hexsha
stringlengths 40
40
| size
int64 3
1.03M
| content
stringlengths 3
1.03M
| avg_line_length
float64 1.33
100
| max_line_length
int64 2
1k
| alphanum_fraction
float64 0.25
0.99
|
---|---|---|---|---|---|
1d69bcb7b77f9e2722c59c9a4cc6b31f31750f5e | 364 | //
// UITableView+Extensions.swift
// VGSCheckoutSDK
import Foundation
#if canImport(UIKit)
import UIKit
#endif
// swiftlint:disable all
internal extension UITableView {
func dequeue<T: UITableViewCell>(cellForRowAt indexPath: IndexPath) -> T {
return dequeueReusableCell(withIdentifier: "\(T.self)", for: indexPath) as! T
}
}
// swiftlint:enable all
| 19.157895 | 80 | 0.741758 |
d92320cf267d29833dd8f01bfbb77649a16d095e | 6,890 | /* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
import Foundation
import Shared
let TableClients = "clients"
let TableTabs = "tabs"
private let log = Logger.syncLogger
class RemoteClientsTable<T>: GenericTable<RemoteClient> {
override var name: String { return TableClients }
override var version: Int { return 2 }
// TODO: index on guid and last_modified.
override var rows: String { return [
"guid TEXT PRIMARY KEY",
"name TEXT NOT NULL",
"modified INTEGER NOT NULL",
"type TEXT",
"formfactor TEXT",
"os TEXT",
"version TEXT",
].joined(separator: ",")
}
// TODO: this won't work correctly with NULL fields.
override func getInsertAndArgs(_ item: inout RemoteClient) -> (String, Args)? {
let args: Args = [
item.guid,
item.name,
NSNumber(value: item.modified),
item.type,
item.formfactor,
item.os,
item.version,
]
return ("INSERT INTO \(name) (guid, name, modified, type, formfactor, os, version) VALUES (?, ?, ?, ?, ?, ?, ?)", args)
}
override func getUpdateAndArgs(_ item: inout RemoteClient) -> (String, Args)? {
let args: Args = [
item.name,
NSNumber(value: item.modified),
item.type,
item.formfactor,
item.os,
item.version,
item.guid,
]
return ("UPDATE \(name) SET name = ?, modified = ?, type = ?, formfactor = ?, os = ?, version = ? WHERE guid = ?", args)
}
override func getDeleteAndArgs(_ item: inout RemoteClient?) -> (String, Args)? {
if let item = item {
return ("DELETE FROM \(name) WHERE guid = ?", [item.guid])
}
return ("DELETE FROM \(name)", [])
}
override var factory: ((SDRow) -> RemoteClient)? {
return { row -> RemoteClient in
let guid = row["guid"] as? String
let name = row["name"] as! String
let mod = (row["modified"] as! NSNumber).uint64Value
let type = row["type"] as? String
let form = row["formfactor"] as? String
let os = row["os"] as? String
let version = row["version"] as? String
return RemoteClient(guid: guid, name: name, modified: mod, type: type, formfactor: form, os: os, version: version)
}
}
override func getQueryAndArgs(_ options: QueryOptions?) -> (String, Args)? {
return ("SELECT * FROM \(name) ORDER BY modified DESC", [])
}
override func updateTable(_ db: SQLiteDBConnection, from: Int) -> Bool {
let to = self.version
if from == to {
log.debug("Skipping update from \(from) to \(to).")
return true
}
if from < 2 && to >= 2 {
let sql = "ALTER TABLE \(TableClients) ADD COLUMN version TEXT"
let err = db.executeChange(sql)
if err != nil {
log.error("Error running SQL in RemoteClientsTable: \(err?.localizedDescription ?? "nil")")
log.error("SQL was \(sql)")
return false
}
}
return true
}
}
class RemoteTabsTable<T>: GenericTable<RemoteTab> {
override var name: String { return TableTabs }
override var version: Int { return 2 }
// TODO: index on id, client_guid, last_used, and position.
override var rows: String { return [
"id INTEGER PRIMARY KEY AUTOINCREMENT", // An individual tab has no GUID from Sync.
"client_guid TEXT REFERENCES clients(guid) ON DELETE CASCADE",
"url TEXT NOT NULL",
"title TEXT", // TODO: NOT NULL throughout.
"history TEXT",
"last_used INTEGER",
].joined(separator: ",")
}
private static func convertHistoryToString(_ history: [URL]) -> String? {
let historyAsStrings = optFilter(history.map { $0.absoluteString })
let data = try! JSONSerialization.data(withJSONObject: historyAsStrings, options: [])
return String(data: data, encoding: String.Encoding(rawValue: String.Encoding.utf8.rawValue))
}
private func convertStringToHistory(_ history: String?) -> [URL] {
if let data = history?.data(using: String.Encoding.utf8) {
if let urlStrings = try! JSONSerialization.jsonObject(with: data, options: [JSONSerialization.ReadingOptions.allowFragments]) as? [String] {
return optFilter(urlStrings.map { URL(string: $0) })
}
}
return []
}
override func getInsertAndArgs(_ item: inout RemoteTab) -> (String, Args)? {
let args: Args = [
item.clientGUID,
item.URL.absoluteString,
item.title,
RemoteTabsTable.convertHistoryToString(item.history),
NSNumber(value: item.lastUsed)
]
return ("INSERT INTO \(name) (client_guid, url, title, history, last_used) VALUES (?, ?, ?, ?, ?)", args)
}
override func getUpdateAndArgs(_ item: inout RemoteTab) -> (String, Args)? {
let args: Args = [
item.title,
RemoteTabsTable.convertHistoryToString(item.history),
NSNumber(value: item.lastUsed),
// Key by (client_guid, url) rather than (transient) id.
item.clientGUID,
item.URL.absoluteString,
]
return ("UPDATE \(name) SET title = ?, history = ?, last_used = ? WHERE client_guid IS ? AND url = ?", args)
}
override func getDeleteAndArgs(_ item: inout RemoteTab?) -> (String, Args)? {
if let item = item {
return ("DELETE FROM \(name) WHERE client_guid = IS AND url = ?", [item.clientGUID, item.URL.absoluteString])
}
return ("DELETE FROM \(name)", [])
}
override var factory: ((SDRow) -> RemoteTab)? {
return { row -> RemoteTab in
let clientGUID = row["client_guid"] as? String
let url = URL(string: row["url"] as! String)! // TODO: find a way to make this less dangerous.
let title = row["title"] as! String
let history = self.convertStringToHistory(row["history"] as? String)
let lastUsed = row.getTimestamp("last_used")!
return RemoteTab(clientGUID: clientGUID, URL: url, title: title, history: history, lastUsed: lastUsed, icon: nil)
}
}
override func getQueryAndArgs(_ options: QueryOptions?) -> (String, Args)? {
// Per-client chunks, each chunk in client-order.
return ("SELECT * FROM \(name) WHERE client_guid IS NOT NULL ORDER BY client_guid DESC, last_used DESC", [])
}
}
| 37.650273 | 152 | 0.578374 |
f768802dcc80447a5e6db96888b7ed3df2de3025 | 1,110 | // Copyright 2022 Pera Wallet, LDA
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Participation.swift
import Foundation
import MagpieCore
import MacaroonUtils
final class Participation: ALGAPIModel {
var selectionParticipationKey: String?
var voteParticipationKey: String?
init() {
self.selectionParticipationKey = nil
self.voteParticipationKey = nil
}
}
extension Participation {
enum CodingKeys: String, CodingKey {
case selectionParticipationKey = "selection-participation-key"
case voteParticipationKey = "vote-participation-key"
}
}
| 29.210526 | 75 | 0.738739 |
e522dbd16a6aa02abeeb01deed42631adff6b0dc | 2,718 | //
// QRCode.swift
// QRCode
//
import UIKit
public typealias 🔳 = GXQRCodeGenerator
/// QRCode generator
public struct GXQRCodeGenerator {
/**
The level of error correction.
- Low: 7%
- Medium: 15%
- Quartile: 25%
- High: 30%
*/
public enum ErrorCorrection: String {
case Low = "L"
case Medium = "M"
case Quartile = "Q"
case High = "H"
}
/// Data contained in the generated QRCode
public let data: Data
/// Foreground color of the output
/// Defaults to black
public var color = CIColor(red: 0, green: 0, blue: 0)
/// Background color of the output
/// Defaults to white
public var backgroundColor = CIColor(red: 1, green: 1, blue: 1)
/// Size of the output
public var size = CGSize(width: 200, height: 200)
/// The error correction. The default value is `.Low`.
public var errorCorrection = ErrorCorrection.Low
// MARK: Init
public init(_ data: Data) {
self.data = data
}
public init?(_ string: String) {
if let data = string.data(using: .isoLatin1) {
self.data = data
} else {
return nil
}
}
public init?(_ url: URL) {
if let data = url.absoluteString.data(using: .isoLatin1) {
self.data = data
} else {
return nil
}
}
// MARK: Generate QRCode
/// The QRCode's UIImage representation
public var image: UIImage? {
guard let ciImage = ciImage else { return nil }
// Size
let ciImageSize = ciImage.extent.size
let widthRatio = size.width / ciImageSize.width
let heightRatio = size.height / ciImageSize.height
return ciImage.nonInterpolatedImage(withScale: Scale(dx: widthRatio, dy: heightRatio))
}
/// The QRCode's CIImage representation
public var ciImage: CIImage? {
// Generate QRCode
guard let qrFilter = CIFilter(name: "CIQRCodeGenerator") else { return nil }
qrFilter.setDefaults()
qrFilter.setValue(data, forKey: "inputMessage")
qrFilter.setValue(self.errorCorrection.rawValue, forKey: "inputCorrectionLevel")
// Color code and background
guard let colorFilter = CIFilter(name: "CIFalseColor") else { return nil }
colorFilter.setDefaults()
colorFilter.setValue(qrFilter.outputImage, forKey: "inputImage")
colorFilter.setValue(color, forKey: "inputColor0")
colorFilter.setValue(backgroundColor, forKey: "inputColor1")
return colorFilter.outputImage
}
}
| 26.910891 | 94 | 0.587564 |
b928f4b6d9d7658220b3c431195d4fe1ebc7d824 | 361 | import UIKit
@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {
var window: UIWindow?
func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
// Override point for customization after application launch.
return true
}
}
| 25.785714 | 144 | 0.753463 |
2fb3ed4f93ca56ca8821a0af3ead7d4dacca50d2 | 187 | import Foundation
public enum ActiveTool {
case Smooth
case Sharpen
case Flatten
case Emphasize
case Plane
case Tilt
case Invert
case Pan
case Zoom
}
| 13.357143 | 24 | 0.657754 |
56f705645a5bda1c9e38207193a48ec880c922d8 | 6,105 | //
// Renderer.swift
// CreatingAndSamplingTextures
//
// Created by Huiping Guo on 2021/09/18.
//
import Foundation
import MetalKit
import Cocoa
class Renderer: NSObject {
// The device (aka GPU) used to render
private var device: MTLDevice!
// A pipeline object to render to the screen.
private var drawableRenderPipeline: MTLRenderPipelineState!
// The command Queue used to submit commands.
private var commandQueue: MTLCommandQueue!
// The Metal texture object
private var texture: MTLTexture!
// The Metal buffer that holds the vertex data.
private var vertices: MTLBuffer!
// The number of vertices in the vertex buffer.
private var numVertices: Int!
