, input='content', encoding='utf-8', charset=None, decode_error='strict', charset_error=None, strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer='word', stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): super(TfidfVectorizer, self).__init__( input=input, charset=charset, charset_error=charset_error, encoding=encoding, decode_error=decode_error, strip_accents=strip_accents, lowercase=lowercase, preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer, stop_words=stop_words, token_pattern=token_pattern, ngram_range=ngram_range, max_df=max_df, min_df=min_df, max_features=max_features, vocabulary=vocabulary, binary=binary, dtype=dtype) self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf, smooth_idf=smooth_idf, sublinear_tf=sublinear_tf) # Broadcast the TF-IDF parameters to the underlying transformer instance # for easy grid search and repr @property def norm(self): return self._tfidf.norm @norm.setter def norm(self, value): self._tfidf.norm = value @property def use_idf(self): return self._tfidf.use_idf @use_idf.setter def use_idf(self, value): self._tfidf.use_idf = value @property def smooth_idf(self): return self._tfidf.smooth_idf @smooth_idf.setter def smooth_idf(self, value): self._tfidf.smooth_idf = value @property def sublinear_tf(self): return self._tfidf.sublinear_tf @sublinear_tf.setter def sublinear_tf(self, value): self._tfidf.sublinear_tf = value @property def idf_(self): return self._tfidf.idf_ def fit(self, raw_documents, y=None): """Learn vocabulary and idf from training set. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- self : TfidfVectorizer """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) return self def fit_transform(self, raw_documents, y=None): """Learn vocabulary and idf, return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) # X is already a transformed view of raw_documents so # we set copy to False return self._tfidf.transform(X, copy=False) def transform(self, raw_documents, copy=True): """Transform documents to document-term matrix. Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform). Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ X = super(TfidfVectorizer, self).transform(raw_documents) return self._tfidf.transform(X, copy=False)
apache-2.0
raghavrv/scikit-learn
sklearn/neighbors/tests/test_approximate.py
12
20126
""" Testing for the approximate neighbor search using Locality Sensitive Hashing Forest module (sklearn.neighbors.LSHForest). """ # Author: Maheshakya Wijewardena, Joel Nothman import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.metrics.pairwise import pairwise_distances from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors def test_lsh_forest_deprecation(): assert_warns_message(DeprecationWarning, "LSHForest has poor performance and has been " "deprecated in 0.19. It will be removed " "in version 0.21.", LSHForest) def test_neighbors_accuracy_with_n_candidates(): # Checks whether accuracy increases as `n_candidates` increases. n_candidates_values = np.array([.1, 50, 500]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_candidates_values.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, n_candidates in enumerate(n_candidates_values): lshf = ignore_warnings(LSHForest, category=DeprecationWarning)( n_candidates=n_candidates) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies print('accuracies:', accuracies) assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") def test_neighbors_accuracy_with_n_estimators(): # Checks whether accuracy increases as `n_estimators` increases. n_estimators = np.array([1, 10, 100]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_estimators.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, t in enumerate(n_estimators): lshf = ignore_warnings(LSHForest, category=DeprecationWarning)( n_candidates=500, n_estimators=t) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") @ignore_warnings def test_kneighbors(): # Checks whether desired number of neighbors are returned. # It is guaranteed to return the requested number of neighbors # if `min_hash_match` is set to 0. Returned distances should be # in ascending order. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = ignore_warnings(LSHForest, category=DeprecationWarning)( min_hash_match=0) # Test unfitted estimator assert_raises(ValueError, lshf.kneighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=False) # Desired number of neighbors should be returned. assert_equal(neighbors.shape[1], n_neighbors) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=True) assert_equal(neighbors.shape[0], n_queries) assert_equal(distances.shape[0], n_queries) # Test only neighbors neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=False) assert_equal(neighbors.shape[0], n_queries) # Test random point(not in the data set) query = rng.randn(n_features).reshape(1, -1) lshf.kneighbors(query, n_neighbors=1, return_distance=False) # Test n_neighbors at initialization neighbors = lshf.kneighbors(query, return_distance=False) assert_equal(neighbors.shape[1], 5) # Test `neighbors` has an integer dtype assert_true(neighbors.dtype.kind == 'i', msg="neighbors are not in integer dtype.") def test_radius_neighbors(): # Checks whether Returned distances are less than `radius` # At least one point should be returned when the `radius` is set # to mean distance from the considering point to other points in # the database. # Moreover, this test compares the radius neighbors of LSHForest # with the `sklearn.neighbors.NearestNeighbors`. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = ignore_warnings(LSHForest, category=DeprecationWarning)() # Test unfitted estimator assert_raises(ValueError, lshf.radius_neighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): # Select a random point in the dataset as the query query = X[rng.randint(0, n_samples)].reshape(1, -1) # At least one neighbor should be returned when the radius is the # mean distance from the query to the points of the dataset. mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=False) assert_equal(neighbors.shape, (1,)) assert_equal(neighbors.dtype, object) assert_greater(neighbors[0].shape[0], 0) # All distances to points in the results of the radius query should # be less than mean_dist distances, neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=True) assert_array_less(distances[0], mean_dist) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.radius_neighbors(queries, return_distance=True) # dists and inds should not be 1D arrays or arrays of variable lengths # hence the use of the object dtype. assert_equal(distances.shape, (n_queries,)) assert_equal(distances.dtype, object) assert_equal(neighbors.shape, (n_queries,)) assert_equal(neighbors.dtype, object) # Compare with exact neighbor search query = X[rng.randint(0, n_samples)].reshape(1, -1) mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist) distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist) # Radius-based queries do not sort the result points and the order # depends on the method, the random_state and the dataset order. Therefore # we need to sort the results ourselves before performing any comparison. sorted_dists_exact = np.sort(distances_exact[0]) sorted_dists_approx = np.sort(distances_approx[0]) # Distances to exact neighbors are less than or equal to approximate # counterparts as the approximate radius query might have missed some # closer neighbors. assert_true(np.all(np.less_equal(sorted_dists_exact, sorted_dists_approx))) @ignore_warnings def test_radius_neighbors_boundary_handling(): X = [[0.999, 0.001], [0.5, 0.5], [0, 1.], [-1., 0.001]] n_points = len(X) # Build an exact nearest neighbors model as reference model to ensure # consistency between exact and approximate methods nnbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) # Build a LSHForest model with hyperparameter values that always guarantee # exact results on this toy dataset. lsfh = ignore_warnings(LSHForest, category=DeprecationWarning)( min_hash_match=0, n_candidates=n_points, random_state=42).fit(X) # define a query aligned with the first axis query = [[1., 0.]] # Compute the exact cosine distances of the query to the four points of # the dataset dists = pairwise_distances(query, X, metric='cosine').ravel() # The first point is almost aligned with the query (very small angle), # the cosine distance should therefore be almost null: assert_almost_equal(dists[0], 0, decimal=5) # The second point form an angle of 45 degrees to the query vector assert_almost_equal(dists[1], 1 - np.cos(np.pi / 4)) # The third point is orthogonal from the query vector hence at a distance # exactly one: assert_almost_equal(dists[2], 1) # The last point is almost colinear but with opposite sign to the query # therefore it has a cosine 'distance' very close to the maximum possible # value of 2. assert_almost_equal(dists[3], 2, decimal=5) # If we query with a radius of one, all the samples except the last sample # should be included in the results. This means that the third sample # is lying on the boundary of the radius query: exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1) assert_array_equal(np.sort(exact_idx[0]), [0, 1, 2]) assert_array_equal(np.sort(approx_idx[0]), [0, 1, 2]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-1]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-1]) # If we perform the same query with a slightly lower radius, the third # point of the dataset that lay on the boundary of the previous query # is now rejected: eps = np.finfo(np.float64).eps exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1 - eps) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1 - eps) assert_array_equal(np.sort(exact_idx[0]), [0, 1]) assert_array_equal(np.sort(approx_idx[0]), [0, 1]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-2]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-2]) def test_distances(): # Checks whether returned neighbors are from closest to farthest. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = ignore_warnings(LSHForest, category=DeprecationWarning)() ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) distances, neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=True) # Returned neighbors should be from closest to farthest, that is # increasing distance values. assert_true(np.all(np.diff(distances[0]) >= 0)) # Note: the radius_neighbors method does not guarantee the order of # the results. def test_fit(): # Checks whether `fit` method sets all attribute values correctly. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = ignore_warnings(LSHForest, category=DeprecationWarning)( n_estimators=n_estimators) ignore_warnings(lshf.fit)(X) # _input_array = X assert_array_equal(X, lshf._fit_X) # A hash function g(p) for each tree assert_equal(n_estimators, len(lshf.hash_functions_)) # Hash length = 32 assert_equal(32, lshf.hash_functions_[0].components_.shape[0]) # Number of trees_ in the forest assert_equal(n_estimators, len(lshf.trees_)) # Each tree has entries for every data point assert_equal(n_samples, len(lshf.trees_[0])) # Original indices after sorting the hashes assert_equal(n_estimators, len(lshf.original_indices_)) # Each set of original indices in a tree has entries for every data point assert_equal(n_samples, len(lshf.original_indices_[0])) def test_partial_fit(): # Checks whether inserting array is consistent with fitted data. # `partial_fit` method should set all attribute values correctly. n_samples = 12 n_samples_partial_fit = 3 n_features = 2 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) X_partial_fit = rng.rand(n_samples_partial_fit, n_features) lshf = ignore_warnings(LSHForest, category=DeprecationWarning)() # Test unfitted estimator ignore_warnings(lshf.partial_fit)(X) assert_array_equal(X, lshf._fit_X) ignore_warnings(lshf.fit)(X) # Insert wrong dimension assert_raises(ValueError, lshf.partial_fit, np.random.randn(n_samples_partial_fit, n_features - 1)) ignore_warnings(lshf.partial_fit)(X_partial_fit) # size of _input_array = samples + 1 after insertion assert_equal(lshf._fit_X.shape[0], n_samples + n_samples_partial_fit) # size of original_indices_[1] = samples + 1 assert_equal(len(lshf.original_indices_[0]), n_samples + n_samples_partial_fit) # size of trees_[1] = samples + 1 assert_equal(len(lshf.trees_[1]), n_samples + n_samples_partial_fit) def test_hash_functions(): # Checks randomness of hash functions. # Variance and mean of each hash function (projection vector) # should be different from flattened array of hash functions. # If hash functions are not randomly built (seeded with # same value), variances and means of all functions are equal. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = ignore_warnings(LSHForest, category=DeprecationWarning)( n_estimators=n_estimators, random_state=rng.randint(0, np.iinfo(np.int32).max)) ignore_warnings(lshf.fit)(X) hash_functions = [] for i in range(n_estimators): hash_functions.append(lshf.hash_functions_[i].components_) for i in range(n_estimators): assert_not_equal(np.var(hash_functions), np.var(lshf.hash_functions_[i].components_)) for i in range(n_estimators): assert_not_equal(np.mean(hash_functions), np.mean(lshf.hash_functions_[i].components_)) def test_candidates(): # Checks whether candidates are sufficient. # This should handle the cases when number of candidates is 0. # User should be warned when number of candidates is less than # requested number of neighbors. X_train = np.array([[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]], dtype=np.float32) X_test = np.array([7, 10, 3], dtype=np.float32).reshape(1, -1) # For zero candidates lshf = ignore_warnings(LSHForest, category=DeprecationWarning)( min_hash_match=32) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (3, 32)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=3) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=3) assert_equal(distances.shape[1], 3) # For candidates less than n_neighbors lshf = ignore_warnings(LSHForest, category=DeprecationWarning)( min_hash_match=31) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (5, 31)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=5) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=5) assert_equal(distances.shape[1], 5) def test_graphs(): # Smoke tests for graph methods. n_samples_sizes = [5, 10, 20] n_features = 3 rng = np.random.RandomState(42) for n_samples in n_samples_sizes: X = rng.rand(n_samples, n_features) lshf = ignore_warnings(LSHForest, category=DeprecationWarning)( min_hash_match=0) ignore_warnings(lshf.fit)(X) kneighbors_graph = lshf.kneighbors_graph(X) radius_neighbors_graph = lshf.radius_neighbors_graph(X) assert_equal(kneighbors_graph.shape[0], n_samples) assert_equal(kneighbors_graph.shape[1], n_samples) assert_equal(radius_neighbors_graph.shape[0], n_samples) assert_equal(radius_neighbors_graph.shape[1], n_samples) def test_sparse_input(): # note: Fixed random state in sp.rand is not supported in older scipy. # The test should succeed regardless. X1 = sp.rand(50, 100) X2 = sp.rand(10, 100) forest_sparse = ignore_warnings(LSHForest, category=DeprecationWarning)( radius=1, random_state=0).fit(X1) forest_dense = ignore_warnings(LSHForest, category=DeprecationWarning)( radius=1, random_state=0).fit(X1.A) d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True) assert_almost_equal(d_sparse, d_dense) assert_almost_equal(i_sparse, i_dense) d_sparse, i_sparse = forest_sparse.radius_neighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.radius_neighbors(X2.A, return_distance=True) assert_equal(d_sparse.shape, d_dense.shape) for a, b in zip(d_sparse, d_dense): assert_almost_equal(a, b) for a, b in zip(i_sparse, i_dense): assert_almost_equal(a, b)
bsd-3-clause
parrt/lolviz
prince_dtree.py
1
12296
import IPython, graphviz, re from io import StringIO from IPython.display import Image import numpy as np import pandas as pd import math from sklearn import tree from sklearn.datasets import load_boston, load_iris from collections import defaultdict import string import re YELLOW = "#fefecd" # "#fbfbd0" # "#FBFEB0" BLUE = "#D9E6F5" GREEN = "#cfe2d4" color_blind_friendly_colors = { 'redorange': '#f46d43', 'orange': '#fdae61', 'yellow': '#fee090', 'sky': '#e0f3f8', 'babyblue': '#abd9e9', 'lightblue': '#74add1', 'blue': '#4575b4' } color_blind_friendly_colors = [ None, # 0 classes None, # 1 class [YELLOW,BLUE], # 2 classes [YELLOW,BLUE,GREEN], # 3 classes [YELLOW,BLUE,GREEN,'#a1dab4'], # 4 [YELLOW,BLUE,GREEN,'#a1dab4','#41b6c4'], # 5 [YELLOW,'#c7e9b4','#7fcdbb','#41b6c4','#2c7fb8','#253494'], # 6 [YELLOW,'#c7e9b4','#7fcdbb','#41b6c4','#1d91c0','#225ea8','#0c2c84'], # 7 [YELLOW,'#edf8b1','#c7e9b4','#7fcdbb','#41b6c4','#1d91c0','#225ea8','#0c2c84'], # 8 [YELLOW,'#ece7f2','#d0d1e6','#a6bddb','#74a9cf','#3690c0','#0570b0','#045a8d','#023858'], # 9 [YELLOW,'#e0f3f8','#313695','#fee090','#4575b4','#fdae61','#abd9e9','#74add1','#d73027','#f46d43'] # 10 ] for x in color_blind_friendly_colors[2:]: print(x) max_class_colors = len(color_blind_friendly_colors)-1 def tree_traverse(n_nodes, children_left, children_right): """ Derives code from http://scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html to walk tree Traversing tree structure to compute compute various properties such as the depth of each node and whether or not it is a leaf. Input - n_nodes: number of nodes in the tree children_left: array of length n_nodes. left children node indexes children_right: array of length n_nodes. right children node indexes :return: is_leaf: array of length n_nodes with boolean whether node i is leaf or not, node_depth: depth of each node from root to node. root is depth 0 """ node_depth = np.zeros(shape=n_nodes, dtype=np.int64) is_leaf = np.zeros(shape=n_nodes, dtype=bool) stack = [(0, -1)] # seed is the root node id and its parent depth while len(stack) > 0: node_id, parent_depth = stack.pop() # (0,-1) node_depth[node_id] = parent_depth + 1 # If we have a non-leaf node if children_left[node_id] != children_right[node_id]: stack.append((children_left[node_id], parent_depth + 1)) stack.append((children_right[node_id], parent_depth + 1)) else: is_leaf[node_id] = True return is_leaf, node_depth # def dectree_max_depth(tree): # n_nodes = tree.node_count # children_left = tree.children_left # children_right = tree.children_right # # def walk(node_id): # if (children_left[node_id] != children_right[node_id]): # left_max = 1 + walk(children_left[node_id]) # right_max = 1 + walk(children_right[node_id]) # # if node_id<100: print(f"node {node_id}: {left_max}, {right_max}") # return max(left_max, right_max) # else: # leaf # return 1 # # root_node_id = 0 # return walk(root_node_id) def dtreeviz(tree, X, y, precision=1, classnames=None, orientation="LR"): def get_feature(i): name = X.columns[feature[i]] node_name = ''.join(c for c in name if c not in string.punctuation)+str(i) node_name = re.sub("["+string.punctuation+string.whitespace+"]", '_', node_name) return name, node_name def round(v,ndigits=precision): return format(v, '.' + str(ndigits) + 'f') def dec_node_box(name, node_name, split): html = """<table BORDER="0" CELLPADDING="0" CELLBORDER="0" CELLSPACING="0"> <tr> <td colspan="3" align="center" cellspacing="0" cellpadding="0" bgcolor="#fefecd" border="1" sides="b"><font face="Helvetica" color="#444443" point-size="12">{name}</font></td> </tr> <tr> <td colspan="3" cellpadding="1" border="0" bgcolor="#fefecd"></td> </tr> <tr> <td cellspacing="0" cellpadding="0" bgcolor="#fefecd" border="1" sides="r" align="right"><font face="Helvetica" color="#444443" point-size="11">split</font></td> <td cellspacing="0" cellpadding="0" border="0"></td> <td cellspacing="0" cellpadding="0" bgcolor="#fefecd" align="left"><font face="Helvetica" color="#444443" point-size="11">{split}</font></td> </tr> </table>""".format(name=name, split=split) return '{node_name} [shape=box label=<{label}>]\n'.format(label=html, node_name=node_name) def dec_node(name, node_name, split): html = """<font face="Helvetica" color="#444443" point-size="12">{name}<br/>@{split}</font>""".format(name=name, split=split) return '{node_name} [shape=none label=<{label}>]\n'.format(label=html, node_name=node_name) def prop_size(n): # map to 0.03 to .35 margin_range = (0.03, 0.35) if sample_count_range>0: zero_to_one = (n - min_samples) / sample_count_range return zero_to_one * (margin_range[1] - margin_range[0]) + margin_range[0] else: return margin_range[0] # parsing the tree structure n_nodes = tree.node_count # total nodes in the tree children_left = tree.children_left # left children node index children_right = tree.children_right # right children node index feature = tree.feature # feature index at splits (-2 means leaf) threshold = tree.threshold # split threshold values at given feature is_leaf, node_depth = tree_traverse(n_nodes, children_left, children_right) ranksep = ".22" if orientation=="TD": ranksep = ".35" st = '\ndigraph G {splines=line;\n \ nodesep=0.1;\n \ ranksep=%s;\n \ rankdir=%s;\n \ node [margin="0.03" penwidth="0.5" width=.1, height=.1];\n \ edge [arrowsize=.4 penwidth="0.5"]\n' % (ranksep,orientation) # Define decision nodes (non leaf nodes) as feature names for i in range(n_nodes): if not is_leaf[i]: # non leaf nodes name, node_name = get_feature(i) # st += dec_node_box(name, node_name, split=round(threshold[i])) st += dec_node(name, node_name, split=round(threshold[i])) # non leaf edges with > and <= for i in range(n_nodes): if not is_leaf[i]: name, node_name = get_feature(i) left, left_node_name = get_feature(children_left[i]) if is_leaf[children_left[i]]: left = left_node_name ='leaf%d' % children_left[i] right_name, right_node_name = get_feature(children_right[i]) if is_leaf[children_right[i]]: right = right_node_name ='leaf%d' % children_right[i] split = round(threshold[i]) left_html = '<font face="Helvetica" color="#444443" point-size="11">&lt;</font>' right_html = '<font face="Helvetica" color="#444443" point-size="11">&ge;</font>' if orientation=="TD": ldistance = ".9" rdistance = ".9" langle = "-28" rangle = "28" else: ldistance = "1.3" # not used in LR mode; just label not taillable. rdistance = "1.3" langle = "-90" rangle = "90" blankedge = 'label=<<font face="Helvetica" color="#444443" point-size="1">&nbsp;</font>>' st += '{name} -> {left} [{blankedge} labelangle="{angle}" labeldistance="{ldistance}" {tail}label=<{label}>]\n'\ .format(label="",#left_html, angle=langle, ldistance=ldistance, name=node_name, blankedge = "",#blankedge, tail="tail",#""tail" if orientation=="TD" else "", left=left_node_name) st += '{name} -> {right} [{blankedge} labelangle="{angle}" labeldistance="{rdistance}" {tail}label=<{label}>]\n' \ .format(label="",#right_html, angle=rangle, rdistance=rdistance, name=node_name, blankedge="",#blankedge, tail="tail",# "tail" if orientation == "TD" else "", right=right_node_name) # find range of leaf sample count leaf_sample_counts = [tree.n_node_samples[i] for i in range(n_nodes) if is_leaf[i]] min_samples = min(leaf_sample_counts) max_samples = max(leaf_sample_counts) sample_count_range = max_samples - min_samples print(leaf_sample_counts) print("range is ", sample_count_range) # is_classifier = hasattr(tree, 'n_classes') is_classifier = tree.n_classes > 1 color_values = list(reversed(color_blind_friendly_colors)) n_classes = tree.n_classes[0] color_values = color_blind_friendly_colors[n_classes] # color_values = [c+"EF" for c in color_values] # add alpha # Define leaf nodes (after edges so >= edges shown properly) for i in range(n_nodes): if is_leaf[i]: node_samples = tree.n_node_samples[i] impurity = tree.impurity if is_classifier: counts = np.array(tree.value[i][0]) predicted_class = np.argmax(counts) predicted = predicted_class if classnames: predicted = classnames[predicted_class] ratios = counts / node_samples # convert counts to ratios totalling 1.0 ratios = [round(r,3) for r in ratios] color_spec = ["{c};{r}".format(c=color_values[i],r=r) for i,r in enumerate(ratios)] color_spec = ':'.join(color_spec) if n_classes > max_class_colors: color_spec = YELLOW html = """<font face="Helvetica" color="black" point-size="12">{predicted}<br/>&nbsp;</font>""".format(predicted=predicted) margin = prop_size(node_samples) st += 'leaf{i} [height=0 width="0.4" margin="{margin}" style={style} fillcolor="{colors}" shape=circle label=<{label}>]\n' \ .format(i=i, label=html, name=node_name, colors=color_spec, margin=margin, style='wedged' if n_classes<=max_class_colors else 'filled') else: value = tree.value[i][0] html = """<font face="Helvetica" color="#444443" point-size="11">"""+round(value[0])+"""</font>""" margin = prop_size(node_samples) st += 'leaf{i} [height=0 width="0.4" margin="{margin}" style=filled fillcolor="{color}" shape=circle label=<{label}>]\n'\ .format(i=i, label=html, name=node_name, color=YELLOW, margin=margin) # end of string st = st+'}' return st def boston(): regr = tree.DecisionTreeRegressor(max_depth=4, random_state=666) boston = load_boston() print(boston.data.shape, boston.target.shape) data = pd.DataFrame(boston.data) data.columns =boston.feature_names regr = regr.fit(data, boston.target) # st = dectreeviz(regr.tree_, data, boston.target) st = dtreeviz(regr.tree_, data, boston.target, orientation="TD") with open("/tmp/t3.dot", "w") as f: f.write(st) return st def iris(): clf = tree.DecisionTreeClassifier(max_depth=4, random_state=666) iris = load_iris() print(iris.data.shape, iris.target.shape) data = pd.DataFrame(iris.data) data.columns = iris.feature_names clf = clf.fit(data, iris.target) # st = dectreeviz(clf.tree_, data, boston.target) st = dtreeviz(clf.tree_, data, iris.target, orientation="TD" , classnames=["setosa", "versicolor", "virginica"] ) with open("/tmp/t3.dot", "w") as f: f.write(st) print(clf.tree_.value) return st # st = iris() st = boston() print(st) graphviz.Source(st).view()
bsd-3-clause
priseborough/InertialNav
code/plot_states.py
6
2287
#!/bin/python import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.cbook as cbook import numpy as np import math # State vector: # 0-3: quaternions (q0, q1, q2, q3) # 4-6: Velocity - m/sec (North, East, Down) # 7-9: Position - m (North, East, Down) # 10-12: Delta Angle bias - rad (X,Y,Z) # 13: Accel offset # 14-15: Wind Vector - m/sec (North,East) # 16-18: Earth Magnetic Field Vector - milligauss (North, East, Down) # 19-21: Body Magnetic Field Vector - milligauss (X,Y,Z) # 22: Terrain try: data = np.genfromtxt('StateDataOut.txt', delimiter=' ', skip_header=1, skip_footer=1, names=['time', 'q1', 'q2', 'q3', 'q4', 'Vn', 'Ve', 'Vd', 'Pn', 'Pe', 'Pd', 'Bx', 'By', 'Bz', 'Aoff', 'Wn', 'We', 'Mn', 'Me', 'Md', 'Mbn', 'Mbe', 'Mbd', 'dist']) except ValueError: try: data = np.genfromtxt('StateDataOut.txt', delimiter=' ', skip_header=1, skip_footer=1, names=['time', 'q1', 'q2', 'q3', 'q4', 'Vn', 'Ve', 'Vd', 'Pn', 'Pe', 'Pd', 'Bx', 'By', 'Bz', 'Aoff', 'Wn', 'We', 'Mn', 'Me', 'Md', 'Mbn', 'Mbe', 'Mbd']) except ValueError: data = np.genfromtxt('StateDataOut.txt', delimiter=' ', skip_header=1, skip_footer=1, names=['time', 'q1', 'q2', 'q3', 'q4', 'Vn', 'Ve', 'Vd', 'Pn', 'Pe', 'Pd', 'Bx', 'By', 'Bz', 'Wn', 'We', 'Mn', 'Me', 'Md', 'Mbn', 'Mbe', 'Mbd']) fig = plt.figure() ax1 = fig.add_subplot(611) ax1.set_title("Offsets") ax1.set_ylabel('X gyro offset') ax1.set_ylim([-0.0025,0.0025]) ax1.plot(data['time'], data['Bx'], color='r', label='Pn') ax2 = fig.add_subplot(612) ax2.set_ylabel('Y gyro offset') ax2.set_ylim([-0.0025,0.0025]) ax2.plot(data['time'], data['By'], color='g', label='Pe') ax3 = fig.add_subplot(613) ax3.set_ylabel('Z gyro offset') ax3.set_ylim([-0.0025,0.0025]) ax3.plot(data['time'], data['Bz'], color='b', label='Pd') ax4 = fig.add_subplot(614) ax4.set_ylabel('Mag offset N') ax4.set_ylim([-0.4,0.4]) ax4.plot(data['time'], data['Mbn'], color='b', label='Pd') ax5 = fig.add_subplot(615) ax5.set_ylabel('Mag offset E') ax5.set_ylim([-0.4,0.4]) ax5.plot(data['time'], data['Mbe'], color='b', label='Pd') ax6 = fig.add_subplot(616) ax6.set_xlabel('time (s)') ax6.set_ylabel('Mag offset D') ax6.set_ylim([-0.4,0.4]) ax6.plot(data['time'], data['Mbd'], color='b', label='Pd') plt.show()
bsd-3-clause
ThomasMiconi/nupic.research
projects/l2_pooling/multi_column_convergence.py
2
22360
# Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ This file plots the convergence of L4-L2 as you increase the number of columns, or adjust the confusion between objects. """ import random import os from math import ceil import pprint import numpy import cPickle from multiprocessing import Pool import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 from htmresearch.frameworks.layers.l2_l4_inference import L4L2Experiment from htmresearch.frameworks.layers.object_machine_factory import ( createObjectMachine ) def locateConvergencePoint(stats, minOverlap, maxOverlap): """ Walk backwards through stats until you locate the first point that diverges from target overlap values. We need this to handle cases where it might get to target values, diverge, and then get back again. We want the last convergence point. """ for i,v in enumerate(stats[::-1]): if not (v >= minOverlap and v <= maxOverlap): return len(stats)-i + 1 # Never differs - converged in one iteration return 1 def averageConvergencePoint(inferenceStats, prefix, minOverlap, maxOverlap, settlingTime): """ inferenceStats contains activity traces while the system visits each object. Given the i'th object, inferenceStats[i] contains activity statistics for each column for each region for the entire sequence of sensations. For each object, compute the convergence time - the first point when all L2 columns have converged. Return the average convergence time across all objects. Given inference statistics for a bunch of runs, locate all traces with the given prefix. For each trace locate the iteration where it finally settles on targetValue. Return the average settling iteration across all runs. """ convergenceSum = 0.0 # For each object for stats in inferenceStats: # For each L2 column locate convergence time convergencePoint = 0.0 for key in stats.iterkeys(): if prefix in key: columnConvergence = locateConvergencePoint( stats[key], minOverlap, maxOverlap) # Ensure this column has converged by the last iteration # assert(columnConvergence <= len(stats[key])) convergencePoint = max(convergencePoint, columnConvergence) convergenceSum += ceil(float(convergencePoint)/settlingTime) return convergenceSum/len(inferenceStats) def objectConfusion(objects): """ For debugging, print overlap between each pair of objects. """ sumCommonLocations = 0 sumCommonFeatures = 0 sumCommonPairs = 0 numObjects = 0 commonPairHistogram = numpy.zeros(len(objects[0]), dtype=numpy.int32) for o1,s1 in objects.iteritems(): for o2,s2 in objects.iteritems(): if o1 != o2: # Count number of common locations id's and common feature id's commonLocations = 0 commonFeatures = 0 for pair1 in s1: for pair2 in s2: if pair1[0] == pair2[0]: commonLocations += 1 if pair1[1] == pair2[1]: commonFeatures += 1 # print "Confusion",o1,o2,", common pairs=",len(set(s1)&set(s2)), # print ", common locations=",commonLocations,"common features=",commonFeatures assert(len(set(s1)&set(s2)) != len(s1) ), "Two objects are identical!" sumCommonPairs += len(set(s1)&set(s2)) sumCommonLocations += commonLocations sumCommonFeatures += commonFeatures commonPairHistogram[len(set(s1)&set(s2))] += 1 numObjects += 1 print "Average common pairs=", sumCommonPairs / float(numObjects), print ", locations=",sumCommonLocations / float(numObjects), print ", features=",sumCommonFeatures / float(numObjects) print "Common pair histogram=",commonPairHistogram def runExperiment(args): """ Run experiment. What did you think this does? args is a dict representing the parameters. We do it this way to support multiprocessing. args contains one or more of the following keys: @param noiseLevel (float) Noise level to add to the locations and features during inference. Default: None @param profile (bool) If True, the network will be profiled after learning and inference. Default: False @param numObjects (int) The number of objects we will train. Default: 10 @param numPoints (int) The number of points on each object. Default: 10 @param pointRange (int) Creates objects each with points ranging from [numPoints,...,numPoints+pointRange-1] A total of numObjects * pointRange objects will be created. Default: 1 @param numLocations (int) For each point, the number of locations to choose from. Default: 10 @param numFeatures (int) For each point, the number of features to choose from. Default: 10 @param numColumns (int) The total number of cortical columns in network. Default: 2 @param settlingTime (int) Number of iterations we wait to let columns stabilize. Important for multicolumn experiments with lateral connections. @param includeRandomLocation (bool) If True, a random location SDR will be generated during inference for each feature. The method returns the args dict updated with two additional keys: convergencePoint (int) The average number of iterations it took to converge across all objects objects (pairs) The list of objects we trained on """ numObjects = args.get("numObjects", 10) numLocations = args.get("numLocations", 10) numFeatures = args.get("numFeatures", 10) numColumns = args.get("numColumns", 2) profile = args.get("profile", False) noiseLevel = args.get("noiseLevel", None) # TODO: implement this? numPoints = args.get("numPoints", 10) trialNum = args.get("trialNum", 42) pointRange = args.get("pointRange", 1) plotInferenceStats = args.get("plotInferenceStats", True) settlingTime = args.get("settlingTime", 3) includeRandomLocation = args.get("includeRandomLocation", False) # Create the objects objects = createObjectMachine( machineType="simple", numInputBits=20, sensorInputSize=150, externalInputSize=2400, numCorticalColumns=numColumns, numFeatures=numFeatures, seed=trialNum ) for p in range(pointRange): objects.createRandomObjects(numObjects, numPoints=numPoints+p, numLocations=numLocations, numFeatures=numFeatures) objectConfusion(objects.getObjects()) # print "Total number of objects created:",len(objects.getObjects()) # print "Objects are:" # for o in objects: # pairs = objects[o] # pairs.sort() # print str(o) + ": " + str(pairs) # Setup experiment and train the network name = "convergence_O%03d_L%03d_F%03d_C%03d_T%03d" % ( numObjects, numLocations, numFeatures, numColumns, trialNum ) exp = L4L2Experiment( name, numCorticalColumns=numColumns, inputSize=150, externalInputSize=2400, numInputBits=20, seed=trialNum ) exp.learnObjects(objects.provideObjectsToLearn()) if profile: exp.printProfile(reset=True) # For inference, we will check and plot convergence for each object. For each # object, we create a sequence of random sensations for each column. We will # present each sensation for settlingTime time steps to let it settle and # ensure it converges. for objectId in objects: obj = objects[objectId] objectSensations = {} for c in range(numColumns): objectSensations[c] = [] if numColumns > 1: # Create sequence of random sensations for this object for all columns At # any point in time, ensure each column touches a unique loc,feature pair # on the object. It is ok for a given column to sense a loc,feature pair # more than once. The total number of sensations is equal to the number of # points on the object. for sensationNumber in range(len(obj)): # Randomly shuffle points for each sensation objectCopy = [pair for pair in obj] random.shuffle(objectCopy) for c in range(numColumns): # stay multiple steps on each sensation for _ in xrange(settlingTime): objectSensations[c].append(objectCopy[c]) else: # Create sequence of sensations for this object for one column. The total # number of sensations is equal to the number of points on the object. No # point should be visited more than once. objectCopy = [pair for pair in obj] random.shuffle(objectCopy) for pair in objectCopy: # stay multiple steps on each sensation for _ in xrange(settlingTime): objectSensations[0].append(pair) inferConfig = { "object": objectId, "numSteps": len(objectSensations[0]), "pairs": objectSensations, "includeRandomLocation": includeRandomLocation, } inferenceSDRs = objects.provideObjectToInfer(inferConfig) exp.infer(inferenceSDRs, objectName=objectId) if profile: exp.printProfile(reset=True) if plotInferenceStats: exp.plotInferenceStats( fields=["L2 Representation", "Overlap L2 with object", "L4 Representation"], experimentID=objectId, onePlot=False, ) convergencePoint = averageConvergencePoint( exp.getInferenceStats(),"L2 Representation", 30, 40, settlingTime) print print "# objects {} # features {} # locations {} # columns {} trial # {}".format( numObjects, numFeatures, numLocations, numColumns, trialNum) print "Average convergence point=",convergencePoint # Return our convergence point as well as all the parameters and objects args.update({"objects": objects.getObjects()}) args.update({"convergencePoint":convergencePoint}) # Can't pickle experiment so can't return it for batch multiprocessing runs. # However this is very useful for debugging when running in a single thread. if plotInferenceStats: args.update({"experiment": exp}) return args def runExperimentPool(numObjects, numLocations, numFeatures, numColumns, numWorkers=7, nTrials=1, pointRange=1, numPoints=10, includeRandomLocation=False, resultsName="convergence_results.pkl"): """ Allows you to run a number of experiments using multiple processes. For each parameter except numWorkers, pass in a list containing valid values for that parameter. The cross product of everything is run, and each combination is run nTrials times. Returns a list of dict containing detailed results from each experiment. Also pickles and saves the results in resultsName for later analysis. Example: results = runExperimentPool( numObjects=[10], numLocations=[5], numFeatures=[5], numColumns=[2,3,4,5,6], numWorkers=8, nTrials=5) """ # Create function arguments for every possibility args = [] for t in range(nTrials): for c in numColumns: for o in numObjects: for l in numLocations: for f in numFeatures: args.append( {"numObjects": o, "numLocations": l, "numFeatures": f, "numColumns": c, "trialNum": t, "pointRange": pointRange, "numPoints": numPoints, "plotInferenceStats": False, "includeRandomLocation": includeRandomLocation, "settlingTime": 3, } ) print "{} experiments to run, {} workers".format(len(args), numWorkers) # Run the pool if numWorkers > 1: pool = Pool(processes=numWorkers) result = pool.map(runExperiment, args) else: result = [] for arg in args: result.append(runExperiment(arg)) # print "Full results:" # pprint.pprint(result, width=150) # Pickle results for later use with open(resultsName,"wb") as f: cPickle.dump(result,f) return result def plotConvergenceByColumn(results, columnRange, featureRange, numTrials): """ Plots the convergence graph: iterations vs number of columns. Each curve shows the convergence for a given number of unique features. """ ######################################################################## # # Accumulate all the results per column in a convergence array. # # Convergence[f,c] = how long it took it to converge with f unique features # and c columns. convergence = numpy.zeros((max(featureRange), max(columnRange) + 1)) for r in results: convergence[r["numFeatures"] - 1, r["numColumns"]] += r["convergencePoint"] convergence /= numTrials # For each column, print convergence as fct of number of unique features for c in range(1, max(columnRange) + 1): print c, convergence[:, c] # Print everything anyway for debugging print "Average convergence array=", convergence ######################################################################## # # Create the plot. x-axis= plt.figure() plotPath = os.path.join("plots", "convergence_by_column.pdf") # Plot each curve legendList = [] colorList = ['r', 'b', 'g', 'm', 'c', 'k', 'y'] for i in range(len(featureRange)): f = featureRange[i] print columnRange print convergence[f-1,columnRange] legendList.append('Unique features={}'.format(f)) plt.plot(columnRange, convergence[f-1,columnRange], color=colorList[i]) # format plt.legend(legendList, loc="upper right") plt.xlabel("Number of columns") plt.xticks(columnRange) plt.yticks(range(0,int(convergence.max())+1)) plt.ylabel("Average number of touches") plt.title("Number of touches to recognize one object (multiple columns)") # save plt.savefig(plotPath) plt.close() def plotConvergenceByObject(results, objectRange, featureRange): """ Plots the convergence graph: iterations vs number of objects. Each curve shows the convergence for a given number of unique features. """ ######################################################################## # # Accumulate all the results per column in a convergence array. # # Convergence[f,o] = how long it took it to converge with f unique features # and o objects. convergence = numpy.zeros((max(featureRange), max(objectRange) + 1)) for r in results: if r["numFeatures"] in featureRange: convergence[r["numFeatures"] - 1, r["numObjects"]] += r["convergencePoint"] convergence /= numTrials ######################################################################## # # Create the plot. x-axis= plt.figure() plotPath = os.path.join("plots", "convergence_by_object_random_location.pdf") # Plot each curve legendList = [] colorList = ['r', 'b', 'g', 'm', 'c', 'k', 'y'] for i in range(len(featureRange)): f = featureRange[i] print "features={} objectRange={} convergence={}".format( f,objectRange, convergence[f-1,objectRange]) legendList.append('Unique features={}'.format(f)) plt.plot(objectRange, convergence[f-1,objectRange], color=colorList[i]) # format plt.legend(legendList, loc="lower right", prop={'size':10}) plt.xlabel("Number of objects in training set") plt.xticks(range(0,max(objectRange)+1,10)) plt.yticks(range(0,int(convergence.max())+2)) plt.ylabel("Average number of touches") plt.title("Number of touches to recognize one object (single column)") # save plt.savefig(plotPath) plt.close() def plotConvergenceByObjectMultiColumn(results, objectRange, columnRange): """ Plots the convergence graph: iterations vs number of objects. Each curve shows the convergence for a given number of columns. """ ######################################################################## # # Accumulate all the results per column in a convergence array. # # Convergence[c,o] = how long it took it to converge with f unique features # and c columns. convergence = numpy.zeros((max(columnRange), max(objectRange) + 1)) for r in results: if r["numColumns"] in columnRange: convergence[r["numColumns"] - 1, r["numObjects"]] += r["convergencePoint"] convergence /= numTrials # print "Average convergence array=", convergence ######################################################################## # # Create the plot. x-axis= plt.figure() plotPath = os.path.join("plots", "convergence_by_object_multicolumn.jpg") # Plot each curve legendList = [] colorList = ['r', 'b', 'g', 'm', 'c', 'k', 'y'] for i in range(len(columnRange)): c = columnRange[i] print "columns={} objectRange={} convergence={}".format( c, objectRange, convergence[c-1,objectRange]) if c == 1: legendList.append('1 column') else: legendList.append('{} columns'.format(c)) plt.plot(objectRange, convergence[c-1,objectRange], color=colorList[i]) # format plt.legend(legendList, loc="upper left", prop={'size':10}) plt.xlabel("Number of objects in training set") plt.xticks(range(0,max(objectRange)+1,10)) plt.yticks(range(0,int(convergence.max())+2)) plt.ylabel("Average number of touches") plt.title("Object recognition with multiple columns (unique features = 5)") # save plt.savefig(plotPath) plt.close() if __name__ == "__main__": # This is how you run a specific experiment in single process mode. Useful # for debugging, profiling, etc. if True: results = runExperiment( { "numObjects": 30, "numPoints": 10, "numLocations": 10, "numFeatures": 10, "numColumns": 1, "trialNum": 4, "pointRange": 1, "plotInferenceStats": True, # Outputs detailed graphs "settlingTime": 3, "includeRandomLocation": False } ) # Here we want to see how the number of columns affects convergence. # This experiment is run using a process pool if False: columnRange = [1, 2, 3, 4, 5, 6, 7, 8] featureRange = [5, 10, 20, 30] objectRange = [100] numTrials = 10 # Comment this out if you are re-running analysis on already saved results # Very useful for debugging the plots runExperimentPool( numObjects=objectRange, numLocations=[10], numFeatures=featureRange, numColumns=columnRange, numPoints=10, nTrials=numTrials, numWorkers=7, resultsName="column_convergence_results.pkl") with open("column_convergence_results.pkl","rb") as f: results = cPickle.load(f) plotConvergenceByColumn(results, columnRange, featureRange, numTrials=numTrials) # Here we want to see how the number of objects affects convergence for a # single column. # This experiment is run using a process pool if False: # We run 10 trials for each column number and then analyze results numTrials = 10 columnRange = [1] featureRange = [5,10,20,30] objectRange = [2,10,20,30,40,50,60,80,100] # Comment this out if you are re-running analysis on already saved results. # Very useful for debugging the plots runExperimentPool( numObjects=objectRange, numLocations=[10], numFeatures=featureRange, numColumns=columnRange, numPoints=10, nTrials=numTrials, numWorkers=7, resultsName="object_convergence_results.pkl") # Analyze results with open("object_convergence_results.pkl","rb") as f: results = cPickle.load(f) plotConvergenceByObject(results, objectRange, featureRange) # Here we want to see how the number of objects affects convergence for # multiple columns. if False: # We run 10 trials for each column number and then analyze results numTrials = 10 columnRange = [1,2,4,6] featureRange = [5] objectRange = [2,5,10,20,30,40,50,60,80,100] # Comment this out if you are re-running analysis on already saved results. # Very useful for debugging the plots runExperimentPool( numObjects=objectRange, numLocations=[10], numFeatures=featureRange, numColumns=columnRange, numPoints=10, numWorkers=7, nTrials=numTrials, resultsName="object_convergence_multi_column_results.pkl") # Analyze results with open("object_convergence_multi_column_results.pkl","rb") as f: results = cPickle.load(f) plotConvergenceByObjectMultiColumn(results, objectRange, columnRange)
agpl-3.0
airware/jsbsim
tests/TestScriptOutput.py
2
3376
# TestScriptInputOutput.py # # Check that <output> tags specified in a script are properly handled # # Copyright (c) 2015 Bertrand Coconnier # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 3 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, see <http://www.gnu.org/licenses/> # import sys, unittest import xml.etree.ElementTree as et import pandas as pd import numpy as np from JSBSim_utils import CreateFDM, SandBox, ExecuteUntil class TestScriptOutput(unittest.TestCase): def setUp(self): self.sandbox = SandBox() self.script_path = self.sandbox.path_to_jsbsim_file('scripts', 'c1722.xml') def tearDown(self): self.sandbox.erase() def test_no_output(self): fdm = CreateFDM(self.sandbox) fdm.load_script(self.script_path) fdm.run_ic() ExecuteUntil(fdm, 10.) self.assertFalse(self.sandbox.exists('output.csv'), msg="Results have unexpectedly been written to 'output.csv'") def test_output_from_file(self): tree = et.parse(self.sandbox.elude(self.script_path)) output_tag = et.SubElement(tree.getroot(), 'output') output_tag.attrib['file'] = self.sandbox.elude(self.sandbox.path_to_jsbsim_file('tests', 'output.xml')) tree.write(self.sandbox('c1722_0.xml')) fdm = CreateFDM(self.sandbox) fdm.load_script('c1722_0.xml') fdm.run_ic() ExecuteUntil(fdm, 10.) self.assertTrue(self.sandbox.exists('output.csv'), msg="The file 'output.csv' has not been created") def test_output(self): tree = et.parse(self.sandbox.elude(self.script_path)) output_tag = et.SubElement(tree.getroot(), 'output') output_tag.attrib['name'] = 'test.csv' output_tag.attrib['type'] = 'CSV' output_tag.attrib['rate'] = '10' property_tag = et.SubElement(output_tag, 'property') property_tag.text = 'position/vrp-radius-ft' tree.write(self.sandbox('c1722_0.xml')) fdm = CreateFDM(self.sandbox) fdm.load_script('c1722_0.xml') fdm.run_ic() ExecuteUntil(fdm, 10.) self.assertTrue(self.sandbox.exists(output_tag.attrib['name']), msg="The file 'output.csv' has not been created") orig = pd.read_csv(self.sandbox('JSBout172B.csv')) test = pd.read_csv(self.sandbox('test.csv')) self.assertEqual(np.max(orig['Time']-test['Time']), 0.0) pname = '/fdm/jsbsim/' + property_tag.text self.assertEqual(np.max(orig[pname]-test[pname]), 0.0) suite = unittest.TestLoader().loadTestsFromTestCase(TestScriptOutput) test_result = unittest.TextTestRunner(verbosity=2).run(suite) if test_result.failures or test_result.errors: sys.exit(-1) # 'make test' will report the test failed.
lgpl-2.1
cbertinato/pandas
pandas/tests/frame/test_combine_concat.py
1
34741
from datetime import datetime import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Series, Timestamp, date_range import pandas.util.testing as tm from pandas.util.testing import assert_frame_equal, assert_series_equal class TestDataFrameConcatCommon: def test_concat_multiple_frames_dtypes(self): # GH 2759 A = DataFrame(data=np.ones((10, 2)), columns=[ 'foo', 'bar'], dtype=np.float64) B = DataFrame(data=np.ones((10, 2)), dtype=np.float32) results = pd.concat((A, B), axis=1).get_dtype_counts() expected = Series(dict(float64=2, float32=2)) assert_series_equal(results, expected) @pytest.mark.parametrize('data', [ pd.date_range('2000', periods=4), pd.date_range('2000', periods=4, tz="US/Central"), pd.period_range('2000', periods=4), pd.timedelta_range(0, periods=4), ]) def test_combine_datetlike_udf(self, data): # https://github.com/pandas-dev/pandas/issues/23079 df = pd.DataFrame({"A": data}) other = df.copy() df.iloc[1, 0] = None def combiner(a, b): return b result = df.combine(other, combiner) tm.assert_frame_equal(result, other) def test_concat_multiple_tzs(self): # GH 12467 # combining datetime tz-aware and naive DataFrames ts1 = Timestamp('2015-01-01', tz=None) ts2 = Timestamp('2015-01-01', tz='UTC') ts3 = Timestamp('2015-01-01', tz='EST') df1 = DataFrame(dict(time=[ts1])) df2 = DataFrame(dict(time=[ts2])) df3 = DataFrame(dict(time=[ts3])) results = pd.concat([df1, df2]).reset_index(drop=True) expected = DataFrame(dict(time=[ts1, ts2]), dtype=object) assert_frame_equal(results, expected) results = pd.concat([df1, df3]).reset_index(drop=True) expected = DataFrame(dict(time=[ts1, ts3]), dtype=object) assert_frame_equal(results, expected) results = pd.concat([df2, df3]).reset_index(drop=True) expected = DataFrame(dict(time=[ts2, ts3])) assert_frame_equal(results, expected) @pytest.mark.parametrize( 't1', [ '2015-01-01', pytest.param(pd.NaT, marks=pytest.mark.xfail( reason='GH23037 incorrect dtype when concatenating'))]) def test_concat_tz_NaT(self, t1): # GH 22796 # Concating tz-aware multicolumn DataFrames ts1 = Timestamp(t1, tz='UTC') ts2 = Timestamp('2015-01-01', tz='UTC') ts3 = Timestamp('2015-01-01', tz='UTC') df1 = DataFrame([[ts1, ts2]]) df2 = DataFrame([[ts3]]) result = pd.concat([df1, df2]) expected = DataFrame([[ts1, ts2], [ts3, pd.NaT]], index=[0, 0]) assert_frame_equal(result, expected) def test_concat_tz_not_aligned(self): # GH 22796 ts = pd.to_datetime([1, 2]).tz_localize("UTC") a = pd.DataFrame({"A": ts}) b = pd.DataFrame({"A": ts, "B": ts}) result = pd.concat([a, b], sort=True, ignore_index=True) expected = pd.DataFrame({"A": list(ts) + list(ts), "B": [pd.NaT, pd.NaT] + list(ts)}) assert_frame_equal(result, expected) def test_concat_tuple_keys(self): # GH 14438 df1 = pd.DataFrame(np.ones((2, 2)), columns=list('AB')) df2 = pd.DataFrame(np.ones((3, 2)) * 2, columns=list('AB')) results = pd.concat((df1, df2), keys=[('bee', 'bah'), ('bee', 'boo')]) expected = pd.DataFrame( {'A': {('bee', 'bah', 0): 1.0, ('bee', 'bah', 1): 1.0, ('bee', 'boo', 0): 2.0, ('bee', 'boo', 1): 2.0, ('bee', 'boo', 2): 2.0}, 'B': {('bee', 'bah', 0): 1.0, ('bee', 'bah', 1): 1.0, ('bee', 'boo', 0): 2.0, ('bee', 'boo', 1): 2.0, ('bee', 'boo', 2): 2.0}}) assert_frame_equal(results, expected) def test_append_series_dict(self): df = DataFrame(np.random.randn(5, 4), columns=['foo', 'bar', 'baz', 'qux']) series = df.loc[4] msg = 'Indexes have overlapping values' with pytest.raises(ValueError, match=msg): df.append(series, verify_integrity=True) series.name = None msg = 'Can only append a Series if ignore_index=True' with pytest.raises(TypeError, match=msg): df.append(series, verify_integrity=True) result = df.append(series[::-1], ignore_index=True) expected = df.append(DataFrame({0: series[::-1]}, index=df.columns).T, ignore_index=True) assert_frame_equal(result, expected) # dict result = df.append(series.to_dict(), ignore_index=True) assert_frame_equal(result, expected) result = df.append(series[::-1][:3], ignore_index=True) expected = df.append(DataFrame({0: series[::-1][:3]}).T, ignore_index=True, sort=True) assert_frame_equal(result, expected.loc[:, result.columns]) # can append when name set row = df.loc[4] row.name = 5 result = df.append(row) expected = df.append(df[-1:], ignore_index=True) assert_frame_equal(result, expected) def test_append_list_of_series_dicts(self): df = DataFrame(np.random.randn(5, 4), columns=['foo', 'bar', 'baz', 'qux']) dicts = [x.to_dict() for idx, x in df.iterrows()] result = df.append(dicts, ignore_index=True) expected = df.append(df, ignore_index=True) assert_frame_equal(result, expected) # different columns dicts = [{'foo': 1, 'bar': 2, 'baz': 3, 'peekaboo': 4}, {'foo': 5, 'bar': 6, 'baz': 7, 'peekaboo': 8}] result = df.append(dicts, ignore_index=True, sort=True) expected = df.append(DataFrame(dicts), ignore_index=True, sort=True) assert_frame_equal(result, expected) def test_append_missing_cols(self): # GH22252 # exercise the conditional branch in append method where the data # to be appended is a list and does not contain all columns that are in # the target DataFrame df = DataFrame(np.random.randn(5, 4), columns=['foo', 'bar', 'baz', 'qux']) dicts = [{'foo': 9}, {'bar': 10}] with tm.assert_produces_warning(None): result = df.append(dicts, ignore_index=True, sort=True) expected = df.append(DataFrame(dicts), ignore_index=True, sort=True) assert_frame_equal(result, expected) def test_append_empty_dataframe(self): # Empty df append empty df df1 = DataFrame() df2 = DataFrame() result = df1.append(df2) expected = df1.copy() assert_frame_equal(result, expected) # Non-empty df append empty df df1 = DataFrame(np.random.randn(5, 2)) df2 = DataFrame() result = df1.append(df2) expected = df1.copy() assert_frame_equal(result, expected) # Empty df with columns append empty df df1 = DataFrame(columns=['bar', 'foo']) df2 = DataFrame() result = df1.append(df2) expected = df1.copy() assert_frame_equal(result, expected) # Non-Empty df with columns append empty df df1 = DataFrame(np.random.randn(5, 2), columns=['bar', 'foo']) df2 = DataFrame() result = df1.append(df2) expected = df1.copy() assert_frame_equal(result, expected) def test_append_dtypes(self): # GH 5754 # row appends of different dtypes (so need to do by-item) # can sometimes infer the correct type df1 = DataFrame({'bar': Timestamp('20130101')}, index=range(5)) df2 = DataFrame() result = df1.append(df2) expected = df1.copy() assert_frame_equal(result, expected) df1 = DataFrame({'bar': Timestamp('20130101')}, index=range(1)) df2 = DataFrame({'bar': 'foo'}, index=range(1, 2)) result = df1.append(df2) expected = DataFrame({'bar': [Timestamp('20130101'), 'foo']}) assert_frame_equal(result, expected) df1 = DataFrame({'bar': Timestamp('20130101')}, index=range(1)) df2 = DataFrame({'bar': np.nan}, index=range(1, 2)) result = df1.append(df2) expected = DataFrame( {'bar': Series([Timestamp('20130101'), np.nan], dtype='M8[ns]')}) assert_frame_equal(result, expected) df1 = DataFrame({'bar': Timestamp('20130101')}, index=range(1)) df2 = DataFrame({'bar': np.nan}, index=range(1, 2), dtype=object) result = df1.append(df2) expected = DataFrame( {'bar': Series([Timestamp('20130101'), np.nan], dtype='M8[ns]')}) assert_frame_equal(result, expected) df1 = DataFrame({'bar': np.nan}, index=range(1)) df2 = DataFrame({'bar': Timestamp('20130101')}, index=range(1, 2)) result = df1.append(df2) expected = DataFrame( {'bar': Series([np.nan, Timestamp('20130101')], dtype='M8[ns]')}) assert_frame_equal(result, expected) df1 = DataFrame({'bar': Timestamp('20130101')}, index=range(1)) df2 = DataFrame({'bar': 1}, index=range(1, 2), dtype=object) result = df1.append(df2) expected = DataFrame({'bar': Series([Timestamp('20130101'), 1])}) assert_frame_equal(result, expected) def test_update(self): df = DataFrame([[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3], [1.5, np.nan, 3]]) other = DataFrame([[3.6, 2., np.nan], [np.nan, np.nan, 7]], index=[1, 3]) df.update(other) expected = DataFrame([[1.5, np.nan, 3], [3.6, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.]]) assert_frame_equal(df, expected) def test_update_dtypes(self): # gh 3016 df = DataFrame([[1., 2., False, True], [4., 5., True, False]], columns=['A', 'B', 'bool1', 'bool2']) other = DataFrame([[45, 45]], index=[0], columns=['A', 'B']) df.update(other) expected = DataFrame([[45., 45., False, True], [4., 5., True, False]], columns=['A', 'B', 'bool1', 'bool2']) assert_frame_equal(df, expected) def test_update_nooverwrite(self): df = DataFrame([[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3], [1.5, np.nan, 3]]) other = DataFrame([[3.6, 2., np.nan], [np.nan, np.nan, 7]], index=[1, 3]) df.update(other, overwrite=False) expected = DataFrame([[1.5, np.nan, 3], [1.5, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 3.]]) assert_frame_equal(df, expected) def test_update_filtered(self): df = DataFrame([[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3], [1.5, np.nan, 3]]) other = DataFrame([[3.6, 2., np.nan], [np.nan, np.nan, 7]], index=[1, 3]) df.update(other, filter_func=lambda x: x > 2) expected = DataFrame([[1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.]]) assert_frame_equal(df, expected) @pytest.mark.parametrize('bad_kwarg, exception, msg', [ # errors must be 'ignore' or 'raise' ({'errors': 'something'}, ValueError, 'The parameter errors must.*'), ({'join': 'inner'}, NotImplementedError, 'Only left join is supported') ]) def test_update_raise_bad_parameter(self, bad_kwarg, exception, msg): df = DataFrame([[1.5, 1, 3.]]) with pytest.raises(exception, match=msg): df.update(df, **bad_kwarg) def test_update_raise_on_overlap(self): df = DataFrame([[1.5, 1, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3], [1.5, np.nan, 3]]) other = DataFrame([[2., np.nan], [np.nan, 7]], index=[1, 3], columns=[1, 2]) with pytest.raises(ValueError, match="Data overlaps"): df.update(other, errors='raise') @pytest.mark.parametrize('raise_conflict', [True, False]) def test_update_deprecation(self, raise_conflict): df = DataFrame([[1.5, 1, 3.]]) other = DataFrame() with tm.assert_produces_warning(FutureWarning): df.update(other, raise_conflict=raise_conflict) def test_update_from_non_df(self): d = {'a': Series([1, 2, 3, 4]), 'b': Series([5, 6, 7, 8])} df = DataFrame(d) d['a'] = Series([5, 6, 7, 8]) df.update(d) expected = DataFrame(d) assert_frame_equal(df, expected) d = {'a': [1, 2, 3, 4], 'b': [5, 6, 7, 8]} df = DataFrame(d) d['a'] = [5, 6, 7, 8] df.update(d) expected = DataFrame(d) assert_frame_equal(df, expected) def test_update_datetime_tz(self): # GH 25807 result = DataFrame([pd.Timestamp('2019', tz='UTC')]) result.update(result) expected = DataFrame([pd.Timestamp('2019', tz='UTC')]) assert_frame_equal(result, expected) def test_join_str_datetime(self): str_dates = ['20120209', '20120222'] dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] A = DataFrame(str_dates, index=range(2), columns=['aa']) C = DataFrame([[1, 2], [3, 4]], index=str_dates, columns=dt_dates) tst = A.join(C, on='aa') assert len(tst.columns) == 3 def test_join_multiindex_leftright(self): # GH 10741 df1 = (pd.DataFrame([['a', 'x', 0.471780], ['a', 'y', 0.774908], ['a', 'z', 0.563634], ['b', 'x', -0.353756], ['b', 'y', 0.368062], ['b', 'z', -1.721840], ['c', 'x', 1], ['c', 'y', 2], ['c', 'z', 3]], columns=['first', 'second', 'value1']) .set_index(['first', 'second'])) df2 = (pd.DataFrame([['a', 10], ['b', 20]], columns=['first', 'value2']) .set_index(['first'])) exp = pd.DataFrame([[0.471780, 10], [0.774908, 10], [0.563634, 10], [-0.353756, 20], [0.368062, 20], [-1.721840, 20], [1.000000, np.nan], [2.000000, np.nan], [3.000000, np.nan]], index=df1.index, columns=['value1', 'value2']) # these must be the same results (but columns are flipped) assert_frame_equal(df1.join(df2, how='left'), exp) assert_frame_equal(df2.join(df1, how='right'), exp[['value2', 'value1']]) exp_idx = pd.MultiIndex.from_product([['a', 'b'], ['x', 'y', 'z']], names=['first', 'second']) exp = pd.DataFrame([[0.471780, 10], [0.774908, 10], [0.563634, 10], [-0.353756, 20], [0.368062, 20], [-1.721840, 20]], index=exp_idx, columns=['value1', 'value2']) assert_frame_equal(df1.join(df2, how='right'), exp) assert_frame_equal(df2.join(df1, how='left'), exp[['value2', 'value1']]) def test_concat_named_keys(self): # GH 14252 df = pd.DataFrame({'foo': [1, 2], 'bar': [0.1, 0.2]}) index = Index(['a', 'b'], name='baz') concatted_named_from_keys = pd.concat([df, df], keys=index) expected_named = pd.DataFrame( {'foo': [1, 2, 1, 2], 'bar': [0.1, 0.2, 0.1, 0.2]}, index=pd.MultiIndex.from_product((['a', 'b'], [0, 1]), names=['baz', None])) assert_frame_equal(concatted_named_from_keys, expected_named) index_no_name = Index(['a', 'b'], name=None) concatted_named_from_names = pd.concat( [df, df], keys=index_no_name, names=['baz']) assert_frame_equal(concatted_named_from_names, expected_named) concatted_unnamed = pd.concat([df, df], keys=index_no_name) expected_unnamed = pd.DataFrame( {'foo': [1, 2, 1, 2], 'bar': [0.1, 0.2, 0.1, 0.2]}, index=pd.MultiIndex.from_product((['a', 'b'], [0, 1]), names=[None, None])) assert_frame_equal(concatted_unnamed, expected_unnamed) def test_concat_axis_parameter(self): # GH 14369 df1 = pd.DataFrame({'A': [0.1, 0.2]}, index=range(2)) df2 = pd.DataFrame({'A': [0.3, 0.4]}, index=range(2)) # Index/row/0 DataFrame expected_index = pd.DataFrame( {'A': [0.1, 0.2, 0.3, 0.4]}, index=[0, 1, 0, 1]) concatted_index = pd.concat([df1, df2], axis='index') assert_frame_equal(concatted_index, expected_index) concatted_row = pd.concat([df1, df2], axis='rows') assert_frame_equal(concatted_row, expected_index) concatted_0 = pd.concat([df1, df2], axis=0) assert_frame_equal(concatted_0, expected_index) # Columns/1 DataFrame expected_columns = pd.DataFrame( [[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=['A', 'A']) concatted_columns = pd.concat([df1, df2], axis='columns') assert_frame_equal(concatted_columns, expected_columns) concatted_1 = pd.concat([df1, df2], axis=1) assert_frame_equal(concatted_1, expected_columns) series1 = pd.Series([0.1, 0.2]) series2 = pd.Series([0.3, 0.4]) # Index/row/0 Series expected_index_series = pd.Series( [0.1, 0.2, 0.3, 0.4], index=[0, 1, 0, 1]) concatted_index_series = pd.concat([series1, series2], axis='index') assert_series_equal(concatted_index_series, expected_index_series) concatted_row_series = pd.concat([series1, series2], axis='rows') assert_series_equal(concatted_row_series, expected_index_series) concatted_0_series = pd.concat([series1, series2], axis=0) assert_series_equal(concatted_0_series, expected_index_series) # Columns/1 Series expected_columns_series = pd.DataFrame( [[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=[0, 1]) concatted_columns_series = pd.concat( [series1, series2], axis='columns') assert_frame_equal(concatted_columns_series, expected_columns_series) concatted_1_series = pd.concat([series1, series2], axis=1) assert_frame_equal(concatted_1_series, expected_columns_series) # Testing ValueError with pytest.raises(ValueError, match='No axis named'): pd.concat([series1, series2], axis='something') def test_concat_numerical_names(self): # #15262 # #12223 df = pd.DataFrame({'col': range(9)}, dtype='int32', index=(pd.MultiIndex .from_product([['A0', 'A1', 'A2'], ['B0', 'B1', 'B2']], names=[1, 2]))) result = pd.concat((df.iloc[:2, :], df.iloc[-2:, :])) expected = pd.DataFrame({'col': [0, 1, 7, 8]}, dtype='int32', index=pd.MultiIndex.from_tuples([('A0', 'B0'), ('A0', 'B1'), ('A2', 'B1'), ('A2', 'B2')], names=[1, 2])) tm.assert_frame_equal(result, expected) def test_concat_astype_dup_col(self): # gh 23049 df = pd.DataFrame([{'a': 'b'}]) df = pd.concat([df, df], axis=1) result = df.astype('category') expected = pd.DataFrame(np.array(["b", "b"]).reshape(1, 2), columns=["a", "a"]).astype("category") tm.assert_frame_equal(result, expected) class TestDataFrameCombineFirst: def test_combine_first_mixed(self): a = Series(['a', 'b'], index=range(2)) b = Series(range(2), index=range(2)) f = DataFrame({'A': a, 'B': b}) a = Series(['a', 'b'], index=range(5, 7)) b = Series(range(2), index=range(5, 7)) g = DataFrame({'A': a, 'B': b}) exp = pd.DataFrame({'A': list('abab'), 'B': [0., 1., 0., 1.]}, index=[0, 1, 5, 6]) combined = f.combine_first(g) tm.assert_frame_equal(combined, exp) def test_combine_first(self, float_frame): # disjoint head, tail = float_frame[:5], float_frame[5:] combined = head.combine_first(tail) reordered_frame = float_frame.reindex(combined.index) assert_frame_equal(combined, reordered_frame) assert tm.equalContents(combined.columns, float_frame.columns) assert_series_equal(combined['A'], reordered_frame['A']) # same index fcopy = float_frame.copy() fcopy['A'] = 1 del fcopy['C'] fcopy2 = float_frame.copy() fcopy2['B'] = 0 del fcopy2['D'] combined = fcopy.combine_first(fcopy2) assert (combined['A'] == 1).all() assert_series_equal(combined['B'], fcopy['B']) assert_series_equal(combined['C'], fcopy2['C']) assert_series_equal(combined['D'], fcopy['D']) # overlap head, tail = reordered_frame[:10].copy(), reordered_frame head['A'] = 1 combined = head.combine_first(tail) assert (combined['A'][:10] == 1).all() # reverse overlap tail['A'][:10] = 0 combined = tail.combine_first(head) assert (combined['A'][:10] == 0).all() # no overlap f = float_frame[:10] g = float_frame[10:] combined = f.combine_first(g) assert_series_equal(combined['A'].reindex(f.index), f['A']) assert_series_equal(combined['A'].reindex(g.index), g['A']) # corner cases comb = float_frame.combine_first(DataFrame()) assert_frame_equal(comb, float_frame) comb = DataFrame().combine_first(float_frame) assert_frame_equal(comb, float_frame) comb = float_frame.combine_first(DataFrame(index=["faz", "boo"])) assert "faz" in comb.index # #2525 df = DataFrame({'a': [1]}, index=[datetime(2012, 1, 1)]) df2 = DataFrame(columns=['b']) result = df.combine_first(df2) assert 'b' in result def test_combine_first_mixed_bug(self): idx = Index(['a', 'b', 'c', 'e']) ser1 = Series([5.0, -9.0, 4.0, 100.], index=idx) ser2 = Series(['a', 'b', 'c', 'e'], index=idx) ser3 = Series([12, 4, 5, 97], index=idx) frame1 = DataFrame({"col0": ser1, "col2": ser2, "col3": ser3}) idx = Index(['a', 'b', 'c', 'f']) ser1 = Series([5.0, -9.0, 4.0, 100.], index=idx) ser2 = Series(['a', 'b', 'c', 'f'], index=idx) ser3 = Series([12, 4, 5, 97], index=idx) frame2 = DataFrame({"col1": ser1, "col2": ser2, "col5": ser3}) combined = frame1.combine_first(frame2) assert len(combined.columns) == 5 # gh 3016 (same as in update) df = DataFrame([[1., 2., False, True], [4., 5., True, False]], columns=['A', 'B', 'bool1', 'bool2']) other = DataFrame([[45, 45]], index=[0], columns=['A', 'B']) result = df.combine_first(other) assert_frame_equal(result, df) df.loc[0, 'A'] = np.nan result = df.combine_first(other) df.loc[0, 'A'] = 45 assert_frame_equal(result, df) # doc example df1 = DataFrame({'A': [1., np.nan, 3., 5., np.nan], 'B': [np.nan, 2., 3., np.nan, 6.]}) df2 = DataFrame({'A': [5., 2., 4., np.nan, 3., 7.], 'B': [np.nan, np.nan, 3., 4., 6., 8.]}) result = df1.combine_first(df2) expected = DataFrame( {'A': [1, 2, 3, 5, 3, 7.], 'B': [np.nan, 2, 3, 4, 6, 8]}) assert_frame_equal(result, expected) # GH3552, return object dtype with bools df1 = DataFrame( [[np.nan, 3., True], [-4.6, np.nan, True], [np.nan, 7., False]]) df2 = DataFrame( [[-42.6, np.nan, True], [-5., 1.6, False]], index=[1, 2]) result = df1.combine_first(df2)[2] expected = Series([True, True, False], name=2) assert_series_equal(result, expected) # GH 3593, converting datetime64[ns] incorrectly df0 = DataFrame({"a": [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]}) df1 = DataFrame({"a": [None, None, None]}) df2 = df1.combine_first(df0) assert_frame_equal(df2, df0) df2 = df0.combine_first(df1) assert_frame_equal(df2, df0) df0 = DataFrame({"a": [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]}) df1 = DataFrame({"a": [datetime(2000, 1, 2), None, None]}) df2 = df1.combine_first(df0) result = df0.copy() result.iloc[0, :] = df1.iloc[0, :] assert_frame_equal(df2, result) df2 = df0.combine_first(df1) assert_frame_equal(df2, df0) def test_combine_first_align_nan(self): # GH 7509 (not fixed) dfa = pd.DataFrame([[pd.Timestamp('2011-01-01'), 2]], columns=['a', 'b']) dfb = pd.DataFrame([[4], [5]], columns=['b']) assert dfa['a'].dtype == 'datetime64[ns]' assert dfa['b'].dtype == 'int64' res = dfa.combine_first(dfb) exp = pd.DataFrame({'a': [pd.Timestamp('2011-01-01'), pd.NaT], 'b': [2., 5.]}, columns=['a', 'b']) tm.assert_frame_equal(res, exp) assert res['a'].dtype == 'datetime64[ns]' # ToDo: this must be int64 assert res['b'].dtype == 'float64' res = dfa.iloc[:0].combine_first(dfb) exp = pd.DataFrame({'a': [np.nan, np.nan], 'b': [4, 5]}, columns=['a', 'b']) tm.assert_frame_equal(res, exp) # ToDo: this must be datetime64 assert res['a'].dtype == 'float64' # ToDo: this must be int64 assert res['b'].dtype == 'int64' def test_combine_first_timezone(self): # see gh-7630 data1 = pd.to_datetime('20100101 01:01').tz_localize('UTC') df1 = pd.DataFrame(columns=['UTCdatetime', 'abc'], data=data1, index=pd.date_range('20140627', periods=1)) data2 = pd.to_datetime('20121212 12:12').tz_localize('UTC') df2 = pd.DataFrame(columns=['UTCdatetime', 'xyz'], data=data2, index=pd.date_range('20140628', periods=1)) res = df2[['UTCdatetime']].combine_first(df1) exp = pd.DataFrame({'UTCdatetime': [pd.Timestamp('2010-01-01 01:01', tz='UTC'), pd.Timestamp('2012-12-12 12:12', tz='UTC')], 'abc': [pd.Timestamp('2010-01-01 01:01:00', tz='UTC'), pd.NaT]}, columns=['UTCdatetime', 'abc'], index=pd.date_range('20140627', periods=2, freq='D')) tm.assert_frame_equal(res, exp) assert res['UTCdatetime'].dtype == 'datetime64[ns, UTC]' assert res['abc'].dtype == 'datetime64[ns, UTC]' # see gh-10567 dts1 = pd.date_range('2015-01-01', '2015-01-05', tz='UTC') df1 = pd.DataFrame({'DATE': dts1}) dts2 = pd.date_range('2015-01-03', '2015-01-05', tz='UTC') df2 = pd.DataFrame({'DATE': dts2}) res = df1.combine_first(df2) tm.assert_frame_equal(res, df1) assert res['DATE'].dtype == 'datetime64[ns, UTC]' dts1 = pd.DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03', '2011-01-04'], tz='US/Eastern') df1 = pd.DataFrame({'DATE': dts1}, index=[1, 3, 5, 7]) dts2 = pd.DatetimeIndex(['2012-01-01', '2012-01-02', '2012-01-03'], tz='US/Eastern') df2 = pd.DataFrame({'DATE': dts2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = pd.DatetimeIndex(['2011-01-01', '2012-01-01', 'NaT', '2012-01-02', '2011-01-03', '2011-01-04'], tz='US/Eastern') exp = pd.DataFrame({'DATE': exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) # different tz dts1 = pd.date_range('2015-01-01', '2015-01-05', tz='US/Eastern') df1 = pd.DataFrame({'DATE': dts1}) dts2 = pd.date_range('2015-01-03', '2015-01-05') df2 = pd.DataFrame({'DATE': dts2}) # if df1 doesn't have NaN, keep its dtype res = df1.combine_first(df2) tm.assert_frame_equal(res, df1) assert res['DATE'].dtype == 'datetime64[ns, US/Eastern]' dts1 = pd.date_range('2015-01-01', '2015-01-02', tz='US/Eastern') df1 = pd.DataFrame({'DATE': dts1}) dts2 = pd.date_range('2015-01-01', '2015-01-03') df2 = pd.DataFrame({'DATE': dts2}) res = df1.combine_first(df2) exp_dts = [pd.Timestamp('2015-01-01', tz='US/Eastern'), pd.Timestamp('2015-01-02', tz='US/Eastern'), pd.Timestamp('2015-01-03')] exp = pd.DataFrame({'DATE': exp_dts}) tm.assert_frame_equal(res, exp) assert res['DATE'].dtype == 'object' def test_combine_first_timedelta(self): data1 = pd.TimedeltaIndex(['1 day', 'NaT', '3 day', '4day']) df1 = pd.DataFrame({'TD': data1}, index=[1, 3, 5, 7]) data2 = pd.TimedeltaIndex(['10 day', '11 day', '12 day']) df2 = pd.DataFrame({'TD': data2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = pd.TimedeltaIndex(['1 day', '10 day', 'NaT', '11 day', '3 day', '4 day']) exp = pd.DataFrame({'TD': exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) assert res['TD'].dtype == 'timedelta64[ns]' def test_combine_first_period(self): data1 = pd.PeriodIndex(['2011-01', 'NaT', '2011-03', '2011-04'], freq='M') df1 = pd.DataFrame({'P': data1}, index=[1, 3, 5, 7]) data2 = pd.PeriodIndex(['2012-01-01', '2012-02', '2012-03'], freq='M') df2 = pd.DataFrame({'P': data2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = pd.PeriodIndex(['2011-01', '2012-01', 'NaT', '2012-02', '2011-03', '2011-04'], freq='M') exp = pd.DataFrame({'P': exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) assert res['P'].dtype == data1.dtype # different freq dts2 = pd.PeriodIndex(['2012-01-01', '2012-01-02', '2012-01-03'], freq='D') df2 = pd.DataFrame({'P': dts2}, index=[2, 4, 5]) res = df1.combine_first(df2) exp_dts = [pd.Period('2011-01', freq='M'), pd.Period('2012-01-01', freq='D'), pd.NaT, pd.Period('2012-01-02', freq='D'), pd.Period('2011-03', freq='M'), pd.Period('2011-04', freq='M')] exp = pd.DataFrame({'P': exp_dts}, index=[1, 2, 3, 4, 5, 7]) tm.assert_frame_equal(res, exp) assert res['P'].dtype == 'object' def test_combine_first_int(self): # GH14687 - integer series that do no align exactly df1 = pd.DataFrame({'a': [0, 1, 3, 5]}, dtype='int64') df2 = pd.DataFrame({'a': [1, 4]}, dtype='int64') res = df1.combine_first(df2) tm.assert_frame_equal(res, df1) assert res['a'].dtype == 'int64' @pytest.mark.parametrize("val", [1, 1.0]) def test_combine_first_with_asymmetric_other(self, val): # see gh-20699 df1 = pd.DataFrame({'isNum': [val]}) df2 = pd.DataFrame({'isBool': [True]}) res = df1.combine_first(df2) exp = pd.DataFrame({'isBool': [True], 'isNum': [val]}) tm.assert_frame_equal(res, exp) def test_concat_datetime_datetime64_frame(self): # #2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({'date': ind, 'test': range(10)}) # it works! pd.concat([df1, df2_obj]) class TestDataFrameUpdate: def test_update_nan(self): # #15593 #15617 # test 1 df1 = DataFrame({'A': [1.0, 2, 3], 'B': date_range('2000', periods=3)}) df2 = DataFrame({'A': [None, 2, 3]}) expected = df1.copy() df1.update(df2, overwrite=False) tm.assert_frame_equal(df1, expected) # test 2 df1 = DataFrame({'A': [1.0, None, 3], 'B': date_range('2000', periods=3)}) df2 = DataFrame({'A': [None, 2, 3]}) expected = DataFrame({'A': [1.0, 2, 3], 'B': date_range('2000', periods=3)}) df1.update(df2, overwrite=False) tm.assert_frame_equal(df1, expected)
bsd-3-clause
jungla/ICOM-fluidity-toolbox
2D/RST/plot_T_spec_res.py
1
8498
import os, sys import myfun import numpy as np import matplotlib as mpl mpl.use('ps') import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy import interpolate import lagrangian_stats import scipy.fftpack ## READ archive (too many points... somehow) # args: name, dayi, dayf, days label = 'm_50_6f' label_50 = 'm_50_6f' label_25 = 'm_25_1' label_10 = 'm_10_1' basename = 'mli' dayi = 36 dayf = 49 days = 1 #label = sys.argv[1] #basename = sys.argv[2] #dayi = int(sys.argv[3]) #dayf = int(sys.argv[4]) #days = int(sys.argv[5]) path = './Temperature_CG/' try: os.stat('./plot/'+label) except OSError: os.mkdir('./plot/'+label) # dimensions archives # ML exp Xlist_50 = np.linspace(0,2000,41) Ylist_50 = np.linspace(0,2000,41) Xlist_25 = np.linspace(0,2000,81) Ylist_25 = np.linspace(0,2000,81) Xlist_10 = np.linspace(0,2000,161) Ylist_10 = np.linspace(0,2000,161) Zlist = np.linspace(0,-50,51) dl = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1] Zlist = np.cumsum(dl) xn_50 = len(Xlist_50) yn_50 = len(Ylist_50) xn_25 = len(Xlist_25) yn_25 = len(Ylist_25) xn_10 = len(Xlist_10) yn_10 = len(Ylist_10) zn = len(Zlist) dx_50 = np.diff(Xlist_50) dx_25 = np.diff(Xlist_25) dx_10 = np.diff(Xlist_10) for time in range(dayi,dayf,days): print 'time:', time tlabel = str(time) while len(tlabel) < 3: tlabel = '0'+tlabel #Temperature_CG_m_50_6e_9.csv file0_50 = path+'Temperature_CG_'+label_50+'_'+str(time)+'.csv' file0_25 = path+'Temperature_CG_'+label_25+'_'+str(time)+'.csv' file0_10 = path+'Temperature_CG_'+label_10+'_'+str(time)+'.csv' file1 = 'Temperature_CG_'+label+'_'+str(time) file1_50 = 'Temperature_CG_'+label_50+'_'+str(time) file1_25 = 'Temperature_CG_'+label_25+'_'+str(time) file1_10 = 'Temperature_CG_'+label_10+'_'+str(time) # # xn_50 = 101 # yn_50 = 101 # xn_25 = 101 # yn_25 = 101 T_50 = lagrangian_stats.read_Scalar(file0_50,zn,xn_50,yn_50) T_25 = lagrangian_stats.read_Scalar(file0_25,zn,xn_25,yn_25) T_10 = lagrangian_stats.read_Scalar(file0_10,zn,xn_10,yn_10) # xn_50 = 41 # yn_50 = 41 # xn_25 = 81 # yn_25 = 81 # T_50 = T_50[:,0:xn_50,0:yn_50] # T_25 = T_25[:,0:xn_25,0:yn_25] # Xlist_50 = np.linspace(0,2000,xn_50) # Ylist_50 = np.linspace(0,2000,yn_50) # Xlist_25 = np.linspace(0,2000,xn_25) # Ylist_25 = np.linspace(0,2000,yn_25) FT_50 = np.zeros((xn_50/1,yn_50)) FT_25 = np.zeros((xn_25/1,yn_25)) FT_10 = np.zeros((xn_10/1,yn_10)) # for k in range(1): for j in range(len(Ylist_50)): tempfft = scipy.fftpack.fft(T_50[k,j,:],xn_50) FT_50[:,j] = abs(tempfft)**2 w_50 = scipy.fftpack.fftfreq(xn_50, dx_50[1]) # w_50 = scipy.fftpack.fftshift(w_50) FTp_50 = np.mean(FT_50,1)/xn_50 for j in range(len(Ylist_25)): tempfft = scipy.fftpack.fft(T_25[k,j,:],xn_25) FT_25[:,j] = abs(tempfft)**2 w_25 = scipy.fftpack.fftfreq(xn_25, dx_25[1]) # w_25 = scipy.fftpack.fftshift(w_25) FTp_25 = np.mean(FT_25,1)/xn_25 for j in range(len(Ylist_10)): tempfft = scipy.fftpack.fft(T_10[k,j,:],xn_10) FT_10[:,j] = abs(tempfft)**2 w_10 = scipy.fftpack.fftfreq(xn_10, dx_10[1]) # w_10 = scipy.fftpack.fftshift(w_10) FTp_10 = np.mean(FT_10,1)/xn_10 fig = plt.figure(figsize=(10,8)) p50, = plt.loglog(w_50[w_50>0], FTp_50[w_50>0],'b',linewidth=2) p25, = plt.loglog(w_25[w_25>0], FTp_25[w_25>0],'r',linewidth=2) p10, = plt.loglog(w_10[w_10>0], FTp_10[w_10>0],'k',linewidth=2) plt.legend([p50,p25,p10],['$B50_m$','$B25_m$','$B10_m$'],fontsize=24,loc=3) # pU, = plt.plot(w_50, FTp_50,'b',linewidth=2) # pU, = plt.plot(w_25, FTp_25,'r',linewidth=2) # plt.ylim(0,1) # plt.plot([0.5*10**-3, 4*10**-3],[4*10**-3, 0.5*10**-3],'k',linewidth=1.5) # plt.plot([0.5*10**-3, 4*10**-3],[3.*4*10**-3, 0.5*10**-3],'k',linewidth=1.5) plt.plot([4*10**-3, 4*10**-2],[4*10**-1, 4*10**-(1+5/3.)],'k',linewidth=1.5) plt.plot([4*10**-3, 4*10**-2],[4*10**-1, 4*10**-(1+3.)],'k',linewidth=1.5) # plt.plot([4*10**-3, 4*10**-2],[4*10**-1, 4*10**-(1+1.)],'k',linewidth=1.5) plt.text(5*10**-2, 4*10**-(1+5/3.), '-5/3',fontsize=24) plt.text(5*10**-2, 4*10**-(1+3.), '-3',fontsize=24) # plt.text(5*10**-2, 4*10**-(1+1.), '-1',fontsize=24) # plt.text(0.3*10**-3, 3.*4*10**-3, '-3') # plt.text(0.3*10**-3, 5./3.*4*10**-3, '-5/3') plt.xscale('log') # pU, = plt.loglog(w_10[w_10>0], FTp_10[w_10>0],'k.',linewidth=2) plt.xlabel(r'k $[m^{-1}]$',fontsize=26) plt.ylabel('Temperature PSD',fontsize=24) # plt.xticks(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7),np.round(1/np.linspace(np.min(w[w>0]),np.max(w[w>0]),7)),fontsize=16) #plt.xticks(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7),np.round(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7)*360000)/100,fontsize=16) plt.yticks(fontsize=24) # plt.xticks(fontsize=24) plt.xticks([0.1,0.01,0.001,1/500.],[10**-1,10**-2,10**-3,1/500.],fontsize=24) plt.xlim([1/2000.,1/10.]) plt.savefig('./plot/'+label+'/'+file1+'_'+str(Zlist[k])+'_spec.eps',bbox_inches='tight') print './plot/'+label+'/'+file1+'_'+str(Zlist[k])+'_spec.eps' plt.close() # # PDF vals50,bins50 = np.histogram(T_50[k,:,:],50,(18.6,20.1),normed=True) vals25,bins25 = np.histogram(T_25[k,:,:],50,(18.6,20.1),normed=True) vals10,bins10 = np.histogram(T_10[k,:,:],50,(18.6,20.1),normed=True) bins = np.linspace(18.6,19.8,50) fig = plt.figure(figsize=(8,8)) ph50, = plt.plot(bins,vals50,'k--') ph25, = plt.plot(bins,vals25,'k.-') ph10, = plt.plot(bins,vals10,'k',linewidth=2) plt.ylabel(r'PDF',fontsize=22) plt.xlabel('Temperature $[^\circ C]$',fontsize=22) # plt.xticks(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7),np.round(1/np.linspace(np.min(w[w>0]),np.max(w[w>0]),7)),fontsize=16) #plt.xticks(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7),np.round(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7)*360000)/100,fontsize=16) plt.yticks(fontsize=20) plt.xticks(np.linspace(18.6,20.1,7),np.linspace(18.6,20.1,7),fontsize=20) plt.tight_layout() plt.legend([ph50,ph25,ph10],['$B50_m$','$B25_m$','$B10_m$'],loc=2,fontsize=20) plt.savefig('./plot/'+label+'/'+file1+'_'+str(Zlist[k])+'_hist.eps') print './plot/'+label+'/'+file1+'_'+str(Zlist[k])+'_hist.eps' plt.close() Tm = 18.6 #min(np.min(T_10[k,:,:]),np.min(T_25[k,:,:]),np.min(T_50[k,:,:])) TM = 19.8 #max(np.max(T_10[k,:,:]),np.max(T_25[k,:,:]),np.max(T_50[k,:,:])) # print Tm,TM plt.contourf(Xlist_50/1000,Ylist_50/1000,T_50[k,:,:],np.linspace(Tm,TM,30),extend='both') cb = plt.colorbar(ticks=np.linspace(Tm,TM,5)) cb.ax.tick_params(labelsize=22) plt.xlabel('X [km]',fontsize=24) plt.ylabel('Y [km]',fontsize=24) plt.xticks(fontsize=22) plt.yticks(fontsize=22) plt.axes().set_aspect('equal') plt.xlim(0,2) plt.ylim(0,2) #plt.xticks(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7),np.round(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7)*360000)/100,fontsize=16) #plt.yticks(fontsize=16) plt.savefig('./plot/'+label+'/'+file1_50+'_'+str(Zlist[k])+'.eps',bbox_inches='tight') print './plot/'+label+'/'+file1_50+'_'+str(Zlist[k])+'.eps' plt.close() ### plt.contourf(Xlist_25/1000,Ylist_25/1000,T_25[k,:,:],np.linspace(Tm,TM,30),extend='both') cb = plt.colorbar(ticks=np.linspace(Tm,TM,5)) cb.ax.tick_params(labelsize=22) plt.xlabel('X [km]',fontsize=24) plt.ylabel('Y [km]',fontsize=24) plt.xticks(fontsize=22) plt.yticks(fontsize=22) plt.axes().set_aspect('equal') plt.xlim(0,2) plt.ylim(0,2) #plt.xticks(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7),np.round(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7)*360000)/100,fontsize=16) #plt.yticks(fontsize=16) plt.savefig('./plot/'+label+'/'+file1_25+'_'+str(Zlist[k])+'.eps',bbox_inches='tight') print './plot/'+label+'/'+file1_25+'_'+str(Zlist[k])+'.eps' plt.close() ## plt.contourf(Xlist_10/1000,Ylist_10/1000,T_10[k,:,:],np.linspace(Tm,TM,30),extend='both') cb = plt.colorbar(ticks=np.linspace(Tm,TM,5)) cb.ax.tick_params(labelsize=22) plt.xlabel('X [km]',fontsize=24) plt.ylabel('Y [km]',fontsize=24) plt.xticks(fontsize=22) plt.yticks(fontsize=22) plt.axes().set_aspect('equal') plt.xlim(0,2) plt.ylim(0,2) #plt.xticks(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7),np.round(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7)*360000)/100,fontsize=16) #plt.yticks(fontsize=16) plt.savefig('./plot/'+label+'/'+file1_10+'_'+str(Zlist[k])+'.eps',bbox_inches='tight') print './plot/'+label+'/'+file1_10+'_'+str(Zlist[k])+'.eps' plt.close() ### ##
gpl-2.0
trankmichael/scikit-learn
sklearn/neighbors/approximate.py
128
22351
"""Approximate nearest neighbor search""" # Author: Maheshakya Wijewardena <[email protected]> # Joel Nothman <[email protected]> import numpy as np import warnings from scipy import sparse from .base import KNeighborsMixin, RadiusNeighborsMixin from ..base import BaseEstimator from ..utils.validation import check_array from ..utils import check_random_state from ..metrics.pairwise import pairwise_distances from ..random_projection import GaussianRandomProjection __all__ = ["LSHForest"] HASH_DTYPE = '>u4' MAX_HASH_SIZE = np.dtype(HASH_DTYPE).itemsize * 8 def _find_matching_indices(tree, bin_X, left_mask, right_mask): """Finds indices in sorted array of integers. Most significant h bits in the binary representations of the integers are matched with the items' most significant h bits. """ left_index = np.searchsorted(tree, bin_X & left_mask) right_index = np.searchsorted(tree, bin_X | right_mask, side='right') return left_index, right_index def _find_longest_prefix_match(tree, bin_X, hash_size, left_masks, right_masks): """Find the longest prefix match in tree for each query in bin_X Most significant bits are considered as the prefix. """ hi = np.empty_like(bin_X, dtype=np.intp) hi.fill(hash_size) lo = np.zeros_like(bin_X, dtype=np.intp) res = np.empty_like(bin_X, dtype=np.intp) left_idx, right_idx = _find_matching_indices(tree, bin_X, left_masks[hi], right_masks[hi]) found = right_idx > left_idx res[found] = lo[found] = hash_size r = np.arange(bin_X.shape[0]) kept = r[lo < hi] # indices remaining in bin_X mask while kept.shape[0]: mid = (lo.take(kept) + hi.take(kept)) // 2 left_idx, right_idx = _find_matching_indices(tree, bin_X.take(kept), left_masks[mid], right_masks[mid]) found = right_idx > left_idx mid_found = mid[found] lo[kept[found]] = mid_found + 1 res[kept[found]] = mid_found hi[kept[~found]] = mid[~found] kept = r[lo < hi] return res class ProjectionToHashMixin(object): """Turn a transformed real-valued array into a hash""" @staticmethod def _to_hash(projected): if projected.shape[1] % 8 != 0: raise ValueError('Require reduced dimensionality to be a multiple ' 'of 8 for hashing') # XXX: perhaps non-copying operation better out = np.packbits((projected > 0).astype(int)).view(dtype=HASH_DTYPE) return out.reshape(projected.shape[0], -1) def fit_transform(self, X, y=None): self.fit(X) return self.transform(X) def transform(self, X, y=None): return self._to_hash(super(ProjectionToHashMixin, self).transform(X)) class GaussianRandomProjectionHash(ProjectionToHashMixin, GaussianRandomProjection): """Use GaussianRandomProjection to produce a cosine LSH fingerprint""" def __init__(self, n_components=8, random_state=None): super(GaussianRandomProjectionHash, self).__init__( n_components=n_components, random_state=random_state) def _array_of_arrays(list_of_arrays): """Creates an array of array from list of arrays.""" out = np.empty(len(list_of_arrays), dtype=object) out[:] = list_of_arrays return out class LSHForest(BaseEstimator, KNeighborsMixin, RadiusNeighborsMixin): """Performs approximate nearest neighbor search using LSH forest. LSH Forest: Locality Sensitive Hashing forest [1] is an alternative method for vanilla approximate nearest neighbor search methods. LSH forest data structure has been implemented using sorted arrays and binary search and 32 bit fixed-length hashes. Random projection is used as the hash family which approximates cosine distance. The cosine distance is defined as ``1 - cosine_similarity``: the lowest value is 0 (identical point) but it is bounded above by 2 for the farthest points. Its value does not depend on the norm of the vector points but only on their relative angles. Read more in the :ref:`User Guide <approximate_nearest_neighbors>`. Parameters ---------- n_estimators : int (default = 10) Number of trees in the LSH Forest. min_hash_match : int (default = 4) lowest hash length to be searched when candidate selection is performed for nearest neighbors. n_candidates : int (default = 10) Minimum number of candidates evaluated per estimator, assuming enough items meet the `min_hash_match` constraint. n_neighbors : int (default = 5) Number of neighbors to be returned from query function when it is not provided to the :meth:`kneighbors` method. radius : float, optinal (default = 1.0) Radius from the data point to its neighbors. This is the parameter space to use by default for the :meth`radius_neighbors` queries. radius_cutoff_ratio : float, optional (default = 0.9) A value ranges from 0 to 1. Radius neighbors will be searched until the ratio between total neighbors within the radius and the total candidates becomes less than this value unless it is terminated by hash length reaching `min_hash_match`. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- hash_functions_ : list of GaussianRandomProjectionHash objects Hash function g(p,x) for a tree is an array of 32 randomly generated float arrays with the same dimenstion as the data set. This array is stored in GaussianRandomProjectionHash object and can be obtained from ``components_`` attribute. trees_ : array, shape (n_estimators, n_samples) Each tree (corresponding to a hash function) contains an array of sorted hashed values. The array representation may change in future versions. original_indices_ : array, shape (n_estimators, n_samples) Original indices of sorted hashed values in the fitted index. References ---------- .. [1] M. Bawa, T. Condie and P. Ganesan, "LSH Forest: Self-Tuning Indexes for Similarity Search", WWW '05 Proceedings of the 14th international conference on World Wide Web, 651-660, 2005. Examples -------- >>> from sklearn.neighbors import LSHForest >>> X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]] >>> X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]] >>> lshf = LSHForest() >>> lshf.fit(X_train) # doctest: +NORMALIZE_WHITESPACE LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10, n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9, random_state=None) >>> distances, indices = lshf.kneighbors(X_test, n_neighbors=2) >>> distances # doctest: +ELLIPSIS array([[ 0.069..., 0.149...], [ 0.229..., 0.481...], [ 0.004..., 0.014...]]) >>> indices array([[1, 2], [2, 0], [4, 0]]) """ def __init__(self, n_estimators=10, radius=1.0, n_candidates=50, n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=.9, random_state=None): self.n_estimators = n_estimators self.radius = radius self.random_state = random_state self.n_candidates = n_candidates self.n_neighbors = n_neighbors self.min_hash_match = min_hash_match self.radius_cutoff_ratio = radius_cutoff_ratio def _compute_distances(self, query, candidates): """Computes the cosine distance. Distance is from the query to points in the candidates array. Returns argsort of distances in the candidates array and sorted distances. """ if candidates.shape == (0,): # needed since _fit_X[np.array([])] doesn't work if _fit_X sparse return np.empty(0, dtype=np.int), np.empty(0, dtype=float) if sparse.issparse(self._fit_X): candidate_X = self._fit_X[candidates] else: candidate_X = self._fit_X.take(candidates, axis=0, mode='clip') distances = pairwise_distances(query, candidate_X, metric='cosine')[0] distance_positions = np.argsort(distances) distances = distances.take(distance_positions, mode='clip', axis=0) return distance_positions, distances def _generate_masks(self): """Creates left and right masks for all hash lengths.""" tri_size = MAX_HASH_SIZE + 1 # Called once on fitting, output is independent of hashes left_mask = np.tril(np.ones((tri_size, tri_size), dtype=int))[:, 1:] right_mask = left_mask[::-1, ::-1] self._left_mask = np.packbits(left_mask).view(dtype=HASH_DTYPE) self._right_mask = np.packbits(right_mask).view(dtype=HASH_DTYPE) def _get_candidates(self, query, max_depth, bin_queries, n_neighbors): """Performs the Synchronous ascending phase. Returns an array of candidates, their distance ranks and distances. """ index_size = self._fit_X.shape[0] # Number of candidates considered including duplicates # XXX: not sure whether this is being calculated correctly wrt # duplicates from different iterations through a single tree n_candidates = 0 candidate_set = set() min_candidates = self.n_candidates * self.n_estimators while (max_depth > self.min_hash_match and (n_candidates < min_candidates or len(candidate_set) < n_neighbors)): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) n_candidates += stop - start candidate_set.update( self.original_indices_[i][start:stop].tolist()) max_depth -= 1 candidates = np.fromiter(candidate_set, count=len(candidate_set), dtype=np.intp) # For insufficient candidates, candidates are filled. # Candidates are filled from unselected indices uniformly. if candidates.shape[0] < n_neighbors: warnings.warn( "Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (n_neighbors, self.min_hash_match)) remaining = np.setdiff1d(np.arange(0, index_size), candidates) to_fill = n_neighbors - candidates.shape[0] candidates = np.concatenate((candidates, remaining[:to_fill])) ranks, distances = self._compute_distances(query, candidates.astype(int)) return (candidates[ranks[:n_neighbors]], distances[:n_neighbors]) def _get_radius_neighbors(self, query, max_depth, bin_queries, radius): """Finds radius neighbors from the candidates obtained. Their distances from query are smaller than radius. Returns radius neighbors and distances. """ ratio_within_radius = 1 threshold = 1 - self.radius_cutoff_ratio total_candidates = np.array([], dtype=int) total_neighbors = np.array([], dtype=int) total_distances = np.array([], dtype=float) while (max_depth > self.min_hash_match and ratio_within_radius > threshold): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] candidates = [] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) candidates.extend( self.original_indices_[i][start:stop].tolist()) candidates = np.setdiff1d(candidates, total_candidates) total_candidates = np.append(total_candidates, candidates) ranks, distances = self._compute_distances(query, candidates) m = np.searchsorted(distances, radius, side='right') positions = np.searchsorted(total_distances, distances[:m]) total_neighbors = np.insert(total_neighbors, positions, candidates[ranks[:m]]) total_distances = np.insert(total_distances, positions, distances[:m]) ratio_within_radius = (total_neighbors.shape[0] / float(total_candidates.shape[0])) max_depth = max_depth - 1 return total_neighbors, total_distances def fit(self, X, y=None): """Fit the LSH forest on the data. This creates binary hashes of input data points by getting the dot product of input points and hash_function then transforming the projection into a binary string array based on the sign (positive/negative) of the projection. A sorted array of binary hashes is created. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- self : object Returns self. """ self._fit_X = check_array(X, accept_sparse='csr') # Creates a g(p,x) for each tree self.hash_functions_ = [] self.trees_ = [] self.original_indices_ = [] rng = check_random_state(self.random_state) int_max = np.iinfo(np.int32).max for i in range(self.n_estimators): # This is g(p,x) for a particular tree. # Builds a single tree. Hashing is done on an array of data points. # `GaussianRandomProjection` is used for hashing. # `n_components=hash size and n_features=n_dim. hasher = GaussianRandomProjectionHash(MAX_HASH_SIZE, rng.randint(0, int_max)) hashes = hasher.fit_transform(self._fit_X)[:, 0] original_index = np.argsort(hashes) bin_hashes = hashes[original_index] self.original_indices_.append(original_index) self.trees_.append(bin_hashes) self.hash_functions_.append(hasher) self._generate_masks() return self def _query(self, X): """Performs descending phase to find maximum depth.""" # Calculate hashes of shape (n_samples, n_estimators, [hash_size]) bin_queries = np.asarray([hasher.transform(X)[:, 0] for hasher in self.hash_functions_]) bin_queries = np.rollaxis(bin_queries, 1) # descend phase depths = [_find_longest_prefix_match(tree, tree_queries, MAX_HASH_SIZE, self._left_mask, self._right_mask) for tree, tree_queries in zip(self.trees_, np.rollaxis(bin_queries, 1))] return bin_queries, np.max(depths, axis=0) def kneighbors(self, X, n_neighbors=None, return_distance=True): """Returns n_neighbors of approximate nearest neighbors. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. n_neighbors : int, opitonal (default = None) Number of neighbors required. If not provided, this will return the number specified at the initialization. return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples, n_neighbors) Array representing the cosine distances to each point, only present if return_distance=True. ind : array, shape (n_samples, n_neighbors) Indices of the approximate nearest points in the population matrix. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if n_neighbors is None: n_neighbors = self.n_neighbors X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_candidates(X[i], max_depth[i], bin_queries[i], n_neighbors) neighbors.append(neighs) distances.append(dists) if return_distance: return np.array(distances), np.array(neighbors) else: return np.array(neighbors) def radius_neighbors(self, X, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of some points from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. LSH Forest being an approximate method, some true neighbors from the indexed dataset might be missing from the results. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples,) of arrays Each element is an array representing the cosine distances to some points found within ``radius`` of the respective query. Only present if ``return_distance=True``. ind : array, shape (n_samples,) of arrays Each element is an array of indices for neighbors within ``radius`` of the respective query. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if radius is None: radius = self.radius X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_radius_neighbors(X[i], max_depth[i], bin_queries[i], radius) neighbors.append(neighs) distances.append(dists) if return_distance: return _array_of_arrays(distances), _array_of_arrays(neighbors) else: return _array_of_arrays(neighbors) def partial_fit(self, X, y=None): """ Inserts new data into the already fitted LSH Forest. Cost is proportional to new total size, so additions should be batched. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) New data point to be inserted into the LSH Forest. """ X = check_array(X, accept_sparse='csr') if not hasattr(self, 'hash_functions_'): return self.fit(X) if X.shape[1] != self._fit_X.shape[1]: raise ValueError("Number of features in X and" " fitted array does not match.") n_samples = X.shape[0] n_indexed = self._fit_X.shape[0] for i in range(self.n_estimators): bin_X = self.hash_functions_[i].transform(X)[:, 0] # gets the position to be added in the tree. positions = self.trees_[i].searchsorted(bin_X) # adds the hashed value into the tree. self.trees_[i] = np.insert(self.trees_[i], positions, bin_X) # add the entry into the original_indices_. self.original_indices_[i] = np.insert(self.original_indices_[i], positions, np.arange(n_indexed, n_indexed + n_samples)) # adds the entry into the input_array. if sparse.issparse(X) or sparse.issparse(self._fit_X): self._fit_X = sparse.vstack((self._fit_X, X)) else: self._fit_X = np.row_stack((self._fit_X, X)) return self
bsd-3-clause
dankolbman/BCIM
src/post.py
1
7125
import glob import os import sys import re import matplotlib import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import numpy as np import python.DataIO as DataIO import python.graphics as graphics import python.clusters as clusters import python.counts as counts # Format settings from matplotlib import rc font = {'size' : 32} rc('font', **font) rc('lines', **{'linewidth' : '4' } ) rc('axes', **{'labelsize' : '28', 'titlesize' : 32 } ) rc('axes', color_cycle=['#E82C2C', '#245BFF', 'c', 'm']) rc('xtick', **{'labelsize' : '22' } ) rc('ytick', **{'labelsize' : '22', 'major.size' : '10', 'minor.size' : '10' } ) def averageMSD(path, out_path=None): """ Computes the average MSD of an experiment given an experiment's directory path Parameters ---------- path the path to an experiment's output directory out_path : string, optional the path to save the average msd output to Default is 'avg_msd.dat' in the experiment's directory """ # Set out file to the experiment's directory if not specified if( out_path == None ): out_path = os.path.join(path, 'avg_msd.dat') # Read in msd data from each file msds = [] # Iterates the experiment's directory to find the msd data files for root, dirs, files in os.walk(path): for f in files: if f == "msd.dat": msd_file = os.path.join(root, f) msds.append( np.loadtxt( msd_file ) ) # Average the msds N = len(msds) avg_msd = msds[0]/N if len(msds) > 1: for msd in msds[1:]: avg_msd += msd/N np.savetxt( out_path, avg_msd, header='# [ time msd ... ]') return avg_msd def param_str1(params): """ Creates a text box description of a system parameter dictionary Parameters ---------- params : Dict The parameter dictionary (usually dimensionless parameters) Returns ------- A string of the parameters formatted for a textbox summary """ pstr = '' pstr += 'Particles: {0}\n'.format(params['npart']) pstr += 'Packing Frac: {0}\n'.format(params['phi']) pstr += 'Repulsion: {0}\n'.format(params['rep']) pstr += 'Adhesion: {0}\n'.format(params['adh']) pstr += 'Propulsion: {0}\n'.format(params['prop']) return pstr def param_str2(params): pstr = '' pstr += 'Contact: {0}\n'.format(params['contact']) pstr += 'Time unit: {0}\n'.format(params['utime']) pstr += 'pretrad: {0}\n'.format(params['pretrad']) pstr += 'prerotd: {0}\n'.format(params['prerotd']) return pstr # Do all the post processing def main(args): """ Does all post processing for an experiment Computes the average MSD from msd files in experiment directory Then plots the average MSD on log-log Reads the parameter file and puts a textbox under the MSD with the experiment parameters. Parameters ---------- path a path of an experiment directory """ path = args[1] # Check for that the experiment exists if not os.path.exists(path): raise IOError('The specified experiment path does not exist') elif not os.path.exists(os.path.join(path, 'param_dim.dat')): raise IOError('There is no dimensionless parameter file in the specified \ directory') # Compute average msd avg_msd = averageMSD(path) # 2 X 3 grid gs = gridspec.GridSpec(5,2) # Read parameters params = dict() for f in os.listdir(path): if f == 'param_dim.dat': params = DataIO.read_params(os.path.join(path, f)) break if False: fig = plt.figure(dpi=72, figsize=( 12,3)) gs = gridspec.GridSpec(1,4) ax = plt.subplot(gs[0], projection='3d') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) parts = DataIO.read_parts(os.path.join(path, 'trial1/parts.dat'), 99) graphics.plot_config(parts, params) ax = plt.subplot(gs[1], projection='3d') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) parts = DataIO.read_parts(os.path.join(path, 'trial1/parts.dat'), 80) graphics.plot_config(parts, params) ax = plt.subplot(gs[2], projection='3d') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) parts = DataIO.read_parts(os.path.join(path, 'trial1/parts.dat'), 70) graphics.plot_config(parts, params) ax = plt.subplot(gs[3], projection='3d') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) parts = DataIO.read_parts(os.path.join(path, 'trial1/parts.dat'), 1) graphics.plot_config(parts, params) #plt.suptitle('$\phi=0.40$') #plt.tight_layout() plt.savefig('configs.png') plt.show() exit() gs = gridspec.GridSpec(5,2) fig = plt.figure(dpi=72, figsize=( 8,6)) ax = plt.subplot(gs[0:4, :]) # MSD plot graphics.plot_msd(avg_msd) plt.gca().set_yscale('log') plt.gca().set_xscale('log') # Parameters ax = plt.subplot(gs[-1,0:1]) plt.axis('off') # Plot parameter in textbox below MSD plot fig.text(0.1, 0.0, param_str1(params), fontsize=18) fig.text(0.4, 0.0, param_str2(params), fontsize=18) # Save plt.savefig(os.path.join(path, 'overview.png')) plt.show() # Final conf plot parts = DataIO.read_parts(os.path.join(path, 'trial1/parts.dat')) ax = plt.subplot(gs[:], projection='3d') plt.title('Final System Configuration') graphics.plot_config(parts, params) plt.savefig(os.path.join(path, 'configuration.png')) plt.show() # Cluster sizes size_hist = clusters.size_hist(parts, params, eps=1.1) graphics.plot_cluster_hist( size_hist, params ) plt.tight_layout() plt.savefig(os.path.join(path, 'clusters.png')) plt.show() # Cell counts t, count = counts.counts( os.path.join(path, 'trial1/parts.dat'), params ) graphics.plot_counts(t, count, params) plt.show() # Species cluster sizes if False: sp_hist = clusters.specie_size(parts, params, 1.1) f = plt.figure( figsize=( 12,6 ) ) f.text(0.5, 0.04, 'Cluster Size (Cells)', ha='center', va='center') ax = f.add_subplot( 1, 2, 1) graphics.plot_cluster_hist( sp_hist[0], params, color='#E82C2C' ) ax.set_title('Healthy') ax.set_xlabel('') ax = f.add_subplot( 1, 2, 2) graphics.plot_cluster_hist( sp_hist[1], params, color='#245BFF' ) ax.set_title('Cancerous') ax.set_xlabel('') ax.set_ylabel('') plt.suptitle('Contact Distance, $\epsilon=0.1\sigma$') plt.tight_layout() plt.savefig(os.path.join(path, 'specie_clusters.png')) plt.show() vel_hist = clusters.vel_hist( parts, params, eps=1.1 ) graphics.plot_cluster_hist( vel_hist, params ) plt.title('Cluster Speed') plt.ylabel('Mean Speed') plt.tight_layout() plt.savefig(os.path.join(path, 'cluster_speeds.png')) plt.show() #t, avg_size = clusters.cluster_time( os.path.join(path, 'trial1/parts.dat'), params ) #print(os.path.join( path, 'cluster_sizes.txt')) #np.savetxt( os.path.join( path, 'cluster_sizes.txt'), np.column_stack( (t, avg_size) )) #plt.plot(t, avg_size) #plt.show() if __name__ == "__main__": if(len(sys.argv) < 2): print("Usage: python post.py experiment_dir/") else: main(sys.argv)
mit
sugartom/tensorflow-alien
tensorflow/examples/learn/text_classification.py
39
5106
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for DNN-based text classification with DBpedia data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf from tensorflow.contrib.layers.python.layers import encoders learn = tf.contrib.learn FLAGS = None MAX_DOCUMENT_LENGTH = 10 EMBEDDING_SIZE = 50 n_words = 0 def bag_of_words_model(features, target): """A bag-of-words model. Note it disregards the word order in the text.""" target = tf.one_hot(target, 15, 1, 0) features = encoders.bow_encoder( features, vocab_size=n_words, embed_dim=EMBEDDING_SIZE) logits = tf.contrib.layers.fully_connected(features, 15, activation_fn=None) loss = tf.contrib.losses.softmax_cross_entropy(logits, target) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=0.01) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def rnn_model(features, target): """RNN model to predict from sequence of words to a class.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. word_vectors = tf.contrib.layers.embed_sequence( features, vocab_size=n_words, embed_dim=EMBEDDING_SIZE, scope='words') # Split into list of embedding per word, while removing doc length dim. # word_list results to be a list of tensors [batch_size, EMBEDDING_SIZE]. word_list = tf.unstack(word_vectors, axis=1) # Create a Gated Recurrent Unit cell with hidden size of EMBEDDING_SIZE. cell = tf.contrib.rnn.GRUCell(EMBEDDING_SIZE) # Create an unrolled Recurrent Neural Networks to length of # MAX_DOCUMENT_LENGTH and passes word_list as inputs for each unit. _, encoding = tf.contrib.rnn.static_rnn(cell, word_list, dtype=tf.float32) # Given encoding of RNN, take encoding of last step (e.g hidden size of the # neural network of last step) and pass it as features for logistic # regression over output classes. target = tf.one_hot(target, 15, 1, 0) logits = tf.contrib.layers.fully_connected(encoding, 15, activation_fn=None) loss = tf.contrib.losses.softmax_cross_entropy(logits, target) # Create a training op. train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=0.01) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def main(unused_argv): global n_words # Prepare training and testing data dbpedia = learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary vocab_processor = learn.preprocessing.VocabularyProcessor(MAX_DOCUMENT_LENGTH) x_transform_train = vocab_processor.fit_transform(x_train) x_transform_test = vocab_processor.transform(x_test) x_train = np.array(list(x_transform_train)) x_test = np.array(list(x_transform_test)) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) # Build model # Switch between rnn_model and bag_of_words_model to test different models. model_fn = rnn_model if FLAGS.bow_model: model_fn = bag_of_words_model classifier = learn.Estimator(model_fn=model_fn) # Train and predict classifier.fit(x_train, y_train, steps=100) y_predicted = [ p['class'] for p in classifier.predict( x_test, as_iterable=True) ] score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') parser.add_argument( '--bow_model', default=False, help='Run with BOW model instead of RNN.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
aflaxman/scikit-learn
sklearn/metrics/regression.py
47
19967
