DocLayNet-v1.1 / README.md
asnassar's picture
Upload README.md with huggingface_hub
5e89392
---
annotations_creators:
- crowdsourced
license: other
pretty_name: DocLayNet
size_categories:
- 10K<n<100K
tags:
- layout-segmentation
- COCO
- document-understanding
- PDF
task_categories:
- object-detection
- image-segmentation
task_ids:
- instance-segmentation
dataset_info:
features:
- name: image
dtype: image
- name: bboxes
sequence:
sequence: float64
- name: category_id
sequence: int64
- name: segmentation
sequence:
sequence:
sequence: float64
- name: area
sequence: float64
- name: pdf_cells
list:
list:
- name: bbox
sequence: float64
- name: font
struct:
- name: color
sequence: int64
- name: name
dtype: string
- name: size
dtype: float64
- name: text
dtype: string
- name: metadata
struct:
- name: coco_height
dtype: int64
- name: coco_width
dtype: int64
- name: collection
dtype: string
- name: doc_category
dtype: string
- name: image_id
dtype: int64
- name: num_pages
dtype: int64
- name: original_filename
dtype: string
- name: original_height
dtype: float64
- name: original_width
dtype: float64
- name: page_hash
dtype: string
- name: page_no
dtype: int64
splits:
- name: train
num_bytes: 28172005254.125
num_examples: 69375
- name: test
num_bytes: 1996179229.125
num_examples: 4999
- name: val
num_bytes: 2493896901.875
num_examples: 6489
download_size: 7766115331
dataset_size: 32662081385.125
---
# Dataset Card for DocLayNet v1.1
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Dataset Structure](#dataset-structure)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Annotations](#annotations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://developer.ibm.com/exchanges/data/all/doclaynet/
- **Repository:** https://github.com/DS4SD/DocLayNet
- **Paper:** https://doi.org/10.1145/3534678.3539043
### Dataset Summary
DocLayNet provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories. It provides several unique features compared to related work such as PubLayNet or DocBank:
1. *Human Annotation*: DocLayNet is hand-annotated by well-trained experts, providing a gold-standard in layout segmentation through human recognition and interpretation of each page layout
2. *Large layout variability*: DocLayNet includes diverse and complex layouts from a large variety of public sources in Finance, Science, Patents, Tenders, Law texts and Manuals
3. *Detailed label set*: DocLayNet defines 11 class labels to distinguish layout features in high detail.
4. *Redundant annotations*: A fraction of the pages in DocLayNet are double- or triple-annotated, allowing to estimate annotation uncertainty and an upper-bound of achievable prediction accuracy with ML models
5. *Pre-defined train- test- and validation-sets*: DocLayNet provides fixed sets for each to ensure proportional representation of the class-labels and avoid leakage of unique layout styles across the sets.
## Dataset Structure
This dataset is structured differently from the other repository [ds4sd/DocLayNet](https://huggingface.co/datasets/ds4sd/DocLayNet), as this one includes the content (PDF cells) of the detections, and abandons the COCO format.
* `image`: page PIL image.
* `bboxes`: a list of layout bounding boxes.
* `category_id`: a list of class ids corresponding to the bounding boxes.
* `segmentation`: a list of layout segmentation polygons.
* `pdf_cells`: a list of lists corresponding to `bbox`. Each list contains the PDF cells (content) inside the bbox.
* `metadata`: page and document metadetails.
Bounding boxes classes / categories:
```
1: Caption
2: Footnote
3: Formula
4: List-item
5: Page-footer
6: Page-header
7: Picture
8: Section-header
9: Table
10: Text
11: Title
```
The `["metadata"]["doc_category"]` field uses one of the following constants:
```
* financial_reports,
* scientific_articles,
* laws_and_regulations,
* government_tenders,
* manuals,
* patents
```
### Data Splits
The dataset provides three splits
- `train`
- `val`
- `test`
## Dataset Creation
### Annotations
#### Annotation process
The labeling guideline used for training of the annotation experts are available at [DocLayNet_Labeling_Guide_Public.pdf](https://raw.githubusercontent.com/DS4SD/DocLayNet/main/assets/DocLayNet_Labeling_Guide_Public.pdf).
#### Who are the annotators?
Annotations are crowdsourced.
## Additional Information
### Dataset Curators
The dataset is curated by the [Deep Search team](https://ds4sd.github.io/) at IBM Research.
You can contact us at [[email protected]](mailto:[email protected]).
Curators:
- Christoph Auer, [@cau-git](https://github.com/cau-git)
- Michele Dolfi, [@dolfim-ibm](https://github.com/dolfim-ibm)
- Ahmed Nassar, [@nassarofficial](https://github.com/nassarofficial)
- Peter Staar, [@PeterStaar-IBM](https://github.com/PeterStaar-IBM)
### Licensing Information
License: [CDLA-Permissive-1.0](https://cdla.io/permissive-1-0/)
### Citation Information
```bib
@article{doclaynet2022,
title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation},
doi = {10.1145/3534678.353904},
url = {https://doi.org/10.1145/3534678.3539043},
author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
year = {2022},
isbn = {9781450393850},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
booktitle = {Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
pages = {3743–3751},
numpages = {9},
location = {Washington DC, USA},
series = {KDD '22}
}
```