// The current size of the view.
private var viewportSize: vector_uint2 = vector_uint2(x: 0, y: 0)
private func loadTextureUsingAAPLImage(url: URL) -> MTLTexture? {
guard let image = AAPLImage(tgaFileAtLocation: url) else {
return nil
}
let textureDescriptor = MTLTextureDescriptor.init()
// Indicate that each pixel has a blue, green, red, and alpha channel, where each channel is
// an 8-bit unsigned normalized value (i.e. 0 maps to 0.0 and 255 maps to 1.0)
textureDescriptor.pixelFormat = .bgra8Unorm
// Set the pixel dimensions of the texture
textureDescriptor.width = Int(image.width)
textureDescriptor.height = Int(image.height)
// Create the texture from the device by using the descriptor
let inputTexture = device.makeTexture(descriptor: textureDescriptor)
// Calculate the number of bytes per row in the image.
let bytesPerRow: Int = Int(4 * image.width)
let region = MTLRegion(origin: MTLOrigin(x: 0, y: 0, z: 0), size: MTLSize(width: textureDescriptor.width, height: textureDescriptor.height, depth: 1))
// Copy the bytes from the data object into the texture
let bytes = (image.data as NSData).bytes
inputTexture?.replace(region: region, mipmapLevel: 0, withBytes: bytes, bytesPerRow: bytesPerRow)
return inputTexture
}
init(mtkView: MTKView) {
super.init()
device = mtkView.device
guard let imageFileLocation = Bundle.main.url(forResource: "Image", withExtension: "tga") else {
return
}
texture = self.loadTextureUsingAAPLImage(url: imageFileLocation)
// Set up a simple MTLBuffer with vertices which include texture coordinates
let quadVertices: [(simd_float2,simd_float2)] = [
// Pixel positions, Texture coordinates
(simd_float2( 250, -250),simd_float2(1.0, 1.0)),
(simd_float2(-250, -250),simd_float2(0.0, 1.0)),
(simd_float2( -250, 250),simd_float2(0.0, 0.0)),
(simd_float2(250, -250),simd_float2(1.0, 1.0)),
(simd_float2(-250, 250),simd_float2(0.0, 0.0)),
(simd_float2( 250, 250),simd_float2(1.0, 0.0)),
]
// Create a vertex buffer, and initialize it with the quadVertices array
self.vertices = device.makeBuffer(bytes: quadVertices, length: quadVertices.count * MemoryLayout<(simd_float2,simd_float2)>.size, options: .storageModeShared)
// Calculate the number of vertices by dividing the byte length by the size of each vertex
numVertices = quadVertices.count
/// Create the render pipeline.
// Load the shaders from the default library
let defaultLibrary = device.makeDefaultLibrary()
// Set up a descriptor for creating a pipeline state object
let pipelineStateDescriptor = MTLRenderPipelineDescriptor.init()
pipelineStateDescriptor.label = "Texturing Pipeline"
pipelineStateDescriptor.vertexFunction = defaultLibrary?.makeFunction(name: "vertexShader")
pipelineStateDescriptor.fragmentFunction = defaultLibrary?.makeFunction(name: "samplingShader")
pipelineStateDescriptor.colorAttachments[0].pixelFormat = mtkView.colorPixelFormat
do {
self.drawableRenderPipeline = try device.makeRenderPipelineState(descriptor: pipelineStateDescriptor)
} catch {
assert(false, "Failed to create pipeline state to render to screen: \(error)")
}
commandQueue = device.makeCommandQueue()
}
}
extension Renderer: MTKViewDelegate {
func mtkView(_ view: MTKView, drawableSizeWillChange size: CGSize) {
// Save the size of the drawable to pass to the vertex shader.
viewportSize.x = UInt32(size.width)
viewportSize.y = UInt32(size.height)
}
func draw(in view: MTKView) {
let commandBuffer = commandQueue.makeCommandBuffer()
commandBuffer?.label = "Command Buffer"
let drawableRenderPassDescriptor = view.currentRenderPassDescriptor!
let renderEncoder = commandBuffer?.makeRenderCommandEncoder(descriptor: drawableRenderPassDescriptor)
renderEncoder?.label = "Drawable Render Pass"
// Set the region of the drawable to draw into.
renderEncoder?.setViewport(MTLViewport(originX: 0, originY: 0, width: Double(viewportSize.x), height: Double(viewportSize.y), znear: -1.0, zfar: 1.0))
renderEncoder?.setRenderPipelineState(drawableRenderPipeline)
renderEncoder?.setVertexBuffer(vertices, offset: 0, index: 0)
renderEncoder?.setVertexBytes(&viewportSize, length: MemoryLayout<vector_uint2>.size, index: 1)
// Set the texture object. The AAPLTextureIndexBaseColor enum value corresponds
/// to the 'colorMap' argument in the 'samplingShader' function because its
// texture attribute qualifier also uses AAPLTextureIndexBaseColor for its index.
renderEncoder?.setFragmentTexture(texture, index: 0)
// Draw the triangles.
renderEncoder?.drawPrimitives(type: .triangle, vertexStart: 0, vertexCount: numVertices)
renderEncoder?.endEncoding()
// Schedule a present once the framebuffer is complete using the current drawable
commandBuffer?.present(view.currentDrawable!)
// Finalize rendering here & push the command buffer to the GPU
commandBuffer?.commit()
}
}
| 37.22561 | 162 | 0.69959 |
9b3afd7fe2a577eba2205244198ac5b0b104bb3c | 15,156 | //=== HCSR04.swift --------------------------------------------------------===//
//
// Copyright (c) MadMachine Limited
// Licensed under MIT License
//
// Authors: Ines Zhou
// Created: 11/12/2021
//
// See https://madmachine.io for more information
//
//===----------------------------------------------------------------------===//
import SwiftIO
/// The library for DS3231 real time clock.
///
/// You can read the time information including year, month, day, hour,
/// minute, second from it. It comes with a battery so the time will always
/// keep updated. Once powered off, the RTC needs a calibration. The RTC also
/// has two alarms, you can set them to alarm at a specified time.
final public class DS3231 {
private let i2c: I2C
private let address: UInt8
private var daysInMonth: [UInt8] = [
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
]
private var readBuffer = [UInt8](repeating: 0, count: 7)
/// Initialize the RTC.
/// - Parameters:
/// - i2c: **REQUIRED** The I2C interface the RTC connects to. The maximum
/// I2C speed is 400KHz.
/// - address: **OPTIONAL** The sensor's address. It has a default value 0x68.
public init(_ i2c: I2C, _ address: UInt8 = 0x68) {
let speed = i2c.getSpeed()
guard speed == .standard || speed == .fast else {
fatalError(#function + ": DS3231 only supports 100kHz (standard) and 400kHz (fast) I2C speed")
}
self.i2c = i2c
self.address = address
}
/// Set current time to calibrate the RTC.
///
/// If the RTC has stopped due to power off, it will be set to the
/// specified time. If not, the time will not be reset by default.
/// If you want to make it mandatory, you can set the parameter
/// `update` to `true`.
/// - Parameters:
/// - time: Current time from year to second.
/// - update: Whether to update the time.
public func setTime(_ time: Time, update: Bool = false) {
if lostPower() || update {
let data = [
binToBcd(time.second), binToBcd(time.minute),
binToBcd(time.hour), binToBcd(time.dayOfWeek),
binToBcd(time.day), binToBcd(time.month),
binToBcd(UInt8(time.year - 2000))]
try? writeRegister(Register.second, data)
var byte: UInt8 = 0
try? readRegister(Register.status, into: &byte)
// Set OSF bit to 0, which means the RTC hasn't stopped
// so far after the time is set.
try? writeRegister(Register.status, byte & 0b0111_1111)
}
}
/// Read current time.
/// - Returns: The time info in a struct.
public func readTime() -> Time {
try? readRegister(.second, into: &readBuffer, count: 7)
let year = UInt16(bcdToBin(readBuffer[6])) + 2000
// Make sure the bit for century is 0.
let month = bcdToBin(readBuffer[5] & 0b0111_1111)
let day = bcdToBin(readBuffer[4])
let dayOfWeek = bcdToBin(readBuffer[3])
let hour = bcdToBin(readBuffer[2])
let minute = bcdToBin(readBuffer[1])
let second = bcdToBin(readBuffer[0])
let time = Time(
year: year, month: month, day: day, hour: hour,
minute: minute, second: second, dayOfWeek: dayOfWeek)
return time
}
/// Read current temperature.
/// - Returns: Temperature in Celsius.
public func readTemperature() -> Float {
try? readRegister(.temperature, into: &readBuffer, count: 2)
let temperature = Float(readBuffer[0]) + Float(readBuffer[1] >> 6) * 0.25
return temperature
}
/// Set alarm1 at a specific time. The time can be decided by second,
/// minute, hour, day or any combination of them.
///
/// The alarm works only once. If you want it to happen continuously, you
/// need to clear it manually when it is activated.
///
/// Make sure the mode corresponds to the time you set. For example,
/// you set the alarm to alert at 1m20s, like 1m20s, 1h1m20s... the mode
/// should be `.minute`.
///
/// - Parameters:
/// - day: The day from 1 to 31 in a month.
/// - dayOfWeek: The day from 1 to 7 in a week.
/// - hour: The hour from 0 to 23 in a day,
/// - minute: The minute from 0 to 59 in an hour.
/// - second: The second from 0 to 59 in a minute.
/// - mode: The alarm1 mode.
public func setAlarm1(
day: UInt8 = 0, dayOfWeek: UInt8 = 0, hour: UInt8 = 0,
minute: UInt8 = 0, second: UInt8 = 0, mode: Alarm1Mode
) {
clearAlarm(1)
clearAlarm(2)
disableAlarm(2)
setSqwMode(SqwMode.off)
// Bit7 of second.
let A1M1 = (mode.rawValue & 0b0001) << 7
// Bit7 of minute.
let A1M2 = (mode.rawValue & 0b0010) << 6
// Bit7 of hour.
let A1M3 = (mode.rawValue & 0b0100) << 5
// Bit7 of day.
let A1M4 = (mode.rawValue & 0b1000) << 4
// Bit6 of day to decide it is day of month or day of week.
let DYDT = (mode.rawValue & 0b1_0000) << 2
let second = binToBcd(second) | A1M1
let minute = binToBcd(minute) | A1M2
let hour = binToBcd(hour) | A1M3
var day: UInt8 = 0
if DYDT == 0 {
day = binToBcd(day) | A1M4 | DYDT
} else {
day = binToBcd(dayOfWeek) | A1M4 | DYDT
}
let future = [second, minute, hour, day]
try? writeRegister(Register.alarm1, future)
var byte: UInt8 = 0
try? readRegister(Register.control, into: &byte)
if byte & 0b0100 != 0 {
try? writeRegister(Register.control, byte | 0b01)
}
}
/// Set alarm2 at a specific time. The time can be decided by minute,
/// hour, day or any combination of them.
///
/// The alarm works only once. If you want it to happen continuously, you
/// need to clear it manually when it is activated.
///
/// Make sure the mode corresponds to the time you set. For example,
/// you set the alarm to alert at 2m, like 2m, 1h2m... the mode
/// should be `.minute`.
///
/// - Parameters:
/// - day: The day from 1 to 31 in a month.
/// - dayOfWeek: The day from 1 to 7 in a week.
/// - hour: The hour from 0 to 23 in a day.
/// - minute: The minute from 0 to 59 in an hour.
/// - mode: The alarm2 mode.
public func setAlarm2(
day: UInt8 = 0, dayOfWeek: UInt8 = 0, hour: UInt8 = 0,
minute: UInt8 = 0, mode: Alarm2Mode
) {
clearAlarm(1)
clearAlarm(2)
disableAlarm(1)
setSqwMode(SqwMode.off)
let A2M2 = (mode.rawValue & 0b0001) << 7
let A2M3 = (mode.rawValue & 0b0010) << 6
let A2M4 = (mode.rawValue & 0b0100) << 5
let DYDT = (mode.rawValue & 0b1000) << 3
let minute = binToBcd(minute) | A2M2
let hour = binToBcd(hour) | A2M3
var day: UInt8 = 0
if DYDT == 0 {
day = binToBcd(day) | A2M4 | DYDT
} else {
day = binToBcd(dayOfWeek) | A2M4 | DYDT
}
let future = [minute, hour, day]
try? writeRegister(Register.alarm2, future)
var byte: UInt8 = 0
try? readRegister(Register.control, into: &byte)
if byte & 0b0100 != 0 {
try? writeRegister(Register.control, byte | 0b10)
}
}
/// The alarm1 will activate after a specified time interval. The time
/// can be specified as day, hour, minute, second or any combination of them.