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck # Joel Nothman <[email protected]> # Karan Desai <[email protected]> # Noel Dawe <[email protected]> # Manoj Kumar <[email protected]> # Michael Eickenberg <[email protected]> # Konstantin Shmelkov <[email protected]> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d from ..externals.six import string_types __ALL__ = [ "mean_absolute_error", "mean_squared_error", "mean_squared_log_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred, multioutput): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, multioutput : array-like or string in ['raw_values', uniform_average', 'variance_weighted'] or None None is accepted due to backward compatibility of r2_score(). Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by 'utils.multiclass.type_of_target' y_true : array-like of shape = (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples, n_outputs) Estimated target values. multioutput : array-like of shape = (n_outputs) or string in ['raw_values', uniform_average', 'variance_weighted'] or None Custom output weights if ``multioutput`` is array-like or just the corresponding argument if ``multioutput`` is a correct keyword. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) n_outputs = y_true.shape[1] allowed_multioutput_str = ('raw_values', 'uniform_average', 'variance_weighted') if isinstance(multioutput, string_types): if multioutput not in allowed_multioutput_str: raise ValueError("Allowed 'multioutput' string values are {}. " "You provided multioutput={!r}".format( allowed_multioutput_str, multioutput)) elif multioutput is not None: multioutput = check_array(multioutput, ensure_2d=False) if n_outputs == 1: raise ValueError("Custom weights are useful only in " "multi-output cases.") elif n_outputs != len(multioutput): raise ValueError(("There must be equally many custom weights " "(%d) as outputs (%d).") % (len(multioutput), n_outputs)) y_type = 'continuous' if n_outputs == 1 else 'continuous-multioutput' return y_type, y_true, y_pred, multioutput def mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean absolute error regression loss Read more in the :ref:`User Guide <mean_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats If multioutput is 'raw_values', then mean absolute error is returned for each output separately. If multioutput is 'uniform_average' or an ndarray of weights, then the weighted average of all output errors is returned. MAE output is non-negative floating point. The best value is 0.0. Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values') array([ 0.5, 1. ]) >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.849... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0) if isinstance(multioutput, string_types): if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def mean_squared_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean squared error regression loss Read more in the :ref:`User Guide <mean_squared_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... >>> mean_squared_error(y_true, y_pred, multioutput='raw_values') ... # doctest: +ELLIPSIS array([ 0.416..., 1. ]) >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.824... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average((y_true - y_pred) ** 2, axis=0, weights=sample_weight) if isinstance(multioutput, string_types): if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def mean_squared_log_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean squared logarithmic error regression loss Read more in the :ref:`User Guide <mean_squared_log_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] \ or array-like of shape = (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors when the input is of multioutput format. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. Examples -------- >>> from sklearn.metrics import mean_squared_log_error >>> y_true = [3, 5, 2.5, 7] >>> y_pred = [2.5, 5, 4, 8] >>> mean_squared_log_error(y_true, y_pred) # doctest: +ELLIPSIS 0.039... >>> y_true = [[0.5, 1], [1, 2], [7, 6]] >>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]] >>> mean_squared_log_error(y_true, y_pred) # doctest: +ELLIPSIS 0.044... >>> mean_squared_log_error(y_true, y_pred, multioutput='raw_values') ... # doctest: +ELLIPSIS array([ 0.004..., 0.083...]) >>> mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.060... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) if not (y_true >= 0).all() and not (y_pred >= 0).all(): raise ValueError("Mean Squared Logarithmic Error cannot be used when " "targets contain negative values.") return mean_squared_error(np.log(y_true + 1), np.log(y_pred + 1), sample_weight, multioutput) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Read more in the :ref:`User Guide <median_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred, _ = _check_reg_targets(y_true, y_pred, 'uniform_average') if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Read more in the :ref:`User Guide <explained_variance_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- score : float or ndarray of floats The explained variance or ndarray if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') ... # doctest: +ELLIPSIS 0.983... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) y_diff_avg = np.average(y_true - y_pred, weights=sample_weight, axis=0) numerator = np.average((y_true - y_pred - y_diff_avg) ** 2, weights=sample_weight, axis=0) y_true_avg = np.average(y_true, weights=sample_weight, axis=0) denominator = np.average((y_true - y_true_avg) ** 2, weights=sample_weight, axis=0) nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(y_true.shape[1]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if isinstance(multioutput, string_types): if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing to np.average() None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights) def r2_score(y_true, y_pred, sample_weight=None, multioutput="uniform_average"): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Read more in the :ref:`User Guide <r2_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or None or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default is "uniform_average". 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. .. versionchanged:: 0.19 Default value of multioutput is 'uniform_average'. Returns ------- z : float or ndarray of floats The R^2 score or ndarray of scores if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <https://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred, multioutput='variance_weighted') ... # doctest: +ELLIPSIS 0.938... >>> y_true = [1,2,3] >>> y_pred = [1,2,3] >>> r2_score(y_true, y_pred) 1.0 >>> y_true = [1,2,3] >>> y_pred = [2,2,2] >>> r2_score(y_true, y_pred) 0.0 >>> y_true = [1,2,3] >>> y_pred = [3,2,1] >>> r2_score(y_true, y_pred) -3.0 """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(axis=0, dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(axis=0, dtype=np.float64) nonzero_denominator = denominator != 0 nonzero_numerator = numerator != 0 valid_score = nonzero_denominator & nonzero_numerator output_scores = np.ones([y_true.shape[1]]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if isinstance(multioutput, string_types): if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator # avoid fail on constant y or one-element arrays if not np.any(nonzero_denominator): if not np.any(nonzero_numerator): return 1.0 else: return 0.0 else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights)
bsd-3-clause
capturePointer/vigra
vigranumpy/examples/grid_graph_shortestpath.py
8
3978
import vigra import vigra.graphs as vigraph import pylab import numpy np=numpy import sys import matplotlib import pylab as plt import math from matplotlib.widgets import Slider, Button, RadioButtons def makeWeights(gamma): global hessian,gradmag,gridGraph print "hessian",hessian.min(),hessian.max() print "raw ",raw.min(),raw.max() wImg= numpy.exp((gradmag**0.5)*gamma*-1.0)#**0.5 wImg = numpy.array(wImg).astype(numpy.float32) w=vigra.graphs.implicitMeanEdgeMap(gridGraph,wImg) return w def makeVisuImage(path,img): coords = (path[:,0],path[:,1]) visuimg =img.copy() iR=visuimg[:,:,0] iG=visuimg[:,:,1] iB=visuimg[:,:,2] iR[coords]=255 iG[coords]=0 iB[coords]=0 visuimg-=visuimg.min() visuimg/=visuimg.max() return visuimg f = '100075.jpg' f = '69015.jpg' #f = "/media/tbeier/GSP1RMCPRFR/iso.03530.png" img = vigra.impex.readImage(f) print img.shape if(img.shape[2]==1): img = numpy.concatenate([img]*3,axis=2) imgLab = img imgLab = vigra.taggedView(imgLab,'xyc') else: imgLab = vigra.colors.transform_RGB2Lab(img) sigma = 1.0 imgLab-=imgLab.min() imgLab/=imgLab.max() imgLab*=255 img-=img.min() img/=img.max() img*=255 print imgLab.shape print "interpolate image" imgLabSmall = imgLab # make a few edge weights gradmag = numpy.squeeze(vigra.filters.gaussianGradientMagnitude(imgLabSmall,sigma)) hessian = numpy.squeeze(vigra.filters.hessianOfGaussianEigenvalues(imgLabSmall[:,:,0],sigma))[:,:,0] hessian-=hessian.min() raw = 256-imgLabSmall[:,:,0].copy() gridGraph = vigraph.gridGraph(imgLab.shape[:2],False) weights = makeWeights(3.0) pathFinder = vigraph.ShortestPathPathDijkstra(gridGraph) visuimg =img.copy() ax = plt.gca() fig = plt.gcf() visuimg-=visuimg.min() visuimg/=visuimg.max() implot = ax.imshow(numpy.swapaxes(visuimg,0,1),cmap='gray') clickList=[] frozen = False axslider = plt.axes([0.0, 0.00, 0.4, 0.075]) axfreeze = plt.axes([0.6, 0.00, 0.1, 0.075]) axunfreeze = plt.axes([0.8, 0.00, 0.1, 0.075]) bfreeze = Button(axfreeze, 'freeze') bunfreeze = Button(axunfreeze, 'unfrease and clear') sgamma = Slider(axslider, 'gamma', 0.01, 5.0, valinit=1.0) def onclick(event): global clickList global weights global img if event.xdata != None and event.ydata != None: xRaw,yRaw = event.xdata,event.ydata if not frozen and xRaw >=0.0 and yRaw>=0.0 and xRaw<img.shape[0] and yRaw<img.shape[1]: x,y = long(math.floor(event.xdata)),long(math.floor(event.ydata)) clickList.append((x,y)) if len(clickList)==2: source = gridGraph.coordinateToNode(clickList[0]) target = gridGraph.coordinateToNode(clickList[1]) weights = makeWeights(sgamma.val) #path = pathFinder.run(weights, source,target).path(pathType='coordinates') path = pathFinder.run(weights, source).path(pathType='coordinates',target=target) visuimg = makeVisuImage(path,img) implot.set_data(numpy.swapaxes(visuimg,0,1)) plt.draw() def freeze(event): global frozen frozen=True def unfreeze(event): global frozen,clickList frozen=False clickList = [] def onslide(event): global img,gradmag,weights,clickList,sgamma weights = makeWeights(sgamma.val) print "onslide",clickList if len(clickList)>=2: print "we have path" source = gridGraph.coordinateToNode(clickList[0]) target = gridGraph.coordinateToNode(clickList[1]) path = pathFinder.run(weights, source,target).path(pathType='coordinates') visuimg = makeVisuImage(path,img) implot.set_data(numpy.swapaxes(visuimg,0,1)) plt.draw() bfreeze.on_clicked(freeze) bunfreeze.on_clicked(unfreeze) sgamma.on_changed(onslide) cid = fig.canvas.mpl_connect('button_press_event', onclick) plt.show()
mit
trungnt13/scikit-learn
examples/linear_model/plot_ols.py
220
1940
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Linear Regression Example ========================================================= This example uses the only the first feature of the `diabetes` dataset, in order to illustrate a two-dimensional plot of this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, the residual sum of squares and the variance score are also calculated. """ print(__doc__) # Code source: Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # The coefficients print('Coefficients: \n', regr.coef_) # The mean square error print("Residual sum of squares: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
anirudhjayaraman/scikit-learn
sklearn/utils/tests/test_extmath.py
70
16531
# Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis Engemann <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import linalg from scipy import stats from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.extmath import density from sklearn.utils.extmath import logsumexp from sklearn.utils.extmath import norm, squared_norm from sklearn.utils.extmath import randomized_svd from sklearn.utils.extmath import row_norms from sklearn.utils.extmath import weighted_mode from sklearn.utils.extmath import cartesian from sklearn.utils.extmath import log_logistic from sklearn.utils.extmath import fast_dot, _fast_dot from sklearn.utils.extmath import svd_flip from sklearn.utils.extmath import _batch_mean_variance_update from sklearn.utils.extmath import _deterministic_vector_sign_flip from sklearn.utils.extmath import softmax from sklearn.datasets.samples_generator import make_low_rank_matrix def test_density(): rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 5)) X[1, 2] = 0 X[5, 3] = 0 X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_coo = sparse.coo_matrix(X) X_lil = sparse.lil_matrix(X) for X_ in (X_csr, X_csc, X_coo, X_lil): assert_equal(density(X_), density(X)) def test_uniform_weights(): # with uniform weights, results should be identical to stats.mode rng = np.random.RandomState(0) x = rng.randint(10, size=(10, 5)) weights = np.ones(x.shape) for axis in (None, 0, 1): mode, score = stats.mode(x, axis) mode2, score2 = weighted_mode(x, weights, axis) assert_true(np.all(mode == mode2)) assert_true(np.all(score == score2)) def test_random_weights(): # set this up so that each row should have a weighted mode of 6, # with a score that is easily reproduced mode_result = 6 rng = np.random.RandomState(0) x = rng.randint(mode_result, size=(100, 10)) w = rng.random_sample(x.shape) x[:, :5] = mode_result w[:, :5] += 1 mode, score = weighted_mode(x, w, axis=1) assert_array_equal(mode, mode_result) assert_array_almost_equal(score.ravel(), w[:, :5].sum(1)) def test_logsumexp(): # Try to add some smallish numbers in logspace x = np.array([1e-40] * 1000000) logx = np.log(x) assert_almost_equal(np.exp(logsumexp(logx)), x.sum()) X = np.vstack([x, x]) logX = np.vstack([logx, logx]) assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0)) assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1)) def test_randomized_svd_low_rank(): # Check that extmath.randomized_svd is consistent with linalg.svd n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X of approximate effective rank `rank` and no noise # component (very structured signal): X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method U, s, V = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method Ua, sa, Va = randomized_svd(X, k) assert_equal(Ua.shape, (n_samples, k)) assert_equal(sa.shape, (k,)) assert_equal(Va.shape, (k, n_features)) # ensure that the singular values of both methods are equal up to the real # rank of the matrix assert_almost_equal(s[:k], sa) # check the singular vectors too (while not checking the sign) assert_almost_equal(np.dot(U[:, :k], V[:k, :]), np.dot(Ua, Va)) # check the sparse matrix representation X = sparse.csr_matrix(X) # compute the singular values of X using the fast approximate method Ua, sa, Va = randomized_svd(X, k) assert_almost_equal(s[:rank], sa[:rank]) def test_norm_squared_norm(): X = np.random.RandomState(42).randn(50, 63) X *= 100 # check stability X += 200 assert_almost_equal(np.linalg.norm(X.ravel()), norm(X)) assert_almost_equal(norm(X) ** 2, squared_norm(X), decimal=6) assert_almost_equal(np.linalg.norm(X), np.sqrt(squared_norm(X)), decimal=6) def test_row_norms(): X = np.random.RandomState(42).randn(100, 100) sq_norm = (X ** 2).sum(axis=1) assert_array_almost_equal(sq_norm, row_norms(X, squared=True), 5) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X)) Xcsr = sparse.csr_matrix(X, dtype=np.float32) assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True), 5) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr)) def test_randomized_svd_low_rank_with_noise(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X wity structure approximate rank `rank` and an # important noisy component X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.5, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method # without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.05) # compute the singular values of X using the fast approximate method with # iterated power method _, sap, _ = randomized_svd(X, k, n_iter=5) # the iterated power method is helping getting rid of the noise: assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_infinite_rank(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # let us try again without 'low_rank component': just regularly but slowly # decreasing singular values: the rank of the data matrix is infinite X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=1.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method # without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.1) # compute the singular values of X using the fast approximate method with # iterated power method _, sap, _ = randomized_svd(X, k, n_iter=5) # the iterated power method is still managing to get most of the structure # at the requested rank assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_transpose_consistency(): # Check that transposing the design matrix has limit impact n_samples = 100 n_features = 500 rank = 4 k = 10 X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.5, random_state=0) assert_equal(X.shape, (n_samples, n_features)) U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False, random_state=0) U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True, random_state=0) U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose='auto', random_state=0) U4, s4, V4 = linalg.svd(X, full_matrices=False) assert_almost_equal(s1, s4[:k], decimal=3) assert_almost_equal(s2, s4[:k], decimal=3) assert_almost_equal(s3, s4[:k], decimal=3) assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]), decimal=2) assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]), decimal=2) # in this case 'auto' is equivalent to transpose assert_almost_equal(s2, s3) def test_svd_flip(): # Check that svd_flip works in both situations, and reconstructs input. rs = np.random.RandomState(1999) n_samples = 20 n_features = 10 X = rs.randn(n_samples, n_features) # Check matrix reconstruction U, S, V = linalg.svd(X, full_matrices=False) U1, V1 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U1 * S, V1), X, decimal=6) # Check transposed matrix reconstruction XT = X.T U, S, V = linalg.svd(XT, full_matrices=False) U2, V2 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U2 * S, V2), XT, decimal=6) # Check that different flip methods are equivalent under reconstruction U_flip1, V_flip1 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U_flip1 * S, V_flip1), XT, decimal=6) U_flip2, V_flip2 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U_flip2 * S, V_flip2), XT, decimal=6) def test_randomized_svd_sign_flip(): a = np.array([[2.0, 0.0], [0.0, 1.0]]) u1, s1, v1 = randomized_svd(a, 2, flip_sign=True, random_state=41) for seed in range(10): u2, s2, v2 = randomized_svd(a, 2, flip_sign=True, random_state=seed) assert_almost_equal(u1, u2) assert_almost_equal(v1, v2) assert_almost_equal(np.dot(u2 * s2, v2), a) assert_almost_equal(np.dot(u2.T, u2), np.eye(2)) assert_almost_equal(np.dot(v2.T, v2), np.eye(2)) def test_cartesian(): # Check if cartesian product delivers the right results axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7])) true_out = np.array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) out = cartesian(axes) assert_array_equal(true_out, out) # check single axis x = np.arange(3) assert_array_equal(x[:, np.newaxis], cartesian((x,))) def test_logistic_sigmoid(): # Check correctness and robustness of logistic sigmoid implementation naive_logistic = lambda x: 1 / (1 + np.exp(-x)) naive_log_logistic = lambda x: np.log(naive_logistic(x)) x = np.linspace(-2, 2, 50) assert_array_almost_equal(log_logistic(x), naive_log_logistic(x)) extreme_x = np.array([-100., 100.]) assert_array_almost_equal(log_logistic(extreme_x), [-100, 0]) def test_fast_dot(): # Check fast dot blas wrapper function if fast_dot is np.dot: return rng = np.random.RandomState(42) A = rng.random_sample([2, 10]) B = rng.random_sample([2, 10]) try: linalg.get_blas_funcs(['gemm'])[0] has_blas = True except (AttributeError, ValueError): has_blas = False if has_blas: # Test _fast_dot for invalid input. # Maltyped data. for dt1, dt2 in [['f8', 'f4'], ['i4', 'i4']]: assert_raises(ValueError, _fast_dot, A.astype(dt1), B.astype(dt2).T) # Malformed data. ## ndim == 0 E = np.empty(0) assert_raises(ValueError, _fast_dot, E, E) ## ndim == 1 assert_raises(ValueError, _fast_dot, A, A[0]) ## ndim > 2 assert_raises(ValueError, _fast_dot, A.T, np.array([A, A])) ## min(shape) == 1 assert_raises(ValueError, _fast_dot, A, A[0, :][None, :]) # test for matrix mismatch error assert_raises(ValueError, _fast_dot, A, A) # Test cov-like use case + dtypes. for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) # col < row C = np.dot(A.T, A) C_ = fast_dot(A.T, A) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A, B.T) C_ = fast_dot(A, B.T) assert_almost_equal(C, C_, decimal=5) # Test square matrix * rectangular use case. A = rng.random_sample([2, 2]) for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) C = np.dot(A, B) C_ = fast_dot(A, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) if has_blas: for x in [np.array([[d] * 10] * 2) for d in [np.inf, np.nan]]: assert_raises(ValueError, _fast_dot, x, x.T) def test_incremental_variance_update_formulas(): # Test Youngs and Cramer incremental variance formulas. # Doggie data from http://www.mathsisfun.com/data/standard-deviation.html A = np.array([[600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300]]).T idx = 2 X1 = A[:idx, :] X2 = A[idx:, :] old_means = X1.mean(axis=0) old_variances = X1.var(axis=0) old_sample_count = X1.shape[0] final_means, final_variances, final_count = _batch_mean_variance_update( X2, old_means, old_variances, old_sample_count) assert_almost_equal(final_means, A.mean(axis=0), 6) assert_almost_equal(final_variances, A.var(axis=0), 6) assert_almost_equal(final_count, A.shape[0]) def test_incremental_variance_ddof(): # Test that degrees of freedom parameter for calculations are correct. rng = np.random.RandomState(1999) X = rng.randn(50, 10) n_samples, n_features = X.shape for batch_size in [11, 20, 37]: steps = np.arange(0, X.shape[0], batch_size) if steps[-1] != X.shape[0]: steps = np.hstack([steps, n_samples]) for i, j in zip(steps[:-1], steps[1:]): batch = X[i:j, :] if i == 0: incremental_means = batch.mean(axis=0) incremental_variances = batch.var(axis=0) # Assign this twice so that the test logic is consistent incremental_count = batch.shape[0] sample_count = batch.shape[0] else: result = _batch_mean_variance_update( batch, incremental_means, incremental_variances, sample_count) (incremental_means, incremental_variances, incremental_count) = result sample_count += batch.shape[0] calculated_means = np.mean(X[:j], axis=0) calculated_variances = np.var(X[:j], axis=0) assert_almost_equal(incremental_means, calculated_means, 6) assert_almost_equal(incremental_variances, calculated_variances, 6) assert_equal(incremental_count, sample_count) def test_vector_sign_flip(): # Testing that sign flip is working & largest value has positive sign data = np.random.RandomState(36).randn(5, 5) max_abs_rows = np.argmax(np.abs(data), axis=1) data_flipped = _deterministic_vector_sign_flip(data) max_rows = np.argmax(data_flipped, axis=1) assert_array_equal(max_abs_rows, max_rows) signs = np.sign(data[range(data.shape[0]), max_abs_rows]) assert_array_equal(data, data_flipped * signs[:, np.newaxis]) def test_softmax(): rng = np.random.RandomState(0) X = rng.randn(3, 5) exp_X = np.exp(X) sum_exp_X = np.sum(exp_X, axis=1).reshape((-1, 1)) assert_array_almost_equal(softmax(X), exp_X / sum_exp_X)
bsd-3-clause
SuperJohn/scikit-class
grid_search.py
6
1243
import pandas as pd import numpy as np df = pd.read_csv('tweets.csv') target = df['is_there_an_emotion_directed_at_a_brand_or_product'] text = df['tweet_text'] fixed_text = text[pd.notnull(text)] fixed_target = target[pd.notnull(text)] from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 p = Pipeline(steps=[('counts', CountVectorizer()), ('feature_selection', SelectKBest(chi2)), ('multinomialnb', MultinomialNB())]) from sklearn.grid_search import GridSearchCV parameters = { 'counts__max_df': (0.5, 0.75, 1.0), 'counts__min_df': (1, 2, 3), 'counts__ngram_range': ((1,1), (1,2)), # 'feature_selection__k': (1000, 10000, 100000) } grid_search = GridSearchCV(p, parameters, n_jobs=1, verbose=1, cv=10) grid_search.fit(fixed_text, fixed_target) print("Best score: %0.3f" % grid_search.best_score_) print("Best parameters set:") best_parameters = grid_search.best_estimator_.get_params() for param_name in sorted(parameters.keys()): print("\t%s: %r" % (param_name, best_parameters[param_name]))
gpl-2.0
radiasoft/radtrack
experimental/hermite/testHermite02.py
1
6919
# # Test executable #2 to exercise the Gauss-Hermite class # Here, we fit a Gauss-Hermite expansion to an arbitrary profile. # The SciPy least squares method is used. # # Copyright (c) 2013 RadiaBeam Technologies. All rights reserved # # python imports import math # SciPy imports import numpy as np import matplotlib.pyplot as plt # RadiaBeam imports from radtrack.fields import RbGaussHermiteMN # SciPy imports import numpy as np import matplotlib.pyplot as plt from scipy.optimize import leastsq # --------------------------------------------------------- # Make sure the residual() method has access to necessary # 'global' data: global mMax, nMax, numFuncCalls, hermiteSeries # Specify the central laser wavelength lambda0 = 10.e-06 # Need a place holder for the waist size w0 = 10.*lambda0 # Define the maximum order(s) of the Hermite expansion mMax = 0 # horizontal nMax = 0 # vertical # Create an instance of the Hermite expansion class hermiteSeries = RbGaussHermiteMN.RbGaussHermiteMN(lambda0,w0,w0,0.) # Specify the desired grid size numX = 50 numY = 50 nCells = numX * numY # load up the x,y locations of the mesh xMin = -4.*w0 xMax = 4.*w0 yMin = xMin yMax = xMax xArr = np.zeros(numX) for iLoop in range(numX): xArr[iLoop] = xMin + iLoop * (xMax-xMin) / (numX-1) yArr = np.zeros(numY) for jLoop in range(numY): yArr[jLoop] = yMin + jLoop * (yMax-yMin) / (numY-1) xGrid = np.zeros((numX, numY)) yGrid = np.zeros((numX, numY)) for iLoop in range(numX): for jLoop in range(numY): xGrid[iLoop,jLoop] = xMin + iLoop * (xMax-xMin) / (numX-1) yGrid[iLoop,jLoop] = yMin + jLoop * (yMax-yMin) / (numY-1) # Create transverse field profile (#1 simple Gaussian) ExGrid = np.zeros((numX, numY)) exMax = 1.0e+09 # this gets scaled out before plotting/fitting phi1 = math.pi/17.5 xs1 = 1.07 * w0 ys1 = -0.98 * w0 waistx = 0.9 * w0 waisty = 1.8 * w0 maxValue = 0. for iLoop in range(numX): for jLoop in range(numY): xArg = (xArr[iLoop]-xs1)*math.cos(phi1) + (yArr[jLoop]-ys1)*math.sin(phi1) yArg = -(xArr[iLoop]-xs1)*math.sin(phi1) + (yArr[jLoop]-ys1)*math.cos(phi1) ExGrid[iLoop, jLoop] = exMax*math.exp(-(xArg/waistx)**2)*math.exp(-(yArg/waisty)**2) maxValue = max(ExGrid[iLoop, jLoop], maxValue) # Divide out the maximum value ExGrid /= maxValue # Calculate residuals for the least squares analysis # params - array of fitting parameters numFuncCalls = 0 def residuals(params, e, x, y): global mMax, nMax, numFuncCalls, hermiteSeries hermiteSeries.setWaistX(params[0]) hermiteSeries.setWaistY(params[1]) hermiteSeries.setWRotAngle(params[2]) hermiteSeries.setXShift(params[3]) hermiteSeries.setYShift(params[4]) hermiteSeries.setMCoef(params[5:mMax+6]) hermiteSeries.setNCoef(params[mMax+6:mMax+nMax+7]) # let the user know what's going on if many function calls are required if numFuncCalls == 0: print ' ' print 'Number of calls to method residual():' numFuncCalls += 1 if 10*int(numFuncCalls/10.) == numFuncCalls: print ' ', numFuncCalls return e-hermiteSeries.evaluateEx(x,y,0.,0.) # plot the transverse field profile ncLevels = 12 vLevels = [0.001, 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.05] plt.figure(1) cs1 = plt.contourf(xGrid, yGrid, ExGrid, vLevels) plt.colorbar(cs1) plt.axis([xMin, xMax, yMin, yMax]) plt.xlabel('x [m]') plt.ylabel('y [m]') plt.title('x-section #1: Gaussian w/ slight asymmetry & rotation') # choose initial guesses for all fitting parameters # also, specify the scale of variations for each paramGuess = np.zeros(mMax+nMax+7) paramGuess[0] = 1.2*w0 # horizontal waist paramGuess[1] = 0.9*w0 # vertical waist paramGuess[2] = 0.0 # rotation angle paramGuess[3] = 0.0 # horizontal shift paramGuess[4] = 0.0 # vertical shift paramGuess[5] = 1.0 # 0th horiz. coeff for iLoop in range(6,mMax+6): paramGuess[iLoop] = 0.0 # other horiz. coeff's paramGuess[mMax+6] = 1.0 # 0th vertical coeff for iLoop in range(mMax+7,mMax+nMax+7): paramGuess[iLoop] = 0.0 # other vertical coeff's # invoke the least squares algorithm result = leastsq(residuals, paramGuess, \ args=(np.reshape(ExGrid,nCells), \ np.reshape(xGrid,nCells), \ np.reshape(yGrid,nCells)), \ full_output=True, ftol=1e-6, \ maxfev=200) parFit = result[0] nEvals = result[2]['nfev'] resVals = result[2]['fvec'] message = result[3] iError = result[4] print ' ' print ' iError = ', iError print ' message = ', message print ' nEvals = ', nEvals print ' resVals = ', resVals # load the results into named variables (for clarity) wxFit = parFit[0] wyFit = parFit[1] tmpPhi = parFit[2] phiFit = tmpPhi - 2.*math.pi*int(0.5*tmpPhi/math.pi) if phiFit > 2.*math.pi: phiFit -= 2.*math.pi if phiFit < 0.: phiFit += 2.*math.pi xsFit = parFit[3] ysFit = parFit[4] mCFit = np.zeros(mMax+1) mCFit[0:mMax+1] = parFit[5:mMax+6] nCFit = np.zeros(nMax+1) nCFit[0:nMax+1] = parFit[mMax+6:mMax+nMax+7] # check the results print ' ' print 'The least squares minimimization has completed:' print ' wx = ', waistx, '; ', wxFit print ' wy = ', waisty, '; ', wyFit print ' phi = ', phi1, '; ', phiFit print ' xS = ', xs1, '; ', xsFit print ' yS = ', ys1, '; ', ysFit print ' C0x * C0y = 1.0; ', mCFit[0]*nCFit[0] # print ' C1x = 0.0 ; ', mCFit[1] # print ' C2x = 0.0 ; ', mCFit[2] # print ' C3x = 0.0 ; ', mCFit[3] # print ' C4x = 0.0 ; ', mCFit[4] # print ' C1y = 0.0 ; ', nCFit[1] # print ' C2y = 0.0 ; ', nCFit[2] # print ' C3y = 0.0 ; ', nCFit[3] # print ' C4y = 0.0 ; ', nCFit[4] # load up the fitted electric field at all grid points hermiteSeries.setWaistX(wxFit) hermiteSeries.setWaistY(wyFit) hermiteSeries.setWRotAngle(phiFit) hermiteSeries.setXShift(xsFit) hermiteSeries.setYShift(ysFit) hermiteSeries.setMCoef(mCFit) hermiteSeries.setNCoef(nCFit) ExFit = np.reshape(hermiteSeries.evaluateEx( np.reshape(xGrid,nCells), \ np.reshape(yGrid,nCells), 0., 0.), \ (numX, numY)) # plot the fitted transverse field profile plt.figure(2) cs2 = plt.contourf(xGrid, yGrid, ExFit, vLevels) plt.colorbar(cs2) plt.axis([xMin, xMax, yMin, yMax]) plt.xlabel('x [m]') plt.ylabel('y [m]') plt.title('x-section #1: Result of the least squares fit') # plot the transverse profile of the difference plt.figure(3) cs3 = plt.contourf(xGrid, yGrid, ExFit-ExGrid, ncLevels) plt.colorbar(cs3) plt.axis([xMin, xMax, yMin, yMax]) plt.xlabel('x [m]') plt.ylabel('y [m]') plt.title('x-section #1: Absolute differences in Ex') plt.show()
apache-2.0
ritviksahajpal/Py6S
Py6S/SixSHelpers/all_angles.py
1
13499
# This file is part of Py6S. # # Copyright 2012 Robin Wilson and contributors listed in the CONTRIBUTORS file. # # Py6S is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Py6S is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Py6S. If not, see <http://www.gnu.org/licenses/>. import numpy as np from matplotlib.pyplot import * import itertools from multiprocessing.dummy import Pool import copy class Angles: @classmethod def run360(cls, s, solar_or_view, na=36, nz=10, output_name=None, n=None): """Runs Py6S for lots of angles to produce a polar contour plot. The calls to 6S for each angle will be run in parallel, making this function far faster than simply running a for loop over all of the angles. Arguments: * ``s`` -- A :class:`.SixS` instance configured with all of the parameters you want to run the simulation with * ``solar_or_view`` -- Set to ``'solar'`` if you want to iterate over the solar zenith/azimuth angles or ``'view'`` if you want to iterate over the view zenith/azimuth angles * ``output_name`` -- (Optional) The name of the output from the 6S simulation to plot. This should be a string containing exactly what you would put after ``s.outputs`` to print the output. For example `pixel_reflectance`. * ``na`` -- (Optional) The number of azimuth angles to iterate over to generate the data for the plot (defaults to 36, giving data every 10 degrees) * ``nz`` -- (Optional) The number of zenith angles to iterate over to generate the data for the plot (defaults to 10, giving data every 10 degrees) * ``n`` -- (Optional) The number of threads to run in parallel. This defaults to the number of CPU cores in your system, and is unlikely to need changing. For example:: s = SixS() s.ground_reflectance = GroundReflectance.HomogeneousWalthall(0.48, 0.50, 2.95, 0.6) s.geometry.solar_z = 30 s.geometry.solar_a = 0 data = SixSHelpers.Angles.run360(s, 'view', output_name='pixel_reflectance') """ results = [] azimuths = np.linspace(0, 360, na) zeniths = np.linspace(0, 89, nz) def f(args): azimuth, zenith = args s.outputs = None a = copy.deepcopy(s) if solar_or_view == 'view': a.geometry.view_a = azimuth a.geometry.view_z = zenith elif solar_or_view == 'solar': a.geometry.solar_a = azimuth a.geometry.solar_z = zenith else: raise ParameterException("all_angles", "You must choose to vary either the solar or view angle.") a.run() if output_name is None: return a.outputs else: return getattr(a.outputs, output_name) # Run the map if n is None: pool = Pool() else: pool = Pool(n) print "Running for many angles - this may take a long time" results = pool.map(f, itertools.product(azimuths, zeniths)) results = np.array(results) return (results, azimuths, zeniths, s.geometry.solar_a, s.geometry.solar_z) @classmethod def plot360(cls, data, output_name=None, show_sun=True, colorbarlabel=None): """Plot the data returned from :meth:`run360` as a polar contour plot, selecting an output if required. Arguments: * ``data`` -- The return value from :meth:`run360` * ``output_name`` -- (Optional) The output name to extract (eg. "pixel_reflectance") if the given data is provided as instances of the Outputs class * ``show_sun`` -- (Optional) Whether to show the location of the sun on the resulting polar plot. * ``colorbarlabel`` -- (Optional) The label to use on the color bar shown with the plot """ results, azimuths, zeniths, sa, sz = data if not isinstance(results[0], float): # The results are not floats, so a float must be extracted from the output if output_name is None: raise ParameterException("output_name", "You must specify an output name when plotting data which is given as Outputs instances") results = cls.extract_output(results, output_name) fig, ax, cax = cls.plot_polar_contour(results, azimuths, zeniths, colorbarlabel=colorbarlabel) if show_sun: ax.autoscale(False) ax.plot(np.radians(sa), sz, '*', markersize=20, markerfacecolor='yellow', markeredgecolor='red') show() return fig, ax @classmethod def run_and_plot_360(cls, s, solar_or_view, output_name, show_sun=True, na=36, nz=10, colorbarlabel=None): """Runs Py6S for lots of angles to produce a polar contour plot. Arguments: * ``s`` -- A :class:`.SixS` instance configured with all of the parameters you want to run the simulation with * ``solar_or_view`` -- Set to ``'solar'`` if you want to iterate over the solar zenith/azimuth angles or ``'view'`` if you want to iterate over the view zenith/azimuth angles * ``output_name`` -- The name of the output from SixS to plot. This should be a string containing exactly what you would put after ``s.outputs`` to print the output. For example `pixel_reflectance`. * ``show_sun`` -- (Optional) Whether to place a marker showing the location of the sun on the contour plot (defaults to True, has no effect when ``solar_or_view`` set to ``'solar'``.) * ``na`` -- (Optional) The number of azimuth angles to iterate over to generate the data for the plot (defaults to 36, giving data every 10 degrees) * ``nz`` -- (Optional) The number of zenith angles to iterate over to generate the data for the plot (defaults to 10, giving data every 10 degrees) * ``colorbarlabel`` -- (Optional) The label to use on the color bar shown with the plot For example:: s = SixS() s.ground_reflectance = GroundReflectance.HomogeneousWalthall(0.48, 0.50, 2.95, 0.6) s.geometry.solar_z = 30 s.geometry.solar_a = 0 SixSHelpers.Angles.run_and_plot_360(s, 'view', 'pixel_reflectance') """ if solar_or_view == 'solar': show_sun = False res = cls.run360(s, solar_or_view, na, nz) plot_res = cls.plot360(res, output_name, show_sun, colorbarlabel=colorbarlabel) return plot_res @classmethod def extract_output(cls, results, output_name): """Extracts data for one particular SixS output from a list of SixS.Outputs instances. Basically just a wrapper around a list comprehension. Arguments: * ``results`` -- A list of :class:`.SixS.Outputs` instances * ``output_name`` -- The name of the output to extract. This should be a string containing whatever is put after the `s.outputs` when printing the output, for example `'pixel_reflectance'`. """ results_output = [getattr(r, output_name) for r in results] return results_output @classmethod def plot_polar_contour(cls, values, azimuths, zeniths, filled=True, colorbarlabel=""): """Plot a polar contour plot, with 0 degrees at the North. Arguments: * ``values`` -- A list (or other iterable - eg. a NumPy array) of the values to plot on the contour plot (the `z` values) * ``azimuths`` -- A list of azimuths (in degrees) * ``zeniths`` -- A list of zeniths (that is, radii) * ``filled`` -- (Optional) Whether to plot a filled contour plot, or just the contours (defaults to filled) * ``yaxislabel`` -- (Optional) The label to use for the colorbar * ``colorbarlabel`` -- (Optional) The label to use on the color bar shown with the plot The shapes of these lists are important, and are designed for a particular use case (but should be more generally useful). The values list should be `len(azimuths) * len(zeniths)` long with data for the first azimuth for all the zeniths, then the second azimuth for all the zeniths etc. This is designed to work nicely with data that is produced using a loop as follows:: values = [] for azimuth in azimuths: for zenith in zeniths: # Do something and get a result values.append(result) After that code the azimuths, zeniths and values lists will be ready to be passed into this function. """ theta = np.radians(azimuths) zeniths = np.array(zeniths) values = np.array(values) values = values.reshape(len(azimuths), len(zeniths)) r, theta = np.meshgrid(zeniths, np.radians(azimuths)) fig, ax = subplots(subplot_kw=dict(projection='polar')) ax.set_theta_zero_location("N") ax.set_theta_direction(-1) if filled: cax = ax.contourf(theta, r, values, 30) else: cax = ax.contour(theta, r, values, 30) cb = fig.colorbar(cax) cb.set_label(colorbarlabel) return fig, ax, cax @classmethod def run_principal_plane(cls, s, output_name=None, n=None): """Runs the given 6S simulation to get the outputs for the solar principal plane. This function runs the simulation for all zenith angles in the azimuthal line of the sun. For example, if the solar azimuth is 90 degrees, this function will run simulations for:: Azimuth Zenith 90 85 90 80 90 75 90 70 90 65 90 60 90 55 ... .. 90 0 270 5 270 10 270 15 ... .. 270 80 270 85 The calls to 6S for each angle will be run in parallel, making this function far faster than simply running a for loop over each angle. Arguments: * ``s`` -- A :class:`.SixS` instance configured with all of the parameters you want to run the simulation with * ``output_name`` -- (Optional) The output name to extract (eg. "pixel_reflectance") if the given data is provided as instances of the Outputs class * ``n`` -- (Optional) The number of threads to run in parallel. This defaults to the number of CPU cores in your system, and is unlikely to need changing. Return values: A tuple containing zenith angles and the corresponding values or Outputs instances (depending on the arguments given). The zenith angles returned have been modified so that the zenith angles on the 'sun-side' are positive, and those on the other side (ie. past the vertical) are negative, for ease of plotting. """ # Get the solar azimuth and zenith angles from the SixS instance sa = s.geometry.solar_a # Compute the angles in the principal plane # Get the solar azimuth on the opposite side for the other half of the principal plane opp_sa = (sa + 180) % 360 # Calculate the first side (the solar zenith angle side) first_side_z = np.arange(85, -5, -5) first_side_a = np.repeat(sa, len(first_side_z)) # Calculate the other side temp = first_side_z[:-1] second_side_z = temp[::-1] # Reverse array second_side_a = np.repeat(opp_sa, len(second_side_z)) # Join the two sides together all_zeniths = np.hstack((first_side_z, second_side_z)) all_zeniths_for_return = np.hstack((first_side_z, -1 * second_side_z)) all_azimuths = np.hstack((first_side_a, second_side_a)) def f(arg): zenith, azimuth = arg s.outputs = None a = copy.deepcopy(s) a.geometry.view_z = zenith a.geometry.view_a = azimuth a.run() if output_name is None: return a.outputs else: return getattr(a.outputs, output_name) # Run the map if n is None: pool = Pool() else: pool = Pool(n) print "Running for many angles - this may take a long time" results = pool.map(f, zip(all_zeniths, all_azimuths)) results = np.array(results) results = np.array(results) return all_zeniths_for_return, results def plot_principal_plane(zeniths, values, y_axis_label): """Plot the results from a principal plane simulation (eg. a run of :meth:`.run_principal_plane`). Arguments: * ``zeniths`` -- A list of view zenith angles in degrees * ``values`` -- A list of simulated values for each of these angles * ``y_axis_label`` -- A string to use as the label for the y axis """ plot(zeniths, values) xlabel("View zenith angle (degrees)") ylabel(y_axis_label) show()
lgpl-3.0
wogsland/QSTK
build/lib.linux-x86_64-2.7/QSTK/qstkfeat/classes.py
8
1658
''' (c) 2011, 2012 Georgia Tech Research Corporation This source code is released under the New BSD license. Please see http://wiki.quantsoftware.org/index.php?title=QSTK_License for license details. Created on Nov 7, 2011 @author: John Cornwell @contact: [email protected] @summary: File containing various classification functions ''' # 3rd Party Imports import pandas as pand import numpy as np def class_fut_ret( d_data, i_lookforward=21, s_rel=None, b_use_open=False ): ''' @summary: Calculate classification, uses future returns @param d_data: Dictionary of data to use @param i_lookforward: Number of days to look in the future @param s_rel: Stock symbol that this should be relative to, ususally $SPX. @param b_use_open: If True, stock will be purchased at T+1 open, sold at T+i_lookforward close @return: DataFrame containing values ''' if b_use_open: df_val = d_data['open'].copy() else: df_val = d_data['close'].copy() na_val = df_val.values if b_use_open: na_val[:-(i_lookforward + 1), :] = ((na_val[i_lookforward + 1:, :] - na_val[1:-(i_lookforward), :]) / na_val[1:-(i_lookforward), :]) na_val[-(i_lookforward+1):, :] = np.nan else: na_val[:-i_lookforward, :] = ((na_val[i_lookforward:, :] - na_val[:-i_lookforward, :]) / na_val[:-i_lookforward, :]) na_val[-i_lookforward:, :] = np.nan return df_val if __name__ == '__main__': pass
bsd-3-clause
meduz/scikit-learn
examples/linear_model/plot_ransac.py
73
1859
""" =========================================== Robust linear model estimation using RANSAC =========================================== In this example we see how to robustly fit a linear model to faulty data using the RANSAC algorithm. """ import numpy as np from matplotlib import pyplot as plt from sklearn import linear_model, datasets n_samples = 1000 n_outliers = 50 X, y, coef = datasets.make_regression(n_samples=n_samples, n_features=1, n_informative=1, noise=10, coef=True, random_state=0) # Add outlier data np.random.seed(0) X[:n_outliers] = 3 + 0.5 * np.random.normal(size=(n_outliers, 1)) y[:n_outliers] = -3 + 10 * np.random.normal(size=n_outliers) # Fit line using all data model = linear_model.LinearRegression() model.fit(X, y) # Robustly fit linear model with RANSAC algorithm model_ransac = linear_model.RANSACRegressor(linear_model.LinearRegression()) model_ransac.fit(X, y) inlier_mask = model_ransac.inlier_mask_ outlier_mask = np.logical_not(inlier_mask) # Predict data of estimated models line_X = np.arange(-5, 5) line_y = model.predict(line_X[:, np.newaxis]) line_y_ransac = model_ransac.predict(line_X[:, np.newaxis]) # Compare estimated coefficients print("Estimated coefficients (true, normal, RANSAC):") print(coef, model.coef_, model_ransac.estimator_.coef_) lw = 2 plt.scatter(X[inlier_mask], y[inlier_mask], color='yellowgreen', marker='.', label='Inliers') plt.scatter(X[outlier_mask], y[outlier_mask], color='gold', marker='.', label='Outliers') plt.plot(line_X, line_y, color='navy', linestyle='-', linewidth=lw, label='Linear regressor') plt.plot(line_X, line_y_ransac, color='cornflowerblue', linestyle='-', linewidth=lw, label='RANSAC regressor') plt.legend(loc='lower right') plt.show()
bsd-3-clause
nagyistoce/kaggle-galaxies
try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense_pysexgen1_dup.py
7
17744
import numpy as np # import pandas as pd import theano import theano.tensor as T import layers import cc_layers import custom import load_data import realtime_augmentation as ra import time import csv import os import cPickle as pickle from datetime import datetime, timedelta # import matplotlib.pyplot as plt # plt.ion() # import utils BATCH_SIZE = 16 NUM_INPUT_FEATURES = 3 LEARNING_RATE_SCHEDULE = { 0: 0.04, 1800: 0.004, 2300: 0.0004, } MOMENTUM = 0.9 WEIGHT_DECAY = 0.0 CHUNK_SIZE = 10000 # 30000 # this should be a multiple of the batch size, ideally. NUM_CHUNKS = 2500 # 3000 # 1500 # 600 # 600 # 600 # 500 VALIDATE_EVERY = 20 # 12 # 6 # 6 # 6 # 5 # validate only every 5 chunks. MUST BE A DIVISOR OF NUM_CHUNKS!!! # else computing the analysis data does not work correctly, since it assumes that the validation set is still loaded. NUM_CHUNKS_NONORM = 1 # train without normalisation for this many chunks, to get the weights in the right 'zone'. # this should be only a few, just 1 hopefully suffices. GEN_BUFFER_SIZE = 1 # # need to load the full training data anyway to extract the validation set from it. # # alternatively we could create separate validation set files. # DATA_TRAIN_PATH = "data/images_train_color_cropped33_singletf.npy.gz" # DATA2_TRAIN_PATH = "data/images_train_color_8x_singletf.npy.gz" # DATA_VALIDONLY_PATH = "data/images_validonly_color_cropped33_singletf.npy.gz" # DATA2_VALIDONLY_PATH = "data/images_validonly_color_8x_singletf.npy.gz" # DATA_TEST_PATH = "data/images_test_color_cropped33_singletf.npy.gz" # DATA2_TEST_PATH = "data/images_test_color_8x_singletf.npy.gz" TARGET_PATH = "predictions/final/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense_pysexgen1_dup.csv" ANALYSIS_PATH = "analysis/final/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense_pysexgen1_dup.pkl" # FEATURES_PATTERN = "features/try_convnet_chunked_ra_b3sched.%s.npy" print "Set up data loading" # TODO: adapt this so it loads the validation data from JPEGs and does the processing realtime input_sizes = [(69, 69), (69, 69)] ds_transforms = [ ra.build_ds_transform(3.0, target_size=input_sizes[0]), ra.build_ds_transform(3.0, target_size=input_sizes[1]) + ra.build_augmentation_transform(rotation=45) ] num_input_representations = len(ds_transforms) augmentation_params = { 'zoom_range': (1.0 / 1.3, 1.3), 'rotation_range': (0, 360), 'shear_range': (0, 0), 'translation_range': (-4, 4), 'do_flip': True, } augmented_data_gen = ra.realtime_augmented_data_gen(num_chunks=NUM_CHUNKS, chunk_size=CHUNK_SIZE, augmentation_params=augmentation_params, ds_transforms=ds_transforms, target_sizes=input_sizes, processor_class=ra.LoadAndProcessPysexGen1CenteringRescaling) post_augmented_data_gen = ra.post_augment_brightness_gen(augmented_data_gen, std=0.5) train_gen = load_data.buffered_gen_mp(post_augmented_data_gen, buffer_size=GEN_BUFFER_SIZE) y_train = np.load("data/solutions_train.npy") train_ids = load_data.train_ids test_ids = load_data.test_ids # split training data into training + a small validation set num_train = len(train_ids) num_test = len(test_ids) num_valid = num_train // 10 # integer division num_train -= num_valid y_valid = y_train[num_train:] y_train = y_train[:num_train] valid_ids = train_ids[num_train:] train_ids = train_ids[:num_train] train_indices = np.arange(num_train) valid_indices = np.arange(num_train, num_train + num_valid) test_indices = np.arange(num_test) def create_train_gen(): """ this generates the training data in order, for postprocessing. Do not use this for actual training. """ data_gen_train = ra.realtime_fixed_augmented_data_gen(train_indices, 'train', ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes, processor_class=ra.LoadAndProcessFixedPysexGen1CenteringRescaling) return load_data.buffered_gen_mp(data_gen_train, buffer_size=GEN_BUFFER_SIZE) def create_valid_gen(): data_gen_valid = ra.realtime_fixed_augmented_data_gen(valid_indices, 'train', ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes, processor_class=ra.LoadAndProcessFixedPysexGen1CenteringRescaling) return load_data.buffered_gen_mp(data_gen_valid, buffer_size=GEN_BUFFER_SIZE) def create_test_gen(): data_gen_test = ra.realtime_fixed_augmented_data_gen(test_indices, 'test', ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes, processor_class=ra.LoadAndProcessFixedPysexGen1CenteringRescaling) return load_data.buffered_gen_mp(data_gen_test, buffer_size=GEN_BUFFER_SIZE) print "Preprocess validation data upfront" start_time = time.time() xs_valid = [[] for _ in xrange(num_input_representations)] for data, length in create_valid_gen(): for x_valid_list, x_chunk in zip(xs_valid, data): x_valid_list.append(x_chunk[:length]) xs_valid = [np.vstack(x_valid) for x_valid in xs_valid] xs_valid = [x_valid.transpose(0, 3, 1, 2) for x_valid in xs_valid] # move the colour dimension up print " took %.2f seconds" % (time.time() - start_time) print "Build model" l0 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[0][0], input_sizes[0][1]) l0_45 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[1][0], input_sizes[1][1]) l0r = layers.MultiRotSliceLayer([l0, l0_45], part_size=45, include_flip=True) l0s = cc_layers.ShuffleBC01ToC01BLayer(l0r) l1a = cc_layers.CudaConvnetConv2DLayer(l0s, n_filters=32, filter_size=6, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l1 = cc_layers.CudaConvnetPooling2DLayer(l1a, pool_size=2) l2a = cc_layers.CudaConvnetConv2DLayer(l1, n_filters=64, filter_size=5, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l2 = cc_layers.CudaConvnetPooling2DLayer(l2a, pool_size=2) l3a = cc_layers.CudaConvnetConv2DLayer(l2, n_filters=128, filter_size=3, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l3b = cc_layers.CudaConvnetConv2DLayer(l3a, n_filters=128, filter_size=3, pad=0, weights_std=0.1, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l3 = cc_layers.CudaConvnetPooling2DLayer(l3b, pool_size=2) l3s = cc_layers.ShuffleC01BToBC01Layer(l3) j3 = layers.MultiRotMergeLayer(l3s, num_views=4) # 2) # merge convolutional parts l4a = layers.DenseLayer(j3, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity) l4b = layers.FeatureMaxPoolingLayer(l4a, pool_size=2, feature_dim=1, implementation='reshape') l4c = layers.DenseLayer(l4b, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity) l4 = layers.FeatureMaxPoolingLayer(l4c, pool_size=2, feature_dim=1, implementation='reshape') # l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.0, dropout=0.5, nonlinearity=custom.clip_01) # nonlinearity=layers.identity) l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.1, dropout=0.5, nonlinearity=layers.identity) # l6 = layers.OutputLayer(l5, error_measure='mse') l6 = custom.OptimisedDivGalaxyOutputLayer(l5) # this incorporates the constraints on the output (probabilities sum to one, weighting, etc.) train_loss_nonorm = l6.error(normalisation=False) train_loss = l6.error() # but compute and print this! valid_loss = l6.error(dropout_active=False) all_parameters = layers.all_parameters(l6) all_bias_parameters = layers.all_bias_parameters(l6) xs_shared = [theano.shared(np.zeros((1,1,1,1), dtype=theano.config.floatX)) for _ in xrange(num_input_representations)] y_shared = theano.shared(np.zeros((1,1), dtype=theano.config.floatX)) learning_rate = theano.shared(np.array(LEARNING_RATE_SCHEDULE[0], dtype=theano.config.floatX)) idx = T.lscalar('idx') givens = { l0.input_var: xs_shared[0][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], l0_45.input_var: xs_shared[1][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], l6.target_var: y_shared[idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], } # updates = layers.gen_updates(train_loss, all_parameters, learning_rate=LEARNING_RATE, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY) updates_nonorm = layers.gen_updates_nesterov_momentum_no_bias_decay(train_loss_nonorm, all_parameters, all_bias_parameters, learning_rate=learning_rate, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY) updates = layers.gen_updates_nesterov_momentum_no_bias_decay(train_loss, all_parameters, all_bias_parameters, learning_rate=learning_rate, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY) train_nonorm = theano.function([idx], train_loss_nonorm, givens=givens, updates=updates_nonorm) train_norm = theano.function([idx], train_loss, givens=givens, updates=updates) compute_loss = theano.function([idx], valid_loss, givens=givens) # dropout_active=False compute_output = theano.function([idx], l6.predictions(dropout_active=False), givens=givens, on_unused_input='ignore') # not using the labels, so theano complains compute_features = theano.function([idx], l4.output(dropout_active=False), givens=givens, on_unused_input='ignore') print "Train model" start_time = time.time() prev_time = start_time num_batches_valid = x_valid.shape[0] // BATCH_SIZE losses_train = [] losses_valid = [] param_stds = [] for e in xrange(NUM_CHUNKS): print "Chunk %d/%d" % (e + 1, NUM_CHUNKS) chunk_data, chunk_length = train_gen.next() y_chunk = chunk_data.pop() # last element is labels. xs_chunk = chunk_data # need to transpose the chunks to move the 'channels' dimension up xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] if e in LEARNING_RATE_SCHEDULE: current_lr = LEARNING_RATE_SCHEDULE[e] learning_rate.set_value(LEARNING_RATE_SCHEDULE[e]) print " setting learning rate to %.6f" % current_lr # train without normalisation for the first # chunks. if e >= NUM_CHUNKS_NONORM: train = train_norm else: train = train_nonorm print " load training data onto GPU" for x_shared, x_chunk in zip(xs_shared, xs_chunk): x_shared.set_value(x_chunk) y_shared.set_value(y_chunk) num_batches_chunk = x_chunk.shape[0] // BATCH_SIZE # import pdb; pdb.set_trace() print " batch SGD" losses = [] for b in xrange(num_batches_chunk): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_chunk) loss = train(b) losses.append(loss) # print " loss: %.6f" % loss mean_train_loss = np.sqrt(np.mean(losses)) print " mean training loss (RMSE):\t\t%.6f" % mean_train_loss losses_train.append(mean_train_loss) # store param stds during training param_stds.append([p.std() for p in layers.get_param_values(l6)]) if ((e + 1) % VALIDATE_EVERY) == 0: print print "VALIDATING" print " load validation data onto GPU" for x_shared, x_valid in zip(xs_shared, xs_valid): x_shared.set_value(x_valid) y_shared.set_value(y_valid) print " compute losses" losses = [] for b in xrange(num_batches_valid): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_valid) loss = compute_loss(b) losses.append(loss) mean_valid_loss = np.sqrt(np.mean(losses)) print " mean validation loss (RMSE):\t\t%.6f" % mean_valid_loss losses_valid.append(mean_valid_loss) layers.dump_params(l6, e=e) now = time.time() time_since_start = now - start_time time_since_prev = now - prev_time prev_time = now est_time_left = time_since_start * (float(NUM_CHUNKS - (e + 1)) / float(e + 1)) eta = datetime.now() + timedelta(seconds=est_time_left) eta_str = eta.strftime("%c") print " %s since start (%.2f s)" % (load_data.hms(time_since_start), time_since_prev) print " estimated %s to go (ETA: %s)" % (load_data.hms(est_time_left), eta_str) print del chunk_data, xs_chunk, x_chunk, y_chunk, xs_valid, x_valid # memory cleanup print "Compute predictions on validation set for analysis in batches" predictions_list = [] for b in xrange(num_batches_valid): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_valid) predictions = compute_output(b) predictions_list.append(predictions) all_predictions = np.vstack(predictions_list) # postprocessing: clip all predictions to 0-1 all_predictions[all_predictions > 1] = 1.0 all_predictions[all_predictions < 0] = 0.0 print "Write validation set predictions to %s" % ANALYSIS_PATH with open(ANALYSIS_PATH, 'w') as f: pickle.dump({ 'ids': valid_ids[:num_batches_valid * BATCH_SIZE], # note that we need to truncate the ids to a multiple of the batch size. 'predictions': all_predictions, 'targets': y_valid, 'mean_train_loss': mean_train_loss, 'mean_valid_loss': mean_valid_loss, 'time_since_start': time_since_start, 'losses_train': losses_train, 'losses_valid': losses_valid, 'param_values': layers.get_param_values(l6), 'param_stds': param_stds, }, f, pickle.HIGHEST_PROTOCOL) del predictions_list, all_predictions # memory cleanup # print "Loading test data" # x_test = load_data.load_gz(DATA_TEST_PATH) # x2_test = load_data.load_gz(DATA2_TEST_PATH) # test_ids = np.load("data/test_ids.npy") # num_test = x_test.shape[0] # x_test = x_test.transpose(0, 3, 1, 2) # move the colour dimension up. # x2_test = x2_test.transpose(0, 3, 1, 2) # create_test_gen = lambda: load_data.array_chunker_gen([x_test, x2_test], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False) print "Computing predictions on test data" predictions_list = [] for e, (xs_chunk, chunk_length) in enumerate(create_test_gen()): print "Chunk %d" % (e + 1) xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] # move the colour dimension up. for x_shared, x_chunk in zip(xs_shared, xs_chunk): x_shared.set_value(x_chunk) num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # need to round UP this time to account for all data # make predictions for testset, don't forget to cute off the zeros at the end for b in xrange(num_batches_chunk): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_chunk) predictions = compute_output(b) predictions_list.append(predictions) all_predictions = np.vstack(predictions_list) all_predictions = all_predictions[:num_test] # truncate back to the correct length # postprocessing: clip all predictions to 0-1 all_predictions[all_predictions > 1] = 1.0 all_predictions[all_predictions < 0] = 0.0 print "Write predictions to %s" % TARGET_PATH # test_ids = np.load("data/test_ids.npy") with open(TARGET_PATH, 'wb') as csvfile: writer = csv.writer(csvfile) # , delimiter=',', quoting=csv.QUOTE_MINIMAL) # write header writer.writerow(['GalaxyID', 'Class1.1', 'Class1.2', 'Class1.3', 'Class2.1', 'Class2.2', 'Class3.1', 'Class3.2', 'Class4.1', 'Class4.2', 'Class5.1', 'Class5.2', 'Class5.3', 'Class5.4', 'Class6.1', 'Class6.2', 'Class7.1', 'Class7.2', 'Class7.3', 'Class8.1', 'Class8.2', 'Class8.3', 'Class8.4', 'Class8.5', 'Class8.6', 'Class8.7', 'Class9.1', 'Class9.2', 'Class9.3', 'Class10.1', 'Class10.2', 'Class10.3', 'Class11.1', 'Class11.2', 'Class11.3', 'Class11.4', 'Class11.5', 'Class11.6']) # write data for k in xrange(test_ids.shape[0]): row = [test_ids[k]] + all_predictions[k].tolist() writer.writerow(row) print "Gzipping..." os.system("gzip -c %s > %s.gz" % (TARGET_PATH, TARGET_PATH)) del all_predictions, predictions_list, xs_chunk, x_chunk # memory cleanup # # need to reload training data because it has been split and shuffled. # # don't need to reload test data # x_train = load_data.load_gz(DATA_TRAIN_PATH) # x2_train = load_data.load_gz(DATA2_TRAIN_PATH) # x_train = x_train.transpose(0, 3, 1, 2) # move the colour dimension up # x2_train = x2_train.transpose(0, 3, 1, 2) # train_gen_features = load_data.array_chunker_gen([x_train, x2_train], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False) # test_gen_features = load_data.array_chunker_gen([x_test, x2_test], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False) # for name, gen, num in zip(['train', 'test'], [train_gen_features, test_gen_features], [x_train.shape[0], x_test.shape[0]]): # print "Extracting feature representations for all galaxies: %s" % name # features_list = [] # for e, (xs_chunk, chunk_length) in enumerate(gen): # print "Chunk %d" % (e + 1) # x_chunk, x2_chunk = xs_chunk # x_shared.set_value(x_chunk) # x2_shared.set_value(x2_chunk) # num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # need to round UP this time to account for all data # # compute features for set, don't forget to cute off the zeros at the end # for b in xrange(num_batches_chunk): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_chunk) # features = compute_features(b) # features_list.append(features) # all_features = np.vstack(features_list) # all_features = all_features[:num] # truncate back to the correct length # features_path = FEATURES_PATTERN % name # print " write features to %s" % features_path # np.save(features_path, all_features) print "Done!"
bsd-3-clause
liyu1990/sklearn
examples/ensemble/plot_gradient_boosting_oob.py
50
4764
""" ====================================== Gradient Boosting Out-of-Bag estimates ====================================== Out-of-bag (OOB) estimates can be a useful heuristic to estimate the "optimal" number of boosting iterations. OOB estimates are almost identical to cross-validation estimates but they can be computed on-the-fly without the need for repeated model fitting. OOB estimates are only available for Stochastic Gradient Boosting (i.e. ``subsample < 1.0``), the estimates are derived from the improvement in loss based on the examples not included in the bootstrap sample (the so-called out-of-bag examples). The OOB estimator is a pessimistic estimator of the true test loss, but remains a fairly good approximation for a small number of trees. The figure shows the cumulative sum of the negative OOB improvements as a function of the boosting iteration. As you can see, it tracks the test loss for the first hundred iterations but then diverges in a pessimistic way. The figure also shows the performance of 3-fold cross validation which usually gives a better estimate of the test loss but is computationally more demanding. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split # Generate data (adapted from G. Ridgeway's gbm example) n_samples = 1000 random_state = np.random.RandomState(13) x1 = random_state.uniform(size=n_samples) x2 = random_state.uniform(size=n_samples) x3 = random_state.randint(0, 4, size=n_samples) p = 1 / (1.0 + np.exp(-(np.sin(3 * x1) - 4 * x2 + x3))) y = random_state.binomial(1, p, size=n_samples) X = np.c_[x1, x2, x3] X = X.astype(np.float32) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=9) # Fit classifier with out-of-bag estimates params = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5, 'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 3} clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) acc = clf.score(X_test, y_test) print("Accuracy: {:.4f}".format(acc)) n_estimators = params['n_estimators'] x = np.arange(n_estimators) + 1 def heldout_score(clf, X_test, y_test): """compute deviance scores on ``X_test`` and ``y_test``. """ score = np.zeros((n_estimators,), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): score[i] = clf.loss_(y_test, y_pred) return score def cv_estimate(n_folds=3): cv = KFold(n_folds=n_folds) cv_clf = ensemble.GradientBoostingClassifier(**params) val_scores = np.zeros((n_estimators,), dtype=np.float64) for train, test in cv.split(X_train, y_train): cv_clf.fit(X_train[train], y_train[train]) val_scores += heldout_score(cv_clf, X_train[test], y_train[test]) val_scores /= n_folds return val_scores # Estimate best n_estimator using cross-validation cv_score = cv_estimate(3) # Compute best n_estimator for test data test_score = heldout_score(clf, X_test, y_test) # negative cumulative sum of oob improvements cumsum = -np.cumsum(clf.oob_improvement_) # min loss according to OOB oob_best_iter = x[np.argmin(cumsum)] # min loss according to test (normalize such that first loss is 0) test_score -= test_score[0] test_best_iter = x[np.argmin(test_score)] # min loss according to cv (normalize such that first loss is 0) cv_score -= cv_score[0] cv_best_iter = x[np.argmin(cv_score)] # color brew for the three curves oob_color = list(map(lambda x: x / 256.0, (190, 174, 212))) test_color = list(map(lambda x: x / 256.0, (127, 201, 127))) cv_color = list(map(lambda x: x / 256.0, (253, 192, 134))) # plot curves and vertical lines for best iterations plt.plot(x, cumsum, label='OOB loss', color=oob_color) plt.plot(x, test_score, label='Test loss', color=test_color) plt.plot(x, cv_score, label='CV loss', color=cv_color) plt.axvline(x=oob_best_iter, color=oob_color) plt.axvline(x=test_best_iter, color=test_color) plt.axvline(x=cv_best_iter, color=cv_color) # add three vertical lines to xticks xticks = plt.xticks() xticks_pos = np.array(xticks[0].tolist() + [oob_best_iter, cv_best_iter, test_best_iter]) xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) + ['OOB', 'CV', 'Test']) ind = np.argsort(xticks_pos) xticks_pos = xticks_pos[ind] xticks_label = xticks_label[ind] plt.xticks(xticks_pos, xticks_label) plt.legend(loc='upper right') plt.ylabel('normalized loss') plt.xlabel('number of iterations') plt.show()
bsd-3-clause
matbra/bokeh
examples/interactions/interactive_bubble/data.py
49
1265
import numpy as np from bokeh.palettes import Spectral6 def process_data(): from bokeh.sampledata.gapminder import fertility, life_expectancy, population, regions # Make the column names ints not strings for handling columns = list(fertility.columns) years = list(range(int(columns[0]), int(columns[-1]))) rename_dict = dict(zip(columns, years)) fertility = fertility.rename(columns=rename_dict) life_expectancy = life_expectancy.rename(columns=rename_dict) population = population.rename(columns=rename_dict) regions = regions.rename(columns=rename_dict) # Turn population into bubble sizes. Use min_size and factor to tweak. scale_factor = 200 population_size = np.sqrt(population / np.pi) / scale_factor min_size = 3 population_size = population_size.where(population_size >= min_size).fillna(min_size) # Use pandas categories and categorize & color the regions regions.Group = regions.Group.astype('category') regions_list = list(regions.Group.cat.categories) def get_color(r): return Spectral6[regions_list.index(r.Group)] regions['region_color'] = regions.apply(get_color, axis=1) return fertility, life_expectancy, population_size, regions, years, regions_list
bsd-3-clause
harterj/moose
modules/tensor_mechanics/test/tests/capped_mohr_coulomb/small_deform_hard_21.py
12
1567
#!/usr/bin/env python3 #* This file is part of the MOOSE framework #* https://www.mooseframework.org #* #* All rights reserved, see COPYRIGHT for full restrictions #* https://github.com/idaholab/moose/blob/master/COPYRIGHT #* #* Licensed under LGPL 2.1, please see LICENSE for details #* https://www.gnu.org/licenses/lgpl-2.1.html import os import sys import numpy as np import matplotlib.pyplot as plt def expected(ini, res, ini_x, res_x): lo2 = 0.5 * (res_x - ini_x) alpha = (ini - res) / 4.0 / lo2**3 beta = -3.0 * alpha * lo2**2 data = [ini_x + i*(res_x - ini_x)/100 for i in range(100)] data = [(x, alpha * (x - ini_x - lo2)**3 + beta * (x - ini_x - lo2) + (ini + res) / 2.0) for x in data] return zip(*data) def moose(fn): sinphi = np.sin(30.0 * np.pi / 180.0) cosphi = np.cos(30.0 * np.pi / 180.0) f = open(fn) data = [map(float, line.strip().split(",")) for line in f.readlines()[4:-1]] f.close() intnl = [d[2] for d in data] coh = [(0.5 * (d[5] - d[7]) + 0.5 * (d[5] + d[7]) * sinphi) / cosphi for d in data] return (intnl, coh) plt.figure() expect21 = expected(10.0, 20.0, 0.0, 5E-6) m21 = moose("gold/small_deform_hard21.csv") plt.plot(expect21[0], expect21[1], 'k-', linewidth = 3.0, label = 'expected') plt.plot(m21[0], m21[1], 'k^', label = 'MOOSE') plt.legend(loc = 'lower right') plt.xlabel("internal parameter") plt.ylabel("Cohesion") plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) plt.title("Cohesion hardening") plt.savefig("figures/small_deform_hard_21.eps") sys.exit(0)
lgpl-2.1
wkfwkf/statsmodels
examples/run_all.py
34
1740
"""run all examples to make sure we don't get an exception Note: If an example contaings plt.show(), then all plot windows have to be closed manually, at least in my setup. uncomment plt.show() to show all plot windows """ from __future__ import print_function from statsmodels.compat import input stop_on_error = True filelist = ['example_glsar.py', 'example_wls.py', 'example_gls.py', 'example_glm.py', 'example_ols_tftest.py', # 'example_rpy.py', 'example_ols.py', 'example_rlm.py', 'example_discrete.py', 'example_predict.py', 'example_ols_table.py', # time series 'tsa/ex_arma2.py', 'tsa/ex_dates.py'] if __name__ == '__main__': #temporarily disable show import matplotlib.pyplot as plt plt_show = plt.show def noop(*args): pass plt.show = noop msg = """Are you sure you want to run all of the examples? This is done mainly to check that they are up to date. (y/n) >>> """ cont = input(msg) if 'y' in cont.lower(): for run_all_f in filelist: try: print('\n\nExecuting example file', run_all_f) print('-----------------------' + '-' * len(run_all_f)) exec(open(run_all_f).read()) except: # f might be overwritten in the executed file print('**********************' + '*' * len(run_all_f)) print('ERROR in example file', run_all_f) print('**********************' + '*' * len(run_all_f)) if stop_on_error: raise # reenable show after closing windows plt.close('all') plt.show = plt_show plt.show()
bsd-3-clause
massmutual/scikit-learn
sklearn/utils/estimator_checks.py
1
54609
from __future__ import print_function import types import warnings import sys import traceback import pickle from copy import deepcopy import numpy as np from scipy import sparse import struct from sklearn.externals.six.moves import zip from sklearn.externals.joblib import hash, Memory from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import META_ESTIMATORS from sklearn.utils.testing import set_random_state from sklearn.utils.testing import assert_greater from sklearn.utils.testing import SkipTest from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns from sklearn.base import (clone, ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin, BaseEstimator) from sklearn.metrics import accuracy_score, adjusted_rand_score, f1_score from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.random_projection import BaseRandomProjection from sklearn.feature_selection import SelectKBest from sklearn.svm.base import BaseLibSVM, BaseSVC from sklearn.pipeline import make_pipeline from sklearn.decomposition import NMF, ProjectedGradientNMF from sklearn.utils.validation import DataConversionWarning from sklearn.utils import ConvergenceWarning from sklearn.cross_validation import train_test_split from sklearn.utils import shuffle from sklearn.utils.fixes import signature from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris, load_boston, make_blobs BOSTON = None CROSS_DECOMPOSITION = ['PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD'] MULTI_OUTPUT = ['CCA', 'DecisionTreeRegressor', 'ElasticNet', 'ExtraTreeRegressor', 'ExtraTreesRegressor', 'GaussianProcess', 'KNeighborsRegressor', 'KernelRidge', 'Lars', 'Lasso', 'LassoLars', 'LinearRegression', 'MultiTaskElasticNet', 'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV', 'OrthogonalMatchingPursuit', 'PLSCanonical', 'PLSRegression', 'RANSACRegressor', 'RadiusNeighborsRegressor', 'RandomForestRegressor', 'Ridge', 'RidgeCV'] # Estimators with deprecated transform methods. Should be removed in 0.19 when # _LearntSelectorMixin is removed. DEPRECATED_TRANSFORM = [ "RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "RandomTreesEmbedding", "DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor", "LinearSVC", "SGDClassifier", "SGDRegressor", "Perceptron", "LogisticRegression", "LogisticRegressionCV", "GradientBoostingClassifier", "GradientBoostingRegressor"] def _yield_non_meta_checks(name, Estimator): yield check_estimators_dtypes yield check_fit_score_takes_y yield check_dtype_object yield check_estimators_fit_returns_self # Check that all estimator yield informative messages when # trained on empty datasets yield check_estimators_empty_data_messages if name not in CROSS_DECOMPOSITION + ['SpectralEmbedding']: # SpectralEmbedding is non-deterministic, # see issue #4236 # cross-decomposition's "transform" returns X and Y yield check_pipeline_consistency if name not in ['Imputer']: # Test that all estimators check their input for NaN's and infs yield check_estimators_nan_inf if name not in ['GaussianProcess']: # FIXME! # in particular GaussianProcess! yield check_estimators_overwrite_params if hasattr(Estimator, 'sparsify'): yield check_sparsify_coefficients yield check_estimator_sparse_data # Test that estimators can be pickled, and once pickled # give the same answer as before. yield check_estimators_pickle def _yield_classifier_checks(name, Classifier): # test classfiers can handle non-array data yield check_classifier_data_not_an_array # test classifiers trained on a single label always return this label yield check_classifiers_one_label yield check_classifiers_classes yield check_estimators_partial_fit_n_features # basic consistency testing yield check_classifiers_train if (name not in ["MultinomialNB", "LabelPropagation", "LabelSpreading"] # TODO some complication with -1 label and name not in ["DecisionTreeClassifier", "ExtraTreeClassifier"]): # We don't raise a warning in these classifiers, as # the column y interface is used by the forests. yield check_supervised_y_2d # test if NotFittedError is raised yield check_estimators_unfitted if 'class_weight' in Classifier().get_params().keys(): yield check_class_weight_classifiers def _yield_regressor_checks(name, Regressor): # TODO: test with intercept # TODO: test with multiple responses # basic testing yield check_regressors_train yield check_regressor_data_not_an_array yield check_estimators_partial_fit_n_features yield check_regressors_no_decision_function yield check_supervised_y_2d if name != 'CCA': # check that the regressor handles int input yield check_regressors_int # Test if NotFittedError is raised yield check_estimators_unfitted def _yield_transformer_checks(name, Transformer): # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer', 'PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']: yield check_transformer_data_not_an_array # these don't actually fit the data, so don't raise errors if name not in ['AdditiveChi2Sampler', 'Binarizer', 'FunctionTransformer', 'Normalizer']: # basic tests yield check_transformer_general yield check_transformers_unfitted def _yield_clustering_checks(name, Clusterer): yield check_clusterer_compute_labels_predict if name not in ('WardAgglomeration', "FeatureAgglomeration"): # this is clustering on the features # let's not test that here. yield check_clustering yield check_estimators_partial_fit_n_features def _yield_all_checks(name, Estimator): for check in _yield_non_meta_checks(name, Estimator): yield check if issubclass(Estimator, ClassifierMixin): for check in _yield_classifier_checks(name, Estimator): yield check if issubclass(Estimator, RegressorMixin): for check in _yield_regressor_checks(name, Estimator): yield check if issubclass(Estimator, TransformerMixin): if name not in DEPRECATED_TRANSFORM: for check in _yield_transformer_checks(name, Estimator): yield check if issubclass(Estimator, ClusterMixin): for check in _yield_clustering_checks(name, Estimator): yield check yield check_fit2d_predict1d yield check_fit2d_1sample yield check_fit2d_1feature yield check_fit1d_1feature yield check_fit1d_1sample def check_estimator(Estimator): """Check if estimator adheres to sklearn conventions. This estimator will run an extensive test-suite for input validation, shapes, etc. Additional tests for classifiers, regressors, clustering or transformers will be run if the Estimator class inherits from the corresponding mixin from sklearn.base. Parameters ---------- Estimator : class Class to check. """ name = Estimator.__class__.__name__ check_parameters_default_constructible(name, Estimator) for check in _yield_all_checks(name, Estimator): check(name, Estimator) def _boston_subset(n_samples=200): global BOSTON if BOSTON is None: boston = load_boston() X, y = boston.data, boston.target X, y = shuffle(X, y, random_state=0) X, y = X[:n_samples], y[:n_samples] X = StandardScaler().fit_transform(X) BOSTON = X, y return BOSTON def set_testing_parameters(estimator): # set parameters to speed up some estimators and # avoid deprecated behaviour params = estimator.get_params() if ("n_iter" in params and estimator.__class__.__name__ != "TSNE"): estimator.set_params(n_iter=5) if "max_iter" in params: warnings.simplefilter("ignore", ConvergenceWarning) if estimator.max_iter is not None: estimator.set_params(max_iter=min(5, estimator.max_iter)) # LinearSVR if estimator.__class__.__name__ == 'LinearSVR': estimator.set_params(max_iter=20) # NMF if estimator.__class__.__name__ == 'NMF': estimator.set_params(max_iter=100) if "n_resampling" in params: # randomized lasso estimator.set_params(n_resampling=5) if "n_estimators" in params: # especially gradient boosting with default 100 estimator.set_params(n_estimators=min(5, estimator.n_estimators)) if "max_trials" in params: # RANSAC estimator.set_params(max_trials=10) if "n_init" in params: # K-Means estimator.set_params(n_init=2) if "decision_function_shape" in params: # SVC estimator.set_params(decision_function_shape='ovo') if estimator.__class__.__name__ == "SelectFdr": # be tolerant of noisy datasets (not actually speed) estimator.set_params(alpha=.5) if estimator.__class__.__name__ == "TheilSenRegressor": estimator.max_subpopulation = 100 if isinstance(estimator, BaseRandomProjection): # Due to the jl lemma and often very few samples, the number # of components of the random matrix projection will be probably # greater than the number of features. # So we impose a smaller number (avoid "auto" mode) estimator.set_params(n_components=1) if isinstance(estimator, SelectKBest): # SelectKBest has a default of k=10 # which is more feature than we have in most case. estimator.set_params(k=1) if isinstance(estimator, NMF): if not isinstance(estimator, ProjectedGradientNMF): estimator.set_params(solver='cd') class NotAnArray(object): " An object that is convertable to an array" def __init__(self, data): self.data = data def __array__(self, dtype=None): return self.data def _is_32bit(): """Detect if process is 32bit Python.""" return struct.calcsize('P') * 8 == 32 def check_estimator_sparse_data(name, Estimator): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 X_csr = sparse.csr_matrix(X) y = (4 * rng.rand(40)).astype(np.int) for sparse_format in ['csr', 'csc', 'dok', 'lil', 'coo', 'dia', 'bsr']: X = X_csr.asformat(sparse_format) # catch deprecation warnings with warnings.catch_warnings(): if name in ['Scaler', 'StandardScaler']: estimator = Estimator(with_mean=False) else: estimator = Estimator() set_testing_parameters(estimator) # fit and predict try: estimator.fit(X, y) if hasattr(estimator, "predict"): pred = estimator.predict(X) assert_equal(pred.shape, (X.shape[0],)) if hasattr(estimator, 'predict_proba'): probs = estimator.predict_proba(X) assert_equal(probs.shape, (X.shape[0], 4)) except TypeError as e: if 'sparse' not in repr(e): print("Estimator %s doesn't seem to fail gracefully on " "sparse data: error message state explicitly that " "sparse input is not supported if this is not the case." % name) raise except Exception: print("Estimator %s doesn't seem to fail gracefully on " "sparse data: it should raise a TypeError if sparse input " "is explicitly not supported." % name) raise def check_dtype_object(name, Estimator): # check that estimators treat dtype object as numeric if possible rng = np.random.RandomState(0) X = rng.rand(40, 10).astype(object) y = (X[:, 0] * 4).astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) with warnings.catch_warnings(): estimator = Estimator() set_testing_parameters(estimator) estimator.fit(X, y) if hasattr(estimator, "predict"): estimator.predict(X) if (hasattr(estimator, "transform") and name not in DEPRECATED_TRANSFORM): estimator.transform(X) try: estimator.fit(X, y.astype(object)) except Exception as e: if "Unknown label type" not in str(e): raise X[0, 0] = {'foo': 'bar'} msg = "argument must be a string or a number" assert_raises_regex(TypeError, msg, estimator.fit, X, y) @ignore_warnings def check_fit2d_predict1d(name, Estimator): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20, 3)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) estimator.fit(X, y) for method in ["predict", "transform", "decision_function", "predict_proba"]: if hasattr(estimator, method): try: assert_warns(DeprecationWarning, getattr(estimator, method), X[0]) except ValueError: pass @ignore_warnings def check_fit2d_1sample(name, Estimator): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(1, 10)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit2d_1feature(name, Estimator): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(10, 1)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit1d_1feature(name, Estimator): # check fitting 1d array with 1 feature rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20)) y = X.astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit1d_1sample(name, Estimator): # check fitting 1d array with 1 feature rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20)) y = np.array([1]) y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError : pass def check_transformer_general(name, Transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) X -= X.min() _check_transformer(name, Transformer, X, y) _check_transformer(name, Transformer, X.tolist(), y.tolist()) def check_transformer_data_not_an_array(name, Transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 this_X = NotAnArray(X) this_y = NotAnArray(np.asarray(y)) _check_transformer(name, Transformer, this_X, this_y) def check_transformers_unfitted(name, Transformer): X, y = _boston_subset() with warnings.catch_warnings(record=True): transformer = Transformer() assert_raises((AttributeError, ValueError), transformer.transform, X) def _check_transformer(name, Transformer, X, y): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # on numpy & scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) n_samples, n_features = np.asarray(X).shape # catch deprecation warnings with warnings.catch_warnings(record=True): transformer = Transformer() set_random_state(transformer) set_testing_parameters(transformer) # fit if name in CROSS_DECOMPOSITION: y_ = np.c_[y, y] y_[::2, 1] *= 2 else: y_ = y transformer.fit(X, y_) X_pred = transformer.fit_transform(X, y=y_) if isinstance(X_pred, tuple): for x_pred in X_pred: assert_equal(x_pred.shape[0], n_samples) else: # check for consistent n_samples assert_equal(X_pred.shape[0], n_samples) if hasattr(transformer, 'transform'): if name in CROSS_DECOMPOSITION: X_pred2 = transformer.transform(X, y_) X_pred3 = transformer.fit_transform(X, y=y_) else: X_pred2 = transformer.transform(X) X_pred3 = transformer.fit_transform(X, y=y_) if isinstance(X_pred, tuple) and isinstance(X_pred2, tuple): for x_pred, x_pred2, x_pred3 in zip(X_pred, X_pred2, X_pred3): assert_array_almost_equal( x_pred, x_pred2, 2, "fit_transform and transform outcomes not consistent in %s" % Transformer) assert_array_almost_equal( x_pred, x_pred3, 2, "consecutive fit_transform outcomes not consistent in %s" % Transformer) else: assert_array_almost_equal( X_pred, X_pred2, 2, "fit_transform and transform outcomes not consistent in %s" % Transformer) assert_array_almost_equal( X_pred, X_pred3, 2, "consecutive fit_transform outcomes not consistent in %s" % Transformer) assert_equal(len(X_pred2), n_samples) assert_equal(len(X_pred3), n_samples) # raises error on malformed input for transform if hasattr(X, 'T'): # If it's not an array, it does not have a 'T' property assert_raises(ValueError, transformer.transform, X.T) @ignore_warnings def check_pipeline_consistency(name, Estimator): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) # check that make_pipeline(est) gives same score as est X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) pipeline = make_pipeline(estimator) estimator.fit(X, y) pipeline.fit(X, y) if name in DEPRECATED_TRANSFORM: funcs = ["score"] else: funcs = ["score", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func_pipeline = getattr(pipeline, func_name) result = func(X, y) result_pipe = func_pipeline(X, y) assert_array_almost_equal(result, result_pipe) @ignore_warnings def check_fit_score_takes_y(name, Estimator): # check that all estimators accept an optional y # in fit and score so they can be used in pipelines rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) if name in DEPRECATED_TRANSFORM: funcs = ["fit", "score", "partial_fit", "fit_predict"] else: funcs = [ "fit", "score", "partial_fit", "fit_predict", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func(X, y) args = [p.name for p in signature(func).parameters.values()] assert_true(args[1] in ["y", "Y"], "Expected y or Y as second argument for method " "%s of %s. Got arguments: %r." % (func_name, Estimator.__name__, args)) @ignore_warnings def check_estimators_dtypes(name, Estimator): rnd = np.random.RandomState(0) X_train_32 = 3 * rnd.uniform(size=(20, 5)).astype(np.float32) X_train_64 = X_train_32.astype(np.float64) X_train_int_64 = X_train_32.astype(np.int64) X_train_int_32 = X_train_32.astype(np.int32) y = X_train_int_64[:, 0] y = multioutput_estimator_convert_y_2d(name, y) if name in DEPRECATED_TRANSFORM: methods = ["predict", "decision_function", "predict_proba"] else: methods = [ "predict", "transform", "decision_function", "predict_proba"] for X_train in [X_train_32, X_train_64, X_train_int_64, X_train_int_32]: with warnings.catch_warnings(record=True): estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator, 1) estimator.fit(X_train, y) for method in methods: if hasattr(estimator, method): getattr(estimator, method)(X_train) def check_estimators_empty_data_messages(name, Estimator): e = Estimator() set_testing_parameters(e) set_random_state(e, 1) X_zero_samples = np.empty(0).reshape(0, 3) # The precise message can change depending on whether X or y is # validated first. Let us test the type of exception only: assert_raises(ValueError, e.fit, X_zero_samples, []) X_zero_features = np.empty(0).reshape(3, 0) # the following y should be accepted by both classifiers and regressors # and ignored by unsupervised models y = multioutput_estimator_convert_y_2d(name, np.array([1, 0, 1])) msg = "0 feature\(s\) \(shape=\(3, 0\)\) while a minimum of \d* is required." assert_raises_regex(ValueError, msg, e.fit, X_zero_features, y) def check_estimators_nan_inf(name, Estimator): rnd = np.random.RandomState(0) X_train_finite = rnd.uniform(size=(10, 3)) X_train_nan = rnd.uniform(size=(10, 3)) X_train_nan[0, 0] = np.nan X_train_inf = rnd.uniform(size=(10, 3)) X_train_inf[0, 0] = np.inf y = np.ones(10) y[:5] = 0 y = multioutput_estimator_convert_y_2d(name, y) error_string_fit = "Estimator doesn't check for NaN and inf in fit." error_string_predict = ("Estimator doesn't check for NaN and inf in" " predict.") error_string_transform = ("Estimator doesn't check for NaN and inf in" " transform.") for X_train in [X_train_nan, X_train_inf]: # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator, 1) # try to fit try: estimator.fit(X_train, y) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_fit, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_fit, Estimator, exc) traceback.print_exc(file=sys.stdout) raise exc else: raise AssertionError(error_string_fit, Estimator) # actually fit estimator.fit(X_train_finite, y) # predict if hasattr(estimator, "predict"): try: estimator.predict(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_predict, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_predict, Estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_predict, Estimator) # transform if (hasattr(estimator, "transform") and name not in DEPRECATED_TRANSFORM): try: estimator.transform(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_transform, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_transform, Estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_transform, Estimator) @ignore_warnings def check_estimators_pickle(name, Estimator): """Test that we can pickle all estimators""" if name in DEPRECATED_TRANSFORM: check_methods = ["predict", "decision_function", "predict_proba"] else: check_methods = ["predict", "transform", "decision_function", "predict_proba"] X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) # some estimators can't do features less than 0 X -= X.min() # some estimators only take multioutputs y = multioutput_estimator_convert_y_2d(name, y) # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_random_state(estimator) set_testing_parameters(estimator) estimator.fit(X, y) result = dict() for method in check_methods: if hasattr(estimator, method): result[method] = getattr(estimator, method)(X) # pickle and unpickle! pickled_estimator = pickle.dumps(estimator) unpickled_estimator = pickle.loads(pickled_estimator) for method in result: unpickled_result = getattr(unpickled_estimator, method)(X) assert_array_almost_equal(result[method], unpickled_result) def check_estimators_partial_fit_n_features(name, Alg): # check if number of features changes between calls to partial_fit. if not hasattr(Alg, 'partial_fit'): return X, y = make_blobs(n_samples=50, random_state=1) X -= X.min() with warnings.catch_warnings(record=True): alg = Alg() set_testing_parameters(alg) if isinstance(alg, ClassifierMixin): classes = np.unique(y) alg.partial_fit(X, y, classes=classes) else: alg.partial_fit(X, y) assert_raises(ValueError, alg.partial_fit, X[:, :-1], y) def check_clustering(name, Alg): X, y = make_blobs(n_samples=50, random_state=1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) n_samples, n_features = X.shape # catch deprecation and neighbors warnings with warnings.catch_warnings(record=True): alg = Alg() set_testing_parameters(alg) if hasattr(alg, "n_clusters"): alg.set_params(n_clusters=3) set_random_state(alg) if name == 'AffinityPropagation': alg.set_params(preference=-100) alg.set_params(max_iter=100) # fit alg.fit(X) # with lists alg.fit(X.tolist()) assert_equal(alg.labels_.shape, (n_samples,)) pred = alg.labels_ assert_greater(adjusted_rand_score(pred, y), 0.4) # fit another time with ``fit_predict`` and compare results if name is 'SpectralClustering': # there is no way to make Spectral clustering deterministic :( return set_random_state(alg) with warnings.catch_warnings(record=True): pred2 = alg.fit_predict(X) assert_array_equal(pred, pred2) def check_clusterer_compute_labels_predict(name, Clusterer): """Check that predict is invariant of compute_labels""" X, y = make_blobs(n_samples=20, random_state=0) clusterer = Clusterer() if hasattr(clusterer, "compute_labels"): # MiniBatchKMeans if hasattr(clusterer, "random_state"): clusterer.set_params(random_state=0) X_pred1 = clusterer.fit(X).predict(X) clusterer.set_params(compute_labels=False) X_pred2 = clusterer.fit(X).predict(X) assert_array_equal(X_pred1, X_pred2) def check_classifiers_one_label(name, Classifier): error_string_fit = "Classifier can't train when only one class is present." error_string_predict = ("Classifier can't predict when only one class is " "present.") rnd = np.random.RandomState(0) X_train = rnd.uniform(size=(10, 3)) X_test = rnd.uniform(size=(10, 3)) y = np.ones(10) # catch deprecation warnings with warnings.catch_warnings(record=True): classifier = Classifier() set_testing_parameters(classifier) # try to fit try: classifier.fit(X_train, y) except ValueError as e: if 'class' not in repr(e): print(error_string_fit, Classifier, e) traceback.print_exc(file=sys.stdout) raise e else: return except Exception as exc: print(error_string_fit, Classifier, exc) traceback.print_exc(file=sys.stdout) raise exc # predict try: assert_array_equal(classifier.predict(X_test), y) except Exception as exc: print(error_string_predict, Classifier, exc) raise exc @ignore_warnings # Warnings are raised by decision function def check_classifiers_train(name, Classifier): X_m, y_m = make_blobs(n_samples=300, random_state=0) X_m, y_m = shuffle(X_m, y_m, random_state=7) X_m = StandardScaler().fit_transform(X_m) # generate binary problem from multi-class one y_b = y_m[y_m != 2] X_b = X_m[y_m != 2] for (X, y) in [(X_m, y_m), (X_b, y_b)]: # catch deprecation warnings classes = np.unique(y) n_classes = len(classes) n_samples, n_features = X.shape with warnings.catch_warnings(record=True): classifier = Classifier() if name in ['BernoulliNB', 'MultinomialNB']: X -= X.min() set_testing_parameters(classifier) set_random_state(classifier) # raises error on malformed input for fit assert_raises(ValueError, classifier.fit, X, y[:-1]) # fit classifier.fit(X, y) # with lists classifier.fit(X.tolist(), y.tolist()) assert_true(hasattr(classifier, "classes_")) y_pred = classifier.predict(X) assert_equal(y_pred.shape, (n_samples,)) # training set performance if name not in ['BernoulliNB', 'MultinomialNB']: assert_greater(accuracy_score(y, y_pred), 0.83) # raises error on malformed input for predict assert_raises(ValueError, classifier.predict, X.T) if hasattr(classifier, "decision_function"): try: # decision_function agrees with predict decision = classifier.decision_function(X) if n_classes is 2: assert_equal(decision.shape, (n_samples,)) dec_pred = (decision.ravel() > 0).astype(np.int) assert_array_equal(dec_pred, y_pred) if (n_classes is 3 and not isinstance(classifier, BaseLibSVM)): # 1on1 of LibSVM works differently assert_equal(decision.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(decision, axis=1), y_pred) # raises error on malformed input assert_raises(ValueError, classifier.decision_function, X.T) # raises error on malformed input for decision_function assert_raises(ValueError, classifier.decision_function, X.T) except NotImplementedError: pass if hasattr(classifier, "predict_proba"): # predict_proba agrees with predict y_prob = classifier.predict_proba(X) assert_equal(y_prob.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(y_prob, axis=1), y_pred) # check that probas for all classes sum to one assert_array_almost_equal(np.sum(y_prob, axis=1), np.ones(n_samples)) # raises error on malformed input assert_raises(ValueError, classifier.predict_proba, X.T) # raises error on malformed input for predict_proba assert_raises(ValueError, classifier.predict_proba, X.T) def check_estimators_fit_returns_self(name, Estimator): """Check if self is returned when calling fit""" X, y = make_blobs(random_state=0, n_samples=9, n_features=4) y = multioutput_estimator_convert_y_2d(name, y) # some want non-negative input X -= X.min() estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) assert_true(estimator.fit(X, y) is estimator) @ignore_warnings def check_estimators_unfitted(name, Estimator): """Check that predict raises an exception in an unfitted estimator. Unfitted estimators should raise either AttributeError or ValueError. The specific exception type NotFittedError inherits from both and can therefore be adequately raised for that purpose. """ # Common test for Regressors as well as Classifiers X, y = _boston_subset() with warnings.catch_warnings(record=True): est = Estimator() msg = "fit" if hasattr(est, 'predict'): assert_raise_message((AttributeError, ValueError), msg, est.predict, X) if hasattr(est, 'decision_function'): assert_raise_message((AttributeError, ValueError), msg, est.decision_function, X) if hasattr(est, 'predict_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_proba, X) if hasattr(est, 'predict_log_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_log_proba, X) def check_supervised_y_2d(name, Estimator): if "MultiTask" in name: # These only work on 2d, so this test makes no sense return rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) # fit estimator.fit(X, y) y_pred = estimator.predict(X) set_random_state(estimator) # Check that when a 2D y is given, a DataConversionWarning is # raised with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", DataConversionWarning) warnings.simplefilter("ignore", RuntimeWarning) estimator.fit(X, y[:, np.newaxis]) y_pred_2d = estimator.predict(X) msg = "expected 1 DataConversionWarning, got: %s" % ( ", ".join([str(w_x) for w_x in w])) if name not in MULTI_OUTPUT: # check that we warned if we don't support multi-output assert_greater(len(w), 0, msg) assert_true("DataConversionWarning('A column-vector y" " was passed when a 1d array was expected" in msg) assert_array_almost_equal(y_pred.ravel(), y_pred_2d.ravel()) def check_classifiers_classes(name, Classifier): X, y = make_blobs(n_samples=30, random_state=0, cluster_std=0.1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 y_names = np.array(["one", "two", "three"])[y] for y_names in [y_names, y_names.astype('O')]: if name in ["LabelPropagation", "LabelSpreading"]: # TODO some complication with -1 label y_ = y else: y_ = y_names classes = np.unique(y_) # catch deprecation warnings with warnings.catch_warnings(record=True): classifier = Classifier() if name == 'BernoulliNB': classifier.set_params(binarize=X.mean()) set_testing_parameters(classifier) set_random_state(classifier) # fit classifier.fit(X, y_) y_pred = classifier.predict(X) # training set performance assert_array_equal(np.unique(y_), np.unique(y_pred)) if np.any(classifier.classes_ != classes): print("Unexpected classes_ attribute for %r: " "expected %s, got %s" % (classifier, classes, classifier.classes_)) def check_regressors_int(name, Regressor): X, _ = _boston_subset() X = X[:50] rnd = np.random.RandomState(0) y = rnd.randint(3, size=X.shape[0]) y = multioutput_estimator_convert_y_2d(name, y) rnd = np.random.RandomState(0) # catch deprecation warnings with warnings.catch_warnings(record=True): # separate estimators to control random seeds regressor_1 = Regressor() regressor_2 = Regressor() set_testing_parameters(regressor_1) set_testing_parameters(regressor_2) set_random_state(regressor_1) set_random_state(regressor_2) if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y # fit regressor_1.fit(X, y_) pred1 = regressor_1.predict(X) regressor_2.fit(X, y_.astype(np.float)) pred2 = regressor_2.predict(X) assert_array_almost_equal(pred1, pred2, 2, name) def check_regressors_train(name, Regressor): X, y = _boston_subset() y = StandardScaler().fit_transform(y.reshape(-1, 1)) # X is already scaled y = y.ravel() y = multioutput_estimator_convert_y_2d(name, y) rnd = np.random.RandomState(0) # catch deprecation warnings with warnings.catch_warnings(record=True): regressor = Regressor() set_testing_parameters(regressor) if not hasattr(regressor, 'alphas') and hasattr(regressor, 'alpha'): # linear regressors need to set alpha, but not generalized CV ones regressor.alpha = 0.01 if name == 'PassiveAggressiveRegressor': regressor.C = 0.01 # raises error on malformed input for fit assert_raises(ValueError, regressor.fit, X, y[:-1]) # fit if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y set_random_state(regressor) regressor.fit(X, y_) regressor.fit(X.tolist(), y_.tolist()) y_pred = regressor.predict(X) assert_equal(y_pred.shape, y_.shape) # TODO: find out why PLS and CCA fail. RANSAC is random # and furthermore assumes the presence of outliers, hence # skipped if name not in ('PLSCanonical', 'CCA', 'RANSACRegressor'): print(regressor) assert_greater(regressor.score(X, y_), 0.5) @ignore_warnings def check_regressors_no_decision_function(name, Regressor): # checks whether regressors have decision_function or predict_proba rng = np.random.RandomState(0) X = rng.normal(size=(10, 4)) y = multioutput_estimator_convert_y_2d(name, X[:, 0]) regressor = Regressor() set_testing_parameters(regressor) if hasattr(regressor, "n_components"): # FIXME CCA, PLS is not robust to rank 1 effects regressor.n_components = 1 regressor.fit(X, y) funcs = ["decision_function", "predict_proba", "predict_log_proba"] for func_name in funcs: func = getattr(regressor, func_name, None) if func is None: # doesn't have function continue # has function. Should raise deprecation warning msg = func_name assert_warns_message(DeprecationWarning, msg, func, X) def check_class_weight_classifiers(name, Classifier): if name == "NuSVC": # the sparse version has a parameter that doesn't do anything raise SkipTest if name.endswith("NB"): # NaiveBayes classifiers have a somewhat different interface. # FIXME SOON! raise SkipTest for n_centers in [2, 3]: # create a very noisy dataset X, y = make_blobs(centers=n_centers, random_state=0, cluster_std=20) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) n_centers = len(np.unique(y_train)) if n_centers == 2: class_weight = {0: 1000, 1: 0.0001} else: class_weight = {0: 1000, 1: 0.0001, 2: 0.0001} with warnings.catch_warnings(record=True): classifier = Classifier(class_weight=class_weight) if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) if hasattr(classifier, "min_weight_fraction_leaf"): classifier.set_params(min_weight_fraction_leaf=0.01) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) assert_greater(np.mean(y_pred == 0), 0.89) def check_class_weight_balanced_classifiers(name, Classifier, X_train, y_train, X_test, y_test, weights): with warnings.catch_warnings(record=True): classifier = Classifier() if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) classifier.set_params(class_weight='balanced') classifier.fit(X_train, y_train) y_pred_balanced = classifier.predict(X_test) assert_greater(f1_score(y_test, y_pred_balanced, average='weighted'), f1_score(y_test, y_pred, average='weighted')) def check_class_weight_balanced_linear_classifier(name, Classifier): """Test class weights with non-contiguous class labels.""" X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = np.array([1, 1, 1, -1, -1]) with warnings.catch_warnings(record=True): classifier = Classifier() if hasattr(classifier, "n_iter"): # This is a very small dataset, default n_iter are likely to prevent # convergence classifier.set_params(n_iter=1000) set_random_state(classifier) # Let the model compute the class frequencies classifier.set_params(class_weight='balanced') coef_balanced = classifier.fit(X, y).coef_.copy() # Count each label occurrence to reweight manually n_samples = len(y) n_classes = float(len(np.unique(y))) class_weight = {1: n_samples / (np.sum(y == 1) * n_classes), -1: n_samples / (np.sum(y == -1) * n_classes)} classifier.set_params(class_weight=class_weight) coef_manual = classifier.fit(X, y).coef_.copy() assert_array_almost_equal(coef_balanced, coef_manual) def check_estimators_overwrite_params(name, Estimator): X, y = make_blobs(random_state=0, n_samples=9) y = multioutput_estimator_convert_y_2d(name, y) # some want non-negative input X -= X.min() with warnings.catch_warnings(record=True): # catch deprecation warnings estimator = Estimator() set_testing_parameters(estimator) set_random_state(estimator) # Make a physical copy of the orginal estimator parameters before fitting. params = estimator.get_params() original_params = deepcopy(params) # Fit the model estimator.fit(X, y) # Compare the state of the model parameters with the original parameters new_params = estimator.get_params() for param_name, original_value in original_params.items(): new_value = new_params[param_name] # We should never change or mutate the internal state of input # parameters by default. To check this we use the joblib.hash function # that introspects recursively any subobjects to compute a checksum. # The only exception to this rule of immutable constructor parameters # is possible RandomState instance but in this check we explicitly # fixed the random_state params recursively to be integer seeds. assert_equal(hash(new_value), hash(original_value), "Estimator %s should not change or mutate " " the parameter %s from %s to %s during fit." % (name, param_name, original_value, new_value)) def check_sparsify_coefficients(name, Estimator): X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, -2], [2, 2], [-2, -2]]) y = [1, 1, 1, 2, 2, 2, 3, 3, 3] est = Estimator() est.fit(X, y) pred_orig = est.predict(X) # test sparsify with dense inputs est.sparsify() assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) # pickle and unpickle with sparse coef_ est = pickle.loads(pickle.dumps(est)) assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) def check_classifier_data_not_an_array(name, Estimator): X = np.array([[3, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 1]]) y = [1, 1, 1, 2, 2, 2] y = multioutput_estimator_convert_y_2d(name, y) check_estimators_data_not_an_array(name, Estimator, X, y) def check_regressor_data_not_an_array(name, Estimator): X, y = _boston_subset(n_samples=50) y = multioutput_estimator_convert_y_2d(name, y) check_estimators_data_not_an_array(name, Estimator, X, y) def check_estimators_data_not_an_array(name, Estimator, X, y): if name in CROSS_DECOMPOSITION: raise SkipTest # catch deprecation warnings with warnings.catch_warnings(record=True): # separate estimators to control random seeds estimator_1 = Estimator() estimator_2 = Estimator() set_testing_parameters(estimator_1) set_testing_parameters(estimator_2) set_random_state(estimator_1) set_random_state(estimator_2) y_ = NotAnArray(np.asarray(y)) X_ = NotAnArray(np.asarray(X)) # fit estimator_1.fit(X_, y_) pred1 = estimator_1.predict(X_) estimator_2.fit(X, y) pred2 = estimator_2.predict(X) assert_array_almost_equal(pred1, pred2, 2, name) def check_parameters_default_constructible(name, Estimator): classifier = LinearDiscriminantAnalysis() # test default-constructibility # get rid of deprecation warnings with warnings.catch_warnings(record=True): if name in META_ESTIMATORS: estimator = Estimator(classifier) else: estimator = Estimator() # test cloning clone(estimator) # test __repr__ repr(estimator) # test that set_params returns self assert_true(estimator.set_params() is estimator) # test if init does nothing but set parameters # this is important for grid_search etc. # We get the default parameters from init and then # compare these against the actual values of the attributes. # this comes from getattr. Gets rid of deprecation decorator. init = getattr(estimator.__init__, 'deprecated_original', estimator.__init__) try: def param_filter(p): """Identify hyper parameters of an estimator""" return (p.name != 'self' and p.kind != p.VAR_KEYWORD and p.kind != p.VAR_POSITIONAL) init_params = [p for p in signature(init).parameters.values() if param_filter(p)] except (TypeError, ValueError): # init is not a python function. # true for mixins return params = estimator.get_params() if name in META_ESTIMATORS: # they can need a non-default argument init_params = init_params[1:] for init_param in init_params: assert_not_equal(init_param.default, init_param.empty, "parameter %s for %s has no default value" % (init_param.name, type(estimator).__name__)) assert_in(type(init_param.default), [str, int, float, bool, tuple, type(None), np.float64, types.FunctionType, Memory]) if init_param.name not in params.keys(): # deprecated parameter, not in get_params assert_true(init_param.default is None) continue param_value = params[init_param.name] if isinstance(param_value, np.ndarray): assert_array_equal(param_value, init_param.default) else: assert_equal(param_value, init_param.default) def multioutput_estimator_convert_y_2d(name, y): # Estimators in mono_output_task_error raise ValueError if y is of 1-D # Convert into a 2-D y for those estimators. if name in (['MultiTaskElasticNetCV', 'MultiTaskLassoCV', 'MultiTaskLasso', 'MultiTaskElasticNet']): return y[:, np.newaxis] return y def check_non_transformer_estimators_n_iter(name, estimator, multi_output=False): # Check if all iterative solvers, run for more than one iteratiom iris = load_iris() X, y_ = iris.data, iris.target if multi_output: y_ = y_[:, np.newaxis] set_random_state(estimator, 0) if name == 'AffinityPropagation': estimator.fit(X) else: estimator.fit(X, y_) assert_greater(estimator.n_iter_, 0) def check_transformer_n_iter(name, estimator): if name in CROSS_DECOMPOSITION: # Check using default data X = [[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [2., 5., 4.]] y_ = [[0.1, -0.2], [0.9, 1.1], [0.1, -0.5], [0.3, -0.2]] else: X, y_ = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() - 0.1 set_random_state(estimator, 0) estimator.fit(X, y_) # These return a n_iter per component. if name in CROSS_DECOMPOSITION: for iter_ in estimator.n_iter_: assert_greater(iter_, 1) else: assert_greater(estimator.n_iter_, 1) def check_get_params_invariance(name, estimator): class T(BaseEstimator): """Mock classifier """ def __init__(self): pass def fit(self, X, y): return self if name in ('FeatureUnion', 'Pipeline'): e = estimator([('clf', T())]) elif name in ('GridSearchCV', 'RandomizedSearchCV', 'SelectFromModel'): return else: e = estimator() shallow_params = e.get_params(deep=False) deep_params = e.get_params(deep=True) assert_true(all(item in deep_params.items() for item in shallow_params.items()))
bsd-3-clause
neuroidss/nupic.research
projects/sequence_classification/run_encoder_with_union.py
9
8995
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Run sequence classification experiment with Input -> RDSE encoder -> Union model Search for the optimal union window One needs to run the script "run_encoder_only.py" first to get the optimal encoder resolution """ import pickle import time import matplotlib.pyplot as plt import multiprocessing from util_functions import * from nupic.encoders.random_distributed_scalar import RandomDistributedScalarEncoder plt.ion() import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams.update({'figure.autolayout': True}) def unionForOneSequence(activeColumns, unionLength=1): activeColumnTrace = [] unionStepInBatch = 0 unionBatchIdx = 0 unionCols = set() for t in range(len(activeColumns)): unionCols = unionCols.union(activeColumns[t]) unionStepInBatch += 1 if unionStepInBatch == unionLength: activeColumnTrace.append(unionCols) unionStepInBatch = 0 unionBatchIdx += 1 unionCols = set() if unionStepInBatch > 0: activeColumnTrace.append(unionCols) return activeColumnTrace def runUnionStep(activeColumns, unionLength=1): """ Run encoder -> tm network over dataset, save activeColumn and activeCells traces :param tm: :param encoder: :param dataset: :return: """ numSequence = len(activeColumns) activeColumnUnionTrace = [] for i in range(numSequence): activeColumnTrace = unionForOneSequence(activeColumns[i], unionLength) activeColumnUnionTrace.append(activeColumnTrace) # print "{} out of {} done ".format(i, numSequence) return activeColumnUnionTrace def runEncoderOverDataset(encoder, dataset): activeColumnsData = [] for i in range(dataset.shape[0]): activeColumnsTrace = [] for element in dataset[i, :]: encoderOutput = encoder.encode(element) activeColumns = set(np.where(encoderOutput > 0)[0]) activeColumnsTrace.append(activeColumns) activeColumnsData.append(activeColumnsTrace) return activeColumnsData def calcualteEncoderModelWorker(taskQueue, resultQueue, *args): while True: nextTask = taskQueue.get() print "Next task is : ", nextTask if nextTask is None: break nBuckets = nextTask["nBuckets"] accuracyColumnOnly = calculateEncoderModelAccuracy(nBuckets, *args) resultQueue.put({nBuckets: accuracyColumnOnly}) print "Column Only model, Resolution: {} Accuracy: {}".format( nBuckets, accuracyColumnOnly) return def calculateEncoderModelAccuracy(nBuckets, numCols, w, trainData, trainLabel): maxValue = np.max(trainData) minValue = np.min(trainData) resolution = (maxValue - minValue) / nBuckets encoder = RandomDistributedScalarEncoder(resolution, w=w, n=numCols) activeColumnsTrain = runEncoderOverDataset(encoder, trainData) distMatColumnTrain = calculateDistanceMatTrain(activeColumnsTrain) meanAccuracy, outcomeColumn = calculateAccuracy(distMatColumnTrain, trainLabel, trainLabel) accuracyColumnOnly = np.mean(outcomeColumn) return accuracyColumnOnly def runDataSet(dataName, datasetName): if not os.path.exists('results'): os.makedirs('results') trainData, trainLabel, testData, testLabel = loadDataset(dataName, datasetName) numTest = len(testLabel) numTrain = len(trainLabel) sequenceLength = len(trainData[0]) classList = np.unique(trainLabel).tolist() numClass = len(classList) print "Processing {}".format(dataName) print "Train Sample # {}, Test Sample # {}".format(numTrain, numTest) print "Sequence Length {} Class # {}".format(sequenceLength, len(classList)) if (max(numTrain, numTest) * sequenceLength < 600 * 600): print "skip this small dataset for now" return try: unionLengthList = [1, 5, 10, 15, 20] for unionLength in unionLengthList: expResultTM = pickle.load( open('results/modelPerformance/{}_columnOnly_union_{}'.format( dataName, unionLength), 'r')) return except: print "run data set: ", dataName EuclideanDistanceMat = calculateEuclideanDistanceMat(testData, trainData) outcomeEuclidean = calculateEuclideanModelAccuracy(trainData, trainLabel, testData, testLabel) accuracyEuclideanDist = np.mean(outcomeEuclidean) print print "Euclidean model accuracy: {}".format(accuracyEuclideanDist) print # # Use SDR overlap instead of Euclidean distance print "Running Encoder model" maxValue = np.max(trainData) minValue = np.min(trainData) numCols = 2048 w = 41 try: searchResolution = pickle.load( open('results/optimalEncoderResolution/{}'.format(dataName), 'r')) nBucketList = searchResolution['nBucketList'] accuracyVsResolution = searchResolution['accuracyVsResolution'] optNumBucket = nBucketList[smoothArgMax(np.array(accuracyVsResolution))] optimalResolution = (maxValue - minValue) / optNumBucket except: return print "optimal bucket # {}".format((maxValue - minValue) / optimalResolution) encoder = RandomDistributedScalarEncoder(optimalResolution, w=w, n=numCols) print "encoding train data ..." activeColumnsTrain = runEncoderOverDataset(encoder, trainData) print "encoding test data ..." activeColumnsTest = runEncoderOverDataset(encoder, testData) print "calculate column distance matrix ..." # run encoder -> union model, search for the optimal union window unionLengthList = [1, 5, 10, 15, 20] for unionLength in unionLengthList: activeColumnUnionTrain = runUnionStep(activeColumnsTrain, unionLength) activeColumnUnionTest = runUnionStep(activeColumnsTest, unionLength) distMatColumnTrain = calculateDistanceMatTrain(activeColumnUnionTrain) distMatColumnTest = calculateDistanceMat(activeColumnUnionTest, activeColumnUnionTrain) trainAccuracyColumnOnly, outcomeColumn = calculateAccuracy(distMatColumnTest, trainLabel, testLabel) testAccuracyColumnOnly, outcomeColumn = calculateAccuracy(distMatColumnTest, trainLabel, testLabel) expResults = {'distMatColumnTrain': distMatColumnTrain, 'distMatColumnTest': distMatColumnTest, 'trainAccuracyColumnOnly': trainAccuracyColumnOnly, 'testAccuracyColumnOnly': testAccuracyColumnOnly} if not os.path.exists('results/distanceMat'): os.makedirs('results/distanceMat') outputFile = open('results/distanceMat/{}_columnOnly_union_{}'.format( dataName, unionLength), 'w') pickle.dump(expResults, outputFile) outputFile.close() print '--> wrote results to "results/distanceMat"' def runDataSetWorker(taskQueue, datasetName): while True: nextTask = taskQueue.get() print "Next task is : ", nextTask if nextTask is None: break dataName = nextTask["dataName"] runDataSet(dataName, datasetName) return if __name__ == "__main__": datasetName = "SyntheticData" dataSetList = listDataSets(datasetName) datasetName = 'UCR_TS_Archive_2015' dataSetList = listDataSets(datasetName) # dataSetList = ["synthetic_control"] numCPU = multiprocessing.cpu_count() numWorker = 2 # Establish communication queues taskQueue = multiprocessing.JoinableQueue() for dataName in dataSetList: taskQueue.put({"dataName": dataName, "datasetName": datasetName}) for _ in range(numWorker): taskQueue.put(None) jobs = [] for i in range(numWorker): print "Start process ", i p = multiprocessing.Process(target=runDataSetWorker, args=(taskQueue, datasetName)) jobs.append(p) p.daemon = True p.start() while not taskQueue.empty(): time.sleep(5)
