UPLOAD SLUE_TED
#7
by
Siddhant
- opened
- data/slue-ted_dev.zip +3 -0
- data/slue-ted_test_blind.zip +3 -0
- data/slue-ted_train.zip +3 -0
- slue-phase-2.py +72 -3
data/slue-ted_dev.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5c679d3c9dcdd20ea90b1ee0a57d8d176e31264e9499d35f7013f624ac93c02
|
3 |
+
size 5692022240
|
data/slue-ted_test_blind.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33fbdad35f0557ce9cb0ce12abf1c20f8c9851d271b689d1b787b6ec072292c4
|
3 |
+
size 5972328793
|
data/slue-ted_train.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b17e2c27e8ceac6b7ede9ba639833130710337515265dedd35f66e0aff2b670e
|
3 |
+
size 46727678707
|
slue-phase-2.py
CHANGED
@@ -16,6 +16,7 @@ _DL_URLS = {
|
|
16 |
"slue-hvb": "data/slue-hvb_blind.zip",
|
17 |
"slue-sqa5": "data/slue-sqa5_blind.zip",
|
18 |
"slue-vp_nel": "data/slue-vp_nel_blind.zip",
|
|
|
19 |
}
|
20 |
|
21 |
_LICENSE = """
|
@@ -63,7 +64,10 @@ SLUE-vp_nel Dataset
|
|
63 |
SLUE-vp_nel includes word-level time stamps for dev and test splits of the SLUE-voxpopuli corpus.
|
64 |
For the dev split, the dataset also contains named entity annotations and corresponding time-stamps in a tsv format.
|
65 |
=======================================================
|
|
|
66 |
|
|
|
|
|
67 |
"""
|
68 |
|
69 |
_CITATION = """\
|
@@ -161,6 +165,10 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
161 |
name="vp_nel",
|
162 |
description="SLUE-vp_nel set with named entity labels and time-stamps.",
|
163 |
),
|
|
|
|
|
|
|
|
|
164 |
]
|
165 |
|
166 |
def _info(self):
|
@@ -231,6 +239,15 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
231 |
}
|
232 |
),
|
233 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
return datasets.DatasetInfo(
|
235 |
description=_DESCRIPTION,
|
236 |
features=datasets.Features(features),
|
@@ -245,9 +262,13 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
245 |
) -> List[datasets.SplitGenerator]:
|
246 |
|
247 |
config_name = f"slue-{self.config.name}"
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
|
|
251 |
|
252 |
splits = []
|
253 |
if self.config.name in ["hvb", "sqa5"]:
|
@@ -262,6 +283,40 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
262 |
},
|
263 |
)
|
264 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
if self.config.name in ["hvb", "sqa5", "vp_nel"]:
|
266 |
splits.append(
|
267 |
datasets.SplitGenerator(
|
@@ -374,4 +429,18 @@ class SLUE2(datasets.GeneratorBasedBuilder):
|
|
374 |
),
|
375 |
"word_timestamps": read_word_timestamps(word_alignments_fn),
|
376 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
yield idx, example
|
|
|
16 |
"slue-hvb": "data/slue-hvb_blind.zip",
|
17 |
"slue-sqa5": "data/slue-sqa5_blind.zip",
|
18 |
"slue-vp_nel": "data/slue-vp_nel_blind.zip",
|
19 |
+
"slue-ted": "data/slue-ted",
|
20 |
}
|
21 |
|
22 |
_LICENSE = """
|
|
|
64 |
SLUE-vp_nel includes word-level time stamps for dev and test splits of the SLUE-voxpopuli corpus.
|
65 |
For the dev split, the dataset also contains named entity annotations and corresponding time-stamps in a tsv format.
|
66 |
=======================================================
|
67 |
+
SLUE-TED Dataset
|
68 |
|
69 |
+
SLUE-TED Dataset contains TED Talk audios along with the associated abstracts and title, which were concatenated to create reference summaries. This corpus is licensed with the same Creative Commons (CC BY–NC–ND 4.0 International) license as TED talks. For further information, please refer to the details provided below.