/// - Parameters:
/// - day: The days of time interval.
/// - hour: The hour of time interval.
/// - minute: The minutes of time interval.
/// - second: The seconds of time interval.
/// - mode: The alarm1 mode.
public func setTimer1(
day: UInt8 = 0, hour: UInt8 = 0, minute: UInt8 = 0,
second: UInt8 = 0, mode: Alarm1Mode
) {
let current = readTime()
let futureSecond = (current.second + second) % 60
let futureMinute = (current.minute + minute) % 60 +
(current.second + second) / 60
let futureHour = (current.hour + hour) % 24 +
(current.minute + minute) / 60
if current.year % 4 == 0 {
daysInMonth[1] = 29
}
let totalDays: UInt8 = daysInMonth[Int(current.month - 1)]
let futureDay = (current.day + day) % totalDays +
(current.hour + hour) / 24
setAlarm1(day: futureDay, hour: futureHour, minute: futureMinute,
second: futureSecond, mode: mode)
}
/// The alarm2 will activate after a specified time interval. The time
/// can be specified as day, hour, minute or any combination of them.
/// - Parameters:
/// - day: The days of time interval.
/// - hour: The hours of time interval.
/// - minute: The days of time interval.
/// - mode: The alarm2 mode.
public func setTimer2(
day: UInt8 = 0, hour: UInt8 = 0, minute: UInt8 = 0, mode: Alarm2Mode
) {
let current = readTime()
let futureMinute = (current.minute + minute) % 60
let futureHour = (current.hour + hour) % 24 +
(current.minute + minute) / 60
if current.year % 4 == 0 {
daysInMonth[1] = 29
}
let totalDays = daysInMonth[Int(current.month - 1)]
let futureDay = (current.day + day) % totalDays +
(current.hour + hour) / 24
setAlarm2(day: futureDay, hour: futureHour,
minute: futureMinute, mode: mode)
}
/// Check if the specified alarm has been activated.
/// If so, it returns true, if not, false.
/// - Parameter alarm: The alarm 1 or 2.
/// - Returns: A boolean value.
public func alarmed(_ alarm: Int) -> Bool {
var byte: UInt8 = 0
try? readRegister(Register.status, into: &byte)
let alarmFlag = byte & (~(0b1 << (alarm - 1)))
return alarmFlag == 1
}
/// Clear the alarm status.
/// - Parameter alarm: The alarm 1 or 2.
public func clearAlarm(_ alarm: Int) {
var byte: UInt8 = 0
try? readRegister(Register.status, into: &byte)
try? writeRegister(Register.status, byte & (~(0b1 << (alarm - 1))))
}
/// The mode of alarm1.
public enum Alarm1Mode: UInt8 {
/// Alarm per second.
case perSecond = 0x0F
/// Alarm when seconds match.
case second = 0x0E
/// Alarm when minutes and seconds match.
case minute = 0x0C
/// Alarm when hours, minutes and seconds match.
case hour = 0x08
/// Alarm when day of month, hours, minutes and seconds match.
case dayOfMonth = 0x00
/// Alarm when day of week, hours, minutes and seconds match.
/// It doesn't work when you set timer1 and timer2.
case dayOfWeek = 0x10
}
/// The mode of alarm2.
public enum Alarm2Mode: UInt8 {
/// Alarm once per minute (00 seconds of every minute).
case perMinute = 0x7
/// Alarm when minutes match.
case minute = 0x6
/// Alarm when hours and minutes match.
case hour = 0x4
/// Alarm when day of month, hours, minutes and seconds match.
case dayOfMonth = 0x0
/// Alarm when day of week, hours, minutes and seconds match.
/// It doesn't work when you set timer1 and timer2.
case dayOfWeek = 0x8
}
/// Store the time info.
public struct Time {
public let year: UInt16
public let month: UInt8
public let day: UInt8
public let hour: UInt8
public let minute: UInt8
public let second: UInt8
public let dayOfWeek: UInt8
public init(
year: UInt16, month: UInt8, day: UInt8,
hour: UInt8, minute: UInt8, second: UInt8,
dayOfWeek: UInt8
) {
self.year = year
self.month = month
self.day = day
self.hour = hour
self.minute = minute
self.second = second
self.dayOfWeek = dayOfWeek
}
}
}
extension DS3231 {
private enum Register: UInt8 {
case second = 0x00
case agingOffset = 0x10
case alarm2 = 0x0B
case alarm1 = 0x07
case status = 0x0F
case control = 0x0E
case temperature = 0x11
}
private enum SqwMode: UInt8 {
case off = 0x1C
case hz1 = 0x00
case kHz1 = 0x08
case kHz4 = 0x10
case kHz8 = 0x18
}
private func writeRegister(_ reg: Register, _ data: [UInt8]) throws {
var data = data
data.insert(reg.rawValue, at: 0)
let result = i2c.write(data, to: address)
if case .failure(let err) = result {
throw err
}
}
private func writeRegister(_ reg: Register, _ value: UInt8) throws {
let result = i2c.write([reg.rawValue, value], to: address)
if case .failure(let err) = result {
throw err
}
}
private func readRegister(_ reg: Register, into byte: inout UInt8) throws {
var result = i2c.write(reg.rawValue, to: address)
if case .failure(let err) = result {
throw err
}
result = i2c.read(into: &byte, from: address)
if case .failure(let err) = result {
throw err
}
}
private func readRegister(
_ register: Register, into buffer: inout [UInt8], count: Int
) throws {
for i in 0..<buffer.count {
buffer[i] = 0
}
var result = i2c.write(register.rawValue, to: address)
if case .failure(let err) = result {
throw err
}
result = i2c.read(into: &buffer, count: count, from: address)
if case .failure(let err) = result {
throw err
}
}
private func lostPower() -> Bool {
var byte: UInt8 = 0
try? readRegister(Register.status, into: &byte)
let stopFlag = byte >> 7
return stopFlag == 1
}
private func enable32K() {
var byte: UInt8 = 0
try? readRegister(Register.status, into: &byte)
try? writeRegister(Register.status, byte | 0b1000)
}
private func disable32K() {
var byte: UInt8 = 0
try? readRegister(Register.status, into: &byte)
try? writeRegister(Register.status, byte & 0b0111)
}
private func bcdToBin(_ value: UInt8) -> UInt8 {
return value - 6 * (value >> 4)
}
private func binToBcd(_ value: UInt8) -> UInt8 {
return value + 6 * (value / 10)
}
private func setSqwMode(_ mode: SqwMode) {
var byte: UInt8 = 0
try? readRegister(Register.control, into: &byte)
try? writeRegister(Register.control, (byte & 0b0011) | mode.rawValue)
}
private func disableAlarm(_ alarm: Int) {
var byte: UInt8 = 0
try? readRegister(Register.control, into: &byte)
try? writeRegister(Register.control, byte & (~(0b1 << (alarm - 1))))
}
}
| 33.164114 | 106 | 0.566046 |
2602153cebbd91df06a1f82c01d0bab7514b014d | 1,090 | //
// StorageService.swift
// DVPNApp
//
// Created by Lika Vorobyeva on 18.08.2021.
//
import Foundation
import Foundation
final class UserDefaultsStorageStrategy {
private let defaults = UserDefaults.standard
}
// MARK: SettingsStorageStrategyType implementation
extension UserDefaultsStorageStrategy: SettingsStorageStrategyType {
func object<T: Codable>(ofType type: T.Type, forKey key: String) -> T? {
if let data = defaults.value(forKey: key) as? Data,
let object = Serializer.fromData(data, withType: type.self) {
return object
}
return nil
}
func setObject<T: Codable>(_ object: T, forKey key: String) -> Bool {
if let encoded = Serializer.toData(from: object) {
defaults.set(encoded, forKey: key)
return true
}
return false
}
func existsObject(forKey key: String) -> Bool {
return defaults.object(forKey: key) != nil
}
func removeObject(forKey key: String) -> Bool {
defaults.set(nil, forKey: key)
return true
}
}
| 24.772727 | 76 | 0.638532 |
ace6ea0176e6a82cd01329e337613f784dec1f38 | 4,379 | /*:
# 72. Edit Distance
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
Insert a character
Delete a character
Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
*/
/*:
DP - Rolling Array
**Time Complexity:** O(mn)
**Space Complexity:** O(n)
*/
class Solution {
func minDistance(_ word1: String, _ word2: String) -> Int {
// The goal to match word1 & word2
// so eventually w1.last == w2.last
// four scenarios:
// xxc vs xxd: replace last one
// xx vs xxd: add one char
// xxd vs xx: remove one char
// xxa vs xxa: no need to do anything
var w1 = Array(word1)
var w2 = Array(word2)
let m = w1.count
let n = w2.count
let row = Array(repeating: 0, count: n + 1)
var f: [[Int]] = Array(repeating: row, count: 2)
f[0][0] = 0
var old = 0
var now = 0
for i in 0 ... m {
old = now
now = 1 - old
for j in 0 ... n {
if i == 0 {
// need to add j char to make it
f[now][j] = j
continue
}
if j == 0 {
// need to add i char to make it
f[now][j] = i
continue
}
// xxc vs xxd: replace last one
// xx vs xxd: add one char
// xxd vs xx: remove one char
f[now][j] = min(f[old][j], f[now][j-1], f[old][j-1]) + 1
if w1[i-1] == w2[j-1] {
// xxa vs xxa: no need to do anything
f[now][j] = min(f[now][j], f[old][j-1])
}
}
}
return f[now][n]
}
}
/*:
DP - No Rolling Array
**Time Complexity:** O(mn)
**Space Complexity:** O(mn)
*/
class Solution_No_Rolling {
func minDistance(_ word1: String, _ word2: String) -> Int {
// The goal to match word1 & word2
// so eventually w1.last == w2.last
// four scenarios:
// xxc vs xxd: replace last one
// xx vs xxd: add one char
// xxd vs xx: remove one char
// xxa vs xxa: no need to do anything
var w1 = Array(word1)
var w2 = Array(word2)
let m = w1.count
let n = w2.count
let row = Array(repeating: 0, count: n + 1)
var f: [[Int]] = Array(repeating: row, count: m + 1)
f[0][0] = 0
for i in 0 ... m {
for j in 0 ... n {
if i == 0 {
// need to add j char to make it
f[i][j] = j
continue
}
if j == 0 {
// need to add i char to make it
f[i][j] = i
continue
}
// xxc vs xxd: replace last one
// xx vs xxd: add one char
// xxd vs xx: remove one char
f[i][j] = min(f[i-1][j], f[i][j-1], f[i-1][j-1]) + 1
if w1[i-1] == w2[j-1] {
// xxa vs xxa: no need to do anything
f[i][j] = min(f[i][j], f[i-1][j-1])
}
}
}
return f[m][n]
}
}
/*:
## Test
*/
import XCTest
class TestEditDistance: XCTestCase {
func testEditDistance1() {
let s = "horse"
let t = "ros"
let output = 3
let solution = Solution()
let result = solution.minDistance(s, t)
XCTAssertEqual(result, output)
let solution_no_rolling = Solution_No_Rolling()
let result_no_rolling = solution_no_rolling.minDistance(s, t)
XCTAssertEqual(result_no_rolling, output)
}
func testEditDistance2() {
let s = "intention"
let t = "execution"
let output = 5
let solution = Solution()
let result = solution.minDistance(s, t)
XCTAssertEqual(result, output)
let solution_no_rolling = Solution_No_Rolling()
let result_no_rolling = solution_no_rolling.minDistance(s, t)
XCTAssertEqual(result_no_rolling, output)
}
}
TestEditDistance.defaultTestSuite.run()
| 21.465686 | 107 | 0.53277 |
eb098ad1bb573018355296c8bd3897efa6258115 | 363 | import UIKit
/// Conforming types can calculate the size that they require within a layout.
public protocol Measurable {
/// Measures the required size of the receiver.
///
/// - parameter constraint: The size constraint.