agpl-3.0
hrjn/scikit-learn
examples/cluster/plot_birch_vs_minibatchkmeans.py
333
3694
""" ================================= Compare BIRCH and MiniBatchKMeans ================================= This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and 2 features generated using make_blobs. If ``n_clusters`` is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters. """ # Authors: Manoj Kumar <[email protected] # Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) from itertools import cycle from time import time import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch, MiniBatchKMeans from sklearn.datasets.samples_generator import make_blobs # Generate centers for the blobs so that it forms a 10 X 10 grid. xx = np.linspace(-22, 22, 10) yy = np.linspace(-22, 22, 10) xx, yy = np.meshgrid(xx, yy) n_centres = np.hstack((np.ravel(xx)[:, np.newaxis], np.ravel(yy)[:, np.newaxis])) # Generate blobs to do a comparison between MiniBatchKMeans and Birch. X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0) # Use all colors that matplotlib provides by default. colors_ = cycle(colors.cnames.keys()) fig = plt.figure(figsize=(12, 4)) fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9) # Compute clustering with Birch with and without the final clustering step # and plot. birch_models = [Birch(threshold=1.7, n_clusters=None), Birch(threshold=1.7, n_clusters=100)] final_step = ['without global clustering', 'with global clustering'] for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)): t = time() birch_model.fit(X) time_ = time() - t print("Birch %s as the final step took %0.2f seconds" % ( info, (time() - t))) # Plot result labels = birch_model.labels_ centroids = birch_model.subcluster_centers_ n_clusters = np.unique(labels).size print("n_clusters : %d" % n_clusters) ax = fig.add_subplot(1, 3, ind + 1) for this_centroid, k, col in zip(centroids, range(n_clusters), colors_): mask = labels == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') if birch_model.n_clusters is None: ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) ax.set_ylim([-25, 25]) ax.set_xlim([-25, 25]) ax.set_autoscaley_on(False) ax.set_title('Birch %s' % info) # Compute clustering with MiniBatchKMeans. mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100, n_init=10, max_no_improvement=10, verbose=0, random_state=0) t0 = time() mbk.fit(X) t_mini_batch = time() - t0 print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch) mbk_means_labels_unique = np.unique(mbk.labels_) ax = fig.add_subplot(1, 3, 3) for this_centroid, k, col in zip(mbk.cluster_centers_, range(n_clusters), colors_): mask = mbk.labels_ == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k', markersize=5) ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) ax.set_title("MiniBatchKMeans") ax.set_autoscaley_on(False) plt.show()
bsd-3-clause
GuLinux/PySpectrum
import_image.py
1
5892
from pyui.import_image import Ui_ImportImage from PyQt5.QtWidgets import QWidget, QToolBar, QDialog, QDialogButtonBox, QProgressDialog, QMessageBox from PyQt5.QtGui import QIcon from PyQt5.QtCore import Qt, QCoreApplication from qmathplotwidget import QMathPlotWidget, QImPlotWidget import matplotlib.pyplot as plt from qtcommons import QtCommons from pyspectrum_commons import * import os import numpy as np from astropy.io import fits from object_properties_dialog import ObjectPropertiesDialog from object_properties import ObjectProperties from rotate_image_dialog import RotateImageDialog from project import Project class ImportImage(QWidget): def icon(): return QIcon(':/image_20') ACTION_TEXT = 'Import Image' def pick(on_ok, settings): open_file_sticky('Open FITS Image',FITS_IMG_EXTS, on_ok, settings, IMPORT_IMG ) def __init__(self, fits_file, settings, project = None): super(ImportImage, self).__init__() self.settings = settings self.fits_file = fits_file self.project = project try: image_hdu_index = fits_file.index_of('IMAGE') except KeyError: image_hdu_index = 0 original_image = fits.ImageHDU(data=fits_file[image_hdu_index].data, header=fits_file[image_hdu_index].header, name='IMAGE') for hdu in [h for h in self.fits_file if h.name == 'IMAGE']: self.fits_file.remove(hdu) self.fits_file.append(original_image) self.ui = Ui_ImportImage() self.ui.setupUi(self) self.rotate_dialog = RotateImageDialog(self.fits_file, image_hdu_index, project=project) self.rotate_dialog.rotated.connect(self.rotated) self.image_plot = QtCommons.nestWidget(self.ui.image_widget, QImPlotWidget(self.rotate_dialog.data_rotated, cmap='gray')) self.spatial_plot = QtCommons.nestWidget(self.ui.spatial_plot_widget, QMathPlotWidget()) self.spectrum_plot = QtCommons.nestWidget(self.ui.spectrum_plot_widget, QMathPlotWidget()) self.image_view = self.image_plot.axes_image self.toolbar = QToolBar('Image Toolbar') self.toolbar.addAction(QIcon(':/rotate_20'), "Rotate", lambda: self.rotate_dialog.show()) self.toolbar.addAction(QIcon(':/save_20'), "Save", self.save_profile) self.toolbar.addAction(QIcon(':/select_all_20'), "Select spectrum data", lambda: self.spatial_plot.add_span_selector('select_spectrum', self.spectrum_span_selected,direction='horizontal')) self.toolbar.addAction(QIcon.fromTheme('edit-select-invert'), "Select background data", lambda: self.spatial_plot.add_span_selector('select_background', self.background_span_selected,direction='horizontal', rectprops = dict(facecolor='blue', alpha=0.5))).setEnabled(False) #self.toolbar.addAction('Stack', self.show_stack_images_dialog) self.toolbar.addSeparator() self.object_properties = ObjectProperties(self.fits_file, project=project) self.object_properties_dialog = ObjectPropertiesDialog(settings, self.object_properties) self.toolbar.addAction("Object properties", self.object_properties_dialog.show) self.rotated() def rotated(self): self.image_view.set_data(self.rotate_dialog.data_rotated) self.image_view.axes.relim() self.image_view.axes.autoscale_view() self.image_view.set_extent([self.rotate_dialog.data_rotated.shape[1],0, self.rotate_dialog.data_rotated.shape[0],0]) self.image_view.figure.canvas.draw() self.draw_plot(self.spectrum_plot.axes, self.spectrum_profile()) self.draw_plot(self.spatial_plot.axes, self.spatial_profile()) def background_span_selected(self, min, max): self.background_span_selection = (min, max) self.spatial_plot.add_span('background_window', min, max, 'v', facecolor='gray', alpha=0.5) self.image_plot.add_span('background_window', min, max, 'h', facecolor='red', alpha=0.5, clip_on=True) self.draw_plot(self.spectrum_plot.axes, self.spectrum_profile()) def spectrum_span_selected(self, min, max): self.spectrum_span_selection = (min, max) self.spatial_plot.add_span('spectrum_window', min, max, 'v', facecolor='g', alpha=0.5) self.image_plot.add_span('spectrum_window', min, max, 'h', facecolor='y', alpha=0.25, clip_on=True) self.draw_plot(self.spectrum_plot.axes, self.spectrum_profile()) def draw_plot(self, axes, data): axes.clear() axes.plot(data) axes.figure.tight_layout() axes.figure.canvas.draw() def spatial_profile(self): return self.rotate_dialog.data_rotated.sum(1) def spectrum_profile(self): return self.rotate_dialog.data_rotated[self.spectrum_span_selection[0]:self.spectrum_span_selection[1]+1,:].sum(0) if hasattr(self, 'spectrum_span_selection') else self.rotate_dialog.data_rotated.sum(0) def save(self, save_file): data = self.spectrum_profile() data -= np.amin(data) data /= np.amax(data) hdu = self.fits_file[0] hdu.data = data hdu.header['ORIGIN'] = 'PySpectrum' self.fits_file.writeto(save_file, clobber=True) def save_profile(self): if not self.project: save_file_sticky('Save plot...', 'FITS file (.fit)', lambda f: self.save(f[0]), self.settings, RAW_PROFILE ) return if not self.object_properties.name: QMessageBox.information(self, 'Save FITS', 'Please set file information (name, date, etc) using the Object Properties button before saving') return file_path = self.project.add_file(Project.RAW_PROFILE, object_properties = self.object_properties, on_added=self.save) #self.save(file_path)
gpl-3.0
INM-6/python-neo
neo/io/neuralynxio_v1.py
2
105289
""" Class for reading data from Neuralynx files. This IO supports NCS, NEV and NSE file formats. This module is an older implementation with old neo.io API. A new class NeuralynxIO compunded by NeuralynxRawIO and BaseFromIO superseed this one. Depends on: numpy Supported: Read Author: Julia Sprenger, Carlos Canova Adapted from the exampleIO of python-neo """ import sys import os import warnings import codecs import copy import re import datetime import pkg_resources import numpy as np import quantities as pq from neo.io.baseio import BaseIO import neo.io.neuralynxio from neo.core import (Block, Segment, ChannelIndex, AnalogSignal, SpikeTrain, Event, Unit) from os import listdir, sep from os.path import isfile, getsize import hashlib import pickle if hasattr(pkg_resources, 'pkg_resources'): parse_version = pkg_resources.pkg_resources.parse_version else: parse_version = pkg_resources.parse_version class NeuralynxIO(BaseIO): """ Class for reading Neuralynx files. It enables reading: - :class:'Block' - :class:'Segment' - :class:'AnalogSignal' - :class:'SpikeTrain' Usage: from neo import io import quantities as pq import matplotlib.pyplot as plt session_folder = '../Data/2014-07-24_10-31-02' NIO = io.NeuralynxIO(session_folder,print_diagnostic = True) block = NIO.read_block(t_starts = 0.1*pq.s, t_stops = 0.2*pq.s, events=True) seg = block.segments[0] analogsignal = seg.analogsignals[0] plt.plot(analogsignal.times.rescale(pq.ms), analogsignal.magnitude) plt.show() """ is_readable = True # This class can only read data is_writable = False # write is not supported # This class is able to directly or indirectly handle the following objects # You can notice that this greatly simplifies the full Neo object hierarchy supported_objects = [Segment, AnalogSignal, SpikeTrain, Event] # This class can return either a Block or a Segment # The first one is the default ( self.read ) # These lists should go from highest object to lowest object because # common_io_test assumes it. readable_objects = [Segment, AnalogSignal, SpikeTrain] # This class is not able to write objects writeable_objects = [] has_header = False is_streameable = False # This is for GUI stuff : a definition for parameters when reading. # This dict should be keyed by object (`Block`). Each entry is a list # of tuple. The first entry in each tuple is the parameter name. The # second entry is a dict with keys 'value' (for default value), # and 'label' (for a descriptive name). # Note that if the highest-level object requires parameters, # common_io_test will be skipped. read_params = { Segment: [('waveforms', {'value': True})], Block: [('waveforms', {'value': False})] } # do not supported write so no GUI stuff write_params = None name = 'Neuralynx' description = 'This IO reads .nse/.ncs/.nev files of the Neuralynx (' \ 'Cheetah) recordings system (tetrodes).' extensions = ['nse', 'ncs', 'nev', 'ntt'] # mode can be 'file' or 'dir' or 'fake' or 'database' # the main case is 'file' but some reader are base on a directory or # a database this info is for GUI stuff also mode = 'dir' # hardcoded parameters from manual, which are not present in Neuralynx # data files # unit of timestamps in different files nev_time_unit = pq.microsecond ncs_time_unit = pq.microsecond nse_time_unit = pq.microsecond ntt_time_unit = pq.microsecond # unit of sampling rate in different files ncs_sr_unit = pq.Hz nse_sr_unit = pq.Hz ntt_sr_unit = pq.Hz def __init__(self, sessiondir=None, cachedir=None, use_cache='hash', print_diagnostic=False, filename=None): """ Arguments: sessiondir: the directory the files of the recording session are collected. Default 'None'. print_diagnostic: indicates, whether information about the loading of data is printed in terminal or not. Default 'False'. cachedir: the directory where metadata about the recording session is read from and written to. use_cache: method used for cache identification. Possible values: 'hash'/ 'always'/'datesize'/'never'. Default 'hash' filename: this argument is handles the same as sessiondir and is only added for external IO interfaces. The value of sessiondir has priority over filename. """ warnings.warn('{} is deprecated and will be removed in neo version 0.10. Use {} instead.' ''.format(self.__class__, neo.io.neuralynxio.NeuralynxIO), FutureWarning) BaseIO.__init__(self) # possiblity to provide filename instead of sessiondir for IO # compatibility if filename is not None and sessiondir is None: sessiondir = filename if sessiondir is None: raise ValueError('Must provide a directory containing data files of' ' of one recording session.') # remove filename if specific file was passed if any([sessiondir.endswith('.%s' % ext) for ext in self.extensions]): sessiondir = sessiondir[:sessiondir.rfind(sep)] # remove / for consistent directory handling if sessiondir.endswith(sep): sessiondir = sessiondir.rstrip(sep) # set general parameters of this IO self.sessiondir = sessiondir self.filename = sessiondir.split(sep)[-1] self._print_diagnostic = print_diagnostic self.associated = False self._associate(cachedir=cachedir, usecache=use_cache) self._diagnostic_print( 'Initialized IO for session %s' % self.sessiondir) def read_block(self, lazy=False, cascade=True, t_starts=None, t_stops=None, electrode_list=None, unit_list=None, analogsignals=True, events=False, waveforms=False): """ Reads data in a requested time window and returns block with as many segments es necessary containing these data. Arguments: lazy : Postpone actual reading of the data files. Default 'False'. cascade : Do not postpone reading subsequent neo types (segments). Default 'True'. t_starts : list of quantities or quantity describing the start of the requested time window to load. If None or [None] the complete session is loaded. Default 'None'. t_stops : list of quantities or quantity describing the end of the requested time window to load. Has to contain the same number of values as t_starts. If None or [None] the complete session is loaded. Default 'None'. electrode_list : list of integers containing the IDs of the requested to load. If [] or None all available channels will be loaded. Default: None. unit_list : list of integers containing the IDs of the requested units to load. If [] or None all available units will be loaded. Default: None. analogsignals : boolean, indication whether analogsignals should be read. Default: True. events : Loading events. If True all available events in the given time window will be read. Default: False. waveforms : Load waveform for spikes in the requested time window. Default: False. Returns: Block object containing the requested data in neo structures. Usage: from neo import io import quantities as pq import matplotlib.pyplot as plt session_folder = '../Data/2014-07-24_10-31-02' NIO = io.NeuralynxIO(session_folder,print_diagnostic = True) block = NIO.read_block(lazy = False, cascade = True, t_starts = 0.1*pq.s, t_stops = 0.2*pq.s, electrode_list = [1,5,10], unit_list = [1,2,3], events = True, waveforms = True) plt.plot(block.segments[0].analogsignals[0]) plt.show() """ # Create block bl = Block(file_origin=self.sessiondir) bl.name = self.filename if not cascade: return bl # Checking input of t_start and t_stop # For lazy users that specify x,x instead of [x],[x] for t_starts, # t_stops if t_starts is None: t_starts = [None] elif type(t_starts) == pq.Quantity: t_starts = [t_starts] elif type(t_starts) != list or any( [(type(i) != pq.Quantity and i is not None) for i in t_starts]): raise ValueError('Invalid specification of t_starts.') if t_stops is None: t_stops = [None] elif type(t_stops) == pq.Quantity: t_stops = [t_stops] elif type(t_stops) != list or any( [(type(i) != pq.Quantity and i is not None) for i in t_stops]): raise ValueError('Invalid specification of t_stops.') # adapting t_starts and t_stops to known gap times (extracted in # association process / initialization) for gap in self.parameters_global['gaps']: # gap=gap_list[0] for e in range(len(t_starts)): t1, t2 = t_starts[e], t_stops[e] gap_start = gap[1] * self.ncs_time_unit - \ self.parameters_global['t_start'] gap_stop = gap[2] * self.ncs_time_unit - self.parameters_global[ 't_start'] if ((t1 is None and t2 is None) or (t1 is None and t2 is not None and t2.rescale( self.ncs_time_unit) > gap_stop) or (t2 is None and t1 is not None and t1.rescale( self.ncs_time_unit) < gap_stop) or (t1 is not None and t2 is not None and t1.rescale( self.ncs_time_unit) < gap_start and t2.rescale(self.ncs_time_unit) > gap_stop)): # adapting first time segment t_stops[e] = gap_start # inserting second time segment t_starts.insert(e + 1, gap_stop) t_stops.insert(e + 1, t2) warnings.warn( 'Substituted t_starts and t_stops in order to skip ' 'gap in recording session.') # loading all channels if empty electrode_list if electrode_list == [] or electrode_list is None: electrode_list = self.parameters_ncs.keys() # adding a segment for each t_start, t_stop pair for t_start, t_stop in zip(t_starts, t_stops): seg = self.read_segment(lazy=lazy, cascade=cascade, t_start=t_start, t_stop=t_stop, electrode_list=electrode_list, unit_list=unit_list, analogsignals=analogsignals, events=events, waveforms=waveforms) bl.segments.append(seg) # generate units units = [] channel_unit_collection = {} for st in [s for seg in bl.segments for s in seg.spiketrains]: # collecting spiketrains of same channel and unit id to generate # common unit chuid = (st.annotations['channel_index'], st.annotations['unit_id']) if chuid in channel_unit_collection: channel_unit_collection[chuid].append(st) else: channel_unit_collection[chuid] = [st] for chuid in channel_unit_collection: sts = channel_unit_collection[chuid] unit = Unit(name='Channel %i, Unit %i' % chuid) unit.spiketrains.extend(sts) units.append(unit) # generate one channel indexes for each analogsignal for anasig in [a for seg in bl.segments for a in seg.analogsignals]: channelids = anasig.annotations['channel_index'] channel_names = ['channel %i' % i for i in channelids] channelidx = ChannelIndex(index=range(len(channelids)), channel_names=channel_names, name='channel ids for all analogsignal ' '"%s"' % anasig.name, channel_ids=channelids) channelidx.analogsignals.append(anasig) bl.channel_indexes.append(channelidx) # generate channel indexes for units channelids = [unit.spiketrains[0].annotations['channel_index'] for unit in units] channel_names = ['channel %i' % i for i in channelids] channelidx = ChannelIndex(index=range(len(channelids)), channel_names=channel_names, name='channel ids for all spiketrains', channel_ids=channelids) channelidx.units.extend(units) bl.channel_indexes.append(channelidx) bl.create_many_to_one_relationship() # Adding global parameters to block annotation bl.annotations.update(self.parameters_global) return bl def read_segment(self, lazy=False, cascade=True, t_start=None, t_stop=None, electrode_list=None, unit_list=None, analogsignals=True, events=False, waveforms=False): """Reads one Segment. The Segment will contain one AnalogSignal for each channel and will go from t_start to t_stop. Arguments: lazy : Postpone actual reading of the data files. Default 'False'. cascade : Do not postpone reading subsequent neo types (SpikeTrains, AnalogSignals, Events). Default 'True'. t_start : time (quantity) that the Segment begins. Default None. t_stop : time (quantity) that the Segment ends. Default None. electrode_list : list of integers containing the IDs of the requested to load. If [] or None all available channels will be loaded. Default: None. unit_list : list of integers containing the IDs of the requested units to load. If [] or None all available units will be loaded. If False, no unit will be loaded. Default: None. analogsignals : boolean, indication whether analogsignals should be read. Default: True. events : Loading events. If True all available events in the given time window will be read. Default: False. waveforms : Load waveform for spikes in the requested time window. Default: False. Returns: Segment object containing neo objects, which contain the data. """ # input check # loading all channels if empty electrode_list if electrode_list == [] or electrode_list is None: electrode_list = self.parameters_ncs.keys() elif electrode_list is None: raise ValueError('Electrode_list can not be None.') elif [v for v in electrode_list if v in self.parameters_ncs.keys()] == []: # warn if non of the requested channels are present in this session warnings.warn('Requested channels %s are not present in session ' '(contains only %s)' % ( electrode_list, self.parameters_ncs.keys())) electrode_list = [] seg = Segment(file_origin=self.filename) if not cascade: return seg # generate empty segment for analogsignal collection empty_seg = Segment(file_origin=self.filename) # Reading NCS Files # # selecting ncs files to load based on electrode_list requested if analogsignals: for chid in electrode_list: if chid in self.parameters_ncs: file_ncs = self.parameters_ncs[chid]['filename'] self.read_ncs(file_ncs, empty_seg, lazy, cascade, t_start=t_start, t_stop=t_stop) else: self._diagnostic_print('Can not load ncs of channel %i. ' 'No corresponding ncs file ' 'present.' % (chid)) # supplementory merge function, should be replaced by neo utility # function def merge_analogsignals(anasig_list): for aid, anasig in enumerate(anasig_list): anasig.channel_index = None if aid == 0: full_analogsignal = anasig else: full_analogsignal = full_analogsignal.merge(anasig) for key in anasig_list[0].annotations.keys(): listified_values = [a.annotations[key] for a in anasig_list] full_analogsignal.annotations[key] = listified_values return full_analogsignal analogsignal = merge_analogsignals(empty_seg.analogsignals) seg.analogsignals.append(analogsignal) analogsignal.segment = seg # Reading NEV Files (Events)# # reading all files available if events: for filename_nev in self.nev_asso: self.read_nev(filename_nev, seg, lazy, cascade, t_start=t_start, t_stop=t_stop) # Reading Spike Data only if requested if unit_list is not False: # Reading NSE Files (Spikes)# # selecting nse files to load based on electrode_list requested for chid in electrode_list: if chid in self.parameters_nse: filename_nse = self.parameters_nse[chid]['filename'] self.read_nse(filename_nse, seg, lazy, cascade, t_start=t_start, t_stop=t_stop, waveforms=waveforms) else: self._diagnostic_print('Can not load nse of channel %i. ' 'No corresponding nse file ' 'present.' % (chid)) # Reading ntt Files (Spikes)# # selecting ntt files to load based on electrode_list requested for chid in electrode_list: if chid in self.parameters_ntt: filename_ntt = self.parameters_ntt[chid]['filename'] self.read_ntt(filename_ntt, seg, lazy, cascade, t_start=t_start, t_stop=t_stop, waveforms=waveforms) else: self._diagnostic_print('Can not load ntt of channel %i. ' 'No corresponding ntt file ' 'present.' % (chid)) return seg def read_ncs(self, filename_ncs, seg, lazy=False, cascade=True, t_start=None, t_stop=None): ''' Reading a single .ncs file from the associated Neuralynx recording session. In case of a recording gap between t_start and t_stop, data are only loaded until gap start. For loading data across recording gaps use read_block(...). Arguments: filename_ncs : Name of the .ncs file to be loaded. seg : Neo Segment, to which the AnalogSignal containing the data will be attached. lazy : Postpone actual reading of the data. Instead provide a dummy AnalogSignal. Default 'False'. cascade : Not used in this context. Default: 'True'. t_start : time or sample (quantity or integer) that the AnalogSignal begins. Default None. t_stop : time or sample (quantity or integer) that the AnalogSignal ends. Default None. Returns: None ''' # checking format of filename and correcting if necessary if filename_ncs[-4:] != '.ncs': filename_ncs = filename_ncs + '.ncs' if sep in filename_ncs: filename_ncs = filename_ncs.split(sep)[-1] # Extracting the channel id from prescan (association) of ncs files with # this recording session chid = self.get_channel_id_by_file_name(filename_ncs) if chid is None: raise ValueError('NeuralynxIO is attempting to read a file ' 'not associated to this session (%s).' % ( filename_ncs)) if not cascade: return # read data header_time_data = self.__mmap_ncs_packet_timestamps(filename_ncs) data = self.__mmap_ncs_data(filename_ncs) # ensure meaningful values for requested start and stop times # in case time is provided in samples: transform to absolute time units if isinstance(t_start, int): t_start = t_start / self.parameters_ncs[chid]['sampling_rate'] if isinstance(t_stop, int): t_stop = t_stop / self.parameters_ncs[chid]['sampling_rate'] # rescaling to global start time of recording (time of first sample # in any file type) if t_start is None or t_start < ( self.parameters_ncs[chid]['t_start'] - self.parameters_global[ 't_start']): t_start = ( self.parameters_ncs[chid]['t_start'] - self.parameters_global[ 't_start']) if t_start > ( self.parameters_ncs[chid]['t_stop'] - self.parameters_global[ 't_start']): raise ValueError( 'Requested times window (%s to %s) is later than data are ' 'recorded (t_stop = %s) ' 'for file %s.' % (t_start, t_stop, (self.parameters_ncs[chid]['t_stop'] - self.parameters_global['t_start']), filename_ncs)) if t_stop is None or t_stop > ( self.parameters_ncs[chid]['t_stop'] - self.parameters_global[ 't_start']): t_stop = ( self.parameters_ncs[chid]['t_stop'] - self.parameters_global[ 't_start']) if t_stop < ( self.parameters_ncs[chid]['t_start'] - self.parameters_global['t_start']): raise ValueError( 'Requested times window (%s to %s) is earlier than data ' 'are ' 'recorded (t_start = %s) ' 'for file %s.' % (t_start, t_stop, (self.parameters_ncs[chid]['t_start'] - self.parameters_global['t_start']), filename_ncs)) if t_start >= t_stop: raise ValueError( 'Requested start time (%s) is later than / equal to stop ' 'time ' '(%s) ' 'for file %s.' % (t_start, t_stop, filename_ncs)) # Extracting data signal in requested time window unit = pq.dimensionless # default value if lazy: sig = [] p_id_start = 0 else: tstamps = header_time_data * self.ncs_time_unit - \ self.parameters_global['t_start'] # find data packet to start with signal construction starts = np.where(tstamps <= t_start)[0] if len(starts) == 0: self._diagnostic_print( 'Requested AnalogSignal not present in this time ' 'interval.') return else: # first packet to be included into signal p_id_start = starts[-1] # find data packet where signal ends (due to gap or t_stop) stops = np.where(tstamps >= t_stop)[0] if len(stops) != 0: first_stop = [stops[0]] else: first_stop = [] # last packet to be included in signal p_id_stop = min(first_stop + [len(data)]) # search gaps in recording in time range to load gap_packets = [gap_id[0] for gap_id in self.parameters_ncs[chid]['gaps'] if gap_id[0] > p_id_start] if len(gap_packets) > 0 and min(gap_packets) < p_id_stop: p_id_stop = min(gap_packets) warnings.warn( 'Analogsignalarray was shortened due to gap in ' 'recorded ' 'data ' ' of file %s at packet id %i' % ( filename_ncs, min(gap_packets))) # search broken packets in time range to load broken_packets = [] if 'broken_packet' in self.parameters_ncs[chid]: broken_packets = [packet[0] for packet in self.parameters_ncs[chid]['broken_packet'] if packet[0] > p_id_start] if len(broken_packets) > 0 and min(broken_packets) < p_id_stop: p_id_stop = min(broken_packets) warnings.warn( 'Analogsignalarray was shortened due to broken data ' 'packet in recorded data ' ' of file %s at packet id %i' % ( filename_ncs, min(broken_packets))) # construct signal in valid packet range sig = np.array(data[p_id_start:p_id_stop + 1], dtype=float) sig = sig.reshape(len(sig) * len(sig[0])) # ADBitVolts is not guaranteed to be present in the header! if 'ADBitVolts' in self.parameters_ncs[chid]: sig *= self.parameters_ncs[chid]['ADBitVolts'] unit = pq.V else: warnings.warn( 'Could not transform data from file %s into physical ' 'signal. ' 'Missing "ADBitVolts" value in text header.') # defining sampling rate for rescaling purposes sampling_rate = self.parameters_ncs[chid]['sampling_unit'][0] # creating neo AnalogSignal containing data anasig = AnalogSignal(signal=pq.Quantity(sig, unit, copy=False), sampling_rate=1 * sampling_rate, # rescaling t_start to sampling time units t_start=(header_time_data[p_id_start] * self.ncs_time_unit - self.parameters_global['t_start']).rescale( 1 / sampling_rate), name='channel_%i' % (chid), channel_index=chid) # removing protruding parts of first and last data packet if anasig.t_start < t_start.rescale(anasig.t_start.units): anasig = anasig.time_slice(t_start.rescale(anasig.t_start.units), None) if anasig.t_stop > t_stop.rescale(anasig.t_start.units): anasig = anasig.time_slice(None, t_stop.rescale(anasig.t_start.units)) annotations = copy.deepcopy(self.parameters_ncs[chid]) for pop_key in ['sampling_rate', 't_start']: if pop_key in annotations: annotations.pop(pop_key) anasig.annotations.update(annotations) anasig.annotations['electrode_id'] = chid # this annotation is necesary for automatic genereation of # recordingchannels anasig.annotations['channel_index'] = chid anasig.segment = seg # needed for merge function of analogsignals seg.analogsignals.append(anasig) def read_nev(self, filename_nev, seg, lazy=False, cascade=True, t_start=None, t_stop=None): ''' Reads associated nev file and attaches its content as eventarray to provided neo segment. In constrast to read_ncs times can not be provided in number of samples as a nev file has no inherent sampling rate. Arguments: filename_nev : Name of the .nev file to be loaded. seg : Neo Segment, to which the Event containing the data will be attached. lazy : Postpone actual reading of the data. Instead provide a dummy Event. Default 'False'. cascade : Not used in this context. Default: 'True'. t_start : time (quantity) that the Events begin. Default None. t_stop : time (quantity) that the Event end. Default None. Returns: None ''' if filename_nev[-4:] != '.nev': filename_nev += '.nev' if sep in filename_nev: filename_nev = filename_nev.split(sep)[-1] if filename_nev not in self.nev_asso: raise ValueError('NeuralynxIO is attempting to read a file ' 'not associated to this session (%s).' % ( filename_nev)) # # ensure meaningful values for requested start and stop times # # providing time is samples for nev file does not make sense as we # don't know the underlying sampling rate if isinstance(t_start, int): raise ValueError( 'Requesting event information from nev file in samples ' 'does ' 'not make sense. ' 'Requested t_start %s' % t_start) if isinstance(t_stop, int): raise ValueError( 'Requesting event information from nev file in samples ' 'does ' 'not make sense. ' 'Requested t_stop %s' % t_stop) # ensure meaningful values for requested start and stop times if t_start is None or t_start < ( self.parameters_nev[filename_nev]['t_start'] - self.parameters_global['t_start']): t_start = (self.parameters_nev[filename_nev]['t_start'] - self.parameters_global['t_start']) if t_start > (self.parameters_nev[filename_nev]['t_stop'] - self.parameters_global['t_start']): raise ValueError( 'Requested times window (%s to %s) is later than data are ' 'recorded (t_stop = %s) ' 'for file %s.' % (t_start, t_stop, (self.parameters_nev[filename_nev]['t_stop'] - self.parameters_global['t_start']), filename_nev)) if t_stop is None or t_stop > ( self.parameters_nev[filename_nev]['t_stop'] - self.parameters_global['t_start']): t_stop = (self.parameters_nev[filename_nev]['t_stop'] - self.parameters_global['t_start']) if t_stop < (self.parameters_nev[filename_nev]['t_start'] - self.parameters_global['t_start']): raise ValueError( 'Requested times window (%s to %s) is earlier than data ' 'are ' 'recorded (t_start = %s) ' 'for file %s.' % (t_start, t_stop, ( self.parameters_nev[filename_nev][ 't_start'] - self.parameters_global['t_start']), filename_nev)) if t_start >= t_stop: raise ValueError( 'Requested start time (%s) is later than / equal to stop ' 'time ' '(%s) ' 'for file %s.' % (t_start, t_stop, filename_nev)) data = self.__mmap_nev_file(filename_nev) # Extracting all events for one event type and put it into an event # array # TODO: Check if this is the correct way of event creation. for event_type in self.parameters_nev[filename_nev]['event_types']: # Extract all time stamps of digital markers and rescaling time type_mask = [i for i in range(len(data)) if (data[i][4] == event_type['event_id'] and data[i][5] == event_type['nttl'] and data[i][10].decode('latin-1') == event_type[ 'name'])] marker_times = [t[3] for t in data[type_mask]] * self.nev_time_unit - \ self.parameters_global['t_start'] # only consider Events in the requested time window [t_start, # t_stop] time_mask = [i for i in range(len(marker_times)) if ( marker_times[i] >= t_start and marker_times[i] <= t_stop)] marker_times = marker_times[time_mask] # Do not create an eventarray if there are no events of this type # in the requested time range if len(marker_times) == 0: continue ev = Event(times=pq.Quantity(marker_times, units=self.nev_time_unit, dtype="int"), labels=event_type['name'], name="Digital Marker " + str(event_type), file_origin=filename_nev, marker_id=event_type['event_id'], digital_marker=True, analog_marker=False, nttl=event_type['nttl']) seg.events.append(ev) def read_nse(self, filename_nse, seg, lazy=False, cascade=True, t_start=None, t_stop=None, unit_list=None, waveforms=False): ''' Reads nse file and attaches content as spike train to provided neo segment. Times can be provided in samples (integer values). If the nse file does not contain a sampling rate value, the ncs sampling rate on the same electrode is used. Arguments: filename_nse : Name of the .nse file to be loaded. seg : Neo Segment, to which the Spiketrain containing the data will be attached. lazy : Postpone actual reading of the data. Instead provide a dummy SpikeTrain. Default 'False'. cascade : Not used in this context. Default: 'True'. t_start : time or sample (quantity or integer) that the SpikeTrain begins. Default None. t_stop : time or sample (quantity or integer) that the SpikeTrain ends. Default None. unit_list : unit ids to be loaded. If [], all units are loaded. Default None. waveforms : Load the waveform (up to 32 data points) for each spike time. Default: False Returns: None ''' if filename_nse[-4:] != '.nse': filename_nse += '.nse' if sep in filename_nse: filename_nse = filename_nse.split(sep)[-1] # extracting channel id of requested file channel_id = self.get_channel_id_by_file_name(filename_nse) if channel_id is not None: chid = channel_id else: # if nse file is empty it is not listed in self.parameters_nse, but # in self.nse_avail if filename_nse in self.nse_avail: warnings.warn('NeuralynxIO is attempting to read an empty ' '(not associated) nse file (%s). ' 'Not loading nse file.' % (filename_nse)) return else: raise ValueError('NeuralynxIO is attempting to read a file ' 'not associated to this session (%s).' % ( filename_nse)) # ensure meaningful values for requested start and stop times # in case time is provided in samples: transform to absolute time units # ncs sampling rate is best guess if there is no explicit sampling # rate given for nse values. if 'sampling_rate' in self.parameters_nse[chid]: sr = self.parameters_nse[chid]['sampling_rate'] elif chid in self.parameters_ncs and 'sampling_rate' in \ self.parameters_ncs[chid]: sr = self.parameters_ncs[chid]['sampling_rate'] else: raise ValueError( 'No sampling rate present for channel id %i in nse file ' '%s. ' 'Could also not find the sampling rate of the respective ' 'ncs ' 'file.' % ( chid, filename_nse)) if isinstance(t_start, int): t_start = t_start / sr if isinstance(t_stop, int): t_stop = t_stop / sr # + rescaling global recording start (first sample in any file type) # This is not optimal, as there is no way to know how long the # recording lasted after last spike if t_start is None or t_start < ( self.parameters_nse[chid]['t_first'] - self.parameters_global[ 't_start']): t_start = ( self.parameters_nse[chid]['t_first'] - self.parameters_global[ 't_start']) if t_start > ( self.parameters_nse[chid]['t_last'] - self.parameters_global['t_start']): raise ValueError( 'Requested times window (%s to %s) is later than data are ' 'recorded (t_stop = %s) ' 'for file %s.' % (t_start, t_stop, (self.parameters_nse[chid]['t_last'] - self.parameters_global['t_start']), filename_nse)) if t_stop is None: t_stop = (sys.maxsize) * self.nse_time_unit if t_stop is None or t_stop > ( self.parameters_nse[chid]['t_last'] - self.parameters_global[ 't_start']): t_stop = ( self.parameters_nse[chid]['t_last'] - self.parameters_global[ 't_start']) if t_stop < ( self.parameters_nse[chid]['t_first'] - self.parameters_global[ 't_start']): raise ValueError( 'Requested times window (%s to %s) is earlier than data ' 'are recorded (t_start = %s) ' 'for file %s.' % (t_start, t_stop, (self.parameters_nse[chid]['t_first'] - self.parameters_global['t_start']), filename_nse)) if t_start >= t_stop: raise ValueError( 'Requested start time (%s) is later than / equal to stop ' 'time ' '(%s) for file %s.' % (t_start, t_stop, filename_nse)) # reading data [timestamps, channel_ids, cell_numbers, features, data_points] = self.__mmap_nse_packets(filename_nse) # load all units available if unit_list==[] or None if unit_list == [] or unit_list is None: unit_list = np.unique(cell_numbers) elif not any([u in cell_numbers for u in unit_list]): self._diagnostic_print( 'None of the requested unit ids (%s) present ' 'in nse file %s (contains unit_list %s)' % ( unit_list, filename_nse, np.unique(cell_numbers))) # extracting spikes unit-wise and generate spiketrains for unit_i in unit_list: if not lazy: # Extract all time stamps of that neuron on that electrode unit_mask = np.where(cell_numbers == unit_i)[0] spike_times = timestamps[unit_mask] * self.nse_time_unit spike_times = spike_times - self.parameters_global['t_start'] time_mask = np.where(np.logical_and(spike_times >= t_start, spike_times < t_stop)) spike_times = spike_times[time_mask] else: spike_times = pq.Quantity([], units=self.nse_time_unit) # Create SpikeTrain object st = SpikeTrain(times=spike_times, t_start=t_start, t_stop=t_stop, sampling_rate=self.parameters_ncs[chid][ 'sampling_rate'], name="Channel %i, Unit %i" % (chid, unit_i), file_origin=filename_nse, unit_id=unit_i, channel_id=chid) if waveforms and not lazy: # Collect all waveforms of the specific unit # For computational reasons: no units, no time axis st.waveforms = data_points[unit_mask][time_mask] # TODO: Add units to waveforms (pq.uV?) and add annotation # left_sweep = x * pq.ms indicating when threshold crossing # occurred in waveform st.annotations.update(self.parameters_nse[chid]) st.annotations['electrode_id'] = chid # This annotations is necessary for automatic generation of # recordingchannels st.annotations['channel_index'] = chid seg.spiketrains.append(st) def read_ntt(self, filename_ntt, seg, lazy=False, cascade=True, t_start=None, t_stop=None, unit_list=None, waveforms=False): ''' Reads ntt file and attaches content as spike train to provided neo segment. Arguments: filename_ntt : Name of the .ntt file to be loaded. seg : Neo Segment, to which the Spiketrain containing the data will be attached. lazy : Postpone actual reading of the data. Instead provide a dummy SpikeTrain. Default 'False'. cascade : Not used in this context. Default: 'True'. t_start : time (quantity) that the SpikeTrain begins. Default None. t_stop : time (quantity) that the SpikeTrain ends. Default None. unit_list : unit ids to be loaded. If [] or None all units are loaded. Default None. waveforms : Load the waveform (up to 32 data points) for each spike time. Default: False Returns: None ''' if filename_ntt[-4:] != '.ntt': filename_ntt += '.ntt' if sep in filename_ntt: filename_ntt = filename_ntt.split(sep)[-1] # extracting channel id of requested file channel_id = self.get_channel_id_by_file_name(filename_ntt) if channel_id is not None: chid = channel_id else: # if ntt file is empty it is not listed in self.parameters_ntt, but # in self.ntt_avail if filename_ntt in self.ntt_avail: warnings.warn('NeuralynxIO is attempting to read an empty ' '(not associated) ntt file (%s). ' 'Not loading ntt file.' % (filename_ntt)) return else: raise ValueError('NeuralynxIO is attempting to read a file ' 'not associated to this session (%s).' % ( filename_ntt)) # ensure meaningful values for requested start and stop times # in case time is provided in samples: transform to absolute time units # ncs sampling rate is best guess if there is no explicit sampling # rate given for ntt values. if 'sampling_rate' in self.parameters_ntt[chid]: sr = self.parameters_ntt[chid]['sampling_rate'] elif chid in self.parameters_ncs and 'sampling_rate' in \ self.parameters_ncs[chid]: sr = self.parameters_ncs[chid]['sampling_rate'] else: raise ValueError( 'No sampling rate present for channel id %i in ntt file ' '%s. ' 'Could also not find the sampling rate of the respective ' 'ncs ' 'file.' % ( chid, filename_ntt)) if isinstance(t_start, int): t_start = t_start / sr if isinstance(t_stop, int): t_stop = t_stop / sr # + rescaling to global recording start (first sample in any # recording file) if t_start is None or t_start < ( self.parameters_ntt[chid]['t_first'] - self.parameters_global[ 't_start']): t_start = ( self.parameters_ntt[chid]['t_first'] - self.parameters_global[ 't_start']) if t_start > ( self.parameters_ntt[chid]['t_last'] - self.parameters_global[ 't_start']): raise ValueError( 'Requested times window (%s to %s) is later than data are ' 'recorded (t_stop = %s) ' 'for file %s.' % (t_start, t_stop, (self.parameters_ntt[chid]['t_last'] - self.parameters_global['t_start']), filename_ntt)) if t_stop is None: t_stop = (sys.maxsize) * self.ntt_time_unit if t_stop is None or t_stop > ( self.parameters_ntt[chid]['t_last'] - self.parameters_global[ 't_start']): t_stop = ( self.parameters_ntt[chid]['t_last'] - self.parameters_global[ 't_start']) if t_stop < ( self.parameters_ntt[chid]['t_first'] - self.parameters_global[ 't_start']): raise ValueError( 'Requested times window (%s to %s) is earlier than data ' 'are ' 'recorded (t_start = %s) ' 'for file %s.' % (t_start, t_stop, (self.parameters_ntt[chid]['t_first'] - self.parameters_global['t_start']), filename_ntt)) if t_start >= t_stop: raise ValueError( 'Requested start time (%s) is later than / equal to stop ' 'time ' '(%s) ' 'for file %s.' % (t_start, t_stop, filename_ntt)) # reading data [timestamps, channel_ids, cell_numbers, features, data_points] = self.__mmap_ntt_packets(filename_ntt) # TODO: When ntt available: Implement 1 RecordingChannelGroup per # Tetrode, such that each electrode gets its own recording channel # load all units available if units==[] if unit_list == [] or unit_list is None: unit_list = np.unique(cell_numbers) elif not any([u in cell_numbers for u in unit_list]): self._diagnostic_print( 'None of the requested unit ids (%s) present ' 'in ntt file %s (contains units %s)' % ( unit_list, filename_ntt, np.unique(cell_numbers))) # loading data for each unit and generating spiketrain for unit_i in unit_list: if not lazy: # Extract all time stamps of that neuron on that electrode mask = np.where(cell_numbers == unit_i)[0] spike_times = timestamps[mask] * self.ntt_time_unit spike_times = spike_times - self.parameters_global['t_start'] spike_times = spike_times[np.where( np.logical_and(spike_times >= t_start, spike_times < t_stop))] else: spike_times = pq.Quantity([], units=self.ntt_time_unit) # Create SpikeTrain object st = SpikeTrain(times=spike_times, t_start=t_start, t_stop=t_stop, sampling_rate=self.parameters_ncs[chid][ 'sampling_rate'], name="Channel %i, Unit %i" % (chid, unit_i), file_origin=filename_ntt, unit_id=unit_i, channel_id=chid) # Collect all waveforms of the specific unit if waveforms and not lazy: # For computational reasons: no units, no time axis # transposing to adhere to neo guidline, which states that # time should be in the first axis. # This is stupid and not intuitive. st.waveforms = np.array( [data_points[t, :, :] for t in range(len(timestamps)) if cell_numbers[t] == unit_i]).transpose() # TODO: Add units to waveforms (pq.uV?) and add annotation # left_sweep = x * pq.ms indicating when threshold crossing # occurred in waveform st.annotations = self.parameters_ntt[chid] st.annotations['electrode_id'] = chid # This annotations is necessary for automatic generation of # recordingchannels st.annotations['channel_index'] = chid seg.spiketrains.append(st) # private routines # ################################################# def _associate(self, cachedir=None, usecache='hash'): """ Associates the object with a specified Neuralynx session, i.e., a combination of a .nse, .nev and .ncs files. The meta data is read into the object for future reference. Arguments: cachedir : Directory for loading and saving hashes of recording sessions and pickled meta information about files extracted during association process use_cache: method used for cache identification. Possible values: 'hash'/ 'always'/'datesize'/'never'. Default 'hash' Returns: - """ # If already associated, disassociate first if self.associated: raise OSError( "Trying to associate an already associated NeuralynxIO " "object.") # Create parameter containers # Dictionary that holds different parameters read from the .nev file self.parameters_nse = {} # List of parameter dictionaries for all potential file types self.parameters_ncs = {} self.parameters_nev = {} self.parameters_ntt = {} # combined global parameters self.parameters_global = {} # Scanning session directory for recorded files self.sessionfiles = [f for f in listdir(self.sessiondir) if isfile(os.path.join(self.sessiondir, f))] # Listing available files self.ncs_avail = [] self.nse_avail = [] self.nev_avail = [] self.ntt_avail = [] # Listing associated (=non corrupted, non empty files) self.ncs_asso = [] self.nse_asso = [] self.nev_asso = [] self.ntt_asso = [] if usecache not in ['hash', 'always', 'datesize', 'never']: raise ValueError( "Argument value of usecache '%s' is not valid. Accepted " "values are 'hash','always','datesize','never'" % usecache) if cachedir is None and usecache != 'never': raise ValueError('No cache directory provided.') # check if there are any changes of the data files -> new data check run check_files = True if usecache != 'always' else False # never # checking files if usecache=='always' if cachedir is not None and usecache != 'never': self._diagnostic_print( 'Calculating %s of session files to check for cached ' 'parameter files.' % usecache) cachefile = cachedir + sep + self.sessiondir.split(sep)[ -1] + '/hashkeys' if not os.path.exists(cachedir + sep + self.sessiondir.split(sep)[-1]): os.makedirs(cachedir + sep + self.sessiondir.split(sep)[-1]) if usecache == 'hash': hashes_calc = {} # calculates hash of all available files for f in self.sessionfiles: file_hash = self.hashfile(open(self.sessiondir + sep + f, 'rb'), hashlib.sha256()) hashes_calc[f] = file_hash elif usecache == 'datesize': hashes_calc = {} for f in self.sessionfiles: hashes_calc[f] = self.datesizefile( self.sessiondir + sep + f) # load hashes saved for this session in an earlier loading run if os.path.exists(cachefile): hashes_read = pickle.load(open(cachefile, 'rb')) else: hashes_read = {} # compare hashes to previously saved meta data und load meta data # if no changes occured if usecache == 'always' or all([f in hashes_calc and f in hashes_read and hashes_calc[f] == hashes_read[f] for f in self.sessionfiles]): check_files = False self._diagnostic_print( 'Using cached metadata from earlier analysis run in ' 'file ' '%s. Skipping file checks.' % cachefile) # loading saved parameters parameterfile = cachedir + sep + self.sessiondir.split(sep)[ -1] + '/parameters.cache' if os.path.exists(parameterfile): parameters_read = pickle.load(open(parameterfile, 'rb')) else: raise OSError('Inconsistent cache files.') for IOdict, dictname in [(self.parameters_global, 'global'), (self.parameters_ncs, 'ncs'), (self.parameters_nse, 'nse'), (self.parameters_nev, 'nev'), (self.parameters_ntt, 'ntt')]: IOdict.update(parameters_read[dictname]) self.nev_asso = self.parameters_nev.keys() self.ncs_asso = [val['filename'] for val in self.parameters_ncs.values()] self.nse_asso = [val['filename'] for val in self.parameters_nse.values()] self.ntt_asso = [val['filename'] for val in self.parameters_ntt.values()] for filename in self.sessionfiles: # Extracting only continuous signal files (.ncs) if filename[-4:] == '.ncs': self.ncs_avail.append(filename) elif filename[-4:] == '.nse': self.nse_avail.append(filename) elif filename[-4:] == '.nev': self.nev_avail.append(filename) elif filename[-4:] == '.ntt': self.ntt_avail.append(filename) else: self._diagnostic_print( 'Ignoring file of unknown data type %s' % filename) if check_files: self._diagnostic_print('Starting individual file checks.') # ======================================================================= # # Scan NCS files # ======================================================================= self._diagnostic_print( '\nDetected %i .ncs file(s).' % (len(self.ncs_avail))) for ncs_file in self.ncs_avail: # Loading individual NCS file and extracting parameters self._diagnostic_print("Scanning " + ncs_file + ".") # Reading file packet headers filehandle = self.__mmap_ncs_packet_headers(ncs_file) if filehandle is None: continue try: # Checking consistency of ncs file self.__ncs_packet_check(filehandle) except AssertionError: warnings.warn( 'Session file %s did not pass data packet check. ' 'This file can not be loaded.' % ncs_file) continue # Reading data packet header information and store them in # parameters_ncs self.__read_ncs_data_headers(filehandle, ncs_file) # Reading txt file header channel_id = self.get_channel_id_by_file_name(ncs_file) self.__read_text_header(ncs_file, self.parameters_ncs[channel_id]) # Check for invalid starting times of data packets in ncs file self.__ncs_invalid_first_sample_check(filehandle) # Check ncs file for gaps self.__ncs_gap_check(filehandle) self.ncs_asso.append(ncs_file) # ======================================================================= # # Scan NSE files # ======================================================================= # Loading individual NSE file and extracting parameters self._diagnostic_print( '\nDetected %i .nse file(s).' % (len(self.nse_avail))) for nse_file in self.nse_avail: # Loading individual NSE file and extracting parameters self._diagnostic_print('Scanning ' + nse_file + '.') # Reading file filehandle = self.__mmap_nse_packets(nse_file) if filehandle is None: continue try: # Checking consistency of nse file self.__nse_check(filehandle) except AssertionError: warnings.warn( 'Session file %s did not pass data packet check. ' 'This file can not be loaded.' % nse_file) continue # Reading header information and store them in parameters_nse self.__read_nse_data_header(filehandle, nse_file) # Reading txt file header channel_id = self.get_channel_id_by_file_name(nse_file) self.__read_text_header(nse_file, self.parameters_nse[channel_id]) # using sampling rate from txt header, as this is not saved # in data packets if 'SamplingFrequency' in self.parameters_nse[channel_id]: self.parameters_nse[channel_id]['sampling_rate'] = \ (self.parameters_nse[channel_id][ 'SamplingFrequency'] * self.nse_sr_unit) self.nse_asso.append(nse_file) # ======================================================================= # # Scan NEV files # ======================================================================= self._diagnostic_print( '\nDetected %i .nev file(s).' % (len(self.nev_avail))) for nev_file in self.nev_avail: # Loading individual NEV file and extracting parameters self._diagnostic_print('Scanning ' + nev_file + '.') # Reading file filehandle = self.__mmap_nev_file(nev_file) if filehandle is None: continue try: # Checking consistency of nev file self.__nev_check(filehandle) except AssertionError: warnings.warn( 'Session file %s did not pass data packet check. ' 'This file can not be loaded.' % nev_file) continue # Reading header information and store them in parameters_nev self.__read_nev_data_header(filehandle, nev_file) # Reading txt file header self.__read_text_header(nev_file, self.parameters_nev[nev_file]) self.nev_asso.append(nev_file) # ======================================================================= # # Scan NTT files # ======================================================================= self._diagnostic_print( '\nDetected %i .ntt file(s).' % (len(self.ntt_avail))) for ntt_file in self.ntt_avail: # Loading individual NTT file and extracting parameters self._diagnostic_print('Scanning ' + ntt_file + '.') # Reading file filehandle = self.__mmap_ntt_file(ntt_file) if filehandle is None: continue try: # Checking consistency of nev file self.__ntt_check(filehandle) except AssertionError: warnings.warn( 'Session file %s did not pass data packet check. ' 'This file can not be loaded.' % ntt_file) continue # Reading header information and store them in parameters_nev self.__read_ntt_data_header(filehandle, ntt_file) # Reading txt file header self.__read_ntt_text_header(ntt_file) # using sampling rate from txt header, as this is not saved # in data packets if 'SamplingFrequency' in self.parameters_ntt[channel_id]: self.parameters_ntt[channel_id]['sampling_rate'] = \ (self.parameters_ntt[channel_id][ 'SamplingFrequency'] * self.ntt_sr_unit) self.ntt_asso.append(ntt_file) # ======================================================================= # # Check consistency across files # ======================================================================= # check RECORDING_OPENED / CLOSED times (from txt header) for # different files for parameter_collection in [self.parameters_ncs, self.parameters_nse, self.parameters_nev, self.parameters_ntt]: # check recoding_closed times for specific file types if any(np.abs(np.diff([i['recording_opened'] for i in parameter_collection.values()])) > datetime.timedelta(seconds=1)): raise ValueError( 'NCS files were opened for recording with a delay ' 'greater than 0.1 second.') # check recoding_closed times for specific file types if any(np.diff([i['recording_closed'] for i in parameter_collection.values() if i['recording_closed'] is not None]) > datetime.timedelta(seconds=0.1)): raise ValueError( 'NCS files were closed after recording with a ' 'delay ' 'greater than 0.1 second.') # get maximal duration of any file in the recording parameter_collection = list(self.parameters_ncs.values()) + \ list(self.parameters_nse.values()) + \ list(self.parameters_ntt.values()) + \ list(self.parameters_nev.values()) self.parameters_global['recording_opened'] = min( [i['recording_opened'] for i in parameter_collection]) self.parameters_global['recording_closed'] = max( [i['recording_closed'] for i in parameter_collection]) # Set up GLOBAL TIMING SCHEME # ############################# for file_type, parameter_collection in [ ('ncs', self.parameters_ncs), ('nse', self.parameters_nse), ('nev', self.parameters_nev), ('ntt', self.parameters_ntt)]: # check starting times name_t1, name_t2 = ['t_start', 't_stop'] if ( file_type != 'nse' and file_type != 'ntt') \ else ['t_first', 't_last'] # checking if files of same type start at same time point if file_type != 'nse' and file_type != 'ntt' \ and len(np.unique(np.array( [i[name_t1].magnitude for i in parameter_collection.values()]))) > 1: raise ValueError( '%s files do not start at same time point.' % file_type) # saving t_start and t_stop for each file type available if len([i[name_t1] for i in parameter_collection.values()]): self.parameters_global['%s_t_start' % file_type] = min( [i[name_t1] for i in parameter_collection.values()]) self.parameters_global['%s_t_stop' % file_type] = min( [i[name_t2] for i in parameter_collection.values()]) # extracting minimial t_start and maximal t_stop value for this # recording session self.parameters_global['t_start'] = min( [self.parameters_global['%s_t_start' % t] for t in ['ncs', 'nev', 'nse', 'ntt'] if '%s_t_start' % t in self.parameters_global]) self.parameters_global['t_stop'] = max( [self.parameters_global['%s_t_stop' % t] for t in ['ncs', 'nev', 'nse', 'ntt'] if '%s_t_start' % t in self.parameters_global]) # checking gap consistency across ncs files # check number of gaps detected if len(np.unique([len(i['gaps']) for i in self.parameters_ncs.values()])) != 1: raise ValueError('NCS files contain different numbers of gaps!') # check consistency of gaps across files and create global gap # collection self.parameters_global['gaps'] = [] for g in range(len(list(self.parameters_ncs.values())[0]['gaps'])): integrated = False gap_stats = np.unique( [i['gaps'][g] for i in self.parameters_ncs.values()], return_counts=True) if len(gap_stats[0]) != 3 or len(np.unique(gap_stats[1])) != 1: raise ValueError( 'Gap number %i is not consistent across NCS ' 'files.' % ( g)) else: # check if this is second part of already existing gap for gg in range(len(self.parameters_global['gaps'])): globalgap = self.parameters_global['gaps'][gg] # check if stop time of first is start time of second # -> continuous gap if globalgap[2] == \ list(self.parameters_ncs.values())[0]['gaps'][ g][1]: self.parameters_global['gaps'][gg] = \ self.parameters_global['gaps'][gg][:2] + ( list(self.parameters_ncs.values())[0][ 'gaps'][g][ 2],) integrated = True break if not integrated: # add as new gap if this is not a continuation of # existing global gap self.parameters_global['gaps'].append( list(self.parameters_ncs.values())[0][ 'gaps'][g]) # save results of association for future analysis together with hash # values for change tracking if cachedir is not None and usecache != 'never': pickle.dump({'global': self.parameters_global, 'ncs': self.parameters_ncs, 'nev': self.parameters_nev, 'nse': self.parameters_nse, 'ntt': self.parameters_ntt}, open(cachedir + sep + self.sessiondir.split(sep)[ -1] + '/parameters.cache', 'wb')) if usecache != 'always': pickle.dump(hashes_calc, open( cachedir + sep + self.sessiondir.split(sep)[ -1] + '/hashkeys', 'wb')) self.associated = True # private routines # #########################################################� # Memory Mapping Methods def __mmap_nse_packets(self, filename): """ Memory map of the Neuralynx .ncs file optimized for extraction of data packet headers Reading standard dtype improves speed, but timestamps need to be reconstructed """ filesize = getsize(self.sessiondir + sep + filename) # in byte if filesize > 16384: data = np.memmap(self.sessiondir + sep + filename, dtype='<u2', shape=((filesize - 16384) // 2 // 56, 56), mode='r', offset=16384) # reconstructing original data # first 4 ints -> timestamp in microsec timestamps = data[:, 0] \ + data[:, 1] * 2 ** 16 \ + data[:, 2] * 2 ** 32 \ + data[:, 3] * 2 ** 48 channel_id = data[:, 4] + data[:, 5] * 2 ** 16 cell_number = data[:, 6] + data[:, 7] * 2 ** 16 features = [data[:, p] + data[:, p + 1] * 2 ** 16 for p in range(8, 23, 2)] features = np.array(features, dtype='i4') data_points = data[:, 24:56].astype('i2') del data return timestamps, channel_id, cell_number, features, data_points else: return None def __mmap_ncs_data(self, filename): """ Memory map of the Neuralynx .ncs file optimized for data extraction""" if getsize(self.sessiondir + sep + filename) > 16384: data = np.memmap(self.sessiondir + sep + filename, dtype=np.dtype(('i2', (522))), mode='r', offset=16384) # removing data packet headers and flattening data return data[:, 10:] else: return None def __mmap_ncs_packet_headers(self, filename): """ Memory map of the Neuralynx .ncs file optimized for extraction of data packet headers Reading standard dtype improves speed, but timestamps need to be reconstructed """ filesize = getsize(self.sessiondir + sep + filename) # in byte if filesize > 16384: data = np.memmap(self.sessiondir + sep + filename, dtype='<u4', shape=((filesize - 16384) // 4 // 261, 261), mode='r', offset=16384) ts = data[:, 0:2] multi = np.repeat(np.array([1, 2 ** 32], ndmin=2), len(data), axis=0) timestamps = np.sum(ts * multi, axis=1) # timestamps = data[:,0] + (data[:,1] *2**32) header_u4 = data[:, 2:5] return timestamps, header_u4 else: return None def __mmap_ncs_packet_timestamps(self, filename): """ Memory map of the Neuralynx .ncs file optimized for extraction of data packet headers Reading standard dtype improves speed, but timestamps need to be reconstructed """ filesize = getsize(self.sessiondir + sep + filename) # in byte if filesize > 16384: data = np.memmap(self.sessiondir + sep + filename, dtype='<u4', shape=(int((filesize - 16384) / 4 / 261), 261), mode='r', offset=16384) ts = data[:, 0:2] multi = np.repeat(np.array([1, 2 ** 32], ndmin=2), len(data), axis=0) timestamps = np.sum(ts * multi, axis=1) # timestamps = data[:,0] + data[:,1]*2**32 return timestamps else: return None def __mmap_nev_file(self, filename): """ Memory map the Neuralynx .nev file """ nev_dtype = np.dtype([ ('reserved', '<i2'), ('system_id', '<i2'), ('data_size', '<i2'), ('timestamp', '<u8'), ('event_id', '<i2'), ('ttl_input', '<i2'), ('crc_check', '<i2'), ('dummy1', '<i2'), ('dummy2', '<i2'), ('extra', '<i4', (8,)), ('event_string', 'a128'), ]) if getsize(self.sessiondir + sep + filename) > 16384: return np.memmap(self.sessiondir + sep + filename, dtype=nev_dtype, mode='r', offset=16384) else: return None def __mmap_ntt_file(self, filename): """ Memory map the Neuralynx .nse file """ nse_dtype = np.dtype([ ('timestamp', '<u8'), ('sc_number', '<u4'), ('cell_number', '<u4'), ('params', '<u4', (8,)), ('data', '<i2', (32, 4)), ]) if getsize(self.sessiondir + sep + filename) > 16384: return np.memmap(self.sessiondir + sep + filename, dtype=nse_dtype, mode='r', offset=16384) else: return None def __mmap_ntt_packets(self, filename): """ Memory map of the Neuralynx .ncs file optimized for extraction of data packet headers Reading standard dtype improves speed, but timestamps need to be reconstructed """ filesize = getsize(self.sessiondir + sep + filename) # in byte if filesize > 16384: data = np.memmap(self.sessiondir + sep + filename, dtype='<u2', shape=((filesize - 16384) / 2 / 152, 152), mode='r', offset=16384) # reconstructing original data # first 4 ints -> timestamp in microsec timestamps = data[:, 0] + data[:, 1] * 2 ** 16 + \ data[:, 2] * 2 ** 32 + data[:, 3] * 2 ** 48 channel_id = data[:, 4] + data[:, 5] * 2 ** 16 cell_number = data[:, 6] + data[:, 7] * 2 ** 16 features = [data[:, p] + data[:, p + 1] * 2 ** 16 for p in range(8, 23, 2)] features = np.array(features, dtype='i4') data_points = data[:, 24:152].astype('i2').reshape((4, 32)) del data return timestamps, channel_id, cell_number, features, data_points else: return None # ___________________________ header extraction __________________________ def __read_text_header(self, filename, parameter_dict): # Reading main file header (plain text, 16kB) text_header = codecs.open(self.sessiondir + sep + filename, 'r', 'latin-1').read(16384) parameter_dict['cheetah_version'] = \ self.__get_cheetah_version_from_txt_header(text_header, filename) parameter_dict.update(self.__get_filename_and_times_from_txt_header( text_header, parameter_dict['cheetah_version'])) # separating lines of header and ignoring last line (fill), check if # Linux or Windows OS if sep == '/': text_header = text_header.split('\r\n')[:-1] if sep == '\\': text_header = text_header.split('\n')[:-1] # minor parameters possibly saved in header (for any file type) minor_keys = ['AcqEntName', 'FileType', 'FileVersion', 'RecordSize', 'HardwareSubSystemName', 'HardwareSubSystemType', 'SamplingFrequency', 'ADMaxValue', 'ADBitVolts', 'NumADChannels', 'ADChannel', 'InputRange', 'InputInverted', 'DSPLowCutFilterEnabled', 'DspLowCutFrequency', 'DspLowCutNumTaps', 'DspLowCutFilterType', 'DSPHighCutFilterEnabled', 'DspHighCutFrequency', 'DspHighCutNumTaps', 'DspHighCutFilterType', 'DspDelayCompensation', 'DspFilterDelay_\xb5s', 'DisabledSubChannels', 'WaveformLength', 'AlignmentPt', 'ThreshVal', 'MinRetriggerSamples', 'SpikeRetriggerTime', 'DualThresholding', 'Feature Peak 0', 'Feature Valley 1', 'Feature Energy 2', 'Feature Height 3', 'Feature NthSample 4', 'Feature NthSample 5', 'Feature NthSample 6', 'Feature NthSample 7', 'SessionUUID', 'FileUUID', 'CheetahRev', 'ProbeName', 'OriginalFileName', 'TimeCreated', 'TimeClosed', 'ApplicationName', 'AcquisitionSystem', 'ReferenceChannel'] # extracting minor key values of header (only taking into account # non-empty lines) for i, minor_entry in enumerate(text_header): if minor_entry == '' or minor_entry[0] == '#': continue matching_key = [key for key in minor_keys if minor_entry.strip('-').startswith(key)] if len(matching_key) == 1: matching_key = matching_key[0] minor_value = minor_entry.split(matching_key)[1].strip( ' ').rstrip(' ') # determine data type of entry if minor_value.isdigit(): # converting to int if possible minor_value = int(minor_value) else: # converting to float if possible try: minor_value = float(minor_value) except: pass if matching_key in parameter_dict: warnings.warn( 'Multiple entries for {} in text header of {}'.format( matching_key, filename)) else: parameter_dict[matching_key] = minor_value elif len(matching_key) > 1: raise ValueError( 'Inconsistent minor key list for text header ' 'interpretation.') else: warnings.warn( 'Skipping text header entry %s, because it is not in ' 'minor key list' % minor_entry) self._diagnostic_print( 'Successfully decoded text header of file (%s).' % filename) def __get_cheetah_version_from_txt_header(self, text_header, filename): version_regex = re.compile(r'((-CheetahRev )|' r'(ApplicationName Cheetah "))' r'(?P<version>\d{1,3}\.\d{1,3}\.\d{1,3})') match = version_regex.search(text_header) if match: return match.groupdict()['version'] else: raise ValueError('Can not extract Cheetah version from file ' 'header of file %s' % filename) def __get_filename_and_times_from_txt_header(self, text_header, version): if parse_version(version) <= parse_version('5.6.4'): datetime1_regex = re.compile(r'## Time Opened \(m/d/y\): ' r'(?P<date>\S+)' r' \(h:m:s\.ms\) ' r'(?P<time>\S+)') datetime2_regex = re.compile(r'## Time Closed \(m/d/y\): ' r'(?P<date>\S+)' r' \(h:m:s\.ms\) ' r'(?P<time>\S+)') filename_regex = re.compile(r'## File Name (?P<filename>\S+)') datetimeformat = '%m/%d/%Y %H:%M:%S.%f' else: datetime1_regex = re.compile(r'-TimeCreated ' r'(?P<date>\S+) ' r'(?P<time>\S+)') datetime2_regex = re.compile(r'-TimeClosed ' r'(?P<date>\S+) ' r'(?P<time>\S+)') filename_regex = re.compile(r'-OriginalFileName ' r'"?(?P<filename>\S+)"?') datetimeformat = '%Y/%m/%d %H:%M:%S' matchtime1 = datetime1_regex.search(text_header).groupdict() matchtime2 = datetime2_regex.search(text_header).groupdict() matchfilename = filename_regex.search(text_header) filename = matchfilename.groupdict()['filename'] if '## Time Closed File was not closed properly' in text_header: warnings.warn('Text header of file %s does not contain recording ' 'closed time. File was not closed properly.' '' % filename) datetime1 = datetime.datetime.strptime(matchtime1['date'] + ' ' + matchtime1['time'], datetimeformat) datetime2 = datetime.datetime.strptime(matchtime2['date'] + ' ' + matchtime2['time'], datetimeformat) output = {'recording_opened': datetime1, 'recording_closed': datetime2, 'file_created': datetime1, 'file_closed': datetime2, 'recording_file_name': filename} return output def __read_ncs_data_headers(self, filehandle, filename): ''' Reads the .ncs data block headers and stores the information in the object's parameters_ncs dictionary. Args: filehandle (file object): Handle to the already opened .ncs file. filename (string): Name of the ncs file. Returns: dict of extracted data ''' timestamps = filehandle[0] header_u4 = filehandle[1] channel_id = header_u4[0][0] sr = header_u4[0][1] # in Hz t_start = timestamps[0] # in microseconds # calculating corresponding time stamp of first sample, that was not # recorded any more # t_stop= time of first sample in last packet +(#samples per packet * # conversion factor / sampling rate) # conversion factor is needed as times are recorded in ms t_stop = timestamps[-1] + ( (header_u4[-1][2]) * ( 1 / self.ncs_time_unit.rescale(pq.s)).magnitude / header_u4[-1][1]) if channel_id in self.parameters_ncs: raise ValueError( 'Detected multiple ncs files for channel_id %i.' % channel_id) else: sampling_unit = [pq.CompoundUnit('%f*%s' '' % (sr, self.ncs_sr_unit.symbol))] sampling_rate = sr * self.ncs_sr_unit self.parameters_ncs[channel_id] = {'filename': filename, 't_start': t_start * self.ncs_time_unit, 't_stop': t_stop * self.ncs_time_unit, 'sampling_rate': sampling_rate, 'sampling_unit': sampling_unit, 'gaps': []} return {channel_id: self.parameters_ncs[channel_id]} def __read_nse_data_header(self, filehandle, filename): ''' Reads the .nse data block headers and stores the information in the object's parameters_ncs dictionary. Args: filehandle (file object): Handle to the already opened .nse file. filename (string): Name of the nse file. Returns: - ''' [timestamps, channel_ids, cell_numbers, features, data_points] = filehandle if filehandle is not None: t_first = timestamps[0] # in microseconds t_last = timestamps[-1] # in microseconds channel_id = channel_ids[0] cell_count = cell_numbers[0] # number of cells identified self.parameters_nse[channel_id] = {'filename': filename, 't_first': t_first * self.nse_time_unit, 't_last': t_last * self.nse_time_unit, 'cell_count': cell_count} def __read_ntt_data_header(self, filehandle, filename): ''' Reads the .nse data block headers and stores the information in the object's parameters_ncs dictionary. Args: filehandle (file object): Handle to the already opened .nse file. filename (string): Name of the nse file. Returns: - ''' [timestamps, channel_ids, cell_numbers, features, data_points] = filehandle if filehandle is not None: t_first = timestamps[0] # in microseconds t_last = timestamps[-1] # in microseconds channel_id = channel_ids[0] cell_count = cell_numbers[0] # number of cells identified # spike_parameters = filehandle[0][3] # else: # t_first = None # channel_id = None # cell_count = 0 # # spike_parameters = None # # self._diagnostic_print('Empty file: No information # contained in %s'%filename) self.parameters_ntt[channel_id] = {'filename': filename, 't_first': t_first * self.ntt_time_unit, 't_last': t_last * self.nse_time_unit, 'cell_count': cell_count} def __read_nev_data_header(self, filehandle, filename): ''' Reads the .nev data block headers and stores the relevant information in the object's parameters_nev dictionary. Args: filehandle (file object): Handle to the already opened .nev file. filename (string): Name of the nev file. Returns: - ''' # Extracting basic recording events to be able to check recording # consistency if filename in self.parameters_nev: raise ValueError( 'Detected multiple nev files of name %s.' % (filename)) else: self.parameters_nev[filename] = {} if 'Starting_Recording' in self.parameters_nev[filename]: raise ValueError('Trying to read second nev file of name %s. ' ' Only one can be handled.' % filename) self.parameters_nev[filename]['Starting_Recording'] = [] self.parameters_nev[filename]['events'] = [] for event in filehandle: # separately extracting 'Starting Recording' if ((event[4] in [11, 19]) and (event[10].decode('latin-1') == 'Starting Recording')): self.parameters_nev[filename]['Starting_Recording'].append( event[3] * self.nev_time_unit) # adding all events to parameter collection self.parameters_nev[filename]['events'].append( {'timestamp': event[3] * self.nev_time_unit, 'event_id': event[4], 'nttl': event[5], 'name': event[10].decode('latin-1')}) if len(self.parameters_nev[filename]['Starting_Recording']) < 1: raise ValueError( 'No Event "Starting_Recording" detected in %s' % ( filename)) self.parameters_nev[filename]['t_start'] = min( self.parameters_nev[filename]['Starting_Recording']) # t_stop = time stamp of last event in file self.parameters_nev[filename]['t_stop'] = max( [e['timestamp'] for e in self.parameters_nev[filename]['events']]) # extract all occurring event types (= combination of nttl, # event_id and name/string) event_types = copy.deepcopy(self.parameters_nev[filename]['events']) for d in event_types: d.pop('timestamp') self.parameters_nev[filename]['event_types'] = [dict(y) for y in {tuple( x.items()) for x in event_types}] # ________________ File Checks __________________________________ def __ncs_packet_check(self, filehandle): ''' Checks consistency of data in ncs file and raises assertion error if a check fails. Detected recording gaps are added to parameter_ncs Args: filehandle (file object): Handle to the already opened .ncs file. ''' timestamps = filehandle[0] header_u4 = filehandle[1] # checking sampling rate of data packets sr0 = header_u4[0, 1] assert all(header_u4[:, 1] == sr0) # checking channel id of data packets channel_id = header_u4[0, 0] assert all(header_u4[:, 0] == channel_id) # time offset of data packets # TODO: Check if there is a safer way to do the delta_t check for ncs # data packets # this is a not safe assumption, that the first two data packets have # correct time stamps delta_t = timestamps[1] - timestamps[0] # valid samples of first data packet temp_valid_samples = header_u4[0, 2] # unit test # time difference between packets corresponds to number of recorded # samples assert delta_t == ( temp_valid_samples / ( self.ncs_time_unit.rescale(pq.s).magnitude * sr0)) self._diagnostic_print('NCS packet check successful.') def __nse_check(self, filehandle): ''' Checks consistency of data in ncs file and raises assertion error if a check fails. Args: filehandle (file object): Handle to the already opened .nse file. ''' [timestamps, channel_ids, cell_numbers, features, data_points] = filehandle assert all(channel_ids == channel_ids[0]) assert all([len(dp) == len(data_points[0]) for dp in data_points]) self._diagnostic_print('NSE file check successful.') def __nev_check(self, filehandle): ''' Checks consistency of data in nev file and raises assertion error if a check fails. Args: filehandle (file object): Handle to the already opened .nev file. ''' # this entry should always equal 2 (see Neuralynx File Description), # but it is not. For me, this is 0. assert all([f[2] == 2 or f[2] == 0 for f in filehandle]) # TODO: check with more nev files, if index 0,1,2,6,7,8 and 9 can be # non-zero. Interpretation? Include in event extraction. # only observed 0 for index 0,1,2,6,7,8,9 in nev files. # If they are non-zero, this needs to be included in event extraction assert all([f[0] == 0 for f in filehandle]) assert all([f[1] == 0 for f in filehandle]) assert all([f[2] in [0, 2] for f in filehandle]) assert all([f[6] == 0 for f in filehandle]) assert all([f[7] == 0 for f in filehandle]) assert all([f[8] == 0 for f in filehandle]) assert all([all(f[9] == 0) for f in filehandle]) self._diagnostic_print('NEV file check successful.') def __ntt_check(self, filehandle): ''' Checks consistency of data in ncs file and raises assertion error if a check fails. Args: filehandle (file object): Handle to the already opened .nse file. ''' # TODO: check this when first .ntt files are available [timestamps, channel_ids, cell_numbers, features, data_points] = filehandle assert all(channel_ids == channel_ids[0]) assert all([len(dp) == len(data_points[0]) for dp in data_points]) self._diagnostic_print('NTT file check successful.') def __ncs_gap_check(self, filehandle): ''' Checks individual data blocks of ncs files for consistent starting times with respect to sample count. This covers intended recording gaps as well as shortened data packet, which are incomplete ''' timestamps = filehandle[0] header_u4 = filehandle[1] channel_id = header_u4[0, 0] if channel_id not in self.parameters_ncs: self.parameters_ncs[channel_id] = {} # time stamps of data packets delta_t = timestamps[1] - timestamps[0] # in microsec data_packet_offsets = np.diff(timestamps) # in microsec # check if delta_t corresponds to number of valid samples present in # data packets # NOTE: This also detects recording gaps! valid_samples = header_u4[:-1, 2] sampling_rate = header_u4[0, 1] packet_checks = (valid_samples / (self.ncs_time_unit.rescale( pq.s).magnitude * sampling_rate)) == data_packet_offsets if not all(packet_checks): if 'broken_packets' not in self.parameters_ncs[channel_id]: self.parameters_ncs[channel_id]['broken_packets'] = [] broken_packets = np.where(np.array(packet_checks) is False)[0] for broken_packet in broken_packets: self.parameters_ncs[channel_id]['broken_packets'].append( (broken_packet, valid_samples[broken_packet], data_packet_offsets[broken_packet])) self._diagnostic_print('Detected broken packet in NCS file at ' 'packet id %i (sample number %i ' 'time offset id %i)' '' % (broken_packet, valid_samples[broken_packet], data_packet_offsets[broken_packet]) ) # in microsec # checking for irregular data packet durations -> gaps / shortened # data packets if not all(data_packet_offsets == delta_t): if 'gaps' not in self.parameters_ncs[channel_id]: self.parameters_ncs[channel_id]['gaps'] = [] # gap identification by (sample of gap start, duration) # gap packets gap_packet_ids = np.where(data_packet_offsets != delta_t)[0] for gap_packet_id in gap_packet_ids: # skip if this packet starting time is known to be corrupted # hoping no corruption and gap occurs simultaneously # corrupted time stamp affects two delta_t comparisons: if gap_packet_id in self.parameters_ncs[channel_id][ 'invalid_first_samples'] \ or gap_packet_id + 1 in self.parameters_ncs[channel_id][ 'invalid_first_samples']: continue gap_start = timestamps[ gap_packet_id] # t_start of last packet [microsec] gap_stop = timestamps[ gap_packet_id + 1] # t_stop of first packet [microsec] self.parameters_ncs[channel_id]['gaps'].append((gap_packet_id, gap_start, gap_stop)) # # [,microsec,microsec] self._diagnostic_print('Detected gap in NCS file between' 'sample time %i and %i (last correct ' 'packet id %i)' % (gap_start, gap_stop, gap_packet_id)) def __ncs_invalid_first_sample_check(self, filehandle): ''' Checks data blocks of ncs files for corrupted starting times indicating a missing first sample in the data packet. These are then excluded from the gap check, but ignored for further analysis. ''' timestamps = filehandle[0] header_u4 = filehandle[1] channel_id = header_u4[0, 0] self.parameters_ncs[channel_id]['invalid_first_samples'] = [] # checking if first bit of timestamp is 1, which indicates error invalid_packet_ids = np.where(timestamps >= 2 ** 55)[0] if len(invalid_packet_ids) > 0: warnings.warn('Invalid first sample(s) detected in ncs file' '(packet id(s) %i)! This error is ignored in' 'subsequent routines.' % (invalid_packet_ids)) self.parameters_ncs[channel_id][ 'invalid_first_samples'] = invalid_packet_ids # checking consistency of data around corrupted packet time for invalid_packet_id in invalid_packet_ids: if invalid_packet_id < 2 or invalid_packet_id > len( filehandle) - 2: raise ValueError( 'Corrupted ncs data packet at the beginning' 'or end of file.') elif (timestamps[invalid_packet_id + 1] - timestamps[ invalid_packet_id - 1] != 2 * ( timestamps[invalid_packet_id - 1] - timestamps[ invalid_packet_id - 2])): raise ValueError('Starting times of ncs data packets around' 'corrupted data packet are not ' 'consistent!') # Supplementory Functions def get_channel_id_by_file_name(self, filename): """ Checking parameters of NCS, NSE and NTT Files for given filename and return channel_id if result is consistent :param filename: :return: """ channel_ids = [] channel_ids += [k for k in self.parameters_ncs if self.parameters_ncs[k]['filename'] == filename] channel_ids += [k for k in self.parameters_nse if self.parameters_nse[k]['filename'] == filename] channel_ids += [k for k in self.parameters_ntt if self.parameters_ntt[k]['filename'] == filename] if len(np.unique(np.asarray(channel_ids))) == 1: return channel_ids[0] elif len(channel_ids) > 1: raise ValueError( 'Ambiguous channel ids detected. Filename %s is associated' ' to different channels of NCS and NSE and NTT %s' '' % (filename, channel_ids)) else: # if filename was not detected return None def hashfile(self, afile, hasher, blocksize=65536): buf = afile.read(blocksize) while len(buf) > 0: hasher.update(buf) buf = afile.read(blocksize) return hasher.digest() def datesizefile(self, filename): return str(os.path.getmtime(filename)) + '_' + str( os.path.getsize(filename)) def _diagnostic_print(self, text): ''' Print a diagnostic message. Args: text (string): Diagnostic text to print. Returns: - ''' if self._print_diagnostic: print('NeuralynxIO: ' + text)
bsd-3-clause
rlouf/patterns-of-segregation
bin/plot_scaling_classes.py
1
3443
"""plot_income_scaling.py Plot the number of households from a given class as a function of the total number of households per city """ import csv import math from matplotlib import pylab as plt from scipy.stats import linregress colours = {'Lower':'#4F8F6B', 'Higher':'#C1A62E', 'Middle':'#4B453C'} # Puerto-rican cities are excluded from the analysis PR_cities = ['7442','0060','6360','4840'] # # Read data # ## List of MSA msa = {} with open('data/names/msa.csv', 'r') as source: reader = csv.reader(source, delimiter='\t') reader.next() for rows in reader: if rows[0] not in PR_cities: msa[rows[0]] = rows[1] ## Classes classes = {} with open('extr/classes/msa_average/classes.csv', 'r') as source: reader = csv.reader(source, delimiter='\t') reader.next() for rows in reader: classes[rows[0]] =[int(r) for r in rows[1:]] ## Number of households per class, and total households_class = {cl:[] for cl in classes} households = [] for i, city in enumerate(msa): print "Compute number of households for %s (%s/%s)"%(msa[city], i+1, len(msa)) ## Import households data incomes = {} with open('data/income/msa/%s/income.csv'%city, 'r') as source: reader = csv.reader(source, delimiter='\t') reader.next() for rows in reader: num_cat = len(rows[1:]) incomes[rows[0]] = {cl: sum([int(rows[1+c]) for c in classes[cl]]) for cl in classes} incomes_cl = {cl: sum([incomes[au][cl] for au in incomes]) for cl in classes} for cl in classes: households_class[cl].append(incomes_cl[cl]) households.append(sum(incomes_cl.values())) # # Fit # slopes = {} r_values = {} intercepts = {} for cl in classes: print "Power-law fit for %s income class"%cl slope, intercept, r_value, p_value, std_err = linregress([math.log(p) for p in households],[math.log(d) for d in households_class[cl]]) slopes[cl] = slope r_values[cl] = r_value intercepts[cl] = intercept print "alpha = %s (R^2=%s)"%(slope, r_value) # # Plot # fig = plt.figure(figsize=(24,8)) for i,cl in enumerate(classes): ax = fig.add_subplot(1, len(classes), i+1) ax.plot(households, households_class[cl], 'o', color=colours[cl], mec=colours[cl], label=r'$%s$'%cl) ax.plot(sorted(households), [math.exp(intercepts[cl])*h**slopes[cl] for h in sorted(households)], label=r'$H_{%s} \sim H^{\,%.2f}$'%(cl, slopes[cl]), linestyle='--', color='black') ax.set_xlabel(r'$H$', fontsize=20) ax.set_ylabel(r'$H_{%s}$'%cl, fontsize=20) ax.set_xscale('log') ax.set_yscale('log') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_position(('outward', 10)) # outward by 10 points ax.spines['bottom'].set_position(('outward', 10)) # outward by 10 points ax.spines['left'].set_smart_bounds(True) ax.spines['bottom'].set_smart_bounds(True) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.legend(loc='upper left', numpoints=1, frameon=False) plt.savefig('figures/paper/si/scaling_class.pdf', bbox_inches='tight') plt.show()
bsd-3-clause
liberatorqjw/scikit-learn
sklearn/tests/test_multiclass.py
8
21910
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_greater from sklearn.multiclass import OneVsRestClassifier from sklearn.multiclass import OneVsOneClassifier from sklearn.multiclass import OutputCodeClassifier from sklearn.multiclass import fit_ovr from sklearn.multiclass import fit_ovo from sklearn.multiclass import fit_ecoc from sklearn.multiclass import predict_ovr from sklearn.multiclass import predict_ovo from sklearn.multiclass import predict_ecoc from sklearn.multiclass import predict_proba_ovr from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.preprocessing import LabelBinarizer from sklearn.svm import LinearSVC, SVC from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import (LinearRegression, Lasso, ElasticNet, Ridge, Perceptron, LogisticRegression) from sklearn.tree import DecisionTreeClassifier from sklearn.grid_search import GridSearchCV from sklearn.pipeline import Pipeline from sklearn import svm from sklearn import datasets from sklearn.externals.six.moves import zip iris = datasets.load_iris() rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] n_classes = 3 def test_ovr_exceptions(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovr.predict, []) with ignore_warnings(): assert_raises(ValueError, predict_ovr, [LinearSVC(), MultinomialNB()], LabelBinarizer(), []) # Fail on multioutput data assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1, 2], [3, 1]])) assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1.5, 2.4], [3.1, 0.8]])) def test_ovr_fit_predict(): # A classifier which implements decision_function. ovr = OneVsRestClassifier(LinearSVC(random_state=0)) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) clf = LinearSVC(random_state=0) pred2 = clf.fit(iris.data, iris.target).predict(iris.data) assert_equal(np.mean(iris.target == pred), np.mean(iris.target == pred2)) # A classifier which implements predict_proba. ovr = OneVsRestClassifier(MultinomialNB()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_greater(np.mean(iris.target == pred), 0.65) def test_ovr_fit_predict_sparse(): for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix, sp.lil_matrix]: base_clf = MultinomialNB(alpha=1) X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) clf_sprs = OneVsRestClassifier(base_clf).fit(X_train, sparse(Y_train)) Y_pred_sprs = clf_sprs.predict(X_test) assert_true(clf.multilabel_) assert_true(sp.issparse(Y_pred_sprs)) assert_array_equal(Y_pred_sprs.toarray(), Y_pred) # Test predict_proba Y_proba = clf_sprs.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred_sprs.toarray()) # Test decision_function clf_sprs = OneVsRestClassifier(svm.SVC()).fit(X_train, sparse(Y_train)) dec_pred = (clf_sprs.decision_function(X_test) > 0).astype(int) assert_array_equal(dec_pred, clf_sprs.predict(X_test).toarray()) def test_ovr_always_present(): """Test that ovr works with classes that are always present or absent.""" # Note: tests is the case where _ConstantPredictor is utilised X = np.ones((10, 2)) X[:5, :] = 0 # Build an indicator matrix where two features are always on. # As list of lists, it would be: [[int(i >= 5), 2, 3] for i in range(10)] y = np.zeros((10, 3)) y[5:, 0] = 1 y[:, 1] = 1 y[:, 2] = 1 ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict(X) assert_array_equal(np.array(y_pred), np.array(y)) y_pred = ovr.decision_function(X) assert_equal(np.unique(y_pred[:, -2:]), 1) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.ones(X.shape[0])) # y has a constantly absent label y = np.zeros((10, 2)) y[5:, 0] = 1 # variable label ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.zeros(X.shape[0])) def test_ovr_multiclass(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "ham", "eggs", "ham"] Y = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0]]) classes = set("ham eggs spam".split()) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[0, 0, 4]])[0] assert_array_equal(y_pred, [0, 0, 1]) def test_ovr_binary(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "spam", "eggs", "spam"] Y = np.array([[0, 1, 1, 0, 1]]).T classes = set("eggs spam".split()) def conduct_test(base_clf, test_predict_proba=False): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) if test_predict_proba: X_test = np.array([[0, 0, 4]]) probabilities = clf.predict_proba(X_test) assert_equal(2, len(probabilities[0])) assert_equal(clf.classes_[np.argmax(probabilities, axis=1)], clf.predict(X_test)) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[3, 0, 0]])[0] assert_equal(y_pred, 1) for base_clf in (LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): conduct_test(base_clf) for base_clf in (MultinomialNB(), SVC(probability=True), LogisticRegression()): conduct_test(base_clf, test_predict_proba=True) @ignore_warnings def test_ovr_multilabel(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]]) y = [["spam", "eggs"], ["spam"], ["ham", "eggs", "spam"], ["ham", "eggs"], ["ham"]] # y = [[1, 2], [1], [0, 1, 2], [0, 2], [0]] Y = np.array([[0, 1, 1], [0, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0]]) classes = set("ham eggs spam".split()) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet(), Lasso(alpha=0.5)): # test input as lists of tuples clf = assert_warns(DeprecationWarning, OneVsRestClassifier(base_clf).fit, X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict([[0, 4, 4]])[0] assert_equal(set(y_pred), set(["spam", "eggs"])) assert_true(clf.multilabel_) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[0, 4, 4]])[0] assert_array_equal(y_pred, [0, 1, 1]) assert_true(clf.multilabel_) def test_ovr_fit_predict_svc(): ovr = OneVsRestClassifier(svm.SVC()) ovr.fit(iris.data, iris.target) assert_equal(len(ovr.estimators_), 3) assert_greater(ovr.score(iris.data, iris.target), .9) def test_ovr_multilabel_dataset(): base_clf = MultinomialNB(alpha=1) for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=au, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) assert_true(clf.multilabel_) assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"), prec, decimal=2) assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"), recall, decimal=2) def test_ovr_multilabel_predict_proba(): base_clf = MultinomialNB(alpha=1) for au in (False, True): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=au, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) # Estimator with predict_proba disabled, depending on parameters. decision_only = OneVsRestClassifier(svm.SVC(probability=False)) decision_only.fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred) def test_ovr_single_label_predict_proba(): base_clf = MultinomialNB(alpha=1) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) assert_almost_equal(Y_proba.sum(axis=1), 1.0) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = np.array([l.argmax() for l in Y_proba]) assert_false((pred - Y_pred).any()) def test_ovr_multilabel_decision_function(): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal((clf.decision_function(X_test) > 0).astype(int), clf.predict(X_test)) def test_ovr_single_label_decision_function(): X, Y = datasets.make_classification(n_samples=100, n_features=20, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal(clf.decision_function(X_test).ravel() > 0, clf.predict(X_test)) def test_ovr_gridsearch(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovr, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovr_pipeline(): # Test with pipeline of length one # This test is needed because the multiclass estimators may fail to detect # the presence of predict_proba or decision_function. clf = Pipeline([("tree", DecisionTreeClassifier())]) ovr_pipe = OneVsRestClassifier(clf) ovr_pipe.fit(iris.data, iris.target) ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data)) def test_ovr_coef_(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) ovr.fit(iris.data, iris.target) shape = ovr.coef_.shape assert_equal(shape[0], n_classes) assert_equal(shape[1], iris.data.shape[1]) def test_ovr_coef_exceptions(): # Not fitted exception! ovr = OneVsRestClassifier(LinearSVC(random_state=0)) # lambda is needed because we don't want coef_ to be evaluated right away assert_raises(ValueError, lambda x: ovr.coef_, None) # Doesn't have coef_ exception! ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_raises(AttributeError, lambda x: ovr.coef_, None) def test_ovo_exceptions(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovo.predict, []) def test_ovo_fit_predict(): # A classifier which implements decision_function. ovo = OneVsOneClassifier(LinearSVC(random_state=0)) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) # A classifier which implements predict_proba. ovo = OneVsOneClassifier(MultinomialNB()) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) def test_ovo_gridsearch(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovo, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovo_ties(): # test that ties are broken using the decision function, not defaulting to # the smallest label X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y = np.array([2, 0, 1, 2]) multi_clf = OneVsOneClassifier(Perceptron()) ovo_prediction = multi_clf.fit(X, y).predict(X) # recalculate votes to make sure we have a tie predictions = np.vstack([clf.predict(X) for clf in multi_clf.estimators_]) scores = np.vstack([clf.decision_function(X) for clf in multi_clf.estimators_]) # classifiers are in order 0-1, 0-2, 1-2 # aggregate votes: votes = np.zeros((4, 3)) votes[np.arange(4), predictions[0]] += 1 votes[np.arange(4), 2 * predictions[1]] += 1 votes[np.arange(4), 1 + predictions[2]] += 1 # for the first point, there is one vote per class assert_array_equal(votes[0, :], 1) # for the rest, there is no tie and the prediction is the argmax assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:]) # for the tie, the prediction is the class with the highest score assert_equal(ovo_prediction[0], 0) # in the zero-one classifier, the score for 0 is greater than the score for # one. assert_greater(scores[0][0], scores[0][1]) # score for one is greater than score for zero assert_greater(scores[2, 0] - scores[0, 0], scores[0, 0] + scores[1, 0]) # score for one is greater than score for two assert_greater(scores[2, 0] - scores[0, 0], -scores[1, 0] - scores[2, 0]) def test_ovo_ties2(): # test that ties can not only be won by the first two labels X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y_ref = np.array([2, 0, 1, 2]) # cycle through labels so that each label wins once for i in range(3): y = (y_ref + i) % 3 multi_clf = OneVsOneClassifier(Perceptron()) ovo_prediction = multi_clf.fit(X, y).predict(X) assert_equal(ovo_prediction[0], i % 3) def test_ovo_string_y(): "Test that the OvO doesn't screw the encoding of string labels" X = np.eye(4) y = np.array(['a', 'b', 'c', 'd']) svc = LinearSVC() ovo = OneVsOneClassifier(svc) ovo.fit(X, y) assert_array_equal(y, ovo.predict(X)) def test_ecoc_exceptions(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ecoc.predict, []) def test_ecoc_fit_predict(): # A classifier which implements decision_function. ecoc = OutputCodeClassifier(LinearSVC(random_state=0), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) # A classifier which implements predict_proba. ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) def test_ecoc_gridsearch(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0), random_state=0) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ecoc, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) @ignore_warnings def test_deprecated(): base_estimator = DecisionTreeClassifier(random_state=0) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] all_metas = [ (OneVsRestClassifier, fit_ovr, predict_ovr, predict_proba_ovr), (OneVsOneClassifier, fit_ovo, predict_ovo, None), (OutputCodeClassifier, fit_ecoc, predict_ecoc, None), ] for MetaEst, fit_func, predict_func, proba_func in all_metas: try: meta_est = MetaEst(base_estimator, random_state=0).fit(X_train, Y_train) fitted_return = fit_func(base_estimator, X_train, Y_train, random_state=0) except TypeError: meta_est = MetaEst(base_estimator).fit(X_train, Y_train) fitted_return = fit_func(base_estimator, X_train, Y_train) if len(fitted_return) == 2: estimators_, classes_or_lb = fitted_return assert_almost_equal(predict_func(estimators_, classes_or_lb, X_test), meta_est.predict(X_test)) if proba_func is not None: assert_almost_equal(proba_func(estimators_, X_test, is_multilabel=False), meta_est.predict_proba(X_test)) else: estimators_, classes_or_lb, codebook = fitted_return assert_almost_equal(predict_func(estimators_, classes_or_lb, codebook, X_test), meta_est.predict(X_test)) if __name__ == "__main__": import nose nose.runmodule()
bsd-3-clause
dshen1/trading-with-python
lib/functions.py
76
11627
# -*- coding: utf-8 -*- """ twp support functions @author: Jev Kuznetsov Licence: GPL v2 """ from scipy import polyfit, polyval import datetime as dt #from datetime import datetime, date from pandas import DataFrame, Index, Series import csv import matplotlib.pyplot as plt import numpy as np import pandas as pd def nans(shape, dtype=float): ''' create a nan numpy array ''' a = np.empty(shape, dtype) a.fill(np.nan) return a def plotCorrelationMatrix(price, thresh = None): ''' plot a correlation matrix as a heatmap image inputs: price: prices DataFrame thresh: correlation threshold to use for checking, default None ''' symbols = price.columns.tolist() R = price.pct_change() correlationMatrix = R.corr() if thresh is not None: correlationMatrix = correlationMatrix > thresh plt.imshow(abs(correlationMatrix.values),interpolation='none') plt.xticks(range(len(symbols)),symbols) plt.yticks(range(len(symbols)),symbols) plt.colorbar() plt.title('Correlation matrix') return correlationMatrix def pca(A): """ performs principal components analysis (PCA) on the n-by-p DataFrame A Rows of A correspond to observations, columns to variables. Returns : coeff : principal components, column-wise transform: A in principal component space latent : eigenvalues """ # computing eigenvalues and eigenvectors of covariance matrix M = (A - A.mean()).T # subtract the mean (along columns) [latent,coeff] = np.linalg.eig(np.cov(M)) # attention:not always sorted idx = np.argsort(latent) # sort eigenvalues idx = idx[::-1] # in ascending order coeff = coeff[:,idx] latent = latent[idx] score = np.dot(coeff.T,A.T) # projection of the data in the new space transform = DataFrame(index = A.index, data = score.T) return coeff,transform,latent def pos2pnl(price,position , ibTransactionCost=False ): """ calculate pnl based on price and position Inputs: --------- price: series or dataframe of price position: number of shares at each time. Column names must be same as in price ibTransactionCost: use bundled Interactive Brokers transaction cost of 0.005$/share Returns a portfolio DataFrame """ delta=position.diff() port = DataFrame(index=price.index) if isinstance(price,Series): # no need to sum along 1 for series port['cash'] = (-delta*price).cumsum() port['stock'] = (position*price) else: # dealing with DataFrame here port['cash'] = (-delta*price).sum(axis=1).cumsum() port['stock'] = (position*price).sum(axis=1) if ibTransactionCost: tc = -0.005*position.diff().abs() # basic transaction cost tc[(tc>-1) & (tc<0)] = -1 # everything under 1$ will be ceil'd to 1$ if isinstance(price,DataFrame): tc = tc.sum(axis=1) port['tc'] = tc.cumsum() else: port['tc'] = 0. port['total'] = port['stock']+port['cash']+port['tc'] return port def tradeBracket(price,entryBar,maxTradeLength,bracket): ''' trade a symmetrical bracket on price series, return price delta and exit bar # Input ------ price : series of price values entryBar: entry bar number maxTradeLength : max trade duration in bars bracket : allowed price deviation ''' lastBar = min(entryBar+maxTradeLength,len(price)-1) p = price[entryBar:lastBar]-price[entryBar] idxOutOfBound = np.nonzero(abs(p)>bracket) # find indices where price comes out of bracket if idxOutOfBound[0].any(): # found match priceDelta = p[idxOutOfBound[0][0]] exitBar = idxOutOfBound[0][0]+entryBar else: # all in bracket, exiting based on time priceDelta = p[-1] exitBar = lastBar return priceDelta, exitBar def estimateBeta(priceY,priceX,algo = 'standard'): ''' estimate stock Y vs stock X beta using iterative linear regression. Outliers outside 3 sigma boundary are filtered out Parameters -------- priceX : price series of x (usually market) priceY : price series of y (estimate beta of this price) Returns -------- beta : stockY beta relative to stock X ''' X = DataFrame({'x':priceX,'y':priceY}) if algo=='returns': ret = (X/X.shift(1)-1).dropna().values #print len(ret) x = ret[:,0] y = ret[:,1] # filter high values low = np.percentile(x,20) high = np.percentile(x,80) iValid = (x>low) & (x<high) x = x[iValid] y = y[iValid] iteration = 1 nrOutliers = 1 while iteration < 10 and nrOutliers > 0 : (a,b) = polyfit(x,y,1) yf = polyval([a,b],x) #plot(x,y,'x',x,yf,'r-') err = yf-y idxOutlier = abs(err) > 3*np.std(err) nrOutliers =sum(idxOutlier) beta = a #print 'Iteration: %i beta: %.2f outliers: %i' % (iteration,beta, nrOutliers) x = x[~idxOutlier] y = y[~idxOutlier] iteration += 1 elif algo=='log': x = np.log(X['x']) y = np.log(X['y']) (a,b) = polyfit(x,y,1) beta = a elif algo=='standard': ret =np.log(X).diff().dropna() beta = ret['x'].cov(ret['y'])/ret['x'].var() else: raise TypeError("unknown algorithm type, use 'standard', 'log' or 'returns'") return beta def estimateVolatility(ohlc, N=10, algo='YangZhang'): """ Volatility estimation Possible algorithms: ['YangZhang', 'CC'] """ cc = np.log(ohlc.close/ohlc.close.shift(1)) if algo == 'YangZhang': # Yang-zhang volatility ho = np.log(ohlc.high/ohlc.open) lo = np.log(ohlc.low/ohlc.open) co = np.log(ohlc.close/ohlc.open) oc = np.log(ohlc.open/ohlc.close.shift(1)) oc_sq = oc**2 cc_sq = cc**2 rs = ho*(ho-co)+lo*(lo-co) close_vol = pd.rolling_sum(cc_sq, window=N) * (1.0 / (N - 1.0)) open_vol = pd.rolling_sum(oc_sq, window=N) * (1.0 / (N - 1.0)) window_rs = pd.rolling_sum(rs, window=N) * (1.0 / (N - 1.0)) result = (open_vol + 0.164333 * close_vol + 0.835667 * window_rs).apply(np.sqrt) * np.sqrt(252) result[:N-1] = np.nan elif algo == 'CC': # standard close-close estimator result = np.sqrt(252)*np.sqrt(((pd.rolling_sum(cc**2,N))/N)) else: raise ValueError('Unknown algo type.') return result*100 def rank(current,past): ''' calculate a relative rank 0..1 for a value against series ''' return (current>past).sum()/float(past.count()) def returns(df): return (df/df.shift(1)-1) def logReturns(df): t = np.log(df) return t-t.shift(1) def dateTimeToDate(idx): ''' convert datetime index to date ''' dates = [] for dtm in idx: dates.append(dtm.date()) return dates def readBiggerScreener(fName): ''' import data from Bigger Capital screener ''' with open(fName,'rb') as f: reader = csv.reader(f) rows = [row for row in reader] header = rows[0] data = [[] for i in range(len(header))] for row in rows[1:]: for i,elm in enumerate(row): try: data[i].append(float(elm)) except Exception: data[i].append(str(elm)) return DataFrame(dict(zip(header,data)),index=Index(range(len(data[0]))))[header] def sharpe(pnl): return np.sqrt(250)*pnl.mean()/pnl.std() def drawdown(s): """ calculate max drawdown and duration Input: s, price or cumulative pnl curve $ Returns: drawdown : vector of drawdwon values duration : vector of drawdown duration """ # convert to array if got pandas series, 10x speedup if isinstance(s,pd.Series): idx = s.index s = s.values returnSeries = True else: returnSeries = False if s.min() < 0: # offset if signal minimum is less than zero s = s-s.min() highwatermark = np.zeros(len(s)) drawdown = np.zeros(len(s)) drawdowndur = np.zeros(len(s)) for t in range(1,len(s)): highwatermark[t] = max(highwatermark[t-1], s[t]) drawdown[t] = (highwatermark[t]-s[t]) drawdowndur[t]= (0 if drawdown[t] == 0 else drawdowndur[t-1]+1) if returnSeries: return pd.Series(index=idx,data=drawdown), pd.Series(index=idx,data=drawdowndur) else: return drawdown , drawdowndur def profitRatio(pnl): ''' calculate profit ratio as sum(pnl)/drawdown Input: pnl - daily pnl, Series or DataFrame ''' def processVector(pnl): # process a single column s = pnl.fillna(0) dd = drawdown(s)[0] p = s.sum()/dd.max() return p if isinstance(pnl,Series): return processVector(pnl) elif isinstance(pnl,DataFrame): p = Series(index = pnl.columns) for col in pnl.columns: p[col] = processVector(pnl[col]) return p else: raise TypeError("Input must be DataFrame or Series, not "+str(type(pnl))) def candlestick(df,width=0.5, colorup='b', colordown='r'): ''' plot a candlestick chart of a dataframe ''' O = df['open'].values H = df['high'].values L = df['low'].values C = df['close'].values fig = plt.gcf() ax = plt.axes() #ax.hold(True) X = df.index #plot high and low ax.bar(X,height=H-L,bottom=L,width=0.1,color='k') idxUp = C>O ax.bar(X[idxUp],height=(C-O)[idxUp],bottom=O[idxUp],width=width,color=colorup) idxDown = C<=O ax.bar(X[idxDown],height=(O-C)[idxDown],bottom=C[idxDown],width=width,color=colordown) try: fig.autofmt_xdate() except Exception: # pragma: no cover pass ax.grid(True) #ax.bar(x,height=H-L,bottom=L,width=0.01,color='k') def datetime2matlab(t): ''' convert datetime timestamp to matlab numeric timestamp ''' mdn = t + dt.timedelta(days = 366) frac = (t-dt.datetime(t.year,t.month,t.day,0,0,0)).seconds / (24.0 * 60.0 * 60.0) return mdn.toordinal() + frac def getDataSources(fName = None): ''' return data sources directories for this machine. directories are defined in datasources.ini or provided filepath''' import socket from ConfigParser import ConfigParser pcName = socket.gethostname() p = ConfigParser() p.optionxform = str if fName is None: fName = 'datasources.ini' p.read(fName) if pcName not in p.sections(): raise NameError('Host name section %s not found in file %s' %(pcName,fName)) dataSources = {} for option in p.options(pcName): dataSources[option] = p.get(pcName,option) return dataSources if __name__ == '__main__': df = DataFrame({'open':[1,2,3],'high':[5,6,7],'low':[-2,-1,0],'close':[2,1,4]}) plt.clf() candlestick(df)
bsd-3-clause
namccart/gnuradio
gr-digital/examples/example_costas.py
49
5316
#!/usr/bin/env python # # Copyright 2011-2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, digital, filter from gnuradio import blocks from gnuradio import channels from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser import sys try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_costas(gr.top_block): def __init__(self, N, sps, rolloff, ntaps, bw, noise, foffset, toffset, poffset): gr.top_block.__init__(self) rrc_taps = filter.firdes.root_raised_cosine( sps, sps, 1.0, rolloff, ntaps) data = 2.0*scipy.random.randint(0, 2, N) - 1.0 data = scipy.exp(1j*poffset) * data self.src = blocks.vector_source_c(data.tolist(), False) self.rrc = filter.interp_fir_filter_ccf(sps, rrc_taps) self.chn = channels.channel_model(noise, foffset, toffset) self.cst = digital.costas_loop_cc(bw, 2) self.vsnk_src = blocks.vector_sink_c() self.vsnk_cst = blocks.vector_sink_c() self.vsnk_frq = blocks.vector_sink_f() self.connect(self.src, self.rrc, self.chn, self.cst, self.vsnk_cst) self.connect(self.rrc, self.vsnk_src) self.connect((self.cst,1), self.vsnk_frq) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=2000, help="Set the number of samples to process [default=%default]") parser.add_option("-S", "--sps", type="int", default=4, help="Set the samples per symbol [default=%default]") parser.add_option("-r", "--rolloff", type="eng_float", default=0.35, help="Set the rolloff factor [default=%default]") parser.add_option("-W", "--bandwidth", type="eng_float", default=2*scipy.pi/100.0, help="Set the loop bandwidth [default=%default]") parser.add_option("-n", "--ntaps", type="int", default=45, help="Set the number of taps in the filters [default=%default]") parser.add_option("", "--noise", type="eng_float", default=0.0, help="Set the simulation noise voltage [default=%default]") parser.add_option("-f", "--foffset", type="eng_float", default=0.0, help="Set the simulation's normalized frequency offset (in Hz) [default=%default]") parser.add_option("-t", "--toffset", type="eng_float", default=1.0, help="Set the simulation's timing offset [default=%default]") parser.add_option("-p", "--poffset", type="eng_float", default=0.707, help="Set the simulation's phase offset [default=%default]") (options, args) = parser.parse_args () # Adjust N for the interpolation by sps options.nsamples = options.nsamples // options.sps # Set up the program-under-test put = example_costas(options.nsamples, options.sps, options.rolloff, options.ntaps, options.bandwidth, options.noise, options.foffset, options.toffset, options.poffset) put.run() data_src = scipy.array(put.vsnk_src.data()) # Convert the FLL's LO frequency from rads/sec to Hz data_frq = scipy.array(put.vsnk_frq.data()) / (2.0*scipy.pi) # adjust this to align with the data. data_cst = scipy.array(3*[0,]+list(put.vsnk_cst.data())) # Plot the Costas loop's LO frequency f1 = pylab.figure(1, figsize=(12,10), facecolor='w') s1 = f1.add_subplot(2,2,1) s1.plot(data_frq) s1.set_title("Costas LO") s1.set_xlabel("Samples") s1.set_ylabel("Frequency (normalized Hz)") # Plot the IQ symbols s3 = f1.add_subplot(2,2,2) s3.plot(data_src.real, data_src.imag, "o") s3.plot(data_cst.real, data_cst.imag, "rx") s3.set_title("IQ") s3.set_xlabel("Real part") s3.set_ylabel("Imag part") s3.set_xlim([-2, 2]) s3.set_ylim([-2, 2]) # Plot the symbols in time s4 = f1.add_subplot(2,2,3) s4.set_position([0.125, 0.05, 0.775, 0.4]) s4.plot(data_src.real, "o-") s4.plot(data_cst.real, "rx-") s4.set_title("Symbols") s4.set_xlabel("Samples") s4.set_ylabel("Real Part of Signals") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
tbabej/astropy
astropy/visualization/wcsaxes/tests/test_frame.py
2
5298