|
70 |
+
=======================================================
|
71 |
"""
|
72 |
|
73 |
_CITATION = """\
|
|
|
165 |
name="vp_nel",
|
166 |
description="SLUE-vp_nel set with named entity labels and time-stamps.",
|
167 |
),
|
168 |
+
SLUE2Config(
|
169 |
+
name="ted",
|
170 |
+
description="SLUE-TED set which includes Speech Summarisation task",
|
171 |
+
),
|
172 |
]
|
173 |
|
174 |
def _info(self):
|
|
|
239 |
}
|
240 |
),
|
241 |
}
|
242 |
+
elif self.config.name == "ted":
|
243 |
+
features = {
|
244 |
+
"id": datasets.Value("string"),
|
245 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
246 |
+
"speaker": datasets.Value("string"),
|
247 |
+
"transcript": datasets.Value("string"),
|
248 |
+
"title": datasets.Value("string"),
|
249 |
+
"abstract": datasets.Value("string"),
|
250 |
+
}
|
251 |
return datasets.DatasetInfo(
|
252 |
description=_DESCRIPTION,
|
253 |
features=datasets.Features(features),
|
|
|
262 |
) -> List[datasets.SplitGenerator]:
|
263 |
|
264 |
config_name = f"slue-{self.config.name}"
|
265 |
+
if config_name=="slue-ted":
|
266 |
+
train_dl_dir = dl_manager.download_and_extract(_DL_URLS[config_name]+"_train.zip")
|
267 |
+
valid_dl_dir = dl_manager.download_and_extract(_DL_URLS[config_name]+"_dev.zip")
|
268 |
+
test_dl_dir = dl_manager.download_and_extract(_DL_URLS[config_name]+"_test_blind.zip")
|
269 |
+
else:
|
270 |
+
dl_dir = dl_manager.download_and_extract(_DL_URLS[config_name])
|
271 |
+
data_dir = os.path.join(dl_dir, config_name)
|
272 |
|
273 |
splits = []
|
274 |
if self.config.name in ["hvb", "sqa5"]:
|
|
|
283 |
},
|
284 |
)
|
285 |
)
|
286 |
+
if self.config.name in ["ted"]:
|
287 |
+
splits.append(
|
288 |
+
datasets.SplitGenerator(
|
289 |
+
name=datasets.Split.TRAIN,
|
290 |
+
gen_kwargs={
|
291 |
+
"filepath": os.path.join(
|
292 |
+
os.path.join(train_dl_dir, config_name) or "", f"{config_name}_fine-tune.tsv"
|
293 |
+
),
|
294 |
+
"data_dir": os.path.join(train_dl_dir, config_name),
|
295 |
+
},
|
296 |
+
)
|
297 |
+
)
|
298 |
+
splits.append(
|
299 |
+
datasets.SplitGenerator(
|
300 |
+
name=datasets.Split.VALIDATION,
|
301 |
+
gen_kwargs={
|
302 |
+
"filepath": os.path.join(
|
303 |
+
os.path.join(valid_dl_dir, config_name+"_dev") or "", f"{config_name}_dev.tsv"
|
304 |
+
),
|
305 |
+
"data_dir": os.path.join(valid_dl_dir, config_name+"_dev"),
|
306 |
+
},
|
307 |
+
),
|
308 |
+
)
|
309 |
+
splits.append(
|
310 |
+
datasets.SplitGenerator(
|
311 |
+
name=datasets.Split.TEST,
|
312 |
+
gen_kwargs={
|
313 |
+
"filepath": os.path.join(
|
314 |
+
os.path.join(test_dl_dir, config_name+"_test") or "", f"{config_name}_test_blind.tsv"
|
315 |
+
),
|
316 |
+
"data_dir": os.path.join(test_dl_dir, config_name+"_test"),
|
317 |
+
},
|
318 |
+
),
|
319 |
+
)
|
320 |
if self.config.name in ["hvb", "sqa5", "vp_nel"]:
|
321 |
splits.append(
|
322 |
datasets.SplitGenerator(
|
|
|
429 |
),
|
430 |
"word_timestamps": read_word_timestamps(word_alignments_fn),
|
431 |
}
|
432 |
+
if self.config.name == "ted":
|
433 |
+
split = "test" if "test" in filepath else "dev" if "dev" in filepath else "fine-tune"
|
434 |
+
audio_file = os.path.join(
|
435 |
+
data_dir, split,
|
436 |
+
row["id"] + ".flac"
|
437 |
+
)
|
438 |
+
example = {
|
439 |
+
"id": row["id"],
|
440 |
+
"audio": audio_file,
|
441 |
+
"speaker": row["speaker"],
|
442 |
+
"transcript": row["transcript"],
|
443 |
+
"title": eval(row.get("title", "[]")),
|
444 |
+
"abstract": eval(row.get("abstract", "[]")),
|
445 |
+
}
|
446 |
yield idx, example
|