///
/// - returns: The layout size needed by the receiver.
func measure(in constraint: SizeConstraint) -> CGSize
}
| 27.923077 | 78 | 0.69146 |
3975e01eda54ca96328b07cc49a2e166c8b9edd8 | 1,572 | //
// TextOutputCallbackTableViewCell.swift
// FRUI
//
// Copyright (c) 2019-2020 ForgeRock. All rights reserved.
//
// This software may be modified and distributed under the terms
// of the MIT license. See the LICENSE file for details.
//
import UIKit
import FRAuth
class TextOutputCallbackTableViewCell: UITableViewCell, FRUICallbackTableViewCell {
public static let cellIdentifier = "TextOutputCallbackTableViewCellId"
public static let cellHeight: CGFloat = 200.0
@IBOutlet weak var textField:FRTextField?
@IBOutlet weak var textView: UITextView?
var callback: TextOutputCallback?
override func awakeFromNib() {
super.awakeFromNib()
// Initialization code
self.textView?.tintColor = FRUI.shared.primaryColor
self.textView?.textColor = FRUI.shared.primaryColor
}
// MARK: - Public
public func updateCellData(callback: Callback) {
self.callback = callback as? TextOutputCallback
self.textView?.text = self.callback?.message
var textColor = FRUI.shared.primaryTextColor
if #available(iOS 13.0, *) {
textColor = UIColor.label
}
switch self.callback?.messageType {
case .error:
textColor = FRUI.shared.errorColor
break
case .warning:
textColor = FRUI.shared.warningColor
break
default:
break
}
self.textView?.tintColor = textColor
self.textView?.textColor = textColor
}
}
| 28.071429 | 83 | 0.641858 |
768d7855be982671fb7fa0f6b5b79a838f2c0169 | 1,860 | //
// ObjectivePGPInterface.swift
// passKit
//
// Created by Danny Moesch on 08.09.19.
// Copyright © 2019 Bob Sun. All rights reserved.
//
import ObjectivePGP
struct ObjectivePGPInterface: PGPInterface {
private let keyring = ObjectivePGP.defaultKeyring
init(publicArmoredKey: String, privateArmoredKey: String) throws {
guard let publicKeyData = publicArmoredKey.data(using: .ascii), let privateKeyData = privateArmoredKey.data(using: .ascii) else {
throw AppError.keyImport
}
let publicKeys = try ObjectivePGP.readKeys(from: publicKeyData)
let privateKeys = try ObjectivePGP.readKeys(from: privateKeyData)
keyring.import(keys: publicKeys)
keyring.import(keys: privateKeys)
guard publicKeys.first != nil, privateKeys.first != nil else {
throw AppError.keyImport
}
}
func decrypt(encryptedData: Data, keyID _: String?, passphrase: String) throws -> Data? {
try ObjectivePGP.decrypt(encryptedData, andVerifySignature: false, using: keyring.keys) { _ in passphrase }
}
func encrypt(plainData: Data, keyID _: String?) throws -> Data {
let encryptedData = try ObjectivePGP.encrypt(plainData, addSignature: false, using: keyring.keys, passphraseForKey: nil)
if Defaults.encryptInArmored {
return Armor.armored(encryptedData, as: .message).data(using: .ascii)!
}
return encryptedData
}
func containsPublicKey(with keyID: String) -> Bool {
keyring.findKey(keyID)?.isPublic ?? false
}
func containsPrivateKey(with keyID: String) -> Bool {
keyring.findKey(keyID)?.isSecret ?? false
}
var keyID: [String] {
keyring.keys.map(\.keyID.longIdentifier)
}
var shortKeyID: [String] {
keyring.keys.map(\.keyID.shortIdentifier)
}
}
| 33.818182 | 137 | 0.672043 |
67fd4c52226e4c1c1399dfa4c33679ffe5970160 | 628 | //
// MovieCell.swift
// Flix
//
// Created by Mac on 6/25/1397 AP.
// Copyright © 1397 Abraham Asmile. All rights reserved.
//
import UIKit
class MovieCell: UITableViewCell {
@IBOutlet weak var posterImageView: UIImageView!
@IBOutlet weak var titleLabel: UILabel!
@IBOutlet weak var overviewLabel: UILabel!
override func awakeFromNib() {
super.awakeFromNib()
// Initialization code
}
override func setSelected(_ selected: Bool, animated: Bool) {
super.setSelected(selected, animated: animated)
// Configure the view for the selected state
}
}
| 20.933333 | 65 | 0.659236 |
48d5be72331d7a1f9862c1fbdc9c1a07971c4e72 | 747 | import XCTest
import FeeRateKit
class Tests: XCTestCase {
override func setUp() {
super.setUp()
// Put setup code here. This method is called before the invocation of each test method in the class.
}
override func tearDown() {
// Put teardown code here. This method is called after the invocation of each test method in the class.
super.tearDown()
}
func testExample() {
// This is an example of a functional test case.
XCTAssert(true, "Pass")
}
func testPerformanceExample() {
// This is an example of a performance test case.
self.measure() {
// Put the code you want to measure the time of here.
}
}
}
| 25.758621 | 111 | 0.601071 |
29fe0f6decbd51042865db80a2a4715c88ef4a15 | 2,213 | //
// NetworkHelper.swift
// CheckinNCheckOut
//
// Created by Ashli Rankin on 2/8/19.
// Copyright © 2019 Ashli Rankin. All rights reserved.
//
import Foundation
final class NetworkHelper {
private init() {}
static let shared = NetworkHelper()
func performDataTask(endpointURLString: String,
httpMethod: String,
httpBody: Data?,
handler: @escaping (AppError?, Data?) -> Void) {
guard let url = URL(string: endpointURLString) else {
handler(AppError.badURL(endpointURLString), nil)
return
}
var request = URLRequest(url: url)
request.httpMethod = httpMethod
request.httpBody = httpBody
let task = URLSession.shared.dataTask(with: request) { (data, response, error) in
if let error = error {
handler(AppError.networkError(error), nil)
}
guard let httpResponse = response as? HTTPURLResponse,
(200...299).contains(httpResponse.statusCode) else {
let statusCode = (response as? HTTPURLResponse)?.statusCode ?? -999
handler(AppError.badStatusCode(String(statusCode)), nil)
return
}
if let data = data {
handler(nil, data)
}
}
task.resume()
}
public func performUploadTask(endpointURLString: String,
httpMethod: String,
httpBody: Data?,
completionHandler: @escaping (AppError?, Data?, HTTPURLResponse?) ->Void) {
guard let url = URL(string: endpointURLString) else {
completionHandler(AppError.badURL("\(endpointURLString)"), nil, nil)
return
}
var request = URLRequest(url: url)
request.httpMethod = httpMethod
request.setValue("application/json", forHTTPHeaderField: "Content-Type")
let task = URLSession.shared.uploadTask(with: request, from: httpBody) { (data, response, error) in
if let error = error {
completionHandler(AppError.networkError(error), nil, response as? HTTPURLResponse)
return
} else if let data = data {
completionHandler(nil, data, response as? HTTPURLResponse)
}
}
task.resume()
}
}
| 34.046154 | 107 | 0.619069 |
e6c78156435e0f34a1f83f78c1fdf6bed8c18844 | 2,005 | /*
Copyright (c) 2014 Yichi Zhang
https://github.com/yichizhang
[email protected]
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
NO MORE
CGFloat( UInt( arc4random_uniform( UInt32( UInt( someCGFloat ) ) ) ) )
*/
import Foundation
import UIKit
extension String {
var floatValue: Float {
return (self as NSString).floatValue
}
var intValue: Int32 {
return (self as NSString).intValue
}
var integerValue: Int {
return (self as NSString).integerValue
}
var CGFloatValue: CGFloat {
return CGFloat( (self as NSString).floatValue )
}
var NSStringValue: NSString {
return (self as NSString)
}
}
extension CGFloat {
var UInt32Value: UInt32 {
return UInt32(UInt(self))
}
}
extension Double {
var CGFloatValue: CGFloat {
return CGFloat(self)
}
}
extension Float {
var CGFloatValue: CGFloat {
return CGFloat(self)
}
}
extension Int {
var CGFloatValue: CGFloat {
return CGFloat(self)
}
}
extension UInt32 {
var CGFloatValue: CGFloat {
return CGFloat(UInt(self))
}
}
| 25.705128 | 460 | 0.752618 |
8ff86b4a7c241f196571215c2569c592a0bc3615 | 867 | //
// Episode.swift
// Podcasts
//
// Created by Yu Tawata on 2020/08/18.
//
import Foundation
public struct Episode: Equatable, Codable {
public var title: String?
public var desc: String?
public var pubDate: Date?
public var link: URL?
public var subtitle: String?
public var duration: TimeInterval?
public var imageUrl: URL?
public var enclosure: URL?
public init(
title: String?,
desc: String?,
pubDate: Date?,
link: URL?,
subtitle: String?,
duration: TimeInterval?,
imageUrl: URL?,
enclosure: URL?
) {
self.title = title
self.desc = desc
self.pubDate = pubDate
self.link = link
self.subtitle = subtitle
self.duration = duration
self.imageUrl = imageUrl
self.enclosure = enclosure
}
}
| 21.675 | 43 | 0.588235 |
2001fe1e2cf6c01cd37f322def801c7be2d5995e | 1,623 | //
// YZSimpleAudioRecorder.swift
// twochat
//
// Created by Yichi on 2/01/2015.
// Copyright (c) 2015 Yichi Zhang. All rights reserved.
//
import Foundation
import AVFoundation
import UIKit
class YZSimpleAudioRecorder: NSObject, AVAudioRecorderDelegate {
var audioRecorder:AVAudioRecorder?
func startRecordingAndSaveToURL(url:NSURL){
var recordSettings =
[
AVFormatIDKey: kAudioFormatLinearPCM,
AVSampleRateKey: 44100.0,
AVNumberOfChannelsKey: 2,
AVLinearPCMBitDepthKey: 16,
AVLinearPCMIsBigEndianKey: false,
AVLinearPCMIsFloatKey: false
]
var error:NSError?
AVAudioSession.sharedInstance().setCategory(AVAudioSessionCategoryRecord, error: &error)
if(error != nil){ println(error?.localizedDescription); error = nil; return; }
self.audioRecorder = AVAudioRecorder(URL: url, settings: recordSettings, error:&error)
self.audioRecorder?.delegate = self
self.audioRecorder?.meteringEnabled = true;
if (self.audioRecorder?.prepareToRecord() == true){
self.audioRecorder?.record()
}
if(error != nil){ println(error?.localizedDescription); error = nil; return; }
}
func pauseRecording() {
self.audioRecorder?.pause()
}
func stopRecording() {
self.audioRecorder?.stop()
}
func audioRecorderDidFinishRecording(recorder: AVAudioRecorder!, successfully flag: Bool) {
println("Audio recorder record result: \(flag)")
self.audioRecorder?.delegate = nil
self.audioRecorder = nil
}
func audioRecorderEncodeErrorDidOccur(recorder: AVAudioRecorder!, error: NSError!) {
println(error.localizedDescription)
}
}
| 22.859155 | 92 | 0.730129 |
bb287aabb7b8cd6fe01e2ef09c71507b154b7e80 | 3,413 | //
// SceneKitViewController.swift
// one
//
// Created by sidney on 4/22/21.
//
import UIKit
import SceneKit
import QuartzCore // for the basic animation
class SceneKitViewController: BaseViewController {
var sceneView = SCNView()
var sceneView2 = SCNView()
override func viewDidLoad() {
super.viewDidLoad()
title = "SceneKit"
setCustomNav()
setup1()
setup2()
// Do any additional setup after loading the view.