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import matplotlib.pyplot as plt from ....wcs import WCS from ....tests.helper import pytest, remote_data from .. import WCSAxes from ..frame import BaseFrame from ....tests.image_tests import IMAGE_REFERENCE_DIR from .test_images import BaseImageTests class HexagonalFrame(BaseFrame): spine_names = 'abcdef' def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() ymid = 0.5 * (ymin + ymax) xmid1 = (xmin + xmax) / 4. xmid2 = (xmin + xmax) * 3. / 4. self['a'].data = np.array(([xmid1, ymin], [xmid2, ymin])) self['b'].data = np.array(([xmid2, ymin], [xmax, ymid])) self['c'].data = np.array(([xmax, ymid], [xmid2, ymax])) self['d'].data = np.array(([xmid2, ymax], [xmid1, ymax])) self['e'].data = np.array(([xmid1, ymax], [xmin, ymid])) self['f'].data = np.array(([xmin, ymid], [xmid1, ymin])) class TestFrame(BaseImageTests): @remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, filename='custom_frame.png', tolerance=1.5) def test_custom_frame(self): wcs = WCS(self.msx_header) fig = plt.figure(figsize=(4, 4)) ax = WCSAxes(fig, [0.15, 0.15, 0.7, 0.7], wcs=wcs, frame_class=HexagonalFrame) fig.add_axes(ax) ax.coords.grid(color='white') im = ax.imshow(np.ones((149, 149)), vmin=0., vmax=2., origin='lower', cmap=plt.cm.gist_heat) minpad = {} minpad['a'] = minpad['d'] = 1 minpad['b'] = minpad['c'] = minpad['e'] = minpad['f'] = 2.75 ax.coords['glon'].set_axislabel("Longitude", minpad=minpad) ax.coords['glon'].set_axislabel_position('ad') ax.coords['glat'].set_axislabel("Latitude", minpad=minpad) ax.coords['glat'].set_axislabel_position('bcef') ax.coords['glon'].set_ticklabel_position('ad') ax.coords['glat'].set_ticklabel_position('bcef') # Set limits so that no labels overlap ax.set_xlim(5.5, 100.5) ax.set_ylim(5.5, 110.5) # Clip the image to the frame im.set_clip_path(ax.coords.frame.patch) return fig @remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, filename='update_clip_path_rectangular.png', tolerance=1.5) def test_update_clip_path_rectangular(self, tmpdir): fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], aspect='equal') fig.add_axes(ax) ax.set_xlim(0., 2.) ax.set_ylim(0., 2.) # Force drawing, which freezes the clip path returned by WCSAxes fig.savefig(tmpdir.join('nothing').strpath) ax.imshow(np.zeros((12, 4))) ax.set_xlim(-0.5, 3.5) ax.set_ylim(-0.5, 11.5) return fig @remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, filename='update_clip_path_nonrectangular.png', tolerance=1.5) def test_update_clip_path_nonrectangular(self, tmpdir): fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], aspect='equal', frame_class=HexagonalFrame) fig.add_axes(ax) ax.set_xlim(0., 2.) ax.set_ylim(0., 2.) # Force drawing, which freezes the clip path returned by WCSAxes fig.savefig(tmpdir.join('nothing').strpath) ax.imshow(np.zeros((12, 4))) ax.set_xlim(-0.5, 3.5) ax.set_ylim(-0.5, 11.5) return fig @remote_data(source='astropy') @pytest.mark.mpl_image_compare(baseline_dir=IMAGE_REFERENCE_DIR, filename='update_clip_path_change_wcs.png', tolerance=1.5) def test_update_clip_path_change_wcs(self, tmpdir): # When WCS is changed, a new frame is created, so we need to make sure # that the path is carried over to the new frame. fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], aspect='equal') fig.add_axes(ax) ax.set_xlim(0., 2.) ax.set_ylim(0., 2.) # Force drawing, which freezes the clip path returned by WCSAxes fig.savefig(tmpdir.join('nothing').strpath) ax.reset_wcs() ax.imshow(np.zeros((12, 4))) ax.set_xlim(-0.5, 3.5) ax.set_ylim(-0.5, 11.5) return fig def test_copy_frame_properties_change_wcs(self): # When WCS is changed, a new frame is created, so we need to make sure # that the color and linewidth are transferred over fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8]) fig.add_axes(ax) ax.coords.frame.set_linewidth(5) ax.coords.frame.set_color('purple') ax.reset_wcs() assert ax.coords.frame.get_linewidth() == 5 assert ax.coords.frame.get_color() == 'purple'
bsd-3-clause
blisseth/ThinkStats2
code/regression.py
62
9652
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division import math import pandas import random import numpy as np import statsmodels.api as sm import statsmodels.formula.api as smf import re import chap01soln import first import linear import thinkplot import thinkstats2 def QuickLeastSquares(xs, ys): """Estimates linear least squares fit and returns MSE. xs: sequence of values ys: sequence of values returns: inter, slope, mse """ n = float(len(xs)) meanx = xs.mean() dxs = xs - meanx varx = np.dot(dxs, dxs) / n meany = ys.mean() dys = ys - meany cov = np.dot(dxs, dys) / n slope = cov / varx inter = meany - slope * meanx res = ys - (inter + slope * xs) mse = np.dot(res, res) / n return inter, slope, mse def ReadVariables(): """Reads Stata dictionary files for NSFG data. returns: DataFrame that maps variables names to descriptions """ vars1 = thinkstats2.ReadStataDct('2002FemPreg.dct').variables vars2 = thinkstats2.ReadStataDct('2002FemResp.dct').variables all_vars = vars1.append(vars2) all_vars.index = all_vars.name return all_vars def JoinFemResp(df): """Reads the female respondent file and joins on caseid. df: DataFrame """ resp = chap01soln.ReadFemResp() resp.index = resp.caseid join = df.join(resp, on='caseid', rsuffix='_r') # convert from colon-separated time strings to datetimes join.screentime = pandas.to_datetime(join.screentime) return join def GoMining(df): """Searches for variables that predict birth weight. df: DataFrame of pregnancy records returns: list of (rsquared, variable name) pairs """ variables = [] for name in df.columns: try: if df[name].var() < 1e-7: continue formula = 'totalwgt_lb ~ agepreg + ' + name formula = formula.encode('ascii') model = smf.ols(formula, data=df) if model.nobs < len(df)/2: continue results = model.fit() except (ValueError, TypeError): continue variables.append((results.rsquared, name)) return variables def MiningReport(variables, n=30): """Prints variables with the highest R^2. t: list of (R^2, variable name) pairs n: number of pairs to print """ all_vars = ReadVariables() variables.sort(reverse=True) for mse, name in variables[:n]: key = re.sub('_r$', '', name) try: desc = all_vars.loc[key].desc if isinstance(desc, pandas.Series): desc = desc[0] print(name, mse, desc) except KeyError: print(name, mse) def PredictBirthWeight(live): """Predicts birth weight of a baby at 30 weeks. live: DataFrame of live births """ live = live[live.prglngth>30] join = JoinFemResp(live) t = GoMining(join) MiningReport(t) formula = ('totalwgt_lb ~ agepreg + C(race) + babysex==1 + ' 'nbrnaliv>1 + paydu==1 + totincr') results = smf.ols(formula, data=join).fit() SummarizeResults(results) def SummarizeResults(results): """Prints the most important parts of linear regression results: results: RegressionResults object """ for name, param in results.params.iteritems(): pvalue = results.pvalues[name] print('%s %0.3g (%.3g)' % (name, param, pvalue)) try: print('R^2 %.4g' % results.rsquared) ys = results.model.endog print('Std(ys) %.4g' % ys.std()) print('Std(res) %.4g' % results.resid.std()) except AttributeError: print('R^2 %.4g' % results.prsquared) def RunSimpleRegression(live): """Runs a simple regression and compare results to thinkstats2 functions. live: DataFrame of live births """ # run the regression with thinkstats2 functions live_dropna = live.dropna(subset=['agepreg', 'totalwgt_lb']) ages = live_dropna.agepreg weights = live_dropna.totalwgt_lb inter, slope = thinkstats2.LeastSquares(ages, weights) res = thinkstats2.Residuals(ages, weights, inter, slope) r2 = thinkstats2.CoefDetermination(weights, res) # run the regression with statsmodels formula = 'totalwgt_lb ~ agepreg' model = smf.ols(formula, data=live) results = model.fit() SummarizeResults(results) def AlmostEquals(x, y, tol=1e-6): return abs(x-y) < tol assert(AlmostEquals(results.params['Intercept'], inter)) assert(AlmostEquals(results.params['agepreg'], slope)) assert(AlmostEquals(results.rsquared, r2)) def PivotTables(live): """Prints a pivot table comparing first babies to others. live: DataFrame of live births """ table = pandas.pivot_table(live, rows='isfirst', values=['totalwgt_lb', 'agepreg']) print(table) def FormatRow(results, columns): """Converts regression results to a string. results: RegressionResults object returns: string """ t = [] for col in columns: coef = results.params.get(col, np.nan) pval = results.pvalues.get(col, np.nan) if np.isnan(coef): s = '--' elif pval < 0.001: s = '%0.3g (*)' % (coef) else: s = '%0.3g (%0.2g)' % (coef, pval) t.append(s) try: t.append('%.2g' % results.rsquared) except AttributeError: t.append('%.2g' % results.prsquared) return t def RunModels(live): """Runs regressions that predict birth weight. live: DataFrame of pregnancy records """ columns = ['isfirst[T.True]', 'agepreg', 'agepreg2'] header = ['isfirst', 'agepreg', 'agepreg2'] rows = [] formula = 'totalwgt_lb ~ isfirst' results = smf.ols(formula, data=live).fit() rows.append(FormatRow(results, columns)) print(formula) SummarizeResults(results) formula = 'totalwgt_lb ~ agepreg' results = smf.ols(formula, data=live).fit() rows.append(FormatRow(results, columns)) print(formula) SummarizeResults(results) formula = 'totalwgt_lb ~ isfirst + agepreg' results = smf.ols(formula, data=live).fit() rows.append(FormatRow(results, columns)) print(formula) SummarizeResults(results) live['agepreg2'] = live.agepreg**2 formula = 'totalwgt_lb ~ isfirst + agepreg + agepreg2' results = smf.ols(formula, data=live).fit() rows.append(FormatRow(results, columns)) print(formula) SummarizeResults(results) PrintTabular(rows, header) def PrintTabular(rows, header): """Prints results in LaTeX tabular format. rows: list of rows header: list of strings """ s = r'\hline ' + ' & '.join(header) + r' \\ \hline' print(s) for row in rows: s = ' & '.join(row) + r' \\' print(s) print(r'\hline') def LogisticRegressionExample(): """Runs a simple example of logistic regression and prints results. """ y = np.array([0, 1, 0, 1]) x1 = np.array([0, 0, 0, 1]) x2 = np.array([0, 1, 1, 1]) beta = [-1.5, 2.8, 1.1] log_o = beta[0] + beta[1] * x1 + beta[2] * x2 print(log_o) o = np.exp(log_o) print(o) p = o / (o+1) print(p) like = y * p + (1-y) * (1-p) print(like) print(np.prod(like)) df = pandas.DataFrame(dict(y=y, x1=x1, x2=x2)) results = smf.logit('y ~ x1 + x2', data=df).fit() print(results.summary()) def RunLogisticModels(live): """Runs regressions that predict sex. live: DataFrame of pregnancy records """ #live = linear.ResampleRowsWeighted(live) df = live[live.prglngth>30] df['boy'] = (df.babysex==1).astype(int) df['isyoung'] = (df.agepreg<20).astype(int) df['isold'] = (df.agepreg<35).astype(int) df['season'] = (((df.datend+1) % 12) / 3).astype(int) # run the simple model model = smf.logit('boy ~ agepreg', data=df) results = model.fit() print('nobs', results.nobs) print(type(results)) SummarizeResults(results) # run the complex model model = smf.logit('boy ~ agepreg + hpagelb + birthord + C(race)', data=df) results = model.fit() print('nobs', results.nobs) print(type(results)) SummarizeResults(results) # make the scatter plot exog = pandas.DataFrame(model.exog, columns=model.exog_names) endog = pandas.DataFrame(model.endog, columns=[model.endog_names]) xs = exog['agepreg'] lo = results.fittedvalues o = np.exp(lo) p = o / (o+1) #thinkplot.Scatter(xs, p, alpha=0.1) #thinkplot.Show() # compute accuracy actual = endog['boy'] baseline = actual.mean() predict = (results.predict() >= 0.5) true_pos = predict * actual true_neg = (1 - predict) * (1 - actual) acc = (sum(true_pos) + sum(true_neg)) / len(actual) print(acc, baseline) columns = ['agepreg', 'hpagelb', 'birthord', 'race'] new = pandas.DataFrame([[35, 39, 3, 1]], columns=columns) y = results.predict(new) print(y) def main(name, data_dir='.'): thinkstats2.RandomSeed(17) LogisticRegressionExample() live, firsts, others = first.MakeFrames() live['isfirst'] = (live.birthord == 1) RunLogisticModels(live) RunSimpleRegression(live) RunModels(live) PredictBirthWeight(live) if __name__ == '__main__': import sys main(*sys.argv)
gpl-3.0
liyu1990/sklearn
examples/manifold/plot_swissroll.py
330
1446
""" =================================== Swiss Roll reduction with LLE =================================== An illustration of Swiss Roll reduction with locally linear embedding """ # Author: Fabian Pedregosa -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 print(__doc__) import matplotlib.pyplot as plt # This import is needed to modify the way figure behaves from mpl_toolkits.mplot3d import Axes3D Axes3D #---------------------------------------------------------------------- # Locally linear embedding of the swiss roll from sklearn import manifold, datasets X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500) print("Computing LLE embedding") X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12, n_components=2) print("Done. Reconstruction error: %g" % err) #---------------------------------------------------------------------- # Plot result fig = plt.figure() try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(211, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) except: ax = fig.add_subplot(211) ax.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.set_title("Original data") ax = fig.add_subplot(212) ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral) plt.axis('tight') plt.xticks([]), plt.yticks([]) plt.title('Projected data') plt.show()
bsd-3-clause
jarathomas/openVA-Pipeline
pipeline.py
1
49777
#-------------------------------------------------------------------------------------------------------------------------------------------# # openVA Pipeline: pipeline.py -- Software for processing Verbal Autopsy data with automated cause of death assignment. # # Copyright (C) 2018 Jason Thomas, Samuel Clark, Martin Bratschi in collaboration with the Bloomberg Data for Health Initiative # # # # This program is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program. If not, see <http://www.gnu.org/licenses/>. # # # #-------------------------------------------------------------------------------------------------------------------------------------------# #-------------------------------------------------------------------------------------------------------------------------------------------# # User Settings sqlitePW = "enilepiP" dbName = "Pipeline.db" #-------------------------------------------------------------------------------------------------------------------------------------------# from pysqlcipher3 import dbapi2 as sqlcipher from pandas import read_csv, groupby import pandas as pd import sys import csv import datetime import os import subprocess import shutil import requests import json import sqlite3 import time import re import pickle #-------------------------------------------------------------------------------------------------------------------------------------------# # Define functions and objects needed for functioning of pipeline; then set up log files and configuration of pipeline #-------------------------------------------------------------------------------------------------------------------------------------------# class Dhis(object): """Access DHIS2 API.""" def __init__(self, dhisURL, dhisUser, dhisPass): if '/api' in dhisURL: print('Please do not specify /api/ in the server argument: e.g. --server=play.dhis2.org/demo') sys.exit() if dhisURL.startswith('localhost') or dhisURL.startswith('127.0.0.1'): dhisURL = 'http://{}'.format(dhisURL) elif dhisURL.startswith('http://'): dhisURL = dhisURL elif not dhisURL.startswith('https://'): dhisURL = 'https://{}'.format(dhisURL) self.auth = (dhisUser, dhisPass) self.url = '{}/api/25'.format(dhisURL) def get(self, endpoint, params=None): """ GET method for DHIS2 API. :rtype: dict """ url = '{}/{}.json'.format(self.url, endpoint) if not params: params = {} params['paging'] = False try: r = requests.get(url=url, params=params, auth=self.auth) if r.status_code != 200: print("HTTP Code: {}".format(r.status_code)) ## HERE print(r.text) else: return r.json() except requests.RequestException: raise requests.RequestException def post(self, endpoint, data): """ POST method for DHIS2 API. :rtype: dict """ url = '{}/{}.json'.format(self.url, endpoint) try: r = requests.post(url=url, json=data, auth=self.auth) if r.status_code not in range(200, 206): print("HTTP Code: {}".format(r.status_code)) ## HERE print(r.text) else: return r.json() except requests.RequestException: raise requests.RequestException def post_blob(self, f): """ Post file to DHIS2 and return created UID for that file :rtype: str """ url = '{}/fileResources'.format(self.url) files = {'file': (f, open(f, 'rb'), 'application/x-sqlite3', {'Expires': '0'})} try: r = requests.post(url, files=files, auth=self.auth) if r.status_code not in (200, 202): print("HTTP Code: {}".format(r.status_code)) ## HERE print(r.text) else: response = r.json() file_id = response['response']['fileResource']['id'] return file_id except requests.RequestException: raise requests.RequestException class VerbalAutopsyEvent(object): """ DHIS2 event + a BLOB file resource""" def __init__(self, va_id, program, dhis_orgunit, event_date, sex, dob, age, cod_code, algorithm_metadata, file_id): self.va_id = va_id self.program = program self.dhis_orgunit = dhis_orgunit self.event_date = event_date self.sex = sex self.dob = dob self.age = age self.cod_code = cod_code self.algorithm_metadata = algorithm_metadata self.datavalues = [ {"dataElement": "htm6PixLJNy", "value": self.va_id}, {"dataElement": "hi7qRC4SMMk", "value": self.sex}, {"dataElement": "mwSaVq64k7j", "value": self.dob}, {"dataElement": "F4XGdOBvWww", "value": self.cod_code}, {"dataElement": "wiJviUqN1io", "value": self.algorithm_metadata}, {"dataElement": "oPAg4MA0880", "value": self.age}, {"dataElement": "XLHIBoLtjGt", "value": file_id} ] def format_to_dhis2(self, dhisUser): """ Format object to DHIS2 compatible event for DHIS2 API :rtype: dict """ event = { "program": self.program, "orgUnit": self.dhis_orgunit, "eventDate": datetime.datetime.strftime(self.event_date, '%Y-%m-%d'), "status": "COMPLETED", "storedBy": dhisUser, "dataValues": self.datavalues } return event def __str__(self): return json.dumps(self, default=lambda o: o.__dict__) def create_db(fName, evaList): """ Create a SQLite database with VA data + COD :rtype: None """ conn = sqlite3.connect(fName) with conn: cur = conn.cursor() cur.execute("CREATE TABLE vaRecord(ID INT, Attrtibute TEXT, Value TEXT)") cur.executemany("INSERT INTO vaRecord VALUES (?,?,?)", evaList) def getCODCode(myDict, searchFor): for i in range(len(myDict.keys())): match = re.search(searchFor, list(myDict.keys())[i]) if match: return list(myDict.values())[i] # set the ODK_Conf table item odkLastRunResult as 0, log error message, and exit script def cleanup(errorMsg): # handle single case when DB file not found if connectionError == "1": with open(connectionErrorFile, "w", newline="") as f: writer = csv.writer(f) writer.writerow([timeFMT, "Unable to Connect to SQLite Database, see {} for details".format(errorFile)]) sys.exit(1) else: # update ODK_Conf table with LastRunResult = 0 try: sql = "UPDATE ODK_Conf SET odkLastRunResult = ?" par = ("0",) cursor.execute(sql, par) db.commit() if os.path.isfile(connectionErrorFile) == True: try: os.remove(connectionErrorFile) except OSError: print("Could not remove {}".format(connectionErrorFile)) # write errorMsg to errorFile if DB is inaccessible except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError): db.rollback() errorMsg[2] += "; unable to set odkLastRunResult to 0 (in ODK_Conf table)" try: with open(errorFile, "a", newline="") as f: writer = csv.writer(f) writer.writerow(errorMsg) except OSError: print(errorMsg) # close DB resources and exit script finally: cursor.close() db.close() sys.exit(1) def findKeyValue(key, d): if key in d: yield d[key] for k in d: if isinstance(d[k], list): for i in d[k]: for j in findKeyValue(key, i): yield j # error log files errorFile = "./dbErrorLog.csv" timeFMT = datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S") connectionError = "0" connectionErrorFile = "./sqlConnect.csv" ## create error file if it does not exist if os.path.isfile(errorFile) == False: try: with open(errorFile, "w", newline="") as f: writer = csv.writer(f) writer.writerow(["Date"] + ["Description"] + ["Additional Information"]) except (OSError) as e: print(str(e)) sys.exit(1) # connect to the database and configure the pipeline's settings for ODK Aggregate, openVA, and DHIS2. if os.path.isfile(dbName) == False: connectionError = "1" with open(errorFile, "a", newline="") as f: writer = csv.writer(f) writer.writerow([timeFMT, "Database {}.db not found".format(dbName), ]) cleanup() db = sqlcipher.connect(dbName) db.execute("PRAGMA key = " + sqlitePW) sqlODK = "SELECT odkID, odkURL, odkUser, odkPass, odkFormID, odkLastRun, odkLastRunResult FROM ODK_Conf" sqlPipeline = "SELECT workingDirectory, openVA_Algorithm, algorithmMetadataCode, codSource FROM Pipeline_Conf" sqlInterVA4 = "SELECT HIV, Malaria FROM InterVA4_Conf" sqlAdvancedInterVA4 = "SELECT directory, filename, output, append, groupcode, replicate, replicate_bug1, replicate_bug2, write FROM Advanced_InterVA4_Conf" sqlInSilicoVA = "SELECT Nsim FROM InSilicoVA_Conf" sqlAdvancedInSilicoVA = "SELECT isNumeric, updateCondProb, keepProbbase_level, CondProb, CondProbNum, datacheck, datacheck_missing," \ + "warning_write, external_sep, thin, burnin, auto_length, conv_csmf, jump_scale," \ + "levels_prior, levels_strength, trunc_min, trunc_max, subpop, java_option, seed," \ + "phy_code, phy_cat, phy_unknown, phy_external, phy_debias, exclude_impossible_cause, indiv_CI " \ + "FROM Advanced_InSilicoVA_Conf" sqlDHIS = "SELECT dhisURL, dhisUser, dhisPass, dhisOrgUnit FROM DHIS_Conf" sqlCODCodes_WHO = "SELECT codName, codCode FROM COD_Codes_DHIS WHERE codSource = 'WHO'" sqlCODCodes_Tariff = "SELECT codName, codCode FROM COD_Codes_DHIS WHERE codSource = 'Tariff'" ## grab configuration settings from SQLite DB try: # ODK configuration cursor = db.cursor() cursor.execute(sqlODK) odkQuery = cursor.fetchall() for row in odkQuery: odkID = row[0] odkURL = row[1] odkUser = row[2] odkPass = row[3] odkFormID = row[4] odkLastRun = row[5] odkLastRunDate = datetime.datetime.strptime(odkLastRun, "%Y-%m-%d_%H:%M:%S").strftime("%Y/%m/%d") odkLastRunDatePrev = (datetime.datetime.strptime(odkLastRunDate, "%Y/%m/%d") - datetime.timedelta(days=1)).strftime("%Y/%m/%d") odkLastRunResult = row[6] # Pipeline configuration cursor.execute(sqlPipeline) pipelineQuery = cursor.fetchall() for row in pipelineQuery: processDir = row[0] pipelineAlgorithm = row[1] algorithmMetadataCode = row[2] codSource = row[3] # InterVA4 configuration cursor.execute(sqlInterVA4) interVA4Query = cursor.fetchall() for row in interVA4Query: interVA_HIV = row[0] interVA_Malaria = row[1] # InterVA4 advanced configuration cursor.execute(sqlAdvancedInterVA4) advancedInterVA4Query = cursor.fetchall() for row in advancedInterVA4Query: interVA_directory = row[0] interVA_filename = row[1] interVA_output = row[2] interVA_append = row[3] interVA_groupcode = row[4] interVA_replicate = row[5] interVA_replicate_bug1 = row[6] interVA_replicate_bug2 = row[7] interVA_write = row[8] # InSilicoVA configuration cursor.execute(sqlInSilicoVA) insilicoVAQuery = cursor.fetchall() for row in insilicoVAQuery: insilico_Nsim = row[0] # InSilicoVA advanced configuration cursor.execute(sqlAdvancedInSilicoVA) advancedInsilicoVAQuery = cursor.fetchall() for row in advancedInsilicoVAQuery: insilico_isNumeric = row[ 0] insilico_updateCondProb = row[ 1] insilico_keepProbbase_level = row[ 2] insilico_CondProb = row[ 3] insilico_CondProbNum = row[ 4] insilico_datacheck = row[ 5] insilico_datacheck_missing = row[ 6] insilico_warning_write = row[ 7] insilico_external_sep = row[ 8] insilico_thin = row[ 9] insilico_burnin = row[10] insilico_auto_length = row[11] insilico_conv_csmf = row[12] insilico_jump_scale = row[13] insilico_levels_prior = row[14] insilico_levels_strength = row[15] insilico_trunc_min = row[16] insilico_trunc_max = row[17] insilico_subpop = row[18] insilico_java_option = row[19] insilico_seed = row[20] insilico_phy_code = row[21] insilico_phy_cat = row[22] insilico_phy_unknown = row[23] insilico_phy_external = row[24] insilico_phy_debias = row[25] insilico_exclude_impossible_cause = row[26] insilico_indiv_CI = row[27] # DHIS2 configuration cursor.execute(sqlDHIS) dhisQuery = cursor.fetchall() for row in dhisQuery: dhisURL = row[0] dhisUser = row[1] dhisPass = row[2] dhisOrgUnit = row[3] # CoD Codes for DHIS2 cursor.execute(sqlCODCodes_WHO) resultsWHO = cursor.fetchall() codesWHO = dict(resultsWHO) cursor.execute(sqlCODCodes_Tariff) resultsTariff = cursor.fetchall() codesTariff = dict(resultsTariff) except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Problem selecting config information from ODK_Conf ", str(e), timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Problem selecting config information from ODK_Conf"] cleanup(errorMsg) #-------------------------------------------------------------------------------------------------------------------------------------------# # create folders & files to store (ODK & openVA) input and output; also create call to ODK Briefcase #-------------------------------------------------------------------------------------------------------------------------------------------# odkBCExportDir = processDir + "/ODKExport" odkBCExportFilename = "ODKExportNew.csv" odkBCExportPrevious = odkBCExportDir + "/ODKExportPrevious.csv" odkBCExportNewFile = odkBCExportDir + "/" + odkBCExportFilename odkBCArgumentList = "java -jar ODK-Briefcase-v1.10.1.jar -oc -em -id '" + odkFormID + "' -sd '" + odkBCExportDir + "' -ed '" \ + odkBCExportDir + "' -f '" + odkBCExportFilename + "' -url '" + odkURL + "' -u '" + odkUser \ + "' -p '" + odkPass + "' -start '" + odkLastRunDatePrev + "'" openVAFilesDir = processDir + "/OpenVAFiles" openVAReadyFile = odkBCExportDir + "/OpenVAReadyFile.csv" rScriptIn = openVAFilesDir + "/" + timeFMT + "/RScript_" + timeFMT + ".R" rScriptOut = openVAFilesDir + "/" + timeFMT + "/RScript_" + timeFMT + ".Rout" dhisDir = processDir + "/DHIS2" if codSource=="WHO": dhisCODCodes = codesWHO else: dhisCODCodes = codesTariff # check if processing directory exists and create if necessary if not os.path.exists(processDir): try: os.makedirs(processDir) except OSError as e: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Could not create processing directory: " + processDir, str(e), timeFMT) try: cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Could not create processing directory: " + processDir] cleanup(errorMsg) # create openVAFilesDir (if does not exist) if not os.path.exists(openVAFilesDir + "/" + timeFMT): try: os.makedirs(openVAFilesDir + "/" + timeFMT) except OSError as e: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Could not create openVA Directory: " + openVAFilesDir + "/" + timeFMT, str(e), timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Could not create openVA directory: " + openVAFilesDir + "/" + timeFMT] cleanup(errorMsg) # make a copy of current ODK Briefcase Export file, to compare with new file once exported (if there is an existing export file) if os.path.isfile(odkBCExportNewFile) == True and odkLastRunResult == 1 and not os.path.isfile(connectionErrorFile): try: shutil.copy(odkBCExportNewFile, odkBCExportPrevious) except (OSError, shutil.Error) as e: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Error: Trying to copy export files from ODK Briefcase", str(e), timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Error: Trying to copy export files from ODK Briefcase"] cleanup(errorMsg) try: os.remove(openVAReadyFile) except (OSError) as e: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime)" par = ("Could not remove " + openVAReadyFile, str(e), timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Could not remove " + openVAReadyFile] cleanup(errorMsg) # launch ODK Briefcase to collect ODK Aggregate data and export to file for further processing try: process = subprocess.Popen(odkBCArgumentList, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) stdout, stderr = process.communicate() rc = process.returncode except: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Could not launch ODK Briefcase Java Application", "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, "Error: Could not launch ODK Briefcase Java Application",""] cleanup(errorMsg) # catch application errors from ODK Briefcase and log into EventLog table if rc != 0: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = (str(stderr), "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(stderr),""] cleanup(errorMsg) if "SEVERE" in str(stderr): try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = (stderr,"Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(stderr),""] cleanup(errorMsg) else: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Briefcase Export Completed Successfully", "Information", timeFMT) cursor.execute(sql, par) db.commit() sql = "UPDATE ODK_Conf SET odkLastRun=?, odkLastRunResult=?" par = (timeFMT,"1") cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "ODK Briefcase ran successfully but problems writing to DB (check odkLastRunResult in ODK_Conf)"] cleanup(errorMsg) # check if previous file exists from above operations and create delta file of new entries if os.path.isfile(odkBCExportPrevious) == True: try: ## WARNING: odkBCExportPrevious & odkBCExportNewFil (CSV files) ## contain sensitive VA information (leaving them in folder) with open(odkBCExportPrevious, "r", newline="") as t1, open(odkBCExportNewFile, "r", newline="") as t2: fileone = t1.readlines() filetwo = t2.readlines() header = filetwo[0] with open(openVAReadyFile, "w", newline="") as outFile: outFile.write(header) for line in filetwo: if line not in fileone: outFile.write(line) except OSError as e: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES" par = ("Could not create: " + openVAReadyFile, "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Error: Could not create: " + openVAReadyFile] cleanup(errorMsg) else: # if there is no pre-existing ODK Briefcase Export file, then copy and rename to OpenVAReadyFile.csv try: shutil.copy(odkBCExportNewFile, openVAReadyFile) except (OSError, shutil.Error) as e: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = (e, "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Error: Could not copy: " + odkBCExportNewFile + " to: " + openVAReadyFile] cleanup(errorMsg) # if no records retrieved, then close up shop; otherwise, create R script for running openVA ## WARNING: openVAReadyFile (CSV file) contains sensitive VA information (leaving it in folder) with open(openVAReadyFile, "r", newline="") as outFile: nRecords = len(list(outFile)) - 1 ## take away 1 for the column header if nRecords == 0: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("No Records From ODK Briefcase (nothing more to do)", "Information", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "No records from ODK Briefcase, but error writing to DB"] cleanup(errorMsg) try: sql = "UPDATE ODK_Conf SET odkLastRun=?, odkLastRunResult=?" par = (timeFMT,"1") cursor.execute(sql, par) db.commit() cursor.close() db.close() sys.exit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "No records from ODK Briefcase, but error writing to DB (trying to set odkLastRun & odkLastRunResult)."] cleanup(errorMsg) try: with open(rScriptIn, "w", newline="") as f: f.write("date() \n") f.write("library(openVA); library(CrossVA) \n") f.write("getwd() \n") f.write("records <- read.csv('" + openVAReadyFile + "') \n") # InSilicoVA if pipelineAlgorithm == "InSilicoVA": f.write("names(data) <- tolower(data) \n") f.write("data <- map_records_insilicova(records) \n") ## assign ID from survey (odkID) if specified, otherwise use uuid from ODK Aggregate if odkID == None: f.write("data$ID <- records$meta.instanceID \n") else: f.write("data$ID <- records$" + odkID + "\n") f.write("results <- insilico(data=data, " + ", \n") f.write("\t isNumeric=" + insilico_isNumeric + ", \n") f.write("\t updateCondProb=" + insilico_updateCondProb + ", \n") f.write("\t keepProbbase.level=" + insilico_keepProbbase_level + ", \n") f.write("\t CondProb=" + insilico_CondProb + ", \n") f.write("\t CondProbNum=" + insilico_CondProbNum + ", \n") f.write("\t datacheck=" + insilico_datacheck + ", \n") f.write("\t datacheck.missing=" + insilico_datacheck_missing + ", \n") f.write("\t warning.write=" + insilico_warning_write + ", \n") f.write("\t external.sep=" + insilico_external_sep + ", \n") f.write("\t Nsim=" + insilico_Nsim + ", \n") f.write("\t thin=" + insilico_thin + ", \n") f.write("\t burnin=" + insilico_burnin + ", \n") f.write("\t auto.length=" + insilico_auto_length + ", \n") f.write("\t conv.csmf=" + insilico_conv_csmf + ", \n") f.write("\t jump.scale=" + insilico_jump_scale + ", \n") f.write("\t levels.prior=" + insilico_levels_prior + ", \n") f.write("\t levels.strength=" + insilico_levels_strength + ", \n") f.write("\t trunc.min=" + insilico_trunc_min + ", \n") f.write("\t trunc.max=" + insilico_trunc_max + ", \n") f.write("\t subpop=" + insilico_subpop + ", \n") f.write("\t java.option=" + insilico_java_option + ", \n") f.write("\t seed=" + insilico_seed + ", \n") f.write("\t phy.code=" + insilico_phy_code + ", \n") f.write("\t phy.cat=" + insilico_phy_cat + ", \n") f.write("\t phy.unknown=" + insilico_phy_unknown + ", \n") f.write("\t phy.external=" + insilico_phy_external + ", \n") f.write("\t phy.debias=" + insilico_phy_debias + ", \n") f.write("\t exclude.impossible.cause=" + insilico_exclude_impossible_cause + ", \n") f.write("\t indiv.CI=" + insilico_indiv_CI + ") \n") f.write("sex <- ifelse(tolower(data$male)=='y', 'Male', 'Female') \n") # InterVA if pipelineAlgorithm == "InterVA": f.write("data <- map_records_interva4(records) \n") ## assign ID from survey (odkID) if specified, otherwise use uuid from ODK Aggregate if odkID == None: f.write("data$ID <- records$meta.instanceID \n") else: f.write("data$ID <- records$" + odkID + "\n") f.write("results <- InterVA(Input=data, \n") f.write("\t HIV= '" + interVA_HIV + "', \n") f.write("\t Malaria = '" + interVA_Malaria + "', \n") f.write("\t output='" + interVA_output + "', \n") f.write("\t groupcode=" + interVA_groupcode + ", \n") f.write("\t replicate=" + interVA_replicate + ", \n") f.write("\t replicate.bug1=" + interVA_replicate_bug1 + ", \n") f.write("\t replicate.bug2=" + interVA_replicate_bug2 + ", \n") f.write("\t write=FALSE) \n") f.write("sex <- ifelse(tolower(data$MALE)=='y', 'Male', 'Female') \n") # write results f.write("cod <- getTopCOD(results) \n") f.write("hasCOD <- as.character(data$ID) %in% as.character(levels(cod$ID)) \n") f.write("dob <- as.Date(as.character(records$consented.deceased_CRVS.info_on_deceased.Id10021), '%b %d, %Y') \n") ## HERE -- not sure if date format will vary! f.write("dod <- as.Date(as.character(records$consented.deceased_CRVS.info_on_deceased.Id10023), '%b %d, %Y') \n") ## HERE -- not sure if date format will vary! f.write("age <- floor(records$consented.deceased_CRVS.info_on_deceased.ageInDays/365.25) \n") f.write("## create matrices for DHIS2 blob (data2) and transfer database (data3) \n") f.write("## first column must be ID \n") f.write("metadataCode <- '" + algorithmMetadataCode + "'\n") f.write("cod2 <- rep('MISSING', nrow(data)); cod2[hasCOD] <- as.character(cod[,2]) \n") f.write("data2 <- cbind(data[,-1], cod2, metadataCode) \n") f.write("names(data2) <- c(names(data[,-1]), 'Cause of Death', 'Metadata') \n") f.write("evaBlob <- cbind(rep(as.character(data[,1]), each=ncol(data2)), rep(names(data2)), c(apply(data2, 1, c))) \n") f.write("colnames(evaBlob) <- c('ID', 'Attribute', 'Value') \n") f.write("write.csv(evaBlob, file='" + openVAFilesDir + "/entityAttributeValue.csv', row.names=FALSE, na='') \n\n") f.write("data3 <- cbind(as.character(data[,1]), sex, dob, dod, age, cod2, metadataCode, data[,-1]) \n") f.write("names(data3) <- c('id', 'sex', 'dob', 'dod', 'age', 'cod', 'metadataCode', names(data[,-1])) \n") f.write("write.csv(data3, file='" + openVAFilesDir + "/recordStorage.csv', row.names=FALSE, na='') \n") except OSError as e: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Could not create R Script File","Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Error: Could not create R Script File"] cleanup(errorMsg) # run R script rBatch = "R CMD BATCH --vanilla " + rScriptIn + " " + rScriptOut rprocess = subprocess.Popen(rBatch, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) stdout, stderr = rprocess.communicate() rrc = rprocess.returncode if rrc != 0: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Could not run R Script", str(stderr), timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, "Error: Could not run R Script", str(stderr)] cleanup(errorMsg) else: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("OpenVA Analysis Completed Successfully", "Information", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "OpenVA Analysis Completed Successfully (error committing message to database)."] cleanup(errorMsg) # push results to DHIS2 try: api = Dhis(dhisURL, dhisUser, dhisPass) except (requests.RequestException) as e: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Unable to connect to DHIS2", str(e), timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Error: Unable to connect to DHIS2"] cleanup(errorMsg) # verify VA program and orgUnit try: vaPrograms = api.get("programs", params={"filter": "name:like:Verbal Autopsy"}).get("programs") orgUnitValid = len(api.get("organisationUnits", params={"filter": "id:eq:{}".format(dhisOrgUnit)})["organisationUnits"])==1 if not orgUnitValid: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Organisation Unit UID could not be found.", "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, "Error: Organisation Unit UID could not be found.", "Error committing message to database"] cleanup(errorMsg) if not vaPrograms: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("'Verbal Autopsy' program not found", "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, "Error: 'Verbal Autopsy' program not found.", "Error committing message to database"] cleanup(errorMsg) elif len(vaPrograms) > 1: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("More than one 'Verbal Autopsy' found.", "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, "Error: More than one 'Verbal Autopsy' found.", "Error committing message to database"] cleanup(errorMsg) except: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Error using Dhis.get, unable to either get UID for VA Program or verify Org Unit ID", "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, "Error: Error using Dhis.get, unable to either get UID for VA Program or verify Org Unit ID", "Error committing message to database"] cleanup(errorMsg) vaProgramUID = vaPrograms[0]["id"] blobPath = os.path.join(dhisDir, "blobs") try: if not os.path.isdir(blobPath): os.makedirs(blobPath) except OSError as e: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Unable to create folder for DHIS blobs.", "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Error: Unable to create folder for DHIS blobs."] cleanup(errorMsg) events = [] export = {} ## read in VA data (with COD and algorithm metadata) from csv's (and create groups by ID for Entity-Attribute-Value file) try: ## WARNING: The following CSV file contains sensitive VA information (leaving it in folder)! dfDHIS2 = pd.read_csv(openVAFilesDir + "/entityAttributeValue.csv") except: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Unable to access file: " + openVAFilesDir + "entityAttributeVAlue.csv", "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, "Unable to access file: " + openVAFilesDir + "entityAttributeVAlue.csv", "Error committing message to database"] cleanup(errorMsg) grouped = dfDHIS2.groupby(["ID"]) ## prepare events for DHIS2 export try: with open(openVAFilesDir + "/recordStorage.csv", "r", newline="") as csvIn: with open(openVAFilesDir + "/newStorage.csv", "w", newline="") as csvOut: reader = csv.reader(csvIn) writer = csv.writer(csvOut, lineterminator="\n") header = next(reader) header.extend(["dhisVerbalAutopsyID", "pipelineOutcome"]) writer.writerow(header) for row in reader: if row[5]!="MISSING": vaID = str(row[0]) blobFile = "{}.db".format(os.path.join(dhisDir, "blobs", vaID)) blobRecord = grouped.get_group(str(row[0])) blobEVA = blobRecord.values.tolist() ## create DHIS2 blob try: create_db(blobFile, blobEVA) except: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Unable to create DHIS2 BLOB", "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, "Unable to create DHIS2 BLOB", "Error committing message to database"] cleanup(errorMsg) ## post DHIS2 blob try: fileID = api.post_blob(blobFile) except requests.RequestException as e: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Unable to post BLOB to DHIS2", str(e), timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Unable to post BLOB to DHIS2"] cleanup(errorMsg) sex = row[1].lower() dob = row[2] if row[3] =="": eventDate = datetime.date(9999,9,9) else: dod = datetime.datetime.strptime(row[3], "%Y-%m-%d") eventDate = datetime.date(dod.year, dod.month, dod.day) age = row[4] if row[5] == "Undetermined": codCode = "99" else: codCode = getCODCode(dhisCODCodes, row[5]) e = VerbalAutopsyEvent(vaID, vaProgramUID, dhisOrgUnit, eventDate, sex, dob, age, codCode, algorithmMetadataCode, fileID) events.append(e.format_to_dhis2(dhisUser)) row.extend([vaID, "Pushing to DHIS2"]) writer.writerow(row) else: row.extend(["", "No CoD Assigned"]) writer.writerow(row) except: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Unable to access one of record/newStorage.csv files in folder: " + openVAFilesDir, "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, "Unable to access one of record/newStorage.csv files in folder: " + openVAFilesDir, "Error committing message to database"] cleanup(errorMsg) export["events"] = events try: log = api.post("events", data=export) except requests.RequestException as e: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Unable to post events to DHIS2 VA Program.", str(e), timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Unable to post events to DHIS2 VA Program."] cleanup(errorMsg) if 'importSummaries' not in log['response'].keys(): try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Failed to retrieve summary from post to DHIS2 VA Program.", "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, "Error", "Failed to retrieve summary from post to DHIS2 VA Program."] cleanup(errorMsg) if log["httpStatusCode"] == 200: nPosted = len(log['response']['importSummaries']) try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Successfully posted {} events to DHIS2 VA Program.".format(nPosted), "Information", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Successfully posted {} events to DHIS2 VA Program, but error writing to DB".format(nPosted)] cleanup(errorMsg) vaReferences = list(findKeyValue("reference", d=log["response"])) dfNewStorage = pd.read_csv(openVAFilesDir + "/newStorage.csv") try: for vaReference in vaReferences: postedDataValues = api.get("events/{}".format(vaReference)).get("dataValues") postedVAIDIndex = next((index for (index, d) in enumerate(postedDataValues) if d["dataElement"]=="htm6PixLJNy"), None) postedVAID = postedDataValues[postedVAIDIndex]["value"] rowVAID = dfNewStorage["dhisVerbalAutopsyID"] == postedVAID dfNewStorage.loc[rowVAID,"pipelineOutcome"] = "Pushed to DHIS2" except: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Error trying to verify events posted to DHIS2", "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, "Error trying to verify events posted to DHIS2", ""] cleanup(errorMsg) # store results in database try: for row in dfNewStorage.itertuples(): xferDBID = row[1] xferDBOutcome = row[254] vaData = row[1],row[8:253] vaDataFlat = tuple([y for x in vaData for y in (x if isinstance(x, tuple) else (x,))]) xferDBRecord = pickle.dumps(vaDataFlat) sqlXferDB = "INSERT INTO VA_Storage (id, outcome, record, dateEntered) VALUES (?,?,?,?)" par = [xferDBID, xferDBOutcome, sqlite3.Binary(xferDBRecord), timeFMT] cursor.execute(sqlXferDB, par) db.commit() ## note: to read back in: (1) cursor.exetute(SQL SELECT STATEMENT) (2) results = pickle.loads(sqlResult[0]) ## An alternative version of storing VA records to SQLite DB(not relying on pickle) # for row in dfNewStorage.itertuples(): # xferDBID = row[1] # xferDBOutcome = row[254] # with open("xferDBRecord.txt", "w", newline="") as f: # vaData = row[1],row[8:253] # vaDataFlat = tuple([y for x in vaData for y in (x if isinstance(x, tuple) else (x,))]) # writer = csv.writer(f, lineterminator="\n") # writer.writerow(vaDataFlat) # with open("xferDBRecord.txt", "rb") as f: # xferDBRecord = f.read() # sqlXferDB = "INSERT INTO VA_Storage (id, outcome, record, dateEntered) VALUES (?,?,?,?)" # par = [xferDBID, xferDBOutcome, sqlite3.Binary(xferDBRecord), timeFMT] # cursor.execute(sqlXferDB, par) # db.commit() except: try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Error storing Blobs to {}.db".format(dbName), "Error", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, "Error storing Blobs to {}.db".format(dbName), ""] cleanup(errorMsg) try: nNewStorage = dfNewStorage.shape[0] sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Stored {} records to {}.db".format(nNewStorage, dbName), "Information", timeFMT) cursor.execute(sql, par) db.commit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Stored {} records to {}.db, but error trying to log message to EventLog".format(nNewStorage, dbName)] cleanup(errorMsg) # all done! try: sql = "INSERT INTO EventLog (eventDesc, eventType, eventTime) VALUES (?, ?, ?)" par = ("Successful completion of Pipeline", "Information", str(datetime.datetime.now())) cursor.execute(sql, par) db.commit() cursor.close() db.close() sys.exit() except (sqlcipher.Error, sqlcipher.Warning, sqlcipher.DatabaseError) as e: db.rollback() errorMsg = [timeFMT, str(e), "Finished executing Pipeline steps, but error trying to log last message."] cleanup(errorMsg)
gpl-3.0
gfyoung/pandas
pandas/tests/frame/indexing/test_getitem.py
2
5364
import numpy as np import pytest from pandas import ( Categorical, CategoricalDtype, CategoricalIndex, DataFrame, MultiIndex, Series, Timestamp, get_dummies, period_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray class TestGetitem: def test_getitem_unused_level_raises(self): # GH#20410 mi = MultiIndex( levels=[["a_lot", "onlyone", "notevenone"], [1970, ""]], codes=[[1, 0], [1, 0]], ) df = DataFrame(-1, index=range(3), columns=mi) with pytest.raises(KeyError, match="notevenone"): df["notevenone"] def test_getitem_periodindex(self): rng = period_range("1/1/2000", periods=5) df = DataFrame(np.random.randn(10, 5), columns=rng) ts = df[rng[0]] tm.assert_series_equal(ts, df.iloc[:, 0]) # GH#1211; smoketest unrelated to the rest of this test repr(df) ts = df["1/1/2000"] tm.assert_series_equal(ts, df.iloc[:, 0]) def test_getitem_list_of_labels_categoricalindex_cols(self): # GH#16115 cats = Categorical([Timestamp("12-31-1999"), Timestamp("12-31-2000")]) expected = DataFrame( [[1, 0], [0, 1]], dtype="uint8", index=[0, 1], columns=cats ) dummies = get_dummies(cats) result = dummies[list(dummies.columns)] tm.assert_frame_equal(result, expected) def test_getitem_sparse_column_return_type_and_dtype(self): # https://github.com/pandas-dev/pandas/issues/23559 data = SparseArray([0, 1]) df = DataFrame({"A": data}) expected = Series(data, name="A") result = df["A"] tm.assert_series_equal(result, expected) # Also check iloc and loc while we're here result = df.iloc[:, 0] tm.assert_series_equal(result, expected) result = df.loc[:, "A"] tm.assert_series_equal(result, expected) class TestGetitemListLike: def test_getitem_list_missing_key(self): # GH#13822, incorrect error string with non-unique columns when missing # column is accessed df = DataFrame({"x": [1.0], "y": [2.0], "z": [3.0]}) df.columns = ["x", "x", "z"] # Check that we get the correct value in the KeyError with pytest.raises(KeyError, match=r"\['y'\] not in index"): df[["x", "y", "z"]] class TestGetitemCallable: def test_getitem_callable(self, float_frame): # GH#12533 result = float_frame[lambda x: "A"] expected = float_frame.loc[:, "A"] tm.assert_series_equal(result, expected) result = float_frame[lambda x: ["A", "B"]] expected = float_frame.loc[:, ["A", "B"]] tm.assert_frame_equal(result, float_frame.loc[:, ["A", "B"]]) df = float_frame[:3] result = df[lambda x: [True, False, True]] expected = float_frame.iloc[[0, 2], :] tm.assert_frame_equal(result, expected) def test_loc_multiindex_columns_one_level(self): # GH#29749 df = DataFrame([[1, 2]], columns=[["a", "b"]]) expected = DataFrame([1], columns=[["a"]]) result = df["a"] tm.assert_frame_equal(result, expected) result = df.loc[:, "a"] tm.assert_frame_equal(result, expected) class TestGetitemBooleanMask: def test_getitem_bool_mask_categorical_index(self): df3 = DataFrame( { "A": np.arange(6, dtype="int64"), }, index=CategoricalIndex( [1, 1, 2, 1, 3, 2], dtype=CategoricalDtype([3, 2, 1], ordered=True), name="B", ), ) df4 = DataFrame( { "A": np.arange(6, dtype="int64"), }, index=CategoricalIndex( [1, 1, 2, 1, 3, 2], dtype=CategoricalDtype([3, 2, 1], ordered=False), name="B", ), ) result = df3[df3.index == "a"] expected = df3.iloc[[]] tm.assert_frame_equal(result, expected) result = df4[df4.index == "a"] expected = df4.iloc[[]] tm.assert_frame_equal(result, expected) result = df3[df3.index == 1] expected = df3.iloc[[0, 1, 3]] tm.assert_frame_equal(result, expected) result = df4[df4.index == 1] expected = df4.iloc[[0, 1, 3]] tm.assert_frame_equal(result, expected) # since we have an ordered categorical # CategoricalIndex([1, 1, 2, 1, 3, 2], # categories=[3, 2, 1], # ordered=True, # name='B') result = df3[df3.index < 2] expected = df3.iloc[[4]] tm.assert_frame_equal(result, expected) result = df3[df3.index > 1] expected = df3.iloc[[]] tm.assert_frame_equal(result, expected) # unordered # cannot be compared # CategoricalIndex([1, 1, 2, 1, 3, 2], # categories=[3, 2, 1], # ordered=False, # name='B') msg = "Unordered Categoricals can only compare equality or not" with pytest.raises(TypeError, match=msg): df4[df4.index < 2] with pytest.raises(TypeError, match=msg): df4[df4.index > 1]
bsd-3-clause
hmendozap/master-arbeit-projects
autosk_dev_test/component/LinReg.py
1
8756
import numpy as np import scipy.sparse as sp from HPOlibConfigSpace.configuration_space import ConfigurationSpace from HPOlibConfigSpace.conditions import EqualsCondition, InCondition from HPOlibConfigSpace.hyperparameters import UniformFloatHyperparameter, \ UniformIntegerHyperparameter, CategoricalHyperparameter, Constant from autosklearn.pipeline.components.base import AutoSklearnRegressionAlgorithm from autosklearn.pipeline.constants import * class LinReg(AutoSklearnRegressionAlgorithm): def __init__(self, number_updates, batch_size, dropout_output, learning_rate, solver, lambda2, momentum=0.99, beta1=0.9, beta2=0.9, rho=0.95, lr_policy='fixed', gamma=0.01, power=1.0, epoch_step=2, random_state=None): self.number_updates = number_updates self.batch_size = batch_size self.dropout_output = dropout_output self.learning_rate = learning_rate self.lr_policy = lr_policy self.lambda2 = lambda2 self.momentum = momentum self.beta1 = 1-beta1 if beta1 is not None else 0.9 self.beta2 = 1-beta2 if beta2 is not None else 0.99 self.rho = rho self.solver = solver self.gamma = gamma self.power = power self.epoch_step = epoch_step # Empty features and shape self.n_features = None self.input_shape = None self.m_issparse = False self.m_isregression = True self.m_isbinary = False self.m_ismultilabel = False self.estimator = None def _prefit(self, X, y): self.batch_size = int(self.batch_size) self.n_features = X.shape[1] self.input_shape = (self.batch_size, self.n_features) self.num_output_units = 1 # Regression # Normalize the output self.mean_y = np.mean(y) self.std_y = np.std(y) y = (y - self.mean_y) / self.std_y if len(y.shape) == 1: y = y[:, np.newaxis] self.m_issparse = sp.issparse(X) return X, y def fit(self, X, y): Xf, yf = self._prefit(X, y) epoch = (self.number_updates * self.batch_size)//X.shape[0] number_epochs = min(max(2, epoch), 110) # Cap the max number of possible epochs from implementation import LogisticRegression self.estimator = LogisticRegression.LogisticRegression(batch_size=self.batch_size, input_shape=self.input_shape, num_output_units=self.num_output_units, dropout_output=self.dropout_output, learning_rate=self.learning_rate, lr_policy=self.lr_policy, lambda2=self.lambda2, momentum=self.momentum, beta1=self.beta1, beta2=self.beta2, rho=self.rho, solver=self.solver, num_epochs=number_epochs, gamma=self.gamma, power=self.power, epoch_step=self.epoch_step, is_sparse=self.m_issparse, is_binary=self.m_isbinary, is_multilabel=self.m_ismultilabel, is_regression=self.m_isregression) self.estimator.fit(Xf, yf) return self def predict(self, X): if self.estimator is None: raise NotImplementedError preds = self.estimator.predict(X, self.m_issparse) return preds * self.std_y + self.mean_y def predict_proba(self, X): if self.estimator is None: raise NotImplementedError() return self.estimator.predict_proba(X, self.m_issparse) @staticmethod def get_properties(dataset_properties=None): return {'shortname': 'lin_reg', 'name': 'Linear Regression', 'handles_regression': True, 'handles_classification': False, 'handles_multiclass': False, 'handles_multilabel': False, 'is_deterministic': True, 'input': (DENSE, SPARSE, UNSIGNED_DATA), 'output': (PREDICTIONS,)} @staticmethod def get_hyperparameter_search_space(dataset_properties=None): policy_choices = ['fixed', 'inv', 'exp', 'step'] batch_size = UniformIntegerHyperparameter("batch_size", 100, 3000, log=True, default=150) number_updates = UniformIntegerHyperparameter("number_updates", 500, 10500, log=True, default=500) dropout_output = UniformFloatHyperparameter("dropout_output", 0.0, 0.99, default=0.5) lr = UniformFloatHyperparameter("learning_rate", 1e-6, 0.1, log=True, default=0.01) l2 = UniformFloatHyperparameter("lambda2", 1e-6, 1e-2, log=True, default=1e-3) solver = CategoricalHyperparameter(name="solver", choices=["sgd", "adam"], default="sgd") beta1 = UniformFloatHyperparameter("beta1", 1e-4, 0.1, log=True, default=0.1) beta2 = UniformFloatHyperparameter("beta2", 1e-4, 0.1, log=True, default=0.01) lr_policy = CategoricalHyperparameter(name="lr_policy", choices=policy_choices, default='fixed') gamma = UniformFloatHyperparameter(name="gamma", lower=1e-3, upper=1e-1, default=1e-2) power = UniformFloatHyperparameter("power", 0.0, 1.0, default=0.5) epoch_step = UniformIntegerHyperparameter("epoch_step", 2, 20, default=5) cs = ConfigurationSpace() cs.add_hyperparameter(number_updates) cs.add_hyperparameter(batch_size) cs.add_hyperparameter(dropout_output) cs.add_hyperparameter(lr) cs.add_hyperparameter(l2) cs.add_hyperparameter(solver) cs.add_hyperparameter(beta1) cs.add_hyperparameter(beta2) cs.add_hyperparameter(lr_policy) cs.add_hyperparameter(gamma) cs.add_hyperparameter(power) cs.add_hyperparameter(epoch_step) beta1_depends_on_solver = EqualsCondition(beta1, solver, "adam") beta2_depends_on_solver = EqualsCondition(beta2, solver, "adam") gamma_depends_on_policy = InCondition(child=gamma, parent=lr_policy, values=['inv', 'exp', 'step']) power_depends_on_policy = EqualsCondition(power, lr_policy, 'inv') epoch_step_depends_on_policy = EqualsCondition(epoch_step, lr_policy, 'step') cs.add_condition(beta1_depends_on_solver) cs.add_condition(beta2_depends_on_solver) cs.add_condition(gamma_depends_on_policy) cs.add_condition(power_depends_on_policy) cs.add_condition(epoch_step_depends_on_policy) return cs
mit
PrashntS/scikit-learn
sklearn/linear_model/ridge.py
60
44642
""" Ridge regression """ # Author: Mathieu Blondel <[email protected]> # Reuben Fletcher-Costin <[email protected]> # Fabian Pedregosa <[email protected]> # Michael Eickenberg <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import linalg from scipy import sparse from scipy.sparse import linalg as sp_linalg from .base import LinearClassifierMixin, LinearModel, _rescale_data from .sag import sag_solver from .sag_fast import get_max_squared_sum from ..base import RegressorMixin from ..utils.extmath import safe_sparse_dot from ..utils import check_X_y from ..utils import check_array from ..utils import check_consistent_length from ..utils import compute_sample_weight from ..utils import column_or_1d from ..preprocessing import LabelBinarizer from ..grid_search import GridSearchCV from ..externals import six from ..metrics.scorer import check_scoring def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0): n_samples, n_features = X.shape X1 = sp_linalg.aslinearoperator(X) coefs = np.empty((y.shape[1], n_features)) if n_features > n_samples: def create_mv(curr_alpha): def _mv(x): return X1.matvec(X1.rmatvec(x)) + curr_alpha * x return _mv else: def create_mv(curr_alpha): def _mv(x): return X1.rmatvec(X1.matvec(x)) + curr_alpha * x return _mv for i in range(y.shape[1]): y_column = y[:, i] mv = create_mv(alpha[i]) if n_features > n_samples: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y C = sp_linalg.LinearOperator( (n_samples, n_samples), matvec=mv, dtype=X.dtype) coef, info = sp_linalg.cg(C, y_column, tol=tol) coefs[i] = X1.rmatvec(coef) else: # linear ridge # w = inv(X^t X + alpha*Id) * X.T y y_column = X1.rmatvec(y_column) C = sp_linalg.LinearOperator( (n_features, n_features), matvec=mv, dtype=X.dtype) coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter, tol=tol) if info < 0: raise ValueError("Failed with error code %d" % info) if max_iter is None and info > 0 and verbose: warnings.warn("sparse_cg did not converge after %d iterations." % info) return coefs def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features)) n_iter = np.empty(y.shape[1], dtype=np.int32) # According to the lsqr documentation, alpha = damp^2. sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]): y_column = y[:, i] info = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter) coefs[i] = info[0] n_iter[i] = info[2] return coefs, n_iter def _solve_cholesky(X, y, alpha): # w = inv(X^t X + alpha*Id) * X.T y n_samples, n_features = X.shape n_targets = y.shape[1] A = safe_sparse_dot(X.T, X, dense_output=True) Xy = safe_sparse_dot(X.T, y, dense_output=True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha: A.flat[::n_features + 1] += alpha[0] return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T else: coefs = np.empty([n_targets, n_features]) for coef, target, current_alpha in zip(coefs, Xy.T, alpha): A.flat[::n_features + 1] += current_alpha coef[:] = linalg.solve(A, target, sym_pos=True, overwrite_a=False).ravel() A.flat[::n_features + 1] -= current_alpha return coefs def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False): # dual_coef = inv(X X^t + alpha*Id) y n_samples = K.shape[0] n_targets = y.shape[1] if copy: K = K.copy() alpha = np.atleast_1d(alpha) one_alpha = (alpha == alpha[0]).all() has_sw = isinstance(sample_weight, np.ndarray) \ or sample_weight not in [1.0, None] if has_sw: # Unlike other solvers, we need to support sample_weight directly # because K might be a pre-computed kernel. sw = np.sqrt(np.atleast_1d(sample_weight)) y = y * sw[:, np.newaxis] K *= np.outer(sw, sw) if one_alpha: # Only one penalty, we can solve multi-target problems in one time. K.flat[::n_samples + 1] += alpha[0] try: # Note: we must use overwrite_a=False in order to be able to # use the fall-back solution below in case a LinAlgError # is raised dual_coef = linalg.solve(K, y, sym_pos=True, overwrite_a=False) except np.linalg.LinAlgError: warnings.warn("Singular matrix in solving dual problem. Using " "least-squares solution instead.") dual_coef = linalg.lstsq(K, y)[0] # K is expensive to compute and store in memory so change it back in # case it was user-given. K.flat[::n_samples + 1] -= alpha[0] if has_sw: dual_coef *= sw[:, np.newaxis] return dual_coef else: # One penalty per target. We need to solve each target separately. dual_coefs = np.empty([n_targets, n_samples]) for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha): K.flat[::n_samples + 1] += current_alpha dual_coef[:] = linalg.solve(K, target, sym_pos=True, overwrite_a=False).ravel() K.flat[::n_samples + 1] -= current_alpha if has_sw: dual_coefs *= sw[np.newaxis, :] return dual_coefs.T def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices=False) idx = s > 1e-15 # same default value as scipy.linalg.pinv s_nnz = s[idx][:, np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size)) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T def ridge_regression(X, y, alpha, sample_weight=None, solver='auto', max_iter=None, tol=1e-3, verbose=0, random_state=None, return_n_iter=False): """Solve the ridge equation by the method of normal equations. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- X : {array-like, sparse matrix, LinearOperator}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values alpha : {float, array-like}, shape = [n_targets] if array-like The l_2 penalty to be used. If an array is passed, penalties are assumed to be specific to targets max_iter : int, optional Maximum number of iterations for conjugate gradient solver. For 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' solver, the default value is 1000. sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample. If sample_weight is not None and solver='auto', the solver will be set to 'cholesky'. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution via a Cholesky decomposition of dot(X.T, X) - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is often faster than other solvers when both n_samples and n_features are large. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. All last four solvers support both dense and sparse data. tol : float Precision of the solution. verbose : int Verbosity level. Setting verbose > 0 will display additional information depending on the solver used. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used in 'sag' solver. return_n_iter : boolean, default False If True, the method also returns `n_iter`, the actual number of iteration performed by the solver. Returns ------- coef : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). n_iter : int, optional The actual number of iteration performed by the solver. Only returned if `return_n_iter` is True. Notes ----- This function won't compute the intercept. """ # SAG needs X and y columns to be C-contiguous and np.float64 if solver == 'sag': X = check_array(X, accept_sparse=['csr'], dtype=np.float64, order='C') y = check_array(y, dtype=np.float64, ensure_2d=False, order='F') else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) y = check_array(y, dtype='numeric', ensure_2d=False) check_consistent_length(X, y) n_samples, n_features = X.shape if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) ravel = False if y.ndim == 1: y = y.reshape(-1, 1) ravel = True n_samples_, n_targets = y.shape if n_samples != n_samples_: raise ValueError("Number of samples in X and y does not correspond:" " %d != %d" % (n_samples, n_samples_)) has_sw = sample_weight is not None if solver == 'auto': # cholesky if it's a dense array and cg in any other case if not sparse.issparse(X) or has_sw: solver = 'cholesky' else: solver = 'sparse_cg' elif solver == 'lsqr' and not hasattr(sp_linalg, 'lsqr'): warnings.warn("""lsqr not available on this machine, falling back to sparse_cg.""") solver = 'sparse_cg' if has_sw: if np.atleast_1d(sample_weight).ndim > 1: raise ValueError("Sample weights must be 1D array or scalar") if solver != 'sag': # SAG supports sample_weight directly. For other solvers, # we implement sample_weight via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) # There should be either 1 or n_targets penalties alpha = np.asarray(alpha).ravel() if alpha.size not in [1, n_targets]: raise ValueError("Number of targets and number of penalties " "do not correspond: %d != %d" % (alpha.size, n_targets)) if alpha.size == 1 and n_targets > 1: alpha = np.repeat(alpha, n_targets) if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr', 'sag'): raise ValueError('Solver %s not understood' % solver) n_iter = None if solver == 'sparse_cg': coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose) elif solver == 'lsqr': coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == 'cholesky': if n_features > n_samples: K = safe_sparse_dot(X, X.T, dense_output=True) try: dual_coef = _solve_cholesky_kernel(K, y, alpha) coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' else: try: coef = _solve_cholesky(X, y, alpha) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' elif solver == 'sag': # precompute max_squared_sum for all targets max_squared_sum = get_max_squared_sum(X) coef = np.empty((y.shape[1], n_features)) n_iter = np.empty(y.shape[1], dtype=np.int32) for i, (alpha_i, target) in enumerate(zip(alpha, y.T)): coef_, n_iter_, _ = sag_solver( X, target.ravel(), sample_weight, 'squared', alpha_i, max_iter, tol, verbose, random_state, False, max_squared_sum, dict()) coef[i] = coef_ n_iter[i] = n_iter_ coef = np.asarray(coef) if solver == 'svd': if sparse.issparse(X): raise TypeError('SVD solver does not support sparse' ' inputs currently') coef = _solve_svd(X, y, alpha) if ravel: # When y was passed as a 1d-array, we flatten the coefficients. coef = coef.ravel() if return_n_iter: return coef, n_iter else: return coef class _BaseRidge(six.with_metaclass(ABCMeta, LinearModel)): @abstractmethod def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto", random_state=None): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.max_iter = max_iter self.tol = tol self.solver = solver self.random_state = random_state def fit(self, X, y, sample_weight=None): X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64, multi_output=True, y_numeric=True) if ((sample_weight is not None) and np.atleast_1d(sample_weight).ndim > 1): raise ValueError("Sample weights must be 1D array or scalar") X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) self.coef_, self.n_iter_ = ridge_regression( X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=self.solver, random_state=self.random_state, return_n_iter=True) self._set_intercept(X_mean, y_mean, X_std) return self class Ridge(_BaseRidge, RegressorMixin): """Linear least squares with l2 regularization. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : {float, array-like}, shape (n_targets) Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. For 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' solver, the default value is 1000. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is often faster than other solvers when both n_samples and n_features are large. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. All last four solvers support both dense and sparse data. tol : float Precision of the solution. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used in 'sag' solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_targets, n_features) Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : array or None, shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. See also -------- RidgeClassifier, RidgeCV, KernelRidge Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001) """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto", random_state=None): super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, random_state=random_state) def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample Returns ------- self : returns an instance of self. """ return super(Ridge, self).fit(X, y, sample_weight=sample_weight) class RidgeClassifier(LinearClassifierMixin, _BaseRidge): """Classifier using Ridge regression. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : float Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is faster than other solvers when both n_samples and n_features are large. tol : float Precision of the solution. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used in 'sag' solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : array or None, shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. See also -------- Ridge, RidgeClassifierCV Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, class_weight=None, solver="auto", random_state=None): super(RidgeClassifier, self).__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, random_state=random_state) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit Ridge regression model. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples,n_features] Training data y : array-like, shape = [n_samples] Target values sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : returns an instance of self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) super(RidgeClassifier, self).fit(X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_ class _RidgeGCV(LinearModel): """Ridge regression with built-in Generalized Cross-Validation It allows efficient Leave-One-Out cross-validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id)^-1. Dual solution: c = Gy Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KGY - diag(KG)Y) / diag(I-KG) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G) References ---------- http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, copy_X=True, gcv_mode=None, store_cv_values=False): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def _pre_compute(self, X, y): # even if X is very sparse, K is usually very dense K = safe_sparse_dot(X, X.T, dense_output=True) v, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return v, Q, QT_y def _decomp_diag(self, v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) def _diag_dot(self, D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)] return D * B def _errors(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def _pre_compute_svd(self, X, y): if sparse.issparse(X): raise TypeError("SVD not supported for sparse matrices") U, s, _ = linalg.svd(X, full_matrices=0) v = s ** 2 UT_y = np.dot(U.T, y) return v, U, UT_y def _errors_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case when y is 2-d G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float, multi_output=True, y_numeric=True) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) gcv_mode = self.gcv_mode with_sw = len(np.shape(sample_weight)) if gcv_mode is None or gcv_mode == 'auto': if sparse.issparse(X) or n_features > n_samples or with_sw: gcv_mode = 'eigen' else: gcv_mode = 'svd' elif gcv_mode == "svd" and with_sw: # FIXME non-uniform sample weights not yet supported warnings.warn("non-uniform sample weights unsupported for svd, " "forcing usage of eigen") gcv_mode = 'eigen' if gcv_mode == 'eigen': _pre_compute = self._pre_compute _errors = self._errors _values = self._values elif gcv_mode == 'svd': # assert n_samples >= n_features _pre_compute = self._pre_compute_svd _errors = self._errors_svd _values = self._values_svd else: raise ValueError('bad gcv_mode "%s"' % gcv_mode) v, Q, QT_y = _pre_compute(X, y) n_y = 1 if len(y.shape) == 1 else y.shape[1] cv_values = np.zeros((n_samples * n_y, len(self.alphas))) C = [] scorer = check_scoring(self, scoring=self.scoring, allow_none=True) error = scorer is None for i, alpha in enumerate(self.alphas): weighted_alpha = (sample_weight * alpha if sample_weight is not None else alpha) if error: out, c = _errors(weighted_alpha, y, v, Q, QT_y) else: out, c = _values(weighted_alpha, y, v, Q, QT_y) cv_values[:, i] = out.ravel() C.append(c) if error: best = cv_values.mean(axis=0).argmin() else: # The scorer want an object that will make the predictions but # they are already computed efficiently by _RidgeGCV. This # identity_estimator will just return them def identity_estimator(): pass identity_estimator.decision_function = lambda y_predict: y_predict identity_estimator.predict = lambda y_predict: y_predict out = [scorer(identity_estimator, y.ravel(), cv_values[:, i]) for i in range(len(self.alphas))] best = np.argmax(out) self.alpha_ = self.alphas[best] self.dual_coef_ = C[best] self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) self._set_intercept(X_mean, y_mean, X_std) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, len(self.alphas) else: cv_values_shape = n_samples, n_y, len(self.alphas) self.cv_values_ = cv_values.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ if self.cv is None: estimator = _RidgeGCV(self.alphas, fit_intercept=self.fit_intercept, normalize=self.normalize, scoring=self.scoring, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values) estimator.fit(X, y, sample_weight=sample_weight) self.alpha_ = estimator.alpha_ if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True " " are incompatible") parameters = {'alpha': self.alphas} fit_params = {'sample_weight': sample_weight} gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept), parameters, fit_params=fit_params, cv=self.cv) gs.fit(X, y) estimator = gs.best_estimator_ self.alpha_ = gs.best_estimator_.alpha self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ return self class RidgeCV(_BaseRidgeCV, RegressorMixin): """Ridge regression with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used, else, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. gcv_mode : {None, 'auto', 'svd', eigen'}, optional Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:: 'auto' : use svd if n_samples > n_features or when X is a sparse matrix, otherwise use eigen 'svd' : force computation via singular value decomposition of X (does not work for sparse matrices) 'eigen' : force computation via eigendecomposition of X^T X The 'auto' mode is the default and is intended to pick the cheaper option of the two depending upon the shape and format of the training data. store_cv_values : boolean, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the `cv_values_` attribute (see below). This flag is only compatible with `cv=None` (i.e. using Generalized Cross-Validation). Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_targets, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and \ `cv=None`). After `fit()` has been called, this attribute will \ contain the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter. See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeClassifierCV: Ridge classifier with built-in cross validation """ pass class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the efficient Leave-One-Out cross-validation - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_responses, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and `cv=None`). After `fit()` has been called, this attribute will contain \ the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeCV: Ridge regression with built-in cross validation Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None): super(RidgeClassifierCV, self).__init__( alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, scoring=scoring, cv=cv) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit the ridge classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : object Returns self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_
bsd-3-clause
vipulroxx/sympy
sympy/physics/quantum/circuitplot.py
58
12941
"""Matplotlib based plotting of quantum circuits. Todo: * Optimize printing of large circuits. * Get this to work with single gates. * Do a better job checking the form of circuits to make sure it is a Mul of Gates. * Get multi-target gates plotting. * Get initial and final states to plot. * Get measurements to plot. Might need to rethink measurement as a gate issue. * Get scale and figsize to be handled in a better way. * Write some tests/examples! """ from __future__ import print_function, division from sympy import Mul from sympy.core.compatibility import u, range from sympy.external import import_module from sympy.physics.quantum.gate import Gate, OneQubitGate, CGate, CGateS from sympy.core.core import BasicMeta from sympy.core.assumptions import ManagedProperties __all__ = [ 'CircuitPlot', 'circuit_plot', 'labeller', 'Mz', 'Mx', 'CreateOneQubitGate', 'CreateCGate', ] np = import_module('numpy') matplotlib = import_module( 'matplotlib', __import__kwargs={'fromlist': ['pyplot']}, catch=(RuntimeError,)) # This is raised in environments that have no display. if not np or not matplotlib: class CircuitPlot(object): def __init__(*args, **kwargs): raise ImportError('numpy or matplotlib not available.') def circuit_plot(*args, **kwargs): raise ImportError('numpy or matplotlib not available.') else: pyplot = matplotlib.pyplot Line2D = matplotlib.lines.Line2D Circle = matplotlib.patches.Circle #from matplotlib import rc #rc('text',usetex=True) class CircuitPlot(object): """A class for managing a circuit plot.""" scale = 1.0 fontsize = 20.0 linewidth = 1.0 control_radius = 0.05 not_radius = 0.15 swap_delta = 0.05 labels = [] inits = {} label_buffer = 0.5 def __init__(self, c, nqubits, **kwargs): self.circuit = c self.ngates = len(self.circuit.args) self.nqubits = nqubits self.update(kwargs) self._create_grid() self._create_figure() self._plot_wires() self._plot_gates() self._finish() def update(self, kwargs): """Load the kwargs into the instance dict.""" self.__dict__.update(kwargs) def _create_grid(self): """Create the grid of wires.""" scale = self.scale wire_grid = np.arange(0.0, self.nqubits*scale, scale, dtype=float) gate_grid = np.arange(0.0, self.ngates*scale, scale, dtype=float) self._wire_grid = wire_grid self._gate_grid = gate_grid def _create_figure(self): """Create the main matplotlib figure.""" self._figure = pyplot.figure( figsize=(self.ngates*self.scale, self.nqubits*self.scale), facecolor='w', edgecolor='w' ) ax = self._figure.add_subplot( 1, 1, 1, frameon=True ) ax.set_axis_off() offset = 0.5*self.scale ax.set_xlim(self._gate_grid[0] - offset, self._gate_grid[-1] + offset) ax.set_ylim(self._wire_grid[0] - offset, self._wire_grid[-1] + offset) ax.set_aspect('equal') self._axes = ax def _plot_wires(self): """Plot the wires of the circuit diagram.""" xstart = self._gate_grid[0] xstop = self._gate_grid[-1] xdata = (xstart - self.scale, xstop + self.scale) for i in range(self.nqubits): ydata = (self._wire_grid[i], self._wire_grid[i]) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) if self.labels: init_label_buffer = 0 if self.inits.get(self.labels[i]): init_label_buffer = 0.25 self._axes.text( xdata[0]-self.label_buffer-init_label_buffer,ydata[0], render_label(self.labels[i],self.inits), size=self.fontsize, color='k',ha='center',va='center') self._plot_measured_wires() def _plot_measured_wires(self): ismeasured = self._measurements() xstop = self._gate_grid[-1] dy = 0.04 # amount to shift wires when doubled # Plot doubled wires after they are measured for im in ismeasured: xdata = (self._gate_grid[ismeasured[im]],xstop+self.scale) ydata = (self._wire_grid[im]+dy,self._wire_grid[im]+dy) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) # Also double any controlled lines off these wires for i,g in enumerate(self._gates()): if isinstance(g, CGate) or isinstance(g, CGateS): wires = g.controls + g.targets for wire in wires: if wire in ismeasured and \ self._gate_grid[i] > self._gate_grid[ismeasured[wire]]: ydata = min(wires), max(wires) xdata = self._gate_grid[i]-dy, self._gate_grid[i]-dy line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) def _gates(self): """Create a list of all gates in the circuit plot.""" gates = [] if isinstance(self.circuit, Mul): for g in reversed(self.circuit.args): if isinstance(g, Gate): gates.append(g) elif isinstance(self.circuit, Gate): gates.append(self.circuit) return gates def _plot_gates(self): """Iterate through the gates and plot each of them.""" for i, gate in enumerate(self._gates()): gate.plot_gate(self, i) def _measurements(self): """Return a dict {i:j} where i is the index of the wire that has been measured, and j is the gate where the wire is measured. """ ismeasured = {} for i,g in enumerate(self._gates()): if getattr(g,'measurement',False): for target in g.targets: if target in ismeasured: if ismeasured[target] > i: ismeasured[target] = i else: ismeasured[target] = i return ismeasured def _finish(self): # Disable clipping to make panning work well for large circuits. for o in self._figure.findobj(): o.set_clip_on(False) def one_qubit_box(self, t, gate_idx, wire_idx): """Draw a box for a single qubit gate.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] self._axes.text( x, y, t, color='k', ha='center', va='center', bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth), size=self.fontsize ) def two_qubit_box(self, t, gate_idx, wire_idx): """Draw a box for a two qubit gate. Doesn't work yet. """ x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx]+0.5 print(self._gate_grid) print(self._wire_grid) obj = self._axes.text( x, y, t, color='k', ha='center', va='center', bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth), size=self.fontsize ) def control_line(self, gate_idx, min_wire, max_wire): """Draw a vertical control line.""" xdata = (self._gate_grid[gate_idx], self._gate_grid[gate_idx]) ydata = (self._wire_grid[min_wire], self._wire_grid[max_wire]) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) def control_point(self, gate_idx, wire_idx): """Draw a control point.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] radius = self.control_radius c = Circle( (x, y), radius*self.scale, ec='k', fc='k', fill=True, lw=self.linewidth ) self._axes.add_patch(c) def not_point(self, gate_idx, wire_idx): """Draw a NOT gates as the circle with plus in the middle.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] radius = self.not_radius c = Circle( (x, y), radius, ec='k', fc='w', fill=False, lw=self.linewidth ) self._axes.add_patch(c) l = Line2D( (x, x), (y - radius, y + radius), color='k', lw=self.linewidth ) self._axes.add_line(l) def swap_point(self, gate_idx, wire_idx): """Draw a swap point as a cross.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] d = self.swap_delta l1 = Line2D( (x - d, x + d), (y - d, y + d), color='k', lw=self.linewidth ) l2 = Line2D( (x - d, x + d), (y + d, y - d), color='k', lw=self.linewidth ) self._axes.add_line(l1) self._axes.add_line(l2) def circuit_plot(c, nqubits, **kwargs): """Draw the circuit diagram for the circuit with nqubits. Parameters ========== c : circuit The circuit to plot. Should be a product of Gate instances. nqubits : int The number of qubits to include in the circuit. Must be at least as big as the largest `min_qubits`` of the gates. """ return CircuitPlot(c, nqubits, **kwargs) def render_label(label, inits={}): """Slightly more flexible way to render labels. >>> from sympy.physics.quantum.circuitplot import render_label >>> render_label('q0') '$|q0\\\\rangle$' >>> render_label('q0', {'q0':'0'}) '$|q0\\\\rangle=|0\\\\rangle$' """ init = inits.get(label) if init: return r'$|%s\rangle=|%s\rangle$' % (label, init) return r'$|%s\rangle$' % label def labeller(n, symbol='q'): """Autogenerate labels for wires of quantum circuits. Parameters ========== n : int number of qubits in the circuit symbol : string A character string to precede all gate labels. E.g. 'q_0', 'q_1', etc. >>> from sympy.physics.quantum.circuitplot import labeller >>> labeller(2) ['q_1', 'q_0'] >>> labeller(3,'j') ['j_2', 'j_1', 'j_0'] """ return ['%s_%d' % (symbol,n-i-1) for i in range(n)] class Mz(OneQubitGate): """Mock-up of a z measurement gate. This is in circuitplot rather than gate.py because it's not a real gate, it just draws one. """ measurement = True gate_name='Mz' gate_name_latex=u('M_z') class Mx(OneQubitGate): """Mock-up of an x measurement gate. This is in circuitplot rather than gate.py because it's not a real gate, it just draws one. """ measurement = True gate_name='Mx' gate_name_latex=u('M_x') class CreateOneQubitGate(ManagedProperties): def __new__(mcl, name, latexname=None): if not latexname: latexname = name return BasicMeta.__new__(mcl, name + "Gate", (OneQubitGate,), {'gate_name': name, 'gate_name_latex': latexname}) def CreateCGate(name, latexname=None): """Use a lexical closure to make a controlled gate. """ if not latexname: latexname = name onequbitgate = CreateOneQubitGate(name, latexname) def ControlledGate(ctrls,target): return CGate(tuple(ctrls),onequbitgate(target)) return ControlledGate
bsd-3-clause
dsquareindia/scikit-learn
sklearn/tests/test_cross_validation.py
79
47914
"""Test the cross_validation module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from scipy import stats from sklearn.exceptions import ConvergenceWarning from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame with warnings.catch_warnings(): warnings.simplefilter('ignore') from sklearn import cross_validation as cval from sklearn.datasets import make_regression from sklearn.datasets import load_boston from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.datasets import make_multilabel_classification from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import precision_score from sklearn.externals import six from sklearn.externals.six.moves import zip from sklearn.linear_model import Ridge from sklearn.multiclass import OneVsRestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit(self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError('X cannot be d') if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) if sparse_sample_weight is not None: fmt = ('MockClassifier extra fit_param sparse_sample_weight' '.shape[0] is {0}, should be {1}') assert_true(sparse_sample_weight.shape[0] == X.shape[0], fmt.format(sparse_sample_weight.shape[0], X.shape[0])) if sparse_param is not None: fmt = ('MockClassifier extra fit_param sparse_param.shape ' 'is ({0}, {1}), should be ({2}, {3})') assert_true(sparse_param.shape == P_sparse.shape, fmt.format(sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1])) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T[:, 0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) def get_params(self, deep=False): return {'a': self.a, 'allow_nd': self.allow_nd} X = np.ones((10, 2)) X_sparse = coo_matrix(X) W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)) P_sparse = coo_matrix(np.eye(5)) # avoid StratifiedKFold's Warning about least populated class in y y = np.arange(10) % 3 ############################################################################## # Tests def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, expected_n_iter=None, n_samples=None): # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(len(cv), expected_n_iter) else: expected_n_iter = len(cv) collected_test_samples = set() iterations = 0 for train, test in cv: check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.KFold, 3, 4) # Check that a warning is raised if the least populated class has too few # members. y = [3, 3, -1, -1, 3] cv = assert_warns_message(Warning, "The least populated class", cval.StratifiedKFold, y, 3) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y)) # Check that errors are raised if all n_labels for individual # classes are less than n_folds. y = [3, 3, -1, -1, 2] assert_raises(ValueError, cval.StratifiedKFold, y, 3) # Error when number of folds is <= 1 assert_raises(ValueError, cval.KFold, 2, 0) assert_raises(ValueError, cval.KFold, 2, 1) error_string = ("k-fold cross validation requires at least one" " train / test split") assert_raise_message(ValueError, error_string, cval.StratifiedKFold, y, 0) assert_raise_message(ValueError, error_string, cval.StratifiedKFold, y, 1) # When n is not integer: assert_raises(ValueError, cval.KFold, 2.5, 2) # When n_folds is not integer: assert_raises(ValueError, cval.KFold, 5, 1.5) assert_raises(ValueError, cval.StratifiedKFold, y, 1.5) def test_kfold_indices(): # Check all indices are returned in the test folds kf = cval.KFold(300, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=300) # Check all indices are returned in the test folds even when equal-sized # folds are not possible kf = cval.KFold(17, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=17) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets splits = iter(cval.KFold(4, 2)) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = iter(cval.KFold(5, 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves label ratios in individual splits # Repeat with shuffling turned off and on n_samples = 1000 labels = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for shuffle in [False, True]: for train, test in cval.StratifiedKFold(labels, 5, shuffle=shuffle): assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for kf in [cval.KFold(i, 5) for i in range(11, 17)]: sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), kf.n) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) # Repeat with shuffling turned off and on labels = [0] * 3 + [1] * 14 for shuffle in [False, True]: for skf in [cval.StratifiedKFold(labels[:i], 3, shuffle=shuffle) for i in range(11, 17)]: sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), skf.n) def test_shuffle_kfold(): # Check the indices are shuffled properly, and that all indices are # returned in the different test folds kf = cval.KFold(300, 3, shuffle=True, random_state=0) ind = np.arange(300) all_folds = None for train, test in kf: assert_true(np.any(np.arange(100) != ind[test])) assert_true(np.any(np.arange(100, 200) != ind[test])) assert_true(np.any(np.arange(200, 300) != ind[test])) if all_folds is None: all_folds = ind[test].copy() else: all_folds = np.concatenate((all_folds, ind[test])) all_folds.sort() assert_array_equal(all_folds, ind) def test_shuffle_stratifiedkfold(): # Check that shuffling is happening when requested, and for proper # sample coverage labels = [0] * 20 + [1] * 20 kf0 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=0)) kf1 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=1)) for (_, test0), (_, test1) in zip(kf0, kf1): assert_true(set(test0) != set(test1)) check_cv_coverage(kf0, expected_n_iter=5, n_samples=40) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than the non # shuffling variant (around 0.86). digits = load_digits() X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) n = len(y) cv = cval.KFold(n, 5, shuffle=False) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model with regards to the writing style of the authors # by yielding a seriously overestimated score: cv = cval.KFold(n, 5, shuffle=True, random_state=0) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = cval.KFold(n, 5, shuffle=True, random_state=1) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = cval.StratifiedKFold(y, 5) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_label_kfold(): rng = np.random.RandomState(0) # Parameters of the test n_labels = 15 n_samples = 1000 n_folds = 5 # Construct the test data tolerance = 0.05 * n_samples # 5 percent error allowed labels = rng.randint(0, n_labels, n_samples) folds = cval.LabelKFold(labels, n_folds=n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split labels = np.asarray(labels, dtype=object) for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Construct the test data labels = ['Albert', 'Jean', 'Bertrand', 'Michel', 'Jean', 'Francis', 'Robert', 'Michel', 'Rachel', 'Lois', 'Michelle', 'Bernard', 'Marion', 'Laura', 'Jean', 'Rachel', 'Franck', 'John', 'Gael', 'Anna', 'Alix', 'Robert', 'Marion', 'David', 'Tony', 'Abel', 'Becky', 'Madmood', 'Cary', 'Mary', 'Alexandre', 'David', 'Francis', 'Barack', 'Abdoul', 'Rasha', 'Xi', 'Silvia'] labels = np.asarray(labels, dtype=object) n_labels = len(np.unique(labels)) n_samples = len(labels) n_folds = 5 tolerance = 0.05 * n_samples # 5 percent error allowed folds = cval.LabelKFold(labels, n_folds=n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Should fail if there are more folds than labels labels = np.array([1, 1, 1, 2, 2]) assert_raises(ValueError, cval.LabelKFold, labels, n_folds=3) def test_shuffle_split(): ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0) ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0) ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0) for typ in six.integer_types: ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8) # Train size or test size too small assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2] * 2), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33, random_state=0) test_size = np.ceil(0.33 * len(y)) train_size = len(y) - test_size for train, test in sss: assert_array_equal(np.unique(y[train]), np.unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(len(train) + len(test), y.size) assert_equal(len(train), train_size) assert_equal(len(test), test_size) assert_array_equal(np.lib.arraysetops.intersect1d(train, test), []) def test_stratified_shuffle_split_even(): # Test the StratifiedShuffleSplit, indices are drawn with a # equal chance n_folds = 5 n_iter = 1000 def assert_counts_are_ok(idx_counts, p): # Here we test that the distribution of the counts # per index is close enough to a binomial threshold = 0.05 / n_splits bf = stats.binom(n_splits, p) for count in idx_counts: p = bf.pmf(count) assert_true(p > threshold, "An index is not drawn with chance corresponding " "to even draws") for n_samples in (6, 22): labels = np.array((n_samples // 2) * [0, 1]) splits = cval.StratifiedShuffleSplit(labels, n_iter=n_iter, test_size=1. / n_folds, random_state=0) train_counts = [0] * n_samples test_counts = [0] * n_samples n_splits = 0 for train, test in splits: n_splits += 1 for counter, ids in [(train_counts, train), (test_counts, test)]: for id in ids: counter[id] += 1 assert_equal(n_splits, n_iter) assert_equal(len(train), splits.n_train) assert_equal(len(test), splits.n_test) assert_equal(len(set(train).intersection(test)), 0) label_counts = np.unique(labels) assert_equal(splits.test_size, 1.0 / n_folds) assert_equal(splits.n_train + splits.n_test, len(labels)) assert_equal(len(label_counts), 2) ex_test_p = float(splits.n_test) / n_samples ex_train_p = float(splits.n_train) / n_samples assert_counts_are_ok(train_counts, ex_train_p) assert_counts_are_ok(test_counts, ex_test_p) def test_stratified_shuffle_split_overlap_train_test_bug(): # See https://github.com/scikit-learn/scikit-learn/issues/6121 for # the original bug report labels = [0, 1, 2, 3] * 3 + [4, 5] * 5 splits = cval.StratifiedShuffleSplit(labels, n_iter=1, test_size=0.5, random_state=0) train, test = next(iter(splits)) assert_array_equal(np.intersect1d(train, test), []) def test_predefinedsplit_with_kfold_split(): # Check that PredefinedSplit can reproduce a split generated by Kfold. folds = -1 * np.ones(10) kf_train = [] kf_test = [] for i, (train_ind, test_ind) in enumerate(cval.KFold(10, 5, shuffle=True)): kf_train.append(train_ind) kf_test.append(test_ind) folds[test_ind] = i ps_train = [] ps_test = [] ps = cval.PredefinedSplit(folds) for train_ind, test_ind in ps: ps_train.append(train_ind) ps_test.append(test_ind) assert_array_equal(ps_train, kf_train) assert_array_equal(ps_test, kf_test) def test_label_shuffle_split(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), ] for y in ys: n_iter = 6 test_size = 1. / 3 slo = cval.LabelShuffleSplit(y, n_iter, test_size=test_size, random_state=0) # Make sure the repr works repr(slo) # Test that the length is correct assert_equal(len(slo), n_iter) y_unique = np.unique(y) for train, test in slo: # First test: no train label is in the test set and vice versa y_train_unique = np.unique(y[train]) y_test_unique = np.unique(y[test]) assert_false(np.any(np.in1d(y[train], y_test_unique))) assert_false(np.any(np.in1d(y[test], y_train_unique))) # Second test: train and test add up to all the data assert_equal(y[train].size + y[test].size, y.size) # Third test: train and test are disjoint assert_array_equal(np.intersect1d(train, test), []) # Fourth test: # unique train and test labels are correct, # +- 1 for rounding error assert_true(abs(len(y_test_unique) - round(test_size * len(y_unique))) <= 1) assert_true(abs(len(y_train_unique) - round((1.0 - test_size) * len(y_unique))) <= 1) def test_leave_label_out_changing_labels(): # Check that LeaveOneLabelOut and LeavePLabelOut work normally if # the labels variable is changed before calling __iter__ labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) labels_changing = np.array(labels, copy=True) lolo = cval.LeaveOneLabelOut(labels) lolo_changing = cval.LeaveOneLabelOut(labels_changing) lplo = cval.LeavePLabelOut(labels, p=2) lplo_changing = cval.LeavePLabelOut(labels_changing, p=2) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cval.cross_val_score(clf, X, y) assert_array_equal(scores, clf.score(X, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) scores = cval.cross_val_score(clf, X_sparse, y) assert_array_equal(scores, clf.score(X_sparse, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cval.cross_val_score(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) scores = cval.cross_val_score(clf, X, y.tolist()) assert_raises(ValueError, cval.cross_val_score, clf, X, y, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cval.cross_val_score(clf, X_3d, y) clf = MockClassifier(allow_nd=False) assert_raises(ValueError, cval.cross_val_score, clf, X_3d, y) def test_cross_val_score_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_score(clf, X_df, y_ser) def test_cross_val_score_mask(): # test that cross_val_score works with boolean masks svm = SVC(kernel="linear") iris = load_iris() X, y = iris.data, iris.target cv_indices = cval.KFold(len(y), 5) scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices) cv_indices = cval.KFold(len(y), 5) cv_masks = [] for train, test in cv_indices: mask_train = np.zeros(len(y), dtype=np.bool) mask_test = np.zeros(len(y), dtype=np.bool) mask_train[train] = 1 mask_test[test] = 1 cv_masks.append((train, test)) scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks) assert_array_equal(scores_indices, scores_masks) def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cval.cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cval.cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cval.cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cval.cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) DUMMY_INT = 42 DUMMY_STR = '42' DUMMY_OBJ = object() def assert_fit_params(clf): # Function to test that the values are passed correctly to the # classifier arguments for non-array type assert_equal(clf.dummy_int, DUMMY_INT) assert_equal(clf.dummy_str, DUMMY_STR) assert_equal(clf.dummy_obj, DUMMY_OBJ) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes, 'sparse_sample_weight': W_sparse, 'sparse_param': P_sparse, 'dummy_int': DUMMY_INT, 'dummy_str': DUMMY_STR, 'dummy_obj': DUMMY_OBJ, 'callback': assert_fit_params} cval.cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): scoring = make_scorer(score_func) score = cval.cross_val_score(clf, X, y, scoring=scoring) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X) def test_train_test_split_errors(): assert_raises(ValueError, cval.train_test_split) assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1) assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, cval.train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, cval.train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, cval.train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, cval.train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, cval.train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = np.arange(10) # simple test split = cval.train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) # test correspondence of X and y assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) # conversion of lists to arrays (deprecated?) with warnings.catch_warnings(record=True): split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_array_equal(X_train, X_s_train.toarray()) assert_array_equal(X_test, X_s_test.toarray()) # don't convert lists to anything else by default split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_true(isinstance(y_train, list)) assert_true(isinstance(y_test, list)) # allow nd-arrays X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) split = cval.train_test_split(X_4d, y_3d) assert_equal(split[0].shape, (7, 5, 3, 2)) assert_equal(split[1].shape, (3, 5, 3, 2)) assert_equal(split[2].shape, (7, 7, 11)) assert_equal(split[3].shape, (3, 7, 11)) # test stratification option y = np.array([1, 1, 1, 1, 2, 2, 2, 2]) for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]): train, test = cval.train_test_split(y, test_size=test_size, stratify=y, random_state=0) assert_equal(len(test), exp_test_size) assert_equal(len(test) + len(train), len(y)) # check the 1:1 ratio of ones and twos in the data is preserved assert_equal(np.sum(train == 1), np.sum(train == 2)) def train_test_split_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [MockDataFrame] try: from pandas import DataFrame types.append(DataFrame) except ImportError: pass for InputFeatureType in types: # X dataframe X_df = InputFeatureType(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, InputFeatureType)) assert_true(isinstance(X_test, InputFeatureType)) def train_test_split_mock_pandas(): # X mock dataframe X_df = MockDataFrame(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, MockDataFrame)) assert_true(isinstance(X_test, MockDataFrame)) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cval.cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative neg_mse_scores = cval.cross_val_score(reg, X, y, cv=5, scoring="neg_mean_squared_error") expected_neg_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(neg_mse_scores, expected_neg_mse, 2) # Explained variance scoring = make_scorer(explained_variance_score) ev_scores = cval.cross_val_score(reg, X, y, cv=5, scoring=scoring) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = cval.StratifiedKFold(y, 2) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = cval.StratifiedKFold(y, 2) score_label, _, pvalue_label = cval.permutation_test_score( svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # test with custom scoring object def custom_score(y_true, y_pred): return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]) scorer = make_scorer(custom_score) score, _, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0) assert_almost_equal(score, .93, 2) assert_almost_equal(pvalue, 0.01, 3) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_cross_val_generator_with_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) # explicitly passing indices value is deprecated loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ps = cval.PredefinedSplit([1, 1, 2, 2]) ss = cval.ShuffleSplit(2) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] @ignore_warnings def test_cross_val_generator_with_default_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ss = cval.ShuffleSplit(2) ps = cval.PredefinedSplit([1, 1, 2, 2]) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] def test_shufflesplit_errors(): assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1, train_size=0.95) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3) assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None, train_size=None) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = cval.ShuffleSplit(10, random_state=21) assert_array_equal(list(a for a, b in ss), list(a for a, b in ss)) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0) tr, te = list(cv)[0] X_tr, y_tr = cval._safe_split(clf, X, y, tr) K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr) assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T)) X_te, y_te = cval._safe_split(clf, X, y, te, tr) K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr) assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T)) def test_cross_val_score_allow_nans(): # Check that cross_val_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.cross_val_score(p, X, y, cv=5) def test_train_test_split_allow_nans(): # Check that train_test_split allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) cval.train_test_split(X, y, test_size=0.2, random_state=42) def test_permutation_test_score_allow_nans(): # Check that permutation_test_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.permutation_test_score(p, X, y, cv=5) def test_check_cv_return_types(): X = np.ones((9, 2)) cv = cval.check_cv(3, X, classifier=False) assert_true(isinstance(cv, cval.KFold)) y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1]) cv = cval.check_cv(3, X, y_binary, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv = cval.check_cv(3, X, y_multiclass, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) X = np.ones((5, 2)) y_multilabel = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [1, 0, 0]] cv = cval.check_cv(3, X, y_multilabel, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]]) cv = cval.check_cv(3, X, y_multioutput, classifier=True) assert_true(isinstance(cv, cval.KFold)) def test_cross_val_score_multilabel(): X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1], [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]]) y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]) clf = KNeighborsClassifier(n_neighbors=1) scoring_micro = make_scorer(precision_score, average='micro') scoring_macro = make_scorer(precision_score, average='macro') scoring_samples = make_scorer(precision_score, average='samples') score_micro = cval.cross_val_score(clf, X, y, scoring=scoring_micro, cv=5) score_macro = cval.cross_val_score(clf, X, y, scoring=scoring_macro, cv=5) score_samples = cval.cross_val_score(clf, X, y, scoring=scoring_samples, cv=5) assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3]) assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = cval.KFold(len(boston.target)) est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv: est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cval.cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = cval.LeaveOneOut(len(y)) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cval.cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cval.cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) def bad_cv(): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv()) def test_cross_val_predict_input_types(): clf = Ridge() # Smoke test predictions = cval.cross_val_predict(clf, X, y) assert_equal(predictions.shape, (10,)) # test with multioutput y with ignore_warnings(category=ConvergenceWarning): predictions = cval.cross_val_predict(clf, X_sparse, X) assert_equal(predictions.shape, (10, 2)) predictions = cval.cross_val_predict(clf, X_sparse, y) assert_array_equal(predictions.shape, (10,)) # test with multioutput y with ignore_warnings(category=ConvergenceWarning): predictions = cval.cross_val_predict(clf, X_sparse, X) assert_array_equal(predictions.shape, (10, 2)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) predictions = cval.cross_val_predict(clf, X, y.tolist()) # test with 3d X and X_3d = X[:, :, np.newaxis] check_3d = lambda x: x.ndim == 3 clf = CheckingClassifier(check_X=check_3d) predictions = cval.cross_val_predict(clf, X_3d, y) assert_array_equal(predictions.shape, (10,)) def test_cross_val_predict_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_predict(clf, X_df, y_ser) def test_sparse_fit_params(): iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))} a = cval.cross_val_score(clf, X, y, fit_params=fit_params) assert_array_equal(a, np.ones(3)) def test_check_is_partition(): p = np.arange(100) assert_true(cval._check_is_partition(p, 100)) assert_false(cval._check_is_partition(np.delete(p, 23), 100)) p[0] = 23 assert_false(cval._check_is_partition(p, 100)) def test_cross_val_predict_sparse_prediction(): # check that cross_val_predict gives same result for sparse and dense input X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) X_sparse = csr_matrix(X) y_sparse = csr_matrix(y) classif = OneVsRestClassifier(SVC(kernel='linear')) preds = cval.cross_val_predict(classif, X, y, cv=10) preds_sparse = cval.cross_val_predict(classif, X_sparse, y_sparse, cv=10) preds_sparse = preds_sparse.toarray() assert_array_almost_equal(preds_sparse, preds)
bsd-3-clause
srowen/spark
python/run-tests.py
15
13614
#!/usr/bin/env python3 # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging from argparse import ArgumentParser import os import re import shutil import subprocess import sys import tempfile from threading import Thread, Lock import time import uuid import queue as Queue from multiprocessing import Manager # Append `SPARK_HOME/dev` to the Python path so that we can import the sparktestsupport module sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), "../dev/")) from sparktestsupport import SPARK_HOME # noqa (suppress pep8 warnings) from sparktestsupport.shellutils import which, subprocess_check_output # noqa from sparktestsupport.modules import all_modules, pyspark_sql # noqa python_modules = dict((m.name, m) for m in all_modules if m.python_test_goals if m.name != 'root') def print_red(text): print('\033[31m' + text + '\033[0m') SKIPPED_TESTS = None LOG_FILE = os.path.join(SPARK_HOME, "python/unit-tests.log") FAILURE_REPORTING_LOCK = Lock() LOGGER = logging.getLogger() # Find out where the assembly jars are located. # TODO: revisit for Scala 2.13 for scala in ["2.12"]: build_dir = os.path.join(SPARK_HOME, "assembly", "target", "scala-" + scala) if os.path.isdir(build_dir): SPARK_DIST_CLASSPATH = os.path.join(build_dir, "jars", "*") break else: raise RuntimeError("Cannot find assembly build directory, please build Spark first.") def run_individual_python_test(target_dir, test_name, pyspark_python): env = dict(os.environ) env.update({ 'SPARK_DIST_CLASSPATH': SPARK_DIST_CLASSPATH, 'SPARK_TESTING': '1', 'SPARK_PREPEND_CLASSES': '1', 'PYSPARK_PYTHON': which(pyspark_python), 'PYSPARK_DRIVER_PYTHON': which(pyspark_python), # Preserve legacy nested timezone behavior for pyarrow>=2, remove after SPARK-32285 'PYARROW_IGNORE_TIMEZONE': '1', }) # Create a unique temp directory under 'target/' for each run. The TMPDIR variable is # recognized by the tempfile module to override the default system temp directory. tmp_dir = os.path.join(target_dir, str(uuid.uuid4())) while os.path.isdir(tmp_dir): tmp_dir = os.path.join(target_dir, str(uuid.uuid4())) os.mkdir(tmp_dir) env["TMPDIR"] = tmp_dir metastore_dir = os.path.join(tmp_dir, str(uuid.uuid4())) while os.path.isdir(metastore_dir): metastore_dir = os.path.join(metastore_dir, str(uuid.uuid4())) os.mkdir(metastore_dir) # Also override the JVM's temp directory by setting driver and executor options. java_options = "-Djava.io.tmpdir={0} -Dio.netty.tryReflectionSetAccessible=true".format(tmp_dir) spark_args = [ "--conf", "spark.driver.extraJavaOptions='{0}'".format(java_options), "--conf", "spark.executor.extraJavaOptions='{0}'".format(java_options), "--conf", "spark.sql.warehouse.dir='{0}'".format(metastore_dir), "pyspark-shell" ] env["PYSPARK_SUBMIT_ARGS"] = " ".join(spark_args) LOGGER.info("Starting test(%s): %s", pyspark_python, test_name) start_time = time.time() try: per_test_output = tempfile.TemporaryFile() retcode = subprocess.Popen( [os.path.join(SPARK_HOME, "bin/pyspark")] + test_name.split(), stderr=per_test_output, stdout=per_test_output, env=env).wait() shutil.rmtree(tmp_dir, ignore_errors=True) except: LOGGER.exception("Got exception while running %s with %s", test_name, pyspark_python) # Here, we use os._exit() instead of sys.exit() in order to force Python to exit even if # this code is invoked from a thread other than the main thread. os._exit(1) duration = time.time() - start_time # Exit on the first failure. if retcode != 0: try: with FAILURE_REPORTING_LOCK: with open(LOG_FILE, 'ab') as log_file: per_test_output.seek(0) log_file.writelines(per_test_output) per_test_output.seek(0) for line in per_test_output: decoded_line = line.decode("utf-8", "replace") if not re.match('[0-9]+', decoded_line): print(decoded_line, end='') per_test_output.close() except: LOGGER.exception("Got an exception while trying to print failed test output") finally: print_red("\nHad test failures in %s with %s; see logs." % (test_name, pyspark_python)) # Here, we use os._exit() instead of sys.exit() in order to force Python to exit even if # this code is invoked from a thread other than the main thread. os._exit(-1) else: skipped_counts = 0 try: per_test_output.seek(0) # Here expects skipped test output from unittest when verbosity level is # 2 (or --verbose option is enabled). decoded_lines = map(lambda line: line.decode("utf-8", "replace"), iter(per_test_output)) skipped_tests = list(filter( lambda line: re.search(r'test_.* \(pyspark\..*\) ... (skip|SKIP)', line), decoded_lines)) skipped_counts = len(skipped_tests) if skipped_counts > 0: key = (pyspark_python, test_name) assert SKIPPED_TESTS is not None SKIPPED_TESTS[key] = skipped_tests per_test_output.close() except: import traceback print_red("\nGot an exception while trying to store " "skipped test output:\n%s" % traceback.format_exc()) # Here, we use os._exit() instead of sys.exit() in order to force Python to exit even if # this code is invoked from a thread other than the main thread. os._exit(-1) if skipped_counts != 0: LOGGER.info( "Finished test(%s): %s (%is) ... %s tests were skipped", pyspark_python, test_name, duration, skipped_counts) else: LOGGER.info( "Finished test(%s): %s (%is)", pyspark_python, test_name, duration) def get_default_python_executables(): python_execs = [x for x in ["python3.6", "pypy3"] if which(x)] if "python3.6" not in python_execs: p = which("python3") if not p: LOGGER.error("No python3 executable found. Exiting!") os._exit(1) else: python_execs.insert(0, p) return python_execs def parse_opts(): parser = ArgumentParser( prog="run-tests" ) parser.add_argument( "--python-executables", type=str, default=','.join(get_default_python_executables()), help="A comma-separated list of Python executables to test against (default: %(default)s)" ) parser.add_argument( "--modules", type=str, default=",".join(sorted(python_modules.keys())), help="A comma-separated list of Python modules to test (default: %(default)s)" ) parser.add_argument( "-p", "--parallelism", type=int, default=4, help="The number of suites to test in parallel (default %(default)d)" ) parser.add_argument( "--verbose", action="store_true", help="Enable additional debug logging" ) group = parser.add_argument_group("Developer Options") group.add_argument( "--testnames", type=str, default=None, help=( "A comma-separated list of specific modules, classes and functions of doctest " "or unittest to test. " "For example, 'pyspark.sql.foo' to run the module as unittests or doctests, " "'pyspark.sql.tests FooTests' to run the specific class of unittests, " "'pyspark.sql.tests FooTests.test_foo' to run the specific unittest in the class. " "'--modules' option is ignored if they are given.") ) args, unknown = parser.parse_known_args() if unknown: parser.error("Unsupported arguments: %s" % ' '.join(unknown)) if args.parallelism < 1: parser.error("Parallelism cannot be less than 1") return args def _check_coverage(python_exec): # Make sure if coverage is installed. try: subprocess_check_output( [python_exec, "-c", "import coverage"], stderr=open(os.devnull, 'w')) except: print_red("Coverage is not installed in Python executable '%s' " "but 'COVERAGE_PROCESS_START' environment variable is set, " "exiting." % python_exec) sys.exit(-1) def main(): opts = parse_opts() if opts.verbose: log_level = logging.DEBUG else: log_level = logging.INFO should_test_modules = opts.testnames is None logging.basicConfig(stream=sys.stdout, level=log_level, format="%(message)s") LOGGER.info("Running PySpark tests. Output is in %s", LOG_FILE) if os.path.exists(LOG_FILE): os.remove(LOG_FILE) python_execs = opts.python_executables.split(',') LOGGER.info("Will test against the following Python executables: %s", python_execs) if should_test_modules: modules_to_test = [] for module_name in opts.modules.split(','): if module_name in python_modules: modules_to_test.append(python_modules[module_name]) else: print("Error: unrecognized module '%s'. Supported modules: %s" % (module_name, ", ".join(python_modules))) sys.exit(-1) LOGGER.info("Will test the following Python modules: %s", [x.name for x in modules_to_test]) else: testnames_to_test = opts.testnames.split(',') LOGGER.info("Will test the following Python tests: %s", testnames_to_test) task_queue = Queue.PriorityQueue() for python_exec in python_execs: # Check if the python executable has coverage installed when 'COVERAGE_PROCESS_START' # environmental variable is set. if "COVERAGE_PROCESS_START" in os.environ: _check_coverage(python_exec) python_implementation = subprocess_check_output( [python_exec, "-c", "import platform; print(platform.python_implementation())"], universal_newlines=True).strip() LOGGER.info("%s python_implementation is %s", python_exec, python_implementation) LOGGER.info("%s version is: %s", python_exec, subprocess_check_output( [python_exec, "--version"], stderr=subprocess.STDOUT, universal_newlines=True).strip()) if should_test_modules: for module in modules_to_test: if python_implementation not in module.excluded_python_implementations: for test_goal in module.python_test_goals: heavy_tests = ['pyspark.streaming.tests', 'pyspark.mllib.tests', 'pyspark.tests', 'pyspark.sql.tests', 'pyspark.ml.tests', 'pyspark.pandas.tests'] if any(map(lambda prefix: test_goal.startswith(prefix), heavy_tests)): priority = 0 else: priority = 100 task_queue.put((priority, (python_exec, test_goal))) else: for test_goal in testnames_to_test: task_queue.put((0, (python_exec, test_goal))) # Create the target directory before starting tasks to avoid races. target_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), 'target')) if not os.path.isdir(target_dir): os.mkdir(target_dir) def process_queue(task_queue): while True: try: (priority, (python_exec, test_goal)) = task_queue.get_nowait() except Queue.Empty: break try: run_individual_python_test(target_dir, test_goal, python_exec) finally: task_queue.task_done() start_time = time.time() for _ in range(opts.parallelism): worker = Thread(target=process_queue, args=(task_queue,)) worker.daemon = True worker.start() try: task_queue.join() except (KeyboardInterrupt, SystemExit): print_red("Exiting due to interrupt") sys.exit(-1) total_duration = time.time() - start_time LOGGER.info("Tests passed in %i seconds", total_duration) for key, lines in sorted(SKIPPED_TESTS.items()): pyspark_python, test_name = key LOGGER.info("\nSkipped tests in %s with %s:" % (test_name, pyspark_python)) for line in lines: LOGGER.info(" %s" % line.rstrip()) if __name__ == "__main__": SKIPPED_TESTS = Manager().dict() main()
apache-2.0
jinglining/flink
flink-python/setup.py
5
12946
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ from __future__ import print_function import glob import io import os import platform import subprocess import sys from distutils.command.build_ext import build_ext from shutil import copytree, copy, rmtree from setuptools import setup, Extension if sys.version_info < (3, 5): print("Python versions prior to 3.5 are not supported for PyFlink.", file=sys.stderr) sys.exit(-1) def remove_if_exists(file_path): if os.path.exists(file_path): if os.path.islink(file_path) or os.path.isfile(file_path): os.remove(file_path) else: assert os.path.isdir(file_path) rmtree(file_path) def find_file_path(pattern): files = glob.glob(pattern) if len(files) < 1: print("Failed to find the file %s." % pattern) exit(-1) if len(files) > 1: print("The file pattern %s is ambiguous: %s" % (pattern, files)) exit(-1) return files[0] # Currently Cython optimizing doesn't support Windows. if platform.system() == 'Windows': extensions = ([]) else: try: from Cython.Build import cythonize extensions = cythonize([ Extension( name="pyflink.fn_execution.fast_coder_impl", sources=["pyflink/fn_execution/fast_coder_impl.pyx"], include_dirs=["pyflink/fn_execution/"]), Extension( name="pyflink.fn_execution.fast_operations", sources=["pyflink/fn_execution/fast_operations.pyx"], include_dirs=["pyflink/fn_execution/"]) ]) except ImportError: if os.path.exists("pyflink/fn_execution/fast_coder_impl.c"): extensions = ([ Extension( name="pyflink.fn_execution.fast_coder_impl", sources=["pyflink/fn_execution/fast_coder_impl.c"], include_dirs=["pyflink/fn_execution/"]), Extension( name="pyflink.fn_execution.fast_operations", sources=["pyflink/fn_execution/fast_operations.c"], include_dirs=["pyflink/fn_execution/"]) ]) else: extensions = ([]) this_directory = os.path.abspath(os.path.dirname(__file__)) version_file = os.path.join(this_directory, 'pyflink/version.py') try: exec(open(version_file).read()) except IOError: print("Failed to load PyFlink version file for packaging. " + "'%s' not found!" % version_file, file=sys.stderr) sys.exit(-1) VERSION = __version__ # noqa with io.open(os.path.join(this_directory, 'README.md'), 'r', encoding='utf-8') as f: long_description = f.read() TEMP_PATH = "deps" LIB_TEMP_PATH = os.path.join(TEMP_PATH, "lib") OPT_TEMP_PATH = os.path.join(TEMP_PATH, "opt") CONF_TEMP_PATH = os.path.join(TEMP_PATH, "conf") LOG_TEMP_PATH = os.path.join(TEMP_PATH, "log") EXAMPLES_TEMP_PATH = os.path.join(TEMP_PATH, "examples") LICENSES_TEMP_PATH = os.path.join(TEMP_PATH, "licenses") PLUGINS_TEMP_PATH = os.path.join(TEMP_PATH, "plugins") SCRIPTS_TEMP_PATH = os.path.join(TEMP_PATH, "bin") LICENSE_FILE_TEMP_PATH = os.path.join(this_directory, "LICENSE") NOTICE_FILE_TEMP_PATH = os.path.join(this_directory, "NOTICE") README_FILE_TEMP_PATH = os.path.join("pyflink", "README.txt") PYFLINK_UDF_RUNNER_SH = "pyflink-udf-runner.sh" PYFLINK_UDF_RUNNER_BAT = "pyflink-udf-runner.bat" in_flink_source = os.path.isfile("../flink-java/src/main/java/org/apache/flink/api/java/" "ExecutionEnvironment.java") # Due to changes in FLINK-14008, the licenses directory and NOTICE file may not exist in # build-target folder. Just ignore them in this case. exist_licenses = None try: if in_flink_source: try: os.mkdir(TEMP_PATH) except: print("Temp path for symlink to parent already exists {0}".format(TEMP_PATH), file=sys.stderr) sys.exit(-1) flink_version = VERSION.replace(".dev0", "-SNAPSHOT") FLINK_HOME = os.path.abspath( "../flink-dist/target/flink-%s-bin/flink-%s" % (flink_version, flink_version)) incorrect_invocation_message = """ If you are installing pyflink from flink source, you must first build Flink and run sdist. To build Flink with maven you can run: mvn -DskipTests clean package Building the source dist is done in the flink-python directory: cd flink-python python setup.py sdist pip install dist/*.tar.gz""" LIB_PATH = os.path.join(FLINK_HOME, "lib") OPT_PATH = os.path.join(FLINK_HOME, "opt") OPT_PYTHON_JAR_NAME = os.path.basename( find_file_path(os.path.join(OPT_PATH, "flink-python_*.jar"))) OPT_SQL_CLIENT_JAR_NAME = os.path.basename( find_file_path(os.path.join(OPT_PATH, "flink-sql-client_*.jar"))) CONF_PATH = os.path.join(FLINK_HOME, "conf") EXAMPLES_PATH = os.path.join(FLINK_HOME, "examples") LICENSES_PATH = os.path.join(FLINK_HOME, "licenses") PLUGINS_PATH = os.path.join(FLINK_HOME, "plugins") SCRIPTS_PATH = os.path.join(FLINK_HOME, "bin") LICENSE_FILE_PATH = os.path.join(FLINK_HOME, "LICENSE") README_FILE_PATH = os.path.join(FLINK_HOME, "README.txt") exist_licenses = os.path.exists(LICENSES_PATH) if not os.path.isdir(LIB_PATH): print(incorrect_invocation_message, file=sys.stderr) sys.exit(-1) try: os.symlink(LIB_PATH, LIB_TEMP_PATH) support_symlinks = True except BaseException: # pylint: disable=broad-except support_symlinks = False os.mkdir(OPT_TEMP_PATH) if support_symlinks: os.symlink(os.path.join(OPT_PATH, OPT_PYTHON_JAR_NAME), os.path.join(OPT_TEMP_PATH, OPT_PYTHON_JAR_NAME)) os.symlink(os.path.join(OPT_PATH, OPT_SQL_CLIENT_JAR_NAME), os.path.join(OPT_TEMP_PATH, OPT_SQL_CLIENT_JAR_NAME)) os.symlink(CONF_PATH, CONF_TEMP_PATH) os.symlink(EXAMPLES_PATH, EXAMPLES_TEMP_PATH) os.symlink(PLUGINS_PATH, PLUGINS_TEMP_PATH) os.symlink(LICENSE_FILE_PATH, LICENSE_FILE_TEMP_PATH) os.symlink(README_FILE_PATH, README_FILE_TEMP_PATH) else: copytree(LIB_PATH, LIB_TEMP_PATH) copy(os.path.join(OPT_PATH, OPT_PYTHON_JAR_NAME), os.path.join(OPT_TEMP_PATH, OPT_PYTHON_JAR_NAME)) copy(os.path.join(OPT_PATH, OPT_SQL_CLIENT_JAR_NAME), os.path.join(OPT_TEMP_PATH, OPT_SQL_CLIENT_JAR_NAME)) copytree(CONF_PATH, CONF_TEMP_PATH) copytree(EXAMPLES_PATH, EXAMPLES_TEMP_PATH) copytree(PLUGINS_PATH, PLUGINS_TEMP_PATH) copy(LICENSE_FILE_PATH, LICENSE_FILE_TEMP_PATH) copy(README_FILE_PATH, README_FILE_TEMP_PATH) os.mkdir(LOG_TEMP_PATH) with open(os.path.join(LOG_TEMP_PATH, "empty.txt"), 'w') as f: f.write("This file is used to force setuptools to include the log directory. " "You can delete it at any time after installation.") # copy the udf runner scripts copytree(SCRIPTS_PATH, SCRIPTS_TEMP_PATH) copy(os.path.join(this_directory, "bin", PYFLINK_UDF_RUNNER_SH), os.path.join(SCRIPTS_TEMP_PATH, PYFLINK_UDF_RUNNER_SH)) copy(os.path.join(this_directory, "bin", PYFLINK_UDF_RUNNER_BAT), os.path.join(SCRIPTS_TEMP_PATH, PYFLINK_UDF_RUNNER_BAT)) if exist_licenses and platform.system() != "Windows": # regenerate the licenses directory and NOTICE file as we only copy part of the # flink binary distribution. collect_licenses_file_sh = os.path.abspath(os.path.join( this_directory, "..", "tools", "releasing", "collect_license_files.sh")) subprocess.check_output([collect_licenses_file_sh, TEMP_PATH, TEMP_PATH]) # move the NOTICE file to the root of the package GENERATED_NOTICE_FILE_PATH = os.path.join(TEMP_PATH, "NOTICE") os.rename(GENERATED_NOTICE_FILE_PATH, NOTICE_FILE_TEMP_PATH) else: if not os.path.isdir(LIB_TEMP_PATH) or not os.path.isdir(OPT_TEMP_PATH) \ or not os.path.isdir(SCRIPTS_TEMP_PATH): print("The flink core files are not found. Please make sure your installation package " "is complete, or do this in the flink-python directory of the flink source " "directory.") sys.exit(-1) exist_licenses = os.path.exists(LICENSES_TEMP_PATH) script_names = ["pyflink-shell.sh", "find-flink-home.sh"] scripts = [os.path.join(SCRIPTS_TEMP_PATH, script) for script in script_names] scripts.append("pyflink/find_flink_home.py") PACKAGES = ['pyflink', 'pyflink.table', 'pyflink.util', 'pyflink.datastream', 'pyflink.dataset', 'pyflink.common', 'pyflink.fn_execution', 'pyflink.metrics', 'pyflink.ml', 'pyflink.ml.api', 'pyflink.ml.api.param', 'pyflink.ml.lib', 'pyflink.ml.lib.param', 'pyflink.lib', 'pyflink.opt', 'pyflink.conf', 'pyflink.log', 'pyflink.examples', 'pyflink.plugins', 'pyflink.bin'] PACKAGE_DIR = { 'pyflink.lib': TEMP_PATH + '/lib', 'pyflink.opt': TEMP_PATH + '/opt', 'pyflink.conf': TEMP_PATH + '/conf', 'pyflink.log': TEMP_PATH + '/log', 'pyflink.examples': TEMP_PATH + '/examples', 'pyflink.plugins': TEMP_PATH + '/plugins', 'pyflink.bin': TEMP_PATH + '/bin'} PACKAGE_DATA = { 'pyflink': ['README.txt'], 'pyflink.lib': ['*.jar'], 'pyflink.opt': ['*.*', '*/*'], 'pyflink.conf': ['*'], 'pyflink.log': ['*'], 'pyflink.examples': ['*.py', '*/*.py'], 'pyflink.plugins': ['*', '*/*'], 'pyflink.bin': ['*']} if exist_licenses and platform.system() != "Windows": PACKAGES.append('pyflink.licenses') PACKAGE_DIR['pyflink.licenses'] = TEMP_PATH + '/licenses' PACKAGE_DATA['pyflink.licenses'] = ['*'] setup( name='apache-flink', version=VERSION, packages=PACKAGES, include_package_data=True, package_dir=PACKAGE_DIR, package_data=PACKAGE_DATA, scripts=scripts, url='https://flink.apache.org', license='https://www.apache.org/licenses/LICENSE-2.0', author='Apache Software Foundation', author_email='[email protected]', python_requires='>=3.5', install_requires=['py4j==0.10.8.1', 'python-dateutil==2.8.0', 'apache-beam==2.19.0', 'cloudpickle==1.2.2', 'avro-python3>=1.8.1,<=1.9.1', 'jsonpickle==1.2', 'pandas>=0.23.4,<=0.25.3', 'pyarrow>=0.15.1,<0.16.0', 'pytz>=2018.3'], cmdclass={'build_ext': build_ext}, tests_require=['pytest==4.4.1'], description='Apache Flink Python API', long_description=long_description, long_description_content_type='text/markdown', zip_safe=False, classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7'], ext_modules=extensions ) finally: if in_flink_source: remove_if_exists(TEMP_PATH) remove_if_exists(LICENSE_FILE_TEMP_PATH) remove_if_exists(NOTICE_FILE_TEMP_PATH) remove_if_exists(README_FILE_TEMP_PATH)
apache-2.0
rhnvrm/iot-hackerearth
py/sim/wo/work.py
1
5919
from __future__ import division import requests import random import time import threading import rethinkdb as r import math import numpy as np import cv2 import matplotlib from matplotlib import pyplot as plt import matplotlib.patches as patches from scipy.misc import imread import os plt.scatter([0,5],[0,5]) plt.ion() plt.show() plt.clf() plt.gca().grid(1) img = imread("im1.png") # Coordinates of the Beacons x1=0.5 y1=0 x2=0.5 y2=2.5 x3=2.5 y3=2.5 # End Segment maximum =10 #init fences FENCES = [] for i in xrange(0,3): for j in xrange(0,3): FENCES+=[[[i,j],[i,j+1],[i+1,j+1],[i+1,j]]] def kmeans(Z,STO):# pg please make Z a np array like the one described below :P #Z = np.array([[a1,b1],[x1,y1],[x2,y2],[a3,b3],[a2,b2]]) # convert to np.float32 plt.clf() plt.imshow(img, zorder=0, extent=[-1,4,-6,3.5]) Z = np.float32(Z) # define criteria and apply kmeans() criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) ret,label,center=cv2.kmeans(Z,1,criteria,10,cv2.KMEANS_RANDOM_CENTERS) # pls add corresponding entries for each cluster # Now separate the data, Note the flatten() A = Z[label.ravel()==0] B = Z[label.ravel()==1] # Plot the data #""" #rempove for debug plt.scatter(A[:,0],A[:,1]) plt.scatter(B[:,0],B[:,1],c = 'r') plt.scatter([x1,x2,x3],[y1,y2,y3],s = 40, c = 'red') plt.scatter(center[:,0],center[:,1],s = 80,c = 'y', marker = 's') plt.xlabel('X'),plt.ylabel('Y') plotfences(plt) plt.draw() plt.savefig("plot.png") pt = [center[:,0],center[:,1]] postdata(checkfences(pt),pt[0],pt[1]) STO = center def Intersects(x1,y1,x2,y2,x3,y3,r1,r2,r3): #Cirlce 1: r1^2 = x^2 + y^2 #Circle 2: r2^2 = (x - a)^2 + (y - b)^2 a = x2 - x1; b = y2 - y1; d = math.sqrt(a*a + b*b); if (r1 + r2 <= d): sx1,sy1,sx2,sy2 = ((r2*x1+r1*x2)/(r1+r2),((r2*y1+r1*y2)/(r1+r2)),(r2*x1+r1*x2)/(r1+r2),((r2*y1+r1*y2)/(r1+r2))) elif ((d <= abs( r1 - r2 )) and (r1>r2)): sx1,sy1,sx2,sy2 = ((r1*x2-r2*x1)/(r1-r2),((r1*y2-r2*y1)/(r1-r2)),(r1*x2-r2*x1)/(r1-r2),((r1*y2-r2*y1)/(r1-r2))) elif ((d <= abs( r1 - r2 )) and (r2>r1)): sx1,sy1,sx2,sy2 = ((r2*x1-r1*x2)/(r2-r1),((r2*y1-r1*y2)/(r2-r1)),(r2*x1-r1*x2)/(r2-r1),((r2*y1-r1*y2)/(r2-r1))) else: t = math.sqrt( (d + r1 + r2) * (d + r1 - r2) * (d - r1 + r2) * (-d + r1 + r2) ) sx1 = 0.5 * (a + (a*(r1*r1 - r2*r2) + b*t)/(d**2)) sx2 = 0.5 * (a + (a*(r1*r1 - r2*r2) - b*t)/(d**2)) sy1 = 0.5 * (b + (b*(r1*r1 - r2*r2) - a*t)/(d**2)) sy2 = 0.5 * (b + (b*(r1*r1 - r2*r2) + a*t)/(d**2)) sx1 = sx1 + x1 sy1 = sy1 + y1 sx2 = sx2 + x1 sy2 = sy2 + y1 # if take set with min abs error from dist from the 3rd side if (abs((((sx1-x3)**2 +(sy1-y3)**2)**0.5)-r3)>=abs((((sx2-x3)**2 +(sy2-y3)**2)**0.5)-r3)): return [[sx2,sy2]] else: return [[sx1,sy1]] """ #append the following to the storing array that passes to the kmeans clustering print "x1 = %f" %sx1 print "y1 = %f" %sy1 print "x2 = %f" %sx2 print "y2 = %f" %sy2 #[sx1,sy1,sx2,sy2] return [[sx1,sy1],[sx2,sy2]] """ def display_data(distances): # hardcoded beacon data Start #r1,r2,r3 = tuple(distances[i] for i in distances) r1 = distance_lookup_table["B4:99:4C:66:4B:38"] r2 = distance_lookup_table["B4:99:4C:66:5A:26"] r3 = distance_lookup_table["B4:99:4C:66:2C:58"] if(r1 < 0 or r2 < 0 or r3 < 0): return -1 print(r1,r2,r3) # Hardcoded beacon data end # END OF FUNCTION DECLARITIONS alive = 3 nclusters = 2 PTS = [] #taking groups of 3 for i in range(0,alive-2): for j in range(i+1,alive-1): for k in range(j+1,alive): PTS = PTS + Intersects(x1,y1,x2,y2,x3,y3,r1,r2,r3) #print i,j PTS = PTS + Intersects(x1,y1,x3,y3,x2,y2,r1,r3,r2) #print j,k PTS = PTS + Intersects(x2,y2,x3,y3,x1,y1,r2,r3,r1) #print k,i #""" STO = [] CentreWeight = 10000000000000 #print STO #print PTS kmeans(np.array(PTS),np.array(STO)) def checkfences(pt): # ref to global variable FENCES for i in range(0,len(FENCES)): if(infence(FENCES[i],pt)): return i return -1 def getDistance(rssi, txPower): return pow(10, ( txPower - rssi) / (10 * ATTN)) """ fence1 = [[0,0],[0,1],[1,1],[1,0]] # define points in the order of loop point1 = [1.05,1] point2 = [2,2] infence(fence1,point1) """ def infence(fence,pt): bbPath = matplotlib.path.Path(np.array(fence)) return bbPath.contains_point((pt[0], pt[1])) def plotfences(media): for i in range(0,len(FENCES)): rectangle = media.Rectangle((FENCES[i][0][0],FENCES[i][0][1]), 1, 1, fc='None') media.gca().add_patch(rectangle) def postdata(segment,x,y): r=requests.post("http://0.0.0.0:8521/position", data = {"segment":segment ,"x":x, "y":y}) # main Begins Here conn = r.connect( "0.0.0.0", 28015 , db='heck') ATTN = 2 power_to_A_lookup_table = {"B4:99:4C:66:4B:38": -58, "B4:99:4C:66:5A:26": -62, "B4:99:4C:66:2C:58": -62} distance_lookup_table = {"B4:99:4C:66:4B:38": -1, "B4:99:4C:66:5A:26": -1, "B4:99:4C:66:2C:58": -1} #old_distance_lookup_table = {"B4:99:4C:57:AE:E3": -1, "B4:99:4C:57:D2:AA": -1, "B4:99:4C:57:EC:C6": -1} #x = {u'old_val': {u'uid': u'B4:99:4C:57:EC:C6', u'rssi': -61, u'name': u'Bluetooth Device', u'timestamp': 1453011839.46865}, u'new_val': {u'uid': u'B4:99:4C:57:EC:C6', u'rssi': -55, u'name': u'Bluetooth Device', u'timestamp': 1453011857.281005}} feed = r.table('beacons').changes().run(conn) for change in feed: if change['new_val']['uid'] in power_to_A_lookup_table: #old_distance_lookup_table = distance_lookup_table distance_lookup_table[change['new_val']['uid']] = getDistance(int(change['new_val']['rssi']), power_to_A_lookup_table[change['new_val']['uid']]) #for i in distance_lookup_table: #print "here\n" # print str(i) + " -> " + str(distance_lookup_table[i]) #t=threading.Thread(target=print_distance_lookup_table) #d=threading.Thread(target=display_data) display_data(distance_lookup_table) #d.daemon = True #t.daemon = True #t.start() #d.start()
mit
tiagofrepereira2012/tensorflow
tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined_test.py
52
69800
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DNNLinearCombinedEstimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.losses import losses from tensorflow.python.platform import test from tensorflow.python.training import adagrad from tensorflow.python.training import ftrl from tensorflow.python.training import input as input_lib from tensorflow.python.training import learning_rate_decay from tensorflow.python.training import monitored_session from tensorflow.python.training import server_lib from tensorflow.python.training import session_run_hook from tensorflow.python.training import sync_replicas_optimizer from tensorflow.python.training import training_util def _assert_metrics_in_range(keys, metrics): epsilon = 0.00001 # Added for floating point edge cases. for key in keys: estimator_test_utils.assert_in_range(0.0 - epsilon, 1.0 + epsilon, key, metrics) class _CheckCallsHead(head_lib.Head): """Head that checks whether head_ops is called.""" def __init__(self): self._head_ops_called_times = 0 @property def logits_dimension(self): return 1 def create_model_fn_ops( self, mode, features, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `_Head`.""" self._head_ops_called_times += 1 loss = losses.mean_squared_error(labels, logits) return model_fn.ModelFnOps( mode, predictions={'loss': loss}, loss=loss, train_op=train_op_fn(loss), eval_metric_ops={'loss': loss}) @property def head_ops_called_times(self): return self._head_ops_called_times class _StepCounterHook(session_run_hook.SessionRunHook): """Counts the number of training steps.""" def __init__(self): self._steps = 0 def after_run(self, run_context, run_values): del run_context, run_values self._steps += 1 @property def steps(self): return self._steps class EmbeddingMultiplierTest(test.TestCase): """dnn_model_fn tests.""" def testRaisesNonEmbeddingColumn(self): one_hot_language = feature_column.one_hot_column( feature_column.sparse_column_with_hash_bucket('language', 10)) params = { 'dnn_feature_columns': [one_hot_language], 'head': head_lib.multi_class_head(2), 'dnn_hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { one_hot_language: 0.0 }, 'dnn_optimizer': 'Adagrad', } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) with self.assertRaisesRegexp(ValueError, 'can only be defined for embedding columns'): dnn_linear_combined._dnn_linear_combined_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testMultipliesGradient(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) embedding_wire = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('wire', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'dnn_feature_columns': [embedding_language, embedding_wire], 'head': head_lib.multi_class_head(2), 'dnn_hidden_units': [1], # Set lr mult to 0. to keep language embeddings constant, whereas wire # embeddings will be trained. 'embedding_lr_multipliers': { embedding_language: 0.0 }, 'dnn_optimizer': 'Adagrad', } with ops.Graph().as_default(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'wire': sparse_tensor.SparseTensor( values=['omar', 'stringer', 'marlo'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) training_util.create_global_step() model_ops = dnn_linear_combined._dnn_linear_combined_model_fn( features, labels, model_fn.ModeKeys.TRAIN, params) with monitored_session.MonitoredSession() as sess: language_var = dnn_linear_combined._get_embedding_variable( embedding_language, 'dnn', 'dnn/input_from_feature_columns') language_initial_value = sess.run(language_var) for _ in range(2): _, language_value = sess.run([model_ops.train_op, language_var]) self.assertAllClose(language_value, language_initial_value) # We could also test that wire_value changed, but that test would be flaky. class DNNLinearCombinedEstimatorTest(test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedEstimator) def testNoFeatureColumns(self): with self.assertRaisesRegexp( ValueError, 'Either linear_feature_columns or dnn_feature_columns must be defined'): dnn_linear_combined.DNNLinearCombinedEstimator( head=_CheckCallsHead(), linear_feature_columns=None, dnn_feature_columns=None, dnn_hidden_units=[3, 3]) def testCheckCallsHead(self): """Tests binary classification using matrix data as input.""" head = _CheckCallsHead() iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [ feature_column.real_valued_column('feature', dimension=4)] bucketized_feature = [feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10))] estimator = dnn_linear_combined.DNNLinearCombinedEstimator( head, linear_feature_columns=bucketized_feature, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) estimator.fit(input_fn=test_data.iris_input_multiclass_fn, steps=10) self.assertEqual(1, head.head_ops_called_times) estimator.evaluate(input_fn=test_data.iris_input_multiclass_fn, steps=10) self.assertEqual(2, head.head_ops_called_times) estimator.predict(input_fn=test_data.iris_input_multiclass_fn) self.assertEqual(3, head.head_ops_called_times) class DNNLinearCombinedClassifierTest(test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedClassifier) def testExperimentIntegration(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] exp = experiment.Experiment( estimator=dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testNoFeatureColumns(self): with self.assertRaisesRegexp( ValueError, 'Either linear_feature_columns or dnn_feature_columns must be defined'): dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=None, dnn_feature_columns=None, dnn_hidden_units=[3, 3]) def testNoDnnHiddenUnits(self): def _input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) age = feature_column.real_valued_column('age') with self.assertRaisesRegexp( ValueError, 'dnn_hidden_units must be defined when dnn_feature_columns is ' 'specified'): classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[age, language]) classifier.fit(input_fn=_input_fn, steps=2) def testSyncReplicasOptimizerUnsupported(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] sync_optimizer = sync_replicas_optimizer.SyncReplicasOptimizer( opt=adagrad.AdagradOptimizer(learning_rate=0.1), replicas_to_aggregate=1, total_num_replicas=1) sync_hook = sync_optimizer.make_session_run_hook(is_chief=True) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=sync_optimizer) with self.assertRaisesRegexp( ValueError, 'SyncReplicasOptimizer is not supported in DNNLinearCombined model'): classifier.fit( input_fn=test_data.iris_input_multiclass_fn, steps=100, monitors=[sync_hook]) def testEmbeddingMultiplier(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[embedding_language], dnn_hidden_units=[3, 3], embedding_lr_multipliers={embedding_language: 0.8}) self.assertEqual({ embedding_language: 0.8 }, classifier.params['embedding_lr_multipliers']) def testInputPartitionSize(self): def _input_fn_float_label(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column(language_column, dimension=1), ] # Set num_ps_replica to be 10 and the min slice size to be extremely small, # so as to ensure that there'll be 10 partititions produced. config = run_config.RunConfig(tf_random_seed=1) config._num_ps_replicas = 10 classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=2, dnn_feature_columns=feature_columns, dnn_hidden_units=[3, 3], dnn_optimizer='Adagrad', config=config, input_layer_min_slice_size=1) # Ensure the param is passed in. self.assertTrue(callable(classifier.params['input_layer_partitioner'])) # Ensure the partition count is 10. classifier.fit(input_fn=_input_fn_float_label, steps=50) partition_count = 0 for name in classifier.get_variable_names(): if 'language_embedding' in name and 'Adagrad' in name: partition_count += 1 self.assertEqual(10, partition_count) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_feature = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_feature, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testLogisticRegression_TensorData(self): """Tests binary classification using Tensor data as input.""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() features = {} for i in range(4): # The following shows how to provide the Tensor data for # RealValuedColumns. features.update({ str(i): array_ops.reshape( constant_op.constant( iris.data[:, i], dtype=dtypes.float32), [-1, 1]) }) # The following shows how to provide the SparseTensor data for # a SparseColumn. features['dummy_sparse_column'] = sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [60, 0]], dense_shape=[len(iris.target), 2]) labels = array_ops.reshape( constant_op.constant( iris.target, dtype=dtypes.int32), [-1, 1]) return features, labels iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [ feature_column.real_valued_column(str(i)) for i in range(4) ] linear_features = [ feature_column.bucketized_column(cont_features[i], test_data.get_quantile_based_buckets( iris.data[:, i], 10)) for i in range(4) ] linear_features.append( feature_column.sparse_column_with_hash_bucket( 'dummy_sparse_column', hash_bucket_size=100)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=linear_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testEstimatorWithCoreFeatureColumns(self): """Tests binary classification using Tensor data as input.""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() features = {} for i in range(4): # The following shows how to provide the Tensor data for # RealValuedColumns. features.update({ str(i): array_ops.reshape( constant_op.constant(iris.data[:, i], dtype=dtypes.float32), [-1, 1]) }) # The following shows how to provide the SparseTensor data for # a SparseColumn. features['dummy_sparse_column'] = sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [60, 0]], dense_shape=[len(iris.target), 2]) labels = array_ops.reshape( constant_op.constant(iris.target, dtype=dtypes.int32), [-1, 1]) return features, labels iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [fc_core.numeric_column(str(i)) for i in range(4)] linear_features = [ fc_core.bucketized_column( cont_features[i], sorted(set(test_data.get_quantile_based_buckets( iris.data[:, i], 10)))) for i in range(4) ] linear_features.append( fc_core.categorical_column_with_hash_bucket( 'dummy_sparse_column', hash_bucket_size=100)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=linear_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[1], [0], [0]]) return features, labels sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) ] embedding_features = [ feature_column.embedding_column( sparse_features[0], dimension=1) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=sparse_features, dnn_feature_columns=embedding_features, dnn_hidden_units=[3, 3], config=config) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testMultiClass(self): """Tests multi-class classification using matrix data as input. Please see testLogisticRegression_TensorData() for how to use Tensor data as input instead. """ iris = base.load_iris() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, linear_feature_columns=bucketized_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, linear_feature_columns=[language_column], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], label_keys=label_keys) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) _assert_metrics_in_range(('accuracy',), scores) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} labels = constant_op.constant([[1], [0], [0], [0]]) return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=2, linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Cross entropy = -0.25*log(0.25)-0.75*log(0.75) = 0.562 self.assertAlmostEqual(0.562, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } labels = constant_op.constant([[1.], [0.], [0.], [0.]]) return features, labels def _input_fn_eval(): # 4 rows, with different weights. features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } labels = constant_op.constant([[1.], [0.], [0.], [0.]]) return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( weight_column_name='w', n_classes=2, linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted cross entropy = (-7*log(0.25)-3*log(0.75))/10 = 1.06 self.assertAlmostEqual(1.06, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x). labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByObject(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer=ftrl.FtrlOptimizer(learning_rate=0.1), dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=adagrad.AdagradOptimizer(learning_rate=0.1)) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByString(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer='Ftrl', dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer='Adagrad') classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByFunction(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] def _optimizer_exp_decay(): global_step = training_util.get_global_step() learning_rate = learning_rate_decay.exponential_decay( learning_rate=0.1, global_step=global_step, decay_steps=100, decay_rate=0.001) return adagrad.AdagradOptimizer(learning_rate=learning_rate) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer=_optimizer_exp_decay, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=_optimizer_exp_decay) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testPredict(self): """Tests weight column in evaluation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32)} return features, labels def _input_fn_predict(): y = input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=1) features = {'x': y} return features classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=100) probs = list(classifier.predict_proba(input_fn=_input_fn_predict)) self.assertAllClose([[0.75, 0.25]] * 4, probs, 0.05) classes = list(classifier.predict_classes(input_fn=_input_fn_predict)) self.assertListEqual([0] * 4, classes) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.to_float(labels) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): metric_ops.streaming_auc}) # Test the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): metric_ops.streaming_accuracy }) # Test the case where the prediction_key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testVariableQuery(self): """Tests get_variable_names and get_variable_value.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=500) var_names = classifier.get_variable_names() self.assertGreater(len(var_names), 3) for name in var_names: classifier.get_variable_value(name) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[ feature_column.real_valued_column('age'), language, ], dnn_feature_columns=[ feature_column.embedding_column( language, dimension=1), ], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() input_feature_key = 'examples' def serving_input_fn(): features, targets = input_fn() features[input_feature_key] = array_ops.placeholder(dtypes.string) return features, targets classifier.export( export_dir, serving_input_fn, input_feature_key, use_deprecated_input_fn=False) def testCenteredBias(self): """Tests bias is centered or not.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], enable_centered_bias=True) classifier.fit(input_fn=_input_fn_train, steps=1000) self.assertIn('binary_logistic_head/centered_bias_weight', classifier.get_variable_names()) # logodds(0.75) = 1.09861228867 self.assertAlmostEqual( 1.0986, float(classifier.get_variable_value( 'binary_logistic_head/centered_bias_weight')[0]), places=2) def testDisableCenteredBias(self): """Tests bias is centered or not.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], enable_centered_bias=False) classifier.fit(input_fn=_input_fn_train, steps=500) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) def testGlobalStepLinearOnly(self): """Tests global step update for linear-only model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testGlobalStepDNNOnly(self): """Tests global step update for dnn-only model.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testGlobalStepDNNLinearCombinedBug(self): """Tests global step update for dnn-linear combined model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language], dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3], fix_global_step_increment_bug=False) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) global_step = classifier.get_variable_value('global_step') if global_step == 100: # Expected is 100, but because of the global step increment bug, is 50. self.assertEqual(50, step_counter.steps) else: # Occasionally, training stops when global_step == 101, due to a race # condition. self.assertEqual(51, step_counter.steps) def testGlobalStepDNNLinearCombinedBugFixed(self): """Tests global step update for dnn-linear combined model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language], dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3], fix_global_step_increment_bug=True) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testLinearOnly(self): """Tests that linear-only instantiation works.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) age = feature_column.real_valued_column('age') classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) variable_names = classifier.get_variable_names() self.assertNotIn('dnn/logits/biases', variable_names) self.assertNotIn('dnn/logits/weights', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/age/weight', variable_names) self.assertIn('linear/language/weights', variable_names) self.assertEquals( 1, len(classifier.get_variable_value('linear/age/weight'))) self.assertEquals( 100, len(classifier.get_variable_value('linear/language/weights'))) def testLinearOnlyOneFeature(self): """Tests that linear-only instantiation works for one feature only.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 99) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) variable_names = classifier.get_variable_names() self.assertNotIn('dnn/logits/biases', variable_names) self.assertNotIn('dnn/logits/weights', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/language/weights', variable_names) self.assertEquals( 1, len(classifier.get_variable_value('linear/bias_weight'))) self.assertEquals( 99, len(classifier.get_variable_value('linear/language/weights'))) def testDNNOnly(self): """Tests that DNN-only instantiation works.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=1000) classifier.evaluate(input_fn=test_data.iris_input_multiclass_fn, steps=100) variable_names = classifier.get_variable_names() self.assertIn('dnn/hiddenlayer_0/weights', variable_names) self.assertIn('dnn/hiddenlayer_0/biases', variable_names) self.assertIn('dnn/hiddenlayer_1/weights', variable_names) self.assertIn('dnn/hiddenlayer_1/biases', variable_names) self.assertIn('dnn/logits/weights', variable_names) self.assertIn('dnn/logits/biases', variable_names) self.assertNotIn('linear/bias_weight', variable_names) self.assertNotIn('linear/feature_BUCKETIZED/weight', variable_names) def testDNNWeightsBiasesNames(self): """Tests the names of DNN weights and biases in the checkpoints.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=5) variable_names = classifier.get_variable_names() self.assertIn('dnn/hiddenlayer_0/weights', variable_names) self.assertIn('dnn/hiddenlayer_0/biases', variable_names) self.assertIn('dnn/hiddenlayer_1/weights', variable_names) self.assertIn('dnn/hiddenlayer_1/biases', variable_names) self.assertIn('dnn/logits/weights', variable_names) self.assertIn('dnn/logits/biases', variable_names) class DNNLinearCombinedRegressorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] exp = experiment.Experiment( estimator=dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=test_data.iris_input_logistic_fn, steps=10) scores = regressor.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=1) self.assertIn('loss', scores.keys()) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = {'x': constant_op.constant([[100.], [3.], [2.], [2.]])} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=10) classifier.evaluate(input_fn=_input_fn, steps=1) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(0.1875, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(0.4125, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.2) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) regressor.predict_scores(input_fn=_input_fn, as_iterable=False) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) predict_input_fn = functools.partial(_input_fn, num_epochs=1) regressor.predict_scores(input_fn=predict_input_fn, as_iterable=True) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': metric_ops.streaming_mean_squared_error, ('my_metric', 'scores'): _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case that the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testCustomMetricsWithMetricSpec(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testExport(self): """Tests export model for servo.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) export_dir = tempfile.mkdtemp() input_feature_key = 'examples' def serving_input_fn(): features, targets = _input_fn() features[input_feature_key] = array_ops.placeholder(dtypes.string) return features, targets regressor.export( export_dir, serving_input_fn, input_feature_key, use_deprecated_input_fn=False) def testTrainSaveLoad(self): """Tests regression with restarting training / evaluate.""" def _input_fn(num_epochs=None): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = { 'x': input_lib.limit_epochs( constant_op.constant([[100.], [3.], [2.], [2.]]), num_epochs=num_epochs) } return features, labels model_dir = tempfile.mkdtemp() # pylint: disable=g-long-lambda new_regressor = lambda: dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], model_dir=model_dir, config=run_config.RunConfig(tf_random_seed=1)) predict_input_fn = functools.partial(_input_fn, num_epochs=1) regressor = new_regressor() regressor.fit(input_fn=_input_fn, steps=10) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor = new_regressor() predictions2 = list(regressor.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=config) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testLinearOnly(self): """Tests linear-only instantiation and training.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testDNNOnly(self): """Tests DNN-only instantiation and training.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) class FeatureEngineeringFunctionTest(test.TestCase): """Tests feature_engineering_fn.""" def testNoneFeatureEngineeringFn(self): def input_fn(): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = {'x': constant_op.constant([[100.], [3.], [2.], [2.]])} return features, labels def feature_engineering_fn(features, labels): _, _ = features, labels labels = constant_op.constant([[1000.], [30.], [20.], [20.]]) features = {'x': constant_op.constant([[1000.], [30.], [20.], [20.]])} return features, labels estimator_with_fe_fn = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1), feature_engineering_fn=feature_engineering_fn) estimator_with_fe_fn.fit(input_fn=input_fn, steps=110) estimator_without_fe_fn = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) estimator_without_fe_fn.fit(input_fn=input_fn, steps=110) # predictions = y prediction_with_fe_fn = next( estimator_with_fe_fn.predict_scores( input_fn=input_fn, as_iterable=True)) self.assertAlmostEqual(1000., prediction_with_fe_fn, delta=10.0) prediction_without_fe_fn = next( estimator_without_fe_fn.predict_scores( input_fn=input_fn, as_iterable=True)) self.assertAlmostEqual(100., prediction_without_fe_fn, delta=1.0) if __name__ == '__main__': test.main()
apache-2.0
shanzhenren/ClusType
src/algorithm.py
1
10630
from collections import defaultdict from operator import itemgetter from math import log, sqrt import random as rn import time from numpy import * # install numpy from scipy import * # install scipy from numpy.linalg import norm import numpy.linalg as npl from scipy.sparse import * import scipy.sparse.linalg as spsl from sklearn.preprocessing import normalize ### install from http://scikit-learn.org/stable/ def create_matrix(size_row, size_col): return csr_matrix((size_row, size_col)) def create_dense_matrix(size_row, size_col): return mat(zeros((size_row, size_col))) def set_Y(train_mid, seedMention_tid_score, mid_mention, size_row, size_col): row = [] col = [] val = [] num_NIL = 0 num_target = 0 NIL_set = set() for mid in train_mid: # in training set mention = mid_mention[mid] if mention in seedMention_tid_score: # in ground truth tid = seedMention_tid_score[mention][0] score = seedMention_tid_score[mention][1] if tid == (size_col - 1): # NIL num_NIL += 1 # NIL_set.add((mid, tid, score)) NIL_set.add((mid, tid, 1.0)) else: num_target += 1 row.append(mid) col.append(tid) # val.append(score) val.append(1.0) if num_target < 1: print 'No target type entity seeded!!!!' ### random sample NIL examples # neg_size = num_NIL neg_size = min(num_NIL, 5*num_target) # neg_size = int(min(num_NIL, num_target/(size_col-1.0))) neg_example = rn.sample(NIL_set, neg_size) for entry in neg_example: row.append(entry[0]) col.append(entry[1]) val.append(entry[2]) Y = coo_matrix((val, (row, col)), shape = (size_row, size_col)).tocsr() # print Y.nnz, '#ground truth mentions in Y' print 'Percent Seeded Mention:', (Y.nnz+0.0)/len(mid_mention) * 100, '% of', len(mid_mention), \ ', #target/All = ', num_target/(Y.nnz+0.0) * 100 return Y def update_Y_closed_form(S_M, Y, Y0, Theta, PiC, gamma, mu): # row = [] # col = [] # val = [] for j in range(PiC.shape[1]): # for each candidate j, slicing to get submatrix mid_list = PiC[:, j].nonzero()[0].tolist() Y0_j = Y0[mid_list, :] Theta_j = Theta[mid_list, :] S_M_j = S_M[mid_list, :][:, mid_list] if S_M_j.shape[0] * S_M_j.shape[1] < 2520800000: # transform to dense matrix tmp = ((1+gamma+mu)*identity(len(mid_list)) - gamma*S_M_j).todense() Y_j = npl.inv(tmp) * (Theta_j + mu*Y0_j) Y[mid_list, :] = Y_j # # sparse # Yc = spsl.inv((1+gamma+mu)*identity(len(mid_list)) - gamma*S_M_j) * (Theta_j + mu*Y0_j) # Yc = spsl.spsolve( ((1+gamma+mu)*identity(len(mid_list)) - gamma*S_M_j), (Theta_j + mu*Y0_j) ) # row_idx, col_idx = Yc.nonzero() # for i in range(len(row_idx)): # mid = mid_list[row_idx[i]] # row.append(mid) # col.append(col_idx[i]) # val.append(Yc[row_idx[i], col_idx[i]]) if j % 1000 == 0: print 'candidate', j # Y = coo_matrix((val, (row, col)), shape = Y0.shape).tocsr() return Y def inverse_matrix(X): X.data[:] = 1/(X.data) return X def clustype_appx(S_L, S_R, S_M, PiC, PiL, PiR, Y0, lambda_O, gamma, mu, T, ITER, K): PiLL = PiL.T*PiL PiRR = PiR.T*PiR ### initialization ############################################################# m = PiC.shape[0] n, l = S_L.shape C = create_dense_matrix(n, T) PL = create_dense_matrix(l, T) PR = create_dense_matrix(l, T) Y = Y0.copy() Theta = PiC*C + PiL*PL + PiR*PR obj = trace(2*C.T*C + PL.T*PL + PR.T*PR - 2*C.T*S_L*PL - 2*C.T*S_R*PR) + \ lambda_O * (norm(Y-Theta,ord='fro')**2 + mu*norm(Y-Y0,ord='fro')**2 + gamma*trace(Y.T*Y-Y.T*S_M*Y)) ### Start algorithm ############################################################# for i in range(ITER): lambda4 = 1+gamma+mu Y = 1/lambda4 * (gamma*S_M*Y + Theta + mu*Y0) C = 1/(2+lambda_O) * ( S_L*PL + S_R*PR + lambda_O*PiC.T*(Y-PiL*PL-PiR*PR) ) PL = inverse_matrix(identity(PiL.shape[1]) + lambda_O*PiLL) * (S_L.T*C + lambda_O*PiL.T*(Y-PiC*C-PiR*PR)) PR = inverse_matrix(identity(PiR.shape[1]) + lambda_O*PiRR) * (S_R.T*C + lambda_O*PiR.T*(Y-PiC*C-PiL*PL)) obj_old = obj Theta = PiC*C + PiL*PL + PiR*PR obj = trace(2*C.T*C + PL.T*PL + PR.T*PR - 2*C.T*S_L*PL - 2*C.T*S_R*PR) + \ lambda_O * (norm(Y-Theta,ord='fro')**2 + mu*norm(Y-Y0,ord='fro')**2 + gamma*trace(Y.T*Y-Y.T*S_M*Y)) if (i+1) % 10 == 0: print 'iter', i+1, 'obj: ', obj, 'rel obj change: ', (obj_old-obj)/obj_old # Y = PiC*C # Y = PiL*PL + PiR*PR Y = PiC*C + PiL*PL + PiR*PR return (Y, C, PL, PR) def clustype_noClus_inner(S_L, S_R, S_M, PiC, PiL, PiR, Y0, lambda_O, gamma, mu, T, ITER, tol, C, PL, PR, Y): PiLL = PiL.T*PiL PiRR = PiR.T*PiR ### initialization ############################################################# m = PiC.shape[0] n, l = S_L.shape Theta = PiC*C + PiL*PL + PiR*PR obj = trace(2*C.T*C + PL.T*PL + PR.T*PR - 2*C.T*S_L*PL - 2*C.T*S_R*PR) + \ lambda_O * (norm(Y-Theta,ord='fro')**2 + mu*norm(Y-Y0,ord='fro')**2 + gamma*trace(Y.T*Y-Y.T*S_M*Y)) ### Start algorithm ############################################################# for i in range(ITER): lambda4 = 1+gamma+mu Y = 1/lambda4 * (gamma*S_M*Y + Theta + mu*Y0) C = 1/(2+lambda_O) * ( S_L*PL + S_R*PR + lambda_O*PiC.T*(Y-PiL*PL-PiR*PR) ) PL = inverse_matrix(identity(PiL.shape[1]) + lambda_O*PiLL) * (S_L.T*C + lambda_O*PiL.T*(Y-PiC*C-PiR*PR)) PR = inverse_matrix(identity(PiR.shape[1]) + lambda_O*PiRR) * (S_R.T*C + lambda_O*PiR.T*(Y-PiC*C-PiL*PL)) obj_old = obj Theta = PiC*C + PiL*PL + PiR*PR obj = trace(2*C.T*C + PL.T*PL + PR.T*PR - 2*C.T*S_L*PL - 2*C.T*S_R*PR) + \ lambda_O * (norm(Y-Theta,ord='fro')**2 + mu*norm(Y-Y0,ord='fro')**2 + gamma*trace(Y.T*Y-Y.T*S_M*Y)) rel = abs(obj_old - obj)/obj_old if (i+1) % 10 == 0: print '\tClusType_noClus_inner Iter', i+1, 'obj: ', obj, 'rel obj change: ', (obj_old-obj)/obj_old if rel < tol: print ' ClusType_noClus_inner Converges!' Y = PiC*C + PiL*PL + PiR*PR return (Y, C, PL, PR) # Y = PiC*C # Y = PiL*PL + PiR*PR Y = PiC*C + PiL*PL + PiR*PR print ' ClusType_noClus_inner Reach MaxIter!' return (Y, C, PL, PR) def clustype_noClus_PiLR(S_L, S_R, S_M, PiC, PiL, PiR, Y0, lambda_O, gamma, mu, T, ITER): ### pre-compuatation ############################################################# m = PiC.shape[0] n, l = S_L.shape PiLL = PiL.T*PiL # l-by-l PiRR = PiR.T*PiR # l-by-l ### initialization ############################################################# C = create_dense_matrix(n, T) PL = create_dense_matrix(l, T) PR = create_dense_matrix(l, T) Y = Y0.copy() theta = PiL*PL + PiR*PR obj = trace(2*C.T*C + PL.T*PL + PR.T*PR - 2*C.T*S_L*PL - 2*C.T*S_R*PR) + \ lambda_O*(norm(Y-theta,ord='fro')**2 + mu*norm(Y-Y0,ord='fro')**2 + gamma*trace(Y.T*Y-Y.T*S_M*Y)) ### Start algorithm ############################################################# for i in range(ITER): lambda4 = 1+gamma+mu Y = 1/lambda4 * (gamma*S_M*Y + theta + mu*Y0) C = 1/2.0 * ( S_L*PL + S_R*PR ) PL = inverse_matrix(identity(PiL.shape[1]) + lambda_O*PiLL) * lambda_O*PiL.T*(Y-PiR*PR) PR = inverse_matrix(identity(PiR.shape[1]) + lambda_O*PiRR) * lambda_O*PiR.T*(Y-PiL*PL) obj_old = obj theta = PiL*PL + PiR*PR obj = trace(2*C.T*C + PL.T*PL + PR.T*PR - 2*C.T*S_L*PL - 2*C.T*S_R*PR) + \ lambda_O * (norm(Y-theta,ord='fro')**2 + mu*norm(Y-Y0,ord='fro')**2 + gamma*trace(Y.T*Y-Y.T*S_M*Y)) if (i+1) % 10 == 0: print 'iter', i+1, 'obj: ', obj, 'rel obj change: ', (obj_old-obj)/obj_old Y = PiL*PL + PiR*PR return Y def clustype_noClus_PiC(S_L, S_R, S_M, PiC, PiL, PiR, Y0, lambda_O, gamma, mu, T, ITER): ### initialization ############################################################# m = PiC.shape[0] n, l = S_L.shape C = create_dense_matrix(n, T) PL = create_dense_matrix(l, T) PR = create_dense_matrix(l, T) Y = Y0.copy() obj = trace(2*C.T*C + PL.T*PL + PR.T*PR - 2*C.T*S_L*PL - 2*C.T*S_R*PR) + \ lambda_O * (norm(Y-PiC*C,ord='fro')**2 + mu*norm(Y-Y0,ord='fro')**2 + gamma*trace(Y.T*Y-Y.T*S_M*Y)) ### Start algorithm ############################################################# for i in range(ITER): lambda4 = 1+gamma+mu Y = 1/lambda4 * (gamma*S_M*Y + PiC*C + mu*Y0) C = 1/(2+lambda_O) * ( S_L*PL + S_R*PR + lambda_O*PiC.T*Y ) PL = S_L.T*C PR = S_R.T*C obj_old = obj obj = trace(2*C.T*C + PL.T*PL + PR.T*PR - 2*C.T*S_L*PL - 2*C.T*S_R*PR) + \ lambda_O * (norm(Y-PiC*C,ord='fro')**2 + mu*norm(Y-Y0,ord='fro')**2 + gamma*trace(Y.T*Y-Y.T*S_M*Y)) if (i+1) % 10 == 0: print 'iter', i+1, 'obj: ', obj, 'rel obj change: ', (obj_old-obj)/obj_old Y = PiC*C return Y def clustype_onlycandidate(S_L, S_R, PiC, PiL, PiR, Y0, T, ITER): ### pre-compuatation ############################################################# u = 0.5 # u=0.5 ### initialization ############################################################# m = PiC.shape[0] n, l = S_L.shape C0 = PiC.T * Y0 C = C0.copy() PL = create_dense_matrix(l, T) PR = create_dense_matrix(l, T) Theta = PiC*C + PiL*PL + PiR*PR obj = trace((2+u)*C.T*C + PL.T*PL + PR.T*PR - 2*C.T*S_L*PL - 2*C.T*S_R*PR - 2*u*C.T*C0 + u*C0.T*C0) ### Start algorithm ############################################################# for i in range(ITER): C = 1/(2+u) * (S_L*PL + S_R*PR + u*C0) PL = S_L.T*C PR = S_R.T*C obj_old = obj obj = trace((2+u)*C.T*C + PL.T*PL + PR.T*PR - 2*C.T*S_L*PL - 2*C.T*S_R*PR - 2*u*C.T*C0 + u*C0.T*C0) if (i+1) % 10 == 0: print 'ClusType_Cand Iter', i+1, 'obj: ', obj, 'rel obj change: ', (obj_old-obj)/obj_old Y = PiC*C return (Y, C, PL, PR)
gpl-3.0
JasonKessler/scattertext
scattertext/test/test_PriorFactory.py
1
4207
from unittest import TestCase import numpy as np import pandas as pd from scattertext import LogOddsRatioInformativeDirichletPrior from scattertext.PriorFactory import PriorFactory from scattertext.test.test_semioticSquare import get_test_corpus class TestPriorFactory(TestCase): def test_all_categories(self): corpus = get_test_corpus() priors, my_corpus = (PriorFactory(corpus, starting_count=0, category='hamlet') .use_all_categories() .build()) tdf = corpus.get_term_freq_df() self.assertEqual(len(priors), len(tdf)) np.testing.assert_equal(priors.values, corpus.get_term_freq_df().sum(axis=1).values) def test_neutral_categories(self): corpus = get_test_corpus() priors = (PriorFactory(corpus, 'hamlet', starting_count=0.001, not_categories=['swift']) .use_neutral_categories() .get_priors()) self.assertEqual(priors.min(), 0.001) self.assertEqual(priors.shape[0], corpus._X.shape[1]) corpus = get_test_corpus() priors = (PriorFactory(corpus, 'hamlet', starting_count=0.001, not_categories=['swift']) .use_neutral_categories() .drop_zero_priors() .get_priors()) jzcnts = corpus.get_term_freq_df()['jay-z/r. kelly freq'].where(lambda x: x > 0).dropna() np.testing.assert_equal(priors.values, jzcnts.values + 0.001) def test_get_general_term_frequencies(self): corpus = get_test_corpus() fact = (PriorFactory(corpus, category='hamlet', not_categories=['swift'], starting_count=0) .use_general_term_frequencies() .use_all_categories() ) priors, clean_corpus = fact.build() expected_prior = pd.merge(corpus.get_term_doc_count_df(), corpus.get_term_and_background_counts()[['background']], left_index=True, right_index=True, how='left').fillna(0.).sum(axis=1) np.testing.assert_allclose(priors.values, expected_prior.values) def test_align_to_target(self): full_corpus = get_test_corpus() corpus = full_corpus.remove_categories(['swift']) priors = PriorFactory(full_corpus).use_all_categories().get_priors() with self.assertRaises(ValueError): (LogOddsRatioInformativeDirichletPrior(priors) .get_scores(*corpus.get_term_freq_df().values.T)) priors = (PriorFactory(full_corpus) .use_all_categories() .align_to_target(corpus) .get_priors()) (LogOddsRatioInformativeDirichletPrior(priors) .get_scores(*corpus.get_term_freq_df().values.T)) def test_use_categories(self): full_corpus = get_test_corpus() priors = PriorFactory(full_corpus).use_categories(['swift']).get_priors() corpus = full_corpus.remove_categories(['swift']) with self.assertRaises(ValueError): (LogOddsRatioInformativeDirichletPrior(priors) .get_scores(*corpus.get_term_freq_df().values.T)) priors = (PriorFactory(full_corpus) .use_all_categories() .align_to_target(corpus) .get_priors()) (LogOddsRatioInformativeDirichletPrior(priors) .get_scores(*corpus.get_term_freq_df().values.T)) def test_get_custom_term_frequencies(self): corpus = get_test_corpus() fact = (PriorFactory(corpus, starting_count=0.04) .use_custom_term_frequencies(pd.Series({'halt': 3, 'i': 8})) .drop_zero_priors() ) priors, clean_corpus = fact.build() self.assertEqual(set(clean_corpus.get_terms()), {'i', 'halt'}) np.testing.assert_equal(priors.sort_values().values, [3.04, 8.04])
apache-2.0
atcemgil/notes
DrawNN.py
1
2429
#Code from https://gist.github.com/craffel/2d727968c3aaebd10359 import matplotlib.pyplot as plt def draw_neural_net(ax, left, right, bottom, top, layer_sizes, bias=0, draw_edges=False): ''' Draw a neural network cartoon using matplotilb. :usage: >>> fig = plt.figure(figsize=(12, 12)) >>> draw_neural_net(fig.gca(), .1, .9, .1, .9, [4, 7, 2]) :parameters: - ax : matplotlib.axes.AxesSubplot The axes on which to plot the cartoon (get e.g. by plt.gca()) - left : float The center of the leftmost node(s) will be placed here - right : float The center of the rightmost node(s) will be placed here - bottom : float The center of the bottommost node(s) will be placed here - top : float The center of the topmost node(s) will be placed here - layer_sizes : list of int List of layer sizes, including input and output dimensionality - bias : Boolean Draw an extra bias node at each layer - draw_edges : Boolean If false, omit edge connections ''' n_layers = len(layer_sizes) v_spacing = (top - bottom)/float(max(layer_sizes)+bias) h_spacing = (right - left)/float(len(layer_sizes) - 1) # Nodes for n, layer_size in enumerate(layer_sizes): layer_top = v_spacing*(layer_size - 1)/2. + (top + bottom)/2. bias_node = (bias if n<len(layer_sizes)-1 else 0) for m in range(layer_size+bias_node ): node_color = 'w' if m<layer_size else 'b' circle = plt.Circle((n*h_spacing + left, layer_top - m*v_spacing), v_spacing/8., color=node_color, ec='k', zorder=4) ax.add_artist(circle) # Edges if draw_edges: for n, (layer_size_a, layer_size_b) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])): layer_top_a = v_spacing*(layer_size_a - 1)/2. + (top + bottom)/2. layer_top_b = v_spacing*(layer_size_b - 1)/2. + (top + bottom)/2. for m in range(layer_size_a+bias): for o in range(layer_size_b): line = plt.Line2D([n*h_spacing + left, (n + 1)*h_spacing + left], [layer_top_a - m*v_spacing, layer_top_b - o*v_spacing], c='k') ax.add_artist(line)
mit
uberpye/gwdetchar
gwdetchar/io/tests/test_html.py
1
22674
# -*- coding: utf-8 -*- # Copyright (C) Alex Urban (2019) # # This file is part of the GW DetChar python package. # # GW DetChar is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GW DetChar is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with gwdetchar. If not, see <http://www.gnu.org/licenses/>. """Tests for `gwdetchar.io.html` """ import os import sys import shutil import datetime import sys from pytz import reference from getpass import getuser from MarkupPy import markup try: from unittest import mock except ImportError: # python < 3 import mock import pytest from matplotlib import use use('Agg') # nopep8 from gwpy.segments import (Segment, DataQualityFlag) from .. import html from ..._version import get_versions from ...utils import parse_html __author__ = 'Alex Urban <[email protected]>' # global test objects VERSION = get_versions()['version'] COMMIT = get_versions()['full-revisionid'] NEW_BOOTSTRAP_PAGE = """<!DOCTYPE HTML> <html lang="en"> <head> <meta http-equiv="refresh" content="60" /> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <base href="{base}" /> <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css" rel="stylesheet" type="text/css" media="all" /> <link href="https://cdnjs.cloudflare.com/ajax/libs/fancybox/2.1.5/jquery.fancybox.min.css" rel="stylesheet" type="text/css" media="all" /> <link href="https://fonts.googleapis.com/css?family=Roboto:300,400%7CRoboto+Mono" rel="stylesheet" type="text/css" media="all" /> <link href="static/bootstrap-ligo.min.css" rel="stylesheet" type="text/css" media="all" /> <link href="static/gwdetchar.min.css" rel="stylesheet" type="text/css" media="all" /> <script src="https://code.jquery.com/jquery-1.12.3.min.js" type="text/javascript"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/moment.js/2.13.0/moment.min.js" type="text/javascript"></script> <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js" type="text/javascript"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/fancybox/2.1.5/jquery.fancybox.min.js" type="text/javascript"></script> <script src="static/bootstrap-ligo.min.js" type="text/javascript"></script> <script src="static/gwdetchar.min.js" type="text/javascript"></script> </head> <body> <div class="container"> </body> </html>""" # nopep8 TEST_CONFIGURATION = """[section] key = value""" ABOUT = """<div class="row"> <div class="col-md-12"> <h2>On the command-line</h2> <p>This page was generated with the following command-line call:</p> <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%"><span></span>$ gwdetchar-scattering -i X1 </pre></div> <p>The install path used was <code>{}</code>.</p> <h2>Configuration files</h2> <p>The following INI-format configuration file(s) were passed on the comand-line and are reproduced here in full:</p> <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%"><span></span><span style="color: #008000; font-weight: bold">[section]</span> <span style="color: #7D9029">key</span> <span style="color: #666666">=</span> <span style="color: #BA2121">value</span> </pre></div> <h2>Environment</h2><table class="table table-hover table-condensed table-responsive" id="package-table"><caption>Table of packages installed in the production environment</caption><thead><tr><th scope="col">Name</th><th scope="col">Version</th></tr></thead><tbody><tr><td>gwdetchar</td><td>1.2.3</td></tr><tr><td>gwpy</td><td>1.0.0</td></tr></tbody></table><button class="btn btn-default btn-table" onclick="exportTableToCSV(&quot;package-table.csv&quot;, &quot;package-table&quot;)">Export to CSV</button> </div> </div>""".format(sys.prefix) # nopep8 ABOUT_WITH_CONFIG_LIST = """<div class="row"> <div class="col-md-12"> <h2>On the command-line</h2> <p>This page was generated with the following command-line call:</p> <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%"><span></span>$ gwdetchar-scattering -i X1 </pre></div> <p>The install path used was <code>{}</code>.</p> <h2>Configuration files</h2> <p>The following INI-format configuration file(s) were passed on the comand-line and are reproduced here in full:</p> <div class="panel-group" id="accordion"> <div class="panel panel-default"> <a href="#file0" data-toggle="collapse" data-parent="#accordion"> <div class="panel-heading"> <h4 class="panel-title">test.ini</h4> </div> </a> <div id="file0" class="panel-collapse collapse"> <div class="panel-body"> <div class="highlight" style="background: #f8f8f8"><pre style="line-height: 125%"><span></span><span style="color: #008000; font-weight: bold">[section]</span> <span style="color: #7D9029">key</span> <span style="color: #666666">=</span> <span style="color: #BA2121">value</span> </pre></div> </div> </div> </div> </div> <h2>Environment</h2><table class="table table-hover table-condensed table-responsive" id="package-table"><caption>Table of packages installed in the production environment</caption><thead><tr><th scope="col">Name</th><th scope="col">Version</th></tr></thead><tbody><tr><td>gwdetchar</td><td>1.2.3</td></tr><tr><td>gwpy</td><td>1.0.0</td></tr></tbody></table><button class="btn btn-default btn-table" onclick="exportTableToCSV(&quot;package-table.csv&quot;, &quot;package-table&quot;)">Export to CSV</button> </div> </div>""".format(sys.prefix) # nopep8 HTML_FOOTER = """<footer class="footer"> <div class="container"> <div class="row"> <div class="col-md-12"> <p>This page was created by {user} at {date}.</p> <p><a href="https://github.com/gwdetchar/gwdetchar/tree/%s" target="_blank">View gwdetchar-%s on GitHub</a> | <a href="https://github.com/gwdetchar/gwdetchar/issues" target="_blank">Report an issue</a></p> </div> </div> </div> </footer>""" % (COMMIT, VERSION) # nopep8 HTML_CLOSE = """</div> %s </body> </html>""" % HTML_FOOTER # nopep8 FLAG_CONTENT = """<div class="panel panel-warning"> <div class="panel-heading"> <a class="panel-title" href="#flag0" data-toggle="collapse" data-parent="#accordion">X1:TEST_FLAG</a> </div> <div id="flag0" class="panel-collapse collapse"> <div class="panel-body">{plots} {content} </div> </div> </div>""" # nopep8 FLAG_HTML = FLAG_CONTENT.format(content="""<pre># seg\tstart\tstop\tduration 0\t0\t66\t66.0 </pre>""", plots='') FLAG_HTML_WITH_PLOTS = FLAG_CONTENT.format( content='<pre># seg\tstart\tstop\tduration\n0\t0\t66\t66.0\n</pre>', plots='\n<a id="a_X1-TEST_FLAG_66" target="_blank" title="Known (small) ' 'and active (large) analysis segments for X1:TEST_FLAG" ' 'class="fancybox" href="plots/X1-TEST_FLAG-0-66.png" ' 'data-fancybox-group="images">\n<img id="img_X1-TEST_FLAG_66" ' 'alt="X1-TEST_FLAG-0-66.png" class="img-responsive" ' 'src="plots/X1-TEST_FLAG-0-66.png" />\n</a>') FLAG_HTML_NO_SEGMENTS = FLAG_CONTENT.format( content='<p>No segments were found.</p>', plots='') FLAG = DataQualityFlag(known=[(0, 66)], active=[(0, 66)], name='X1:TEST_FLAG') OMEGA_SCAFFOLD = """<div class="panel well panel-default"> <div class="panel-heading clearfix"> <h3 class="panel-title"><a href="https://cis.ligo.org/channel/byname/X1:STRAIN" title="CIS entry for X1:STRAIN" style="font-family: Monaco, &quot;Courier New&quot;, monospace; color: black;" target="_blank">X1:STRAIN</a></h3> </div> <ul class="list-group"> <li class="list-group-item"> <div class="container"> <div class="row"> <div class="pull-right"> <a href="./1126259462" class="text-dark">[full scan]</a> </div> <h4>1126259462</h4> </div> <div class="row"> <div class="col-sm-4"> <a href="./1126259462/plots/X1-STRAIN-qscan_whitened-1.png" id="a_X1-STRAIN_1" title="X1-STRAIN-qscan_whitened-1.png" class="fancybox" target="_blank" data-fancybox-group="images"> <img id="img_X1-STRAIN_1" alt="X1-STRAIN-qscan_whitened-1.png" class="img-responsive" src="./1126259462/plots/X1-STRAIN-qscan_whitened-1.png" /> </a> </div> <div class="col-sm-4"> <a href="./1126259462/plots/X1-STRAIN-qscan_whitened-4.png" id="a_X1-STRAIN_4" title="X1-STRAIN-qscan_whitened-4.png" class="fancybox" target="_blank" data-fancybox-group="images"> <img id="img_X1-STRAIN_4" alt="X1-STRAIN-qscan_whitened-4.png" class="img-responsive" src="./1126259462/plots/X1-STRAIN-qscan_whitened-4.png" /> </a> </div> <div class="col-sm-4"> <a href="./1126259462/plots/X1-STRAIN-qscan_whitened-16.png" id="a_X1-STRAIN_16" title="X1-STRAIN-qscan_whitened-16.png" class="fancybox" target="_blank" data-fancybox-group="images"> <img id="img_X1-STRAIN_16" alt="X1-STRAIN-qscan_whitened-16.png" class="img-responsive" src="./1126259462/plots/X1-STRAIN-qscan_whitened-16.png" /> </a> </div> </div> </div> </li> </ul> </div>""" # nopep8 # -- HTML unit tests ---------------------------------------------------------- def test_fancy_plot(): # create a dummy FancyPlot instance test = html.FancyPlot('test.png') assert test.img is 'test.png' assert test.caption is 'test.png' # check that its properties are unchanged when the argument # to FancyPlot() is also a FancyPlot instance test = html.FancyPlot(test) assert test.img is 'test.png' assert test.caption is 'test.png' def test_finalize_static_urls(tmpdir): base = str(tmpdir) static = os.path.join(base, 'static') css, js = html.finalize_static_urls( static, base, html.CSS_FILES, html.JS_FILES) assert css == [ 'https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/' 'bootstrap.min.css', # nopep8 'https://cdnjs.cloudflare.com/ajax/libs/fancybox/2.1.5/' 'jquery.fancybox.min.css', # nopep8 'https://fonts.googleapis.com/css?' 'family=Roboto:300,400%7CRoboto+Mono', # nopep8 'static/bootstrap-ligo.min.css', 'static/gwdetchar.min.css'] assert js == [ 'https://code.jquery.com/jquery-1.12.3.min.js', 'https://cdnjs.cloudflare.com/ajax/libs/moment.js/2.13.0/' 'moment.min.js', # nopep8 'https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js', 'https://cdnjs.cloudflare.com/ajax/libs/fancybox/2.1.5/' 'jquery.fancybox.min.js', # nopep8 'static/bootstrap-ligo.min.js', 'static/gwdetchar.min.js'] shutil.rmtree(str(tmpdir), ignore_errors=True) def test_new_bootstrap_page(): base = os.path.abspath(os.path.curdir) page = html.new_bootstrap_page(base=base, topbtn=False, refresh=True) assert parse_html(str(page)) == parse_html( NEW_BOOTSTRAP_PAGE.format(base=base)) def test_navbar(): navbar = html.navbar(['test'], collapse=False) assert parse_html(navbar) == parse_html( '<header class="navbar navbar-fixed-top">\n' '<div class="container">\n<div class="navbar-header">\n' '</div>\n<nav>\n<ul class="nav navbar-nav">\n<li>\ntest\n</li>\n' '</ul>\n</nav>\n</div>\n</header>') def test_dropdown(): menu = html.dropdown('test', []) assert parse_html(str(menu)) == parse_html( '<a href="#" class="dropdown-toggle" data-toggle="dropdown">\n' 'test\n<b class="caret"></b>\n</a>\n<ul class="dropdown-menu">\n</ul>') menu = html.dropdown('test', ['test', '#'], active=0) assert parse_html(str(menu)) == parse_html( '<a href="#" class="dropdown-toggle" data-toggle="dropdown">\n' 'test\n<b class="caret"></b>\n</a>\n<ul class="dropdown-menu">\n' '<li class="active">\ntest\n</li>\n<li>\n#\n</li>\n</ul>') menu = html.dropdown('test', ['test', '#'], active=[0, 1]) assert parse_html(str(menu)) == parse_html( '<a href="#" class="dropdown-toggle" data-toggle="dropdown">\n' 'test\n<b class="caret"></b>\n</a>\n<ul class="dropdown-menu">\n' '<li>\ntest\n</li>\n<li>\n#\n</li>\n</ul>') def test_dropdown_link(): page = markup.page() html.dropdown_link(page, None) assert parse_html(str(page)) == parse_html( '<li class="divider">\n</li>') page = markup.page() html.dropdown_link(page, 'test', active=True) assert parse_html(str(page)) == parse_html( '<li class="active">\ntest\n</li>') page = markup.page() html.dropdown_link(page, 'test') assert parse_html(str(page)) == parse_html( '<li>\ntest\n</li>') def test_get_brand(): (brand, class_) = html.get_brand('H1', 'Test', 0, about='about') assert class_ == 'navbar navbar-fixed-top navbar-h1' assert parse_html(brand) == parse_html( '<div class="navbar-brand">H1</div>\n' '<div class="navbar-brand">Test</div>\n' '<div class="btn-group pull-right ifo-links">\n' '<a class="navbar-brand dropdown-toggle" href="#" ' 'data-toggle="dropdown">\nLinks\n<b class="caret"></b>\n</a>\n' '<ul class="dropdown-menu">\n' '<li class="dropdown-header">Internal</li>\n' '<li>\n<a href="about">About this page</a>\n</li>\n' '<li class="divider"></li>\n' '<li class="dropdown-header">External</li>\n' '<li>\n<a href="https://ldas-jobs.ligo-wa.caltech.edu/~detchar/' 'summary/day/19800106" target="_blank">LHO Summary Pages</a>\n' '</li>\n<li>\n<a href="https://alog.ligo-wa.caltech.edu/aLOG" ' 'target="_blank">LHO Logbook</a>\n</li>\n</ul>\n</div>') @mock.patch( "gwdetchar.io.html.package_list", return_value=[ {"name": "gwpy", "version": "1.0.0"}, {"name": "gwdetchar", "version": "1.2.3"}, ], ) def test_about_this_page(package_list, tmpdir): outdir = str(tmpdir) config_file = os.path.join(outdir, 'test.ini') with open(config_file, 'w') as fobj: fobj.write(TEST_CONFIGURATION) testargs = ['/opt/bin/gwdetchar-scattering', '-i', 'X1'] with mock.patch.object(sys, 'argv', testargs): # test with a single config file about = html.about_this_page(config_file) assert parse_html(about) == parse_html(ABOUT) # test with a list of config files about = html.about_this_page([config_file]) assert parse_html(about) == parse_html(ABOUT_WITH_CONFIG_LIST) # clean up shutil.rmtree(outdir, ignore_errors=True) def test_write_param(): page = html.write_param('test', 'test') assert parse_html(str(page)) == parse_html( '<p>\n<strong>test: </strong>\ntest\n</p>') def test_get_command_line(): testargs = ['/opt/bin/gwdetchar-conlog', '-i', 'X1'] with mock.patch.object(sys, 'argv', testargs): cmdline = html.get_command_line() assert parse_html(cmdline) == parse_html( '<p>This page was generated with the following command-line call:' '</p>\n<div class="highlight" style="background: #f8f8f8">' '<pre style="line-height: 125%"><span></span>$ gwdetchar-conlog ' '-i X1\n</pre></div>\n\n<p>The install path used was <code>{}' '</code>.</p>'.format(sys.prefix)) def test_get_command_line_module(): testargs = ['__main__.py', '--html-only'] with mock.patch.object(sys, 'argv', testargs): cmdline = html.get_command_line() assert parse_html(cmdline) == parse_html( '<p>This page was generated with the following command-line call:' '</p>\n<div class="highlight" style="background: #f8f8f8">' '<pre style="line-height: 125%"><span></span>$ python -m ' 'gwdetchar.io.tests.test_html\n</pre></div>\n\n' '<p>The install path used was <code>{}</code>.</p>'.format( sys.prefix)) @pytest.mark.parametrize('args, kwargs, result', [ (('test.html', 'Test link'), {}, '<a href="test.html" target="_blank">Test link</a>'), (('test.html', 'Test link'), {'class_': 'test-case'}, '<a class="test-case" href="test.html" target="_blank">Test link</a>'), ]) def test_html_link(args, kwargs, result): h1 = parse_html(html.html_link(*args, **kwargs)) h2 = parse_html(result) assert h1 == h2 def test_cis_link(): h1 = parse_html(html.cis_link('X1:TEST-CHANNEL')) h2 = parse_html( '<a style="font-family: Monaco, &quot;Courier New&quot;, ' 'monospace; color: black;" href="https://cis.ligo.org/channel/byname/' 'X1:TEST-CHANNEL" target="_blank" title="CIS entry for ' 'X1:TEST-CHANNEL">X1:TEST-CHANNEL</a>' ) assert h1 == h2 def test_fancybox_img(): img = html.FancyPlot('X1-TEST_AUX-test-4.png') out = html.fancybox_img(img) assert parse_html(out) == parse_html( '<a class="fancybox" href="X1-TEST_AUX-test-4.png" target="_blank" ' 'data-fancybox-group="images" id="a_X1-TEST_AUX_4" ' 'title="X1-TEST_AUX-test-4.png">\n' '<img class="img-responsive" alt="X1-TEST_AUX-test-4.png" ' 'src="X1-TEST_AUX-test-4.png" id="img_X1-TEST_AUX_4"/>\n' '</a>') def test_scaffold_plots(): h1 = parse_html(html.scaffold_plots([ html.FancyPlot('X1-TEST_AUX-test-4.png'), html.FancyPlot('X1-TEST_AUX-test-16.png')], nperrow=2)) h2 = parse_html( '<div class="row">\n' '<div class="col-sm-6">\n' '<a class="fancybox" href="X1-TEST_AUX-test-4.png" target="_blank" ' 'id="a_X1-TEST_AUX_4" data-fancybox-group="images" ' 'title="X1-TEST_AUX-test-4.png">\n' '<img class="img-responsive" alt="X1-TEST_AUX-test-4.png" ' 'id="img_X1-TEST_AUX_4" src="X1-TEST_AUX-test-4.png" />\n' '</a>\n' '</div>\n' '<div class="col-sm-6">\n' '<a class="fancybox" href="X1-TEST_AUX-test-16.png" target="_blank"' ' id="a_X1-TEST_AUX_16" data-fancybox-group="images" ' 'title="X1-TEST_AUX-test-16.png">\n' '<img class="img-responsive" alt="X1-TEST_AUX-test-16.png" ' 'id="img_X1-TEST_AUX_16" src="X1-TEST_AUX-test-16.png" />\n' '</a>\n' '</div>\n' '</div>') assert h1 == h2 def test_write_arguments(): page = html.write_arguments([('test', 'test')], 0, 1, flag='X1:TEST') assert '<h2 id="parameters">Parameters</h2>' in page assert '<strong>Start time: </strong>\n0 (1980-01-06 00:00:00)' in page assert '<strong>End time: </strong>\n1 (1980-01-06 00:00:01)' in page assert '<strong>State flag: </strong>\nX1:TEST' in page assert '<strong>test: </strong>\ntest' in page assert '<strong>Command-line: </strong>' in page def test_table(): headers = ['Test'] data = [['test']] caption = 'This is a test table.' page = html.table(headers=headers, data=data, caption=caption, id='test') assert parse_html(page) == parse_html( '<table class="table table-hover table-condensed table-responsive" ' 'id="test"><caption>This is a test table.</caption><thead><tr>' '<th scope="col">Test</th></tr></thead><tbody><tr><td>test</td></tr>' '</tbody></table><button class="btn btn-default btn-table" ' 'onclick="exportTableToCSV(&quot;test.csv&quot;, &quot;test&quot;)">' 'Export to CSV</button>') def test_write_flag_html(): page = html.write_flag_html(FLAG) assert parse_html(str(page)) == parse_html(FLAG_HTML) page2 = html.write_flag_html( DataQualityFlag(known=[], active=[], name='X1:TEST_FLAG')) assert parse_html(str(page2)) == parse_html(FLAG_HTML_NO_SEGMENTS) def test_write_flag_html_with_plots(tmpdir): tmpdir.mkdir('plots') os.chdir(str(tmpdir)) page = html.write_flag_html(FLAG, span=Segment(0, 66), plotdir='plots') assert parse_html(str(page)) == parse_html(FLAG_HTML_WITH_PLOTS) shutil.rmtree(str(tmpdir), ignore_errors=True) def test_scaffold_omega_scans(): times = [1126259462] channel = 'X1:STRAIN' page = html.scaffold_omega_scans(times, channel) assert parse_html(page) == parse_html(OMEGA_SCAFFOLD) def test_write_footer(): now = datetime.datetime.now() tz = reference.LocalTimezone().tzname(now) date = now.strftime('%H:%M {} on %d %B %Y'.format(tz)) out = html.write_footer() assert parse_html(str(out)) == parse_html( HTML_FOOTER.format(user=getuser(), date=date)) def test_close_page(tmpdir): target = os.path.join(str(tmpdir), 'test.html') now = datetime.datetime.now() tz = reference.LocalTimezone().tzname(now) date = now.strftime('%H:%M {} on %d %B %Y'.format(tz)) page = html.close_page(html.markup.page(), target) assert parse_html(str(page)) == parse_html( HTML_CLOSE.format(user=getuser(), date=str(date))) assert os.path.isfile(target) with open(target, 'r') as fp: assert fp.read() == str(page) shutil.rmtree(target, ignore_errors=True) @mock.patch("{}.Path.is_dir".format(html.Path.__module__)) @mock.patch("subprocess.check_output", return_value="{\"key\": 0}") @pytest.mark.parametrize("isdir, cmd", [ pytest.param( False, "{} -m pip list installed --format json".format(sys.executable), id="pip", ), pytest.param( True, "conda list --prefix {} --json".format(sys.prefix), id="conda", ), ]) def test_package_list(check_output, is_dir, isdir, cmd): is_dir.return_value = isdir assert html.package_list() == {"key": 0} check_output.assert_called_with(cmd.split()) @mock.patch( "gwdetchar.io.html.package_list", return_value=[ {"name": "gwpy", "version": "1.0.0"}, {"name": "gwdetchar", "version": "1.2.3"}, ], ) def test_package_table(package_list): assert parse_html( html.package_table(class_="test", caption="Test"), ) == parse_html( "<h2>Environment</h2><table class=\"test\" id=\"package-table\">" "<caption>Test</caption>" "<thead>" "<tr><th scope=\"col\">Name</th><th scope=\"col\">Version</th></tr>" "</thead><tbody>" "<tr><td>gwdetchar</td><td>1.2.3</td></tr>" "<tr><td>gwpy</td><td>1.0.0</td></tr>" "</tbody></table>" "<button class=\"btn btn-default btn-table\" " "onclick=\"exportTableToCSV(&quot;package-table.csv&quot;, " "&quot;package-table&quot;)\">Export to CSV</button>", )
gpl-3.0
dacb/elvizCluster
unit_tests/test_elviz_abundance_utils.py
2
1469
import unittest import pandas as pd class testCompletenessOfSummarisedData(unittest.TestCase): def test_animal_data(self): """ Make sure each sample's fraction of abundance values sums very close to 1. On toy data set only. """ animal_df = pd.read_csv("./summarised_animals.txt", sep='\t') sum_by_sample = animal_df.groupby( ['oxy', 'rep', 'week'])['fraction of reads'].sum() self.assertTrue((sum_by_sample > 0.999).all()) self.assertTrue((sum_by_sample < 1.001).all()) class testAbundannceSummary(unittest.TestCase): def test_summary_with_all_taxonomy_remaining(self): """ Make sure each sample's fraction of abundance values sums very close to 1. """ summary_df = \ pd.read_csv("../results/reduced_data--all_taxonomy_remains.csv") sum_by_sample = summary_df.groupby( ['oxy', 'rep', 'week'])['fraction of reads'].sum() self.assertTrue((sum_by_sample > 0.999).all()) self.assertTrue((sum_by_sample < 1.001).all()) if __name__ == '__main__': animal_df = pd.read_csv("./summarised_animals.txt", sep='\t') print(animal_df.head()) sums = animal_df.groupby( ['oxy', 'rep', 'week'])['fraction of reads'].sum() # make sure all the sums are 1: print(sums) # Run the Unit Tests # Note: this has to be last or the stuff above won't run. unittest.main()
bsd-3-clause
ajdawson/colormaps
setup.py
1
2163
"""Build and install the colormaps package.""" # Copyright (c) 2012 Andrew Dawson # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from distutils.core import setup for line in open('lib/colormaps/__init__.py').readlines(): if (line.startswith('__version__')): exec(line.strip()) package_data = {'colormaps': ['palette/*.txt', 'palette/ncl/*.txt', 'palette/brewer/diverging/*.txt', 'palette/brewer/qualitative/*.txt', 'palette/brewer/sequential/*.txt']} if __name__ == '__main__': setup( name='colormaps', version=__version__, description='Easily generate colormaps for matplotlib', author='Andrew Dawson', author_email='[email protected]', url='http://github.com/ajdawson/colormaps', long_description=""" colormaps can generate colormaps of varying lengths from sets of base colors. It is designed to allow total control of colormaps in matplotlib. """, packages=['colormaps'], package_dir={'': 'lib'}, package_data=package_data,)
mit
stefan-balke/librosa
tests/test_display.py
2
9298
#!/usr/bin/env python # -*- encoding: utf-8 -*- # CREATED:2015-02-14 22:51:01 by Brian McFee <[email protected]> '''Unit tests for display module''' import warnings # Disable cache import os try: os.environ.pop('LIBROSA_CACHE_DIR') except KeyError: pass import matplotlib matplotlib.use('Agg') matplotlib.rcParams.update(matplotlib.rcParamsDefault) import matplotlib.style matplotlib.style.use('seaborn-ticks') import matplotlib.pyplot as plt import librosa import librosa.display import numpy as np from nose.tools import nottest, raises, eq_ from mpl_ic import image_comparison warnings.resetwarnings() warnings.simplefilter('always') @nottest def get_spec(y, sr): C = np.abs(librosa.cqt(y, sr=sr)) return librosa.stft(y), C, sr __EXAMPLE_FILE = 'data/test1_22050.wav' y, sr = librosa.load(__EXAMPLE_FILE) S, C, sr = get_spec(y, sr) S_abs = np.abs(S) S_signed = np.abs(S) - np.median(np.abs(S)) S_bin = S_signed > 0 tempo, beats = librosa.beat.beat_track(y=y, sr=sr, trim=False) beats = librosa.util.fix_frames(beats, x_max=C.shape[1]) beat_t = librosa.frames_to_time(beats, sr=sr) Csync = librosa.util.sync(C, beats, aggregate=np.median) @image_comparison(baseline_images=['complex'], extensions=['png']) def test_complex_input(): plt.figure() librosa.display.specshow(S) @image_comparison(baseline_images=['abs'], extensions=['png']) def test_abs_input(): plt.figure() librosa.display.specshow(S_abs) @image_comparison(baseline_images=['cqt_note'], extensions=['png']) def test_cqt_note(): plt.figure() librosa.display.specshow(C, y_axis='cqt_note') @image_comparison(baseline_images=['cqt_hz'], extensions=['png']) def test_cqt_hz(): plt.figure() librosa.display.specshow(C, y_axis='cqt_hz') @image_comparison(baseline_images=['tempo'], extensions=['png']) def test_tempo(): T = librosa.feature.tempogram(y=y, sr=sr) plt.figure() librosa.display.specshow(T, y_axis='tempo', cmap='magma') @image_comparison(baseline_images=['tonnetz'], extensions=['png']) def test_tonnetz(): plt.figure() chroma = librosa.feature.chroma_cqt(C=C) ton = librosa.feature.tonnetz(chroma=chroma) librosa.display.specshow(ton, y_axis='tonnetz') @image_comparison(baseline_images=['chroma'], extensions=['png']) def test_chroma(): plt.figure() plt.subplot(3, 1, 1) chr1 = librosa.feature.chroma_stft(S=S_abs**2, sr=sr) librosa.display.specshow(chr1, y_axis='chroma') plt.subplot(3, 1, 2) chr2 = librosa.feature.chroma_stft(S=S_abs**2, sr=sr, n_chroma=2*12) librosa.display.specshow(chr2, y_axis='chroma', bins_per_octave=2*12) plt.subplot(3, 1, 3) chr3 = librosa.feature.chroma_stft(S=S_abs**2, sr=sr, n_chroma=3*12) librosa.display.specshow(chr3, y_axis='chroma', bins_per_octave=3*12) @image_comparison(baseline_images=['double_chroma'], extensions=['png']) def test_double_chroma(): plt.figure() chr1 = librosa.feature.chroma_stft(S=S_abs**2, sr=sr) chr1 = np.vstack((chr1, chr1)) librosa.display.specshow(chr1, y_axis='chroma', bins_per_octave=12) @image_comparison(baseline_images=['x_mel'], extensions=['png']) def test_x_mel(): plt.figure() M = librosa.feature.melspectrogram(S=S_abs**2) librosa.display.specshow(M.T, x_axis='mel') @image_comparison(baseline_images=['y_mel'], extensions=['png']) def test_y_mel(): plt.figure() M = librosa.feature.melspectrogram(S=S_abs**2) librosa.display.specshow(M, y_axis='mel') @image_comparison(baseline_images=['y_mel_bounded'], extensions=['png']) def test_y_mel_bounded(): plt.figure() fmin, fmax = 110, 880 M = librosa.feature.melspectrogram(S=S_abs**2, fmin=fmin, fmax=fmax) librosa.display.specshow(M, y_axis='mel', fmin=fmin, fmax=fmax) @image_comparison(baseline_images=['x_none_y_linear'], extensions=['png']) def test_xaxis_none_yaxis_linear(): plt.figure() plt.subplot(3, 1, 1) librosa.display.specshow(S_abs, y_axis='linear') plt.subplot(3, 1, 2) librosa.display.specshow(S_signed, y_axis='linear') plt.subplot(3, 1, 3) librosa.display.specshow(S_bin, y_axis='linear') @image_comparison(baseline_images=['x_none_y_log'], extensions=['png']) def test_xaxis_none_yaxis_log(): plt.figure() plt.subplot(3, 1, 1) librosa.display.specshow(S_abs, y_axis='log') plt.subplot(3, 1, 2) librosa.display.specshow(S_signed, y_axis='log') plt.subplot(3, 1, 3) librosa.display.specshow(S_bin, y_axis='log') @image_comparison(baseline_images=['x_linear_y_none'], extensions=['png']) def test_xaxis_linear_yaxis_none(): plt.figure() plt.subplot(3, 1, 1) librosa.display.specshow(S_abs.T, x_axis='linear') plt.subplot(3, 1, 2) librosa.display.specshow(S_signed.T, x_axis='linear') plt.subplot(3, 1, 3) librosa.display.specshow(S_bin.T, x_axis='linear') @image_comparison(baseline_images=['x_log_y_none'], extensions=['png']) def test_xaxis_log_yaxis_none(): plt.figure() plt.subplot(3, 1, 1) librosa.display.specshow(S_abs.T, x_axis='log') plt.subplot(3, 1, 2) librosa.display.specshow(S_signed.T, x_axis='log') plt.subplot(3, 1, 3) librosa.display.specshow(S_bin.T, x_axis='log') @image_comparison(baseline_images=['x_time_y_none'], extensions=['png']) def test_xaxis_time_yaxis_none(): plt.figure() librosa.display.specshow(S_abs, x_axis='time') @image_comparison(baseline_images=['x_none_y_time'], extensions=['png']) def test_xaxis_none_yaxis_time(): plt.figure() librosa.display.specshow(S_abs.T, y_axis='time') @image_comparison(baseline_images=['x_frames_y_none'], extensions=['png']) def test_xaxis_frames_yaxis_none(): plt.figure() librosa.display.specshow(S_abs, x_axis='frames') @image_comparison(baseline_images=['x_none_y_frames'], extensions=['png']) def test_xaxis_none_yaxis_frames(): plt.figure() librosa.display.specshow(S_abs.T, y_axis='frames') @image_comparison(baseline_images=['x_lag_y_none'], extensions=['png']) def test_xaxis_lag_yaxis_none(): plt.figure() librosa.display.specshow(S_abs, x_axis='lag') @image_comparison(baseline_images=['x_none_y_lag'], extensions=['png']) def test_xaxis_time_yaxis_lag(): plt.figure() librosa.display.specshow(S_abs.T, y_axis='lag') @image_comparison(baseline_images=['time_scales_auto'], extensions=['png']) def test_time_scales_auto(): # sr = 22050, hop_length = 512, S.shape[1] = 198 # 197 * 512 / 22050 ~= 4.6s plt.figure() plt.subplot(4, 1, 1) # sr * 10 -> ms librosa.display.specshow(S_abs, sr=10 * sr, x_axis='time') plt.subplot(4, 1, 2) # sr -> s librosa.display.specshow(S_abs, sr=sr, x_axis='time') plt.subplot(4, 1, 3) # sr / 20 -> m librosa.display.specshow(S_abs, sr=sr // 20, x_axis='time') plt.subplot(4, 1, 4) # sr / (60 * 20) -> h librosa.display.specshow(S_abs, sr=sr // (60 * 20), x_axis='time') plt.tight_layout() @image_comparison(baseline_images=['waveplot_mono'], extensions=['png']) def test_waveplot_mono(): plt.figure() plt.subplot(3, 1, 1) librosa.display.waveplot(y, sr=sr, max_points=None, x_axis='off') plt.subplot(3, 1, 2) librosa.display.waveplot(y, sr=sr, x_axis='off') plt.subplot(3, 1, 3) librosa.display.waveplot(y, sr=sr, x_axis='time') @image_comparison(baseline_images=['waveplot_stereo'], extensions=['png']) def test_waveplot_stereo(): ys = np.vstack([y[np.newaxis, :], 2 * y[np.newaxis, :]]) plt.figure() librosa.display.waveplot(ys, sr=sr) @raises(librosa.ParameterError) def test_unknown_wavaxis(): plt.figure() librosa.display.waveplot(y, sr=sr, x_axis='something not in the axis map') @raises(librosa.ParameterError) def test_waveplot_bad_maxsr(): plt.figure() librosa.display.waveplot(y, sr=sr, max_sr=0) @raises(librosa.ParameterError) def test_waveplot_bad_maxploints(): plt.figure() librosa.display.waveplot(y, sr=sr, max_points=0) def test_unknown_axis(): @raises(librosa.ParameterError) def __test(axis): kwargs = dict() kwargs.setdefault(axis, 'something not in the axis map') plt.figure() librosa.display.specshow(S_abs, **kwargs) yield __test, 'x_axis' yield __test, 'y_axis' def test_cmap_robust(): def __test(data): cmap1 = librosa.display.cmap(data, robust=False) cmap2 = librosa.display.cmap(data, robust=True) assert type(cmap1) is type(cmap2) if isinstance(cmap1, matplotlib.colors.ListedColormap): assert np.allclose(cmap1.colors, cmap2.colors) elif isinstance(cmap1, matplotlib.colors.LinearSegmentedColormap): eq_(cmap1.name, cmap2.name) else: eq_(cmap1, cmap2) # Inputs here are constructed to not need robust sign estimation for D in [1.0 + S_abs, -(1.0 + S_abs), S_signed, S_bin]: yield __test, D @image_comparison(baseline_images=['coords'], extensions=['png']) def test_coords(): plt.figure() librosa.display.specshow(Csync, x_coords=beat_t, x_axis='time', y_axis='cqt_note') @raises(librosa.ParameterError) def test_bad_coords(): librosa.display.specshow(S_abs, x_coords=np.arange(S.shape[1] // 2))
isc
jstoxrocky/statsmodels
statsmodels/regression/tests/test_regression.py
6
37622
""" Test functions for models.regression """ # TODO: Test for LM from statsmodels.compat.python import long, lrange import warnings import pandas import numpy as np from numpy.testing import (assert_almost_equal, assert_approx_equal, assert_raises, assert_equal, assert_allclose) from scipy.linalg import toeplitz from statsmodels.tools.tools import add_constant, categorical from statsmodels.compat.numpy import np_matrix_rank from statsmodels.regression.linear_model import OLS, WLS, GLS, yule_walker from statsmodels.datasets import longley from scipy.stats import t as student_t DECIMAL_4 = 4 DECIMAL_3 = 3 DECIMAL_2 = 2 DECIMAL_1 = 1 DECIMAL_7 = 7 DECIMAL_0 = 0 class CheckRegressionResults(object): """ res2 contains results from Rmodelwrap or were obtained from a statistical packages such as R, Stata, or SAS and were written to model_results """ decimal_params = DECIMAL_4 def test_params(self): assert_almost_equal(self.res1.params, self.res2.params, self.decimal_params) decimal_standarderrors = DECIMAL_4 def test_standarderrors(self): assert_almost_equal(self.res1.bse,self.res2.bse, self.decimal_standarderrors) decimal_confidenceintervals = DECIMAL_4 def test_confidenceintervals(self): #NOTE: stata rounds residuals (at least) to sig digits so approx_equal conf1 = self.res1.conf_int() conf2 = self.res2.conf_int() for i in range(len(conf1)): assert_approx_equal(conf1[i][0], conf2[i][0], self.decimal_confidenceintervals) assert_approx_equal(conf1[i][1], conf2[i][1], self.decimal_confidenceintervals) decimal_conf_int_subset = DECIMAL_4 def test_conf_int_subset(self): if len(self.res1.params) > 1: ci1 = self.res1.conf_int(cols=(1,2)) ci2 = self.res1.conf_int()[1:3] assert_almost_equal(ci1, ci2, self.decimal_conf_int_subset) else: pass decimal_scale = DECIMAL_4 def test_scale(self): assert_almost_equal(self.res1.scale, self.res2.scale, self.decimal_scale) decimal_rsquared = DECIMAL_4 def test_rsquared(self): assert_almost_equal(self.res1.rsquared, self.res2.rsquared, self.decimal_rsquared) decimal_rsquared_adj = DECIMAL_4 def test_rsquared_adj(self): assert_almost_equal(self.res1.rsquared_adj, self.res2.rsquared_adj, self.decimal_rsquared_adj) def test_degrees(self): assert_equal(self.res1.model.df_model, self.res2.df_model) assert_equal(self.res1.model.df_resid, self.res2.df_resid) decimal_ess = DECIMAL_4 def test_ess(self): #Explained Sum of Squares assert_almost_equal(self.res1.ess, self.res2.ess, self.decimal_ess) decimal_ssr = DECIMAL_4 def test_sumof_squaredresids(self): assert_almost_equal(self.res1.ssr, self.res2.ssr, self.decimal_ssr) decimal_mse_resid = DECIMAL_4 def test_mse_resid(self): #Mean squared error of residuals assert_almost_equal(self.res1.mse_model, self.res2.mse_model, self.decimal_mse_resid) decimal_mse_model = DECIMAL_4 def test_mse_model(self): assert_almost_equal(self.res1.mse_resid, self.res2.mse_resid, self.decimal_mse_model) decimal_mse_total = DECIMAL_4 def test_mse_total(self): assert_almost_equal(self.res1.mse_total, self.res2.mse_total, self.decimal_mse_total, err_msg="Test class %s" % self) decimal_fvalue = DECIMAL_4 def test_fvalue(self): #didn't change this, not sure it should complain -inf not equal -inf #if not (np.isinf(self.res1.fvalue) and np.isinf(self.res2.fvalue)): assert_almost_equal(self.res1.fvalue, self.res2.fvalue, self.decimal_fvalue) decimal_loglike = DECIMAL_4 def test_loglike(self): assert_almost_equal(self.res1.llf, self.res2.llf, self.decimal_loglike) decimal_aic = DECIMAL_4 def test_aic(self): assert_almost_equal(self.res1.aic, self.res2.aic, self.decimal_aic) decimal_bic = DECIMAL_4 def test_bic(self): assert_almost_equal(self.res1.bic, self.res2.bic, self.decimal_bic) decimal_pvalues = DECIMAL_4 def test_pvalues(self): assert_almost_equal(self.res1.pvalues, self.res2.pvalues, self.decimal_pvalues) decimal_wresid = DECIMAL_4 def test_wresid(self): assert_almost_equal(self.res1.wresid, self.res2.wresid, self.decimal_wresid) decimal_resids = DECIMAL_4 def test_resids(self): assert_almost_equal(self.res1.resid, self.res2.resid, self.decimal_resids) decimal_norm_resids = DECIMAL_4 def test_norm_resids(self): assert_almost_equal(self.res1.resid_pearson, self.res2.resid_pearson, self.decimal_norm_resids) #TODO: test fittedvalues and what else? class TestOLS(CheckRegressionResults): @classmethod def setupClass(cls): from .results.results_regression import Longley data = longley.load() data.exog = add_constant(data.exog, prepend=False) res1 = OLS(data.endog, data.exog).fit() res2 = Longley() res2.wresid = res1.wresid # workaround hack cls.res1 = res1 cls.res2 = res2 res_qr = OLS(data.endog, data.exog).fit(method="qr") model_qr = OLS(data.endog, data.exog) Q, R = np.linalg.qr(data.exog) model_qr.exog_Q, model_qr.exog_R = Q, R model_qr.normalized_cov_params = np.linalg.inv(np.dot(R.T, R)) model_qr.rank = np_matrix_rank(R) res_qr2 = model_qr.fit(method="qr") cls.res_qr = res_qr cls.res_qr_manual = res_qr2 def test_eigenvalues(self): eigenval_perc_diff = (self.res_qr.eigenvals - self.res_qr_manual.eigenvals) eigenval_perc_diff /= self.res_qr.eigenvals zeros = np.zeros_like(eigenval_perc_diff) assert_almost_equal(eigenval_perc_diff, zeros, DECIMAL_7) # Robust error tests. Compare values computed with SAS def test_HC0_errors(self): #They are split up because the copied results do not have any DECIMAL_4 #places for the last place. assert_almost_equal(self.res1.HC0_se[:-1], self.res2.HC0_se[:-1], DECIMAL_4) assert_approx_equal(np.round(self.res1.HC0_se[-1]), self.res2.HC0_se[-1]) def test_HC1_errors(self): assert_almost_equal(self.res1.HC1_se[:-1], self.res2.HC1_se[:-1], DECIMAL_4) assert_approx_equal(self.res1.HC1_se[-1], self.res2.HC1_se[-1]) def test_HC2_errors(self): assert_almost_equal(self.res1.HC2_se[:-1], self.res2.HC2_se[:-1], DECIMAL_4) assert_approx_equal(self.res1.HC2_se[-1], self.res2.HC2_se[-1]) def test_HC3_errors(self): assert_almost_equal(self.res1.HC3_se[:-1], self.res2.HC3_se[:-1], DECIMAL_4) assert_approx_equal(self.res1.HC3_se[-1], self.res2.HC3_se[-1]) def test_qr_params(self): assert_almost_equal(self.res1.params, self.res_qr.params, 6) def test_qr_normalized_cov_params(self): #todo: need assert_close assert_almost_equal(np.ones_like(self.res1.normalized_cov_params), self.res1.normalized_cov_params / self.res_qr.normalized_cov_params, 5) def test_missing(self): data = longley.load() data.exog = add_constant(data.exog, prepend=False) data.endog[[3, 7, 14]] = np.nan mod = OLS(data.endog, data.exog, missing='drop') assert_equal(mod.endog.shape[0], 13) assert_equal(mod.exog.shape[0], 13) def test_rsquared_adj_overfit(self): # Test that if df_resid = 0, rsquared_adj = 0. # This is a regression test for user issue: # https://github.com/statsmodels/statsmodels/issues/868 with warnings.catch_warnings(record=True): x = np.random.randn(5) y = np.random.randn(5, 6) results = OLS(x, y).fit() rsquared_adj = results.rsquared_adj assert_equal(rsquared_adj, np.nan) def test_qr_alternatives(self): assert_allclose(self.res_qr.params, self.res_qr_manual.params, rtol=5e-12) def test_norm_resid(self): resid = self.res1.wresid norm_resid = resid / np.sqrt(np.sum(resid**2.0) / self.res1.df_resid) model_norm_resid = self.res1.resid_pearson assert_almost_equal(model_norm_resid, norm_resid, DECIMAL_7) def test_norm_resid_zero_variance(self): with warnings.catch_warnings(record=True): y = self.res1.model.endog res = OLS(y,y).fit() assert_allclose(res.scale, 0, atol=1e-20) assert_allclose(res.wresid, res.resid_pearson, atol=5e-11) class TestRTO(CheckRegressionResults): @classmethod def setupClass(cls): from .results.results_regression import LongleyRTO data = longley.load() res1 = OLS(data.endog, data.exog).fit() res2 = LongleyRTO() res2.wresid = res1.wresid # workaround hack cls.res1 = res1 cls.res2 = res2 res_qr = OLS(data.endog, data.exog).fit(method="qr") cls.res_qr = res_qr class TestFtest(object): """ Tests f_test vs. RegressionResults """ @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) cls.res1 = OLS(data.endog, data.exog).fit() R = np.identity(7)[:-1,:] cls.Ftest = cls.res1.f_test(R) def test_F(self): assert_almost_equal(self.Ftest.fvalue, self.res1.fvalue, DECIMAL_4) def test_p(self): assert_almost_equal(self.Ftest.pvalue, self.res1.f_pvalue, DECIMAL_4) def test_Df_denom(self): assert_equal(self.Ftest.df_denom, self.res1.model.df_resid) def test_Df_num(self): assert_equal(self.Ftest.df_num, 6) class TestFTest2(object): """ A joint test that the coefficient on GNP = the coefficient on UNEMP and that the coefficient on POP = the coefficient on YEAR for the Longley dataset. Ftest1 is from statsmodels. Results are from Rpy using R's car library. """ @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) res1 = OLS(data.endog, data.exog).fit() R2 = [[0,1,-1,0,0,0,0],[0, 0, 0, 0, 1, -1, 0]] cls.Ftest1 = res1.f_test(R2) hyp = 'x2 = x3, x5 = x6' cls.NewFtest1 = res1.f_test(hyp) def test_new_ftest(self): assert_equal(self.NewFtest1.fvalue, self.Ftest1.fvalue) def test_fvalue(self): assert_almost_equal(self.Ftest1.fvalue, 9.7404618732968196, DECIMAL_4) def test_pvalue(self): assert_almost_equal(self.Ftest1.pvalue, 0.0056052885317493459, DECIMAL_4) def test_df_denom(self): assert_equal(self.Ftest1.df_denom, 9) def test_df_num(self): assert_equal(self.Ftest1.df_num, 2) class TestFtestQ(object): """ A joint hypothesis test that Rb = q. Coefficient tests are essentially made up. Test values taken from Stata. """ @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) res1 = OLS(data.endog, data.exog).fit() R = np.array([[0,1,1,0,0,0,0], [0,1,0,1,0,0,0], [0,1,0,0,0,0,0], [0,0,0,0,1,0,0], [0,0,0,0,0,1,0]]) q = np.array([0,0,0,1,0]) cls.Ftest1 = res1.f_test((R,q)) def test_fvalue(self): assert_almost_equal(self.Ftest1.fvalue, 70.115557, 5) def test_pvalue(self): assert_almost_equal(self.Ftest1.pvalue, 6.229e-07, 10) def test_df_denom(self): assert_equal(self.Ftest1.df_denom, 9) def test_df_num(self): assert_equal(self.Ftest1.df_num, 5) class TestTtest(object): """ Test individual t-tests. Ie., are the coefficients significantly different than zero. """ @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) cls.res1 = OLS(data.endog, data.exog).fit() R = np.identity(7) cls.Ttest = cls.res1.t_test(R) hyp = 'x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, const = 0' cls.NewTTest = cls.res1.t_test(hyp) def test_new_tvalue(self): assert_equal(self.NewTTest.tvalue, self.Ttest.tvalue) def test_tvalue(self): assert_almost_equal(self.Ttest.tvalue, self.res1.tvalues, DECIMAL_4) def test_sd(self): assert_almost_equal(self.Ttest.sd, self.res1.bse, DECIMAL_4) def test_pvalue(self): assert_almost_equal(self.Ttest.pvalue, student_t.sf( np.abs(self.res1.tvalues), self.res1.model.df_resid)*2, DECIMAL_4) def test_df_denom(self): assert_equal(self.Ttest.df_denom, self.res1.model.df_resid) def test_effect(self): assert_almost_equal(self.Ttest.effect, self.res1.params) class TestTtest2(object): """ Tests the hypothesis that the coefficients on POP and YEAR are equal. Results from RPy using 'car' package. """ @classmethod def setupClass(cls): R = np.zeros(7) R[4:6] = [1,-1] data = longley.load() data.exog = add_constant(data.exog, prepend=False) res1 = OLS(data.endog, data.exog).fit() cls.Ttest1 = res1.t_test(R) def test_tvalue(self): assert_almost_equal(self.Ttest1.tvalue, -4.0167754636397284, DECIMAL_4) def test_sd(self): assert_almost_equal(self.Ttest1.sd, 455.39079425195314, DECIMAL_4) def test_pvalue(self): assert_almost_equal(self.Ttest1.pvalue, 2*0.0015163772380932246, DECIMAL_4) def test_df_denom(self): assert_equal(self.Ttest1.df_denom, 9) def test_effect(self): assert_almost_equal(self.Ttest1.effect, -1829.2025687186533, DECIMAL_4) class TestGLS(object): """ These test results were obtained by replication with R. """ @classmethod def setupClass(cls): from .results.results_regression import LongleyGls data = longley.load() exog = add_constant(np.column_stack((data.exog[:,1], data.exog[:,4])), prepend=False) tmp_results = OLS(data.endog, exog).fit() rho = np.corrcoef(tmp_results.resid[1:], tmp_results.resid[:-1])[0][1] # by assumption order = toeplitz(np.arange(16)) sigma = rho**order GLS_results = GLS(data.endog, exog, sigma=sigma).fit() cls.res1 = GLS_results cls.res2 = LongleyGls() # attach for test_missing cls.sigma = sigma cls.exog = exog cls.endog = data.endog def test_aic(self): assert_approx_equal(self.res1.aic+2, self.res2.aic, 3) def test_bic(self): assert_approx_equal(self.res1.bic, self.res2.bic, 2) def test_loglike(self): assert_almost_equal(self.res1.llf, self.res2.llf, DECIMAL_0) def test_params(self): assert_almost_equal(self.res1.params, self.res2.params, DECIMAL_1) def test_resid(self): assert_almost_equal(self.res1.resid, self.res2.resid, DECIMAL_4) def test_scale(self): assert_almost_equal(self.res1.scale, self.res2.scale, DECIMAL_4) def test_tvalues(self): assert_almost_equal(self.res1.tvalues, self.res2.tvalues, DECIMAL_4) def test_standarderrors(self): assert_almost_equal(self.res1.bse, self.res2.bse, DECIMAL_4) def test_fittedvalues(self): assert_almost_equal(self.res1.fittedvalues, self.res2.fittedvalues, DECIMAL_4) def test_pvalues(self): assert_almost_equal(self.res1.pvalues, self.res2.pvalues, DECIMAL_4) def test_missing(self): endog = self.endog.copy() # copy or changes endog for other methods endog[[4,7,14]] = np.nan mod = GLS(endog, self.exog, sigma=self.sigma, missing='drop') assert_equal(mod.endog.shape[0], 13) assert_equal(mod.exog.shape[0], 13) assert_equal(mod.sigma.shape, (13,13)) class TestGLS_alt_sigma(CheckRegressionResults): """ Test that GLS with no argument is equivalent to OLS. """ @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) ols_res = OLS(data.endog, data.exog).fit() gls_res = GLS(data.endog, data.exog).fit() gls_res_scalar = GLS(data.endog, data.exog, sigma=1) cls.endog = data.endog cls.exog = data.exog cls.res1 = gls_res cls.res2 = ols_res cls.res3 = gls_res_scalar # self.res2.conf_int = self.res2.conf_int() def test_wrong_size_sigma_1d(self): n = len(self.endog) assert_raises(ValueError, GLS, self.endog, self.exog, sigma=np.ones(n-1)) def test_wrong_size_sigma_2d(self): n = len(self.endog) assert_raises(ValueError, GLS, self.endog, self.exog, sigma=np.ones((n-1,n-1))) # def check_confidenceintervals(self, conf1, conf2): # assert_almost_equal(conf1, conf2, DECIMAL_4) class TestLM(object): @classmethod def setupClass(cls): # TODO: Test HAC method X = np.random.randn(100,3) b = np.ones((3,1)) e = np.random.randn(100,1) y = np.dot(X,b) + e # Cases? # Homoskedastic # HC0 cls.res1_full = OLS(y,X).fit() cls.res1_restricted = OLS(y,X[:,0]).fit() cls.res2_full = cls.res1_full.get_robustcov_results('HC0') cls.res2_restricted = cls.res1_restricted.get_robustcov_results('HC0') cls.X = X cls.Y = y def test_LM_homoskedastic(self): resid = self.res1_restricted.wresid n = resid.shape[0] X = self.X S = np.dot(resid,resid) / n * np.dot(X.T,X) / n Sinv = np.linalg.inv(S) s = np.mean(X * resid[:,None], 0) LMstat = n * np.dot(np.dot(s,Sinv),s.T) LMstat_OLS = self.res1_full.compare_lm_test(self.res1_restricted) LMstat2 = LMstat_OLS[0] assert_almost_equal(LMstat, LMstat2, DECIMAL_7) def test_LM_heteroskedastic_nodemean(self): resid = self.res1_restricted.wresid n = resid.shape[0] X = self.X scores = X * resid[:,None] S = np.dot(scores.T,scores) / n Sinv = np.linalg.inv(S) s = np.mean(scores, 0) LMstat = n * np.dot(np.dot(s,Sinv),s.T) LMstat_OLS = self.res2_full.compare_lm_test(self.res2_restricted, demean=False) LMstat2 = LMstat_OLS[0] assert_almost_equal(LMstat, LMstat2, DECIMAL_7) def test_LM_heteroskedastic_demean(self): resid = self.res1_restricted.wresid n = resid.shape[0] X = self.X scores = X * resid[:,None] scores_demean = scores - scores.mean(0) S = np.dot(scores_demean.T,scores_demean) / n Sinv = np.linalg.inv(S) s = np.mean(scores, 0) LMstat = n * np.dot(np.dot(s,Sinv),s.T) LMstat_OLS = self.res2_full.compare_lm_test(self.res2_restricted) LMstat2 = LMstat_OLS[0] assert_almost_equal(LMstat, LMstat2, DECIMAL_7) def test_LM_heteroskedastic_LRversion(self): resid = self.res1_restricted.wresid resid_full = self.res1_full.wresid n = resid.shape[0] X = self.X scores = X * resid[:,None] s = np.mean(scores, 0) scores = X * resid_full[:,None] S = np.dot(scores.T,scores) / n Sinv = np.linalg.inv(S) LMstat = n * np.dot(np.dot(s,Sinv),s.T) LMstat_OLS = self.res2_full.compare_lm_test(self.res2_restricted, use_lr = True) LMstat2 = LMstat_OLS[0] assert_almost_equal(LMstat, LMstat2, DECIMAL_7) def test_LM_nonnested(self): assert_raises(ValueError, self.res2_restricted.compare_lm_test, self.res2_full) class TestOLS_GLS_WLS_equivalence(object): @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) y = data.endog X = data.exog n = y.shape[0] w = np.ones(n) cls.results = [] cls.results.append(OLS(y, X).fit()) cls.results.append(WLS(y, X, w).fit()) cls.results.append(GLS(y, X, 100*w).fit()) cls.results.append(GLS(y, X, np.diag(0.1*w)).fit()) def test_ll(self): llf = np.array([r.llf for r in self.results]) llf_1 = np.ones_like(llf) * self.results[0].llf assert_almost_equal(llf, llf_1, DECIMAL_7) ic = np.array([r.aic for r in self.results]) ic_1 = np.ones_like(ic) * self.results[0].aic assert_almost_equal(ic, ic_1, DECIMAL_7) ic = np.array([r.bic for r in self.results]) ic_1 = np.ones_like(ic) * self.results[0].bic assert_almost_equal(ic, ic_1, DECIMAL_7) def test_params(self): params = np.array([r.params for r in self.results]) params_1 = np.array([self.results[0].params] * len(self.results)) assert_allclose(params, params_1) def test_ss(self): bse = np.array([r.bse for r in self.results]) bse_1 = np.array([self.results[0].bse] * len(self.results)) assert_allclose(bse, bse_1) def test_rsquared(self): rsquared = np.array([r.rsquared for r in self.results]) rsquared_1 = np.array([self.results[0].rsquared] * len(self.results)) assert_almost_equal(rsquared, rsquared_1, DECIMAL_7) class TestGLS_WLS_equivalence(TestOLS_GLS_WLS_equivalence): # reuse test methods @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) y = data.endog X = data.exog n = y.shape[0] np.random.seed(5) w = np.random.uniform(0.5, 1, n) w_inv = 1. / w cls.results = [] cls.results.append(WLS(y, X, w).fit()) cls.results.append(WLS(y, X, 0.01 * w).fit()) cls.results.append(GLS(y, X, 100 * w_inv).fit()) cls.results.append(GLS(y, X, np.diag(0.1 * w_inv)).fit()) def test_rsquared(self): # TODO: WLS rsquared is ok, GLS might have wrong centered_tss # We only check that WLS and GLS rsquared is invariant to scaling # WLS and GLS have different rsquared assert_almost_equal(self.results[1].rsquared, self.results[0].rsquared, DECIMAL_7) assert_almost_equal(self.results[3].rsquared, self.results[2].rsquared, DECIMAL_7) class TestNonFit(object): @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) cls.endog = data.endog cls.exog = data.exog cls.ols_model = OLS(data.endog, data.exog) def test_df_resid(self): df_resid = self.endog.shape[0] - self.exog.shape[1] assert_equal(self.ols_model.df_resid, long(9)) class TestWLS_CornerCases(object): @classmethod def setupClass(cls): cls.exog = np.ones((1,)) cls.endog = np.ones((1,)) weights = 1 cls.wls_res = WLS(cls.endog, cls.exog, weights=weights).fit() def test_wrong_size_weights(self): weights = np.ones((10,10)) assert_raises(ValueError, WLS, self.endog, self.exog, weights=weights) class TestWLSExogWeights(CheckRegressionResults): #Test WLS with Greene's credit card data #reg avgexp age income incomesq ownrent [aw=1/incomesq] def __init__(self): from .results.results_regression import CCardWLS from statsmodels.datasets.ccard import load dta = load() dta.exog = add_constant(dta.exog, prepend=False) nobs = 72. weights = 1/dta.exog[:,2] # for comparison with stata analytic weights scaled_weights = ((weights * nobs)/weights.sum()) self.res1 = WLS(dta.endog, dta.exog, weights=scaled_weights).fit() self.res2 = CCardWLS() self.res2.wresid = scaled_weights ** .5 * self.res2.resid # correction because we use different definition for loglike/llf corr_ic = 2 * (self.res1.llf - self.res2.llf) self.res2.aic -= corr_ic self.res2.bic -= corr_ic self.res2.llf += 0.5 * np.sum(np.log(self.res1.model.weights)) def test_wls_example(): #example from the docstring, there was a note about a bug, should #be fixed now Y = [1,3,4,5,2,3,4] X = lrange(1,8) X = add_constant(X, prepend=False) wls_model = WLS(Y,X, weights=lrange(1,8)).fit() #taken from R lm.summary assert_almost_equal(wls_model.fvalue, 0.127337843215, 6) assert_almost_equal(wls_model.scale, 2.44608530786**2, 6) def test_wls_tss(): y = np.array([22, 22, 22, 23, 23, 23]) X = [[1, 0], [1, 0], [1, 1], [0, 1], [0, 1], [0, 1]] ols_mod = OLS(y, add_constant(X, prepend=False)).fit() yw = np.array([22, 22, 23.]) Xw = [[1,0],[1,1],[0,1]] w = np.array([2, 1, 3.]) wls_mod = WLS(yw, add_constant(Xw, prepend=False), weights=w).fit() assert_equal(ols_mod.centered_tss, wls_mod.centered_tss) class TestWLSScalarVsArray(CheckRegressionResults): @classmethod def setupClass(cls): from statsmodels.datasets.longley import load dta = load() dta.exog = add_constant(dta.exog, prepend=True) wls_scalar = WLS(dta.endog, dta.exog, weights=1./3).fit() weights = [1/3.] * len(dta.endog) wls_array = WLS(dta.endog, dta.exog, weights=weights).fit() cls.res1 = wls_scalar cls.res2 = wls_array #class TestWLS_GLS(CheckRegressionResults): # @classmethod # def setupClass(cls): # from statsmodels.datasets.ccard import load # data = load() # cls.res1 = WLS(data.endog, data.exog, weights = 1/data.exog[:,2]).fit() # cls.res2 = GLS(data.endog, data.exog, sigma = data.exog[:,2]).fit() # # def check_confidenceintervals(self, conf1, conf2): # assert_almost_equal(conf1, conf2(), DECIMAL_4) def test_wls_missing(): from statsmodels.datasets.ccard import load data = load() endog = data.endog endog[[10, 25]] = np.nan mod = WLS(data.endog, data.exog, weights = 1/data.exog[:,2], missing='drop') assert_equal(mod.endog.shape[0], 70) assert_equal(mod.exog.shape[0], 70) assert_equal(mod.weights.shape[0], 70) class TestWLS_OLS(CheckRegressionResults): @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) cls.res1 = OLS(data.endog, data.exog).fit() cls.res2 = WLS(data.endog, data.exog).fit() def check_confidenceintervals(self, conf1, conf2): assert_almost_equal(conf1, conf2(), DECIMAL_4) class TestGLS_OLS(CheckRegressionResults): @classmethod def setupClass(cls): data = longley.load() data.exog = add_constant(data.exog, prepend=False) cls.res1 = GLS(data.endog, data.exog).fit() cls.res2 = OLS(data.endog, data.exog).fit() def check_confidenceintervals(self, conf1, conf2): assert_almost_equal(conf1, conf2(), DECIMAL_4) #TODO: test AR # why the two-stage in AR? #class test_ar(object): # from statsmodels.datasets.sunspots import load # data = load() # model = AR(data.endog, rho=4).fit() # R_res = RModel(data.endog, aic="FALSE", order_max=4) # def test_params(self): # assert_almost_equal(self.model.rho, # pass # def test_order(self): # In R this can be defined or chosen by minimizing the AIC if aic=True # pass class TestYuleWalker(object): @classmethod def setupClass(cls): from statsmodels.datasets.sunspots import load data = load() cls.rho, cls.sigma = yule_walker(data.endog, order=4, method="mle") cls.R_params = [1.2831003105694765, -0.45240924374091945, -0.20770298557575195, 0.047943648089542337] def test_params(self): assert_almost_equal(self.rho, self.R_params, DECIMAL_4) class TestDataDimensions(CheckRegressionResults): @classmethod def setupClass(cls): np.random.seed(54321) cls.endog_n_ = np.random.uniform(0,20,size=30) cls.endog_n_one = cls.endog_n_[:,None] cls.exog_n_ = np.random.uniform(0,20,size=30) cls.exog_n_one = cls.exog_n_[:,None] cls.degen_exog = cls.exog_n_one[:-1] cls.mod1 = OLS(cls.endog_n_one, cls.exog_n_one) cls.mod1.df_model += 1 cls.res1 = cls.mod1.fit() # Note that these are created for every subclass.. # A little extra overhead probably cls.mod2 = OLS(cls.endog_n_one, cls.exog_n_one) cls.mod2.df_model += 1 cls.res2 = cls.mod2.fit() def check_confidenceintervals(self, conf1, conf2): assert_almost_equal(conf1, conf2(), DECIMAL_4) class TestGLS_large_data(TestDataDimensions): @classmethod def setupClass(cls): nobs = 1000 y = np.random.randn(nobs,1) X = np.random.randn(nobs,20) sigma = np.ones_like(y) cls.gls_res = GLS(y, X, sigma=sigma).fit() cls.gls_res_scalar = GLS(y, X, sigma=1).fit() cls.gls_res_none= GLS(y, X).fit() cls.ols_res = OLS(y, X).fit() def test_large_equal_params(self): assert_almost_equal(self.ols_res.params, self.gls_res.params, DECIMAL_7) def test_large_equal_loglike(self): assert_almost_equal(self.ols_res.llf, self.gls_res.llf, DECIMAL_7) def test_large_equal_params_none(self): assert_almost_equal(self.gls_res.params, self.gls_res_none.params, DECIMAL_7) class TestNxNx(TestDataDimensions): @classmethod def setupClass(cls): super(TestNxNx, cls).setupClass() cls.mod2 = OLS(cls.endog_n_, cls.exog_n_) cls.mod2.df_model += 1 cls.res2 = cls.mod2.fit() class TestNxOneNx(TestDataDimensions): @classmethod def setupClass(cls): super(TestNxOneNx, cls).setupClass() cls.mod2 = OLS(cls.endog_n_one, cls.exog_n_) cls.mod2.df_model += 1 cls.res2 = cls.mod2.fit() class TestNxNxOne(TestDataDimensions): @classmethod def setupClass(cls): super(TestNxNxOne, cls).setupClass() cls.mod2 = OLS(cls.endog_n_, cls.exog_n_one) cls.mod2.df_model += 1 cls.res2 = cls.mod2.fit() def test_bad_size(): np.random.seed(54321) data = np.random.uniform(0,20,31) assert_raises(ValueError, OLS, data, data[1:]) def test_const_indicator(): np.random.seed(12345) X = np.random.randint(0, 3, size=30) X = categorical(X, drop=True) y = np.dot(X, [1., 2., 3.]) + np.random.normal(size=30) modc = OLS(y, add_constant(X[:,1:], prepend=True)).fit() mod = OLS(y, X, hasconst=True).fit() assert_almost_equal(modc.rsquared, mod.rsquared, 12) def test_706(): # make sure one regressor pandas Series gets passed to DataFrame # for conf_int. y = pandas.Series(np.random.randn(10)) x = pandas.Series(np.ones(10)) res = OLS(y,x).fit() conf_int = res.conf_int() np.testing.assert_equal(conf_int.shape, (1, 2)) np.testing.assert_(isinstance(conf_int, pandas.DataFrame)) def test_summary(): # test 734 import re dta = longley.load_pandas() X = dta.exog X["constant"] = 1 y = dta.endog with warnings.catch_warnings(record=True): res = OLS(y, X).fit() table = res.summary().as_latex() # replace the date and time table = re.sub("(?<=\n\\\\textbf\{Date:\} &).+?&", " Sun, 07 Apr 2013 &", table) table = re.sub("(?<=\n\\\\textbf\{Time:\} &).+?&", " 13:46:07 &", table) expected = """\\begin{center} \\begin{tabular}{lclc} \\toprule \\textbf{Dep. Variable:} & TOTEMP & \\textbf{ R-squared: } & 0.995 \\\\ \\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.992 \\\\ \\textbf{Method:} & Least Squares & \\textbf{ F-statistic: } & 330.3 \\\\ \\textbf{Date:} & Sun, 07 Apr 2013 & \\textbf{ Prob (F-statistic):} & 4.98e-10 \\\\ \\textbf{Time:} & 13:46:07 & \\textbf{ Log-Likelihood: } & -109.62 \\\\ \\textbf{No. Observations:} & 16 & \\textbf{ AIC: } & 233.2 \\\\ \\textbf{Df Residuals:} & 9 & \\textbf{ BIC: } & 238.6 \\\\ \\textbf{Df Model:} & 6 & \\textbf{ } & \\\\ \\bottomrule \\end{tabular} \\begin{tabular}{lccccc} & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$>$$|$t$|$} & \\textbf{[95.0\\% Conf. Int.]} \\\\ \\midrule \\textbf{GNPDEFL} & 15.0619 & 84.915 & 0.177 & 0.863 & -177.029 207.153 \\\\ \\textbf{GNP} & -0.0358 & 0.033 & -1.070 & 0.313 & -0.112 0.040 \\\\ \\textbf{UNEMP} & -2.0202 & 0.488 & -4.136 & 0.003 & -3.125 -0.915 \\\\ \\textbf{ARMED} & -1.0332 & 0.214 & -4.822 & 0.001 & -1.518 -0.549 \\\\ \\textbf{POP} & -0.0511 & 0.226 & -0.226 & 0.826 & -0.563 0.460 \\\\ \\textbf{YEAR} & 1829.1515 & 455.478 & 4.016 & 0.003 & 798.788 2859.515 \\\\ \\textbf{constant} & -3.482e+06 & 8.9e+05 & -3.911 & 0.004 & -5.5e+06 -1.47e+06 \\\\ \\bottomrule \\end{tabular} \\begin{tabular}{lclc} \\textbf{Omnibus:} & 0.749 & \\textbf{ Durbin-Watson: } & 2.559 \\\\ \\textbf{Prob(Omnibus):} & 0.688 & \\textbf{ Jarque-Bera (JB): } & 0.684 \\\\ \\textbf{Skew:} & 0.420 & \\textbf{ Prob(JB): } & 0.710 \\\\ \\textbf{Kurtosis:} & 2.434 & \\textbf{ Cond. No. } & 4.86e+09 \\\\ \\bottomrule \\end{tabular} %\\caption{OLS Regression Results} \\end{center}""" assert_equal(table, expected) class TestRegularizedFit(object): # Make sure there are no issues when there are no selected # variables. def test_empty_model(self): np.random.seed(742) n = 100 endog = np.random.normal(size=n) exog = np.random.normal(size=(n, 3)) model = OLS(endog, exog) result = model.fit_regularized(alpha=1000) assert_equal(result.params, 0.) assert_equal(result.bse, 0.) def test_regularized(self): import os from . import glmnet_r_results cur_dir = os.path.dirname(os.path.abspath(__file__)) data = np.loadtxt(os.path.join(cur_dir, "results", "lasso_data.csv"), delimiter=",") tests = [x for x in dir(glmnet_r_results) if x.startswith("rslt_")] for test in tests: vec = getattr(glmnet_r_results, test) n = vec[0] p = vec[1] L1_wt = float(vec[2]) lam = float(vec[3]) params = vec[4:].astype(np.float64) endog = data[0:n, 0] exog = data[0:n, 1:(p+1)] endog = endog - endog.mean() endog /= endog.std(ddof=1) exog = exog - exog.mean(0) exog /= exog.std(0, ddof=1) mod = OLS(endog, exog) rslt = mod.fit_regularized(L1_wt=L1_wt, alpha=lam) assert_almost_equal(rslt.params, params, decimal=3) # Smoke test for summary smry = rslt.summary() def test_formula_missing_cat(): # gh-805 import statsmodels.api as sm from statsmodels.formula.api import ols from patsy import PatsyError dta = sm.datasets.grunfeld.load_pandas().data dta.ix[0, 'firm'] = np.nan mod = ols(formula='value ~ invest + capital + firm + year', data=dta.dropna()) res = mod.fit() mod2 = ols(formula='value ~ invest + capital + firm + year', data=dta) res2 = mod2.fit() assert_almost_equal(res.params.values, res2.params.values) assert_raises(PatsyError, ols, 'value ~ invest + capital + firm + year', data=dta, missing='raise') def test_missing_formula_predict(): # see 2171 nsample = 30 data = pandas.DataFrame({'x': np.linspace(0, 10, nsample)}) null = pandas.DataFrame({'x': np.array([np.nan])}) data = pandas.concat([data, null]) beta = np.array([1, 0.1]) e = np.random.normal(size=nsample+1) data['y'] = beta[0] + beta[1] * data['x'] + e model = OLS.from_formula('y ~ x', data=data) fit = model.fit() pred = fit.predict(exog=data[:-1]) if __name__=="__main__": import nose # run_module_suite() nose.runmodule(argv=[__file__,'-vvs','-x','--pdb', '--pdb-failure'], exit=False) # nose.runmodule(argv=[__file__,'-vvs','-x'], exit=False) #, '--pdb'