}
func setup1() {
let scene = SCNScene()
sceneView.scene = scene
sceneView.backgroundColor = .lightGray
sceneView.showsStatistics = true
sceneView.allowsCameraControl = true
sceneView.autoenablesDefaultLighting = true
view.addSubview(sceneView)
sceneView.snp.makeConstraints { (maker) in
maker.top.equalTo(navigationView.snp.bottom)
maker.leading.trailing.equalToSuperview()
maker.height.equalTo(300)
}
// camera
let cameraNode = SCNNode()
cameraNode.camera = SCNCamera()
cameraNode.position = SCNVector3(x: 0, y: 0, z: 5)
scene.rootNode.addChildNode(cameraNode)
// geometry object
let torus = SCNTorus(ringRadius: 1, pipeRadius: 0.35)
let torusNode = SCNNode(geometry: torus)
scene.rootNode.addChildNode(torusNode)
// configure the geometry object
torus.firstMaterial?.diffuse.contents = UIColor.red.withAlphaComponent(0.3)
torus.firstMaterial?.specular.contents = UIColor.white
torusNode.rotation = SCNVector4(x: 2.0, y: 2.0, z: 2.0, w: 1.0)
// animate the rotation of the torus
// let spin = CABasicAnimation(keyPath: "rotation.w") // only animate the angle
// spin.toValue = 2.0 * Double.pi
// spin.duration = 3
// spin.repeatCount = HUGE // for infinity
// torusNode.addAnimation(spin, forKey: "spin around")
}
func setup2() {
view.addSubview(sceneView2)
sceneView2.snp.makeConstraints { (maker) in
maker.top.equalTo(sceneView.snp.bottom)
maker.leading.trailing.equalToSuperview()
maker.height.equalTo(SCREEN_HEIGHT - 300 - 44 - STATUS_BAR_HEIGHT)
}
let scene = SCNScene(named: "BrickLandspeeder4501.obj")
let cameraNode = SCNNode()
cameraNode.camera = SCNCamera()
cameraNode.position = SCNVector3(x: 0, y: 0, z: 5)
scene?.rootNode.addChildNode(cameraNode)
let lightNode = SCNNode()
lightNode.light = SCNLight()
lightNode.light?.intensity = 100
lightNode.light?.type = .omni
lightNode.position = SCNVector3(x: 0, y: 5, z: 5)
scene?.rootNode.addChildNode(lightNode)
// 6: Creating and adding ambien light to scene
let ambientLightNode = SCNNode()
ambientLightNode.light = SCNLight()
ambientLightNode.light?.type = .ambient
ambientLightNode.light?.color = UIColor.lightGray
scene?.rootNode.addChildNode(ambientLightNode)
// Allow user to manipulate camera
sceneView2.allowsCameraControl = true
sceneView2.backgroundColor = UIColor.scheduleMapPositionBkg
sceneView2.cameraControlConfiguration.allowsTranslation = false
sceneView2.scene = scene
}
}
| 33.135922 | 86 | 0.629651 |
76ae6a0b52327355e5ed035c27edfb27c733806d | 228 | //
// TCNewFeatureCell.swift
// TCNewFeatureViewProject
//
// Created by tardis_cxx on 2017-5-11.
// Copyright © 2017年 tardis_cxx. All rights reserved.
//
import UIKit
class TCNewFeatureCell: UICollectionViewCell {
}
| 16.285714 | 54 | 0.723684 |
2965c2d8afcd7e78486cdd7f4ea79fd108f28088 | 3,330 | //
// Copyright (c) 2019 Hilton Campbell
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
import Foundation
public extension Dictionary {
init(_ elements: [(Key, Value)]) {
self.init()
for (key, value) in elements {
self[key] = value
}
}
/// Passthrough 'safe' subscript to make linters happy
/// (because SwiftLint can't currently differentiate between array and dictionary subscripts)
subscript(safe key: Key) -> Value? {
get {
return self[key]
}
set {
self[key] = newValue
}
}
/// Returns the union of `self` and the other dictionaries. If more than
/// one dictionary has the same key, it will take on the rightmost
/// dictionary's value.
func union(_ first: Dictionary, _ rest: Dictionary...) -> Dictionary {
var result = self
for dictionary in [first] + rest {
for (key, value) in dictionary {
result[key] = value
}
}
return result
}
/// Unions the other dictionaries with `self`. If more than
/// one dictionary has the same key, it will take on the rightmost
/// dictionary's value.
mutating func formUnion(_ first: Dictionary, _ rest: Dictionary...) {
for dictionary in [first] + rest {
for (key, value) in dictionary {
self[key] = value
}
}
}
/// Returns an Array with values generated by running each [key: value] of self through the mapFunction.
func toArray<V>(_ map: (Key, Value) -> V) -> [V] {
var mapped = [V]()
for (key, value) in self {
mapped.append(map(key, value))
}
return mapped
}
}
/// Returns the union of the two dictionaries. For any keys that both
/// dictionaries have in common, the result will take on the value from the
/// right dictionary.
public func | <K, V>(lhs: Dictionary<K, V>, rhs: Dictionary<K, V>) -> Dictionary<K, V> {
return lhs.union(rhs)
}
/// Unions two dictionaries. For any keys that both dictionaries have
/// in common, the left dictionary will take on the value from the right.
public func |= <K, V>(lhs: inout Dictionary<K, V>, rhs: Dictionary<K, V>) {
lhs.formUnion(rhs)
}
| 37 | 108 | 0.645345 |
56a9b1d16287f5191c2995276c3052502be0cc78 | 1,621 | // Copyright © 2017-2019 Trust Wallet.
//
// This file is part of Trust. The full Trust copyright notice, including
// terms governing use, modification, and redistribution, is contained in the
// file LICENSE at the root of the source code distribution tree.
//
// This is a GENERATED FILE, changes made here WILL BE LOST.
//
import Foundation
public final class Account {
public var address: String {
return TWStringNSString(TWAccountAddress(rawValue))
}
public var derivationPath: String {
return TWStringNSString(TWAccountDerivationPath(rawValue))
}
public var extendedPublicKey: String {
return TWStringNSString(TWAccountExtendedPublicKey(rawValue))
}
public var coin: CoinType {
return CoinType(rawValue: TWAccountCoin(rawValue).rawValue)!
}
let rawValue: OpaquePointer
init(rawValue: OpaquePointer) {
self.rawValue = rawValue
}
public init(address: String, derivationPath: String, extendedPublicKey: String) {
let addressString = TWStringCreateWithNSString(address)
defer {
TWStringDelete(addressString)
}
let derivationPathString = TWStringCreateWithNSString(derivationPath)
defer {
TWStringDelete(derivationPathString)
}
let extendedPublicKeyString = TWStringCreateWithNSString(extendedPublicKey)
defer {
TWStringDelete(extendedPublicKeyString)
}
rawValue = TWAccountCreate(addressString, derivationPathString, extendedPublicKeyString)
}
deinit {
TWAccountDelete(rawValue)
}
}
| 28.438596 | 96 | 0.696484 |
ebde1fbc903ceaf4c88053056666a16d0001f48e | 3,981 | //
// INSHuDongTalkCell.swift
// HaveYouReadToday
//
// Created by Flamingo on 2020/12/12.
//
import UIKit
class INSHuDongTalkCell: UITableViewCell, TableCellInterface {
static let reuseID = "INSHuDongTalkCell"
@IBOutlet weak var timeLabel: UILabel!
@IBOutlet weak var headImgView: UIImageView!
@IBOutlet weak var nameLabel: UILabel!
@IBOutlet weak var titleLabel: UILabel!
@IBOutlet weak var contentLabel: UILabel!
@IBOutlet weak var countLabel: UILabel!
@IBOutlet weak var contentImgView: UIImageView!
@IBOutlet weak var contentImgViewH: NSLayoutConstraint!
@IBOutlet weak var contentImgViewT:NSLayoutConstraint!
var userModel: INSUserModel?
var model: TableCellModelInterface? {
didSet {
if let cellModel = model as? INSHuDongTalkCellModel {
let talkModel: INSTalkModel = cellModel.model
userModel = talkModel.user
headImgView.sd_setImage(with: URL(string: (talkModel.user?.head)!), placeholderImage: #imageLiteral(resourceName: "pic_user_default"), options: .continueInBackground, completed: nil)
nameLabel.text = talkModel.user?.nickName
timeLabel.text = talkModel.publishTime?.getPublishTimeStr()
let contentStr = talkModel.content?.trimmingCharacters(in: .whitespacesAndNewlines)
contentLabel.text = contentStr
//设置行距
let attStr = NSMutableAttributedString(string: contentStr!)
let paragraphStyle = NSMutableParagraphStyle()
paragraphStyle.lineSpacing = 5
attStr.addAttribute(NSAttributedString.Key.paragraphStyle, value:paragraphStyle, range:NSMakeRange(0, attStr.length))
contentLabel.attributedText = attStr;
if contentStr!.count >= 10
{
titleLabel.text = contentStr?.subString(to: 10)
}
else if contentStr!.count >= 8 && contentStr!.count < 10
{
titleLabel.text = contentStr?.subString(to: 8)
}
else if contentStr!.count >= 6 && contentStr!.count < 8
{
titleLabel.text = contentStr?.subString(to: 6)
}
else
{
titleLabel.text = ""
}
if let picStr = talkModel.picture {
if picStr.count >= 1 {
if picStr.subString(to: 1) != "h" {
contentImgView.isHidden = true
contentImgViewH.constant = 0
contentImgViewT.constant = 0
} else {
contentImgView.isHidden = false
contentImgViewH.constant = ((KScreenWidth - 165) * 4)/3
contentImgViewT.constant = 30
contentImgView.sd_setImage(with: URL(string: picStr), placeholderImage: #imageLiteral(resourceName: "talk_default"), options: .continueInBackground, completed: nil)
}
}
}
let count: Int = Int(arc4random() % 150) + 33
countLabel.text = "总共\(count)人浏览过"
}
}
}
override func awakeFromNib() {
super.awakeFromNib()
backgroundColor = .clear
selectionStyle = .none
headImgView.setRadius(25)
contentImgView.setRadius(10)
}
@IBAction func headBtnClicked(_ sender: Any) {
let vc = INSDynamicViewController()
vc.userModel = userModel
currentViewController()?.navigationController?.pushViewController(vc, animated: true)
}
}
| 38.650485 | 198 | 0.545089 |
918088050e926dae7aa5bfeaa86b2ea2ef7e3214 | 14,831 | //
// Copyright © FINN.no AS, Inc. All rights reserved.
//
import CoreLocation
import FinniversKit
import UIKit
public protocol LocationInfo {
var name: String { get }
var latitude: Double { get }
var longitude: Double { get }
}
extension CLLocationCoordinate2D: LocationInfo {
public var name: String {
return ""
}
}
public enum SearchLocationDataSourceResult {
case finished(text: String, locations: [LocationInfo])
case cancelled
case failed(error: Error)
}
public protocol SearchLocationDataSource: AnyObject {
func searchLocationViewController(_ searchLocationViewController: SearchLocationViewController, didRequestLocationsFor searchQuery: String, completion: @escaping ((_ result: SearchLocationDataSourceResult) -> Void))
func recentLocation(in searchLocationViewController: SearchLocationViewController) -> [LocationInfo]
func homeAddressLocation(in searchLocationViewController: SearchLocationViewController) -> LocationInfo?
func showCurrentLocation(in searchLocationViewController: SearchLocationViewController) -> Bool
}
public protocol SearchLocationViewControllerDelegate: AnyObject {
func searchLocationViewControllerWillBeginEditing(_ searchLocationViewController: SearchLocationViewController)
func searchLocationViewControllerDidCancelSearch(_ searchLocationViewController: SearchLocationViewController)
func searchLocationViewController(_ searchLocationViewController: SearchLocationViewController, didSelectLocation location: LocationInfo?)
func searchLocationViewControllerDidSelectCurrentLocation(_ searchLocationViewController: SearchLocationViewController)
}
public class SearchLocationViewController: ScrollViewController {
private enum Section: Int, CaseIterable {
case homeAddress = 0
case currentLocation
case recentLocations
case results
}
// MARK: - Public Properties
public weak var delegate: SearchLocationViewControllerDelegate?
public weak var searchLocationDataSource: SearchLocationDataSource?