bsd-3-clause
google/rysim
python/results_analyzer/Main.py
1
119456
# Copyright 2014 The RySim Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABCMeta, abstractmethod from array import * import collections import gflags import numpy import os import pprint import re import scipy.integrate import scipy.interpolate import sqlite3 import sys from matplotlib import pylab import pandas as pd import statsmodels.formula.api as sm from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as pyplot # Global state experiment_db = None event_count_buckets = [5000, 10000, 20000, 40000, 50000] bucketing_factor = 0.001 kernel_results_table = None kernel_machine_results_table = None kernel_machine_type_results_table = None fit_comparison_table = dict() # gflag defn's and registration FLAGS = gflags.FLAGS gflags.DEFINE_string('root_dir', '.', 'Root directory to start searching and where to store the database. Defaults to the current ' 'directory') gflags.DEFINE_string('output_db', 'experiment.db', 'Name of the database file that should be created. If the file already exists it will be ' 'overwritten. Defaults to "experiment.db"') gflags.DEFINE_bool('read_inputs', False, 'Controls if the application should re-read the inputs. If so the output DB will be clobbered ' 'entirely. If not only the analysis tables will be removed') class DBWrapper(object): def __init__(self, db_filename): self.db = sqlite3.connect(db_filename, check_same_thread=False) def commit(self): self.db.commit() def execute_safe(self, cmd): self.execute(cmd) self.commit() def execute(self, cmd): self.db.execute(cmd) def select(self, cmd): return self.db.execute(cmd) def cleanup(self): self.db.commit() self.db.close() self.db = None class ResultsTable(object): filtered_table_entry = collections.namedtuple('FilteredTableEntry', ['event_count', 'event_count_std', 'agents', 'agents_std', 'connections', 'connections_std', 'cpu', 'cpu_std', 'maxmem', 'maxmem_std']) filtered_entry = collections.namedtuple('FilteredEntry', ['mean', 'std']) def __init__(self): self.raw_table = dict() self.filtered_table = dict() def get_keys(self): return self.filtered_table.keys() def add_entry(self, key, bucket, model, event_count, agents, connections, cpu, maxmem): if key not in self.raw_table.keys(): self.raw_table[key] = dict() if model not in self.raw_table[key].keys(): self.raw_table[key][model] = dict() if agents not in self.raw_table[key][model].keys(): self.raw_table[key][model][agents] = dict() if connections not in self.raw_table[key][model][agents].keys(): self.raw_table[key][model][agents][connections] = dict() if bucket not in self.raw_table[key][model][agents][connections].keys(): self.raw_table[key][model][agents][connections][bucket] = dict() self.raw_table[key][model][agents][connections][bucket]["cpu"] = list() self.raw_table[key][model][agents][connections][bucket]["maxmem"] = list() self.raw_table[key][model][agents][connections][bucket]["event_count"] = list() self.raw_table[key][model][agents][connections][bucket]["cpu"].append(cpu) self.raw_table[key][model][agents][connections][bucket]["maxmem"].append(maxmem) self.raw_table[key][model][agents][connections][bucket]["event_count"].append(event_count) def create_filtered_table(self): self.filtered_table = dict() for key in self.raw_table.keys(): self.filtered_table[key] = list() for model in self.raw_table[key].keys(): for agents in self.raw_table[key][model].keys(): for connections in self.raw_table[key][model][agents].keys(): for bucket in self.raw_table[key][model][agents][connections].keys(): if len(self.raw_table[key][model][agents][connections][bucket]["event_count"]) is 0: continue event_count = ResultsTable.filter_bucket_entry( self.raw_table[key][model][agents][connections][bucket]["event_count"]) cpu = ResultsTable.filter_bucket_entry( self.raw_table[key][model][agents][connections][bucket]["cpu"]) maxmem = ResultsTable.filter_bucket_entry( self.raw_table[key][model][agents][connections][bucket]["maxmem"]) self.filtered_table[key].append(ResultsTable.filtered_table_entry( event_count=event_count.mean, event_count_std=event_count.std, agents=agents, agents_std=0, connections=connections, connections_std=0, cpu=cpu.mean, cpu_std=cpu.std, maxmem=maxmem.mean, maxmem_std=maxmem.std)) @staticmethod def filter_bucket_entry(entry): return ResultsTable.filtered_entry(mean=numpy.mean(entry), std=numpy.std(entry)) def get_entries_for_key(self, key): return self.filtered_table[key] def get_event_count_lists_for_key(self, key): key_data = self.get_entries_for_key(key) return ResultsTable.filtered_entry(mean=[row[0] for row in key_data], std=[row[1] for row in key_data]) def get_agents_lists_for_key(self, key): key_data = self.get_entries_for_key(key) return ResultsTable.filtered_entry(mean=[row[2] for row in key_data], std=[row[3] for row in key_data]) def get_connections_lists_for_key(self, key): key_data = self.get_entries_for_key(key) return ResultsTable.filtered_entry(mean=[row[4] for row in key_data], std=[row[5] for row in key_data]) def get_cpu_lists_for_key(self, key): key_data = self.get_entries_for_key(key) return ResultsTable.filtered_entry(mean=[row[6] for row in key_data], std=[row[7] for row in key_data]) def get_maxmem_lists_for_key(self, key): key_data = self.get_entries_for_key(key) return ResultsTable.filtered_entry(mean=[row[8] for row in key_data], std=[row[9] for row in key_data]) class ScoreTable(object): def __init__(self, kernels, tag): global fit_comparison_table fit_comparison_table[tag] = 0.0 self.tag = tag self.r2_values = list() self.kernels = kernels self.table = dict() self.total_count = 0 self.total_score_idx = len(kernels) for kernel in kernels: self.table[kernel] = array('I', [0] * (1 + len(kernels))) def get_table(self): return self.table def get_total_count(self): return self.total_count def add_1d_fit_score(self, fits): self.total_count += 1 f_list = list() for kernel in fits.keys(): slope = fits[kernel][0][0] intercept = fits[kernel][1] self.r2_values.append(float(fits[kernel][2])) x_min = float(fits[kernel][3][0]) x_max = float(fits[kernel][4][0]) f_list.append((scipy.integrate.quad(lambda x: slope * x + intercept, x_min, x_max)[0], kernel[0])) f_list.sort() for i in range(0, len(f_list)): self.table[f_list[i][1]][i] += 1 self.table[f_list[i][1]][self.total_score_idx] += len(f_list) - i global fit_comparison_table fit_comparison_table[self.tag] = numpy.mean(self.r2_values) def add_2d_fit_score(self, fits): self.total_count += 1 f_list = list() for kernel in fits.keys(): slope_x = fits[kernel][0][0] slope_y = fits[kernel][0][1] intercept = fits[kernel][1] self.r2_values.append(float(fits[kernel][2])) x_min = float(fits[kernel][3][0]) x_max = float(fits[kernel][4][0]) y_min = float(fits[kernel][3][1]) y_max = float(fits[kernel][4][1]) f_list.append((scipy.integrate.dblquad(lambda x, y: slope_x * x + slope_y * y + intercept, x_min, x_max, lambda x: y_min, lambda x: y_max)[0], kernel[0])) f_list.sort() for i in range(0, len(f_list)): self.table[f_list[i][1]][i] += 1 self.table[f_list[i][1]][self.total_score_idx] += len(f_list) - i global fit_comparison_table fit_comparison_table[self.tag] = numpy.mean(self.r2_values) def add_3d_fit_score(self, fits): self.total_count += 1 f_list = list() for kernel in fits.keys(): slope_x = fits[kernel][0][0] slope_y = fits[kernel][0][1] slope_z = fits[kernel][0][2] intercept = fits[kernel][1] self.r2_values.append(float(fits[kernel][2])) x_min = float(fits[kernel][3][0]) x_max = float(fits[kernel][4][0]) y_min = float(fits[kernel][3][1]) y_max = float(fits[kernel][4][1]) z_min = float(fits[kernel][3][2]) z_max = float(fits[kernel][4][2]) f_list.append((scipy.integrate.tplquad(lambda x, y, z: slope_x * x + slope_y * y + slope_z * z + intercept, x_min, x_max, lambda x: y_min, lambda x: y_max, lambda x, y: z_min, lambda x, y: z_max)[0], kernel[0])) f_list.sort() for i in range(0, len(f_list)): self.table[f_list[i][1]][i] += 1 self.table[f_list[i][1]][self.total_score_idx] += len(f_list) - i global fit_comparison_table fit_comparison_table[self.tag] = numpy.mean(self.r2_values) class MachineComparisonTable(object): machine_core_counts = {'m3.large': 2, 'm3.2xlarge': 8, 'm3.medium': 1, 'm3.xlarge': 4} def __init__(self, kernels): self.per_kernel_means = dict() self.per_kernel_data = dict() self.kernels = kernels self.table = dict() self.per_kernel_splines = dict() for kernel in self.kernels: self.per_kernel_means[kernel] = dict() self.per_kernel_data[kernel] = dict() self.box_props = dict(linewidth=0.5, color='DimGray', markeredgecolor='DimGray') def add_1d_fit_score(self, fits, machine): machine_entry = self.get_machine_entry(machine) for kernel in fits.keys(): slope = fits[kernel][0][0] intercept = fits[kernel][1] x_min = float(fits[kernel][3][0]) x_max = float(fits[kernel][4][0]) machine_entry[kernel[0]].append(scipy.integrate.quad(lambda x: slope * x + intercept, x_min, x_max)[0]) def add_2d_fit_score(self, fits, machine): machine_entry = self.get_machine_entry(machine) for kernel in fits.keys(): slope_x = fits[kernel][0][0] slope_y = fits[kernel][0][1] intercept = fits[kernel][1] x_min = float(fits[kernel][3][0]) x_max = float(fits[kernel][4][0]) y_min = float(fits[kernel][3][1]) y_max = float(fits[kernel][4][1]) machine_entry[kernel[0]].append(scipy.integrate.dblquad(lambda x, y: slope_x * x + slope_y * y + intercept, x_min, x_max, lambda x: y_min, lambda x: y_max)[0]) def add_3d_fit_score(self, fits, machine): machine_entry = self.get_machine_entry(machine) for kernel in fits.keys(): slope_x = fits[kernel][0][0] slope_y = fits[kernel][0][1] slope_z = fits[kernel][0][2] intercept = fits[kernel][1] x_min = float(fits[kernel][3][0]) x_max = float(fits[kernel][4][0]) y_min = float(fits[kernel][3][1]) y_max = float(fits[kernel][4][1]) z_min = float(fits[kernel][3][2]) z_max = float(fits[kernel][4][2]) machine_entry[kernel[0]].append(scipy.integrate.tplquad( lambda x, y, z: slope_x * x + slope_y * y + slope_z * z + intercept, x_min, x_max, lambda x: y_min, lambda x: y_max, lambda x, y: z_min, lambda x, y: z_max)[0]) def get_machine_entry(self, machine): if machine in self.table: return self.table[machine] else: self.table[machine] = dict() for kernel in self.kernels: self.table[machine][kernel] = list() return self.table[machine] def generate_per_kernel_means(self): for machine in self.table.keys(): for kernel in self.kernels: self.per_kernel_means[kernel][MachineComparisonTable.machine_core_counts[machine]] = \ numpy.mean(self.table[machine][kernel]) def generate_per_kernel_data(self): for machine in self.table.keys(): for kernel in self.kernels: self.per_kernel_data[kernel][MachineComparisonTable.machine_core_counts[machine]] = \ self.table[machine][kernel] def generate_mean_list(self, kernel): mean_list = list() for cores, value in self.per_kernel_means[kernel].iteritems(): mean_list.append((cores, value)) mean_list.sort() return mean_list def generate_1d_plot(self, dependent_caption, dependent_filename, independent_caption, independent_filename, kernel, key_label_filename): data_list = self.generate_mean_list(kernel) x_list = list() y_list = list() for entry in data_list: x_list.append(entry[0]) y_list.append(entry[1]) x_data = numpy.array(x_list) y_data = numpy.array(y_list) x_new = numpy.linspace(x_data.min(), x_data.max(), 300) y_new = scipy.interpolate.spline(x_data, y_data, x_new) self.per_kernel_splines[kernel] = dict() self.per_kernel_splines[kernel]['x_data'] = x_data self.per_kernel_splines[kernel]['y_data'] = y_data self.per_kernel_splines[kernel]['x_new'] = x_new self.per_kernel_splines[kernel]['y_new'] = y_new GenericArtifacts.set_figure_params() filename_base = "machine_comparison_{}_vs_{}_{}_{}".format(independent_filename, dependent_filename, str(kernel).lower(), key_label_filename) plot_filename = os.path.join(FLAGS.root_dir, "{}_plot.eps".format(filename_base)) print "\tGenerating {}".format(plot_filename) pylab.figure(1) pylab.clf() pylab.plot(x_data, y_data, linestyle='-', color='k') pylab.scatter(x_data, y_data, marker='s', color='k', label=kernel) pylab.autoscale() pylab.xlabel("Number of Cores") pylab.ylabel(dependent_caption) pylab.legend(loc='upper center', bbox_to_anchor=(0.5, -0.10), ncol=4) pylab.savefig(plot_filename, bbox_inches='tight', orientation='portrait') caption = "Plot of Machine Comparison of {} for {} vs {}".format(kernel, independent_caption, dependent_caption) tex_filename = os.path.join(FLAGS.root_dir, "{}_plot.tex".format(filename_base)) print "\tGenerating {}".format(tex_filename) tex_figure_path = os.path.join("figures", "auto", "{}_plot.eps".format(filename_base)) output_latex = r"""\begin{figure} \centering """ output_latex += "\\includegraphics{%s}\n" % tex_figure_path output_latex += "\\caption{%s}\n" % caption output_latex += "\\label{fig:%s}\n" % filename_base output_latex += r"""\end{figure}""" with open(tex_filename, 'w') as f: f.write(output_latex) def generate_box_whisker_plot(self, dependent_caption, dependent_filename, independent_caption, independent_filename, kernel, key_label_filename): positions = self.per_kernel_data[kernel].keys() positions.sort() box_data = list() for position in positions: box_data.append(self.per_kernel_data[kernel][position]) x_data = self.per_kernel_splines[kernel]['x_data'] y_data = self.per_kernel_splines[kernel]['y_data'] GenericArtifacts.set_figure_params() filename_base = "machine_comparison_box_{}_vs_{}_{}_{}".format(independent_filename, dependent_filename, str(kernel).lower(), key_label_filename) plot_filename = os.path.join(FLAGS.root_dir, "{}_bwplot.eps".format(filename_base)) print "\tGenerating {}".format(plot_filename) pylab.figure(1) pylab.clf() flier_props = self.box_props.copy() flier_props['marker'] = 's' pylab.boxplot(x=box_data, positions=positions, boxprops=self.box_props, whiskerprops=self.box_props, capprops=self.box_props, flierprops=flier_props, medianprops=self.box_props, meanprops=self.box_props) pylab.plot(x_data, y_data, linestyle='-', color='k') pylab.scatter(x_data, y_data, marker='s', color='k', label=kernel) pylab.autoscale() pylab.xlabel("Number of Cores") pylab.ylabel(dependent_caption) pylab.legend(loc='upper center', bbox_to_anchor=(0.5, -0.10), ncol=4) pylab.savefig(plot_filename, bbox_inches='tight', orientation='portrait') caption = "Box \& Whisker Plot of Machine Comparison of {} for {} vs {}".format(kernel, independent_caption, dependent_caption) tex_filename = os.path.join(FLAGS.root_dir, "{}_bwplot.tex".format(filename_base)) print "\tGenerating {}".format(tex_filename) tex_figure_path = os.path.join("figures", "auto", "{}_bwplot.eps".format(filename_base)) output_latex = r"""\begin{figure} \centering """ output_latex += "\\includegraphics{%s}\n" % tex_figure_path output_latex += "\\caption{%s}\n" % caption output_latex += "\\label{fig:%s}\n" % filename_base output_latex += r"""\end{figure}""" with open(tex_filename, 'w') as f: f.write(output_latex) def generate_table(self, dependent_caption, dependent_filename, independent_caption, independent_filename, kernel, key_label_caption, key_label_filename): filename_base = "machine_comparison_{}_vs_{}_{}_{}".format(independent_filename, dependent_filename, str(kernel).lower(), key_label_filename) tex_filename = os.path.join(FLAGS.root_dir, "{}_table.tex".format(filename_base)) print "\tGenerating {}".format(tex_filename) output_latex = r"""\begin{table}[h] \centering """ output_latex += r"""\begin{tabular}{|c|c|} \hline """ output_latex += r"""Cores & Score \\ \hline """ for entry in self.generate_mean_list(kernel): cores = entry[0] score = entry[1] output_latex += "%d & %.4e \\\\ \n" % (cores, score) output_latex += r"""\hline \end{tabular} """ output_latex += "\\caption{Machine Comparison of %s for %s vs %s in %s}\n" % (kernel, independent_caption, dependent_caption, key_label_caption) output_latex += "\\label{tab:%s}\n" % filename_base output_latex += r"""\end{table}""" with open(tex_filename, 'w') as f: f.write(output_latex) def generate_multiline_plot(self, dependent_caption, dependent_filename, independent_caption, independent_filename, key_label_filename): filename_base = "machine_comparison_{}_vs_{}_{}".format(independent_filename, dependent_filename, key_label_filename) plot_filename = os.path.join(FLAGS.root_dir, "{}_plot.eps".format(filename_base)) print "\tGenerating {}".format(plot_filename) pylab.figure(1) pylab.clf() markers = ['v', '^', 's', 'D', 'x', '*', 'h'] markers_count = 0 for kernel in self.kernels: x_data = self.per_kernel_splines[kernel]['x_data'] y_data = self.per_kernel_splines[kernel]['y_data'] pylab.plot(x_data, y_data, linestyle='-', color='k') pylab.scatter(x_data, y_data, marker=markers[markers_count], color='k', label=kernel) markers_count += 1 pylab.autoscale() pylab.xlabel("Number of Cores") pylab.ylabel(dependent_caption) pylab.legend(loc='upper center', bbox_to_anchor=(0.5, -0.10), ncol=4) pylab.savefig(plot_filename, bbox_inches='tight', orientation='portrait') caption = "Multi-line Plot of Machine Comparison for {} vs {}".format(independent_caption, dependent_caption) tex_filename = os.path.join(FLAGS.root_dir, "{}_plot.tex".format(filename_base)) print "\tGenerating {}".format(tex_filename) tex_figure_path = os.path.join("figures", "auto", "{}_plot.eps".format(filename_base)) output_latex = r"""\begin{figure} \centering """ output_latex += "\\includegraphics{%s}\n" % tex_figure_path output_latex += "\\caption{%s}\n" % caption output_latex += "\\label{fig:%s}\n" % filename_base output_latex += r"""\end{figure}""" with open(tex_filename, 'w') as f: f.write(output_latex) def generate_multiline_box_whisker_plot(self, dependent_caption, dependent_filename, independent_caption, independent_filename, key_label_filename): filename_base = "machine_comparison_box_{}_vs_{}_{}".format(independent_filename, dependent_filename, key_label_filename) plot_filename = os.path.join(FLAGS.root_dir, "{}_bwplot.eps".format(filename_base)) print "\tGenerating {}".format(plot_filename) pylab.figure(1) pylab.clf() markers = ['v', '^', 's', 'D', 'x', '*', 'h'] markers_count = 0 for kernel in self.kernels: x_data = self.per_kernel_splines[kernel]['x_data'] y_data = self.per_kernel_splines[kernel]['y_data'] positions = self.per_kernel_data[kernel].keys() positions.sort() box_data = list() for position in positions: box_data.append(self.per_kernel_data[kernel][position]) flier_props = self.box_props.copy() flier_props['marker'] = markers[markers_count] width = 0.1 * float(markers_count + 1) whisker_props = self.box_props.copy() whisker_props['linestyle'] = 'none' pylab.boxplot(x=box_data, positions=positions, widths=width, boxprops=self.box_props, whiskerprops=whisker_props, showcaps=False, showfliers=False, medianprops=self.box_props, meanprops=self.box_props) pylab.plot(x_data, y_data, linestyle='-', color='k') pylab.scatter(x_data, y_data, marker=markers[markers_count], color='k', label=kernel) markers_count += 1 pylab.autoscale() pylab.xlabel("Number of Cores") pylab.ylabel(dependent_caption) pylab.legend(loc='upper center', bbox_to_anchor=(0.5, -0.10), ncol=4) pylab.savefig(plot_filename, bbox_inches='tight', orientation='portrait') caption = "Multi-line Box \& Whisker Plot of Machine Comparison for {} vs {}".format(independent_caption, dependent_caption) tex_filename = os.path.join(FLAGS.root_dir, "{}_bwplot.tex".format(filename_base)) print "\tGenerating {}".format(tex_filename) tex_figure_path = os.path.join("figures", "auto", "{}_bwplot.eps".format(filename_base)) output_latex = r"""\begin{figure} \centering """ output_latex += "\\includegraphics{%s}\n" % tex_figure_path output_latex += "\\caption{%s}\n" % caption output_latex += "\\label{fig:%s}\n" % filename_base output_latex += r"""\end{figure}""" with open(tex_filename, 'w') as f: f.write(output_latex) def generate_artifacts(self, key_label_caption, key_label_filename, independent_caption, independent_filename, dependent_caption, dependent_filename): self.generate_per_kernel_means() self.generate_per_kernel_data() for kernel in self.kernels: self.generate_1d_plot(dependent_caption, dependent_filename, independent_caption, independent_filename, kernel, key_label_filename) self.generate_box_whisker_plot(dependent_caption, dependent_filename, independent_caption, independent_filename, kernel, key_label_filename) self.generate_table(dependent_caption, dependent_filename, independent_caption, independent_filename, kernel, key_label_caption, key_label_filename) self.generate_multiline_plot(dependent_caption, dependent_filename, independent_caption, independent_filename, key_label_filename) self.generate_multiline_box_whisker_plot(dependent_caption, dependent_filename, independent_caption, independent_filename, key_label_filename) class GenericArtifacts: __metaclass__ = ABCMeta linear_regression = collections.namedtuple('LinearRegression', ['slope', 'intercept', 'r_squared', 'min', 'max']) def __init__(self, results_table, key_label_tuple): self.results_table = results_table self.key_label_tuple = key_label_tuple self.keys = self.results_table.get_keys() self.sub_key_label_tuple = None if len(self.key_label_tuple) is 1 else self.key_label_tuple[1:] self.sub_keys = None if not self.sub_key_label_tuple else set() self.kernels = set() self.cpu_ranges = dict() self.maxmem_ranges = dict() self.event_count_ranges = dict() self.agents_ranges = dict() self.connections_ranges = dict() self.event_count_vs_cpu_fits = dict() self.event_count_vs_maxmem_fits = dict() self.agents_vs_cpu_fits = dict() self.agents_vs_maxmem_fits = dict() self.connections_vs_cpu_fits = dict() self.connections_vs_maxmem_fits = dict() self.event_count_and_agents_vs_cpu_fits = dict() self.event_count_and_agents_vs_maxmem_fits = dict() self.event_count_and_connections_vs_cpu_fits = dict() self.event_count_and_connections_vs_maxmem_fits = dict() self.agents_and_connections_vs_cpu_fits = dict() self.agents_and_connections_vs_maxmem_fits = dict() self.event_count_and_agents_and_connections_vs_cpu_fits = dict() self.event_count_and_agents_and_connections_vs_maxmem_fits = dict() for key in self.keys: self.calculate_fits_for_key(key) self.kernels.add(key[0]) if self.sub_keys is not None: self.sub_keys.add(key[1:]) def calculate_fits_for_key(self, key): self.cpu_ranges[key] = self.results_table.get_cpu_lists_for_key(key).mean self.maxmem_ranges[key] = self.results_table.get_maxmem_lists_for_key(key).mean self.event_count_ranges[key] = self.results_table.get_event_count_lists_for_key(key).mean self.agents_ranges[key] = self.results_table.get_event_count_lists_for_key(key).mean self.connections_ranges[key] = self.results_table.get_event_count_lists_for_key(key).mean self.event_count_vs_cpu_fits[key] = GenericArtifacts.calculate_linear_regression_1d( self.event_count_ranges[key], self.cpu_ranges[key]) self.event_count_vs_maxmem_fits[key] = GenericArtifacts.calculate_linear_regression_1d( self.event_count_ranges[key], self.maxmem_ranges[key]) self.agents_vs_cpu_fits[key] = GenericArtifacts.calculate_linear_regression_1d( self.agents_ranges[key], self.cpu_ranges[key]) self.agents_vs_maxmem_fits[key] = GenericArtifacts.calculate_linear_regression_1d( self.agents_ranges[key], self.maxmem_ranges[key]) self.connections_vs_cpu_fits[key] = GenericArtifacts.calculate_linear_regression_1d( self.connections_ranges[key], self.cpu_ranges[key]) self.connections_vs_maxmem_fits[key] = GenericArtifacts.calculate_linear_regression_1d( self.connections_ranges[key], self.maxmem_ranges[key]) self.event_count_and_agents_vs_cpu_fits[key] = GenericArtifacts.calculate_linear_regression_2d( self.event_count_ranges[key], self.agents_ranges[key], self.cpu_ranges[key]) self.event_count_and_agents_vs_maxmem_fits[key] = GenericArtifacts.calculate_linear_regression_2d( self.event_count_ranges[key], self.agents_ranges[key], self.maxmem_ranges[key]) self.event_count_and_connections_vs_cpu_fits[key] = GenericArtifacts.calculate_linear_regression_2d( self.event_count_ranges[key], self.connections_ranges[key], self.cpu_ranges[key]) self.event_count_and_connections_vs_maxmem_fits[key] = GenericArtifacts.calculate_linear_regression_2d( self.event_count_ranges[key], self.connections_ranges[key], self.maxmem_ranges[key]) self.agents_and_connections_vs_cpu_fits[key] = GenericArtifacts.calculate_linear_regression_2d( self.agents_ranges[key], self.connections_ranges[key], self.cpu_ranges[key]) self.agents_and_connections_vs_maxmem_fits[key] = GenericArtifacts.calculate_linear_regression_2d( self.agents_ranges[key], self.connections_ranges[key], self.maxmem_ranges[key]) self.event_count_and_agents_and_connections_vs_cpu_fits[key] = \ GenericArtifacts.calculate_linear_regression_3d( self.event_count_ranges[key], self.agents_ranges[key], self.connections_ranges[key], self.cpu_ranges[key]) self.event_count_and_agents_and_connections_vs_maxmem_fits[key] = \ GenericArtifacts.calculate_linear_regression_3d( self.event_count_ranges[key], self.agents_ranges[key], self.connections_ranges[key], self.maxmem_ranges[key]) def filter_dict_for_sub_key(self, raw_dict, sub_key): return_dict = dict() for kernel in iter(self.kernels): return_dict[(kernel,)] = raw_dict[(kernel,) + sub_key] return return_dict @staticmethod def key_tuple_to_caption_string(key_tuple, capitialize=False): return_string = "" for entry in key_tuple: if not capitialize: return_string += "{} and ".format(entry) else: return_string += "{} and ".format(str(entry).capitalize()) return return_string[:-5] @staticmethod def key_tuple_to_filename_string(key_tuple, lowercase=False): return_string = "" for entry in key_tuple: if not lowercase: return_string += "{}_".format(entry) else: return_string += "{}_".format(str(entry).lower()) return return_string[:-1] @abstractmethod def generate_multiline_plots(self): pass @abstractmethod def generate_fit_tables(self): pass @abstractmethod def generate_score_tables(self): pass @abstractmethod def generate_machine_comparison_tables(self): pass @staticmethod def set_figure_params(): fig_width = 7.5 # width in inches fig_height = 3.75 # height in inches fig_size = [fig_width, fig_height] fig_params = {'backend': 'ps', 'axes.labelsize': 8, 'text.fontsize': 8, 'legend.fontsize': 8, 'xtick.labelsize': 6, 'ytick.labelsize': 6, 'text.usetex': True, 'figure.figsize': fig_size} pylab.rcParams.update(fig_params) @staticmethod def calculate_linear_regression_1d(x_list, f_list): results = sm.ols(formula="F ~ X", data=({'F': f_list, 'X': x_list})).fit() slope = list() slope.append(results.params['X']) min_value = list() min_value.append(min(x_list)) max_value = list() max_value.append(max(x_list)) intercept = results.params['Intercept'] r_squared = results.rsquared return GenericArtifacts.linear_regression(slope=slope, intercept=intercept, r_squared=r_squared, min=min_value, max=max_value) @staticmethod def calculate_linear_regression_2d(x_list, y_list, f_list): results = sm.ols(formula="F ~ X + Y", data=({'F': f_list, 'X': x_list, 'Y': y_list})).fit() slope = list() slope.append(results.params['X']) slope.append(results.params['Y']) min_value = list() min_value.append(min(x_list)) min_value.append(min(y_list)) max_value = list() max_value.append(max(x_list)) max_value.append(max(y_list)) intercept = results.params['Intercept'] r_squared = results.rsquared return GenericArtifacts.linear_regression(slope=slope, intercept=intercept, r_squared=r_squared, min=min_value, max=max_value) @staticmethod def calculate_linear_regression_3d(x_list, y_list, z_list, f_list): results = sm.ols(formula="F ~ X + Y + Z", data=({'F': f_list, 'X': x_list, 'Y': y_list, 'Z': z_list})).fit() slope = list() slope.append(results.params['X']) slope.append(results.params['Y']) slope.append(results.params['Z']) min_value = list() min_value.append(min(x_list)) min_value.append(min(y_list)) min_value.append(min(z_list)) max_value = list() max_value.append(max(x_list)) max_value.append(max(y_list)) max_value.append(max(z_list)) intercept = results.params['Intercept'] r_squared = results.rsquared return GenericArtifacts.linear_regression(slope=slope, intercept=intercept, r_squared=r_squared, min=min_value, max=max_value) @staticmethod def generate_1d_multiline_plot(fits, x_ranges, x_label, f_label, caption, filename_base): markers = ['v', '^', 's', 'D', 'x', '*', 'h'] GenericArtifacts.set_figure_params() filename_base = filename_base.replace('.', '_') plot_filename = os.path.join(FLAGS.root_dir, "{}.eps".format(filename_base)) print "\tGenerating {}".format(plot_filename) pylab.figure(1) pylab.clf() marker_count = 0 for kernel in fits.keys(): x_list = [0] x_max = max(x_ranges[kernel]) x_list.append(x_max / 2) x_list.append(x_max) f_fit = lambda x: x * fits[kernel][0][0] + fits[kernel][1] y_list = [f_fit(entry) for entry in x_list] pylab.plot(x_list, y_list, marker=markers[marker_count], linestyle='-', color='k', label=kernel[0]) marker_count += 1 pylab.autoscale() pylab.xlabel(x_label) pylab.ylabel(f_label) pylab.legend(loc='upper center', bbox_to_anchor=(0.5, -0.10), ncol=4, mode="expand", borderaxespad=0.) pylab.savefig(plot_filename, bbox_inches='tight', orientation='portrait') tex_filename = os.path.join(FLAGS.root_dir, "{}.tex".format(filename_base)) print "\tGenerating {}".format(tex_filename) tex_figure_path = os.path.join("figures", "auto", filename_base) output_latex = r"""\begin{figure} \centering """ output_latex += "\\includegraphics{%s}\n" % tex_figure_path output_latex += "\\caption{%s}\n" % caption output_latex += "\\label{fig:%s}\n" % filename_base output_latex += r"""\end{figure}""" with open(tex_filename, 'w') as f: f.write(output_latex) @staticmethod def generate_1d_fit_table(key_labels, fits, caption, filename_base): filename_base = filename_base.replace('.', '_') table_filename = os.path.join(FLAGS.root_dir, "{}_table.tex".format(filename_base)) print "\tGenerating {}".format(table_filename) output_latex = r"""\begin{table}[h] \centering """ output_latex += "\\begin{tabular}{|" for _ in key_labels: output_latex += "l|" output_latex += "|c|c|c|}\n" output_latex += "\\hline\n" for label in key_labels: output_latex += "{} & ".format(label) output_latex += "Slope & Intercept & $R^2$ \\\\\n\\hline\n" for key in fits.keys(): for entry in key: output_latex += "%s & " % entry output_latex += " %.4g & %.4g & %.4g \\\\\n" % (fits[key][0][0], fits[key][1], fits[key][2]) output_latex += r"""\hline \end{tabular} """ output_latex += "\\caption{%s}\n" % caption output_latex += "\\label{tab:%s}\n" % filename_base output_latex += r"""\end{table}""" with open(table_filename, 'w') as f: f.write(output_latex) @staticmethod def generate_2d_fit_table(key_labels, fits, x_label, y_label, caption, filename_base): filename_base = filename_base.replace('.', '_') table_filename = os.path.join(FLAGS.root_dir, "{}_table.tex".format(filename_base)) print "\tGenerating {}".format(table_filename) output_latex = r"""\begin{table}[h] \centering """ output_latex += "\\begin{tabular}{|" for _ in key_labels: output_latex += "l|" output_latex += "|c|c|c|c|}\n" output_latex += "\\hline\n" for label in key_labels: output_latex += "{} & ".format(label) output_latex += "{} Slope & {} Slope & Intercept & $R^2$ \\\\\n\\hline\n".format(x_label, y_label) for key in fits.keys(): for entry in key: output_latex += "%s & " % entry output_latex += "%.4g & %.4g & %.4g & %.4g \\\\\n" % (fits[key][0][0], fits[key][0][1], fits[key][1], fits[key][2]) output_latex += r"""\hline \end{tabular} """ output_latex += "\\caption{%s}\n" % caption output_latex += "\\label{tab:%s}\n" % filename_base output_latex += r"""\end{table}""" with open(table_filename, 'w') as f: f.write(output_latex) @staticmethod def generate_3d_fit_table(key_labels, fits, x_label, y_label, z_label, caption, filename_base): filename_base = filename_base.replace('.', '_') table_filename = os.path.join(FLAGS.root_dir, "{}_table.tex".format(filename_base)) print "\tGenerating {}".format(table_filename) output_latex = r"""\begin{table}[h] \centering """ output_latex += "\\begin{tabular}{|" for _ in key_labels: output_latex += "l|" output_latex += "|c|c|c|c|c|}\n" output_latex += "\\hline\n" for label in key_labels: output_latex += "{} & ".format(label) output_latex += "{} Slope & {} Slope & {} Slope & Intercept & $R^2$ \\\\\n\\hline\n".format(x_label, y_label, z_label) for key in fits.keys(): for entry in key: output_latex += "%s & " % entry output_latex += "%.4g & %.4g & %.4g & %.4g & %.4g \\\\\n" % (fits[key][0][0], fits[key][0][1], fits[key][0][2], fits[key][1], fits[key][2]) output_latex += r"""\hline \end{tabular} """ output_latex += "\\caption{%s}\n" % caption output_latex += "\\label{tab:%s}\n" % filename_base output_latex += r"""\end{table}""" with open(table_filename, 'w') as f: f.write(output_latex) @staticmethod def generate_score_table(score_table, caption, filename_base): ordinal_ranks = ["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"] filename_base = filename_base.replace('.', '_') table_filename = os.path.join(FLAGS.root_dir, "{}_table.tex".format(filename_base)) print "\tGenerating {}".format(table_filename) output_latex = r"""\begin{table}[h] \centering """ output_latex += "\\begin{tabular}{|l|" for _ in score_table.get_table().keys(): output_latex += "|c" output_latex += "||c" output_latex += "|}\\hline\n" output_latex += "Kernel " for i in range(0, len(score_table.get_table().keys())): output_latex += "& %s " % ordinal_ranks[i] output_latex += "& Total Score " output_latex += "\\\\\n" output_latex += r"""\hline """ total_count = score_table.get_total_count() assert(total_count > 0) for kernel in score_table.get_table().keys(): output_latex += "%s " % kernel for entry in score_table.get_table()[kernel]: if entry > 0: output_latex += "& %d " % entry else: output_latex += "& \\textemdash " output_latex += "\\\\\n" output_latex += r"""\hline \end{tabular} """ output_latex += "\\caption{%s}\n" % caption output_latex += "\\label{tab:%s}\n" % filename_base output_latex += r"""\end{table}""" with open(table_filename, 'w') as f: f.write(output_latex) @staticmethod def generate_score_percentage_table(score_table, caption, filename_base): ordinal_ranks = ["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"] filename_base = filename_base.replace('.', '_') table_filename = os.path.join(FLAGS.root_dir, "{}_table.tex".format(filename_base)) print "\tGenerating {}".format(table_filename) output_latex = r"""\begin{table}[h] \centering """ output_latex += "\\begin{tabular}{|l|" for _ in score_table.get_table().keys(): output_latex += "|c" output_latex += "|}\\hline\n" output_latex += "Kernel " for i in range(0, len(score_table.get_table().keys())): output_latex += "& %s " % ordinal_ranks[i] output_latex += "\\\\\n" output_latex += r"""\hline """ total_count = float(score_table.get_total_count()) assert(total_count > 0.0) for kernel in score_table.get_table().keys(): output_latex += "%s " % kernel for i in range(0, len(score_table.get_table().keys())): entry = score_table.get_table()[kernel][i] if entry > 0: output_latex += "& %5.4f " % (float(entry) / total_count) else: output_latex += "& \\textemdash " output_latex += "\\\\\n" output_latex += r"""\hline \end{tabular} """ output_latex += "\\caption{%s}\n" % caption output_latex += "\\label{tab:%s}\n" % filename_base output_latex += r"""\end{table}""" with open(table_filename, 'w') as f: f.write(output_latex) class KernelArtifacts(GenericArtifacts): def __init__(self, results_table): super(KernelArtifacts, self).__init__(results_table, ("Kernel",)) def generate_multiline_plots(self): key_label_caption = GenericArtifacts.key_tuple_to_caption_string(self.key_label_tuple) key_label_filename = GenericArtifacts.key_tuple_to_filename_string(self.key_label_tuple, lowercase=True) GenericArtifacts.generate_1d_multiline_plot(self.event_count_vs_cpu_fits, self.event_count_ranges, "Event Count", "CPU Time (mS)", "Trend lines for Event Count vs CPU Time for per {} fits".format( key_label_caption), "event_count_vs_cpu_per_{}_multiline_plot".format( key_label_filename)) GenericArtifacts.generate_1d_multiline_plot(self.event_count_vs_maxmem_fits, self.event_count_ranges, "Event Count", "Max Memory (kB)", "Trend lines for Event Count vs Max Memory for per {} fits".format( key_label_caption), "event_count_vs_maxmem_per_{}_multiline_plot".format( key_label_filename)) GenericArtifacts.generate_1d_multiline_plot(self.agents_vs_cpu_fits, self.agents_ranges, "Agents", "CPU Time (mS)", "Trend lines for Agents vs CPU Time for per {} fits".format( key_label_caption), "agents_vs_cpu_per_{}_multiline_plot".format(key_label_filename)) GenericArtifacts.generate_1d_multiline_plot(self.agents_vs_maxmem_fits, self.agents_ranges, "Agents", "Max Memory (kB)", "Trend lines for Agents vs Max Memory for per {} fits".format( key_label_caption), "agents_vs_maxmem_per_{}_multiline_plot".format(key_label_filename)) GenericArtifacts.generate_1d_multiline_plot(self.connections_vs_cpu_fits, self.connections_ranges, "Connections", "CPU Time (mS)", "Trend lines for Connections vs CPU Time for per {} fits".format( key_label_caption), "connections_vs_cpu_per_{}_multiline_plot".format( key_label_filename)) GenericArtifacts.generate_1d_multiline_plot(self.connections_vs_maxmem_fits, self.connections_ranges, "Connections", "Max Memory (kB)", "Trend lines for Connections vs Max Memory for per {} fits".format( key_label_caption), "connections_vs_maxmem_per_{}_multiline_plot".format( key_label_filename)) def generate_fit_tables(self): key_label_caption = GenericArtifacts.key_tuple_to_caption_string(self.key_label_tuple) key_label_filename = GenericArtifacts.key_tuple_to_filename_string(self.key_label_tuple, lowercase=True) GenericArtifacts.generate_1d_fit_table(self.key_label_tuple, self.event_count_vs_cpu_fits, "Event Count vs CPU Time (mS) for per {} fits".format(key_label_caption), "event_count_vs_cpu_per_{}_fit".format(key_label_filename)) GenericArtifacts.generate_1d_fit_table(self.key_label_tuple, self.event_count_vs_maxmem_fits, "Event Count vs Max Memory (kB) for per {} fits".format( key_label_caption), "event_count_vs_maxmem_per_{}_fit".format(key_label_filename)) GenericArtifacts.generate_1d_fit_table(self.key_label_tuple, self.agents_vs_cpu_fits, "Agents vs CPU Time (mS) for per {} fits".format(key_label_caption), "agents_vs_cpu_per_{}_fit".format(key_label_filename)) GenericArtifacts.generate_1d_fit_table(self.key_label_tuple, self.agents_vs_maxmem_fits, "Agents vs Max Memory (kB) for per {} fits".format(key_label_caption), "agents_vs_maxmem_per_{}_fit".format(key_label_filename)) GenericArtifacts.generate_1d_fit_table(self.key_label_tuple, self.connections_vs_cpu_fits, "Connections vs CPU Time (mS) for per {} fits".format(key_label_caption), "connections_vs_cpu_per_{}_fit".format(key_label_filename)) GenericArtifacts.generate_1d_fit_table(self.key_label_tuple, self.connections_vs_maxmem_fits, "Connections vs Max Memory (kB) for per {} fits".format( key_label_caption), "connections_vs_maxmem_per_{}_fit".format(key_label_filename)) GenericArtifacts.generate_2d_fit_table(self.key_label_tuple, self.event_count_and_agents_vs_cpu_fits, "Event Count", "Agents", "Event Count and Agents vs CPU Time (mS) for per {} fits".format( key_label_caption), "event_count_and_agents_vs_cpu_per_{}_fit".format(key_label_filename)) GenericArtifacts.generate_2d_fit_table(self.key_label_tuple, self.event_count_and_agents_vs_maxmem_fits, "Event Count", "Agents", "Event Count and Agents vs Max Memory (kB) for per {} fits".format( key_label_caption), "event_count_and_agents_vs_maxmem_per_{}_fit".format(key_label_filename)) GenericArtifacts.generate_2d_fit_table(self.key_label_tuple, self.event_count_and_connections_vs_cpu_fits, "Event Count", "Connections", "Event Count and Connections vs CPU Time (mS) for per {} fits".format( key_label_caption), "event_count_and_connections_vs_cpu_per_{}_fit".format( key_label_filename)) GenericArtifacts.generate_2d_fit_table(self.key_label_tuple, self.event_count_and_connections_vs_maxmem_fits, "Event Count", "Connections", "Event Count and Connections vs Max Memory (kB) for per {} fits".format( key_label_caption), "event_count_and_connections_vs_maxmem_per_{}_fit".format( key_label_filename)) GenericArtifacts.generate_2d_fit_table(self.key_label_tuple, self.agents_and_connections_vs_cpu_fits, "Agents", "Connections", "Agents and Connections vs CPU Time (mS) for per {} fits".format( key_label_caption), "agents_and_connections_vs_cpu_per_{}_fit".format(key_label_filename)) GenericArtifacts.generate_2d_fit_table(self.key_label_tuple, self.agents_and_connections_vs_maxmem_fits, "Agents", "Connections", "Agents and Connections vs Max Memory (kB) for per {} fits".format( key_label_caption), "agents_and_connections_vs_maxmem_per_{}_fit".format(key_label_filename)) GenericArtifacts.generate_3d_fit_table(self.key_label_tuple, self.event_count_and_agents_and_connections_vs_cpu_fits, "Event Count", "Agents", "Connections", "Event Count and Agents and Connections vs CPU Time (mS) for per {} " "fits".format(key_label_caption), "event_count_and_agents_and_connections_vs_cpu_per_{}_fit".format( key_label_filename)) GenericArtifacts.generate_3d_fit_table(self.key_label_tuple, self.event_count_and_agents_and_connections_vs_maxmem_fits, "Event Count", "Agents", "Connections", "Event Count and Agents and Connections vs Max Memory (kB) for per " "{} fits".format(key_label_caption), "event_count_and_agents_and_connections_vs_maxmem_per_{}_fit".format( key_label_filename)) def generate_score_tables(self): key_label_caption = GenericArtifacts.key_tuple_to_caption_string(self.key_label_tuple) key_label_filename = GenericArtifacts.key_tuple_to_filename_string(self.key_label_tuple, lowercase=True) score_tables = dict() selection = (("Kernel", ), ("Agents", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_1d_fit_score(self.agents_vs_cpu_fits) selection = (("Kernel", ), ("Connections", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_1d_fit_score(self.connections_vs_cpu_fits) selection = (("Kernel", ), ("Events", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_1d_fit_score(self.event_count_vs_cpu_fits) selection = (("Kernel", ), ("Agents", "Connections", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_2d_fit_score(self.agents_and_connections_vs_cpu_fits) selection = (("Kernel", ), ("Events", "Agents", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_2d_fit_score(self.event_count_and_agents_vs_cpu_fits) selection = (("Kernel", ), ("Events", "Connections", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_2d_fit_score(self.event_count_and_connections_vs_cpu_fits) selection = (("Kernel", ), ("Events", "Agents", "Connections", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_3d_fit_score(self.event_count_and_agents_and_connections_vs_cpu_fits) selection = (("Kernel", ), ("Agents", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_1d_fit_score(self.agents_vs_maxmem_fits) selection = (("Kernel", ), ("Connections", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_1d_fit_score(self.connections_vs_maxmem_fits) selection = (("Kernel", ), ("Events", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_1d_fit_score(self.event_count_vs_maxmem_fits) selection = (("Kernel", ), ("Agents", "Connections", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_2d_fit_score(self.agents_and_connections_vs_maxmem_fits) selection = (("Kernel", ), ("Events", "Agents", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_2d_fit_score(self.event_count_and_agents_vs_maxmem_fits) selection = (("Kernel", ), ("Events", "Connections", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_2d_fit_score(self.event_count_and_connections_vs_maxmem_fits) selection = (("Kernel", ), ("Events", "Agents", "Connections", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) score_tables[selection].add_3d_fit_score(self.event_count_and_agents_and_connections_vs_maxmem_fits) for selection, table in score_tables.iteritems(): independent_vars = selection[1] independent_caption = "" independent_filename = "" for var in independent_vars: independent_caption += "{} and ".format(var) independent_filename += "{}_".format(str(var).lower()) independent_caption = independent_caption[:-5] independent_filename = independent_filename[:-1] dependent_caption = selection[2] if dependent_caption == "CPU": dependent_filename = "cpu" else: dependent_filename = "maxmem" GenericArtifacts.generate_score_table(table, "Scores based on {} vs {} for {} fits".format(independent_caption, dependent_caption, key_label_caption), "{}_vs_{}_per_{}_fits_scores".format(independent_filename, dependent_filename, key_label_filename)) GenericArtifacts.generate_score_percentage_table(table, "Score percentages based on {} vs {} for {} fits".format( independent_caption, dependent_caption, key_label_caption), "{}_vs_{}_per_{}_fits_score_percentage".format( independent_filename, dependent_filename, key_label_filename)) def generate_machine_comparison_tables(self): pass class KernelMachineArtifacts(GenericArtifacts): def __init__(self, results_table): super(KernelMachineArtifacts, self).__init__(results_table, ("Kernel", "Machine")) def generate_multiline_plots(self): key_label_caption = GenericArtifacts.key_tuple_to_caption_string(self.key_label_tuple) key_label_filename = GenericArtifacts.key_tuple_to_filename_string(self.key_label_tuple, lowercase=True) for sub_key in iter(self.sub_keys): sub_key_caption = GenericArtifacts.key_tuple_to_caption_string(sub_key) sub_key_filename = GenericArtifacts.key_tuple_to_filename_string(sub_key) event_count_ranges = self.filter_dict_for_sub_key(self.event_count_ranges, sub_key) agents_ranges = self.filter_dict_for_sub_key(self.agents_ranges, sub_key) connections_ranges = self.filter_dict_for_sub_key(self.connections_ranges, sub_key) event_count_vs_cpu_fits = self.filter_dict_for_sub_key(self.event_count_vs_cpu_fits, sub_key) event_count_vs_maxmem_fits = self.filter_dict_for_sub_key(self.event_count_vs_maxmem_fits, sub_key) agents_vs_cpu_fits = self.filter_dict_for_sub_key(self.agents_vs_cpu_fits, sub_key) agents_vs_maxmem_fits = self.filter_dict_for_sub_key(self.agents_vs_maxmem_fits, sub_key) connections_vs_cpu_fits = self.filter_dict_for_sub_key(self.connections_vs_cpu_fits, sub_key) connections_vs_maxmem_fits = self.filter_dict_for_sub_key(self.connections_vs_maxmem_fits, sub_key) GenericArtifacts.generate_1d_multiline_plot(event_count_vs_cpu_fits, event_count_ranges, "Event Count", "CPU Time (mS)", "Trend lines for Event Count vs CPU Time for per {} fits for {}" .format(key_label_caption, sub_key_caption), "event_count_vs_cpu_per_{}_multiline_plot_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_multiline_plot(event_count_vs_maxmem_fits, event_count_ranges, "Event Count", "Max Memory (kB)", "Trend lines for Event Count vs Max Memory for per {} fits " "for {}".format(key_label_caption, sub_key_caption), "event_count_vs_maxmem_per_{}_multiline_plot_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_multiline_plot(agents_vs_cpu_fits, agents_ranges, "Agents", "CPU Time (mS)", "Trend lines for Agents vs CPU Time for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "agents_vs_cpu_per_{}_multiline_plot_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_multiline_plot(agents_vs_maxmem_fits, agents_ranges, "Agents", "Max Memory (kB)", "Trend lines for Agents vs Max Memory for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "agents_vs_maxmem_per_{}_multiline_plot_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_multiline_plot(connections_vs_cpu_fits, connections_ranges, "Connections", "CPU Time (mS)", "Trend lines for Connections vs CPU Time for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "connections_vs_cpu_per_{}_multiline_plot_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_multiline_plot(connections_vs_maxmem_fits, connections_ranges, "Connections", "Max Memory (kB)", "Trend lines for Connections vs Max Memory for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "connections_vs_maxmem_per_{}_multiline_plot_for_{}".format( key_label_filename, sub_key_filename)) def generate_fit_tables(self): key_label_caption = GenericArtifacts.key_tuple_to_caption_string(self.key_label_tuple) key_label_filename = GenericArtifacts.key_tuple_to_filename_string(self.key_label_tuple, lowercase=True) for sub_key in iter(self.sub_keys): sub_key_caption = GenericArtifacts.key_tuple_to_caption_string(sub_key) sub_key_filename = GenericArtifacts.key_tuple_to_filename_string(sub_key) event_count_vs_cpu_fits = self.filter_dict_for_sub_key(self.event_count_vs_cpu_fits, sub_key) event_count_vs_maxmem_fits = self.filter_dict_for_sub_key(self.event_count_vs_maxmem_fits, sub_key) agents_vs_cpu_fits = self.filter_dict_for_sub_key(self.agents_vs_cpu_fits, sub_key) agents_vs_maxmem_fits = self.filter_dict_for_sub_key(self.agents_vs_maxmem_fits, sub_key) connections_vs_cpu_fits = self.filter_dict_for_sub_key(self.connections_vs_cpu_fits, sub_key) connections_vs_maxmem_fits = self.filter_dict_for_sub_key(self.connections_vs_maxmem_fits, sub_key) event_count_and_agents_vs_cpu_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_vs_cpu_fits, sub_key) event_count_and_agents_vs_maxmem_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_vs_maxmem_fits, sub_key) event_count_and_connections_vs_cpu_fits = self.filter_dict_for_sub_key( self.event_count_and_connections_vs_cpu_fits, sub_key) event_count_and_connections_vs_maxmem_fits = self.filter_dict_for_sub_key( self.event_count_and_connections_vs_maxmem_fits, sub_key) agents_and_connections_vs_cpu_fits = self.filter_dict_for_sub_key( self.agents_and_connections_vs_cpu_fits, sub_key) agents_and_connections_vs_maxmem_fits = self.filter_dict_for_sub_key( self.agents_and_connections_vs_maxmem_fits, sub_key) event_count_and_agents_and_connections_vs_cpu_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_and_connections_vs_cpu_fits, sub_key) event_count_and_agents_and_connections_vs_maxmem_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_and_connections_vs_maxmem_fits, sub_key) GenericArtifacts.generate_1d_fit_table(("Kernel",), event_count_vs_cpu_fits, "Event Count vs CPU Time (mS) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "event_count_vs_cpu_per_{}_fit_for_" "{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_fit_table(("Kernel",), event_count_vs_maxmem_fits, "Event Count vs Max Memory (kB) for per {} fits for {}".format( key_label_caption, sub_key_caption), "event_count_vs_maxmem_per_{}_fit_for_{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_fit_table(("Kernel",), agents_vs_cpu_fits, "Agents vs CPU Time (mS) for per {} fits for {}".format( key_label_caption, sub_key_caption), "agents_vs_cpu_per_{}_fit_for_{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_fit_table(("Kernel",), agents_vs_maxmem_fits, "Agents vs Max Memory (kB) for per {} fits for {}".format( key_label_caption, sub_key_caption), "agents_vs_maxmem_per_{}_fit_for_{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_fit_table(("Kernel",), connections_vs_cpu_fits, "Connections vs CPU Time (mS) for per {} fits for {}".format( key_label_caption, sub_key_caption), "connections_vs_cpu_per_{}_fit_for_{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_fit_table(("Kernel",), connections_vs_maxmem_fits, "Connections vs Max Memory (kB) for per {} fits for {}".format( key_label_caption, sub_key_caption), "connections_vs_maxmem_per_{}_fit_for_{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_2d_fit_table(("Kernel",), event_count_and_agents_vs_cpu_fits, "Event Count", "Agents", "Event Count and Agents vs CPU Time (mS) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "event_count_and_agents_vs_cpu_per_{}_fit_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_2d_fit_table(("Kernel",), event_count_and_agents_vs_maxmem_fits, "Event Count", "Agents", "Event Count and Agents vs Max Memory (kB) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "event_count_and_agents_vs_maxmem_per_{}_fit_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_2d_fit_table(("Kernel",), event_count_and_connections_vs_cpu_fits, "Event Count", "Connections", "Event Count and Connections vs CPU Time (mS) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "event_count_and_connections_vs_cpu_per_{}_fit_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_2d_fit_table(("Kernel",), event_count_and_connections_vs_maxmem_fits, "Event Count", "Connections", "Event Count and Connections vs Max Memory (kB) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "event_count_and_connections_vs_maxmem_per_{}_fit_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_2d_fit_table(("Kernel",), agents_and_connections_vs_cpu_fits, "Agents", "Connections", "Agents and Connections vs CPU Time (mS) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "agents_and_connections_vs_cpu_per_{}_fit_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_2d_fit_table(("Kernel",), agents_and_connections_vs_maxmem_fits, "Agents", "Connections", "Agents and Connections vs Max Memory (kB) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "agents_and_connections_vs_maxmem_per_{}_fit_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_3d_fit_table(("Kernel",), event_count_and_agents_and_connections_vs_cpu_fits, "Event Count", "Agents", "Connections", "Event Count and Agents and Connections vs CPU Time (mS) for per {} " "fits".format(key_label_caption, sub_key_caption), "event_count_and_agents_and_connections_vs_cpu_per_{}_fit_for_" "{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_3d_fit_table(("Kernel",), event_count_and_agents_and_connections_vs_maxmem_fits, "Event Count", "Agents", "Connections", "Event Count and Agents and Connections vs Max Memory (kB) for per " "{} fits for {}".format(key_label_caption, sub_key_caption), "event_count_and_agents_and_connections_vs_maxmem_per_{}_fit_for_" "{}".format(key_label_filename, sub_key_filename)) def generate_score_tables(self): key_label_caption = GenericArtifacts.key_tuple_to_caption_string(self.key_label_tuple) key_label_filename = GenericArtifacts.key_tuple_to_filename_string(self.key_label_tuple, lowercase=True) score_tables = dict() selection = (("Kernel", "Machine", ), ("Agents", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", ), ("Connections", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", ), ("Events", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", ), ("Agents", "Connections", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", ), ("Events", "Agents", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", ), ("Events", "Connections", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", ), ("Events", "Agents", "Connections", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", ), ("Agents", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", ), ("Connections", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", ), ("Events", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", ), ("Agents", "Connections", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", ), ("Events", "Agents", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", ), ("Events", "Connections", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", ), ("Events", "Agents", "Connections", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) for sub_key in iter(self.sub_keys): event_count_vs_cpu_fits = self.filter_dict_for_sub_key(self.event_count_vs_cpu_fits, sub_key) event_count_vs_maxmem_fits = self.filter_dict_for_sub_key(self.event_count_vs_maxmem_fits, sub_key) agents_vs_cpu_fits = self.filter_dict_for_sub_key(self.agents_vs_cpu_fits, sub_key) agents_vs_maxmem_fits = self.filter_dict_for_sub_key(self.agents_vs_maxmem_fits, sub_key) connections_vs_cpu_fits = self.filter_dict_for_sub_key(self.connections_vs_cpu_fits, sub_key) connections_vs_maxmem_fits = self.filter_dict_for_sub_key(self.connections_vs_maxmem_fits, sub_key) event_count_and_agents_vs_cpu_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_vs_cpu_fits, sub_key) event_count_and_agents_vs_maxmem_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_vs_maxmem_fits, sub_key) event_count_and_connections_vs_cpu_fits = self.filter_dict_for_sub_key( self.event_count_and_connections_vs_cpu_fits, sub_key) event_count_and_connections_vs_maxmem_fits = self.filter_dict_for_sub_key( self.event_count_and_connections_vs_maxmem_fits, sub_key) agents_and_connections_vs_cpu_fits = self.filter_dict_for_sub_key( self.agents_and_connections_vs_cpu_fits, sub_key) agents_and_connections_vs_maxmem_fits = self.filter_dict_for_sub_key( self.agents_and_connections_vs_maxmem_fits, sub_key) event_count_and_agents_and_connections_vs_cpu_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_and_connections_vs_cpu_fits, sub_key) event_count_and_agents_and_connections_vs_maxmem_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_and_connections_vs_maxmem_fits, sub_key) score_tables[(("Kernel", "Machine", ), ("Agents", ), "CPU")].add_1d_fit_score(agents_vs_cpu_fits) score_tables[(("Kernel", "Machine", ), ("Agents", ), "Max Memory")].add_1d_fit_score(agents_vs_maxmem_fits) score_tables[(("Kernel", "Machine", ), ("Connections", ), "CPU")].add_1d_fit_score(connections_vs_cpu_fits) score_tables[(("Kernel", "Machine", ), ("Connections", ), "Max Memory")].add_1d_fit_score( connections_vs_maxmem_fits) score_tables[(("Kernel", "Machine", ), ("Events", ), "CPU")].add_1d_fit_score(event_count_vs_cpu_fits) score_tables[(("Kernel", "Machine", ), ("Events", ), "Max Memory")].add_1d_fit_score( event_count_vs_maxmem_fits) score_tables[(("Kernel", "Machine", ), ("Agents", "Connections",), "CPU")].add_2d_fit_score( agents_and_connections_vs_cpu_fits) score_tables[(("Kernel", "Machine", ), ("Agents", "Connections",), "Max Memory")].add_2d_fit_score( agents_and_connections_vs_maxmem_fits) score_tables[(("Kernel", "Machine", ), ("Events", "Agents",), "CPU")].add_2d_fit_score( event_count_and_agents_vs_cpu_fits) score_tables[(("Kernel", "Machine", ), ("Events", "Agents",), "Max Memory")].add_2d_fit_score( event_count_and_agents_vs_maxmem_fits) score_tables[(("Kernel", "Machine", ), ("Events", "Connections",), "CPU")].add_2d_fit_score( event_count_and_connections_vs_cpu_fits) score_tables[(("Kernel", "Machine", ), ("Events", "Connections",), "Max Memory")].add_2d_fit_score( event_count_and_connections_vs_maxmem_fits) score_tables[(("Kernel", "Machine", ), ("Events", "Agents", "Connections",), "CPU")].add_2d_fit_score( event_count_and_agents_and_connections_vs_cpu_fits) score_tables[(("Kernel", "Machine", ), ("Events", "Agents", "Connections",), "Max Memory")].\ add_3d_fit_score(event_count_and_agents_and_connections_vs_maxmem_fits) for selection, table in score_tables.iteritems(): independent_vars = selection[1] independent_caption = "" independent_filename = "" for var in independent_vars: independent_caption += "{} and ".format(var) independent_filename += "{}_".format(str(var).lower()) independent_caption = independent_caption[:-5] independent_filename = independent_filename[:-1] dependent_caption = selection[2] if dependent_caption == "CPU": dependent_filename = "cpu" else: dependent_filename = "maxmem" GenericArtifacts.generate_score_table(table, "Scores based on {} vs {} for {} fits".format(independent_caption, dependent_caption, key_label_caption), "{}_vs_{}_per_{}_fits_scores".format(independent_filename, dependent_filename, key_label_filename)) GenericArtifacts.generate_score_percentage_table(table, "Score percentages based on {} vs {} for {} fits".format( independent_caption, dependent_caption, key_label_caption), "{}_vs_{}_per_{}_fits_score_percentage".format( independent_filename, dependent_filename, key_label_filename)) def generate_machine_comparison_tables(self): pass class KernelMachineTypeArtifacts(GenericArtifacts): def __init__(self, results_table): super(KernelMachineTypeArtifacts, self).__init__(results_table, ("Kernel", "Machine", "Type")) def generate_multiline_plots(self): pass def generate_fit_tables(self): key_label_caption = GenericArtifacts.key_tuple_to_caption_string(self.key_label_tuple) key_label_filename = GenericArtifacts.key_tuple_to_filename_string(self.key_label_tuple, lowercase=True) for sub_key in iter(self.sub_keys): sub_key_caption = GenericArtifacts.key_tuple_to_caption_string(sub_key) sub_key_filename = GenericArtifacts.key_tuple_to_filename_string(sub_key) event_count_vs_cpu_fits = self.filter_dict_for_sub_key(self.event_count_vs_cpu_fits, sub_key) event_count_vs_maxmem_fits = self.filter_dict_for_sub_key(self.event_count_vs_maxmem_fits, sub_key) agents_vs_cpu_fits = self.filter_dict_for_sub_key(self.agents_vs_cpu_fits, sub_key) agents_vs_maxmem_fits = self.filter_dict_for_sub_key(self.agents_vs_maxmem_fits, sub_key) connections_vs_cpu_fits = self.filter_dict_for_sub_key(self.connections_vs_cpu_fits, sub_key) connections_vs_maxmem_fits = self.filter_dict_for_sub_key(self.connections_vs_maxmem_fits, sub_key) event_count_and_agents_vs_cpu_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_vs_cpu_fits, sub_key) event_count_and_agents_vs_maxmem_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_vs_maxmem_fits, sub_key) event_count_and_connections_vs_cpu_fits = self.filter_dict_for_sub_key( self.event_count_and_connections_vs_cpu_fits, sub_key) event_count_and_connections_vs_maxmem_fits = self.filter_dict_for_sub_key( self.event_count_and_connections_vs_maxmem_fits, sub_key) agents_and_connections_vs_cpu_fits = self.filter_dict_for_sub_key( self.agents_and_connections_vs_cpu_fits, sub_key) agents_and_connections_vs_maxmem_fits = self.filter_dict_for_sub_key( self.agents_and_connections_vs_maxmem_fits, sub_key) event_count_and_agents_and_connections_vs_cpu_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_and_connections_vs_cpu_fits, sub_key) event_count_and_agents_and_connections_vs_maxmem_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_and_connections_vs_maxmem_fits, sub_key) GenericArtifacts.generate_1d_fit_table(("Kernel",), event_count_vs_cpu_fits, "Event Count vs CPU Time (mS) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "event_count_vs_cpu_per_{}_fit_for_" "{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_fit_table(("Kernel",), event_count_vs_maxmem_fits, "Event Count vs Max Memory (kB) for per {} fits for {}".format( key_label_caption, sub_key_caption), "event_count_vs_maxmem_per_{}_fit_for_{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_fit_table(("Kernel",), agents_vs_cpu_fits, "Agents vs CPU Time (mS) for per {} fits for {}".format( key_label_caption, sub_key_caption), "agents_vs_cpu_per_{}_fit_for_{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_fit_table(("Kernel",), agents_vs_maxmem_fits, "Agents vs Max Memory (kB) for per {} fits for {}".format( key_label_caption, sub_key_caption), "agents_vs_maxmem_per_{}_fit_for_{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_fit_table(("Kernel",), connections_vs_cpu_fits, "Connections vs CPU Time (mS) for per {} fits for {}".format( key_label_caption, sub_key_caption), "connections_vs_cpu_per_{}_fit_for_{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_1d_fit_table(("Kernel",), connections_vs_maxmem_fits, "Connections vs Max Memory (kB) for per {} fits for {}".format( key_label_caption, sub_key_caption), "connections_vs_maxmem_per_{}_fit_for_{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_2d_fit_table(("Kernel",), event_count_and_agents_vs_cpu_fits, "Event Count", "Agents", "Event Count and Agents vs CPU Time (mS) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "event_count_and_agents_vs_cpu_per_{}_fit_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_2d_fit_table(("Kernel",), event_count_and_agents_vs_maxmem_fits, "Event Count", "Agents", "Event Count and Agents vs Max Memory (kB) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "event_count_and_agents_vs_maxmem_per_{}_fit_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_2d_fit_table(("Kernel",), event_count_and_connections_vs_cpu_fits, "Event Count", "Connections", "Event Count and Connections vs CPU Time (mS) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "event_count_and_connections_vs_cpu_per_{}_fit_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_2d_fit_table(("Kernel",), event_count_and_connections_vs_maxmem_fits, "Event Count", "Connections", "Event Count and Connections vs Max Memory (kB) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "event_count_and_connections_vs_maxmem_per_{}_fit_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_2d_fit_table(("Kernel",), agents_and_connections_vs_cpu_fits, "Agents", "Connections", "Agents and Connections vs CPU Time (mS) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "agents_and_connections_vs_cpu_per_{}_fit_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_2d_fit_table(("Kernel",), agents_and_connections_vs_maxmem_fits, "Agents", "Connections", "Agents and Connections vs Max Memory (kB) for per {} fits for " "{}".format(key_label_caption, sub_key_caption), "agents_and_connections_vs_maxmem_per_{}_fit_for_{}".format( key_label_filename, sub_key_filename)) GenericArtifacts.generate_3d_fit_table(("Kernel",), event_count_and_agents_and_connections_vs_cpu_fits, "Event Count", "Agents", "Connections", "Event Count and Agents and Connections vs CPU Time (mS) for per {} " "fits".format(key_label_caption, sub_key_caption), "event_count_and_agents_and_connections_vs_cpu_per_{}_fit_for_" "{}".format(key_label_filename, sub_key_filename)) GenericArtifacts.generate_3d_fit_table(("Kernel",), event_count_and_agents_and_connections_vs_maxmem_fits, "Event Count", "Agents", "Connections", "Event Count and Agents and Connections vs Max Memory (kB) for per " "{} fits for {}".format(key_label_caption, sub_key_caption), "event_count_and_agents_and_connections_vs_maxmem_per_{}_fit_for_" "{}".format(key_label_filename, sub_key_filename)) def generate_score_tables(self): key_label_caption = GenericArtifacts.key_tuple_to_caption_string(self.key_label_tuple) key_label_filename = GenericArtifacts.key_tuple_to_filename_string(self.key_label_tuple, lowercase=True) score_tables = dict() selection = (("Kernel", "Machine", "Type", ), ("Agents", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", "Type", ), ("Connections", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", "Type", ), ("Events", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", "Type", ), ("Agents", "Connections", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", "Type", ), ("Events", "Agents", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", "Type", ), ("Events", "Connections", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", "Type", ), ("Events", "Agents", "Connections", ), "CPU") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", "Type", ), ("Agents", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", "Type", ), ("Connections", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", "Type", ), ("Events", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", "Type", ), ("Agents", "Connections", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", "Type", ), ("Events", "Agents", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", "Type", ), ("Events", "Connections", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) selection = (("Kernel", "Machine", "Type", ), ("Events", "Agents", "Connections", ), "Max Memory") score_tables[selection] = ScoreTable(self.kernels, selection) for sub_key in iter(self.sub_keys): event_count_vs_cpu_fits = self.filter_dict_for_sub_key(self.event_count_vs_cpu_fits, sub_key) event_count_vs_maxmem_fits = self.filter_dict_for_sub_key(self.event_count_vs_maxmem_fits, sub_key) agents_vs_cpu_fits = self.filter_dict_for_sub_key(self.agents_vs_cpu_fits, sub_key) agents_vs_maxmem_fits = self.filter_dict_for_sub_key(self.agents_vs_maxmem_fits, sub_key) connections_vs_cpu_fits = self.filter_dict_for_sub_key(self.connections_vs_cpu_fits, sub_key) connections_vs_maxmem_fits = self.filter_dict_for_sub_key(self.connections_vs_maxmem_fits, sub_key) event_count_and_agents_vs_cpu_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_vs_cpu_fits, sub_key) event_count_and_agents_vs_maxmem_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_vs_maxmem_fits, sub_key) event_count_and_connections_vs_cpu_fits = self.filter_dict_for_sub_key( self.event_count_and_connections_vs_cpu_fits, sub_key) event_count_and_connections_vs_maxmem_fits = self.filter_dict_for_sub_key( self.event_count_and_connections_vs_maxmem_fits, sub_key) agents_and_connections_vs_cpu_fits = self.filter_dict_for_sub_key( self.agents_and_connections_vs_cpu_fits, sub_key) agents_and_connections_vs_maxmem_fits = self.filter_dict_for_sub_key( self.agents_and_connections_vs_maxmem_fits, sub_key) event_count_and_agents_and_connections_vs_cpu_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_and_connections_vs_cpu_fits, sub_key) event_count_and_agents_and_connections_vs_maxmem_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_and_connections_vs_maxmem_fits, sub_key) score_tables[(("Kernel", "Machine", "Type", ), ("Agents", ), "CPU")].add_1d_fit_score(agents_vs_cpu_fits) score_tables[(("Kernel", "Machine", "Type", ), ("Agents", ), "Max Memory")].add_1d_fit_score( agents_vs_maxmem_fits) score_tables[(("Kernel", "Machine", "Type", ), ("Connections", ), "CPU")].add_1d_fit_score( connections_vs_cpu_fits) score_tables[(("Kernel", "Machine", "Type", ), ("Connections", ), "Max Memory")].add_1d_fit_score( connections_vs_maxmem_fits) score_tables[(("Kernel", "Machine", "Type", ), ("Events", ), "CPU")].add_1d_fit_score( event_count_vs_cpu_fits) score_tables[(("Kernel", "Machine", "Type", ), ("Events", ), "Max Memory")].add_1d_fit_score( event_count_vs_maxmem_fits) score_tables[(("Kernel", "Machine", "Type", ), ("Agents", "Connections",), "CPU")].add_2d_fit_score( agents_and_connections_vs_cpu_fits) score_tables[(("Kernel", "Machine", "Type", ), ("Agents", "Connections",), "Max Memory")].add_2d_fit_score( agents_and_connections_vs_maxmem_fits) score_tables[(("Kernel", "Machine", "Type", ), ("Events", "Agents",), "CPU")].add_2d_fit_score( event_count_and_agents_vs_cpu_fits) score_tables[(("Kernel", "Machine", "Type", ), ("Events", "Agents",), "Max Memory")].add_2d_fit_score( event_count_and_agents_vs_maxmem_fits) score_tables[(("Kernel", "Machine", "Type", ), ("Events", "Connections",), "CPU")].add_2d_fit_score( event_count_and_connections_vs_cpu_fits) score_tables[(("Kernel", "Machine", "Type", ), ("Events", "Connections",), "Max Memory")].add_2d_fit_score( event_count_and_connections_vs_maxmem_fits) score_tables[(("Kernel", "Machine", "Type", ), ("Events", "Agents", "Connections",), "CPU")].\ add_2d_fit_score(event_count_and_agents_and_connections_vs_cpu_fits) score_tables[(("Kernel", "Machine", "Type", ), ("Events", "Agents", "Connections",), "Max Memory")].\ add_3d_fit_score(event_count_and_agents_and_connections_vs_maxmem_fits) for selection, table in score_tables.iteritems(): independent_vars = selection[1] independent_caption = "" independent_filename = "" for var in independent_vars: independent_caption += "{} and ".format(var) independent_filename += "{}_".format(str(var).lower()) independent_caption = independent_caption[:-5] independent_filename = independent_filename[:-1] dependent_caption = selection[2] if dependent_caption == "CPU": dependent_filename = "cpu" else: dependent_filename = "maxmem" GenericArtifacts.generate_score_table(table, "Scores based on {} vs {} for {} fits".format(independent_caption, dependent_caption, key_label_caption), "{}_vs_{}_per_{}_fits_scores".format(independent_filename, dependent_filename, key_label_filename)) GenericArtifacts.generate_score_percentage_table(table, "Score percentages based on {} vs {} for {} fits".format( independent_caption, dependent_caption, key_label_caption), "{}_vs_{}_per_{}_fits_score_percentage".format( independent_filename, dependent_filename, key_label_filename)) def generate_machine_comparison_tables(self): key_label_caption = GenericArtifacts.key_tuple_to_caption_string(self.key_label_tuple) key_label_filename = GenericArtifacts.key_tuple_to_filename_string(self.key_label_tuple, lowercase=True) machine_comparison_tables = dict() machine_comparison_tables[(("Events", "Connections", ), "CPU")] = MachineComparisonTable(self.kernels) machine_comparison_tables[(("Events", "Agents", "Connections", ), "Max Memory")] = MachineComparisonTable( self.kernels) for sub_key in self.sub_keys: machine = sub_key[0] event_count_and_connections_vs_cpu_fits = self.filter_dict_for_sub_key( self.event_count_and_connections_vs_cpu_fits, sub_key) event_count_and_agents_and_connections_vs_maxmem_fits = self.filter_dict_for_sub_key( self.event_count_and_agents_and_connections_vs_maxmem_fits, sub_key) machine_comparison_tables[(("Events", "Connections",), "CPU")].add_2d_fit_score( event_count_and_connections_vs_cpu_fits, machine) machine_comparison_tables[(("Events", "Agents", "Connections",), "Max Memory")].add_3d_fit_score( event_count_and_agents_and_connections_vs_maxmem_fits, machine) selection = (("Events", "Connections",), "CPU") independent_caption = "Events \& Connections" independent_filename = "events_connections" dependent_caption = "CPU" dependent_filename = "cpu" print "Printing results for {}".format(selection) machine_comparison_tables[selection].generate_artifacts(key_label_caption, key_label_filename, independent_caption, independent_filename, dependent_caption, dependent_filename) selection = (("Events", "Agents", "Connections",), "Max Memory") independent_caption = "Events \& Agents \& Connections" independent_filename = "events_agents_connections" dependent_caption = "Maximum Memory" dependent_filename = "maxmem" print "Printing results for {}".format(selection) machine_comparison_tables[selection].generate_artifacts(key_label_caption, key_label_filename, independent_caption, independent_filename, dependent_caption, dependent_filename) def read_raw_inputs(): print "Reading in raw results" create_str = "CREATE TABLE IF NOT EXISTS raw_results (machine text, kernel text, type text, model text, " \ "iteration long, event_count long, final_time long, cpu long, maxmem long, agents long, " \ "connections long, bucket long)" experiment_db.execute(create_str) for input_file in os.listdir(FLAGS.root_dir): if re.search(r'run_result.*\.db', input_file): result_file = os.path.join(FLAGS.root_dir, input_file) print 'Reading results from {}'.format(result_file) input_db = DBWrapper(result_file) read_results(input_db) input_db.cleanup() def get_correct_type(row): row = list(row) model = row[3] if re.match("CompleteBi.*", model): row[2] = "complete-bipartite" elif re.match("SmallModel.*", model): row[2] = "Watts-Strogatz" elif re.match("Cycle.*", model): row[2] = "cycle" elif re.match("Hyper.*", model): row[2] = "hypercube" elif re.match("Star.*", model): row[2] = "star" elif re.match("Complete.*", model): row[2] = "complete" elif re.match("Erdos.*", model): row[2] = "erdos-reyni" elif re.match("Wheel.*", model): row[2] = "wheel" elif re.match("Circular.*", model): row[2] = "circular-ladder" elif re.match("Periodic.*", model): row[2] = "periodic-2grid" elif re.match("NonPeriodic.*", model): row[2] = "nonperiodic-2grid" else: print "Unknown model {}".format(model) assert False return row def get_bucket_event_count(event_count): global event_count_buckets global bucketing_factor for bucket in event_count_buckets: if (1.0 + bucketing_factor) * bucket >= event_count >= (1.0 - bucketing_factor) * bucket: return bucket return None def read_results(input_db): global experiment_db cmd_str = "SELECT machine, kernel, type, model, iteration, event_count, final_time, cpu, maxmem, agents, " \ "connections FROM 'raw_results'" for row in input_db.select(cmd_str): if row[2] == "None": row = get_correct_type(row) bucket = get_bucket_event_count(row[5]) if bucket is None: continue cmd_str = "INSERT INTO raw_results " \ "(machine, kernel, type, model, iteration, event_count, final_time, cpu, maxmem, agents, " \ "connections, bucket) " \ "VALUES ('{}', '{}', '{}', '{}', '{}', '{}', '{}', '{}', '{}', '{}', '{}', '{}')" \ .format(row[0], row[1], row[2], row[3], row[4], row[5], row[6], row[7], row[8], row[9], row[10], bucket) experiment_db.execute(cmd_str) experiment_db.commit() def generate_per_kernel_results_table(): global experiment_db global kernel_results_table global event_count_buckets kernel_results_table = ResultsTable() select_cmd = "SELECT kernel, bucket, model, event_count, agents, connections, cpu, maxmem FROM raw_results" for row in experiment_db.select(select_cmd): kernel_results_table.add_entry((row[0],), row[1], row[2], row[3], row[4], row[5], row[6], row[7]) kernel_results_table.create_filtered_table() def generate_per_kernel_results_artifacts(): print "Generating per kernel artifacts" global kernel_results_table kernel_artifacts = KernelArtifacts(kernel_results_table) kernel_artifacts.generate_multiline_plots() kernel_artifacts.generate_fit_tables() kernel_artifacts.generate_score_tables() kernel_artifacts.generate_machine_comparison_tables() print "Finished per kernel artifacts" def generate_per_kernel_and_machine_results_table(): global experiment_db global kernel_machine_results_table global event_count_buckets kernel_machine_results_table = ResultsTable() select_cmd = "SELECT kernel, machine, bucket, model, event_count, agents, connections, cpu, maxmem FROM raw_results" for row in experiment_db.select(select_cmd): kernel_machine_results_table.add_entry((row[0], row[1]), row[2], row[3], row[4], row[5], row[6], row[7], row[8]) kernel_machine_results_table.create_filtered_table() def generate_per_kernel_and_machine_results_artifacts(): print "Generating per kernel and machine artifacts" global kernel_machine_results_table kernel_and_machine_artifacts = KernelMachineArtifacts(kernel_machine_results_table) kernel_and_machine_artifacts.generate_multiline_plots() kernel_and_machine_artifacts.generate_fit_tables() kernel_and_machine_artifacts.generate_score_tables() kernel_and_machine_artifacts.generate_machine_comparison_tables() print "Finished per kernel and machine artifacts" def generate_per_kernel_and_machine_and_type_results_table(): global experiment_db global kernel_machine_type_results_table global event_count_buckets kernel_machine_type_results_table = ResultsTable() select_cmd = "SELECT kernel, machine, type, bucket, model, event_count, agents, connections, cpu, maxmem FROM " \ "raw_results" for row in experiment_db.select(select_cmd): kernel_machine_type_results_table.add_entry((row[0], row[1], row[2]), row[3], row[4], row[5], row[6], row[7], row[8], row[9]) kernel_machine_type_results_table.create_filtered_table() def generate_per_kernel_and_machine_and_type_results_artifacts(): print "Generating per kernel and machine and type artifacts" global kernel_machine_type_results_table kernel_and_machine_and_type_artifacts = KernelMachineTypeArtifacts(kernel_machine_type_results_table) kernel_and_machine_and_type_artifacts.generate_fit_tables() kernel_and_machine_and_type_artifacts.generate_score_tables() kernel_and_machine_and_type_artifacts.generate_machine_comparison_tables() print "Finished per kernel and machine and type artifacts" def generate_fit_comparison_artifacts(): global fit_comparison_table cpu_fit_list = list() memory_fit_list = list() for key, value in fit_comparison_table.iteritems(): if key[2] == "CPU": cpu_fit_list.append((value, key,)) else: memory_fit_list.append((value, key,)) cpu_fit_list.sort() cpu_fit_list.reverse() cpu_comparison_filename = os.path.join(FLAGS.root_dir, "cpu_fit_comparison_table.tex") print "\tGenerating {}".format(cpu_comparison_filename) output_latex = r"""\begin{table}[h] \centering """ output_latex += r"""\begin{tabular}{|l|l|c|} \hline """ output_latex += r"""Selection Keys & Independent Variables & $R^2$ \\ \hline """ for cpu_fit in cpu_fit_list: score = cpu_fit[0] entry = cpu_fit[1] for key in entry[0]: output_latex += "{} \& ".format(key) output_latex = output_latex[:-4] output_latex += " & " for var in entry[1]: output_latex += "{} \& ".format(var) output_latex = output_latex[:-4] output_latex += " & %5.4f" % float(score) output_latex += r""" \\ """ output_latex += r"""\hline \end{tabular} """ output_latex += "\\caption{Comparisons for CPU fits}\n" output_latex += "\\label{tab:cpu_fit_comparison}\n" output_latex += r"""\end{table}""" with open(cpu_comparison_filename, 'w') as f: f.write(output_latex) memory_fit_list.sort() memory_fit_list.reverse() memory_comparison_filename = os.path.join(FLAGS.root_dir, "memory_fit_comparison_table.tex") print "\tGenerating {}".format(memory_comparison_filename) output_latex = r"""\begin{table}[h] \centering """ output_latex += r"""\begin{tabular}{|l|l|c|} \hline """ output_latex += r"""Selection Keys & Independent Variables & $R^2$ \\ \hline """ for memory_fit in memory_fit_list: score = memory_fit[0] entry = memory_fit[1] for key in entry[0]: output_latex += "{} \& ".format(key) output_latex = output_latex[:-4] output_latex += " & " for var in entry[1]: output_latex += "{} \& ".format(var) output_latex = output_latex[:-4] output_latex += " & %5.4f" % float(score) output_latex += r""" \\ """ output_latex += r"""\hline \end{tabular} """ output_latex += "\\caption{Comparisons for Memory fits}\n" output_latex += "\\label{tab:memory_fit_comparison}\n" output_latex += r"""\end{table}""" with open(memory_comparison_filename, 'w') as f: f.write(output_latex) def process_raw_results(): generate_per_kernel_results_table() generate_per_kernel_results_artifacts() generate_per_kernel_and_machine_results_table() generate_per_kernel_and_machine_results_artifacts() generate_per_kernel_and_machine_and_type_results_table() generate_per_kernel_and_machine_and_type_results_artifacts() generate_fit_comparison_artifacts() def main(argv): global experiment_db try: FLAGS(argv) # parse flags except gflags.FlagsError, e: print '%s\nUsage: %s ARGS\n%s' % (e, sys.argv[0], FLAGS) sys.exit(1) full_path = os.path.join(FLAGS.root_dir, FLAGS.output_db) if FLAGS.read_inputs: print "Unlinking {}".format(full_path) try: os.unlink(full_path) except OSError, e: print "Unable able to unlink {} due to {}".format(full_path, e) else: print "Reusing {}".format(full_path) experiment_db = DBWrapper(full_path) if FLAGS.read_inputs: read_raw_inputs() process_raw_results() experiment_db.cleanup() if __name__ == '__main__': main(sys.argv)
apache-2.0
mmottahedi/neuralnilm_prototype
scripts/e349.py
2
6140
from __future__ import print_function, division import matplotlib import logging from sys import stdout matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import (Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer, BidirectionalRecurrentLayer) from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment, init_experiment from neuralnilm.net import TrainingError from neuralnilm.layers import MixtureDensityLayer from neuralnilm.objectives import (scaled_cost, mdn_nll, scaled_cost_ignore_inactive, ignore_inactive, scaled_cost3) from neuralnilm.plot import MDNPlotter, CentralOutputPlotter from lasagne.nonlinearities import sigmoid, rectify, tanh from lasagne.objectives import mse from lasagne.init import Uniform, Normal from lasagne.layers import (LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer, RecurrentLayer) from lasagne.updates import nesterov_momentum, momentum from functools import partial import os import __main__ from copy import deepcopy from math import sqrt import numpy as np import theano.tensor as T NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 5000 GRADIENT_STEPS = 100 source_dict = dict( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[5] * 5, max_input_power=5900, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=512, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0.7, one_target_per_seq=False, n_seq_per_batch=16, subsample_target=2, include_diff=False, clip_appliance_power=True, target_is_prediction=False, # independently_center_inputs = True, standardise_input=True, unit_variance_targets=True, # input_padding=8, lag=0, output_central_value=True # reshape_target_to_2D=True # input_stats={'mean': np.array([ 0.05526326], dtype=np.float32), # 'std': np.array([ 0.12636775], dtype=np.float32)}, # target_stats={ # 'mean': np.array([ 0.04066789, 0.01881946, # 0.24639061, 0.17608672, 0.10273963], # dtype=np.float32), # 'std': np.array([ 0.11449792, 0.07338708, # 0.26608968, 0.33463112, 0.21250485], # dtype=np.float32)} ) N = 50 net_dict = dict( save_plot_interval=SAVE_PLOT_INTERVAL, # loss_function=partial(ignore_inactive, loss_func=mdn_nll, seq_length=SEQ_LENGTH), # loss_function=lambda x, t: mdn_nll(x, t).mean(), loss_function=lambda x, t: mse(x, t).mean(), # loss_function=partial(scaled_cost, loss_func=mse), # loss_function=ignore_inactive, # loss_function=partial(scaled_cost3, ignore_inactive=False), updates_func=momentum, learning_rate=1e-3, learning_rate_changes_by_iteration={ # 200: 1e-2, # 400: 1e-3, # 800: 1e-4 # 500: 1e-3 # 4000: 1e-03, # 6000: 5e-06, # 7000: 1e-06 # 2000: 5e-06 # 3000: 1e-05 # 7000: 5e-06, # 10000: 1e-06, # 15000: 5e-07, # 50000: 1e-07 }, do_save_activations=True, auto_reshape=False, plotter=CentralOutputPlotter # plotter=MDNPlotter ) """ |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| 12345678901234567890 """ def exp_a(name): global source # source_dict_copy = deepcopy(source_dict) # source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 512 output_shape = source.output_shape_after_processing() net_dict_copy['layers_config'] = [ { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': 16, 'filter_length': 4, 'stride': 1, 'nonlinearity': rectify, 'border': 'same' }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': 16, 'filter_length': 4, 'stride': 1, 'nonlinearity': rectify, 'border': 'same' }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': DenseLayer, 'num_units': N // 2, 'nonlinearity': rectify }, { 'type': DenseLayer, 'num_units': output_shape[1] * output_shape[2], 'nonlinearity': T.nnet.softplus } ] net = Net(**net_dict_copy) return net def main(): # EXPERIMENTS = list('abcdefghijklmnopqrstuvwxyz') EXPERIMENTS = list('a') for experiment in EXPERIMENTS: full_exp_name = NAME + experiment func_call = init_experiment(PATH, experiment, full_exp_name) logger = logging.getLogger(full_exp_name) try: net = eval(func_call) run_experiment(net, epochs=None) except KeyboardInterrupt: logger.info("KeyboardInterrupt") break except Exception as exception: logger.exception("Exception") raise finally: logging.shutdown() if __name__ == "__main__": main()
mit
eg-zhang/scikit-learn
benchmarks/bench_mnist.py
76
6136
""" ======================= MNIST dataset benchmark ======================= Benchmark on the MNIST dataset. The dataset comprises 70,000 samples and 784 features. Here, we consider the task of predicting 10 classes - digits from 0 to 9 from their raw images. By contrast to the covertype dataset, the feature space is homogenous. Example of output : [..] Classification performance: =========================== Classifier train-time test-time error-rat ------------------------------------------------------------ Nystroem-SVM 105.07s 0.91s 0.0227 ExtraTrees 48.20s 1.22s 0.0288 RandomForest 47.17s 1.21s 0.0304 SampledRBF-SVM 140.45s 0.84s 0.0486 CART 22.84s 0.16s 0.1214 dummy 0.01s 0.02s 0.8973 """ from __future__ import division, print_function # Author: Issam H. Laradji # Arnaud Joly <[email protected]> # License: BSD 3 clause import os from time import time import argparse import numpy as np from sklearn.datasets import fetch_mldata from sklearn.datasets import get_data_home from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.dummy import DummyClassifier from sklearn.externals.joblib import Memory from sklearn.kernel_approximation import Nystroem from sklearn.kernel_approximation import RBFSampler from sklearn.metrics import zero_one_loss from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC from sklearn.tree import DecisionTreeClassifier from sklearn.utils import check_array from sklearn.linear_model import LogisticRegression # Memoize the data extraction and memory map the resulting # train / test splits in readonly mode memory = Memory(os.path.join(get_data_home(), 'mnist_benchmark_data'), mmap_mode='r') @memory.cache def load_data(dtype=np.float32, order='F'): """Load the data, then cache and memmap the train/test split""" ###################################################################### ## Load dataset print("Loading dataset...") data = fetch_mldata('MNIST original') X = check_array(data['data'], dtype=dtype, order=order) y = data["target"] # Normalize features X = X / 255 ## Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") n_train = 60000 X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] return X_train, X_test, y_train, y_test ESTIMATORS = { "dummy": DummyClassifier(), 'CART': DecisionTreeClassifier(), 'ExtraTrees': ExtraTreesClassifier(n_estimators=100), 'RandomForest': RandomForestClassifier(n_estimators=100), 'Nystroem-SVM': make_pipeline(Nystroem(gamma=0.015, n_components=1000), LinearSVC(C=100)), 'SampledRBF-SVM': make_pipeline(RBFSampler(gamma=0.015, n_components=1000), LinearSVC(C=100)), 'LinearRegression-SAG': LogisticRegression(solver='sag', tol=1e-1, C=1e4) } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--classifiers', nargs="+", choices=ESTIMATORS, type=str, default=['ExtraTrees', 'Nystroem-SVM'], help="list of classifiers to benchmark.") parser.add_argument('--n-jobs', nargs="?", default=1, type=int, help="Number of concurrently running workers for " "models that support parallelism.") parser.add_argument('--order', nargs="?", default="C", type=str, choices=["F", "C"], help="Allow to choose between fortran and C ordered " "data") parser.add_argument('--random-seed', nargs="?", default=0, type=int, help="Common seed used by random number generator.") args = vars(parser.parse_args()) print(__doc__) X_train, X_test, y_train, y_test = load_data(order=args["order"]) print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size)) print("%s %s" % ("data type:".ljust(25), X_train.dtype)) print("%s %d (size=%dMB)" % ("number of train samples:".ljust(25), X_train.shape[0], int(X_train.nbytes / 1e6))) print("%s %d (size=%dMB)" % ("number of test samples:".ljust(25), X_test.shape[0], int(X_test.nbytes / 1e6))) print() print("Training Classifiers") print("====================") error, train_time, test_time = {}, {}, {} for name in sorted(args["classifiers"]): print("Training %s ... " % name, end="") estimator = ESTIMATORS[name] estimator_params = estimator.get_params() estimator.set_params(**{p: args["random_seed"] for p in estimator_params if p.endswith("random_state")}) if "n_jobs" in estimator_params: estimator.set_params(n_jobs=args["n_jobs"]) time_start = time() estimator.fit(X_train, y_train) train_time[name] = time() - time_start time_start = time() y_pred = estimator.predict(X_test) test_time[name] = time() - time_start error[name] = zero_one_loss(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print("{0: <24} {1: >10} {2: >11} {3: >12}" "".format("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 60) for name in sorted(args["classifiers"], key=error.get): print("{0: <23} {1: >10.2f}s {2: >10.2f}s {3: >12.4f}" "".format(name, train_time[name], test_time[name], error[name])) print()
bsd-3-clause
rssenar/PyToolkit
JoinDatasets.py
1
2552
#!/usr/bin/env python3.4 # ---------------------------------------------------------------------------- # import os, csv, glob, re import pandas as pd from Constants import ConvPercentage from tqdm import tqdm # ---------------------------------------------------------------------------- # os.chdir('../../../../Desktop/') # ---------------------------------------------------------------------------- # File1 = 'a.csv' File2 = 'b.csv' ziproute = 0 Description = 1 Records = 2 total = 3 dfo = 4 Percentage = 5 RTotal = 6 AdjRec = 7 AdjRecPerc = 8 RecRTotal = 9 OutputHeaderRow = [ 'ziproute', 'Description', 'Records', 'Total_Sat', 'Dist(m)', 'Sat%', 'R-TOTAL', 'ADJ_Rec', 'ADJ_Sat%', 'ADJ_R-TOTAL' ] def Join(): ds1 = pd.read_csv(File1) ds2 = pd.read_csv(File2) merged = ds1.merge(ds2, how = 'inner') merged['Percentage'] = '' merged['RTotal'] = '' merged['AdjRec'] = '' merged['AdjRecPerc'] = '' merged['AdjRecRTotal'] = '' merged.to_csv('temp.csv', encoding = 'utf-8', index=False) def ReformatOutputReport(): CSVFiles = glob.glob('temp.csv') for file in tqdm(CSVFiles): with open(file,'rU') as InputFile,\ open('DATA.csv','at') as OutputFile: Input = csv.reader(InputFile) Output = csv.writer(OutputFile) Output.writerow(OutputHeaderRow) RunningTotal = 0 AdjRecRTotal = 0 RowCounter = 2 next(InputFile) for Row in tqdm(Input): if int(Row[Records]) >= 135: Row[dfo] = round(float(Row[dfo]),1) Row[Percentage] = round(ConvPercentage(Row[Records],Row[total]),0) Row[RTotal] = '=SUM($C$2:$C{})'.format(RowCounter) if int(Row[Percentage]) >= 74: Row[AdjRec] = round(float(Row[total]) * 0.73,0) else: Row[AdjRec] = Row[Records] Row[AdjRecPerc] = round(ConvPercentage(Row[AdjRec],Row[total]),0) Row[RecRTotal] = '=SUM($H$2:$H{})'.format(RowCounter) Output.writerow(Row) RowCounter += 1 # ---------------------------------------------------------------------------- # if __name__ == '__main__': print('=======================================') print(' JOIN DATASETS ') print('=======================================') Join() ReformatOutputReport() Files = glob.glob('*.csv') for Record in Files: if bool(re.match(r'\btemp\b', Record, flags = re.I)): os.remove(Record) print('=======================================') print(' COMPLETED ') print()
bsd-2-clause
low-sky/pyspeckit
pyspeckit/spectrum/models/n2hp.py
4
11414
""" =========== N2H+ fitter =========== Reference for line params: Dore (Private Communication), improving on the determinations from L. Pagani, F. Daniel, and M. L. Dubernet A&A 494, 719-727 (2009) DOI: 10.1051/0004-6361:200810570 http://www.strw.leidenuniv.nl/~moldata/N2H+.html http://adsabs.harvard.edu/abs/2005MNRAS.363.1083D """ from __future__ import print_function import numpy as np import matplotlib.cbook as mpcb import copy try: from astropy.io import fits as pyfits except ImportError: import pyfits try: import scipy.interpolate import scipy.ndimage scipyOK = True except ImportError: scipyOK=False from ...mpfit import mpfit from .. import units from . import fitter,model,modelgrid from . import hyperfine import astropy.units as u freq_dict_cen ={ 'J1-0': 93173.7637e6, 'J2-1': 186344.8420e6, 'J3-2': 279511.8325e6, } voff_lines_dict={ ####### J 1-0 'J1-0_01': -7.9930, 'J1-0_02': -7.9930, 'J1-0_03': -7.9930, 'J1-0_04': -0.6112, 'J1-0_05': -0.6112, 'J1-0_06': -0.6112, 'J1-0_07': 0.0000, 'J1-0_08': 0.9533, 'J1-0_09': 0.9533, 'J1-0_10': 5.5371, 'J1-0_11': 5.5371, 'J1-0_12': 5.5371, 'J1-0_13': 5.9704, 'J1-0_14': 5.9704, 'J1-0_15': 6.9238, ####### J 2-1 'J2-1_01': -4.6258, 'J2-1_02': -4.5741, 'J2-1_03': -4.4376, 'J2-1_04': -4.2209, 'J2-1_05': -4.0976, 'J2-1_06': -3.8808, 'J2-1_07': -3.1619, 'J2-1_08': -2.9453, 'J2-1_09': -2.3469, 'J2-1_10': -1.9290, 'J2-1_11': -1.5888, 'J2-1_12': -1.5516, 'J2-1_13': -1.4523, 'J2-1_14': -1.1465, 'J2-1_15': -0.8065, 'J2-1_16': -0.6532, 'J2-1_17': -0.4694, 'J2-1_18': -0.1767, 'J2-1_19': 0.0000, 'J2-1_20': 0.0071, 'J2-1_21': 0.1137, 'J2-1_22': 0.1291, 'J2-1_23': 0.1617, 'J2-1_24': 0.2239, 'J2-1_25': 0.5237, 'J2-1_26': 0.6384, 'J2-1_27': 0.7405, 'J2-1_28': 2.1394, 'J2-1_29': 2.5158, 'J2-1_30': 2.5444, 'J2-1_31': 2.6225, 'J2-1_32': 2.8844, 'J2-1_33': 3.0325, 'J2-1_34': 3.0990, 'J2-1_35': 3.2981, 'J2-1_36': 3.5091, 'J2-1_37': 3.8148, 'J2-1_38': 3.8201, 'J2-1_39': 6.9891, 'J2-1_40': 7.5057, ####### J 3-2 'J3-2_01': -3.0666, 'J3-2_02': -2.9296, 'J3-2_03': -2.7221, 'J3-2_04': -2.6563, 'J3-2_05': -2.5270, 'J3-2_06': -2.4010, 'J3-2_07': -2.2535, 'J3-2_08': -2.1825, 'J3-2_09': -2.1277, 'J3-2_10': -1.5862, 'J3-2_11': -1.0158, 'J3-2_12': -0.6131, 'J3-2_13': -0.6093, 'J3-2_14': -0.5902, 'J3-2_15': -0.4872, 'J3-2_16': -0.4725, 'J3-2_17': -0.2757, 'J3-2_18': -0.0697, 'J3-2_19': -0.0616, 'J3-2_20': -0.0022, 'J3-2_21': 0.0000, 'J3-2_22': 0.0143, 'J3-2_23': 0.0542, 'J3-2_24': 0.0561, 'J3-2_25': 0.0575, 'J3-2_26': 0.0687, 'J3-2_27': 0.1887, 'J3-2_28': 0.2411, 'J3-2_29': 0.3781, 'J3-2_30': 0.4620, 'J3-2_31': 0.4798, 'J3-2_32': 0.5110, 'J3-2_33': 0.5540, 'J3-2_34': 0.7808, 'J3-2_35': 0.9066, 'J3-2_36': 1.6382, 'J3-2_37': 1.6980, 'J3-2_38': 2.1025, 'J3-2_39': 2.1236, 'J3-2_40': 2.1815, 'J3-2_41': 2.5281, 'J3-2_42': 2.6458, 'J3-2_43': 2.8052, 'J3-2_44': 3.0320, 'J3-2_45': 3.4963, } line_strength_dict = { ####### J 1-0 'J1-0_01': 0.025957, 'J1-0_02': 0.065372, 'J1-0_03': 0.019779, 'J1-0_04': 0.004376, 'J1-0_05': 0.034890, 'J1-0_06': 0.071844, 'J1-0_07': 0.259259, 'J1-0_08': 0.156480, 'J1-0_09': 0.028705, 'J1-0_10': 0.041361, 'J1-0_11': 0.013309, 'J1-0_12': 0.056442, 'J1-0_13': 0.156482, 'J1-0_14': 0.028705, 'J1-0_15': 0.037038, ####### J 2-1 'J2-1_01': 0.008272, 'J2-1_02': 0.005898, 'J2-1_03': 0.031247, 'J2-1_04': 0.013863, 'J2-1_05': 0.013357, 'J2-1_06': 0.010419, 'J2-1_07': 0.000218, 'J2-1_08': 0.000682, 'J2-1_09': 0.000152, 'J2-1_10': 0.001229, 'J2-1_11': 0.000950, 'J2-1_12': 0.000875, 'J2-1_13': 0.002527, 'J2-1_14': 0.000365, 'J2-1_15': 0.000164, 'J2-1_16': 0.021264, 'J2-1_17': 0.031139, 'J2-1_18': 0.000576, 'J2-1_19': 0.200000, 'J2-1_20': 0.001013, 'J2-1_21': 0.111589, 'J2-1_22': 0.088126, 'J2-1_23': 0.142604, 'J2-1_24': 0.011520, 'J2-1_25': 0.027608, 'J2-1_26': 0.012800, 'J2-1_27': 0.066354, 'J2-1_28': 0.013075, 'J2-1_29': 0.003198, 'J2-1_30': 0.061880, 'J2-1_31': 0.004914, 'J2-1_32': 0.035879, 'J2-1_33': 0.011026, 'J2-1_34': 0.039052, 'J2-1_35': 0.019767, 'J2-1_36': 0.004305, 'J2-1_37': 0.001814, 'J2-1_38': 0.000245, 'J2-1_39': 0.000029, 'J2-1_40': 0.000004, ####### J 3-2 'J3-2_01': 0.001845, 'J3-2_02': 0.001818, 'J3-2_03': 0.003539, 'J3-2_04': 0.014062, 'J3-2_05': 0.011432, 'J3-2_06': 0.000089, 'J3-2_07': 0.002204, 'J3-2_08': 0.002161, 'J3-2_09': 0.000061, 'J3-2_10': 0.000059, 'J3-2_11': 0.000212, 'J3-2_12': 0.000255, 'J3-2_13': 0.000247, 'J3-2_14': 0.000436, 'J3-2_15': 0.010208, 'J3-2_16': 0.000073, 'J3-2_17': 0.007447, 'J3-2_18': 0.000000, 'J3-2_19': 0.000155, 'J3-2_20': 0.000274, 'J3-2_21': 0.174603, 'J3-2_22': 0.018683, 'J3-2_23': 0.135607, 'J3-2_24': 0.100527, 'J3-2_25': 0.124866, 'J3-2_26': 0.060966, 'J3-2_27': 0.088480, 'J3-2_28': 0.001083, 'J3-2_29': 0.094510, 'J3-2_30': 0.014029, 'J3-2_31': 0.007191, 'J3-2_32': 0.022222, 'J3-2_33': 0.047915, 'J3-2_34': 0.015398, 'J3-2_35': 0.000071, 'J3-2_36': 0.000794, 'J3-2_37': 0.001372, 'J3-2_38': 0.007107, 'J3-2_39': 0.016618, 'J3-2_40': 0.009776, 'J3-2_41': 0.000997, 'J3-2_42': 0.000487, 'J3-2_43': 0.000069, 'J3-2_44': 0.000039, 'J3-2_45': 0.000010, } # Get frequency dictionary in Hz based on the offset velocity and rest frequency conv_J10=u.doppler_radio(freq_dict_cen['J1-0']*u.Hz) conv_J21=u.doppler_radio(freq_dict_cen['J2-1']*u.Hz) conv_J32=u.doppler_radio(freq_dict_cen['J3-2']*u.Hz) freq_dict = { name: ((voff_lines_dict[name]*u.km/u.s).to(u.Hz, equivalencies=conv_J10).value) for name in voff_lines_dict.keys() if "J1-0" in name } freq_dict.update({ name: ((voff_lines_dict[name]*u.km/u.s).to(u.Hz, equivalencies=conv_J21).value) for name in voff_lines_dict.keys() if "J2-1" in name }) freq_dict.update({ name: ((voff_lines_dict[name]*u.km/u.s).to(u.Hz, equivalencies=conv_J32).value) for name in voff_lines_dict.keys() if "J3-2" in name }) # relative_strength_total_degeneracy is not used in the CLASS implementation # of the hfs fit. It is the sum of the degeneracy values for all hyperfines # for a given line; it gives the relative weights between lines. # Hyperfine weights are treated as normalized within one rotational transition. w10 = sum(val for name,val in line_strength_dict.items() if 'J1-0' in name) w21 = sum(val for name,val in line_strength_dict.items() if 'J2-1' in name) w32 = sum(val for name,val in line_strength_dict.items() if 'J3-2' in name) relative_strength_total_degeneracy = { name : w10 for name in line_strength_dict.keys() if "J1-0" in name } relative_strength_total_degeneracy.update({ name : w21 for name in line_strength_dict.keys() if "J2-1" in name }) relative_strength_total_degeneracy.update({ name : w32 for name in line_strength_dict.keys() if "J3-2" in name }) # Get the list of line names from the previous lists line_names = [name for name in voff_lines_dict.keys()] n2hp_vtau = hyperfine.hyperfinemodel(line_names, voff_lines_dict, freq_dict, line_strength_dict, relative_strength_total_degeneracy) n2hp_vtau_fitter = n2hp_vtau.fitter n2hp_vtau_vheight_fitter = n2hp_vtau.vheight_fitter n2hp_vtau_tbg_fitter = n2hp_vtau.background_fitter # RADEX part from old file def n2hp_radex(xarr, density=4, column=13, xoff_v=0.0, width=1.0, grid_vwidth=1.0, grid_vwidth_scale=False, texgrid=None, taugrid=None, hdr=None, path_to_texgrid='', path_to_taugrid='', temperature_gridnumber=3, debug=False, verbose=False, **kwargs): """ Use a grid of RADEX-computed models to make a model line spectrum The RADEX models have to be available somewhere. OR they can be passed as arrays. If as arrays, the form should be: texgrid = ((minfreq1,maxfreq1,texgrid1),(minfreq2,maxfreq2,texgrid2)) xarr must be a SpectroscopicAxis instance xoff_v, width are both in km/s grid_vwidth is the velocity assumed when computing the grid in km/s this is important because tau = modeltau / width (see, e.g., Draine 2011 textbook pgs 219-230) grid_vwidth_scale is True or False: False for LVG, True for Sphere """ if texgrid is None and taugrid is None: if path_to_texgrid == '' or path_to_taugrid=='': raise IOError("Must specify model grids to use.") else: taugrid = [pyfits.getdata(path_to_taugrid)] texgrid = [pyfits.getdata(path_to_texgrid)] hdr = pyfits.getheader(path_to_taugrid) yinds,xinds = np.indices(taugrid[0].shape[1:]) densityarr = (xinds+hdr['CRPIX1']-1)*hdr['CD1_1']+hdr['CRVAL1'] # log density columnarr = (yinds+hdr['CRPIX2']-1)*hdr['CD2_2']+hdr['CRVAL2'] # log column minfreq = (4.8,) maxfreq = (5.0,) elif len(taugrid)==len(texgrid) and hdr is not None: minfreq,maxfreq,texgrid = zip(*texgrid) minfreq,maxfreq,taugrid = zip(*taugrid) yinds,xinds = np.indices(taugrid[0].shape[1:]) densityarr = (xinds+hdr['CRPIX1']-1)*hdr['CD1_1']+hdr['CRVAL1'] # log density columnarr = (yinds+hdr['CRPIX2']-1)*hdr['CD2_2']+hdr['CRVAL2'] # log column else: raise Exception # Convert X-units to frequency in GHz xarr = copy.copy(xarr) xarr.convert_to_unit('Hz', quiet=True) tau_nu_cumul = np.zeros(len(xarr)) gridval1 = np.interp(density, densityarr[0,:], xinds[0,:]) gridval2 = np.interp(column, columnarr[:,0], yinds[:,0]) if np.isnan(gridval1) or np.isnan(gridval2): raise ValueError("Invalid column/density") if scipyOK: tau = [scipy.ndimage.map_coordinates(tg[temperature_gridnumber,:,:],np.array([[gridval2],[gridval1]]),order=1) for tg in taugrid] tex = [scipy.ndimage.map_coordinates(tg[temperature_gridnumber,:,:],np.array([[gridval2],[gridval1]]),order=1) for tg in texgrid] else: raise ImportError("Couldn't import scipy, therefore cannot interpolate") #tau = modelgrid.line_params_2D(gridval1,gridval2,densityarr,columnarr,taugrid[temperature_gridnumber,:,:]) #tex = modelgrid.line_params_2D(gridval1,gridval2,densityarr,columnarr,texgrid[temperature_gridnumber,:,:]) if verbose: print("density %20.12g column %20.12g: tau %20.12g tex %20.12g" % (density, column, tau, tex)) if debug: import pdb; pdb.set_trace() return n2hp_vtau(xarr,Tex=tex,tau=tau,xoff_v=xoff_v,width=width,**kwargs)
mit
agoose77/hivesystem
manual/movingpanda/panda-7.py
1
4435
import dragonfly import dragonfly.pandahive import bee from bee import connect import math, functools from panda3d.core import NodePath import dragonfly.scene.unbound import dragonfly.std import dragonfly.io import dragonfly.canvas import Spyder # ## random matrix generator from random import random def random_matrix_generator(): while 1: a = Spyder.AxisSystem() a.rotateZ(360 * random()) a.origin = Spyder.Coordinate(15 * random() - 7.5, 15 * random() - 7.5, 0) yield dragonfly.scene.matrix(a, "AxisSystem") def id_generator(): n = 0 while 1: yield "spawnedpanda" + str(n) from dragonfly.canvas import box2d, canvasargs from bee.drone import dummydrone from libcontext.pluginclasses import plugin_single_required class parameters: pass class myscene(bee.frame): pandaclassname_ = bee.get_parameter("pandaclassname") pandaname_ = bee.get_parameter("pandaname") pandaicon_ = bee.get_parameter("pandaicon") c1 = bee.configure("scene") c1.import_mesh_EGG("models/environment") a = Spyder.AxisSystem() a *= 0.25 a.origin += (-8, 42, 0) c1.add_model_SPYDER(axissystem=a) c2 = bee.configure("scene") c2.import_mesh_EGG("models/panda-model") a = Spyder.AxisSystem() a *= 0.005 c2.add_actor_SPYDER(axissystem=a, entityname=pandaname_) c2.import_mesh_EGG("models/panda-walk4") c2.add_animation("walk") c3 = bee.configure("scene") c3.import_mesh_EGG("models/panda-model") a = Spyder.AxisSystem() a *= 0.005 c3.add_actorclass_SPYDER(axissystem=a, actorclassname=pandaclassname_) c3.import_mesh_EGG("models/panda-walk4") c3.add_animation("walk") box = box2d(50, 470, 96, 96) params = parameters() params.transparency = True args = canvasargs("pandaicon.png", pandaicon_, box, params) plugin = plugin_single_required(args) pattern = ("canvas", "draw", "init", ("object", "image")) d1 = dummydrone(plugindict={pattern: plugin}) i1 = bee.init("mousearea") i1.register(pandaicon_, box) del a, box, params, args, plugin, pattern class myhive(dragonfly.pandahive.pandahive): pandaname = "mypanda" pandaname_ = bee.attribute("pandaname") pandaclassname = "pandaclass" pandaclassname_ = bee.attribute("pandaclassname") pandaicon = "pandaicon" pandaicon_ = bee.attribute("pandaicon") canvas = dragonfly.pandahive.pandacanvas() mousearea = dragonfly.canvas.mousearea() raiser = bee.raiser() connect("evexc", raiser) animation = dragonfly.scene.unbound.animation() pandaid = dragonfly.std.variable("id")(pandaname_) walk = dragonfly.std.variable("str")("walk") connect(pandaid, animation.actor) connect(walk, animation.animation_name) key_w = dragonfly.io.keyboardsensor_trigger("W") connect(key_w, animation.loop) key_s = dragonfly.io.keyboardsensor_trigger("S") connect(key_s, animation.stop) pandaspawn = dragonfly.scene.spawn_actor() v_panda = dragonfly.std.variable("id")(pandaclassname_) connect(v_panda, pandaspawn) panda_id = dragonfly.std.generator("id", id_generator)() random_matrix = dragonfly.std.generator(("object", "matrix"), random_matrix_generator)() w_spawn = dragonfly.std.weaver(("id", ("object", "matrix")))() connect(panda_id, w_spawn.inp1) connect(random_matrix, w_spawn.inp2) do_spawn = dragonfly.std.transistor(("id", ("object", "matrix")))() connect(w_spawn, do_spawn) connect(do_spawn, pandaspawn.spawn_matrix) key_z = dragonfly.io.keyboardsensor_trigger("Z") connect(key_z, do_spawn) pandaicon_click = dragonfly.io.mouseareasensor(pandaicon_) connect(pandaicon_click, do_spawn) myscene = myscene( scene="scene", pandaname=pandaname_, pandaclassname=pandaclassname_, canvas=canvas, mousearea=mousearea, pandaicon=pandaicon_ ) main = myhive().getinstance() main.build("main") main.place() main.close() main.init() from direct.task import Task def spinCameraTask(camera, task): angleDegrees = task.time * 30.0 angleRadians = angleDegrees * (math.pi / 180.0) camera.setPos(20 * math.sin(angleRadians), -20.0 * math.cos(angleRadians), 3) camera.setHpr(angleDegrees, 0, 0) return Task.cont main.window.taskMgr.add(functools.partial(spinCameraTask, main.window.camera), "SpinCameraTask") main.run()
bsd-2-clause
open2c/bioframe
bioframe/io/fileops.py
1
21340
from collections import OrderedDict from contextlib import closing import tempfile import json import io import numpy as np import pandas as pd try: import bbi except ImportError: bbi = None try: import pyBigWig except ImportError: pyBigWig = None from ..core.stringops import parse_region from ..core.arrops import argnatsort from .schemas import SCHEMAS, BAM_FIELDS, GAP_FIELDS, UCSC_MRNA_FIELDS __all__ = [ "read_table", "read_chromsizes", "read_tabix", "read_pairix", "read_bam", "load_fasta", "read_bigwig", "to_bigwig", "read_bigbed", "to_bigbed", "read_parquet", "to_parquet", ] def read_table(filepath_or, schema=None, **kwargs): """ Read a tab-delimited file into a data frame. Equivalent to :func:`pandas.read_table` but supports an additional `schema` argument to populate column names for common genomic formats. """ kwargs.setdefault("sep", "\t") kwargs.setdefault("header", None) if isinstance(filepath_or, str) and filepath_or.endswith(".gz"): kwargs.setdefault("compression", "gzip") if schema is not None: try: kwargs.setdefault("names", SCHEMAS[schema]) except (KeyError, TypeError): if isinstance(schema, str): raise ValueError("TSV schema not found: '{}'".format(schema)) kwargs.setdefault("names", schema) return pd.read_csv(filepath_or, **kwargs) def parse_gtf_attributes(attrs, kv_sep="=", item_sep=";", quotechar='"', **kwargs): item_lists = attrs.str.split(item_sep) item_lists = item_lists.apply( lambda items: [item.strip().split(kv_sep) for item in items] ) stripchars = quotechar + " " item_lists = item_lists.apply( lambda items: [ map(lambda x: x.strip(stripchars), item) for item in items if len(item) == 2 ] ) kv_records = item_lists.apply(dict) return pd.DataFrame.from_records(kv_records, **kwargs) def read_chromsizes( filepath_or, filter_chroms=True, chrom_patterns=(r"^chr[0-9]+$", r"^chr[XY]$", r"^chrM$"), natsort=True, as_bed=False, **kwargs ): """ Parse a ``<db>.chrom.sizes`` or ``<db>.chromInfo.txt`` file from the UCSC database, where ``db`` is a genome assembly name. Parameters ---------- filepath_or : str or file-like Path or url to text file, or buffer. filter_chroms : bool, optional Filter for chromosome names given in ``chrom_patterns``. chrom_patterns : sequence, optional Sequence of regular expressions to capture desired sequence names. natsort : bool, optional Sort each captured group of names in natural order. Default is True. as_bed : bool, optional If True, return chromsizes as an interval dataframe (chrom, start, end). **kwargs : Passed to :func:`pandas.read_csv` Returns ------- Series of integer bp lengths indexed by sequence name or an interval dataframe. Notes ----- Mention name patterns See also -------- * UCSC assembly terminology: <http://genome.ucsc.edu/FAQ/FAQdownloads.html#download9> * NCBI assembly terminology: <https://www.ncbi.nlm.nih.gov/grc/help/definitions> """ if isinstance(filepath_or, str) and filepath_or.endswith(".gz"): kwargs.setdefault("compression", "gzip") chromtable = pd.read_csv( filepath_or, sep="\t", usecols=[0, 1], names=["name", "length"], dtype={"name": str}, **kwargs ) if filter_chroms: parts = [] for pattern in chrom_patterns: if not len(pattern): continue part = chromtable[chromtable["name"].str.contains(pattern)] if natsort: part = part.iloc[argnatsort(part["name"])] parts.append(part) chromtable = pd.concat(parts, axis=0) if as_bed: chromtable["start"] = 0 chromtable = ( chromtable[["name", "start", "length"]] .rename({"name": "chrom", "length": "end"}, axis="columns") .reset_index(drop=True) ) else: chromtable.index = chromtable["name"].values chromtable = chromtable["length"] return chromtable def read_gapfile(filepath_or_fp, chroms=None, **kwargs): gap = pd.read_csv( filepath_or_fp, sep="\t", names=GAP_FIELDS, usecols=["chrom", "start", "end", "length", "type", "bridge"], **kwargs ) if chroms is not None: gap = gap[gap.chrom.isin(chroms)] return gap def read_ucsc_mrnafile(filepath_or_fp, chroms=None, **kwargs): mrna = pd.read_csv( filepath_or_fp, sep="\t", names=UCSC_MRNA_FIELDS, # usecols=['chrom', 'start', 'end', 'length', 'type', 'bridge'], **kwargs ) if chroms is not None: mrna = mrna[mrna.chrom.isin(chroms)] return mrna def read_tabix(fp, chrom=None, start=None, end=None): import pysam with closing(pysam.TabixFile(fp)) as f: names = list(f.header) or None df = pd.read_csv( io.StringIO("\n".join(f.fetch(chrom, start, end))), sep="\t", header=None, names=names, ) return df def read_pairix( fp, region1, region2=None, chromsizes=None, columns=None, usecols=None, dtypes=None, **kwargs ): import pypairix import cytoolz as toolz if dtypes is None: dtypes = {} f = pypairix.open(fp, "r") header = f.get_header() if len(header): header_groups = toolz.groupby(lambda x: x.split(":")[0], header) if "#chromsize" in header_groups and chromsizes is None: items = [line.split()[1:] for line in header_groups["#chromsize"]] if len(items) and chromsizes is None: names, lengths = zip(*((item[0], int(item[1])) for item in items)) chromsizes = pd.Series(index=names, data=lengths) if "#columns" in header_groups and columns is None: columns = header_groups["#columns"][0].split()[1:] chrom1, start1, end1 = parse_region(region1, chromsizes) if region2 is not None: chrom2, start2, end2 = parse_region(region2, chromsizes) else: chrom2, start2, end2 = chrom1, start1, end1 it = f.query2D(chrom1, start1, end1, chrom2, start2, end2) if usecols is not None: argusecols = [columns.index(col) for col in usecols] records = [(record[i] for i in argusecols) for record in it] columns = usecols else: records = it df = pd.DataFrame.from_records(records, columns=columns) if columns is not None: for col in columns: if col in dtypes: df[col] = df[col].astype(dtypes[col]) else: df[col] = pd.to_numeric(df[col], "ignore") return df def read_bam(fp, chrom=None, start=None, end=None): import pysam with closing(pysam.AlignmentFile(fp, "rb")) as f: bam_iter = f.fetch(chrom, start, end) records = [ ( s.qname, s.flag, s.rname, s.pos, s.mapq, s.cigarstring if s.mapq != 0 else np.nan, s.rnext, s.pnext, s.tlen, s.seq, s.qual, json.dumps(OrderedDict(s.tags)), ) for s in bam_iter ] df = pd.DataFrame(records, columns=BAM_FIELDS) return df def extract_centromeres(df, schema=None, merge=True): if schema == "centromeres": cens = df elif schema == "cytoband": cens = df[df["gieStain"] == "acen"] elif schema == "gap": cens = df[df["type"] == "centromere"] else: raise ValueError('`schema` must be one of {"centromeres", "cytoband", "gap"}.') if merge: cens = cens.groupby("chrom").agg({"start": np.min, "end": np.max}).reset_index() cens["mid"] = (cens["start"] + cens["end"]) // 2 cens = ( cens[["chrom", "start", "end", "mid"]] .sort_values("chrom") .reset_index(drop=True) ) return cens class PysamFastaRecord(object): def __init__(self, ff, ref): self.ff = ff if ref not in ff.references: raise KeyError("Reference name '{}' not found in '{}'".format(ref, ff)) self.ref = ref def __getitem__(self, key): if isinstance(key, slice): start, stop = key.start, key.stop else: start = key stop = key + 1 return self.ff.fetch(self.ref, start, stop) def load_fasta(filepath_or, engine="pysam", **kwargs): """ Load lazy fasta sequences from an indexed fasta file (optionally compressed) or from a collection of uncompressed fasta files. Parameters ---------- filepath_or : str or iterable If a string, a filepath to a single `.fa` or `.fa.gz` file. Assumed to be accompanied by a `.fai` index file. Depending on the engine, the index may be created on the fly, and some compression formats may not be supported. If not a string, an iterable of fasta file paths each assumed to contain a single sequence. engine : {'pysam', 'pyfaidx'}, optional Module to use for loading sequences. kwargs : optional Options to pass to ``pysam.FastaFile`` or ``pyfaidx.Fasta``. Returns ------- OrderedDict of (lazy) fasta records. Notes ----- * pysam/samtools can read .fai and .gzi indexed files, I think. * pyfaidx can handle uncompressed and bgzf compressed files. """ is_multifile = not isinstance(filepath_or, str) records = OrderedDict() engine = engine.lower() if engine == "pysam": try: import pysam except ImportError: raise ImportError("pysam is required to use engine='pysam'") if is_multifile: for onefile in filepath_or: ff = pysam.FastaFile(onefile, **kwargs) name = ff.references[0] records[name] = PysamFastaRecord(ff, name) else: ff = pysam.FastaFile(filepath_or, **kwargs) for name in ff.references: records[name] = PysamFastaRecord(ff, name) elif engine == "pyfaidx": try: import pyfaidx except ImportError: raise ImportError("pyfaidx is required to use engine='pyfaidx'") if is_multifile: for onefile in filepath_or: ff = pyfaidx.Fasta(onefile, **kwargs) name = next(iter(ff.keys())) records[name] = ff[name] else: ff = pyfaidx.Fasta(filepath_or, **kwargs) for name in ff.keys(): records[name] = ff[name] else: raise ValueError("engine must be 'pysam' or 'pyfaidx'") return records def read_bigwig(path, chrom, start=None, end=None, engine="auto"): """ Read intervals from a bigWig file. Parameters ---------- path : str Path or URL to a bigWig file chrom : str start, end : int, optional Start and end coordinates. Defaults to 0 and chromosome length. engine : {"auto", "pybbi", "pybigwig"} Library to use for querying the bigWig file. Returns ------- DataFrame """ engine = engine.lower() if engine == "auto": if bbi is None and pyBigWig is None: raise ImportError( "read_bigwig requires either the pybbi or pyBigWig package" ) elif bbi is not None: engine = "pybbi" else: engine = "pybigwig" if engine in ("pybbi", "bbi"): if start is None: start = 0 if end is None: end = -1 with bbi.open(path) as f: df = f.fetch_intervals(chrom, start=start, end=end) elif engine == "pybigwig": f = pyBigWig.open(path) if start is None: start = 0 if end is None: end = f.chroms()[chrom] ivals = f.intervals(chrom, start, end) df = pd.DataFrame(ivals, columns=["start", "end", "value"]) df.insert(0, "chrom", chrom) else: raise ValueError( "engine must be 'auto', 'pybbi' or 'pybigwig'; got {}".format(engine) ) return df def read_bigbed(path, chrom, start=None, end=None, engine="auto"): """ Read intervals from a bigBed file. Parameters ---------- path : str Path or URL to a bigBed file chrom : str start, end : int, optional Start and end coordinates. Defaults to 0 and chromosome length. engine : {"auto", "pybbi", "pybigwig"} Library to use for querying the bigBed file. Returns ------- DataFrame """ engine = engine.lower() if engine == "auto": if bbi is None and pyBigWig is None: raise ImportError( "read_bigbed requires either the pybbi or pyBigWig package" ) elif bbi is not None: engine = "pybbi" else: engine = "pybigwig" if engine in ("pybbi", "bbi"): if start is None: start = 0 if end is None: end = -1 with bbi.open(path) as f: df = f.fetch_intervals(chrom, start=start, end=end) elif engine == "pybigwig": f = pyBigWig.open(path) if start is None: start = 0 if end is None: end = f.chroms()[chrom] ivals = f.entries(chrom, start, end) df = pd.DataFrame(ivals, columns=["start", "end", "rest"]) df.insert(0, "chrom", chrom) else: raise ValueError( "engine must be 'auto', 'pybbi' or 'pybigwig'; got {}".format(engine) ) return df def to_bigwig(df, chromsizes, outpath, value_field=None): """ Save a bedGraph-like dataframe as a binary BigWig track. Parameters ---------- df : pandas.DataFrame Data frame with columns 'chrom', 'start', 'end' and one or more value columns chromsizes : pandas.Series Series indexed by chromosome name mapping to their lengths in bp outpath : str The output BigWig file path value_field : str, optional Select the column label of the data frame to generate the track. Default is to use the fourth column. """ is_bedgraph = True for col in ["chrom", "start", "end"]: if col not in df.columns: is_bedgraph = False if len(df.columns) < 4: is_bedgraph = False if not is_bedgraph: raise ValueError( "A bedGraph-like DataFrame is required, got {}".format(df.columns) ) if value_field is None: value_field = df.columns[3] columns = ["chrom", "start", "end", value_field] bg = df[columns].copy() bg["chrom"] = bg["chrom"].astype(str) bg = bg.sort_values(["chrom", "start", "end"]) with tempfile.NamedTemporaryFile(suffix=".bg") as f, tempfile.NamedTemporaryFile( "wt", suffix=".chrom.sizes" ) as cs: chromsizes.to_csv(cs, sep="\t", header=False) cs.flush() bg.to_csv( f.name, sep="\t", columns=columns, index=False, header=False, na_rep="nan" ) p = subprocess.run( ["bedGraphToBigWig", f.name, cs.name, outpath], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) return p def to_bigbed(df, chromsizes, outpath, schema="bed6"): """ Save a bedGraph-like dataframe as a binary BigWig track. Parameters ---------- df : pandas.DataFrame Data frame with columns 'chrom', 'start', 'end' and one or more value columns chromsizes : pandas.Series Series indexed by chromosome name mapping to their lengths in bp outpath : str The output BigWig file path value_field : str, optional Select the column label of the data frame to generate the track. Default is to use the fourth column. """ import tempfile import subprocess is_bed6 = True for col in ["chrom", "start", "end", "name", "score", "strand"]: if col not in df.columns: is_bed6 = False if len(df.columns) < 6: is_bed6 = False if not is_bed6: raise ValueError("A bed6-like DataFrame is required, got {}".format(df.columns)) columns = ["chrom", "start", "end", "name", "score", "strand"] bed = df[columns].copy() bed["chrom"] = bed["chrom"].astype(str) bed = bed.sort_values(["chrom", "start", "end"]) with tempfile.NamedTemporaryFile(suffix=".bed") as f, tempfile.NamedTemporaryFile( "wt", suffix=".chrom.sizes" ) as cs: chromsizes.to_csv(cs, sep="\t", header=False) cs.flush() bed.to_csv( f.name, sep="\t", columns=columns, index=False, header=False, na_rep="nan" ) p = subprocess.run( ["bedToBigBed", "-type={}".format(schema), f.name, cs.name, outpath], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) return p def to_parquet( pieces, outpath, row_group_size=None, compression="snappy", use_dictionary=True, version=2.0, **kwargs ): """ Save an iterable of dataframe chunks to a single Apache Parquet file. For more info about Parquet, see https://arrow.apache.org/docs/python/parquet.html. Parameters ---------- pieces : DataFrame or iterable of DataFrame Chunks to write outpath : str Path to output file row_group_size : int Number of rows per row group compression : {'snappy', 'gzip', 'brotli', 'none'}, optional Compression algorithm. Can be set on a per-column basis with a dictionary of column names to compression lib. use_dictionary : bool, optional Use dictionary encoding. Can be set on a per-column basis with a list of column names. See also -------- pyarrow.parquet.write_table pyarrow.parquet.ParquetFile fastparquet """ try: import pyarrow.parquet import pyarrow as pa except ImportError: raise ImportError("Saving to parquet requires the `pyarrow` package") if isinstance(pieces, pd.DataFrame): pieces = (pieces,) try: for i, piece in enumerate(pieces): table = pa.Table.from_pandas(piece, preserve_index=False) if i == 0: writer = pa.parquet.ParquetWriter( outpath, table.schema, compression=compression, use_dictionary=use_dictionary, version=version, **kwargs ) writer.write_table(table, row_group_size=row_group_size) finally: writer.close() def read_parquet(filepath, columns=None, iterator=False, **kwargs): """ Load DataFrames from Parquet files, optionally in pieces. Parameters ---------- filepath : str, pathlib.Path, pyarrow.NativeFile, or file-like object Readable source. For passing bytes or buffer-like file containing a Parquet file, use pyarorw.BufferReader columns: list If not None, only these columns will be read from the row groups. A column name may be a prefix of a nested field, e.g. 'a' will select 'a.b', 'a.c', and 'a.d.e' iterator : boolean, default False Return an iterator object that yields row group DataFrames and provides the ParquetFile interface. use_threads : boolean, default True Perform multi-threaded column reads memory_map : boolean, default True If the source is a file path, use a memory map to read file, which can improve performance in some environments Returns ------- DataFrame or ParquetFileIterator """ use_threads = kwargs.pop("use_threads", True) if not iterator: return pd.read_parquet( filepath, columns=columns, use_threads=use_threads, **kwargs ) else: try: from pyarrow.parquet import ParquetFile except ImportError: raise ImportError( "Iterating over Parquet data requires the `pyarrow` package." ) class ParquetFileIterator(ParquetFile): def __iter__(self): return self def __next__(self): if not hasattr(self, "_rgid"): self._rgid = 0 if self._rgid < self.num_row_groups: rg = self.read_row_group( self._rgid, columns=columns, use_threads=use_threads, use_pandas_metadata=True, ) self._rgid += 1 else: raise StopIteration return rg.to_pandas() return ParquetFileIterator(filepath, **kwargs)
mit
RPGOne/Skynet
scikit-learn-c604ac39ad0e5b066d964df3e8f31ba7ebda1e0e/examples/linear_model/plot_iris_logistic.py
283
1678
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logistic Regression 3-class Classifier ========================================================= Show below is a logistic-regression classifiers decision boundaries on the `iris <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ dataset. The datapoints are colored according to their labels. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) # we create an instance of Neighbours Classifier and fit the data. logreg.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1, figsize=(4, 3)) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
clemkoa/scikit-learn
examples/plot_johnson_lindenstrauss_bound.py
39
7489
r""" ===================================================================== The Johnson-Lindenstrauss bound for embedding with random projections ===================================================================== The `Johnson-Lindenstrauss lemma`_ states that any high dimensional dataset can be randomly projected into a lower dimensional Euclidean space while controlling the distortion in the pairwise distances. .. _`Johnson-Lindenstrauss lemma`: https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma Theoretical bounds ================== The distortion introduced by a random projection `p` is asserted by the fact that `p` is defining an eps-embedding with good probability as defined by: .. math:: (1 - eps) \|u - v\|^2 < \|p(u) - p(v)\|^2 < (1 + eps) \|u - v\|^2 Where u and v are any rows taken from a dataset of shape [n_samples, n_features] and p is a projection by a random Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas matrix). The minimum number of components to guarantees the eps-embedding is given by: .. math:: n\_components >= 4 log(n\_samples) / (eps^2 / 2 - eps^3 / 3) The first plot shows that with an increasing number of samples ``n_samples``, the minimal number of dimensions ``n_components`` increased logarithmically in order to guarantee an ``eps``-embedding. The second plot shows that an increase of the admissible distortion ``eps`` allows to reduce drastically the minimal number of dimensions ``n_components`` for a given number of samples ``n_samples`` Empirical validation ==================== We validate the above bounds on the digits dataset or on the 20 newsgroups text document (TF-IDF word frequencies) dataset: - for the digits dataset, some 8x8 gray level pixels data for 500 handwritten digits pictures are randomly projected to spaces for various larger number of dimensions ``n_components``. - for the 20 newsgroups dataset some 500 documents with 100k features in total are projected using a sparse random matrix to smaller euclidean spaces with various values for the target number of dimensions ``n_components``. The default dataset is the digits dataset. To run the example on the twenty newsgroups dataset, pass the --twenty-newsgroups command line argument to this script. For each value of ``n_components``, we plot: - 2D distribution of sample pairs with pairwise distances in original and projected spaces as x and y axis respectively. - 1D histogram of the ratio of those distances (projected / original). We can see that for low values of ``n_components`` the distribution is wide with many distorted pairs and a skewed distribution (due to the hard limit of zero ratio on the left as distances are always positives) while for larger values of n_components the distortion is controlled and the distances are well preserved by the random projection. Remarks ======= According to the JL lemma, projecting 500 samples without too much distortion will require at least several thousands dimensions, irrespective of the number of features of the original dataset. Hence using random projections on the digits dataset which only has 64 features in the input space does not make sense: it does not allow for dimensionality reduction in this case. On the twenty newsgroups on the other hand the dimensionality can be decreased from 56436 down to 10000 while reasonably preserving pairwise distances. """ print(__doc__) import sys from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.random_projection import johnson_lindenstrauss_min_dim from sklearn.random_projection import SparseRandomProjection from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.datasets import load_digits from sklearn.metrics.pairwise import euclidean_distances # Part 1: plot the theoretical dependency between n_components_min and # n_samples # range of admissible distortions eps_range = np.linspace(0.1, 0.99, 5) colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range))) # range of number of samples (observation) to embed n_samples_range = np.logspace(1, 9, 9) plt.figure() for eps, color in zip(eps_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps) plt.loglog(n_samples_range, min_n_components, color=color) plt.legend(["eps = %0.1f" % eps for eps in eps_range], loc="lower right") plt.xlabel("Number of observations to eps-embed") plt.ylabel("Minimum number of dimensions") plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components") # range of admissible distortions eps_range = np.linspace(0.01, 0.99, 100) # range of number of samples (observation) to embed n_samples_range = np.logspace(2, 6, 5) colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range))) plt.figure() for n_samples, color in zip(n_samples_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range) plt.semilogy(eps_range, min_n_components, color=color) plt.legend(["n_samples = %d" % n for n in n_samples_range], loc="upper right") plt.xlabel("Distortion eps") plt.ylabel("Minimum number of dimensions") plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps") # Part 2: perform sparse random projection of some digits images which are # quite low dimensional and dense or documents of the 20 newsgroups dataset # which is both high dimensional and sparse if '--twenty-newsgroups' in sys.argv: # Need an internet connection hence not enabled by default data = fetch_20newsgroups_vectorized().data[:500] else: data = load_digits().data[:500] n_samples, n_features = data.shape print("Embedding %d samples with dim %d using various random projections" % (n_samples, n_features)) n_components_range = np.array([300, 1000, 10000]) dists = euclidean_distances(data, squared=True).ravel() # select only non-identical samples pairs nonzero = dists != 0 dists = dists[nonzero] for n_components in n_components_range: t0 = time() rp = SparseRandomProjection(n_components=n_components) projected_data = rp.fit_transform(data) print("Projected %d samples from %d to %d in %0.3fs" % (n_samples, n_features, n_components, time() - t0)) if hasattr(rp, 'components_'): n_bytes = rp.components_.data.nbytes n_bytes += rp.components_.indices.nbytes print("Random matrix with size: %0.3fMB" % (n_bytes / 1e6)) projected_dists = euclidean_distances( projected_data, squared=True).ravel()[nonzero] plt.figure() plt.hexbin(dists, projected_dists, gridsize=100, cmap=plt.cm.PuBu) plt.xlabel("Pairwise squared distances in original space") plt.ylabel("Pairwise squared distances in projected space") plt.title("Pairwise distances distribution for n_components=%d" % n_components) cb = plt.colorbar() cb.set_label('Sample pairs counts') rates = projected_dists / dists print("Mean distances rate: %0.2f (%0.2f)" % (np.mean(rates), np.std(rates))) plt.figure() plt.hist(rates, bins=50, normed=True, range=(0., 2.), edgecolor='k') plt.xlabel("Squared distances rate: projected / original") plt.ylabel("Distribution of samples pairs") plt.title("Histogram of pairwise distance rates for n_components=%d" % n_components) # TODO: compute the expected value of eps and add them to the previous plot # as vertical lines / region plt.show()
bsd-3-clause
teoliphant/numpy-refactor
numpy/lib/twodim_base.py
5
22944
""" Basic functions for manipulating 2d arrays """ __all__ = ['diag','diagflat','eye','fliplr','flipud','rot90','tri','triu', 'tril','vander','histogram2d','mask_indices', 'tril_indices','tril_indices_from','triu_indices','triu_indices_from', ] from numpy.core.numeric import asanyarray, equal, subtract, arange, \ zeros, greater_equal, multiply, ones, asarray, alltrue, where, \ empty def fliplr(m): """ Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to A[:,::-1]. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.fliplr(A) array([[ 0., 0., 1.], [ 0., 2., 0.], [ 3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A)==A[:,::-1,...]) True """ m = asanyarray(m) if m.ndim < 2: raise ValueError, "Input must be >= 2-d." return m[:, ::-1] def flipud(m): """ Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``A[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.0, 2, 3]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.flipud(A) array([[ 0., 0., 3.], [ 0., 2., 0.], [ 1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A)==A[::-1,...]) True >>> np.flipud([1,2]) array([2, 1]) """ m = asanyarray(m) if m.ndim < 1: raise ValueError, "Input must be >= 1-d." return m[::-1,...] def rot90(m, k=1): """ Rotate an array by 90 degrees in the counter-clockwise direction. The first two dimensions are rotated; therefore, the array must be at least 2-D. Parameters ---------- m : array_like Array of two or more dimensions. k : integer Number of times the array is rotated by 90 degrees. Returns ------- y : ndarray Rotated array. See Also -------- fliplr : Flip an array horizontally. flipud : Flip an array vertically. Examples -------- >>> m = np.array([[1,2],[3,4]], int) >>> m array([[1, 2], [3, 4]]) >>> np.rot90(m) array([[2, 4], [1, 3]]) >>> np.rot90(m, 2) array([[4, 3], [2, 1]]) """ m = asanyarray(m) if m.ndim < 2: raise ValueError, "Input must >= 2-d." k = k % 4 if k == 0: return m elif k == 1: return fliplr(m).swapaxes(0,1) elif k == 2: return fliplr(flipud(m)) else: return fliplr(m.swapaxes(0,1)) # k==3 def eye(N, M=None, k=0, dtype=float): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : dtype, optional Data-type of the returned array. Returns ------- I : ndarray (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- diag : Return a diagonal 2-D array using a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[ 0., 1., 0.], [ 0., 0., 1.], [ 0., 0., 0.]]) """ if M is None: M = N m = zeros((N, M), dtype=dtype) if k >= M: return m if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. Parameters ---------- v : array_like If `v` is a 2-D array, return a copy of its `k`-th diagonal. If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th diagonal. k : int, optional Diagonal in question. The default is 0. Use `k>0` for diagonals above the main diagonal, and `k<0` for diagonals below the main diagonal. Returns ------- out : ndarray The extracted diagonal or constructed diagonal array. See Also -------- diagonal : Return specified diagonals. diagflat : Create a 2-D array with the flattened input as a diagonal. trace : Sum along diagonals. triu : Upper triangle of an array. tril : Lower triange of an array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ v = asarray(v) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = zeros((n,n), v.dtype) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: if k >= s[1]: return empty(0, dtype=v.dtype) if v.flags.f_contiguous: # faster slicing v, k, s = v.T, -k, s[::-1] if k >= 0: i = k else: i = (-k) * s[1] return v[:s[1]-k].flat[i::s[1]+1] else: raise ValueError, "Input must be 1- or 2-d." def diagflat(v,k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set. The default is 0. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : Matlab workalike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ try: wrap = v.__array_wrap__ except AttributeError: wrap = None v = asarray(v).ravel() s = len(v) n = s + abs(k) res = zeros((n,n), v.dtype) if (k>=0): i = arange(0,n-k) fi = i+k+i*n else: i = arange(0,n+k) fi = i+(i-k)*n res.flat[fi] = v if not wrap: return res return wrap(res) def tri(N, M=None, k=0, dtype=float): """ Construct an array filled with ones at and below the given diagonal. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- T : (N,M) ndarray Array with a lower triangle filled with ones, in other words ``T[i,j] == 1`` for ``i <= j + k``. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[ 0., 0., 0., 0., 0.], [ 1., 0., 0., 0., 0.], [ 1., 1., 0., 0., 0.]]) """ if M is None: M = N m = greater_equal(subtract.outer(arange(N), arange(M)),-k) return m.astype(dtype) def tril(m, k=0): """ Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input array. k : int Diagonal above which to zero elements. `k = 0` is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- L : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu Examples -------- >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = asanyarray(m) out = multiply(tri(m.shape[0], m.shape[1], k=k, dtype=int),m) return out def triu(m, k=0): """ Upper triangle of an array. Construct a copy of a matrix with elements below the k-th diagonal zeroed. Please refer to the documentation for `tril`. See Also -------- tril Examples -------- >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = asanyarray(m) out = multiply((1-tri(m.shape[0], m.shape[1], k-1, int)),m) return out # borrowed from John Hunter and matplotlib def vander(x, N=None): """ Generate a Van der Monde matrix. The columns of the output matrix are decreasing powers of the input vector. Specifically, the i-th output column is the input vector to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named Van Der Monde, or Vandermonde matrix, from Alexandre-Theophile Vandermonde. Parameters ---------- x : array_like 1-D input array. N : int, optional Order of (number of columns in) the output. If `N` is not specified, a square array is returned (``N = len(x)``). Returns ------- out : ndarray Van der Monde matrix of order `N`. The first column is ``x^(N-1)``, the second ``x^(N-2)`` and so forth. References ---------- .. [1] Wikipedia, "Vandermonde matrix", http://en.wikipedia.org/wiki/Vandermonde_matrix Examples -------- >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: >>> np.linalg.det(np.vander(x)) 48.000000000000043 >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48 """ x = asarray(x) if N is None: N=len(x) X = ones( (len(x),N), x.dtype) for i in range(N-1): X[:,i] = x**(N-i-1) return X def histogram2d(x,y, bins=10, range=None, normed=False, weights=None): """ Compute the bi-dimensional histogram of two data samples. Parameters ---------- x : array_like, shape(N,) A sequence of values to be histogrammed along the first dimension. y : array_like, shape(M,) A sequence of values to be histogrammed along the second dimension. bins : int or [int, int] or array_like or [array, array], optional The bin specification: * If int, the number of bins for the two dimensions (nx=ny=bins). * If [int, int], the number of bins in each dimension (nx, ny = bins). * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). range : array_like, shape(2,2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range will be considered outliers and not tallied in the histogram. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density, i.e. the bin count divided by the bin area. weights : array_like, shape(N,), optional An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights are normalized to 1 if `normed` is True. If `normed` is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray, shape(nx, ny) The bi-dimensional histogram of samples `x` and `y`. Values in `x` are histogrammed along the first dimension and values in `y` are histogrammed along the second dimension. xedges : ndarray, shape(nx,) The bin edges along the first dimension. yedges : ndarray, shape(ny,) The bin edges along the second dimension. See Also -------- histogram: 1D histogram histogramdd: Multidimensional histogram Notes ----- When `normed` is True, then the returned histogram is the sample density, defined such that: .. math:: \\sum_{i=0}^{nx-1} \\sum_{j=0}^{ny-1} H_{i,j} \\Delta x_i \\Delta y_j = 1 where `H` is the histogram array and :math:`\\Delta x_i \\Delta y_i` the area of bin `{i,j}`. Please note that the histogram does not follow the Cartesian convention where `x` values are on the abcissa and `y` values on the ordinate axis. Rather, `x` is histogrammed along the first dimension of the array (vertical), and `y` along the second dimension of the array (horizontal). This ensures compatibility with `histogramdd`. Examples -------- >>> x, y = np.random.randn(2, 100) >>> H, xedges, yedges = np.histogram2d(x, y, bins=(5, 8)) >>> H.shape, xedges.shape, yedges.shape ((5, 8), (6,), (9,)) We can now use the Matplotlib to visualize this 2-dimensional histogram: >>> extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] >>> import matplotlib.pyplot as plt >>> plt.imshow(H, extent=extent) <matplotlib.image.AxesImage object at ...> >>> plt.show() """ from numpy import histogramdd try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins, float) bins = [xedges, yedges] hist, edges = histogramdd([x,y], bins, range, normed, weights) return hist, edges[0], edges[1] def mask_indices(n,mask_func,k=0): """ Return the indices to access (n, n) arrays, given a masking function. Assume `mask_func` is a function that, for a square array a of size ``(n, n)`` with a possible offset argument `k`, when called as ``mask_func(a, k)`` returns a new array with zeros in certain locations (functions like `triu` or `tril` do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of `triu`, `tril`. That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. `k` is an optional argument to the function. k : scalar An optional argument which is passed through to `mask_func`. Functions like `triu`, `tril` take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The `n` arrays of indices corresponding to the locations where ``mask_func(np.ones((n, n)), k)`` is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if `a` is a 3x3 array: >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) """ m = ones((n,n),int) a = mask_func(m,k) return where(a != 0) def tril_indices(n,k=0): """ Return the indices for the lower-triangle of an (n, n) array. Parameters ---------- n : int Sets the size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ return mask_indices(n,tril,k) def tril_indices_from(arr,k=0): """ Return the indices for the lower-triangle of an (n, n) array. See `tril_indices` for full details. Parameters ---------- n : int Sets the size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). See Also -------- tril_indices, tril Notes ----- .. versionadded:: 1.4.0 """ if not arr.ndim==2 and arr.shape[0] == arr.shape[1]: raise ValueError("input array must be 2-d and square") return tril_indices(arr.shape[0],k) def triu_indices(n,k=0): """ Return the indices for the upper-triangle of an (n, n) array. Parameters ---------- n : int Sets the size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return mask_indices(n,triu,k) def triu_indices_from(arr,k=0): """ Return the indices for the upper-triangle of an (n, n) array. See `triu_indices` for full details. Parameters ---------- n : int Sets the size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). See Also -------- triu_indices, triu Notes ----- .. versionadded:: 1.4.0 """ if not arr.ndim==2 and arr.shape[0] == arr.shape[1]: raise ValueError("input array must be 2-d and square") return triu_indices(arr.shape[0],k)
bsd-3-clause
boddmg/dsp-playground
experiment.py
1
2717
from matplotlib import pyplot as plt import numpy as np import math import pickle from scipy import signal from numpy.fft import rfft, irfft from numpy import argmax, sqrt, mean, absolute, arange, log10 from scipy.signal import blackmanharris import thdn def single_frequency_filter(input_signal): y_f_all = np.fft.fft(input_signal) y_f_all[:1] = np.array([0] *1) y_f_half = y_f_all[:len(y_f_all) / 2] y_f_abs = np.abs(y_f_half) y_f_max = max(y_f_abs) y_f_max_index = np.where(y_f_abs == y_f_max)[0][0] print(y_f_max_index) y_f_all[:y_f_max_index] = [0] * (y_f_max_index) y_f_all[y_f_max_index+1:] = [0] * (len(y_f_all)-y_f_max_index-1) y_filtered = np.fft.ifft(y_f_all) return y_filtered FS = 204.8 BASE_FREQUENCY = 50.0 FILTER_SAMPLE_PURE = int(2*1/BASE_FREQUENCY * FS) # 2T FILTER_SAMPLE_ALL = 2048 DF = FS/FILTER_SAMPLE_ALL print(DF) filter_buffer = [] def single_filter(x): return x def main(): import json # get data data = json.load(open("data.txt", "r")) # y = np.concatenate((np.load("data.pkl")[:256], np.array([0] * (600 - 256)))) # y = np.concatenate((np.load("data.pkl")[:], [0]*6000)) y = np.array(data["Y"]) # y = signal.resample(y, 5000) # fs = 5000.0 * (10000/200) fs = 1 / data["dt"] print("fs:\t", fs) time = len(y)/fs # in seconds x = np.arange(0, time, 1/fs) # x = x[:-1] # for i in meta_data: # print(i, meta_data[i]) print("time",time) end = 40 f = x[:end] f = f * fs / time # Add the noise # y = y.clip(-10, 7) # y += (np.sin(x * 5) * 2).clip (-0.3, 0.8) # y += np.random.uniform(size=len(y)) plt.subplot(231) plt.plot(x, y, 'r') plt.subplot(232) y_filtered = y.tolist() y_list = y.tolist() for i in range(len(y_list)): y_filtered[i] = single_filter(y_list[i]) y_filtered = np.array(y_filtered) # y_filtered = single_frequency_filter(y)*10 # filter_function = np.array(([0] * 6 + [1] + [0] * (600 - 7))) # filter_function = np.fft.ifft(filter_function) # y_filtered = np.fft.ifft(y_f * filter_function) # y_filtered = np.convolve(y_filtered, filter_function, mode='same') # y_filtered = np.sin(x*np.pi*2* )*10 plt.plot(x, y_filtered, "b") plt.subplot(233) plt.plot(x[:end], y[:end], "r", x[:end], y_filtered[:end], "b") plt.subplot(234) y = np.abs(np.fft.fft(y)) y = y[:end] plt.plot(f, y) plt.subplot(235) y_filtered = np.abs(np.fft.fft(y_filtered)) y_filtered = y_filtered[:end] plt.plot(f, y_filtered) plt.subplot(236) plt.plot(f, y, 'r', f, y_filtered, 'b') plt.show() if __name__ == '__main__': main()
mit
pratapvardhan/pandas
pandas/tests/test_base.py
2
46174
# -*- coding: utf-8 -*- from __future__ import print_function import re import sys from datetime import datetime, timedelta import pytest import numpy as np import pandas as pd import pandas.compat as compat from pandas.core.dtypes.common import ( is_object_dtype, is_datetimetz, is_datetime64_dtype, needs_i8_conversion) import pandas.util.testing as tm from pandas import (Series, Index, DatetimeIndex, TimedeltaIndex, PeriodIndex, Timedelta, IntervalIndex, Interval, CategoricalIndex, Timestamp) from pandas.compat import StringIO, PYPY, long from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.accessor import PandasDelegate from pandas.core.base import PandasObject, NoNewAttributesMixin from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin from pandas._libs.tslib import iNaT class CheckStringMixin(object): def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) if not compat.PY3: unicode(self.container) # noqa def test_tricky_container(self): if not hasattr(self, 'unicode_container'): pytest.skip('Need unicode_container to test with this') repr(self.unicode_container) str(self.unicode_container) bytes(self.unicode_container) if not compat.PY3: unicode(self.unicode_container) # noqa class CheckImmutable(object): mutable_regex = re.compile('does not support mutable operations') def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normally would to assert_raises_regex # (after the Exception kind). tm.assert_raises_regex( TypeError, self.mutable_regex, *args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert isinstance(result, klass) assert result == expected class TestPandasDelegate(object): class Delegator(object): _properties = ['foo'] _methods = ['bar'] def _set_foo(self, value): self.foo = value def _get_foo(self): return self.foo foo = property(_get_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(PandasDelegate, PandasObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ='property' ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ='method' ) delegate = self.Delegate(self.Delegator()) def f(): delegate.foo pytest.raises(TypeError, f) def f(): delegate.foo = 5 pytest.raises(TypeError, f) def f(): delegate.foo() pytest.raises(TypeError, f) @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we fall back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.getsizeof(delegate) class Ops(object): def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and (obj.is_boolean() or not obj._can_hold_na)): # don't test boolean / int64 index return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name='a') self.int_index = tm.makeIntIndex(10, name='a') self.float_index = tm.makeFloatIndex(10, name='a') self.dt_index = tm.makeDateIndex(10, name='a') self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize( tz='US/Eastern') self.period_index = tm.makePeriodIndex(10, name='a') self.string_index = tm.makeStringIndex(10, name='a') self.unicode_index = tm.makeUnicodeIndex(10, name='a') arr = np.random.randn(10) self.int_series = Series(arr, index=self.int_index, name='a') self.float_series = Series(arr, index=self.float_index, name='a') self.dt_series = Series(arr, index=self.dt_index, name='a') self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name='a') self.string_series = Series(arr, index=self.string_index, name='a') types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string', 'unicode'] fmts = ["{0}_{1}".format(t, f) for t in types for f in ['index', 'series']] self.objs = [getattr(self, f) for f in fmts if getattr(self, f, None) is not None] def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series( getattr(o.index, op), index=o.index, name='a') else: expected = getattr(o, op) except (AttributeError): if ignore_failures: continue result = getattr(o, op) # these couuld be series, arrays or scalars if isinstance(result, Series) and isinstance(expected, Series): tm.assert_series_equal(result, expected) elif isinstance(result, Index) and isinstance(expected, Index): tm.assert_index_equal(result, expected) elif isinstance(result, np.ndarray) and isinstance(expected, np.ndarray): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Series here anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): pytest.raises(TypeError, lambda: getattr(o, op)) else: pytest.raises(AttributeError, lambda: getattr(o, op)) def test_binary_ops_docs(self): from pandas import DataFrame, Panel op_map = {'add': '+', 'sub': '-', 'mul': '*', 'mod': '%', 'pow': '**', 'truediv': '/', 'floordiv': '//'} for op_name in ['add', 'sub', 'mul', 'mod', 'pow', 'truediv', 'floordiv']: for klass in [Series, DataFrame, Panel]: operand1 = klass.__name__.lower() operand2 = 'other' op = op_map[op_name] expected_str = ' '.join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = ' '.join([operand2, op, operand1]) assert expected_str in getattr(klass, 'r' + op_name).__doc__ class TestIndexOps(Ops): def setup_method(self, method): super(TestIndexOps, self).setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if isinstance(o, Series): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] # this fails for numpy < 1.9 # and oddly for *some* platforms # result = None != o # noqa # assert result.iat[0] # assert result.iat[1] if (is_datetime64_dtype(o) or is_datetimetz(o)): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Series[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ['shape', 'dtype', 'T', 'nbytes']: assert getattr(o, p, None) is not None # deprecated properties for p in ['flags', 'strides', 'itemsize']: with tm.assert_produces_warning(FutureWarning): assert getattr(o, p, None) is not None with tm.assert_produces_warning(FutureWarning): assert hasattr(o, 'base') # If we have a datetime-like dtype then needs a view to work # but the user is responsible for that try: with tm.assert_produces_warning(FutureWarning): assert o.data is not None except ValueError: pass with pytest.raises(ValueError): o.item() # len > 1 assert o.ndim == 1 assert o.size == len(o) assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_ops(self): for op in ['max', 'min']: for o in self.objs: result = getattr(o, op)() if not isinstance(o, PeriodIndex): expected = getattr(o.values, op)() else: expected = pd.Period( ordinal=getattr(o._ndarray_values, op)(), freq=o.freq) try: assert result == expected except TypeError: # comparing tz-aware series with np.array results in # TypeError expected = expected.astype('M8[ns]').astype('int64') assert result.value == expected def test_nanops(self): # GH 7261 for op in ['max', 'min']: for klass in [Index, Series]: obj = klass([np.nan, 2.0]) assert getattr(obj, op)() == 2.0 obj = klass([np.nan]) assert pd.isna(getattr(obj, op)()) obj = klass([]) assert pd.isna(getattr(obj, op)()) obj = klass([pd.NaT, datetime(2011, 11, 1)]) # check DatetimeIndex monotonic path assert getattr(obj, op)() == datetime(2011, 11, 1) obj = klass([pd.NaT, datetime(2011, 11, 1), pd.NaT]) # check DatetimeIndex non-monotonic path assert getattr(obj, op)(), datetime(2011, 11, 1) # argmin/max obj = Index(np.arange(5, dtype='int64')) assert obj.argmin() == 0 assert obj.argmax() == 4 obj = Index([np.nan, 1, np.nan, 2]) assert obj.argmin() == 1 assert obj.argmax() == 3 obj = Index([np.nan]) assert obj.argmin() == -1 assert obj.argmax() == -1 obj = Index([pd.NaT, datetime(2011, 11, 1), datetime(2011, 11, 2), pd.NaT]) assert obj.argmin() == 1 assert obj.argmax() == 2 obj = Index([pd.NaT]) assert obj.argmin() == -1 assert obj.argmax() == -1 def test_value_counts_unique_nunique(self): for orig in self.objs: o = orig.copy() klass = type(o) values = o._values if isinstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if isinstance(o, Index) and o.is_boolean(): continue elif isinstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = 'a' else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, len(o) + 1)) rep = np.repeat(values, range(1, len(o) + 1)) o = klass(rep, index=idx, name='a') # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Series(range(10, 0, -1), index=expected_index, dtype='int64', name='a') result = o.value_counts() tm.assert_series_equal(result, expected_s) assert result.index.name is None assert result.name == 'a' result = o.unique() if isinstance(o, Index): assert isinstance(result, o.__class__) tm.assert_index_equal(result, orig) elif is_datetimetz(o): # datetimetz Series returns array of Timestamp assert result[0] == orig[0] for r in result: assert isinstance(r, Timestamp) tm.assert_numpy_array_equal(result, orig._values.astype(object).values) else: tm.assert_numpy_array_equal(result, orig.values) assert o.nunique() == len(np.unique(o.values)) def test_value_counts_unique_nunique_null(self): for null_obj in [np.nan, None]: for orig in self.objs: o = orig.copy() klass = type(o) values = o._ndarray_values if not self._allow_na_ops(o): continue # special assign to the numpy array if is_datetimetz(o): if isinstance(o, DatetimeIndex): v = o.asi8 v[0:2] = iNaT values = o._shallow_copy(v) else: o = o.copy() o[0:2] = iNaT values = o._values elif needs_i8_conversion(o): values[0:2] = iNaT values = o._shallow_copy(values) else: values[0:2] = null_obj # check values has the same dtype as the original assert values.dtype == o.dtype # create repeated values, 'n'th element is repeated by n+1 # times if isinstance(o, (DatetimeIndex, PeriodIndex)): expected_index = o.copy() expected_index.name = None # attach name to klass o = klass(values.repeat(range(1, len(o) + 1))) o.name = 'a' else: if is_datetimetz(o): expected_index = orig._values._shallow_copy(values) else: expected_index = Index(values) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = 'a' # check values has the same dtype as the original assert o.dtype == orig.dtype # check values correctly have NaN nanloc = np.zeros(len(o), dtype=np.bool) nanloc[:3] = True if isinstance(o, Index): tm.assert_numpy_array_equal(pd.isna(o), nanloc) else: exp = Series(nanloc, o.index, name='a') tm.assert_series_equal(pd.isna(o), exp) expected_s_na = Series(list(range(10, 2, -1)) + [3], index=expected_index[9:0:-1], dtype='int64', name='a') expected_s = Series(list(range(10, 2, -1)), index=expected_index[9:1:-1], dtype='int64', name='a') result_s_na = o.value_counts(dropna=False) tm.assert_series_equal(result_s_na, expected_s_na) assert result_s_na.index.name is None assert result_s_na.name == 'a' result_s = o.value_counts() tm.assert_series_equal(o.value_counts(), expected_s) assert result_s.index.name is None assert result_s.name == 'a' result = o.unique() if isinstance(o, Index): tm.assert_index_equal(result, Index(values[1:], name='a')) elif is_datetimetz(o): # unable to compare NaT / nan vals = values[2:].astype(object).values tm.assert_numpy_array_equal(result[1:], vals) assert result[0] is pd.NaT else: tm.assert_numpy_array_equal(result[1:], values[2:]) assert pd.isna(result[0]) assert result.dtype == orig.dtype assert o.nunique() == 8 assert o.nunique(dropna=False) == 9 def test_value_counts_inferred(self): klasses = [Index, Series] for klass in klasses: s_values = ['a', 'b', 'b', 'b', 'b', 'c', 'd', 'd', 'a', 'a'] s = klass(s_values) expected = Series([4, 3, 2, 1], index=['b', 'a', 'd', 'c']) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(np.unique(np.array(s_values, dtype=np.object_))) tm.assert_index_equal(s.unique(), exp) else: exp = np.unique(np.array(s_values, dtype=np.object_)) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 4 # don't sort, have to sort after the fact as not sorting is # platform-dep hist = s.value_counts(sort=False).sort_values() expected = Series([3, 1, 4, 2], index=list('acbd')).sort_values() tm.assert_series_equal(hist, expected) # sort ascending hist = s.value_counts(ascending=True) expected = Series([1, 2, 3, 4], index=list('cdab')) tm.assert_series_equal(hist, expected) # relative histogram. hist = s.value_counts(normalize=True) expected = Series([.4, .3, .2, .1], index=['b', 'a', 'd', 'c']) tm.assert_series_equal(hist, expected) def test_value_counts_bins(self): klasses = [Index, Series] for klass in klasses: s_values = ['a', 'b', 'b', 'b', 'b', 'c', 'd', 'd', 'a', 'a'] s = klass(s_values) # bins pytest.raises(TypeError, lambda bins: s.value_counts(bins=bins), 1) s1 = Series([1, 1, 2, 3]) res1 = s1.value_counts(bins=1) exp1 = Series({Interval(0.997, 3.0): 4}) tm.assert_series_equal(res1, exp1) res1n = s1.value_counts(bins=1, normalize=True) exp1n = Series({Interval(0.997, 3.0): 1.0}) tm.assert_series_equal(res1n, exp1n) if isinstance(s1, Index): tm.assert_index_equal(s1.unique(), Index([1, 2, 3])) else: exp = np.array([1, 2, 3], dtype=np.int64) tm.assert_numpy_array_equal(s1.unique(), exp) assert s1.nunique() == 3 # these return the same res4 = s1.value_counts(bins=4, dropna=True) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4 = s1.value_counts(bins=4, dropna=False) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4n = s1.value_counts(bins=4, normalize=True) exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4n, exp4n) # handle NA's properly s_values = ['a', 'b', 'b', 'b', np.nan, np.nan, 'd', 'd', 'a', 'a', 'b'] s = klass(s_values) expected = Series([4, 3, 2], index=['b', 'a', 'd']) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(['a', 'b', np.nan, 'd']) tm.assert_index_equal(s.unique(), exp) else: exp = np.array(['a', 'b', np.nan, 'd'], dtype=object) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 3 s = klass({}) expected = Series([], dtype=np.int64) tm.assert_series_equal(s.value_counts(), expected, check_index_type=False) # returned dtype differs depending on original if isinstance(s, Index): tm.assert_index_equal(s.unique(), Index([]), exact=False) else: tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False) assert s.nunique() == 0 @pytest.mark.parametrize('klass', [Index, Series]) def test_value_counts_datetime64(self, klass): # GH 3002, datetime64[ns] # don't test names though txt = "\n".join(['xxyyzz20100101PIE', 'xxyyzz20100101GUM', 'xxyyzz20100101EGG', 'xxyyww20090101EGG', 'foofoo20080909PIE', 'foofoo20080909GUM']) f = StringIO(txt) df = pd.read_fwf(f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"]) s = klass(df['dt'].copy()) s.name = None idx = pd.to_datetime(['2010-01-01 00:00:00Z', '2008-09-09 00:00:00Z', '2009-01-01 00:00:00Z']) expected_s = Series([3, 2, 1], index=idx) tm.assert_series_equal(s.value_counts(), expected_s) expected = np_array_datetime64_compat(['2010-01-01 00:00:00Z', '2009-01-01 00:00:00Z', '2008-09-09 00:00:00Z'], dtype='datetime64[ns]') if isinstance(s, Index): tm.assert_index_equal(s.unique(), DatetimeIndex(expected)) else: tm.assert_numpy_array_equal(s.unique(), expected) assert s.nunique() == 3 # with NaT s = df['dt'].copy() s = klass([v for v in s.values] + [pd.NaT]) result = s.value_counts() assert result.index.dtype == 'datetime64[ns]' tm.assert_series_equal(result, expected_s) result = s.value_counts(dropna=False) expected_s[pd.NaT] = 1 tm.assert_series_equal(result, expected_s) unique = s.unique() assert unique.dtype == 'datetime64[ns]' # numpy_array_equal cannot compare pd.NaT if isinstance(s, Index): exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT]) tm.assert_index_equal(unique, exp_idx) else: tm.assert_numpy_array_equal(unique[:3], expected) assert pd.isna(unique[3]) assert s.nunique() == 3 assert s.nunique(dropna=False) == 4 # timedelta64[ns] td = df.dt - df.dt + timedelta(1) td = klass(td, name='dt') result = td.value_counts() expected_s = Series([6], index=[Timedelta('1day')], name='dt') tm.assert_series_equal(result, expected_s) expected = TimedeltaIndex(['1 days'], name='dt') if isinstance(td, Index): tm.assert_index_equal(td.unique(), expected) else: tm.assert_numpy_array_equal(td.unique(), expected.values) td2 = timedelta(1) + (df.dt - df.dt) td2 = klass(td2, name='dt') result2 = td2.value_counts() tm.assert_series_equal(result2, expected_s) def test_factorize(self): for orig in self.objs: o = orig.copy() if isinstance(o, Index) and o.is_boolean(): exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp) exp_uniques = o exp_uniques = Index([False, True]) else: exp_arr = np.array(range(len(o)), dtype=np.intp) exp_uniques = o labels, uniques = o.factorize() tm.assert_numpy_array_equal(labels, exp_arr) if isinstance(o, Series): tm.assert_index_equal(uniques, Index(orig), check_names=False) else: # factorize explicitly resets name tm.assert_index_equal(uniques, exp_uniques, check_names=False) def test_factorize_repeated(self): for orig in self.objs: o = orig.copy() # don't test boolean if isinstance(o, Index) and o.is_boolean(): continue # sort by value, and create duplicates if isinstance(o, Series): o = o.sort_values() n = o.iloc[5:].append(o) else: indexer = o.argsort() o = o.take(indexer) n = o[5:].append(o) exp_arr = np.array([5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp) labels, uniques = n.factorize(sort=True) tm.assert_numpy_array_equal(labels, exp_arr) if isinstance(o, Series): tm.assert_index_equal(uniques, Index(orig).sort_values(), check_names=False) else: tm.assert_index_equal(uniques, o, check_names=False) exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4], np.intp) labels, uniques = n.factorize(sort=False) tm.assert_numpy_array_equal(labels, exp_arr) if isinstance(o, Series): expected = Index(o.iloc[5:10].append(o.iloc[:5])) tm.assert_index_equal(uniques, expected, check_names=False) else: expected = o[5:10].append(o[:5]) tm.assert_index_equal(uniques, expected, check_names=False) def test_duplicated_drop_duplicates_index(self): # GH 4060 for original in self.objs: if isinstance(original, Index): # special case if original.is_boolean(): result = original.drop_duplicates() expected = Index([False, True], name='a') tm.assert_index_equal(result, expected) continue # original doesn't have duplicates expected = np.array([False] * len(original), dtype=bool) duplicated = original.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = original.drop_duplicates() tm.assert_index_equal(result, original) assert result is not original # has_duplicates assert not original.has_duplicates # create repeated values, 3rd and 5th values are duplicated idx = original[list(range(len(original))) + [5, 3]] expected = np.array([False] * len(original) + [True, True], dtype=bool) duplicated = idx.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool tm.assert_index_equal(idx.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep='last') tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep='last') tm.assert_index_equal(result, idx[~expected]) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep=False) tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep=False) tm.assert_index_equal(result, idx[~expected]) with tm.assert_raises_regex( TypeError, r"drop_duplicates\(\) got an unexpected " "keyword argument"): idx.drop_duplicates(inplace=True) else: expected = Series([False] * len(original), index=original.index, name='a') tm.assert_series_equal(original.duplicated(), expected) result = original.drop_duplicates() tm.assert_series_equal(result, original) assert result is not original idx = original.index[list(range(len(original))) + [5, 3]] values = original._values[list(range(len(original))) + [5, 3]] s = Series(values, index=idx, name='a') expected = Series([False] * len(original) + [True, True], index=idx, name='a') tm.assert_series_equal(s.duplicated(), expected) tm.assert_series_equal(s.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = Series(base, index=idx, name='a') tm.assert_series_equal(s.duplicated(keep='last'), expected) tm.assert_series_equal(s.drop_duplicates(keep='last'), s[~np.array(base)]) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = Series(base, index=idx, name='a') tm.assert_series_equal(s.duplicated(keep=False), expected) tm.assert_series_equal(s.drop_duplicates(keep=False), s[~np.array(base)]) s.drop_duplicates(inplace=True) tm.assert_series_equal(s, original) def test_drop_duplicates_series_vs_dataframe(self): # GH 14192 df = pd.DataFrame({'a': [1, 1, 1, 'one', 'one'], 'b': [2, 2, np.nan, np.nan, np.nan], 'c': [3, 3, np.nan, np.nan, 'three'], 'd': [1, 2, 3, 4, 4], 'e': [datetime(2015, 1, 1), datetime(2015, 1, 1), datetime(2015, 2, 1), pd.NaT, pd.NaT] }) for column in df.columns: for keep in ['first', 'last', False]: dropped_frame = df[[column]].drop_duplicates(keep=keep) dropped_series = df[column].drop_duplicates(keep=keep) tm.assert_frame_equal(dropped_frame, dropped_series.to_frame()) def test_fillna(self): # # GH 11343 # though Index.fillna and Series.fillna has separate impl, # test here to confirm these works as the same for orig in self.objs: o = orig.copy() values = o.values # values will not be changed result = o.fillna(o.astype(object).values[0]) if isinstance(o, Index): tm.assert_index_equal(o, result) else: tm.assert_series_equal(o, result) # check shallow_copied assert o is not result for null_obj in [np.nan, None]: for orig in self.objs: o = orig.copy() klass = type(o) if not self._allow_na_ops(o): continue if needs_i8_conversion(o): values = o.astype(object).values fill_value = values[0] values[0:2] = pd.NaT else: values = o.values.copy() fill_value = o.values[0] values[0:2] = null_obj expected = [fill_value] * 2 + list(values[2:]) expected = klass(expected) o = klass(values) # check values has the same dtype as the original assert o.dtype == orig.dtype result = o.fillna(fill_value) if isinstance(o, Index): tm.assert_index_equal(result, expected) else: tm.assert_series_equal(result, expected) # check shallow_copied assert o is not result @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): for o in self.objs: res = o.memory_usage() res_deep = o.memory_usage(deep=True) if (is_object_dtype(o) or (isinstance(o, Series) and is_object_dtype(o.index))): # if there are objects, only deep will pick them up assert res_deep > res else: assert res == res_deep if isinstance(o, Series): assert ((o.memory_usage(index=False) + o.index.memory_usage()) == o.memory_usage(index=True)) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = res_deep - sys.getsizeof(o) assert abs(diff) < 100 def test_searchsorted(self): # See gh-12238 for o in self.objs: index = np.searchsorted(o, max(o)) assert 0 <= index <= len(o) index = np.searchsorted(o, max(o), sorter=range(len(o))) assert 0 <= index <= len(o) def test_validate_bool_args(self): invalid_values = [1, "True", [1, 2, 3], 5.0] for value in invalid_values: with pytest.raises(ValueError): self.int_series.drop_duplicates(inplace=value) class TestTranspose(Ops): errmsg = "the 'axes' parameter is not supported" def test_transpose(self): for obj in self.objs: if isinstance(obj, Index): tm.assert_index_equal(obj.transpose(), obj) else: tm.assert_series_equal(obj.transpose(), obj) def test_transpose_non_default_axes(self): for obj in self.objs: tm.assert_raises_regex(ValueError, self.errmsg, obj.transpose, 1) tm.assert_raises_regex(ValueError, self.errmsg, obj.transpose, axes=1) def test_numpy_transpose(self): for obj in self.objs: if isinstance(obj, Index): tm.assert_index_equal(np.transpose(obj), obj) else: tm.assert_series_equal(np.transpose(obj), obj) tm.assert_raises_regex(ValueError, self.errmsg, np.transpose, obj, axes=1) class TestNoNewAttributesMixin(object): def test_mixin(self): class T(NoNewAttributesMixin): pass t = T() assert not hasattr(t, "__frozen") t.a = "test" assert t.a == "test" t._freeze() assert "__frozen" in dir(t) assert getattr(t, "__frozen") def f(): t.b = "test" pytest.raises(AttributeError, f) assert not hasattr(t, "b") class TestToIterable(object): # test that we convert an iterable to python types dtypes = [ ('int8', (int, long)), ('int16', (int, long)), ('int32', (int, long)), ('int64', (int, long)), ('uint8', (int, long)), ('uint16', (int, long)), ('uint32', (int, long)), ('uint64', (int, long)), ('float16', float), ('float32', float), ('float64', float), ('datetime64[ns]', Timestamp), ('datetime64[ns, US/Eastern]', Timestamp), ('timedelta64[ns]', Timedelta)] @pytest.mark.parametrize( 'dtype, rdtype', dtypes) @pytest.mark.parametrize( 'method', [ lambda x: x.tolist(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=['tolist', 'list', 'iter']) @pytest.mark.parametrize('typ', [Series, Index]) def test_iterable(self, typ, method, dtype, rdtype): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( 'dtype, rdtype, obj', [ ('object', object, 'a'), ('object', (int, long), 1), ('category', object, 'a'), ('category', (int, long), 1)]) @pytest.mark.parametrize( 'method', [ lambda x: x.tolist(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=['tolist', 'list', 'iter']) @pytest.mark.parametrize('typ', [Series, Index]) def test_iterable_object_and_category(self, typ, method, dtype, rdtype, obj): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([obj], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( 'dtype, rdtype', dtypes) def test_iterable_items(self, dtype, rdtype): # gh-13258 # test items / iteritems yields the correct boxed scalars # this only applies to series s = Series([1], dtype=dtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) _, result = list(s.iteritems())[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( 'dtype, rdtype', dtypes + [ ('object', (int, long)), ('category', (int, long))]) @pytest.mark.parametrize('typ', [Series, Index]) def test_iterable_map(self, typ, dtype, rdtype): # gh-13236 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = s.map(type)[0] if not isinstance(rdtype, tuple): rdtype = tuple([rdtype]) assert result in rdtype @pytest.mark.parametrize( 'method', [ lambda x: x.tolist(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=['tolist', 'list', 'iter']) def test_categorial_datetimelike(self, method): i = CategoricalIndex([Timestamp('1999-12-31'), Timestamp('2000-12-31')]) result = method(i)[0] assert isinstance(result, Timestamp) def test_iter_box(self): vals = [Timestamp('2011-01-01'), Timestamp('2011-01-02')] s = Series(vals) assert s.dtype == 'datetime64[ns]' for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz is None assert res == exp vals = [Timestamp('2011-01-01', tz='US/Eastern'), Timestamp('2011-01-02', tz='US/Eastern')] s = Series(vals) assert s.dtype == 'datetime64[ns, US/Eastern]' for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz == exp.tz assert res == exp # timedelta vals = [Timedelta('1 days'), Timedelta('2 days')] s = Series(vals) assert s.dtype == 'timedelta64[ns]' for res, exp in zip(s, vals): assert isinstance(res, Timedelta) assert res == exp # period (object dtype, not boxed) vals = [pd.Period('2011-01-01', freq='M'), pd.Period('2011-01-02', freq='M')] s = Series(vals) assert s.dtype == 'object' for res, exp in zip(s, vals): assert isinstance(res, pd.Period) assert res.freq == 'M' assert res == exp @pytest.mark.parametrize('array, expected_type, dtype', [ (np.array([0, 1], dtype=np.int64), np.ndarray, 'int64'), (np.array(['a', 'b']), np.ndarray, 'object'), (pd.Categorical(['a', 'b']), pd.Categorical, 'category'), (pd.DatetimeIndex(['2017', '2018']), np.ndarray, 'datetime64[ns]'), (pd.DatetimeIndex(['2017', '2018'], tz="US/Central"), pd.DatetimeIndex, 'datetime64[ns, US/Central]'), (pd.TimedeltaIndex([10**10]), np.ndarray, 'm8[ns]'), (pd.PeriodIndex([2018, 2019], freq='A'), np.ndarray, 'object'), (pd.IntervalIndex.from_breaks([0, 1, 2]), np.ndarray, 'object'), ]) def test_values_consistent(array, expected_type, dtype): l_values = pd.Series(array)._values r_values = pd.Index(array)._values assert type(l_values) is expected_type assert type(l_values) is type(r_values) if isinstance(l_values, np.ndarray): tm.assert_numpy_array_equal(l_values, r_values) elif isinstance(l_values, pd.Index): tm.assert_index_equal(l_values, r_values) elif pd.api.types.is_categorical(l_values): tm.assert_categorical_equal(l_values, r_values) else: raise TypeError("Unexpected type {}".format(type(l_values))) assert l_values.dtype == dtype assert r_values.dtype == dtype @pytest.mark.parametrize('array, expected', [ (np.array([0, 1], dtype=np.int64), np.array([0, 1], dtype=np.int64)), (np.array(['0', '1']), np.array(['0', '1'], dtype=object)), (pd.Categorical(['a', 'a']), np.array([0, 0], dtype='int8')), (pd.DatetimeIndex(['2017-01-01T00:00:00']), np.array(['2017-01-01T00:00:00'], dtype='M8[ns]')), (pd.DatetimeIndex(['2017-01-01T00:00:00'], tz="US/Eastern"), np.array(['2017-01-01T05:00:00'], dtype='M8[ns]')), (pd.TimedeltaIndex([10**10]), np.array([10**10], dtype='m8[ns]')), pytest.param( pd.PeriodIndex(['2017', '2018'], freq='D'), np.array([17167, 17532]), marks=pytest.mark.xfail(reason="PeriodArray Not implemented") ), ]) def test_ndarray_values(array, expected): l_values = pd.Series(array)._ndarray_values r_values = pd.Index(array)._ndarray_values tm.assert_numpy_array_equal(l_values, r_values) tm.assert_numpy_array_equal(l_values, expected)
bsd-3-clause
tensorflow/models
research/delf/delf/python/examples/extract_boxes.py
1
7510
# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Extracts bounding boxes from a list of images, saving them to files. The images must be in JPG format. The program checks if boxes already exist, and skips computation for those. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys import time from absl import app import matplotlib.patches as patches import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from delf import box_io from delf import utils from delf import detector cmd_args = None # Extension/suffix of produced files. _BOX_EXT = '.boxes' _VIZ_SUFFIX = '_viz.jpg' # Used for plotting boxes. _BOX_EDGE_COLORS = ['r', 'y', 'b', 'm', 'k', 'g', 'c', 'w'] # Pace to report extraction log. _STATUS_CHECK_ITERATIONS = 100 def _ReadImageList(list_path): """Helper function to read image paths. Args: list_path: Path to list of images, one image path per line. Returns: image_paths: List of image paths. """ with tf.io.gfile.GFile(list_path, 'r') as f: image_paths = f.readlines() image_paths = [entry.rstrip() for entry in image_paths] return image_paths def _FilterBoxesByScore(boxes, scores, class_indices, score_threshold): """Filter boxes based on detection scores. Boxes with detection score >= score_threshold are returned. Args: boxes: [N, 4] float array denoting bounding box coordinates, in format [top, left, bottom, right]. scores: [N] float array with detection scores. class_indices: [N] int array with class indices. score_threshold: Float detection score threshold to use. Returns: selected_boxes: selected `boxes`. selected_scores: selected `scores`. selected_class_indices: selected `class_indices`. """ selected_boxes = [] selected_scores = [] selected_class_indices = [] for i, box in enumerate(boxes): if scores[i] >= score_threshold: selected_boxes.append(box) selected_scores.append(scores[i]) selected_class_indices.append(class_indices[i]) return np.array(selected_boxes), np.array(selected_scores), np.array( selected_class_indices) def _PlotBoxesAndSaveImage(image, boxes, output_path): """Plot boxes on image and save to output path. Args: image: Numpy array containing image. boxes: [N, 4] float array denoting bounding box coordinates, in format [top, left, bottom, right]. output_path: String containing output path. """ height = image.shape[0] width = image.shape[1] fig, ax = plt.subplots(1) ax.imshow(image) for i, box in enumerate(boxes): scaled_box = [ box[0] * height, box[1] * width, box[2] * height, box[3] * width ] rect = patches.Rectangle([scaled_box[1], scaled_box[0]], scaled_box[3] - scaled_box[1], scaled_box[2] - scaled_box[0], linewidth=3, edgecolor=_BOX_EDGE_COLORS[i % len(_BOX_EDGE_COLORS)], facecolor='none') ax.add_patch(rect) ax.axis('off') plt.savefig(output_path, bbox_inches='tight') plt.close(fig) def main(argv): if len(argv) > 1: raise RuntimeError('Too many command-line arguments.') # Read list of images. print('Reading list of images...') image_paths = _ReadImageList(cmd_args.list_images_path) num_images = len(image_paths) print(f'done! Found {num_images} images') # Create output directories if necessary. if not tf.io.gfile.exists(cmd_args.output_dir): tf.io.gfile.makedirs(cmd_args.output_dir) if cmd_args.output_viz_dir and not tf.io.gfile.exists( cmd_args.output_viz_dir): tf.io.gfile.makedirs(cmd_args.output_viz_dir) detector_fn = detector.MakeDetector(cmd_args.detector_path) start = time.time() for i, image_path in enumerate(image_paths): # Report progress once in a while. if i == 0: print('Starting to detect objects in images...') elif i % _STATUS_CHECK_ITERATIONS == 0: elapsed = (time.time() - start) print(f'Processing image {i} out of {num_images}, last ' f'{_STATUS_CHECK_ITERATIONS} images took {elapsed} seconds') start = time.time() # If descriptor already exists, skip its computation. base_boxes_filename, _ = os.path.splitext(os.path.basename(image_path)) out_boxes_filename = base_boxes_filename + _BOX_EXT out_boxes_fullpath = os.path.join(cmd_args.output_dir, out_boxes_filename) if tf.io.gfile.exists(out_boxes_fullpath): print(f'Skipping {image_path}') continue im = np.expand_dims(np.array(utils.RgbLoader(image_paths[i])), 0) # Extract and save boxes. (boxes_out, scores_out, class_indices_out) = detector_fn(im) (selected_boxes, selected_scores, selected_class_indices) = _FilterBoxesByScore(boxes_out[0], scores_out[0], class_indices_out[0], cmd_args.detector_thresh) box_io.WriteToFile(out_boxes_fullpath, selected_boxes, selected_scores, selected_class_indices) if cmd_args.output_viz_dir: out_viz_filename = base_boxes_filename + _VIZ_SUFFIX out_viz_fullpath = os.path.join(cmd_args.output_viz_dir, out_viz_filename) _PlotBoxesAndSaveImage(im[0], selected_boxes, out_viz_fullpath) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.register('type', 'bool', lambda v: v.lower() == 'true') parser.add_argument( '--detector_path', type=str, default='/tmp/d2r_frcnn_20190411/', help=""" Path to exported detector model. """) parser.add_argument( '--detector_thresh', type=float, default=.0, help=""" Detector threshold. Any box with confidence score lower than this is not returned. """) parser.add_argument( '--list_images_path', type=str, default='list_images.txt', help=""" Path to list of images to undergo object detection. """) parser.add_argument( '--output_dir', type=str, default='test_boxes', help=""" Directory where bounding boxes will be written to. Each image's boxes will be written to a file with same name, and extension replaced by .boxes. """) parser.add_argument( '--output_viz_dir', type=str, default='', help=""" Optional. If set, a visualization of the detected boxes overlaid on the image is produced, and saved to this directory. Each image is saved with _viz.jpg suffix. """) cmd_args, unparsed = parser.parse_known_args() app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
jurajmajor/ltl3tela
Experiments/ltlcross_runner.py
1
23078
# -*- coding: utf-8 -*- import subprocess import sys import os.path import re import math import spot from IPython.display import SVG from datetime import datetime import pandas as pd from experiments_lib import hoa_to_spot, dot_to_svg, pretty_print def bogus_to_lcr(form): """Converts a formula as it is printed in ``_bogus.ltl`` file (uses ``--relabel=abc``) to use ``pnn`` AP names. """ args = ['-r0','--relabel=pnn','-f',form] return subprocess.check_output(["ltlfilt"] + args, universal_newlines=True).strip() def parse_check_log(log_f): """Parses a given log file and locates cases where sanity checks found some error. Returns: bugs: a dict: ``form_id``->``list of error lines`` bogus_forms: a dict: ``form_id``->``form`` tools: a dict: ``tool_id``->``command`` """ log = open(log_f,'r') bugs = {} bogus_forms = {} formula = re.compile('.*ltl:(\d+): (.*)$') empty_line = re.compile('^\s$') problem = re.compile('error: .* nonempty') for line in log: m_form = formula.match(line) if m_form: form = m_form f_bugs = [] m_empty = empty_line.match(line) if m_empty: if len(f_bugs) > 0: form_id = int(form.group(1))-1 bugs[form_id] = f_bugs bogus_forms[form_id] = form.group(2) m_prob = problem.match(line) if m_prob: f_bugs.append(m_prob.group(0)) log.close() tools = parse_log_tools(log_f) return bugs, bogus_forms, tools def find_log_for(tool_code, form_id, log_f): """Returns an array of lines from log for given tool code (P1,N3,...) and form_id. The form_id is taken from runner - thus we search for formula number ``form_id+1`` """ log = open(log_f,'r') current_f = -1 formula = re.compile('.*ltl:(\d+): (.*)$') tool = re.compile('.*\[([PN]\d+)\]: (.*)$') gather = re.compile('Performing sanity checks and gathering statistics') output = [] for line in log: m_form = formula.match(line) if m_form: current_f = int(m_form.group(1)) curr_tool = '' if current_f < form_id+1: continue if current_f > form_id+1: break m_tool = tool.match(line) if m_tool: curr_tool = m_tool.group(1) if gather.match(line): curr_tool = 'end' if curr_tool == tool_code: output.append(line.strip()) log.close() return output def hunt_error_types(log_f): log = open(log_f,'r') errors = {} err_forms = {} formula = re.compile('.*ltl:(\d+): (.*)$') empty_line = re.compile('^\s$') tool = re.compile('.*\[([PN]\d+)\]: (.*)$') problem = re.compile('error: .*') nonempty = re.compile('error: (.*) is nonempty') for line in log: m_form = formula.match(line) if m_form: form = m_form f_bugs = {} m_tool = tool.match(line) if m_tool: tid = m_tool.group(1) m_empty = empty_line.match(line) if m_empty: if len(f_bugs) > 0: form_id = int(form.group(1))-1 errors[form_id] = f_bugs err_forms[form_id] = form.group(2) m_prob = problem.match(line) if m_prob: prob = m_prob.group(0) m_bug = nonempty.match(line) if m_bug: prob = 'nonempty' tid = m_bug.group(1) if prob not in f_bugs: f_bugs[prob] = [] f_bugs[prob].append(tid) log.close() tools = parse_log_tools(log_f) return errors, err_forms, tools def parse_log_tools(log_f): log = open(log_f,'r') tools = {} tool = re.compile('.*\[(P\d+)\]: (.*)$') empty_line = re.compile('^\s$') for line in log: m_tool = tool.match(line) m_empty = empty_line.match(line) if m_empty: break if m_tool: tid = m_tool.group(1) tcmd = m_tool.group(2) tools[tid] = tcmd log.close() return tools class LtlcrossRunner(object): """A class for running Spot's `ltlcross` and storing and manipulating its results. For LTL3HOA it can also draw very weak alternating automata (VWAA). Parameters ---------- tools : a dict (String -> String) The records in the dict of the form ``name : ltlcross_cmd`` >>> tools = {"LTL3HOA" : "ltl3hoa -d -x -i -p 2 -f %f > %O", >>> "SPOT": : "ltl2tgba" >>> } formula_files : a list of strings paths to files with formulas to be fed to `ltlcross` res_filename : String filename to store the ltlcross`s results cols : list of Strings, default ``['states','edges','transitions']`` names of ltlcross's statistics columns to be recorded """ def __init__(self, tools, formula_files=['formulae/classic.ltl'], res_filename='na_comp.csv', cols=['states', 'edges', 'transitions'], log_file=None, ): self.tools = tools self.mins = [] self.f_files = formula_files self.cols = cols.copy() self.automata = None self.values = None self.form = None if res_filename == '' or res_filename is None: self.res_file = '_'.join(tools.keys()) + '.csv' else: self.res_file = res_filename if log_file is None: self.log_file = self.res_file[:-3] + 'log' else: self.log_file = log_file def create_args(self, automata=True, check=False, timeout='300', log_file=None, res_file=None, save_bogus=True, tool_subset=None, forms = True, escape_tools=False): """Creates args that are passed to run_ltlcross """ if log_file is None: log_file = self.log_file if res_file is None: res_file = self.res_file if tool_subset is None: tool_subset=self.tools.keys() ### Prepare ltlcross command ### tools_strs = ["{"+name+"}" + cmd for (name, cmd) in self.tools.items() if name in tool_subset] if escape_tools: tools_strs = ["'{}'".format(t_str) for t_str in tools_strs] args = tools_strs if forms: args += ' '.join(['-F '+F for F in self.f_files]).split() if timeout: args.append('--timeout='+timeout) if automata: args.append('--automata') if save_bogus: args.append('--save-bogus={}_bogus.ltl'.format(res_file[:-4])) if not check: args.append('--no-checks') #else: # args.append('--reference={ref_Spot}ltl2tgba -H %f') args.append('--products=0') args.append('--csv='+res_file) return args def ltlcross_cmd(self, args=None, automata=True, check=False, timeout='300', log_file=None, res_file=None, save_bogus=True, tool_subset=None, forms=True, lcr='ltlcross'): """Returns ltlcross command for the parameters. """ if log_file is None: log_file = self.log_file if res_file is None: res_file = self.res_file if tool_subset is None: tool_subset=self.tools.keys() if args is None: args = self.create_args(automata, check, timeout, log_file, res_file, save_bogus, tool_subset, forms, escape_tools=True) return ' '.join([lcr] + args) def run_ltlcross(self, args=None, automata=True, check=False, timeout='300', log_file=None, res_file=None, save_bogus=True, tool_subset=None, lcr='ltlcross'): """Removes any older version of ``self.res_file`` and runs `ltlcross` on all tools. Parameters ---------- args : a list of ltlcross arguments that can be used for subprocess tool_subset : a list of names from self.tools """ if log_file is None: log_file = self.log_file if res_file is None: res_file = self.res_file if tool_subset is None: tool_subset=self.tools.keys() if args is None: args = self.create_args(automata, check, timeout, log_file, res_file, save_bogus, tool_subset) # Delete ltlcross result and lof files subprocess.call(["rm", "-f", res_file, log_file]) ## Run ltlcross ## log = open(log_file,'w') cmd = self.ltlcross_cmd(args,lcr=lcr) print(cmd, file=log) print(datetime.now().strftime('[%d.%m.%Y %T]'), file=log) print('=====================', file=log,flush=True) self.returncode = subprocess.call([lcr] + args, stderr=subprocess.STDOUT, stdout=log) log.writelines([str(self.returncode)+'\n']) log.close() def parse_results(self, res_file=None): """Parses the ``self.res_file`` and sets the values, automata, and form. If there are no results yet, it runs ltlcross before. """ if res_file is None: res_file = self.res_file if not os.path.isfile(res_file): raise FileNotFoundError(res_file) res = pd.read_csv(res_file) # Add incorrect columns to track flawed automata if not 'incorrect' in res.columns: res['incorrect'] = False # Removes unnecessary parenthesis from formulas res.formula = res['formula'].map(pretty_print) form = pd.DataFrame(res.formula.drop_duplicates()) form['form_id'] = range(len(form)) form.index = form.form_id res = form.merge(res) # Shape the table table = res.set_index(['form_id', 'formula', 'tool']) table = table.unstack(2) table.axes[1].set_names(['column','tool'],inplace=True) # Create separate tables for automata automata = None if 'automaton' in table.columns.levels[0]: automata = table[['automaton']] # Removes formula column from the index automata.index = automata.index.levels[0] # Removes `automata` from column names -- flatten the index automata.columns = automata.columns.levels[1] form = form.set_index(['form_id', 'formula']) # Store incorrect and exit_status information separately self.incorrect = table[['incorrect']] self.incorrect.columns = self.incorrect.columns.droplevel() self.exit_status = table[['exit_status']] self.exit_status.columns = self.exit_status.columns.droplevel() # stores the followed columns only values = table[self.cols] self.form = form self.values = values.sort_index(axis=1,level=['column','tool']) # self.compute_best("Minimum") if automata is not None: self.automata = automata def compute_sbacc(self,col='states'): def get_sbacc(aut): if isinstance(aut, float) and math.isnan(aut): return None a = spot.automata(aut+'\n') aut = next(a) aut = spot.sbacc(aut) if col == 'states': return aut.num_states() if col == 'acc': return aut.num_sets() df = self.automata.copy() # Recreate the same index as for other cols n_i = [(l, self.form_of_id(l,False)) for l in df.index] df.index = pd.MultiIndex.from_tuples(n_i) df.index.names=['form_id','formula'] # Recreate the same columns hierarchy df = df.T df['column'] = 'sb_{}'.format(col) self.cols.append('sb_{}'.format(col)) df = df.set_index(['column'],append=True) df = df.T.swaplevel(axis=1) # Compute the requested values and add them to others df = df.applymap(get_sbacc) self.values = self.values.join(df) def compute_best(self, tools=None, colname="Minimum"): """Computes minimum values over tools in ``tools`` for all formulas and stores them in column ``colname``. Parameters ---------- tools : list of Strings column names that are used to compute the min over colname : String name of column used to store the computed values """ if tools is None: tools = list(self.tools.keys()) else: tools = [t for t in tools if t in self.tools.keys() or t in self.mins] self.mins.append(colname) for col in self.cols: self.values[col, colname] = self.values[col][tools].min(axis=1) self.values.sort_index(axis=1, level=0, inplace=True) def aut_for_id(self, form_id, tool): """For given formula id and tool it returns the corresponding non-deterministic automaton as a Spot's object. Parameters ---------- form_id : int id of formula to use tool : String name of the tool to use to produce the automaton """ if self.automata is None: raise AssertionError("No results parsed yet") if tool not in self.tools.keys(): raise ValueError(tool) return hoa_to_spot(self.automata.loc[form_id, tool]) def cummulative(self, col="states"): """Returns table with cummulative numbers of given ``col``. Parameters --------- col : String One of the followed columns (``states`` default) """ return self.values[col].dropna().sum() def smaller_than(self, t1, t2, reverse=False, restrict=True, col='states', restrict_cols=True): """Returns a dataframe with results where ``col`` for ``tool1`` has strictly smaller value than ``col`` for ``tool2``. Parameters ---------- t1 : String name of tool for comparison (the better one) must be among tools t2 : String name of tool for comparison (the worse one) must be among tools reverse : Boolean, default ``False`` if ``True``, it switches ``tool1`` and ``tool2`` restrict : Boolean, default ``True`` if ``True``, the returned DataFrame contains only the compared tools col : String, default ``'states'`` name of column use for comparison. restrict_cols : Boolean, default ``True`` if ``True``, show only the compared column """ return self.better_than(t1,t2,reverse=reverse, props=[col],include_fails=False, restrict_cols=restrict_cols, restrict_tools=restrict) def better_than(self, t1, t2, props=['states','acc'], reverse=False, include_fails=True, restrict_cols=True,restrict_tools=True ): """Compares ``t1`` against ``t2`` lexicographicaly on cols from ``props`` and returns DataFrame with results where ``t1`` is better than ``t2``. Parameters ---------- t1 : String name of tool for comparison (the better one) must be among tools t2 : String name of tool for comparison (the worse one) must be among tools props : list of Strings, default (['states','acc']) list of columns on which we want the comparison (in order) reverse : Boolean, default ``False`` if ``True``, it switches ``t1`` and ``t2`` include_fails : Boolean, default ``True`` if ``True``, include formulae where t2 fails and t1 does not fail restrict_cols : Boolean, default ``True`` if ``True``, the returned DataFrame contains only the compared property columns restrict_tools : Boolean, default ``True`` if ``True``, the returned DataFrame contains only the compared tools """ if t1 not in list(self.tools.keys())+self.mins: raise ValueError(t1) if t2 not in list(self.tools.keys())+self.mins: raise ValueError(t2) if reverse: t1, t2 = t2, t1 v = self.values t1_ok = self.exit_status[t1] == 'ok' if include_fails: t2_ok = self.exit_status[t2] == 'ok' # non-fail beats fail c = v[t1_ok & ~t2_ok] # We work on non-failures only from now on eq = t1_ok & t2_ok else: c = pd.DataFrame() eq = t1_ok for prop in props: # For each prop we add t1 < t2 better = v[prop][t1] < v[prop][t2] # but only from those which were equivalent so far equiv_and_better = v.loc[better & eq] c = c.append(equiv_and_better) # And now choose those equivalent also on prop to eq eq = eq & (v[prop][t1] == v[prop][t2]) # format the output idx = pd.IndexSlice tools = [t1,t2] if restrict_tools else slice(None) props = props if restrict_cols else slice(None) return c.loc[:,idx[props,tools]] def form_of_id(self, form_id, spot_obj=True): """For given form_id returns the formula Parameters ---------- form_id : int id of formula to return spot_obj : Bool If ``True``, returns Spot formula object (uses Latex to print the formula in Jupyter notebooks) """ f = self.values.index[form_id][1] if spot_obj: return spot.formula(f) return f def id_of_form(self, f, convert=False): """Returns id of a given formula. If ``convert`` is ``True`` it also calls ``bogus_to_lcr`` first. """ if convert: f = bogus_to_lcr(f) ni = self.values.index.droplevel(0) return ni.get_loc(f) def mark_incorrect(self, form_id, tool,output_file=None,input_file=None): """Marks automaton given by the formula id and tool as flawed and writes it into the .csv file """ if tool not in self.tools.keys(): raise ValueError(tool) # Put changes into the .csv file if output_file is None: output_file = self.res_file if input_file is None: input_file = self.res_file csv = pd.read_csv(input_file) if not 'incorrect' in csv.columns: csv['incorrect'] = False cond = (csv['formula'].map(pretty_print) == pretty_print(self.form_of_id(form_id,False))) &\ (csv.tool == tool) csv.loc[cond,'incorrect'] = True csv.to_csv(output_file,index=False) # Mark the information into self.incorrect self.incorrect.loc[self.index_for(form_id)][tool] = True def na_incorrect(self): """Marks values for flawed automata as N/A. This causes that the touched formulae will be removed from cummulative etc. if computed again. To reverse this information you have to parse the results again. It also sets ``exit_status`` to ``incorrect`` """ self.values = self.values[~self.incorrect] self.exit_status[self.incorrect] = 'incorrect' def index_for(self, form_id): return (form_id,self.form_of_id(form_id,False)) def get_error_count(self,err_type='timeout',drop_zeros=True): """Returns a Series with total number of er_type errors for each tool. Parameters ---------- err_type : String one of `timeout`, `parse error`, `incorrect`, `crash`, or 'no output' Type of error we seek drop_zeros: Boolean (default True) If true, rows with zeros are removed """ if err_type not in ['timeout', 'parse error', 'incorrect', 'crash', 'no output']: raise ValueError(err_type) if err_type == 'crash': c1 = self.exit_status == 'exit code' c2 = self.exit_status == 'signal' res = (c1 | c2).sum() else: res = (self.exit_status == err_type).sum() if drop_zeros: return res.iloc[res.to_numpy().nonzero()] return res def cross_compare(self,tools=None,props=['states','acc'], include_fails=True, total=True, include_other=True): def count_better(tool1,tool2): if tool1 == tool2: return float('nan') try: return len(self.better_than(tool1,tool2,props, include_fails=include_fails)) except ValueError as e: if include_other: return float('nan') else: raise e if tools is None: tools = self.tools.keys() c = pd.DataFrame(index=tools, columns=tools).fillna(0) for tool in tools: c[tool] = pd.DataFrame(c[tool]).apply(lambda x: count_better(x.name,tool), 1) if total: c['V'] = c.sum(axis=1) return c def min_counts(self, tools=None, restrict_tools=False, unique_only=False, col='states',min_name='min(count)'): if tools is None: tools = list(self.tools.keys()) else: tools = [t for t in tools if t in self.tools.keys() or t in self.mins] min_tools = tools if restrict_tools else list(self.tools.keys()) self.compute_best(tools=min_tools, colname=min_name) s = self.values.loc(axis=1)[col] df = s.loc(axis=1)[tools+[min_name]] is_min = lambda x: x[x == x[min_name]] best_t_count = df.apply(is_min, axis=1).count(axis=1) choose = (df[best_t_count == 2]) if unique_only else df choose = choose.index min_counts = df.loc[choose].apply(is_min,axis=1).count() return pd.DataFrame(min_counts[min_counts.index != min_name]) def param_runner(name, tools, data_dir='data_param'): cols=["states","transitions","acc","time","nondet_states"] r = LtlcrossRunner(tools,\ res_filename='{}/{}.csv'.format(data_dir,name),\ formula_files=['formulae/{}.ltl'.format(name)],\ cols=cols) return r
gpl-3.0
wcalvert/LPC11U_LPC13U_CodeBase
src/drivers/sensors/testscripts/plot_xyz_plus_mag_sma.py
2
3774
#------------------------------------------------------------------------------- # Name: plot_sensors_event.py # Purpose: Plots logged sensors_event_t data from logger.c CSV files # # Author: K. Townsend # # Created: 09/06/2013 # Copyright: (c) K. Townsend 2013 # Licence: BSD #------------------------------------------------------------------------------- import math import numpy as np import matplotlib.pyplot as plt import Tkinter, tkFileDialog from collections import deque # This program will plot X/Y/Z data logged via drivers/storage/logger.c, and # assumes we are getting vector data in CSV format generated using the # 'sensorsLogSensorsEvent' helper function in drivers/sensors/sensors.c # # Data should look similar to the this: # # 0,1,5714,6.001670,-6.629296,-4.785645,0.000000 # 0,1,5729,6.001670,-6.629296,-4.785645,0.000000 # 0,1,5734,5.883990,-6.590069,-4.746419,0.000000 # # In addition to the raw X/Y/Z data, vector magnitude is also calculated in # a fourth data column class RingBuffer(deque): def __init__(self, size_max): deque.__init__(self) self.size_max = size_max def append(self, datum): deque.append(self, datum) if len(self) > self.size_max: self.popleft( ) def tolist(self): return list(self) def main(): # Variables for our moving average filter current = 0 avg = 0 total = 0 mavals = [] # Get window size (how many 'samples' are averaged together) windowsize = int(input("Windows size (0..65535): ")) if (windowsize > 65535): print ('Setting window size to 65535') windowsize = 65535 if (windowsize < 1): print ('Setting window size to 1') windowsize = 1 # Request the data file to process root = Tkinter.Tk() root.withdraw() filename = tkFileDialog.askopenfilename() # Load the CSV file in 'data' data = np.genfromtxt(filename, delimiter=',', dtype="i32,i32,i32,f32,f32,f32,f32", names=['id','type','timestamp','x','y','z','a']) # Create a circular buffer for our moving average filter window = RingBuffer(size_max=windowsize) # Calculate magnitude in column a for x in np.nditer(data, op_flags=['readwrite']): x['a'] = math.sqrt( math.pow(x['x'], 2) + math.pow(x['y'], 2) + math.pow(x['z'], 2)) # Perform the moving average filter operations current+=1 # Add magnitude into the ringbuffer window.append(x['a']) # Make sure we've reached 'windowlength' samples in the buffer if (current <= windowsize): mavals.append(0) else: # Get the current average based on the window content li = window.tolist() total = 0 for i in li: total += i avg = (float)(total/windowsize) # Append ma output for plotting below mavals.append(avg); # Display the results plt.title("SMA Filtered sensors_event_t Data (X/Y/Z + Magnitude)\nSMA Window Size = %d Samples" % (windowsize)) plt.xlabel('Timestamp (ms)') plt.ylabel('Value') plt.xlim(data['timestamp'].min(), data['timestamp'].max()*1.1) plt.grid(True) plt.plot(data['timestamp'], data['x'], color='r', alpha = 0.25, label='x') plt.plot(data['timestamp'], data['y'], color='g', alpha = 0.25, label='y') plt.plot(data['timestamp'], data['z'], color='b', alpha = 0.25, label='z') plt.plot(data['timestamp'], data['a'], color='m', alpha = 0.25, label='mag') plt.plot(data['timestamp'], mavals, color="black", label="mag filtered") plt.legend() plt.show() pass if __name__ == '__main__': main()
bsd-3-clause
transientskp/aartfaac-arthur
scripts/arthur-plot.py
1
1440
#!/usr/bin/env python3 import sys import numpy as np from arthur.imaging import full_calculation, calculate_lag from arthur.io import read_full from arthur.plot import plot_image, plot_lag, plot_chan_power, plot_corr_mat, plot_diff from arthur.constants import NUM_CHAN from matplotlib import pyplot FRQ = 58398437.5 # Central observation frequency in Hz def main(): if len(sys.argv) < 2: print("Image the first set of visibilites from a visibilities file") print() print("usage: {} <file>".format(sys.argv[0])) sys.exit(1) else: path = sys.argv[1] # define them here so we can access them out of for loop scope lags = [] prev_data = date = img_data = corr_data = diff_data = None chan_data = np.zeros((NUM_CHAN, 60), dtype=np.float32) for date, body in read_full(path): img_data, corr_data, chan_row = full_calculation(body, FRQ) lags += [calculate_lag(date).seconds] if prev_data is None: prev_data = img_data chan_data = np.roll(chan_data, 1) chan_data[:, 0] = chan_row diff_data = img_data - prev_data prev_data = img_data fig_img = plot_image(date, img_data, FRQ) fig_lag = plot_lag(lags) fig_chan = plot_chan_power(chan_data) fig_cm = plot_corr_mat(corr_data, FRQ, date) fig_diff = plot_diff(diff_data, FRQ, date) pyplot.show() if __name__ == '__main__': main()
gpl-3.0
magic2du/contact_matrix
Contact_maps/DeepLearning/DeepLearningTool/DL_contact_matrix_load2-new10fold_01_09_2015_01.py
1
25014
# coding: utf-8 # In[1]: # this part imports libs and load data from csv file import sys sys.path.append('../../../libs/') import csv from dateutil import parser from datetime import timedelta from sklearn import svm import numpy as np import pandas as pd import pickle from sklearn.cross_validation import train_test_split from sklearn import preprocessing import sklearn import scipy.stats as ss import cPickle import gzip import os import time import numpy import theano import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams import os.path import IO_class from IO_class import FileOperator from sklearn import cross_validation import sklearn import numpy as np import csv from dateutil import parser from datetime import timedelta from sklearn import svm import numpy as np import pandas as pd import pdb, PIL import pickle import numpy as np from sklearn.cross_validation import train_test_split from sklearn.cross_validation import KFold from sklearn import preprocessing import sklearn import scipy.stats as ss from sklearn.svm import LinearSVC import random from DL_libs import * from itertools import izip #new import math from sklearn.svm import SVC # In[2]: # set settings for this script settings = {} settings['with_auc_score'] = False settings['reduce_ratio'] = 1 settings['SVM'] = 1 settings['SVM_RBF'] = 1 settings['SVM_POLY'] = 1 settings['DL'] = 1 settings['Log'] = 1 settings['SAE_SVM'] = 1 settings['SAE_SVM_RBF'] = 1 settings['SAE_SVM_POLY'] = 1 settings['DL_S'] = 1 settings['SAE_S_SVM'] = 1 settings['SAE_S_SVM_RBF'] = 1 settings['SAE_S_SVM_POLY'] = 1 settings['number_iterations'] = 10 settings['finetune_lr'] = 0.1 settings['batch_size'] = 30 settings['pretraining_interations'] = 50000#10000 settings['pretrain_lr'] = 0.001 #settings['training_epochs'] = 300 #300 settings['training_interations'] = 50000 #300 settings['hidden_layers_sizes'] = [200, 200, 200, 200, 200] settings['corruption_levels'] = [0.5, 0.5, 0.5, 0.5, 0.5 ] settings['number_of_training'] = [10000]#[1000, 2500, 5000, 7500, 10000] settings['test_set_from_test'] = True import logging import time current_date = time.strftime("%m_%d_%Y") logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) logname = 'log_DL_handwritten_digits' + current_date + '.log' handler = logging.FileHandler(logname) handler.setLevel(logging.DEBUG) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(handler) #logger.debug('This message should go to the log file') for key, value in settings.items(): logger.info(key +': '+ str(value)) # In[3]: f = gzip.open('mnist.pkl.gz', 'rb') train_set, valid_set, test_set = cPickle.load(f) X_train,y_train = train_set X_valid,y_valid = valid_set X_total=np.vstack((X_train, X_valid)) X_total = np.array(X_total, dtype= theano.config.floatX) print'sample size', X_total.shape y_total = np.concatenate([y_train, y_valid]) # In[5]: ################## generate data from training set################### array_A =[] array_B =[] for i in range(100000): array_A.append(np.random.random_integers(0, 59999)) array_B.append(np.random.random_integers(0, 59999)) pos_index = [] neg_index = [] for index in xrange(100000): if y_total[array_A[index]] - y_total[array_B[index]] == 1: pos_index.append(index) else: neg_index.append(index) print 'number of positive examples', len(pos_index) selected_neg_index= neg_index[ : len(pos_index)] array_A = np.array(array_A) array_B = np.array(array_B) index_for_positive_image_A = array_A[pos_index] index_for_positive_image_B = array_B[pos_index] index_for_neg_image_A = array_A[selected_neg_index] index_for_neg_image_B = array_B[selected_neg_index] X_pos_A = X_total[index_for_positive_image_A] X_pos_B = X_total[index_for_positive_image_B] X_pos_whole = np.hstack((X_pos_A,X_pos_B)) X_neg_A = X_total[index_for_neg_image_A] X_neg_B = X_total[index_for_neg_image_B] X_neg_whole = np.hstack((X_neg_A, X_neg_B)) print X_pos_A.shape, X_pos_B.shape, X_pos_whole.shape print X_neg_A.shape, X_neg_B.shape, X_neg_whole.shape X_whole = np.vstack((X_pos_whole, X_neg_whole)) print X_whole.shape y_pos = np.ones(X_pos_whole.shape[0]) y_neg = np.zeros(X_neg_whole.shape[0]) y_whole = np.concatenate([y_pos,y_neg]) print y_whole # In[7]: #pylab.imshow(imageB.reshape(28, 28), cmap="Greys") # In[8]: def saveAsCsv(with_auc_score, fname, score_dict, arguments): #new newfile = False if os.path.isfile('report_' + fname + '.csv'): pass else: newfile = True csvfile = open('report_' + fname + '.csv', 'a+') writer = csv.writer(csvfile) if newfile == True: writer.writerow(['no.', 'number_of_training', 'method', 'isTest']+ score_dict.keys()) #, 'AUC']) for arg in arguments: writer.writerow([i for i in arg]) csvfile.close() def run_models(settings = None): analysis_scr = [] with_auc_score = settings['with_auc_score'] for subset_no in xrange(1,settings['number_iterations']+1): print("Subset:", subset_no) ################## generate data ################### array_A =[] array_B =[] for i in range(100000): array_A.append(np.random.random_integers(0, 59999)) array_B.append(np.random.random_integers(0, 59999)) pos_index = [] neg_index = [] for index in xrange(100000): if y_total[array_A[index]] - y_total[array_B[index]] == 1: pos_index.append(index) else: neg_index.append(index) print 'number of positive examples', len(pos_index) selected_neg_index= neg_index[ : len(pos_index)] array_A = np.array(array_A) array_B = np.array(array_B) index_for_positive_image_A = array_A[pos_index] index_for_positive_image_B = array_B[pos_index] index_for_neg_image_A = array_A[selected_neg_index] index_for_neg_image_B = array_B[selected_neg_index] X_pos_A = X_total[index_for_positive_image_A] X_pos_B = X_total[index_for_positive_image_B] X_pos_whole = np.hstack((X_pos_A,X_pos_B)) X_neg_A = X_total[index_for_neg_image_A] X_neg_B = X_total[index_for_neg_image_B] X_neg_whole = np.hstack((X_neg_A, X_neg_B)) print X_pos_A.shape, X_pos_B.shape, X_pos_whole.shape print X_neg_A.shape, X_neg_B.shape, X_neg_whole.shape X_whole = np.vstack((X_pos_whole, X_neg_whole)) print X_whole.shape y_pos = np.ones(X_pos_whole.shape[0]) y_neg = np.zeros(X_neg_whole.shape[0]) y_whole = np.concatenate([y_pos,y_neg]) print y_whole.shape x_train_pre_validation, x_test, y_train_pre_validation, y_test = train_test_split(X_whole,y_whole, test_size=0.2, random_state=211) for number_of_training in settings['number_of_training']: x_train, x_validation, y_train, y_validation = train_test_split(x_train_pre_validation[:number_of_training], y_train_pre_validation[:number_of_training],\ test_size=0.2, random_state=21) print x_train.shape, y_train.shape, x_validation.shape, y_validation.shape, x_test.shape, y_test.shape x_train_minmax, x_validation_minmax, x_test_minmax = x_train, x_validation, x_test train_X_reduced = x_train train_y_reduced = y_train test_X = x_test test_y = y_test ###original data### ################ end of data #################### standard_scaler = preprocessing.StandardScaler().fit(train_X_reduced) scaled_train_X = standard_scaler.transform(train_X_reduced) scaled_test_X = standard_scaler.transform(test_X) if settings['SVM']: print "SVM" Linear_SVC = LinearSVC(C=1, penalty="l2") Linear_SVC.fit(scaled_train_X, y_train) predicted_test_y = Linear_SVC.predict(scaled_test_X) isTest = True; #new analysis_scr.append((subset_no, number_of_training, 'SVM', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = Linear_SVC.predict(scaled_train_X) isTest = False; #new analysis_scr.append(( subset_no,number_of_training, 'SVM', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) if settings['SVM_RBF']: print "SVM_RBF" L1_SVC_RBF_Selector = SVC(C=1, gamma=0.01, kernel='rbf').fit(scaled_train_X, y_train) predicted_test_y = L1_SVC_RBF_Selector.predict(scaled_test_X) isTest = True; #new analysis_scr.append((subset_no, number_of_training, 'SVM_RBF', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = L1_SVC_RBF_Selector.predict(scaled_train_X) isTest = False; #new analysis_scr.append((subset_no,number_of_training, 'SVM_RBF', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) if settings['SVM_POLY']: print "SVM_POLY" L1_SVC_POLY_Selector = SVC(C=1, kernel='poly').fit(scaled_train_X, train_y_reduced) predicted_test_y = L1_SVC_POLY_Selector.predict(scaled_test_X) isTest = True; #new analysis_scr.append(( subset_no, number_of_training,'SVM_POLY', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = L1_SVC_POLY_Selector.predict(scaled_train_X) isTest = False; #new analysis_scr.append((subset_no, number_of_training,'SVM_POLY', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) if settings['Log']: print "Log" log_clf_l2 = sklearn.linear_model.LogisticRegression(C=1, penalty='l2') log_clf_l2.fit(scaled_train_X, train_y_reduced) predicted_test_y = log_clf_l2.predict(scaled_test_X) isTest = True; #new analysis_scr.append((subset_no,number_of_training, 'Log', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = log_clf_l2.predict(scaled_train_X) isTest = False; #new analysis_scr.append((subset_no, number_of_training,'Log', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) # direct deep learning finetune_lr = settings['finetune_lr'] batch_size = settings['batch_size'] pretraining_epochs = cal_epochs(settings['pretraining_interations'], x_train_minmax, batch_size = batch_size) #pretrain_lr=0.001 pretrain_lr = settings['pretrain_lr'] training_epochs = cal_epochs(settings['training_interations'], x_train_minmax, batch_size = batch_size) hidden_layers_sizes = settings['hidden_layers_sizes'] corruption_levels = settings['corruption_levels'] if settings['DL']: print "direct deep learning" sda = trainSda(x_train_minmax, y_train, x_validation_minmax, y_validation, x_test_minmax, test_y, hidden_layers_sizes = hidden_layers_sizes, corruption_levels = corruption_levels, batch_size = batch_size , \ training_epochs = training_epochs, pretraining_epochs = pretraining_epochs, pretrain_lr = pretrain_lr, finetune_lr=finetune_lr ) print 'hidden_layers_sizes:', hidden_layers_sizes print 'corruption_levels:', corruption_levels test_predicted = sda.predict(x_test_minmax) isTest = True; #new analysis_scr.append((subset_no,number_of_training, 'DL', isTest) + tuple(performance_score(y_test, test_predicted).values())) training_predicted = sda.predict(x_train_minmax) isTest = False; #new analysis_scr.append((subset_no,number_of_training, 'DL', isTest) + tuple(performance_score(y_train, training_predicted).values())) ####transformed original data#### x = train_X_reduced a_MAE_original = train_a_MultipleAEs(x, pretraining_epochs=pretraining_epochs, pretrain_lr=pretrain_lr, batch_size=batch_size, hidden_layers_sizes =hidden_layers_sizes, corruption_levels=corruption_levels) new_x_train_minmax_A = a_MAE_original.transform(train_X_reduced) new_x_test_minmax_A = a_MAE_original.transform(x_test_minmax) standard_scaler = preprocessing.StandardScaler().fit(new_x_train_minmax_A) new_x_train_scaled = standard_scaler.transform(new_x_train_minmax_A) new_x_test_scaled = standard_scaler.transform(new_x_test_minmax_A) new_x_train_combo = np.hstack((scaled_train_X, new_x_train_scaled)) new_x_test_combo = np.hstack((scaled_test_X, new_x_test_scaled)) if settings['SAE_SVM']: # SAE_SVM print 'SAE followed by SVM' Linear_SVC = LinearSVC(C=1, penalty="l2") Linear_SVC.fit(new_x_train_scaled, train_y_reduced) predicted_test_y = Linear_SVC.predict(new_x_test_scaled) isTest = True; #new analysis_scr.append(( subset_no, number_of_training,'SAE_SVM', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = Linear_SVC.predict(new_x_train_scaled) isTest = False; #new analysis_scr.append(( subset_no, number_of_training,'SAE_SVM', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) if settings['SAE_SVM_RBF']: # SAE_SVM print 'SAE followed by SVM RBF' L1_SVC_RBF_Selector = SVC(C=1, gamma=0.01, kernel='rbf').fit(new_x_train_scaled, train_y_reduced) predicted_test_y = L1_SVC_RBF_Selector.predict(new_x_test_scaled) isTest = True; #new analysis_scr.append((subset_no, number_of_training, 'SAE_SVM_RBF', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = L1_SVC_RBF_Selector.predict(new_x_train_scaled) isTest = False; #new analysis_scr.append((subset_no, number_of_training, 'SAE_SVM_RBF', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) if settings['SAE_SVM_POLY']: # SAE_SVM print 'SAE followed by SVM POLY' L1_SVC_RBF_Selector = SVC(C=1, kernel='poly').fit(new_x_train_scaled, train_y_reduced) predicted_test_y = L1_SVC_RBF_Selector.predict(new_x_test_scaled) isTest = True; #new analysis_scr.append((subset_no, number_of_training,'SAE_SVM_POLY', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = L1_SVC_RBF_Selector.predict(new_x_train_scaled) isTest = False; #new analysis_scr.append((subset_no, number_of_training, 'SAE_SVM_POLY', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) #### separated transformed data #### y_test = test_y print 'deep learning using split network' # get the new representation for A set. first 784-D pretraining_epochs = cal_epochs(settings['pretraining_interations'], x_train_minmax, batch_size = batch_size) x = x_train_minmax[:, :x_train_minmax.shape[1]/2] print "original shape for A", x.shape a_MAE_A = train_a_MultipleAEs(x, pretraining_epochs=pretraining_epochs, pretrain_lr=pretrain_lr, batch_size=batch_size, hidden_layers_sizes = [x/2 for x in hidden_layers_sizes], corruption_levels=corruption_levels) new_x_train_minmax_A = a_MAE_A.transform(x_train_minmax[:, :x_train_minmax.shape[1]/2]) x = x_train_minmax[:, x_train_minmax.shape[1]/2:] print "original shape for B", x.shape a_MAE_B = train_a_MultipleAEs(x, pretraining_epochs=pretraining_epochs, pretrain_lr=pretrain_lr, batch_size=batch_size, hidden_layers_sizes = [x/2 for x in hidden_layers_sizes], corruption_levels=corruption_levels) new_x_train_minmax_B = a_MAE_B.transform(x_train_minmax[:, x_train_minmax.shape[1]/2:]) new_x_test_minmax_A = a_MAE_A.transform(x_test_minmax[:, :x_test_minmax.shape[1]/2]) new_x_test_minmax_B = a_MAE_B.transform(x_test_minmax[:, x_test_minmax.shape[1]/2:]) new_x_validation_minmax_A = a_MAE_A.transform(x_validation_minmax[:, :x_validation_minmax.shape[1]/2]) new_x_validation_minmax_B = a_MAE_B.transform(x_validation_minmax[:, x_validation_minmax.shape[1]/2:]) new_x_train_minmax_whole = np.hstack((new_x_train_minmax_A, new_x_train_minmax_B)) new_x_test_minmax_whole = np.hstack((new_x_test_minmax_A, new_x_test_minmax_B)) new_x_validationt_minmax_whole = np.hstack((new_x_validation_minmax_A, new_x_validation_minmax_B)) standard_scaler = preprocessing.StandardScaler().fit(new_x_train_minmax_whole) new_x_train_minmax_whole_scaled = standard_scaler.transform(new_x_train_minmax_whole) new_x_test_minmax_whole_scaled = standard_scaler.transform(new_x_test_minmax_whole) if settings['DL_S']: # deep learning using split network sda_transformed = trainSda(new_x_train_minmax_whole, y_train, new_x_validationt_minmax_whole, y_validation , new_x_test_minmax_whole, y_test, hidden_layers_sizes = hidden_layers_sizes, corruption_levels = corruption_levels, batch_size = batch_size , \ training_epochs = training_epochs, pretraining_epochs = pretraining_epochs, pretrain_lr = pretrain_lr, finetune_lr=finetune_lr ) print 'hidden_layers_sizes:', hidden_layers_sizes print 'corruption_levels:', corruption_levels predicted_test_y = sda_transformed.predict(new_x_test_minmax_whole) y_test = test_y isTest = True; #new analysis_scr.append((subset_no, number_of_training,'DL_S', isTest) + tuple(performance_score(y_test, predicted_test_y, with_auc_score).values())) training_predicted = sda_transformed.predict(new_x_train_minmax_whole) isTest = False; #new analysis_scr.append((subset_no,number_of_training, 'DL_S', isTest) + tuple(performance_score(y_train, training_predicted, with_auc_score).values())) if settings['SAE_S_SVM']: print 'SAE_S followed by SVM' Linear_SVC = LinearSVC(C=1, penalty="l2") Linear_SVC.fit(new_x_train_minmax_whole_scaled, train_y_reduced) predicted_test_y = Linear_SVC.predict(new_x_test_minmax_whole_scaled) isTest = True; #new analysis_scr.append(( subset_no, number_of_training,'SAE_S_SVM', isTest) + tuple(performance_score(test_y, predicted_test_y, with_auc_score).values())) #new predicted_train_y = Linear_SVC.predict(new_x_train_minmax_whole_scaled) isTest = False; #new analysis_scr.append(( subset_no,number_of_training, 'SAE_S_SVM', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y, with_auc_score).values())) if settings['SAE_S_SVM_RBF']: print 'SAE S followed by SVM RBF' L1_SVC_RBF_Selector = SVC(C=1, gamma=0.01, kernel='rbf').fit(new_x_train_minmax_whole_scaled, train_y_reduced) predicted_test_y = L1_SVC_RBF_Selector.predict(new_x_test_minmax_whole_scaled) isTest = True; #new analysis_scr.append((subset_no, number_of_training, 'SAE_S_SVM_RBF', isTest) + tuple(performance_score(test_y, predicted_test_y, with_auc_score).values())) #new predicted_train_y = L1_SVC_RBF_Selector.predict(new_x_train_minmax_whole_scaled) isTest = False; #new analysis_scr.append((subset_no, number_of_training,'SAE_S_SVM_RBF', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y, with_auc_score).values())) if settings['SAE_S_SVM_POLY']: # SAE_SVM print 'SAE S followed by SVM POLY' L1_SVC_RBF_Selector = SVC(C=1, kernel='poly').fit(new_x_train_minmax_whole_scaled, train_y_reduced) predicted_test_y = L1_SVC_RBF_Selector.predict(new_x_test_minmax_whole_scaled) isTest = True; #new analysis_scr.append((subset_no, number_of_training,'SAE_S_SVM_POLY', isTest) + tuple(performance_score(test_y, predicted_test_y, with_auc_score).values())) #new predicted_train_y = L1_SVC_RBF_Selector.predict(new_x_train_minmax_whole_scaled) isTest = False; #new analysis_scr.append((subset_no, number_of_training,'SAE_S_SVM_POLY', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y, with_auc_score).values())) report_name = 'DL_handwritten_digits' + '_size_'.join(map(str, hidden_layers_sizes)) + '_' + str(pretrain_lr) + '_' + str(finetune_lr) + '_' + '_' + str(settings['pretraining_interations']) + '_' + current_date saveAsCsv(with_auc_score, report_name, performance_score(test_y, predicted_test_y, with_auc_score), analysis_scr) return sda, a_MAE_original, a_MAE_A, a_MAE_B, analysis_scr # In[9]: sda, a_MAE_original, a_MAE_A, a_MAE_B, analysis_scr = run_models(settings) # In[48]: # save objects sda, a_MAE_original, a_MAE_A, a_MAE_B, analysis_scr with open('_'.join(map(str, settings['hidden_layers_sizes'])) +'_'.join(map(str, settings['corruption_levels']))+ '_' + current_date +'sda.pickle', 'wb') as handle: pickle.dump(sda, handle) with open('_'.join(map(str, settings['hidden_layers_sizes'])) +'_'.join(map(str, settings['corruption_levels']))+ '_' + current_date + 'a_MAE_original.pickle', 'wb') as handle: pickle.dump(a_MAE_original, handle) with open('_'.join(map(str, settings['hidden_layers_sizes'])) +'_'.join(map(str, settings['corruption_levels']))+ '_' + current_date + 'a_MAE_A.pickle', 'wb') as handle: pickle.dump(a_MAE_A, handle) with open('_'.join(map(str, settings['hidden_layers_sizes'])) +'_'.join(map(str, settings['corruption_levels']))+ '_' + current_date + 'a_MAE_B.pickle', 'wb') as handle: pickle.dump(a_MAE_B, handle) x = logging._handlers.copy() for i in x: log.removeHandler(i) i.flush() i.close() # In[ ]: # In[31]: ''' weights_map_to_input_space = [] StackedNNobject = sda image_dimension_x = 28*2 image_dimension_y = 28 if isinstance(StackedNNobject, SdA) or isinstance(StackedNNobject, MultipleAEs): weights_product = StackedNNobject.dA_layers[0].W.get_value(borrow=True) image = PIL.Image.fromarray(tile_raster_images( X=weights_product.T, img_shape=(image_dimension_x, image_dimension_y), tile_shape=(10, 10), tile_spacing=(1, 1))) sample_image_path = 'hidden_0_layer_weights.png' image.save(sample_image_path) weights_map_to_input_space.append(weights_product) for i_layer in range(1, len(StackedNNobject.dA_layers)): i_weigths = StackedNNobject.dA_layers[i_layer].W.get_value(borrow=True) weights_product = np.dot(weights_product, i_weigths) weights_map_to_input_space.append(weights_product) image = PIL.Image.fromarray(tile_raster_images( X=weights_product.T, img_shape=(image_dimension_x, image_dimension_y), tile_shape=(10, 10), tile_spacing=(1, 1))) sample_image_path = 'hidden_'+ str(i_layer)+ '_layer_weights.png' image.save(sample_image_path) ''' # In[18]:
gpl-2.0