// MARK: - Private Properties
private var locations: [LocationInfo] = []
private var didClearText = false
private var selectedLocation: LocationInfo?
private var recentLocations: [LocationInfo] {
return searchLocationDataSource?.recentLocation(in: self) ?? []
}
private(set) lazy var searchBar: UISearchBar = {
let searchBar = SearchLocationSearchBar(frame: .zero)
searchBar.placeholder = "map.search.placeholder".localized()
searchBar.searchBarStyle = .minimal
searchBar.delegate = self
searchBar.backgroundColor = Theme.mainBackground
searchBar.translatesAutoresizingMaskIntoConstraints = false
searchBar.preservesSuperviewLayoutMargins = false
return searchBar
}()
private lazy var tableView: UITableView = {
let tableView = UITableView(frame: .zero, style: .plain)
tableView.dataSource = self
tableView.delegate = self
tableView.separatorStyle = .none
tableView.register(IconTitleTableViewCell.self)
tableView.register(BasicTableViewCell.self)
tableView.translatesAutoresizingMaskIntoConstraints = false
return tableView
}()
private var searchResultsSectionActive: Bool {
return !(searchBar.text?.isEmpty ?? true)
}
private var showHomeAddressOption: Bool {
return !searchResultsSectionActive && (searchLocationDataSource?.homeAddressLocation(in: self) != nil)
}
private var showCurrentLocationOption: Bool {
return !searchResultsSectionActive && (searchLocationDataSource?.showCurrentLocation(in: self) ?? false)
}
public override func scrollViewDidScroll(_ scrollView: UIScrollView) {
super.scrollViewDidScroll(scrollView)
view.endEditing(false)
}
}
// MARK: - TableView DataSource
extension SearchLocationViewController: UITableViewDataSource {
public func numberOfSections(in tableView: UITableView) -> Int {
return Section.allCases.count
}
public func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
guard let section = Section(rawValue: section) else {
return 0
}
switch section {
case .homeAddress:
return showHomeAddressOption ? 1 : 0
case .currentLocation:
return showCurrentLocationOption ? 1 : 0
case .recentLocations:
return !searchResultsSectionActive ? recentLocations.count : 0
case .results:
return locations.count
}
}
public func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) -> UITableViewCell {
guard let section = Section(rawValue: indexPath.section) else {
return tableView.dequeue(IconTitleTableViewCell.self, for: indexPath)
}
switch section {
case .homeAddress:
let cell = tableView.dequeue(IconTitleTableViewCell.self, for: indexPath)
cell.configure(with: HomeAddressCellViewModel())
cell.iconImageView.tintColor = .watermelon
return cell
case .currentLocation:
let cell = tableView.dequeue(IconTitleTableViewCell.self, for: indexPath)
cell.configure(with: CurrentLocationCellViewModel())
cell.iconImageView.tintColor = .watermelon
return cell
case .recentLocations:
let cell = tableView.dequeue(IconTitleTableViewCell.self, for: indexPath)
let location = recentLocations[safe: indexPath.row]
cell.configure(with: LocationCellViewModel(title: location?.name ?? ""))
return cell
case .results:
let cell = tableView.dequeue(BasicTableViewCell.self, for: indexPath)
let location = locations[safe: indexPath.row]
cell.configure(with: LocationCellViewModel(title: location?.name ?? ""))
return cell
}
}
}
// MARK: - TableView Delegate
extension SearchLocationViewController: UITableViewDelegate {
public func tableView(_ tableView: UITableView, didSelectRowAt indexPath: IndexPath) {
guard let section = Section(rawValue: indexPath.section) else {
return
}
tableView.deselectRow(at: indexPath, animated: true)
endSearchBarEdit()
switch section {
case .homeAddress:
let location = searchLocationDataSource?.homeAddressLocation(in: self)
searchBar.text = location?.name
delegate?.searchLocationViewController(self, didSelectLocation: location)
selectedLocation = location
case .currentLocation:
searchBar.text = nil
delegate?.searchLocationViewControllerDidSelectCurrentLocation(self)
case .recentLocations:
let location = recentLocations[safe: indexPath.row]
searchBar.text = location?.name
delegate?.searchLocationViewController(self, didSelectLocation: location)
selectedLocation = location
case .results:
let location = locations[safe: indexPath.row]
searchBar.text = location?.name
delegate?.searchLocationViewController(self, didSelectLocation: location)
selectedLocation = location
}
}
}
// MARK: - SearchBar Delegate
extension SearchLocationViewController: UISearchBarDelegate {
public func searchBarShouldBeginEditing(_ searchBar: UISearchBar) -> Bool {
// User clicked the x-button and cleared the text -> should not begin editing
guard !didClearText else {
didClearText = false
return false
}
// Present if needed
if searchBar.superview != view {
setup()
if let searchText = searchBar.text {
loadLocations(forSearchText: searchText)
}
}
delegate?.searchLocationViewControllerWillBeginEditing(self)
return true
}
public func searchBarTextDidBeginEditing(_ searchBar: UISearchBar) {
searchBar.setShowsCancelButton(true, animated: false)
}
public func searchBarSearchButtonClicked(_ searchBar: UISearchBar) {}
public func searchBarCancelButtonClicked(_ searchBar: UISearchBar) {
endSearchBarEdit()
if let selectedLocation = selectedLocation {
// return to previous search
searchBar.text = selectedLocation.name
loadLocations(forSearchText: selectedLocation.name)
delegate?.searchLocationViewController(self, didSelectLocation: selectedLocation)
} else {
delegate?.searchLocationViewControllerDidCancelSearch(self)
selectedLocation = nil
searchBar.text = nil
searchBar.setShowsCancelButton(false, animated: false)
loadLocations(forSearchText: nil)
}
}
public func searchBar(_ searchBar: UISearchBar, textDidChange searchText: String) {
// If not active, the user clicked the x-button while not editing and the search should be cancelled
if !searchBar.isDescendant(of: view), searchText.isEmpty {
didClearText = true
delegate?.searchLocationViewControllerDidCancelSearch(self)
selectedLocation = nil
loadLocations(forSearchText: nil)
return
}
// If the user clears the search field and then hits cancel, the search is cancelled
if selectedLocation != nil, searchText.isEmpty {
selectedLocation = nil
}
loadLocations(forSearchText: searchText)
}
}
// MARK: - Private methods
private extension SearchLocationViewController {
func endSearchBarEdit() {
searchBar.endEditing(false)
searchBar.setShowsCancelButton(false, animated: false)
}
func loadLocations(forSearchText searchText: String?) {
locations.removeAll()
tableView.reloadData()
guard let searchText = searchText, !searchText.isEmpty else { return }
searchLocationDataSource?.searchLocationViewController(self, didRequestLocationsFor: searchText, completion: { [weak self] result in
switch result {
case .cancelled:
return
case let .failed(error):
// TODO: handle error when searching
DebugLog.write("Location search error: \(error)")
return
case let .finished(text, locations):
DispatchQueue.main.async {
guard let query = self?.searchBar.text else { return }
if query == text {
self?.locations = locations
self?.tableView.reloadData()
}
}
}
})
}
func setup() {
view.backgroundColor = UIColor.bgPrimary.withAlphaComponent(0.9)
tableView.backgroundColor = UIColor.clear
searchBar.removeFromSuperview()
view.insertSubview(tableView, belowSubview: topShadowView)
view.addSubview(searchBar)
NSLayoutConstraint.activate([
searchBar.leadingAnchor.constraint(equalTo: view.leadingAnchor, constant: .spacingS),
searchBar.topAnchor.constraint(equalTo: view.topAnchor),
searchBar.trailingAnchor.constraint(equalTo: view.trailingAnchor, constant: -.spacingS),
topShadowView.bottomAnchor.constraint(equalTo: searchBar.bottomAnchor),
tableView.leadingAnchor.constraint(equalTo: view.leadingAnchor),
tableView.topAnchor.constraint(equalTo: searchBar.bottomAnchor),
tableView.trailingAnchor.constraint(equalTo: view.trailingAnchor),
tableView.bottomAnchor.constraint(equalTo: view.bottomAnchor),
])
}
}
// MARK: - Private class
private class SearchLocationSearchBar: UISearchBar {
// Makes sure to setup appearance proxy one time and one time only
private static let setupSearchBarAppereanceOnce: () = {
let textFieldAppearanceInSearch = UITextField.appearance(whenContainedInInstancesOf: [SearchLocationSearchBar.self])
textFieldAppearanceInSearch.defaultTextAttributes = [
NSAttributedString.Key.foregroundColor: UIColor.textPrimary,
NSAttributedString.Key.font: UIFont.bodyRegular,
]
let barButtondAppearance = UIBarButtonItem.appearance(whenContainedInInstancesOf: [SearchLocationSearchBar.self])
barButtondAppearance.setTitleTextAttributes([.font: UIFont.bodyRegular])
barButtondAppearance.title = "cancel".localized()
}()
override init(frame: CGRect) {
_ = SearchLocationSearchBar.setupSearchBarAppereanceOnce
super.init(frame: frame)
smartQuotesType = .no
smartDashesType = .no
}
required init?(coder aDecoder: NSCoder) {
_ = SearchLocationSearchBar.setupSearchBarAppereanceOnce
super.init(coder: aDecoder)
smartQuotesType = .no
smartDashesType = .no
}
}
private struct HomeAddressCellViewModel: IconTitleTableViewCellViewModel {
let detailText: String? = nil
var icon: UIImage? {
return UIImage(named: .homeAddressIcon).withRenderingMode(.alwaysTemplate)
}
var iconTintColor: UIColor? {
return nil
}
var title: String {
return "map.homeAddress".localized()
}
var subtitle: String? {
return nil
}
var hasChevron: Bool {
return false
}
}
private struct CurrentLocationCellViewModel: IconTitleTableViewCellViewModel {
let detailText: String? = nil
var icon: UIImage? {
return UIImage(named: .currentLocationIcon).withRenderingMode(.alwaysTemplate)
}
var iconTintColor: UIColor? {
return nil
}
var title: String {
return "map.currentLocation".localized()
}
var subtitle: String? {
return nil
}
var hasChevron: Bool {
return false
}
}
private struct RecentLocationCellViewModel: IconTitleTableViewCellViewModel {
let detailText: String? = nil
var icon: UIImage? {
return UIImage(named: .searchSmall)
}
var iconTintColor: UIColor? {
return nil
}
let title: String
var subtitle: String? {
return nil
}
var hasChevron: Bool {
return false
}
}
private struct LocationCellViewModel: IconTitleTableViewCellViewModel {
let detailText: String? = nil
var icon: UIImage? {
return nil
}
var iconTintColor: UIColor? {
return nil
}
let title: String
var subtitle: String? {
return nil
}
var hasChevron: Bool {
return false
}
}
| 35.14455 | 219 | 0.677095 |
e06c35e31ff18fdf2cc5352cbd9a6107856fc7b3 | 5,159 | // RUN: %target-swift-frontend(mock-sdk: %clang-importer-sdk) -typecheck %s -verify
// REQUIRES: objc_interop
import CoreFoundation
import Foundation
func testCFToObjC(_ cfStr: CFString, cfMutableStr: CFMutableString) {
var nsStr: NSString = cfStr
nsStr = cfMutableStr
_ = nsStr
var nsMutableStr: NSMutableString = cfMutableStr
nsMutableStr = cfStr // expected-error{{cannot assign value of type 'CFString' to type 'NSMutableString'}}
// sanity check
nsStr = nsMutableStr
}
func testObjCToCF(_ nsStr: NSString, nsMutableStr: NSMutableString) {
var cfStr: CFString = nsStr
cfStr = nsMutableStr
var cfMutableStr: CFMutableString = nsMutableStr
cfMutableStr = cfStr // expected-error{{cannot assign value of type 'CFString' to type 'CFMutableString'}}
// sanity check
cfStr = cfMutableStr
}
func testCFToNative(_ cfStr: CFString, cfMutableStr: CFMutableString) {
var str = cfStr as String
str = cfMutableStr as String
_ = str
}
func testNativeToCF(_ str: String) {
var cfStr = str as CFString
var cfMutableStr = str as CFMutableString // expected-error{{'String' is not convertible to 'CFMutableString'}}
// expected-note@-1{{did you mean to use 'as!' to force downcast?}} {{26-28=as!}}
}
func testCFToAnyObject(_ cfStr: CFString, cfMutableStr: CFMutableString,
cfTree: CFTree) {
var anyObject: AnyObject = cfStr
anyObject = cfMutableStr
anyObject = cfTree
_ = anyObject
}
func testAnyObjectToCF(_ anyObject: AnyObject) {
var cfStr: CFString = anyObject as! CFString
var _: CFMutableString = anyObject as! CFMutableString
var _: CFTree = anyObject as! CFTree
// No implicit conversions.
cfStr = anyObject // expected-error{{'AnyObject' is not convertible to 'CFString'}}
// expected-note@-1{{did you mean to use 'as!' to force downcast?}} {{20-20= as! CFString}}
_ = cfStr
}
func testUncheckableCasts(_ anyObject: AnyObject, nsObject: NSObject,
anyObjectType: AnyObject.Type,
nsObjectType: NSObject.Type) {
if let _ = anyObject as? CFString { } // expected-error{{conditional downcast to CoreFoundation type 'CFString' will always succeed}} expected-note{{did you mean to explicitly compare the CFTypeIDs of 'anyObject' and 'CFString'}}
if let _ = nsObject as? CFString { } // expected-error{{conditional downcast to CoreFoundation type 'CFString' will always succeed}} expected-note{{did you mean to explicitly compare the CFTypeIDs of 'nsObject' and 'CFString'}}
if let _ = anyObject as? CFTree { } // expected-error{{conditional downcast to CoreFoundation type 'CFTree' will always succeed}} expected-note{{did you mean to explicitly compare the CFTypeIDs of 'anyObject' and 'CFTree'}}
if let _ = nsObject as? CFTree { } // expected-error{{will always succeed}} expected-note{{did you mean to explicitly compare the CFTypeIDs of 'nsObject' and 'CFTree'}}
if let _ = anyObjectType as? CFString.Type { } // expected-error{{conditional downcast to CoreFoundation type 'CFString.Type' will always succeed}} expected-note{{did you mean to explicitly compare the CFTypeIDs of 'anyObjectType' and 'CFString.Type'}}
if let _ = nsObjectType as? CFString.Type { } // expected-error{{conditional downcast to CoreFoundation type 'CFString.Type' will always succeed}} expected-note{{did you mean to explicitly compare the CFTypeIDs of 'nsObjectType' and 'CFString.Type'}}
if let _ = anyObjectType as? CFTree.Type { } // expected-error{{conditional downcast to CoreFoundation type 'CFTree.Type' will always succeed}} expected-note{{did you mean to explicitly compare the CFTypeIDs of 'anyObjectType' and 'CFTree.Type'}}
if let _ = nsObjectType as? CFTree.Type { } // expected-error{{will always succeed}} expected-note{{did you mean to explicitly compare the CFTypeIDs of 'nsObjectType' and 'CFTree.Type'}}
}
func testCFConvWithIUO(_ x: CFString!, y: NSString!) {
func acceptCFString(_ a: CFString!) { }
func acceptNSString(_ b: NSString!) { }
acceptNSString(x)
acceptCFString(y)
}
func testBridgedCFDowncast(array: [Any], dictionary: [AnyHashable : Any], set: Set<AnyHashable>) {
let cfArray = array as CFArray
let cfDictionary = dictionary as CFDictionary
let cfSet = set as CFSet
_ = array as? CFArray // expected-warning {{conditional cast from '[Any]' to 'CFArray' always succeeds}}
_ = dictionary as? CFDictionary // expected-warning {{conditional cast from '[AnyHashable : Any]' to 'CFDictionary' always succeeds}}
_ = set as? CFSet // expected-warning {{conditional cast from 'Set<AnyHashable>' to 'CFSet' always succeeds}}
_ = array as! CFArray // expected-warning {{forced cast from '[Any]' to 'CFArray' always succeeds}}
_ = dictionary as! CFDictionary // expected-warning {{forced cast from '[AnyHashable : Any]' to 'CFDictionary' always succeeds}}
_ = set as! CFSet // expected-warning {{forced cast from 'Set<AnyHashable>' to 'CFSet' always succeeds}}
_ = cfArray as! [Any]
_ = cfDictionary as! [AnyHashable : Any]
_ = cfSet as! Set<AnyHashable>
_ = cfArray as? [Any]
_ = cfDictionary as? [AnyHashable : Any]
_ = cfSet as? Set<AnyHashable>
}
| 47.768519 | 254 | 0.723978 |
8f3d8ba7e816c56250aab1c2ba48ea7b0baeb404 | 921 | //
// CouponConfirmationModel.swift
// aboon
//
// Created by 原口和音 on 2018/08/12.
// Copyright © 2018年 aboon. All rights reserved.
//
import UIKit
import Firebase
class CouponConfirmationModel {
func useCoupon(roomId: String, members: [Member]) {
let db = Firestore.firestore()
db.collection("rooms").document(roomId).setData(["isUsed" : true], merge: true) { error in
if let error = error {
dLog(error as NSError)
}
}
let batch = db.batch()
for member in members {
let document = db.collection("users").document(member.userId).collection("myCoupons").document(roomId)
batch.setData(["isUsed" : true], forDocument: document, merge: true)
}
batch.commit() { error in
if let error = error {
dLog(error as NSError)
}
}
}
}
| 26.314286 | 114 | 0.562432 |
469e2be1d0186c4c326e81bf9b19cf86750ef4ea | 553 | //
// WKWindowFeatures.swift
// flutter_inappwebview
//
// Created by Lorenzo Pichilli on 19/02/21.
//
import Foundation
import WebKit
extension WKWindowFeatures {
public func toMap () -> [String:Any?] {
return [
"allowsResizing": allowsResizing,
"height": height,
"menuBarVisibility": menuBarVisibility,
"statusBarVisibility": statusBarVisibility,
"toolbarsVisibility": toolbarsVisibility,
"width": width,
"x": x,
"y": y
]
}
}
| 22.12 | 55 | 0.575045 |
3a7590e5f8f6a958bd00070c016659ae2deacfbb | 406 | //
// Task.swift
// SwiftUITodo
//
// Created by Suyeol Jeon on 03/06/2019.
// Copyright © 2019 Suyeol Jeon. All rights reserved.
//
import SwiftUI
struct Task: Equatable, Hashable, Codable, Identifiable {
let id: UUID
var title: String
var isDone: Bool
init(title: String, isDone: Bool) {
self.id = UUID()
self.title = title
self.isDone = isDone
}
}
| 18.454545 | 57 | 0.6133 |
79c99e0ed1523ee092e9830982e0cbcbc2577867 | 2,427 | //
// InnerFooterViewModelList.swift
//
//
// Created by NohEunTae on 2021/07/01.
//
//
#if os(iOS)
import UIKit
extension VisibilityTrackableCollectionView {
final class InnerFooterViewModelList: InnerViewModelListInterface {
var type: VisibilityTrackableViewType { .footer }
private let kind = UICollectionView.elementKindSectionFooter
var inners: [InnerViewModel] = []
func updateInnerCollectionFullyVisible(using parent: VisibilityTrackableCollectionViewInterface) {
guard parent.visibleSupplementaryViews(ofKind: kind).isNotEmpty else { return }
let indexPaths = parent.visibleSupplementaryViews(ofKind: kind).compactMap { view -> IndexPath? in
guard let _ = view as? InnerVisibilityTrackerInterface else { return nil }
return view.currentIndexPath(elementKind: kind)
}
guard indexPaths.isNotEmpty else { return }
indexPaths.forEach { indexPath in
guard
let (innerTracker, inner) = findInnerVisibilityTracker(parent: parent, key: indexPath)
else {
addInnerItemIfNotContains(indexPath)
return
}
refreshIfNeeded(inner: inner, innerTracker: innerTracker)
addInnerItemIfNotContains(indexPath)
reload(inner: inner, innerTracker: innerTracker)
}
}
func findInnerVisibilityTracker(
parent: VisibilityTrackableCollectionViewInterface?,
key: IndexPath
) -> (InnerVisibilityTrackerInterface, InnerViewModel)? {
guard
let inner = inners.first(where: { $0.key == key })
, let view = parent?.supplementaryView(forElementKind: kind, at: inner.key) as? InnerVisibilityTrackerInterface
else {
return nil
}
return (view, inner)
}
func findInnerVisibilityTracker(
using inner: InnerViewModel,
in parent: VisibilityTrackableCollectionViewInterface?
) -> InnerVisibilityTrackerInterface? {
parent?.supplementaryView(forElementKind: kind, at: inner.key) as? InnerVisibilityTrackerInterface
}
}
}
#endif
| 35.691176 | 127 | 0.597033 |
fb13d884a4bf54e1e5c161f8769605879fab7191 | 1,792 | import CEvent
typealias SocketEvent = OpaquePointer
public enum EventType: Int16 {
case timeout = 0x01
case read = 0x02
case write = 0x04
case signal = 0x08
case persistent = 0x10
case finalize = 0x40
case closed = 0x80
}
public protocol EventHandler {
func readEvent()
func writeEvent()
}
public extension EventHandler {
func readEvent() {}
func writeEvent() {}
}
public class Event {
public let types: [EventType]
public let fd: Int32
var internalEvent: SocketEvent!
public var handler: EventHandler?
public init(types: [EventType], fd: Int32, handler: EventHandler? = nil) {
self.types = types
self.fd = fd
self.handler = handler
internalEvent = event_new(
EventManager.shared.eventBase,
fd,
toRaw(),
{ (fileDescriptor, eventTypeRaw, instancePtr) in
guard let eventType = EventType(rawValue: eventTypeRaw) else { return }
let event = unsafeBitCast(instancePtr, to: Event.self)
event.handle(type: eventType)
},
Unmanaged.passUnretained(self).toOpaque()
)
}
deinit
{
if let internalEvent = internalEvent {
event_del(internalEvent)
event_free(internalEvent)
}
}
internal func handle(type: EventType) {
switch(type) {
case .read:
handler?.readEvent()
break
case .write:
handler?.writeEvent()
break
default:
print("[Event] Unhandled type: \(type)")
break
}
}
public func remove() {
if let internalEvent = internalEvent {
event_del(internalEvent)
}
}
public func add()
{
if let internalEvent = internalEvent {
event_add(internalEvent, nil)
}
}
internal func getEvent() -> SocketEvent {
return internalEvent!
}
@inline(__always) final func toRaw() -> Int16 {
return types.reduce(0) { return $0 + $1.rawValue }
}
}
| 19.478261 | 75 | 0.675781 |
01e5aa4c30da899a0d2d96e5b8f62e2f7b00d3e5 | 4,544 | //
// ListViewController.swift
// PhotoMaps
//
// Created by Aleksei Artamonov on 7/3/18.
// Copyright © 2018 test. All rights reserved.
//
import UIKit
class ListViewController: UIViewController, UITableViewDelegate, UITableViewDataSource {
@IBOutlet weak var tableView: UITableView!
lazy var refreshControl: UIRefreshControl = {
let refreshControl = UIRefreshControl()
refreshControl.addTarget(self, action:
#selector(ListViewController.handleRefresh(_:)),
for: UIControlEvents.valueChanged)
refreshControl.tintColor = UIColor.red
return refreshControl
}()
var viewModel = ListViewModel(with:UserLocationService.shared, and: DataProvider(with: SessionManager())) {
didSet {
updateUI()
}
}
@objc func handleRefresh(_ refreshControl: UIRefreshControl) {
self.viewModel.refreshViewModel()
}
func updateUI() {
viewModel.cells.bindAndFire { [weak self] in
print($0)
self?.tableView.reloadData()
}
viewModel.refreshing.bindAndFire {[weak self] in
if $0 == true {
self?.refreshControl.beginRefreshing()
} else {
self?.refreshControl.endRefreshing()
}
}
viewModel.errorMessage.bindAndFire { [weak self] in
if !$0.isEmpty {
let alert = UIAlertController(title: "Error", message: $0, preferredStyle: UIAlertControllerStyle.alert)
alert.addAction(UIAlertAction(title: "Close", style: UIAlertActionStyle.default, handler: nil))
self?.present(alert, animated: true, completion: nil)
}
}
self.viewModel.refreshViewModel()
}
override func viewDidLoad() {
super.viewDidLoad()
self.tableView.addSubview(self.refreshControl)
updateUI()
// Do any additional setup after loading the view.