rvraghav93/scikit-learn
sklearn/feature_extraction/tests/test_text.py
8
35969
from __future__ import unicode_literals import warnings from sklearn.feature_extraction.text import strip_tags from sklearn.feature_extraction.text import strip_accents_unicode from sklearn.feature_extraction.text import strip_accents_ascii from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.base import clone import numpy as np from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_raises from sklearn.utils.testing import (assert_equal, assert_false, assert_true, assert_not_equal, assert_almost_equal, assert_in, assert_less, assert_greater, assert_warns_message, assert_raise_message, clean_warning_registry, SkipTest) from collections import defaultdict, Mapping from functools import partial import pickle from io import StringIO JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) NOTJUNK_FOOD_DOCS = ( "the salad celeri copyright", "the salad salad sparkling water copyright", "the the celeri celeri copyright", "the tomato tomato salad water", "the tomato salad water copyright", ) ALL_FOOD_DOCS = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS def uppercase(s): return strip_accents_unicode(s).upper() def strip_eacute(s): return s.replace('\xe9', 'e') def split_tokenize(s): return s.split() def lazy_analyze(s): return ['the_ultimate_feature'] def test_strip_accents(): # check some classical latin accentuated symbols a = '\xe0\xe1\xe2\xe3\xe4\xe5\xe7\xe8\xe9\xea\xeb' expected = 'aaaaaaceeee' assert_equal(strip_accents_unicode(a), expected) a = '\xec\xed\xee\xef\xf1\xf2\xf3\xf4\xf5\xf6\xf9\xfa\xfb\xfc\xfd' expected = 'iiiinooooouuuuy' assert_equal(strip_accents_unicode(a), expected) # check some arabic a = '\u0625' # halef with a hamza below expected = '\u0627' # simple halef assert_equal(strip_accents_unicode(a), expected) # mix letters accentuated and not a = "this is \xe0 test" expected = 'this is a test' assert_equal(strip_accents_unicode(a), expected) def test_to_ascii(): # check some classical latin accentuated symbols a = '\xe0\xe1\xe2\xe3\xe4\xe5\xe7\xe8\xe9\xea\xeb' expected = 'aaaaaaceeee' assert_equal(strip_accents_ascii(a), expected) a = '\xec\xed\xee\xef\xf1\xf2\xf3\xf4\xf5\xf6\xf9\xfa\xfb\xfc\xfd' expected = 'iiiinooooouuuuy' assert_equal(strip_accents_ascii(a), expected) # check some arabic a = '\u0625' # halef with a hamza below expected = '' # halef has no direct ascii match assert_equal(strip_accents_ascii(a), expected) # mix letters accentuated and not a = "this is \xe0 test" expected = 'this is a test' assert_equal(strip_accents_ascii(a), expected) def test_word_analyzer_unigrams(): for Vectorizer in (CountVectorizer, HashingVectorizer): wa = Vectorizer(strip_accents='ascii').build_analyzer() text = ("J'ai mang\xe9 du kangourou ce midi, " "c'\xe9tait pas tr\xeas bon.") expected = ['ai', 'mange', 'du', 'kangourou', 'ce', 'midi', 'etait', 'pas', 'tres', 'bon'] assert_equal(wa(text), expected) text = "This is a test, really.\n\n I met Harry yesterday." expected = ['this', 'is', 'test', 'really', 'met', 'harry', 'yesterday'] assert_equal(wa(text), expected) wa = Vectorizer(input='file').build_analyzer() text = StringIO("This is a test with a file-like object!") expected = ['this', 'is', 'test', 'with', 'file', 'like', 'object'] assert_equal(wa(text), expected) # with custom preprocessor wa = Vectorizer(preprocessor=uppercase).build_analyzer() text = ("J'ai mang\xe9 du kangourou ce midi, " " c'\xe9tait pas tr\xeas bon.") expected = ['AI', 'MANGE', 'DU', 'KANGOUROU', 'CE', 'MIDI', 'ETAIT', 'PAS', 'TRES', 'BON'] assert_equal(wa(text), expected) # with custom tokenizer wa = Vectorizer(tokenizer=split_tokenize, strip_accents='ascii').build_analyzer() text = ("J'ai mang\xe9 du kangourou ce midi, " "c'\xe9tait pas tr\xeas bon.") expected = ["j'ai", 'mange', 'du', 'kangourou', 'ce', 'midi,', "c'etait", 'pas', 'tres', 'bon.'] assert_equal(wa(text), expected) def test_word_analyzer_unigrams_and_bigrams(): wa = CountVectorizer(analyzer="word", strip_accents='unicode', ngram_range=(1, 2)).build_analyzer() text = "J'ai mang\xe9 du kangourou ce midi, c'\xe9tait pas tr\xeas bon." expected = ['ai', 'mange', 'du', 'kangourou', 'ce', 'midi', 'etait', 'pas', 'tres', 'bon', 'ai mange', 'mange du', 'du kangourou', 'kangourou ce', 'ce midi', 'midi etait', 'etait pas', 'pas tres', 'tres bon'] assert_equal(wa(text), expected) def test_unicode_decode_error(): # decode_error default to strict, so this should fail # First, encode (as bytes) a unicode string. text = "J'ai mang\xe9 du kangourou ce midi, c'\xe9tait pas tr\xeas bon." text_bytes = text.encode('utf-8') # Then let the Analyzer try to decode it as ascii. It should fail, # because we have given it an incorrect encoding. wa = CountVectorizer(ngram_range=(1, 2), encoding='ascii').build_analyzer() assert_raises(UnicodeDecodeError, wa, text_bytes) ca = CountVectorizer(analyzer='char', ngram_range=(3, 6), encoding='ascii').build_analyzer() assert_raises(UnicodeDecodeError, ca, text_bytes) def test_char_ngram_analyzer(): cnga = CountVectorizer(analyzer='char', strip_accents='unicode', ngram_range=(3, 6)).build_analyzer() text = "J'ai mang\xe9 du kangourou ce midi, c'\xe9tait pas tr\xeas bon" expected = ["j'a", "'ai", 'ai ', 'i m', ' ma'] assert_equal(cnga(text)[:5], expected) expected = ['s tres', ' tres ', 'tres b', 'res bo', 'es bon'] assert_equal(cnga(text)[-5:], expected) text = "This \n\tis a test, really.\n\n I met Harry yesterday" expected = ['thi', 'his', 'is ', 's i', ' is'] assert_equal(cnga(text)[:5], expected) expected = [' yeste', 'yester', 'esterd', 'sterda', 'terday'] assert_equal(cnga(text)[-5:], expected) cnga = CountVectorizer(input='file', analyzer='char', ngram_range=(3, 6)).build_analyzer() text = StringIO("This is a test with a file-like object!") expected = ['thi', 'his', 'is ', 's i', ' is'] assert_equal(cnga(text)[:5], expected) def test_char_wb_ngram_analyzer(): cnga = CountVectorizer(analyzer='char_wb', strip_accents='unicode', ngram_range=(3, 6)).build_analyzer() text = "This \n\tis a test, really.\n\n I met Harry yesterday" expected = [' th', 'thi', 'his', 'is ', ' thi'] assert_equal(cnga(text)[:5], expected) expected = ['yester', 'esterd', 'sterda', 'terday', 'erday '] assert_equal(cnga(text)[-5:], expected) cnga = CountVectorizer(input='file', analyzer='char_wb', ngram_range=(3, 6)).build_analyzer() text = StringIO("A test with a file-like object!") expected = [' a ', ' te', 'tes', 'est', 'st ', ' tes'] assert_equal(cnga(text)[:6], expected) def test_countvectorizer_custom_vocabulary(): vocab = {"pizza": 0, "beer": 1} terms = set(vocab.keys()) # Try a few of the supported types. for typ in [dict, list, iter, partial(defaultdict, int)]: v = typ(vocab) vect = CountVectorizer(vocabulary=v) vect.fit(JUNK_FOOD_DOCS) if isinstance(v, Mapping): assert_equal(vect.vocabulary_, vocab) else: assert_equal(set(vect.vocabulary_), terms) X = vect.transform(JUNK_FOOD_DOCS) assert_equal(X.shape[1], len(terms)) def test_countvectorizer_custom_vocabulary_pipeline(): what_we_like = ["pizza", "beer"] pipe = Pipeline([ ('count', CountVectorizer(vocabulary=what_we_like)), ('tfidf', TfidfTransformer())]) X = pipe.fit_transform(ALL_FOOD_DOCS) assert_equal(set(pipe.named_steps['count'].vocabulary_), set(what_we_like)) assert_equal(X.shape[1], len(what_we_like)) def test_countvectorizer_custom_vocabulary_repeated_indeces(): vocab = {"pizza": 0, "beer": 0} try: CountVectorizer(vocabulary=vocab) except ValueError as e: assert_in("vocabulary contains repeated indices", str(e).lower()) def test_countvectorizer_custom_vocabulary_gap_index(): vocab = {"pizza": 1, "beer": 2} try: CountVectorizer(vocabulary=vocab) except ValueError as e: assert_in("doesn't contain index", str(e).lower()) def test_countvectorizer_stop_words(): cv = CountVectorizer() cv.set_params(stop_words='english') assert_equal(cv.get_stop_words(), ENGLISH_STOP_WORDS) cv.set_params(stop_words='_bad_str_stop_') assert_raises(ValueError, cv.get_stop_words) cv.set_params(stop_words='_bad_unicode_stop_') assert_raises(ValueError, cv.get_stop_words) stoplist = ['some', 'other', 'words'] cv.set_params(stop_words=stoplist) assert_equal(cv.get_stop_words(), set(stoplist)) def test_countvectorizer_empty_vocabulary(): try: vect = CountVectorizer(vocabulary=[]) vect.fit(["foo"]) assert False, "we shouldn't get here" except ValueError as e: assert_in("empty vocabulary", str(e).lower()) try: v = CountVectorizer(max_df=1.0, stop_words="english") # fit on stopwords only v.fit(["to be or not to be", "and me too", "and so do you"]) assert False, "we shouldn't get here" except ValueError as e: assert_in("empty vocabulary", str(e).lower()) def test_fit_countvectorizer_twice(): cv = CountVectorizer() X1 = cv.fit_transform(ALL_FOOD_DOCS[:5]) X2 = cv.fit_transform(ALL_FOOD_DOCS[5:]) assert_not_equal(X1.shape[1], X2.shape[1]) def test_tf_idf_smoothing(): X = [[1, 1, 1], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=True, norm='l2') tfidf = tr.fit_transform(X).toarray() assert_true((tfidf >= 0).all()) # check normalization assert_array_almost_equal((tfidf ** 2).sum(axis=1), [1., 1., 1.]) # this is robust to features with only zeros X = [[1, 1, 0], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=True, norm='l2') tfidf = tr.fit_transform(X).toarray() assert_true((tfidf >= 0).all()) def test_tfidf_no_smoothing(): X = [[1, 1, 1], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=False, norm='l2') tfidf = tr.fit_transform(X).toarray() assert_true((tfidf >= 0).all()) # check normalization assert_array_almost_equal((tfidf ** 2).sum(axis=1), [1., 1., 1.]) # the lack of smoothing make IDF fragile in the presence of feature with # only zeros X = [[1, 1, 0], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=False, norm='l2') clean_warning_registry() with warnings.catch_warnings(record=True) as w: 1. / np.array([0.]) numpy_provides_div0_warning = len(w) == 1 in_warning_message = 'divide by zero' tfidf = assert_warns_message(RuntimeWarning, in_warning_message, tr.fit_transform, X).toarray() if not numpy_provides_div0_warning: raise SkipTest("Numpy does not provide div 0 warnings.") def test_sublinear_tf(): X = [[1], [2], [3]] tr = TfidfTransformer(sublinear_tf=True, use_idf=False, norm=None) tfidf = tr.fit_transform(X).toarray() assert_equal(tfidf[0], 1) assert_greater(tfidf[1], tfidf[0]) assert_greater(tfidf[2], tfidf[1]) assert_less(tfidf[1], 2) assert_less(tfidf[2], 3) def test_vectorizer(): # raw documents as an iterator train_data = iter(ALL_FOOD_DOCS[:-1]) test_data = [ALL_FOOD_DOCS[-1]] n_train = len(ALL_FOOD_DOCS) - 1 # test without vocabulary v1 = CountVectorizer(max_df=0.5) counts_train = v1.fit_transform(train_data) if hasattr(counts_train, 'tocsr'): counts_train = counts_train.tocsr() assert_equal(counts_train[0, v1.vocabulary_["pizza"]], 2) # build a vectorizer v1 with the same vocabulary as the one fitted by v1 v2 = CountVectorizer(vocabulary=v1.vocabulary_) # compare that the two vectorizer give the same output on the test sample for v in (v1, v2): counts_test = v.transform(test_data) if hasattr(counts_test, 'tocsr'): counts_test = counts_test.tocsr() vocabulary = v.vocabulary_ assert_equal(counts_test[0, vocabulary["salad"]], 1) assert_equal(counts_test[0, vocabulary["tomato"]], 1) assert_equal(counts_test[0, vocabulary["water"]], 1) # stop word from the fixed list assert_false("the" in vocabulary) # stop word found automatically by the vectorizer DF thresholding # words that are high frequent across the complete corpus are likely # to be not informative (either real stop words of extraction # artifacts) assert_false("copyright" in vocabulary) # not present in the sample assert_equal(counts_test[0, vocabulary["coke"]], 0) assert_equal(counts_test[0, vocabulary["burger"]], 0) assert_equal(counts_test[0, vocabulary["beer"]], 0) assert_equal(counts_test[0, vocabulary["pizza"]], 0) # test tf-idf t1 = TfidfTransformer(norm='l1') tfidf = t1.fit(counts_train).transform(counts_train).toarray() assert_equal(len(t1.idf_), len(v1.vocabulary_)) assert_equal(tfidf.shape, (n_train, len(v1.vocabulary_))) # test tf-idf with new data tfidf_test = t1.transform(counts_test).toarray() assert_equal(tfidf_test.shape, (len(test_data), len(v1.vocabulary_))) # test tf alone t2 = TfidfTransformer(norm='l1', use_idf=False) tf = t2.fit(counts_train).transform(counts_train).toarray() assert_false(hasattr(t2, "idf_")) # test idf transform with unlearned idf vector t3 = TfidfTransformer(use_idf=True) assert_raises(ValueError, t3.transform, counts_train) # test idf transform with incompatible n_features X = [[1, 1, 5], [1, 1, 0]] t3.fit(X) X_incompt = [[1, 3], [1, 3]] assert_raises(ValueError, t3.transform, X_incompt) # L1-normalized term frequencies sum to one assert_array_almost_equal(np.sum(tf, axis=1), [1.0] * n_train) # test the direct tfidf vectorizer # (equivalent to term count vectorizer + tfidf transformer) train_data = iter(ALL_FOOD_DOCS[:-1]) tv = TfidfVectorizer(norm='l1') tv.max_df = v1.max_df tfidf2 = tv.fit_transform(train_data).toarray() assert_false(tv.fixed_vocabulary_) assert_array_almost_equal(tfidf, tfidf2) # test the direct tfidf vectorizer with new data tfidf_test2 = tv.transform(test_data).toarray() assert_array_almost_equal(tfidf_test, tfidf_test2) # test transform on unfitted vectorizer with empty vocabulary v3 = CountVectorizer(vocabulary=None) assert_raises(ValueError, v3.transform, train_data) # ascii preprocessor? v3.set_params(strip_accents='ascii', lowercase=False) assert_equal(v3.build_preprocessor(), strip_accents_ascii) # error on bad strip_accents param v3.set_params(strip_accents='_gabbledegook_', preprocessor=None) assert_raises(ValueError, v3.build_preprocessor) # error with bad analyzer type v3.set_params = '_invalid_analyzer_type_' assert_raises(ValueError, v3.build_analyzer) def test_tfidf_vectorizer_setters(): tv = TfidfVectorizer(norm='l2', use_idf=False, smooth_idf=False, sublinear_tf=False) tv.norm = 'l1' assert_equal(tv._tfidf.norm, 'l1') tv.use_idf = True assert_true(tv._tfidf.use_idf) tv.smooth_idf = True assert_true(tv._tfidf.smooth_idf) tv.sublinear_tf = True assert_true(tv._tfidf.sublinear_tf) def test_hashing_vectorizer(): v = HashingVectorizer() X = v.transform(ALL_FOOD_DOCS) token_nnz = X.nnz assert_equal(X.shape, (len(ALL_FOOD_DOCS), v.n_features)) assert_equal(X.dtype, v.dtype) # By default the hashed values receive a random sign and l2 normalization # makes the feature values bounded assert_true(np.min(X.data) > -1) assert_true(np.min(X.data) < 0) assert_true(np.max(X.data) > 0) assert_true(np.max(X.data) < 1) # Check that the rows are normalized for i in range(X.shape[0]): assert_almost_equal(np.linalg.norm(X[0].data, 2), 1.0) # Check vectorization with some non-default parameters v = HashingVectorizer(ngram_range=(1, 2), non_negative=True, norm='l1') X = v.transform(ALL_FOOD_DOCS) assert_equal(X.shape, (len(ALL_FOOD_DOCS), v.n_features)) assert_equal(X.dtype, v.dtype) # ngrams generate more non zeros ngrams_nnz = X.nnz assert_true(ngrams_nnz > token_nnz) assert_true(ngrams_nnz < 2 * token_nnz) # makes the feature values bounded assert_true(np.min(X.data) > 0) assert_true(np.max(X.data) < 1) # Check that the rows are normalized for i in range(X.shape[0]): assert_almost_equal(np.linalg.norm(X[0].data, 1), 1.0) def test_feature_names(): cv = CountVectorizer(max_df=0.5) # test for Value error on unfitted/empty vocabulary assert_raises(ValueError, cv.get_feature_names) X = cv.fit_transform(ALL_FOOD_DOCS) n_samples, n_features = X.shape assert_equal(len(cv.vocabulary_), n_features) feature_names = cv.get_feature_names() assert_equal(len(feature_names), n_features) assert_array_equal(['beer', 'burger', 'celeri', 'coke', 'pizza', 'salad', 'sparkling', 'tomato', 'water'], feature_names) for idx, name in enumerate(feature_names): assert_equal(idx, cv.vocabulary_.get(name)) def test_vectorizer_max_features(): vec_factories = ( CountVectorizer, TfidfVectorizer, ) expected_vocabulary = set(['burger', 'beer', 'salad', 'pizza']) expected_stop_words = set([u'celeri', u'tomato', u'copyright', u'coke', u'sparkling', u'water', u'the']) for vec_factory in vec_factories: # test bounded number of extracted features vectorizer = vec_factory(max_df=0.6, max_features=4) vectorizer.fit(ALL_FOOD_DOCS) assert_equal(set(vectorizer.vocabulary_), expected_vocabulary) assert_equal(vectorizer.stop_words_, expected_stop_words) def test_count_vectorizer_max_features(): # Regression test: max_features didn't work correctly in 0.14. cv_1 = CountVectorizer(max_features=1) cv_3 = CountVectorizer(max_features=3) cv_None = CountVectorizer(max_features=None) counts_1 = cv_1.fit_transform(JUNK_FOOD_DOCS).sum(axis=0) counts_3 = cv_3.fit_transform(JUNK_FOOD_DOCS).sum(axis=0) counts_None = cv_None.fit_transform(JUNK_FOOD_DOCS).sum(axis=0) features_1 = cv_1.get_feature_names() features_3 = cv_3.get_feature_names() features_None = cv_None.get_feature_names() # The most common feature is "the", with frequency 7. assert_equal(7, counts_1.max()) assert_equal(7, counts_3.max()) assert_equal(7, counts_None.max()) # The most common feature should be the same assert_equal("the", features_1[np.argmax(counts_1)]) assert_equal("the", features_3[np.argmax(counts_3)]) assert_equal("the", features_None[np.argmax(counts_None)]) def test_vectorizer_max_df(): test_data = ['abc', 'dea', 'eat'] vect = CountVectorizer(analyzer='char', max_df=1.0) vect.fit(test_data) assert_true('a' in vect.vocabulary_.keys()) assert_equal(len(vect.vocabulary_.keys()), 6) assert_equal(len(vect.stop_words_), 0) vect.max_df = 0.5 # 0.5 * 3 documents -> max_doc_count == 1.5 vect.fit(test_data) assert_true('a' not in vect.vocabulary_.keys()) # {ae} ignored assert_equal(len(vect.vocabulary_.keys()), 4) # {bcdt} remain assert_true('a' in vect.stop_words_) assert_equal(len(vect.stop_words_), 2) vect.max_df = 1 vect.fit(test_data) assert_true('a' not in vect.vocabulary_.keys()) # {ae} ignored assert_equal(len(vect.vocabulary_.keys()), 4) # {bcdt} remain assert_true('a' in vect.stop_words_) assert_equal(len(vect.stop_words_), 2) def test_vectorizer_min_df(): test_data = ['abc', 'dea', 'eat'] vect = CountVectorizer(analyzer='char', min_df=1) vect.fit(test_data) assert_true('a' in vect.vocabulary_.keys()) assert_equal(len(vect.vocabulary_.keys()), 6) assert_equal(len(vect.stop_words_), 0) vect.min_df = 2 vect.fit(test_data) assert_true('c' not in vect.vocabulary_.keys()) # {bcdt} ignored assert_equal(len(vect.vocabulary_.keys()), 2) # {ae} remain assert_true('c' in vect.stop_words_) assert_equal(len(vect.stop_words_), 4) vect.min_df = 0.8 # 0.8 * 3 documents -> min_doc_count == 2.4 vect.fit(test_data) assert_true('c' not in vect.vocabulary_.keys()) # {bcdet} ignored assert_equal(len(vect.vocabulary_.keys()), 1) # {a} remains assert_true('c' in vect.stop_words_) assert_equal(len(vect.stop_words_), 5) def test_count_binary_occurrences(): # by default multiple occurrences are counted as longs test_data = ['aaabc', 'abbde'] vect = CountVectorizer(analyzer='char', max_df=1.0) X = vect.fit_transform(test_data).toarray() assert_array_equal(['a', 'b', 'c', 'd', 'e'], vect.get_feature_names()) assert_array_equal([[3, 1, 1, 0, 0], [1, 2, 0, 1, 1]], X) # using boolean features, we can fetch the binary occurrence info # instead. vect = CountVectorizer(analyzer='char', max_df=1.0, binary=True) X = vect.fit_transform(test_data).toarray() assert_array_equal([[1, 1, 1, 0, 0], [1, 1, 0, 1, 1]], X) # check the ability to change the dtype vect = CountVectorizer(analyzer='char', max_df=1.0, binary=True, dtype=np.float32) X_sparse = vect.fit_transform(test_data) assert_equal(X_sparse.dtype, np.float32) def test_hashed_binary_occurrences(): # by default multiple occurrences are counted as longs test_data = ['aaabc', 'abbde'] vect = HashingVectorizer(analyzer='char', non_negative=True, norm=None) X = vect.transform(test_data) assert_equal(np.max(X[0:1].data), 3) assert_equal(np.max(X[1:2].data), 2) assert_equal(X.dtype, np.float64) # using boolean features, we can fetch the binary occurrence info # instead. vect = HashingVectorizer(analyzer='char', non_negative=True, binary=True, norm=None) X = vect.transform(test_data) assert_equal(np.max(X.data), 1) assert_equal(X.dtype, np.float64) # check the ability to change the dtype vect = HashingVectorizer(analyzer='char', non_negative=True, binary=True, norm=None, dtype=np.float64) X = vect.transform(test_data) assert_equal(X.dtype, np.float64) def test_vectorizer_inverse_transform(): # raw documents data = ALL_FOOD_DOCS for vectorizer in (TfidfVectorizer(), CountVectorizer()): transformed_data = vectorizer.fit_transform(data) inversed_data = vectorizer.inverse_transform(transformed_data) analyze = vectorizer.build_analyzer() for doc, inversed_terms in zip(data, inversed_data): terms = np.sort(np.unique(analyze(doc))) inversed_terms = np.sort(np.unique(inversed_terms)) assert_array_equal(terms, inversed_terms) # Test that inverse_transform also works with numpy arrays transformed_data = transformed_data.toarray() inversed_data2 = vectorizer.inverse_transform(transformed_data) for terms, terms2 in zip(inversed_data, inversed_data2): assert_array_equal(np.sort(terms), np.sort(terms2)) def test_count_vectorizer_pipeline_grid_selection(): # raw documents data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS # label junk food as -1, the others as +1 target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS) # split the dataset for model development and final evaluation train_data, test_data, target_train, target_test = train_test_split( data, target, test_size=.2, random_state=0) pipeline = Pipeline([('vect', CountVectorizer()), ('svc', LinearSVC())]) parameters = { 'vect__ngram_range': [(1, 1), (1, 2)], 'svc__loss': ('hinge', 'squared_hinge') } # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=1) # Check that the best model found by grid search is 100% correct on the # held out evaluation set. pred = grid_search.fit(train_data, target_train).predict(test_data) assert_array_equal(pred, target_test) # on this toy dataset bigram representation which is used in the last of # the grid_search is considered the best estimator since they all converge # to 100% accuracy models assert_equal(grid_search.best_score_, 1.0) best_vectorizer = grid_search.best_estimator_.named_steps['vect'] assert_equal(best_vectorizer.ngram_range, (1, 1)) def test_vectorizer_pipeline_grid_selection(): # raw documents data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS # label junk food as -1, the others as +1 target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS) # split the dataset for model development and final evaluation train_data, test_data, target_train, target_test = train_test_split( data, target, test_size=.1, random_state=0) pipeline = Pipeline([('vect', TfidfVectorizer()), ('svc', LinearSVC())]) parameters = { 'vect__ngram_range': [(1, 1), (1, 2)], 'vect__norm': ('l1', 'l2'), 'svc__loss': ('hinge', 'squared_hinge'), } # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=1) # Check that the best model found by grid search is 100% correct on the # held out evaluation set. pred = grid_search.fit(train_data, target_train).predict(test_data) assert_array_equal(pred, target_test) # on this toy dataset bigram representation which is used in the last of # the grid_search is considered the best estimator since they all converge # to 100% accuracy models assert_equal(grid_search.best_score_, 1.0) best_vectorizer = grid_search.best_estimator_.named_steps['vect'] assert_equal(best_vectorizer.ngram_range, (1, 1)) assert_equal(best_vectorizer.norm, 'l2') assert_false(best_vectorizer.fixed_vocabulary_) def test_vectorizer_pipeline_cross_validation(): # raw documents data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS # label junk food as -1, the others as +1 target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS) pipeline = Pipeline([('vect', TfidfVectorizer()), ('svc', LinearSVC())]) cv_scores = cross_val_score(pipeline, data, target, cv=3) assert_array_equal(cv_scores, [1., 1., 1.]) def test_vectorizer_unicode(): # tests that the count vectorizer works with cyrillic. document = ( "\xd0\x9c\xd0\xb0\xd1\x88\xd0\xb8\xd0\xbd\xd0\xbd\xd0\xbe\xd0" "\xb5 \xd0\xbe\xd0\xb1\xd1\x83\xd1\x87\xd0\xb5\xd0\xbd\xd0\xb8\xd0" "\xb5 \xe2\x80\x94 \xd0\xbe\xd0\xb1\xd1\x88\xd0\xb8\xd1\x80\xd0\xbd" "\xd1\x8b\xd0\xb9 \xd0\xbf\xd0\xbe\xd0\xb4\xd1\x80\xd0\xb0\xd0\xb7" "\xd0\xb4\xd0\xb5\xd0\xbb \xd0\xb8\xd1\x81\xd0\xba\xd1\x83\xd1\x81" "\xd1\x81\xd1\x82\xd0\xb2\xd0\xb5\xd0\xbd\xd0\xbd\xd0\xbe\xd0\xb3" "\xd0\xbe \xd0\xb8\xd0\xbd\xd1\x82\xd0\xb5\xd0\xbb\xd0\xbb\xd0" "\xb5\xd0\xba\xd1\x82\xd0\xb0, \xd0\xb8\xd0\xb7\xd1\x83\xd1\x87" "\xd0\xb0\xd1\x8e\xd1\x89\xd0\xb8\xd0\xb9 \xd0\xbc\xd0\xb5\xd1\x82" "\xd0\xbe\xd0\xb4\xd1\x8b \xd0\xbf\xd0\xbe\xd1\x81\xd1\x82\xd1\x80" "\xd0\xbe\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f \xd0\xb0\xd0\xbb\xd0\xb3" "\xd0\xbe\xd1\x80\xd0\xb8\xd1\x82\xd0\xbc\xd0\xbe\xd0\xb2, \xd1\x81" "\xd0\xbf\xd0\xbe\xd1\x81\xd0\xbe\xd0\xb1\xd0\xbd\xd1\x8b\xd1\x85 " "\xd0\xbe\xd0\xb1\xd1\x83\xd1\x87\xd0\xb0\xd1\x82\xd1\x8c\xd1\x81\xd1" "\x8f.") vect = CountVectorizer() X_counted = vect.fit_transform([document]) assert_equal(X_counted.shape, (1, 15)) vect = HashingVectorizer(norm=None, non_negative=True) X_hashed = vect.transform([document]) assert_equal(X_hashed.shape, (1, 2 ** 20)) # No collisions on such a small dataset assert_equal(X_counted.nnz, X_hashed.nnz) # When norm is None and non_negative, the tokens are counted up to # collisions assert_array_equal(np.sort(X_counted.data), np.sort(X_hashed.data)) def test_tfidf_vectorizer_with_fixed_vocabulary(): # non regression smoke test for inheritance issues vocabulary = ['pizza', 'celeri'] vect = TfidfVectorizer(vocabulary=vocabulary) X_1 = vect.fit_transform(ALL_FOOD_DOCS) X_2 = vect.transform(ALL_FOOD_DOCS) assert_array_almost_equal(X_1.toarray(), X_2.toarray()) assert_true(vect.fixed_vocabulary_) def test_pickling_vectorizer(): instances = [ HashingVectorizer(), HashingVectorizer(norm='l1'), HashingVectorizer(binary=True), HashingVectorizer(ngram_range=(1, 2)), CountVectorizer(), CountVectorizer(preprocessor=strip_tags), CountVectorizer(analyzer=lazy_analyze), CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS), CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS), TfidfVectorizer(), TfidfVectorizer(analyzer=lazy_analyze), TfidfVectorizer().fit(JUNK_FOOD_DOCS), ] for orig in instances: s = pickle.dumps(orig) copy = pickle.loads(s) assert_equal(type(copy), orig.__class__) assert_equal(copy.get_params(), orig.get_params()) assert_array_equal( copy.fit_transform(JUNK_FOOD_DOCS).toarray(), orig.fit_transform(JUNK_FOOD_DOCS).toarray()) def test_countvectorizer_vocab_sets_when_pickling(): # ensure that vocabulary of type set is coerced to a list to # preserve iteration ordering after deserialization rng = np.random.RandomState(0) vocab_words = np.array(['beer', 'burger', 'celeri', 'coke', 'pizza', 'salad', 'sparkling', 'tomato', 'water']) for x in range(0, 100): vocab_set = set(rng.choice(vocab_words, size=5, replace=False)) cv = CountVectorizer(vocabulary=vocab_set) unpickled_cv = pickle.loads(pickle.dumps(cv)) cv.fit(ALL_FOOD_DOCS) unpickled_cv.fit(ALL_FOOD_DOCS) assert_equal(cv.get_feature_names(), unpickled_cv.get_feature_names()) def test_countvectorizer_vocab_dicts_when_pickling(): rng = np.random.RandomState(0) vocab_words = np.array(['beer', 'burger', 'celeri', 'coke', 'pizza', 'salad', 'sparkling', 'tomato', 'water']) for x in range(0, 100): vocab_dict = dict() words = rng.choice(vocab_words, size=5, replace=False) for y in range(0, 5): vocab_dict[words[y]] = y cv = CountVectorizer(vocabulary=vocab_dict) unpickled_cv = pickle.loads(pickle.dumps(cv)) cv.fit(ALL_FOOD_DOCS) unpickled_cv.fit(ALL_FOOD_DOCS) assert_equal(cv.get_feature_names(), unpickled_cv.get_feature_names()) def test_stop_words_removal(): # Ensure that deleting the stop_words_ attribute doesn't affect transform fitted_vectorizers = ( TfidfVectorizer().fit(JUNK_FOOD_DOCS), CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS), CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS) ) for vect in fitted_vectorizers: vect_transform = vect.transform(JUNK_FOOD_DOCS).toarray() vect.stop_words_ = None stop_None_transform = vect.transform(JUNK_FOOD_DOCS).toarray() delattr(vect, 'stop_words_') stop_del_transform = vect.transform(JUNK_FOOD_DOCS).toarray() assert_array_equal(stop_None_transform, vect_transform) assert_array_equal(stop_del_transform, vect_transform) def test_pickling_transformer(): X = CountVectorizer().fit_transform(JUNK_FOOD_DOCS) orig = TfidfTransformer().fit(X) s = pickle.dumps(orig) copy = pickle.loads(s) assert_equal(type(copy), orig.__class__) assert_array_equal( copy.fit_transform(X).toarray(), orig.fit_transform(X).toarray()) def test_non_unique_vocab(): vocab = ['a', 'b', 'c', 'a', 'a'] vect = CountVectorizer(vocabulary=vocab) assert_raises(ValueError, vect.fit, []) def test_hashingvectorizer_nan_in_docs(): # np.nan can appear when using pandas to load text fields from a csv file # with missing values. message = "np.nan is an invalid document, expected byte or unicode string." exception = ValueError def func(): hv = HashingVectorizer() hv.fit_transform(['hello world', np.nan, 'hello hello']) assert_raise_message(exception, message, func) def test_tfidfvectorizer_binary(): # Non-regression test: TfidfVectorizer used to ignore its "binary" param. v = TfidfVectorizer(binary=True, use_idf=False, norm=None) assert_true(v.binary) X = v.fit_transform(['hello world', 'hello hello']).toarray() assert_array_equal(X.ravel(), [1, 1, 1, 0]) X2 = v.transform(['hello world', 'hello hello']).toarray() assert_array_equal(X2.ravel(), [1, 1, 1, 0]) def test_tfidfvectorizer_export_idf(): vect = TfidfVectorizer(use_idf=True) vect.fit(JUNK_FOOD_DOCS) assert_array_almost_equal(vect.idf_, vect._tfidf.idf_) def test_vectorizer_vocab_clone(): vect_vocab = TfidfVectorizer(vocabulary=["the"]) vect_vocab_clone = clone(vect_vocab) vect_vocab.fit(ALL_FOOD_DOCS) vect_vocab_clone.fit(ALL_FOOD_DOCS) assert_equal(vect_vocab_clone.vocabulary_, vect_vocab.vocabulary_) def test_vectorizer_string_object_as_input(): message = ("Iterable over raw text documents expected, " "string object received.") for vec in [CountVectorizer(), TfidfVectorizer(), HashingVectorizer()]: assert_raise_message( ValueError, message, vec.fit_transform, "hello world!") assert_raise_message( ValueError, message, vec.fit, "hello world!") assert_raise_message( ValueError, message, vec.transform, "hello world!")
bsd-3-clause
allinpaybusiness/ACS
allinpay projects/creditscoreMLP/classMLP.py
1
9585
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import sys; import os; sys.path.append("allinpay projects") from creditscore.creditscore import CreditScore import numpy as np import pandas as pd import time from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import KFold from sklearn.feature_selection import VarianceThreshold from sklearn.feature_selection import RFECV from sklearn.feature_selection import SelectFromModel from sklearn.feature_selection import SelectKBest from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPRegressor class CreditScoreMLP(CreditScore): def MLP_trainandtest(self, testsize, cv, feature_sel, varthreshold, activation,solver, alpha, max_iter =1000,nclusters=10, cmethod=None, *hidden_layer_sizes): #分割数据集为训练集和测试集 data_feature = self.data.ix[:, self.data.columns != 'default'] data_target = self.data['default'] X_train, X_test, y_train, y_test = train_test_split(data_feature, data_target, test_size=testsize, random_state=0) #对训练集做变量粗分类和woe转化,并据此对测试集做粗分类和woe转化 X_train, X_test = self.binandwoe_traintest(X_train, y_train, X_test, nclusters, cmethod) #在train中做变量筛选, sklearn.feature_selection中的方法 if feature_sel == "VarianceThreshold": selector = VarianceThreshold(threshold = varthreshold) X_train1 = pd.DataFrame(selector.fit_transform(X_train)) X_train1.columns = X_train.columns[selector.get_support(True)] X_test1 = X_test[X_train1.columns] elif feature_sel == "RFECV": estimator = LogisticRegression() selector = RFECV(estimator, step=1, cv=cv) X_train1 = pd.DataFrame(selector.fit_transform(X_train, y_train)) X_train1.columns = X_train.columns[selector.get_support(True)] X_test1 = X_test[X_train1.columns] elif feature_sel == "SelectFromModel": estimator = LogisticRegression() selector = SelectFromModel(estimator) X_train1 = pd.DataFrame(selector.fit_transform(X_train, y_train)) X_train1.columns = X_train.columns[selector.get_support(True)] X_test1 = X_test[X_train1.columns] elif feature_sel == "SelectKBest": selector = SelectKBest() X_train1 = pd.DataFrame(selector.fit_transform(X_train, y_train)) X_train1.columns = X_train.columns[selector.get_support(True)] X_test1 = X_test[X_train1.columns] else: X_train1, X_test1 = X_train, X_test #训练并预测模型 classifier = MLPClassifier(hidden_layer_sizes=hidden_layer_sizes, activation=activation,solver=solver,alpha=alpha, max_iter =1000) # 使用类,参数全是默认的 #为避免单次神经网络训练不收敛的情况,反复训练10次,最终预测概率为10次的平均值 probability = 0 for i in range(10): #训练模型 classifier.fit(X_train1, y_train) #预测概率 probability += classifier.predict_proba(X_test1)[:,1] probability = probability / 10 predresult = pd.DataFrame({'target' : y_test, 'probability' : probability}) return predresult def MLP_trainandtest_kfold(self, nsplit, cv, feature_sel, varthreshold, activation,solver, alpha, max_iter =1000,nclusters=10, cmethod=None, *hidden_layer_sizes): data_feature = self.data.ix[:, self.data.columns != 'default'] data_target = self.data['default'] #将数据集分割成k个分段分别进行训练和测试,对每个分段,该分段为测试集,其余数据为训练集 kf = KFold(n_splits=nsplit, shuffle=True) predresult = pd.DataFrame() for train_index, test_index in kf.split(data_feature): X_train, X_test = data_feature.iloc[train_index, ], data_feature.iloc[test_index, ] y_train, y_test = data_target.iloc[train_index, ], data_target.iloc[test_index, ] #如果随机抽样造成train或者test中只有一个分类,跳过此次预测 if (len(y_train.unique()) == 1) or (len(y_test.unique()) == 1): continue #对训练集做变量粗分类和woe转化,并据此对测试集做粗分类和woe转化 X_train, X_test = self.binandwoe_traintest(X_train, y_train, X_test, nclusters, cmethod) #在train中做变量筛选, sklearn.feature_selection中的方法 if feature_sel == "VarianceThreshold": selector = VarianceThreshold(threshold = varthreshold) X_train1 = pd.DataFrame(selector.fit_transform(X_train)) X_train1.columns = X_train.columns[selector.get_support(True)] X_test1 = X_test[X_train1.columns] elif feature_sel == "RFECV": estimator = LogisticRegression() selector = RFECV(estimator, step=1, cv=cv) X_train1 = pd.DataFrame(selector.fit_transform(X_train, y_train)) X_train1.columns = X_train.columns[selector.get_support(True)] X_test1 = X_test[X_train1.columns] elif feature_sel == "SelectFromModel": estimator = LogisticRegression() selector = SelectFromModel(estimator) X_train1 = pd.DataFrame(selector.fit_transform(X_train, y_train)) X_train1.columns = X_train.columns[selector.get_support(True)] X_test1 = X_test[X_train1.columns] elif feature_sel == "SelectKBest": selector = SelectKBest() X_train1 = pd.DataFrame(selector.fit_transform(X_train, y_train)) X_train1.columns = X_train.columns[selector.get_support(True)] X_test1 = X_test[X_train1.columns] else: X_train1, X_test1 = X_train, X_test #训练并预测模型 classifier = MLPClassifier(hidden_layer_sizes=hidden_layer_sizes, activation=activation,solver=solver, alpha=alpha,max_iter =max_iter) # 使用类,参数全是默认的 #为避免单次神经网络训练不收敛的情况,反复训练10次,最终预测概率为10次的平均值 probability = 0 for i in range(10): #训练模型 classifier.fit(X_train1, y_train) #预测概率 probability += classifier.predict_proba(X_test1)[:,1] probability = probability / 10 temp = pd.DataFrame({'target' : y_test, 'probability' : probability}) predresult = pd.concat([predresult, temp], ignore_index = True) return predresult def loopMLP_trainandtest(self, testsize, cv, feature_sel, varthreshold, activation, solver,alpha, max_iter =1000, nclusters=10, cmethod=None): df = pd.DataFrame() for i in range (3 , 101,3):#对神经元做循环 hidden_layer_sizes = (i,) #分割train test做测试 predresult = self.MLP_trainandtest(testsize, cv, feature_sel, varthreshold, activation,solver ,alpha, max_iter,nclusters, cmethod, *hidden_layer_sizes) #评估并保存测试结果 auc, ks, metrics_p = self.loopmodelmetrics_scores(predresult) temp = pd.DataFrame({'hidden_first_layer' : i, 'auc_value' : auc ,'ks_value' :ks ,'p0=0.5' :metrics_p['accuracy'][5]} ,index=[0]) df = pd.concat([df, temp], ignore_index = False) print('num %s complete' %i) time0 = time.strftime('%Y%m%d%H%M%S',time.localtime(time.time())) exist = os.path.exists('d:/ACS_CSVS') if exist: df.to_csv('d:/ACS_CSVS/'+time0+'_MLP.csv',index=False,sep=',') else: os.makedirs('d:/ACS_CSVS/') df.to_csv('d:/ACS_CSVS/'+time0+'_MLP.csv',index=False,sep=',') def loopMLP_trainandtest_kfold(self, testsize, cv, feature_sel, varthreshold, activation, solver,alpha, max_iter =1000, nclusters=10, cmethod=None): df = pd.DataFrame() for i in range (3 , 101,3):#对神经元做循环 hidden_layer_sizes = (i,) #分割train test做测试 predresult = self.MLP_trainandtest_kfold(testsize, cv, feature_sel, varthreshold, activation,solver ,alpha, max_iter,nclusters, cmethod, *hidden_layer_sizes) #评估并保存测试结果 auc, ks, metrics_p = self.loopmodelmetrics_scores(predresult) temp = pd.DataFrame({'hidden_first_layer' : i, 'auc_value' : auc ,'ks_value' :ks ,'p0=0.5' :metrics_p['accuracy'][5]} ,index=[0]) df = pd.concat([df, temp], ignore_index = False) print('num %s complete' %i) time0 = time.strftime('%Y%m%d%H%M%S',time.localtime(time.time())) exist = os.path.exists('d:/ACS_CSVS') if exist: df.to_csv('d:/ACS_CSVS/'+time0+'_MLP.csv',index=False,sep=',') else: os.makedirs('d:/ACS_CSVS/') df.to_csv('d:/ACS_CSVS/'+time0+'_MLP.csv',index=False,sep=',')
apache-2.0
surchs/brainbox
visu/base.py
1
8414
__author__ = 'surchs' import sys import numpy as np from matplotlib import gridspec from nilearn import plotting as nlp from matplotlib import pyplot as plt from matplotlib import colors as mpc def add_subplot_axes(ax, rect, axisbg='w'): fig = plt.gcf() box = ax.get_position() width = box.width height = box.height inax_position = ax.transAxes.transform(rect[0:2]) trans_figure = fig.transFigure.inverted() infig_position = trans_figure.transform(inax_position) x = infig_position[0] y = infig_position[1] width *= rect[2] height *= rect[3] subax = fig.add_axes([x, y, width, height], axisbg=axisbg) return subax def add_four_grid(ax, dist=0.05, ticks=False, border=False, titles=None): """ Function that creates a symmetric four grid inside a subplot :param ax: Axis handle of parent subplot :param dist: Distance between neighbouring fields of the grd :param ticks: True if ticks shall be visible :param border: True if border shall be visible :param titles: Iterable with length 4 in this order: 0) top left 1) bottom left 2) top right 3) bottom right If set, distance the fields will be made narrower to accommodate the title :return: Axis handles for the four subfields in this order: 0) top left 1) bottom left 2) top right 3) bottom right """ # See if titles are provided for all subplots if titles and len(titles) == 4: title = True else: title = False # Make left top plot lt = add_subplot_axes(ax, [0, 0.5+dist/2, 0.5-dist/(2-title), 0.5-dist/(2-title)]) if title: lt.set_title(titles[0]) if not ticks: lt.set_xticks([]) lt.set_yticks([]) if not border: lt.spines["top"].set_visible(False) lt.spines["right"].set_visible(False) lt.spines["left"].set_visible(False) lt.spines["bottom"].set_visible(False) # Make left bottom plot lb = add_subplot_axes(ax, [0, 0, 0.5-dist/(2-title), 0.5-dist/(2-title)]) if title: lb.set_title(titles[1]) if not ticks: lb.set_xticks([]) lb.set_yticks([]) if not border: lb.spines["top"].set_visible(False) lb.spines["right"].set_visible(False) lb.spines["left"].set_visible(False) lb.spines["bottom"].set_visible(False) # Make right top plot rt = add_subplot_axes(ax, [0.5+dist/2, 0.5+dist/2, 0.5-dist/(2-title), 0.5-dist/(2-title)]) if title: rt.set_title(titles[2]) if not border: rt.set_xticks([]) rt.set_yticks([]) if not border: rt.spines["top"].set_visible(False) rt.spines["right"].set_visible(False) rt.spines["left"].set_visible(False) rt.spines["bottom"].set_visible(False) # Make right bottom plot rb = add_subplot_axes(ax, [0.5+dist/2, 0, 0.5-dist/(2-title), 0.5-dist/(2-title)]) if title: rb.set_title(titles[3]) if not ticks: rb.set_xticks([]) rb.set_yticks([]) if not border: rb.spines["top"].set_visible(False) rb.spines["right"].set_visible(False) rb.spines["left"].set_visible(False) rb.spines["bottom"].set_visible(False) return lt, lb, rt, rb def make_montage(vol, axis='coronal', x_step=5, y_step=6): """ Makes a montage of a 3D volume """ n_steps = x_step * y_step if axis == 'coronal': it_dim = vol.shape[1] x_dim = vol.shape[0] y_dim = vol.shape[2] elif axis == 'axial': it_dim = vol.shape[0] x_dim = vol.shape[1] y_dim = vol.shape[2] vis_mat = np.zeros((x_step*x_dim, y_step*y_dim)) it_slc = np.linspace(0, it_dim-1, n_steps) itc = 0 for y in np.arange(y_step): for x in np.arange(x_step): slc_ind = it_slc[itc] get_slc = np.floor(slc_ind) if axis == 'coronal': slc = vol[:, get_slc, :] elif axis == 'axial': slc = vol[get_slc, ...] vis_mat[x_dim * x:x_dim * (x + 1), y_dim * y:y_dim * (y + 1)] = slc itc += 1 out_mat = np.fliplr(np.rot90(vis_mat)) return out_mat def montage(img, thr=0, mode='coronal', rows=5, cloumns=6, fsz=(10, 20)): """ Make a montage using nilearn for the background The output figure will be 5 slices wide and 6 slices deep :param img: nilearn image containing the data :param thr: threshold for the image :param mode: view mode. saggital, coronal, axial :param rows: number of rows in the figure :param cloumns: number of columns in the figure :param fsz: size of the figure :return fig: figure handle for saving or whatnot """ # Hardwired view range sag_rng = [-65, 65] cor_rng = [-100, 65] axi_rng = [-71, 85] # Get the number of slices n_slices = rows * cloumns if mode == 'coronal': # Get the slice indices view_range = np.floor(np.linspace(cor_rng[0], cor_rng[1], n_slices)) view_mode = 'y' if mode == 'axial': # Get the slice indices view_range = np.floor(np.linspace(axi_rng[0], axi_rng[1], n_slices)) view_mode = 'z' if mode == 'saggital': # Get the slice indices view_range = np.floor(np.linspace(sag_rng[0], sag_rng[1], n_slices)) view_mode = 'x' # Prepare the figure fig = plt.figure(figsize=fsz) gs = gridspec.GridSpec(cloumns, 1, hspace=0, wspace=0) # Loop through the rows of the image for row_id in range(cloumns): # Create the axis to show ax = fig.add_subplot(gs[row_id, 0]) # Get the slices in the column direction row_range = view_range[row_id*rows:(row_id+1)*rows] # Display the thing nlp.plot_stat_map(img, cut_coords=row_range, display_mode=view_mode, threshold=thr, axes=ax, black_bg=True) return fig def make_cmap(colors, position=None, bit=False): """ make_cmap takes a list of tuples which contain RGB values. The RGB values may either be in 8-bit [0 to 255] (in which bit must be set to True when called) or arithmetic [0 to 1] (default). make_cmap returns a cmap with equally spaced colors. Arrange your tuples so that the first color is the lowest value for the colorbar and the last is the highest. position contains values from 0 to 1 to dictate the location of each color. """ bit_rgb = np.linspace(0,1,256) if position: position = np.linspace(0,1,len(colors)) else: if len(position) != len(colors): sys.exit("position length must be the same as colors") elif position[0] != 0 or position[-1] != 1: sys.exit("position must start with 0 and end with 1") if bit: for i in range(len(colors)): colors[i] = (bit_rgb[colors[i][0]], bit_rgb[colors[i][1]], bit_rgb[colors[i][2]]) cdict = {'red':[], 'green':[], 'blue':[]} for pos, color in zip(position, colors): cdict['red'].append((pos, color[0], color[0])) cdict['green'].append((pos, color[1], color[1])) cdict['blue'].append((pos, color[2], color[2])) cmap = mpc.LinearSegmentedColormap('my_colormap',cdict,256) return cmap def hot_cold(): """ This generates a niak-like colormap of hot cold :return: """ # Define a new colormap cdict = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)), 'green': ((0.0, 1.0, 1.0), (0.25, 0.0, 0.0), (0.5, 0.0, 0.0), (0.75, 0.0, 0.0), (1.0, 1.0, 1.0)), 'blue': ((0.0, 1.0, 1.0), (0.25, 1.0, 1.0), (0.5, 0.0, 0.0), (1.0, 0.0, 0.0)) } hotcold = mpc.LinearSegmentedColormap('hotcold', cdict) return hotcold
mit
rhiever/bokeh
sphinx/source/docs/tutorials/exercises/unemployment.py
23
2160
import numpy as np from bokeh.models import HoverTool from bokeh.plotting import ColumnDataSource, figure, output_file, show from bokeh.sampledata.unemployment1948 import data # Read in the data with pandas. Convert the year column to string data['Year'] = [str(x) for x in data['Year']] years = list(data['Year']) months = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"] data = data.set_index('Year') # this is the colormap from the original plot colors = [ "#75968f", "#a5bab7", "#c9d9d3", "#e2e2e2", "#dfccce", "#ddb7b1", "#cc7878", "#933b41", "#550b1d" ] # Set up the data for plotting. We will need to have values for every # pair of year/month names. Map the rate to a color. month = [] year = [] color = [] rate = [] for y in years: for m in months: month.append(m) year.append(y) monthly_rate = data[m][y] rate.append(monthly_rate) color.append(colors[min(int(monthly_rate)-2, 8)]) # EXERCISE: create a `ColumnDataSource` with columns: month, year, color, rate source = ColumnDataSource( data=dict( month=month, year=year, color=color, rate=rate, ) ) # EXERCISE: output to static HTML file # create a new figure p = figure(title="US Unemployment (1948 - 2013)", tools="resize,hover", x_range=years, y_range=list(reversed(months)), plot_width=900, plot_height=400, x_axis_location="above") # EXERCISE: use the `rect renderer with the following attributes: # - x_range is years, y_range is months (reversed) # - fill color for the rectangles is the 'color' field # - line_color for the rectangles is None # - tools are resize and hover tools # - add a nice title, and set the plot_width and plot_height # EXERCISE: use p.grid, p.axis, etc. to style the plot. Some suggestions: # - remove the axis and grid lines # - remove the major ticks # - make the tick labels smaller # - set the x-axis orientation to vertical, or angled # EXERCISE: configure the hover tool to display the month, year and rate hover = p.select(dict(type=HoverTool)) hover.tooltips = [ # fill me in ] show(p)
bsd-3-clause
yousrabk/mne-python
mne/viz/tests/test_misc.py
17
4858
# Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # Eric Larson <[email protected]> # Cathy Nangini <[email protected]> # Mainak Jas <[email protected]> # # License: Simplified BSD import os.path as op import warnings import numpy as np from numpy.testing import assert_raises from mne import (io, read_events, read_cov, read_source_spaces, read_evokeds, read_dipole, SourceEstimate) from mne.datasets import testing from mne.minimum_norm import read_inverse_operator from mne.viz import (plot_bem, plot_events, plot_source_spectrogram, plot_snr_estimate) from mne.utils import requires_nibabel, run_tests_if_main, slow_test # Set our plotters to test mode import matplotlib matplotlib.use('Agg') # for testing don't use X server warnings.simplefilter('always') # enable b/c these tests throw warnings data_path = testing.data_path(download=False) subjects_dir = op.join(data_path, 'subjects') inv_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-4-meg-inv.fif') evoked_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif') dip_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_set1.dip') base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(base_dir, 'test_raw.fif') cov_fname = op.join(base_dir, 'test-cov.fif') event_fname = op.join(base_dir, 'test-eve.fif') def _get_raw(): return io.Raw(raw_fname, preload=True) def _get_events(): return read_events(event_fname) def test_plot_cov(): """Test plotting of covariances """ raw = _get_raw() cov = read_cov(cov_fname) fig1, fig2 = cov.plot(raw.info, proj=True, exclude=raw.ch_names[6:]) @testing.requires_testing_data @requires_nibabel() def test_plot_bem(): """Test plotting of BEM contours """ assert_raises(IOError, plot_bem, subject='bad-subject', subjects_dir=subjects_dir) assert_raises(ValueError, plot_bem, subject='sample', subjects_dir=subjects_dir, orientation='bad-ori') plot_bem(subject='sample', subjects_dir=subjects_dir, orientation='sagittal', slices=[25, 50]) def test_plot_events(): """Test plotting events """ event_labels = {'aud_l': 1, 'aud_r': 2, 'vis_l': 3, 'vis_r': 4} color = {1: 'green', 2: 'yellow', 3: 'red', 4: 'c'} raw = _get_raw() events = _get_events() plot_events(events, raw.info['sfreq'], raw.first_samp) plot_events(events, raw.info['sfreq'], raw.first_samp, equal_spacing=False) # Test plotting events without sfreq plot_events(events, first_samp=raw.first_samp) warnings.simplefilter('always', UserWarning) with warnings.catch_warnings(record=True): plot_events(events, raw.info['sfreq'], raw.first_samp, event_id=event_labels) plot_events(events, raw.info['sfreq'], raw.first_samp, color=color) plot_events(events, raw.info['sfreq'], raw.first_samp, event_id=event_labels, color=color) assert_raises(ValueError, plot_events, events, raw.info['sfreq'], raw.first_samp, event_id={'aud_l': 1}, color=color) assert_raises(ValueError, plot_events, events, raw.info['sfreq'], raw.first_samp, event_id={'aud_l': 111}, color=color) @testing.requires_testing_data def test_plot_source_spectrogram(): """Test plotting of source spectrogram """ sample_src = read_source_spaces(op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif')) # dense version vertices = [s['vertno'] for s in sample_src] n_times = 5 n_verts = sum(len(v) for v in vertices) stc_data = np.ones((n_verts, n_times)) stc = SourceEstimate(stc_data, vertices, 1, 1) plot_source_spectrogram([stc, stc], [[1, 2], [3, 4]]) assert_raises(ValueError, plot_source_spectrogram, [], []) assert_raises(ValueError, plot_source_spectrogram, [stc, stc], [[1, 2], [3, 4]], tmin=0) assert_raises(ValueError, plot_source_spectrogram, [stc, stc], [[1, 2], [3, 4]], tmax=7) @slow_test @testing.requires_testing_data def test_plot_snr(): """Test plotting SNR estimate """ inv = read_inverse_operator(inv_fname) evoked = read_evokeds(evoked_fname, baseline=(None, 0))[0] plot_snr_estimate(evoked, inv) @testing.requires_testing_data def test_plot_dipole_amplitudes(): """Test plotting dipole amplitudes """ dipoles = read_dipole(dip_fname) dipoles.plot_amplitudes(show=False) run_tests_if_main()
bsd-3-clause
CVML/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
230
2649
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn import cross_validation np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_validation.cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
tipsybear/actors-simulation
tests/test_viz.py
1
1179
# test_viz # Vizualization tests # # Author: Benjamin Bengfort <[email protected]> # Created: Sun Dec 06 20:45:32 2015 -0500 # # Copyright (C) 2015 University of Maryland # For license information, see LICENSE.txt # # ID: test_viz.py [] [email protected] $ """ Vizualization tests """ ########################################################################## ## Imports ########################################################################## import unittest import gvas.viz from peak.util.imports import lazyModule ########################################################################## ## Vizualization and Configuration Tests ########################################################################## class VizTests(unittest.TestCase): def test_lazyimport(self): """ Test that the viz module is lazily imported. """ self.assertEqual(type(gvas.viz.sns), type(lazyModule('seaborn'))) self.assertEqual(type(gvas.viz.plt), type(lazyModule('matplotlib.pyplot'))) self.assertEqual(type(gvas.viz.np), type(lazyModule('numpy'))) self.assertEqual(type(gvas.viz.pd), type(lazyModule('pandas')))
mit
ky822/scikit-learn
examples/decomposition/plot_kernel_pca.py
353
2011
""" ========== Kernel PCA ========== This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable. """ print(__doc__) # Authors: Mathieu Blondel # Andreas Mueller # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles np.random.seed(0) X, y = make_circles(n_samples=400, factor=.3, noise=.05) kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) X_kpca = kpca.fit_transform(X) X_back = kpca.inverse_transform(X_kpca) pca = PCA() X_pca = pca.fit_transform(X) # Plot results plt.figure() plt.subplot(2, 2, 1, aspect='equal') plt.title("Original space") reds = y == 0 blues = y == 1 plt.plot(X[reds, 0], X[reds, 1], "ro") plt.plot(X[blues, 0], X[blues, 1], "bo") plt.xlabel("$x_1$") plt.ylabel("$x_2$") X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50)) X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T # projection on the first principal component (in the phi space) Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') plt.subplot(2, 2, 2, aspect='equal') plt.plot(X_pca[reds, 0], X_pca[reds, 1], "ro") plt.plot(X_pca[blues, 0], X_pca[blues, 1], "bo") plt.title("Projection by PCA") plt.xlabel("1st principal component") plt.ylabel("2nd component") plt.subplot(2, 2, 3, aspect='equal') plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro") plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo") plt.title("Projection by KPCA") plt.xlabel("1st principal component in space induced by $\phi$") plt.ylabel("2nd component") plt.subplot(2, 2, 4, aspect='equal') plt.plot(X_back[reds, 0], X_back[reds, 1], "ro") plt.plot(X_back[blues, 0], X_back[blues, 1], "bo") plt.title("Original space after inverse transform") plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35) plt.show()
bsd-3-clause
DSLituiev/scikit-learn
examples/plot_johnson_lindenstrauss_bound.py
8
7473
r""" ===================================================================== The Johnson-Lindenstrauss bound for embedding with random projections ===================================================================== The `Johnson-Lindenstrauss lemma`_ states that any high dimensional dataset can be randomly projected into a lower dimensional Euclidean space while controlling the distortion in the pairwise distances. .. _`Johnson-Lindenstrauss lemma`: http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma Theoretical bounds ================== The distortion introduced by a random projection `p` is asserted by the fact that `p` is defining an eps-embedding with good probability as defined by: .. math:: (1 - eps) \|u - v\|^2 < \|p(u) - p(v)\|^2 < (1 + eps) \|u - v\|^2 Where u and v are any rows taken from a dataset of shape [n_samples, n_features] and p is a projection by a random Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas matrix). The minimum number of components to guarantees the eps-embedding is given by: .. math:: n\_components >= 4 log(n\_samples) / (eps^2 / 2 - eps^3 / 3) The first plot shows that with an increasing number of samples ``n_samples``, the minimal number of dimensions ``n_components`` increased logarithmically in order to guarantee an ``eps``-embedding. The second plot shows that an increase of the admissible distortion ``eps`` allows to reduce drastically the minimal number of dimensions ``n_components`` for a given number of samples ``n_samples`` Empirical validation ==================== We validate the above bounds on the digits dataset or on the 20 newsgroups text document (TF-IDF word frequencies) dataset: - for the digits dataset, some 8x8 gray level pixels data for 500 handwritten digits pictures are randomly projected to spaces for various larger number of dimensions ``n_components``. - for the 20 newsgroups dataset some 500 documents with 100k features in total are projected using a sparse random matrix to smaller euclidean spaces with various values for the target number of dimensions ``n_components``. The default dataset is the digits dataset. To run the example on the twenty newsgroups dataset, pass the --twenty-newsgroups command line argument to this script. For each value of ``n_components``, we plot: - 2D distribution of sample pairs with pairwise distances in original and projected spaces as x and y axis respectively. - 1D histogram of the ratio of those distances (projected / original). We can see that for low values of ``n_components`` the distribution is wide with many distorted pairs and a skewed distribution (due to the hard limit of zero ratio on the left as distances are always positives) while for larger values of n_components the distortion is controlled and the distances are well preserved by the random projection. Remarks ======= According to the JL lemma, projecting 500 samples without too much distortion will require at least several thousands dimensions, irrespective of the number of features of the original dataset. Hence using random projections on the digits dataset which only has 64 features in the input space does not make sense: it does not allow for dimensionality reduction in this case. On the twenty newsgroups on the other hand the dimensionality can be decreased from 56436 down to 10000 while reasonably preserving pairwise distances. """ print(__doc__) import sys from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.random_projection import johnson_lindenstrauss_min_dim from sklearn.random_projection import SparseRandomProjection from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.datasets import load_digits from sklearn.metrics.pairwise import euclidean_distances # Part 1: plot the theoretical dependency between n_components_min and # n_samples # range of admissible distortions eps_range = np.linspace(0.1, 0.99, 5) colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range))) # range of number of samples (observation) to embed n_samples_range = np.logspace(1, 9, 9) plt.figure() for eps, color in zip(eps_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps) plt.loglog(n_samples_range, min_n_components, color=color) plt.legend(["eps = %0.1f" % eps for eps in eps_range], loc="lower right") plt.xlabel("Number of observations to eps-embed") plt.ylabel("Minimum number of dimensions") plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components") # range of admissible distortions eps_range = np.linspace(0.01, 0.99, 100) # range of number of samples (observation) to embed n_samples_range = np.logspace(2, 6, 5) colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range))) plt.figure() for n_samples, color in zip(n_samples_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range) plt.semilogy(eps_range, min_n_components, color=color) plt.legend(["n_samples = %d" % n for n in n_samples_range], loc="upper right") plt.xlabel("Distortion eps") plt.ylabel("Minimum number of dimensions") plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps") # Part 2: perform sparse random projection of some digits images which are # quite low dimensional and dense or documents of the 20 newsgroups dataset # which is both high dimensional and sparse if '--twenty-newsgroups' in sys.argv: # Need an internet connection hence not enabled by default data = fetch_20newsgroups_vectorized().data[:500] else: data = load_digits().data[:500] n_samples, n_features = data.shape print("Embedding %d samples with dim %d using various random projections" % (n_samples, n_features)) n_components_range = np.array([300, 1000, 10000]) dists = euclidean_distances(data, squared=True).ravel() # select only non-identical samples pairs nonzero = dists != 0 dists = dists[nonzero] for n_components in n_components_range: t0 = time() rp = SparseRandomProjection(n_components=n_components) projected_data = rp.fit_transform(data) print("Projected %d samples from %d to %d in %0.3fs" % (n_samples, n_features, n_components, time() - t0)) if hasattr(rp, 'components_'): n_bytes = rp.components_.data.nbytes n_bytes += rp.components_.indices.nbytes print("Random matrix with size: %0.3fMB" % (n_bytes / 1e6)) projected_dists = euclidean_distances( projected_data, squared=True).ravel()[nonzero] plt.figure() plt.hexbin(dists, projected_dists, gridsize=100, cmap=plt.cm.PuBu) plt.xlabel("Pairwise squared distances in original space") plt.ylabel("Pairwise squared distances in projected space") plt.title("Pairwise distances distribution for n_components=%d" % n_components) cb = plt.colorbar() cb.set_label('Sample pairs counts') rates = projected_dists / dists print("Mean distances rate: %0.2f (%0.2f)" % (np.mean(rates), np.std(rates))) plt.figure() plt.hist(rates, bins=50, normed=True, range=(0., 2.)) plt.xlabel("Squared distances rate: projected / original") plt.ylabel("Distribution of samples pairs") plt.title("Histogram of pairwise distance rates for n_components=%d" % n_components) # TODO: compute the expected value of eps and add them to the previous plot # as vertical lines / region plt.show()
bsd-3-clause
bigdataelephants/scikit-learn
sklearn/datasets/tests/test_lfw.py
50
6849
"""This test for the LFW require medium-size data dowloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np from sklearn.externals import six try: try: from scipy.misc import imsave except ImportError: from scipy.misc.pilutil import imsave except ImportError: imsave = None from sklearn.datasets import load_lfw_pairs from sklearn.datasets import load_lfw_people from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import raises SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, 'lfw_home') FAKE_NAMES = [ 'Abdelatif_Smith', 'Abhati_Kepler', 'Camara_Alvaro', 'Chen_Dupont', 'John_Lee', 'Lin_Bauman', 'Onur_Lopez', ] def setup_module(): """Test fixture run once and common to all tests of this module""" if imsave is None: raise SkipTest("PIL not installed.") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, 'lfw_funneled', name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + '_%04d.jpg' % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) try: imsave(file_path, uniface) except ImportError: raise SkipTest("PIL not installed") # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, 'lfw_funneled', '.test.swp'), 'wb') as f: f.write(six.b('Text file to be ignored by the dataset loader.')) # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, 'pairsDevTrain.txt'), 'wb') as f: f.write(six.b("10\n")) more_than_two = [name for name, count in six.iteritems(counts) if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(six.b('%s\t%d\t%d\n' % (name, first, second))) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write(six.b('%s\t%d\t%s\t%d\n' % (first_name, first_index, second_name, second_index))) with open(os.path.join(LFW_HOME, 'pairsDevTest.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) with open(os.path.join(LFW_HOME, 'pairs.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) @raises(IOError) def test_load_empty_lfw_people(): load_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA) def test_load_fake_lfw_people(): lfw_people = load_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = load_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) @raises(ValueError) def test_load_fake_lfw_people_too_restrictive(): load_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100) @raises(IOError) def test_load_empty_lfw_pairs(): load_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA) def test_load_fake_lfw_pairs(): lfw_pairs_train = load_lfw_pairs(data_home=SCIKIT_LEARN_DATA) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = load_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True) assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
bsd-3-clause
DESHRAJ/crowdsource-platform
crowdsourcing/models.py
4
22804
from django.contrib.auth.models import User from django.db import models from django.utils import timezone from oauth2client.django_orm import FlowField, CredentialsField from crowdsourcing.utils import get_delimiter import pandas as pd import os class RegistrationModel(models.Model): user = models.OneToOneField(User) activation_key = models.CharField(max_length=40) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class PasswordResetModel(models.Model): user = models.OneToOneField(User) reset_key = models.CharField(max_length=40) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Region(models.Model): name = models.CharField(max_length=64, error_messages={'required': 'Please specify the region!', }) code = models.CharField(max_length=16, error_messages={'required': 'Please specify the region code!', }) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Country(models.Model): name = models.CharField(max_length=64, error_messages={'required': 'Please specify the country!', }) code = models.CharField(max_length=8, error_messages={'required': 'Please specify the country code!', }) region = models.ForeignKey(Region) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) def __unicode__(self): return u'%s' % (self.name) class City(models.Model): name = models.CharField(max_length=64, error_messages={'required': 'Please specify the city!', }) country = models.ForeignKey(Country) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) def __unicode__(self): return u'%s' % (self.name) class Address(models.Model): street = models.CharField(max_length=128, error_messages={'required': 'Please specify the street name!', }) country = models.ForeignKey(Country) city = models.ForeignKey(City) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) def __unicode__(self): return u'%s, %s, %s' % (self.street, self.city, self.country) class Role(models.Model): name = models.CharField(max_length=32, unique=True, error_messages={'required': 'Please specify the role name!', 'unique': 'The role %(value)r already exists. Please provide another name!'}) is_active = models.BooleanField(default=True) deleted = models.BooleanField(default=False) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Language(models.Model): name = models.CharField(max_length=64, error_messages={'required': 'Please specify the language!'}) iso_code = models.CharField(max_length=8) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class UserProfile(models.Model): user = models.OneToOneField(User) gender_choices = (('M', 'Male'), ('F', 'Female')) gender = models.CharField(max_length=1, choices=gender_choices) address = models.ForeignKey(Address, null=True) birthday = models.DateField(null=True, error_messages={'invalid': "Please enter a correct date format"}) nationality = models.ManyToManyField(Country, through='UserCountry') verified = models.BooleanField(default=False) picture = models.BinaryField(null=True) friends = models.ManyToManyField('self', through='Friendship', symmetrical=False) roles = models.ManyToManyField(Role, through='UserRole') deleted = models.BooleanField(default=False) languages = models.ManyToManyField(Language, through='UserLanguage') created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class UserCountry(models.Model): country = models.ForeignKey(Country) user = models.ForeignKey(UserProfile) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Skill(models.Model): name = models.CharField(max_length=128, error_messages={'required': "Please enter the skill name!"}) description = models.CharField(max_length=512, error_messages={'required': "Please enter the skill description!"}) verified = models.BooleanField(default=False) parent = models.ForeignKey('self', null=True) deleted = models.BooleanField(default=False) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Worker(models.Model): profile = models.OneToOneField(UserProfile) skills = models.ManyToManyField(Skill, through='WorkerSkill') deleted = models.BooleanField(default=False) alias = models.CharField(max_length=32, error_messages={'required': "Please enter an alias!"}) class WorkerSkill(models.Model): worker = models.ForeignKey(Worker) skill = models.ForeignKey(Skill) level = models.IntegerField(null=True) verified = models.BooleanField(default=False) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Meta: unique_together = ('worker', 'skill') class Requester(models.Model): profile = models.OneToOneField(UserProfile) alias = models.CharField(max_length=32, error_messages={'required': "Please enter an alias!"}) class UserRole(models.Model): user_profile = models.ForeignKey(UserProfile) role = models.ForeignKey(Role) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Friendship(models.Model): user_source = models.ForeignKey(UserProfile, related_name='user_source') user_target = models.ForeignKey(UserProfile, related_name='user_target') deleted = models.BooleanField(default=False) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Category(models.Model): name = models.CharField(max_length=128, error_messages={'required': "Please enter the category name!"}) parent = models.ForeignKey('self', null=True) deleted = models.BooleanField(default=False) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Project(models.Model): name = models.CharField(max_length=128, error_messages={'required': "Please enter the project name!"}) start_date = models.DateTimeField(auto_now_add=True, auto_now=False) end_date = models.DateTimeField(auto_now_add=True, auto_now=False) owner = models.ForeignKey(Requester, related_name='project_owner') description = models.CharField(max_length=1024, default='') collaborators = models.ManyToManyField(Requester, through='ProjectRequester') keywords = models.TextField(null=True) save_to_drive = models.BooleanField(default=False) deleted = models.BooleanField(default=False) categories = models.ManyToManyField(Category, through='ProjectCategory') created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class ProjectRequester(models.Model): """ Tracks the list of requesters that collaborate on a specific project """ requester = models.ForeignKey(Requester) project = models.ForeignKey(Project) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Meta: unique_together = ('requester', 'project') class Template(models.Model): name = models.CharField(max_length=128, error_messages={'required': "Please enter the template name!"}) owner = models.ForeignKey(UserProfile) source_html = models.TextField(default=None, null=True) price = models.FloatField(default=0) share_with_others = models.BooleanField(default=False) deleted = models.BooleanField(default=False) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Module(models.Model): """ aka Milestone This is a group of similar tasks of the same kind. Fields -repetition: number of times a task needs to be performed """ name = models.CharField(max_length=128, error_messages={'required': "Please enter the module name!"}) description = models.TextField(error_messages={'required': "Please enter the module description!"}) owner = models.ForeignKey(Requester) project = models.ForeignKey(Project, related_name='modules') categories = models.ManyToManyField(Category, through='ModuleCategory') keywords = models.TextField(null=True) # TODO: To be refined statuses = ((1, "Created"), (2, 'In Review'), (3, 'In Progress'), (4, 'Completed') ) permission_types = ((1, "Others:Read+Write::Workers:Read+Write"), (2, 'Others:Read::Workers:Read+Write'), (3, 'Others:Read::Workers:Read'), (4, 'Others:None::Workers:Read') ) status = models.IntegerField(choices=statuses, default=1) price = models.FloatField() repetition = models.IntegerField(default=1) module_timeout = models.IntegerField(default=0) has_data_set = models.BooleanField(default=False) data_set_location = models.CharField(max_length=256, default='No data set', null=True) task_time = models.FloatField(default=0) # in minutes deleted = models.BooleanField(default=False) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) template = models.ManyToManyField(Template, through='ModuleTemplate') is_micro = models.BooleanField(default=True) is_prototype = models.BooleanField(default=False) min_rating = models.FloatField(default=0) allow_feedback = models.BooleanField(default=True) feedback_permissions = models.IntegerField(choices=permission_types, default=1) class ModuleCategory(models.Model): module = models.ForeignKey(Module) category = models.ForeignKey(Category) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Meta: unique_together = ('category', 'module') class ProjectCategory(models.Model): project = models.ForeignKey(Project) category = models.ForeignKey(Category) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Meta: unique_together = ('project', 'category') class TemplateItem(models.Model): name = models.CharField(max_length=128, error_messages={'required': "Please enter the name of the template item!"}) template = models.ForeignKey(Template, related_name='template_items') id_string = models.CharField(max_length=128) role = models.CharField(max_length=16) icon = models.CharField(max_length=256, null=True) data_source = models.CharField(max_length=256, null=True) layout = models.CharField(max_length=16, default='column') type = models.CharField(max_length=16) sub_type = models.CharField(max_length=16) values = models.TextField(null=True) position = models.IntegerField() deleted = models.BooleanField(default=False) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Meta: ordering = ['position'] class ModuleTemplate(models.Model): module = models.ForeignKey(Module) template = models.ForeignKey(Template) class TemplateItemProperties(models.Model): template_item = models.ForeignKey(TemplateItem) attribute = models.CharField(max_length=128) operator = models.CharField(max_length=128) value1 = models.CharField(max_length=128) value2 = models.CharField(max_length=128) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Task(models.Model): module = models.ForeignKey(Module, related_name='module_tasks') # TODO: To be refined statuses = ((1, "Created"), (2, 'Accepted'), (3, 'Assigned'), (4, 'Finished') ) status = models.IntegerField(choices=statuses, default=1) data = models.TextField(null=True) deleted = models.BooleanField(default=False) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) price = models.FloatField(default=0) class TaskWorker(models.Model): task = models.ForeignKey(Task, related_name='task_workers') worker = models.ForeignKey(Worker) statuses = ((1, 'In Progress'), (2, 'Submitted'), (3, 'Accepted'), (4, 'Rejected'), (5, 'Returned'), (6, 'Skipped') ) task_status = models.IntegerField(choices=statuses, default=1) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) is_paid = models.BooleanField(default=False) class TaskWorkerResult(models.Model): task_worker = models.ForeignKey(TaskWorker, related_name='task_worker_results') result = models.TextField(null=True) template_item = models.ForeignKey(TemplateItem) # TODO: To be refined statuses = ((1, 'Created'), (2, 'Accepted'), (3, 'Rejected') ) status = models.IntegerField(choices=statuses, default=1) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class WorkerModuleApplication(models.Model): worker = models.ForeignKey(Worker) module = models.ForeignKey(Module) # TODO: To be refined statuses = ((1, "Created"), (2, 'Accepted'), (3, 'Rejected') ) status = models.IntegerField(choices=statuses, default=1) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class ActivityLog(models.Model): """ Track all user's activities: Create, Update and Delete """ activity = models.CharField(max_length=512) author = models.ForeignKey(User) created_timestamp = models.DateTimeField(auto_now_add=False, auto_now=True) class Qualification(models.Model): module = models.ForeignKey(Module) # TODO: To be refined types = ((1, "Strict"), (2, 'Flexible')) type = models.IntegerField(choices=types, default=1) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class QualificationItem(models.Model): qualification = models.ForeignKey(Qualification) attribute = models.CharField(max_length=128) operator = models.CharField(max_length=128) value1 = models.CharField(max_length=128) value2 = models.CharField(max_length=128) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class UserLanguage(models.Model): language = models.ForeignKey(Language) user = models.ForeignKey(UserProfile) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Currency(models.Model): name = models.CharField(max_length=32) iso_code = models.CharField(max_length=8) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class UserPreferences(models.Model): user = models.OneToOneField(User) language = models.ForeignKey(Language) currency = models.ForeignKey(Currency) login_alerts = models.SmallIntegerField(default=0) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class RequesterRanking(models.Model): requester_name = models.CharField(max_length=128) requester_payRank = models.FloatField() requester_fairRank = models.FloatField() requester_speedRank = models.FloatField() requester_communicationRank = models.FloatField() requester_numberofReviews = models.IntegerField(default=0) class ModuleRating(models.Model): worker = models.ForeignKey(Worker) module = models.ForeignKey(Module) value = models.IntegerField() last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Meta: unique_together = ('worker', 'module') class ModuleReview(models.Model): worker = models.ForeignKey(Worker) anonymous = models.BooleanField(default=False) module = models.ForeignKey(Module) comments = models.TextField() last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Meta: unique_together = ('worker', 'module') class FlowModel(models.Model): id = models.OneToOneField(User, primary_key=True) flow = FlowField() class AccountModel(models.Model): name = models.CharField(max_length=128) type = models.CharField(max_length=16) email = models.EmailField() access_token = models.TextField(max_length=2048) root = models.CharField(max_length=256) is_active = models.IntegerField() quota = models.BigIntegerField() used_space = models.BigIntegerField() assigned_space = models.BigIntegerField() status = models.IntegerField(default=quota) owner = models.ForeignKey(User) class CredentialsModel(models.Model): account = models.ForeignKey(AccountModel) credential = CredentialsField() class TemporaryFlowModel(models.Model): user = models.ForeignKey(User) type = models.CharField(max_length=16) email = models.EmailField() class BookmarkedProjects(models.Model): profile = models.ForeignKey(UserProfile) project = models.ForeignKey(Project) class Conversation(models.Model): subject = models.CharField(max_length=64) sender = models.ForeignKey(User, related_name='sender') created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) deleted = models.BooleanField(default=False) recipients = models.ManyToManyField(User, through='ConversationRecipient') class Message(models.Model): conversation = models.ForeignKey(Conversation, related_name='messages') sender = models.ForeignKey(User) body = models.TextField(max_length=8192) deleted = models.BooleanField(default=False) status = models.IntegerField(default=1) # 1:Sent 2:Delivered 3:Read created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class ConversationRecipient(models.Model): recipient = models.ForeignKey(User, related_name='recipients') conversation = models.ForeignKey(Conversation, related_name='conversation_recipient') date_added = models.DateTimeField(auto_now_add=True, auto_now=False) class UserMessage(models.Model): message = models.ForeignKey(Message) user = models.ForeignKey(User) deleted = models.BooleanField(default=False) class RequesterInputFile(models.Model): # TODO will need save files on a server rather than in a temporary folder file = models.FileField(upload_to='tmp/') deleted = models.BooleanField(default=False) def parse_csv(self): delimiter = get_delimiter(self.file.name) df = pd.DataFrame(pd.read_csv(self.file, sep=delimiter)) return df.to_dict(orient='records') def delete(self, *args, **kwargs): root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) path = os.path.join(root, self.file.url[1:]) os.remove(path) super(RequesterInputFile, self).delete(*args, **kwargs) class WorkerRequesterRating(models.Model): origin = models.ForeignKey(UserProfile, related_name='rating_origin') target = models.ForeignKey(UserProfile, related_name='rating_target') module = models.ForeignKey(Module, related_name='rating_module') weight = models.FloatField(default=2) origin_type = models.CharField(max_length=16) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Comment(models.Model): sender = models.ForeignKey(UserProfile, related_name='comment_sender') body = models.TextField(max_length=8192) parent = models.ForeignKey('self', related_name='reply_to', null=True) deleted = models.BooleanField(default=False) created_timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) last_updated = models.DateTimeField(auto_now_add=False, auto_now=True) class Meta: ordering = ['created_timestamp'] class ModuleComment(models.Model): module = models.ForeignKey(Module, related_name='modulecomment_module') comment = models.ForeignKey(Comment, related_name='modulecomment_comment') deleted = models.BooleanField(default=False) class TaskComment(models.Model): task = models.ForeignKey(Task, related_name='taskcomment_task') comment = models.ForeignKey(Comment, related_name='taskcomment_comment') deleted = models.BooleanField(default=False)
mit
elkingtonmcb/scikit-learn
sklearn/feature_selection/tests/test_feature_select.py
103
22297
""" Todo: cross-check the F-value with stats model """ from __future__ import division import itertools import warnings import numpy as np from scipy import stats, sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils import safe_mask from sklearn.datasets.samples_generator import (make_classification, make_regression) from sklearn.feature_selection import (chi2, f_classif, f_oneway, f_regression, SelectPercentile, SelectKBest, SelectFpr, SelectFdr, SelectFwe, GenericUnivariateSelect) ############################################################################## # Test the score functions def test_f_oneway_vs_scipy_stats(): # Test that our f_oneway gives the same result as scipy.stats rng = np.random.RandomState(0) X1 = rng.randn(10, 3) X2 = 1 + rng.randn(10, 3) f, pv = stats.f_oneway(X1, X2) f2, pv2 = f_oneway(X1, X2) assert_true(np.allclose(f, f2)) assert_true(np.allclose(pv, pv2)) def test_f_oneway_ints(): # Smoke test f_oneway on integers: that it does raise casting errors # with recent numpys rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 10)) y = np.arange(10) fint, pint = f_oneway(X, y) # test that is gives the same result as with float f, p = f_oneway(X.astype(np.float), y) assert_array_almost_equal(f, fint, decimal=4) assert_array_almost_equal(p, pint, decimal=4) def test_f_classif(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) F_sparse, pv_sparse = f_classif(sparse.csr_matrix(X), y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression(): # Test whether the F test yields meaningful results # on a simple simulated regression problem X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) F, pv = f_regression(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) # again without centering, compare with sparse F, pv = f_regression(X, y, center=False) F_sparse, pv_sparse = f_regression(sparse.csr_matrix(X), y, center=False) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression_input_dtype(): # Test whether f_regression returns the same value # for any numeric data_type rng = np.random.RandomState(0) X = rng.rand(10, 20) y = np.arange(10).astype(np.int) F1, pv1 = f_regression(X, y) F2, pv2 = f_regression(X, y.astype(np.float)) assert_array_almost_equal(F1, F2, 5) assert_array_almost_equal(pv1, pv2, 5) def test_f_regression_center(): # Test whether f_regression preserves dof according to 'center' argument # We use two centered variates so we have a simple relationship between # F-score with variates centering and F-score without variates centering. # Create toy example X = np.arange(-5, 6).reshape(-1, 1) # X has zero mean n_samples = X.size Y = np.ones(n_samples) Y[::2] *= -1. Y[0] = 0. # have Y mean being null F1, _ = f_regression(X, Y, center=True) F2, _ = f_regression(X, Y, center=False) assert_array_almost_equal(F1 * (n_samples - 1.) / (n_samples - 2.), F2) assert_almost_equal(F2[0], 0.232558139) # value from statsmodels OLS def test_f_classif_multi_class(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) def test_select_percentile_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_percentile_classif_sparse(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) X = sparse.csr_matrix(X) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r.toarray(), X_r2.toarray()) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_r2inv = univariate_filter.inverse_transform(X_r2) assert_true(sparse.issparse(X_r2inv)) support_mask = safe_mask(X_r2inv, support) assert_equal(X_r2inv.shape, X.shape) assert_array_equal(X_r2inv[:, support_mask].toarray(), X_r.toarray()) # Check other columns are empty assert_equal(X_r2inv.getnnz(), X_r.getnnz()) ############################################################################## # Test univariate selection in classification settings def test_select_kbest_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the k best heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=5) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_classif, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_kbest_all(): # Test whether k="all" correctly returns all features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k='all') X_r = univariate_filter.fit(X, y).transform(X) assert_array_equal(X, X_r) def test_select_kbest_zero(): # Test whether k=0 correctly returns no features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=0) univariate_filter.fit(X, y) support = univariate_filter.get_support() gtruth = np.zeros(10, dtype=bool) assert_array_equal(support, gtruth) X_selected = assert_warns_message(UserWarning, 'No features were selected', univariate_filter.transform, X) assert_equal(X_selected.shape, (20, 0)) def test_select_heuristics_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the fdr, fwe and fpr heuristics X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_classif, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_classif, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_almost_equal(support, gtruth) ############################################################################## # Test univariate selection in regression settings def assert_best_scores_kept(score_filter): scores = score_filter.scores_ support = score_filter.get_support() assert_array_equal(np.sort(scores[support]), np.sort(scores)[-support.sum():]) def test_select_percentile_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the percentile heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_2 = X.copy() X_2[:, np.logical_not(support)] = 0 assert_array_equal(X_2, univariate_filter.inverse_transform(X_r)) # Check inverse_transform respects dtype assert_array_equal(X_2.astype(bool), univariate_filter.inverse_transform(X_r.astype(bool))) def test_select_percentile_regression_full(): # Test whether the relative univariate feature selection # selects all features when '100%' is asked. X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=100) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=100).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.ones(20) assert_array_equal(support, gtruth) def test_invalid_percentile(): X, y = make_regression(n_samples=10, n_features=20, n_informative=2, shuffle=False, random_state=0) assert_raises(ValueError, SelectPercentile(percentile=-1).fit, X, y) assert_raises(ValueError, SelectPercentile(percentile=101).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=101).fit, X, y) def test_select_kbest_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the k best heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectKBest(f_regression, k=5) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_heuristics_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fpr, fdr or fwe heuristics X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectFpr(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_regression, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 3) def test_select_fdr_regression(): # Test that fdr heuristic actually has low FDR. def single_fdr(alpha, n_informative, random_state): X, y = make_regression(n_samples=150, n_features=20, n_informative=n_informative, shuffle=False, random_state=random_state, noise=10) with warnings.catch_warnings(record=True): # Warnings can be raised when no features are selected # (low alpha or very noisy data) univariate_filter = SelectFdr(f_regression, alpha=alpha) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fdr', param=alpha).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() num_false_positives = np.sum(support[n_informative:] == 1) num_true_positives = np.sum(support[:n_informative] == 1) if num_false_positives == 0: return 0. false_discovery_rate = (num_false_positives / (num_true_positives + num_false_positives)) return false_discovery_rate for alpha in [0.001, 0.01, 0.1]: for n_informative in [1, 5, 10]: # As per Benjamini-Hochberg, the expected false discovery rate # should be lower than alpha: # FDR = E(FP / (TP + FP)) <= alpha false_discovery_rate = np.mean([single_fdr(alpha, n_informative, random_state) for random_state in range(30)]) assert_greater_equal(alpha, false_discovery_rate) # Make sure that the empirical false discovery rate increases # with alpha: if false_discovery_rate != 0: assert_greater(false_discovery_rate, alpha / 10) def test_select_fwe_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fwe heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fwe', param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 2) def test_selectkbest_tiebreaking(): # Test whether SelectKBest actually selects k features in case of ties. # Prior to 0.11, SelectKBest would return more features than requested. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectKBest(dummy_score, k=1) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectKBest(dummy_score, k=2) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_selectpercentile_tiebreaking(): # Test if SelectPercentile selects the right n_features in case of ties. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectPercentile(dummy_score, percentile=34) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectPercentile(dummy_score, percentile=67) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_tied_pvalues(): # Test whether k-best and percentiles work with tied pvalues from chi2. # chi2 will return the same p-values for the following features, but it # will return different scores. X0 = np.array([[10000, 9999, 9998], [1, 1, 1]]) y = [0, 1] for perm in itertools.permutations((0, 1, 2)): X = X0[:, perm] Xt = SelectKBest(chi2, k=2).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) Xt = SelectPercentile(chi2, percentile=67).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) def test_tied_scores(): # Test for stable sorting in k-best with tied scores. X_train = np.array([[0, 0, 0], [1, 1, 1]]) y_train = [0, 1] for n_features in [1, 2, 3]: sel = SelectKBest(chi2, k=n_features).fit(X_train, y_train) X_test = sel.transform([[0, 1, 2]]) assert_array_equal(X_test[0], np.arange(3)[-n_features:]) def test_nans(): # Assert that SelectKBest and SelectPercentile can handle NaNs. # First feature has zero variance to confuse f_classif (ANOVA) and # make it return a NaN. X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for select in (SelectKBest(f_classif, 2), SelectPercentile(f_classif, percentile=67)): ignore_warnings(select.fit)(X, y) assert_array_equal(select.get_support(indices=True), np.array([1, 2])) def test_score_func_error(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for SelectFeatures in [SelectKBest, SelectPercentile, SelectFwe, SelectFdr, SelectFpr, GenericUnivariateSelect]: assert_raises(TypeError, SelectFeatures(score_func=10).fit, X, y) def test_invalid_k(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] assert_raises(ValueError, SelectKBest(k=-1).fit, X, y) assert_raises(ValueError, SelectKBest(k=4).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=4).fit, X, y) def test_f_classif_constant_feature(): # Test that f_classif warns if a feature is constant throughout. X, y = make_classification(n_samples=10, n_features=5) X[:, 0] = 2.0 assert_warns(UserWarning, f_classif, X, y) def test_no_feature_selected(): rng = np.random.RandomState(0) # Generate random uncorrelated data: a strict univariate test should # rejects all the features X = rng.rand(40, 10) y = rng.randint(0, 4, size=40) strict_selectors = [ SelectFwe(alpha=0.01).fit(X, y), SelectFdr(alpha=0.01).fit(X, y), SelectFpr(alpha=0.01).fit(X, y), SelectPercentile(percentile=0).fit(X, y), SelectKBest(k=0).fit(X, y), ] for selector in strict_selectors: assert_array_equal(selector.get_support(), np.zeros(10)) X_selected = assert_warns_message( UserWarning, 'No features were selected', selector.transform, X) assert_equal(X_selected.shape, (40, 0))
bsd-3-clause
georgid/sms-tools
lectures/5-Sinusoidal-model/plots-code/sine-analysis-synthesis.py
2
1538
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris import sys, os, functools, time from scipy.fftpack import fft, ifft, fftshift sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/oboe-A4.wav') M = 601 w = np.blackman(M) N = 1024 hN = N/2 Ns = 512 hNs = Ns/2 pin = 5000 t = -70 x1 = x[pin:pin+w.size] mX, pX = DFT.dftAnal(x1, w, N) ploc = UF.peakDetection(mX, hN, t) iploc, ipmag, ipphase = UF.peakInterp(mX, pX, ploc) freqs = iploc*fs/N Y = UF.genSpecSines(freqs, ipmag, ipphase, Ns, fs) mY = 20*np.log10(abs(Y[:hNs])) pY = np.unwrap(np.angle(Y[:hNs])) y= fftshift(ifft(Y))*sum(blackmanharris(Ns)) plt.figure(1, figsize=(9, 6)) plt.subplot(4,1,1) plt.plot(np.arange(-M/2,M/2), x1, 'b', lw=1.5) plt.axis([-M/2,M/2, min(x1), max(x1)]) plt.title("x (oboe-A4.wav), M = 601") plt.subplot(4,1,2) plt.plot(np.arange(hN), mX, 'r', lw=1.5) plt.plot(iploc, ipmag, marker='x', color='b', linestyle='', markeredgewidth=1.5) plt.axis([0, hN,-90,max(mX)+2]) plt.title("mX + spectral peaks; Blackman, N = 1024") plt.subplot(4,1,3) plt.plot(np.arange(hNs), mY, 'r', lw=1.5) plt.axis([0, hNs,-90,max(mY)+2]) plt.title("mY; Blackman-Harris; Ns = 512") plt.subplot(4,1,4) plt.plot(np.arange(Ns), y, 'b', lw=1.5) plt.axis([0, Ns,min(y),max(y)]) plt.title("y; Ns = 512") plt.tight_layout() plt.savefig('sine-analysis-synthesis.png') plt.show()
agpl-3.0
thaole16/Boids
boids/boids.py
1
4866
""" A refactored implementation of Boids from a deliberately bad implementation of [Boids](http://dl.acm.org/citation.cfm?doid=37401.37406): an exercise for class. """ from matplotlib import pyplot as plt from matplotlib import animation import numpy as np class Boids(object): def __init__(self, boid_count=50, x_positions=[-450, 50.0], y_positions=[300.0, 600.0], x_velocities=[0, 10.0], y_velocities=[-20.0, 20.0], move_to_middle_strength=0.01, alert_distance=100, formation_flying_distance=10000, formation_flying_strength=0.125): self.boid_count = boid_count self.move_to_middle_strength = move_to_middle_strength self.alert_distance = alert_distance self.formation_flying_distance = formation_flying_distance self.formation_flying_strength = formation_flying_strength self.boids_x = np.random.uniform(size=boid_count, *x_positions) self.boids_y = np.random.uniform(size=boid_count, *y_positions) self.positions = np.stack((self.boids_x, self.boids_y)) self.boid_x_velocities = np.random.uniform(size=boid_count, *x_velocities) self.boid_y_velocities = np.random.uniform(size=boid_count, *y_velocities) self.velocities = np.stack((self.boid_x_velocities, self.boid_y_velocities)) self.boids = (self.positions, self.velocities) def fly_towards_the_middle(self, boids, move_to_middle_strength=0.01): (positions, velocities) = boids middle = np.mean(positions, 1) move_to_middle = (middle[:, np.newaxis] - positions) * move_to_middle_strength velocities += move_to_middle def separation(self, coords): separations = np.array(coords)[:, np.newaxis, :] - np.array(coords)[:, :, np.newaxis] separation_distance_squared = separations[0, :, :] ** 2 + separations[1, :, :] ** 2 return separations, separation_distance_squared def fly_away_from_nearby_boids(self, boids, alert_distance=100): (positions, velocities) = boids separations, separation_distance_squared = self.separation(positions) birds_outside_alert = separation_distance_squared > alert_distance close_separations = np.copy(separations) close_separations[0, :, :][birds_outside_alert] = 0 # x positions close_separations[1, :, :][birds_outside_alert] = 0 # y positions velocities += np.sum(close_separations, 1) def match_speed_with_nearby_boids(self, boids, formation_flying_distance=10000, formation_flying_strength=0.125): (positions, velocities) = boids separations, separation_distance_squared = self.separation(positions) birds_outside_formation = separation_distance_squared > formation_flying_distance velocity_difference = velocities[:, np.newaxis, :] - velocities[:, :, np.newaxis] close_formation = np.copy(velocity_difference) close_formation[0, :, :][birds_outside_formation] = 0 close_formation[1, :, :][birds_outside_formation] = 0 velocities += -1 * np.mean(close_formation, 1) * formation_flying_strength def update_boids(self, boids): (positions, velocities) = boids # Fly towards the middle self.fly_towards_the_middle(boids, self.move_to_middle_strength) # Fly away from nearby boids self.fly_away_from_nearby_boids(boids, self.alert_distance) # Try to match speed with nearby boids self.match_speed_with_nearby_boids(boids, self.formation_flying_distance, self.formation_flying_strength) # Update positions positions += velocities def _animate(self, frame): self.update_boids(self.boids) (positions, velocities) = self.boids self.scatter.set_offsets(np.transpose(positions)) def model(self, xlim=(-500, 1500), ylim=(-500, 1500), frames=50, interval=50, savefile=None): colors = np.random.rand(self.boid_count) boidsize = np.pi * (2 * np.random.rand(self.boid_count) + 2) ** 2 figure = plt.figure() axes = plt.axes(xlim=xlim, ylim=ylim) self.scatter = axes.scatter(self.boids_x, self.boids_y, s=boidsize, c=colors, alpha=0.5, edgecolors=None) anim = animation.FuncAnimation(figure, self._animate, frames=frames, interval=interval) plt.xlabel('x (arbitrary units)') plt.ylabel('y (arbitrary units)') plt.title("Boids a'Flocking") if savefile != None: anim.save(savefile) plt.show() if __name__ == "__main__": boidsobject = Boids() boidsobject.model()
mit
Ziqi-Li/bknqgis
pandas/pandas/tests/io/parser/quoting.py
18
5813
# -*- coding: utf-8 -*- """ Tests that quoting specifications are properly handled during parsing for all of the parsers defined in parsers.py """ import csv import pandas.util.testing as tm from pandas import DataFrame from pandas.compat import PY3, StringIO, u class QuotingTests(object): def test_bad_quote_char(self): data = '1,2,3' # Python 2.x: "...must be an 1-character..." # Python 3.x: "...must be a 1-character..." msg = '"quotechar" must be a(n)? 1-character string' tm.assert_raises_regex(TypeError, msg, self.read_csv, StringIO(data), quotechar='foo') msg = 'quotechar must be set if quoting enabled' tm.assert_raises_regex(TypeError, msg, self.read_csv, StringIO(data), quotechar=None, quoting=csv.QUOTE_MINIMAL) msg = '"quotechar" must be string, not int' tm.assert_raises_regex(TypeError, msg, self.read_csv, StringIO(data), quotechar=2) def test_bad_quoting(self): data = '1,2,3' msg = '"quoting" must be an integer' tm.assert_raises_regex(TypeError, msg, self.read_csv, StringIO(data), quoting='foo') # quoting must in the range [0, 3] msg = 'bad "quoting" value' tm.assert_raises_regex(TypeError, msg, self.read_csv, StringIO(data), quoting=5) def test_quote_char_basic(self): data = 'a,b,c\n1,2,"cat"' expected = DataFrame([[1, 2, 'cat']], columns=['a', 'b', 'c']) result = self.read_csv(StringIO(data), quotechar='"') tm.assert_frame_equal(result, expected) def test_quote_char_various(self): data = 'a,b,c\n1,2,"cat"' expected = DataFrame([[1, 2, 'cat']], columns=['a', 'b', 'c']) quote_chars = ['~', '*', '%', '$', '@', 'P'] for quote_char in quote_chars: new_data = data.replace('"', quote_char) result = self.read_csv(StringIO(new_data), quotechar=quote_char) tm.assert_frame_equal(result, expected) def test_null_quote_char(self): data = 'a,b,c\n1,2,3' # sanity checks msg = 'quotechar must be set if quoting enabled' tm.assert_raises_regex(TypeError, msg, self.read_csv, StringIO(data), quotechar=None, quoting=csv.QUOTE_MINIMAL) tm.assert_raises_regex(TypeError, msg, self.read_csv, StringIO(data), quotechar='', quoting=csv.QUOTE_MINIMAL) # no errors should be raised if quoting is None expected = DataFrame([[1, 2, 3]], columns=['a', 'b', 'c']) result = self.read_csv(StringIO(data), quotechar=None, quoting=csv.QUOTE_NONE) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), quotechar='', quoting=csv.QUOTE_NONE) tm.assert_frame_equal(result, expected) def test_quoting_various(self): data = '1,2,"foo"' cols = ['a', 'b', 'c'] # QUOTE_MINIMAL and QUOTE_ALL apply only to # the CSV writer, so they should have no # special effect for the CSV reader expected = DataFrame([[1, 2, 'foo']], columns=cols) # test default (afterwards, arguments are all explicit) result = self.read_csv(StringIO(data), names=cols) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), quotechar='"', quoting=csv.QUOTE_MINIMAL, names=cols) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), quotechar='"', quoting=csv.QUOTE_ALL, names=cols) tm.assert_frame_equal(result, expected) # QUOTE_NONE tells the reader to do no special handling # of quote characters and leave them alone expected = DataFrame([[1, 2, '"foo"']], columns=cols) result = self.read_csv(StringIO(data), quotechar='"', quoting=csv.QUOTE_NONE, names=cols) tm.assert_frame_equal(result, expected) # QUOTE_NONNUMERIC tells the reader to cast # all non-quoted fields to float expected = DataFrame([[1.0, 2.0, 'foo']], columns=cols) result = self.read_csv(StringIO(data), quotechar='"', quoting=csv.QUOTE_NONNUMERIC, names=cols) tm.assert_frame_equal(result, expected) def test_double_quote(self): data = 'a,b\n3,"4 "" 5"' expected = DataFrame([[3, '4 " 5']], columns=['a', 'b']) result = self.read_csv(StringIO(data), quotechar='"', doublequote=True) tm.assert_frame_equal(result, expected) expected = DataFrame([[3, '4 " 5"']], columns=['a', 'b']) result = self.read_csv(StringIO(data), quotechar='"', doublequote=False) tm.assert_frame_equal(result, expected) def test_quotechar_unicode(self): # See gh-14477 data = 'a\n1' expected = DataFrame({'a': [1]}) result = self.read_csv(StringIO(data), quotechar=u('"')) tm.assert_frame_equal(result, expected) # Compared to Python 3.x, Python 2.x does not handle unicode well. if PY3: result = self.read_csv(StringIO(data), quotechar=u('\u0001')) tm.assert_frame_equal(result, expected)
gpl-2.0