}
override func viewDidAppear(_ animated: Bool) {
}
override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.
}
func tableView(_ tableView: UITableView, didSelectRowAt indexPath: IndexPath) {
self.presentDetailsForCelWithIndex(withIndex: indexPath.row)
tableView.deselectRow(at: indexPath, animated: true)
}
func tableView(_ tableView: UITableView, accessoryButtonTappedForRowWith indexPath: IndexPath) {
self.presentDetailsForCelWithIndex(withIndex: indexPath.row)
}
func presentDetailsForCelWithIndex(withIndex index: Int) {
guard let annotation = self.viewModel.provideAnnotationForCellBy(index: index) else {
return
}
let vm = DetailViewModel(with: self.viewModel.locationService, self.viewModel.dataProvider, true, annotation)
let controller = DetailViewController.detailViewController(withViewModel: vm)
self.present(controller, animated: true, completion: nil)
}
func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) -> UITableViewCell {
let cell = tableView.dequeueReusableCell(withIdentifier: "ListTableViewCell", for: indexPath) as! ListTableViewCell
self.viewModel.cells.value[indexPath.row].name.bindAndFire { string in
cell.nameLabel.text = string
}
self.viewModel.cells.value[indexPath.row].lat.bindAndFire { string in
cell.latLabel.text = string
}
self.viewModel.cells.value[indexPath.row].lon.bindAndFire { string in
cell.lonLabel.text = string
}
self.viewModel.cells.value[indexPath.row].distance.bindAndFire { string in
cell.distanceLabel.text = string
}
return cell
}
func numberOfSections(in tableView: UITableView) -> Int {
return 1
}
func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
return viewModel.cells.value.count
}
/*
// MARK: - Navigation
// In a storyboard-based application, you will often want to do a little preparation before navigation
override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
// Get the new view controller using segue.destinationViewController.
// Pass the selected object to the new view controller.
}
*/
}
| 34.424242 | 123 | 0.642165 |
f8ff336156a647271322c69161adbbee676668d6 | 420 | //
// URLRequestConveritble.swift
// Creative Minds Task -IMDB-
//
// Created by Youssef on 4/13/20.
// Copyright © 2020 Youssef. All rights reserved.
//
import Foundation
import Alamofire
protocol URLRequestConvertible: Alamofire.URLRequestConvertible {
var method: HTTPMethod { get }
var parameters: [String: Any]? { get }
var url: URL { get }
var encoding: ParameterEncoding { get }
}
| 21 | 65 | 0.683333 |
d6c02d65077edc8c1e608689cc2b88dc636cc068 | 1,690 | import PlaygroundSupport
import TortoiseGraphics
import CoreGraphics
let myFrame = CGRect(x: 0, y: 0, width: 500, height: 500)
let canvas = PlaygroundCanvas(frame: myFrame)
canvas.frameRate = 120
canvas.color = .white
PlaygroundPage.current.liveView = canvas
canvas.drawing { turtle in
//Go to the left
turtle.penUp()
turtle.goto(-150, 0)
//Adjust pen width
turtle.penSize(5)
//Face turtle for J
turtle.setHeading(325)
//Hide turtle
//turtle.hideTortoise()
//Uppercase J
turtle.curve(withSides: 30, withSize: 15, drawSides: 9)
turtle.curve(withSides: 12, withSize: 4, drawSides: 4)
turtle.curve(withSides: 75, withSize: 100, drawSides: 2)
turtle.curve(withSides: 15, withSize: 5, drawSides: 7)
turtle.curve(withSides: 50, withSize: 17, drawSides: 5)
turtle.curve(withSides: 90, withSize: 2, drawSides: 9)
turtle.setHeading(90)
//print("y position after J is \(turtle.ycor)")
//print("Heading after J is \(turtle.heading)")
//Lowercase o before v
turtle.curve(withSides: -30, withSize: 5, drawSides: 6)
turtle.curve(withSides: 30, withSize: 9, drawSides: 1)
turtle.curve(withSides: 20, withSize: 7, drawSides: 24)
turtle.setHeading(140)
print("y position at the top of a lowercase letter is \(turtle.ycor)")
turtle.curve(withSides: -15, withSize: 15, drawSides: 4)
//print("y position after o is \(turtle.ycor)")
//print("Heading after o is \(turtle.heading)")
//Lowercase v after o
turtle.curve(withSides: 20, withSize: 4, drawSides: 4)
print("y position after curve up is \(turtle.ycor)")
turtle.hideTortoise()
}
| 30.727273 | 74 | 0.666864 |
db2242c5dc9ce4760a900e65c4055e21ec09d479 | 1,912 | //
// CoinbaseSocketClientDelegate.swift
// CoinbaseSocketSwift
//
// Created by Hani Shabsigh on 11/5/17.
// Copyright © 2017 Hani Shabsigh. All rights reserved.
//
import Foundation
@objc public protocol CoinbaseSocketClientDelegate: class {
@objc optional func coinbaseSocketDidConnect(socket: CoinbaseSocketClient)
@objc optional func coinbaseSocketDidDisconnect(socket: CoinbaseSocketClient, error: Error?)
@objc optional func coinbaseSocketClientOnErrorMessage(socket: CoinbaseSocketClient, error: ErrorMessage)
@objc optional func coinbaseSocketClientOnSubscriptions(socket: CoinbaseSocketClient, subscriptions: SubscriptionsMessage)
@objc optional func coinbaseSocketClientOnHeartbeat(socket: CoinbaseSocketClient, heartbeat: HeartbeatMessage)
@objc optional func coinbaseSocketClientOnTicker(socket: CoinbaseSocketClient, ticker: TickerMessage)
@objc optional func coinbaseSocketClientOnSnapshot(socket: CoinbaseSocketClient, snapshot: SnapshotMessage)
@objc optional func coinbaseSocketClientOnUpdate(socket: CoinbaseSocketClient, update: UpdateMessage)
@objc optional func coinbaseSocketClientOnReceived(socket: CoinbaseSocketClient, received: ReceivedMessage)
@objc optional func coinbaseSocketClientOnOpen(socket: CoinbaseSocketClient, open: OpenMessage)
@objc optional func coinbaseSocketClientOnDone(socket: CoinbaseSocketClient, done: DoneMessage)
@objc optional func coinbaseSocketClientOnMatch(socket: CoinbaseSocketClient, match: MatchMessage)
@objc optional func coinbaseSocketClientOnChange(socket: CoinbaseSocketClient, change: ChangeMessage)
@objc optional func coinbaseSocketClientOnMarginProfileUpdate(socket: CoinbaseSocketClient, marginProfileUpdate: MarginProfileUpdateMessage)
@objc optional func coinbaseSocketClientOnActivate(socket: CoinbaseSocketClient, activate: ActivateMessage)
}
| 56.235294 | 144 | 0.819561 |
6a594f7761f57275c1ba96746bc63de37dd1081b | 1,571 | //
// CheckoutTableItems.swift
// Cart
//
// Created by Jens Meder on 12.06.17.
// Copyright © 2017 Jens Meder. All rights reserved.
//
import UIKit
internal final class CheckoutTableItems: NSObject, UITableViewDataSource, UITableViewDelegate {
private let items: CartItems
private let identifier: OOString
private let currencies: Currencies
// MARK: Init
internal convenience init(items: CartItems, currencies: Currencies) {
self.init(
identifier: ConstString("checkoutItem"),
items: items,
currencies: currencies
)
}
internal required init(identifier: OOString, items: CartItems, currencies: Currencies) {
self.items = items
self.identifier = identifier
self.currencies = currencies
}
// MARK: UITableViewDataSource
func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
return items.count
}
func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) -> UITableViewCell {
var cell = tableView.dequeueReusableCell(withIdentifier: identifier.stringValue)
if cell == nil {
cell = UITableViewCell(style: .value1, reuseIdentifier: identifier.stringValue)
}
let item = self.items[indexPath.row]
cell?.textLabel?.text = item.product.name.stringValue
let value = item.product.price.value * currencies.current.rate
cell?.detailTextLabel?.text = String(format: "%.2f %@", arguments: [value, currencies.current.sign.stringValue])
return cell!
}
func tableView(_ tableView: UITableView, willSelectRowAt indexPath: IndexPath) -> IndexPath? {
return nil
}
}
| 29.092593 | 114 | 0.745385 |
11727961bd62a7a76ddcc4da11de74c84d8efe43 | 6,006 | //
// NestC2CViewController.swift
// i2app
//
// Created by Arcus Team on 6/27/17.
/*
* Copyright 2019 Arcus Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
import Foundation
import Cornea
class NestC2CViewController: BasePairingViewController {
// MARK: Properties
@IBOutlet weak var webView: UIWebView!
private var presenter: NestC2CPresenterProtocol!
var isReconnectFlow = false
// MARK: Lifecycle
override func viewDidLoad() {
super.viewDidLoad()
navBar(withTitle: NSLocalizedString("Link Account", comment: ""), enableBackButton: false)
navigationItem.setHidesBackButton(true, animated: false)
navigationItem.leftBarButtonItem = nil
presenter = NestC2CPresenter(delegate: self)
presenter.fetchRevokedDevices()
createNavigationCancelButton()
if let url = URL(string: presenter.nestPairURL()) {
webView.loadRequest(URLRequest(url: url))
}
}
override func viewDidAppear(_ animated: Bool) {
super.viewDidAppear(animated)
}
// MARK: Events
func cancelButtonTapped() {
// Check if device details exists in the stack and if so present it
if let navigationController = navigationController {
let viewControllers = navigationController.viewControllers
for viewController in viewControllers {
if let viewController = viewController as? DeviceDetailsTabBarController {
navigationController.popToViewController(viewController, animated: true)
return
}
}
}
navigateToDashboard()
}
// MARK: Helpers
fileprivate func navigateToDashboard() {
if let appDelegate = UIApplication.shared.delegate as? AppDelegate {
DispatchQueue.main.async {
DevicePairingManager.sharedInstance().stopPairingProcessAndNotifications()
ApplicationRoutingService.defaultService.showDashboard()
}
}
}
fileprivate func createNavigationCancelButton() {
let editButton = UIButton(type: .custom)
editButton.setAttributedTitle(FontData.getString(NSLocalizedString("Cancel", comment: ""),
withFont: FontDataTypeNavBar),
for: UIControlState())
editButton.frame = CGRect(x: 0, y: 0, width: 50, height: 12)
editButton.addTarget(self, action: #selector(cancelButtonTapped), for: .touchUpInside)
navigationItem.leftBarButtonItem = UIBarButtonItem(customView: editButton)
}
fileprivate func presentPairedDeviceConfiguration() {
var devicesJustPaired = DevicePairingManager.sharedInstance().justPairedDevices
let reconnected = presenter.reconnectedDevices()
if reconnected.count > 0 {
if devicesJustPaired == nil {
devicesJustPaired = NSMutableArray()
}
for device in reconnected {
// check if revoked device is already in justPairedDevices
if !checkFor(device: device, inDeviceList: devicesJustPaired!) {
devicesJustPaired?.add(device)
}
}
}
DevicePairingManager.sharedInstance().justPairedDevices = devicesJustPaired
DispatchQueue.main.async {
if devicesJustPaired != nil && devicesJustPaired!.count > 0 {
DevicePairingManager.sharedInstance().customizeDevice(self)
} else {
self.navigateToDashboard()
}
}
}
private func checkFor(device: DeviceModel, inDeviceList list: NSArray) -> Bool {
for deviceFromList in list {
if let deviceFromList = deviceFromList as? DeviceModel {
if deviceFromList.address == device.address {
return true
}
}
}
return false
}
}
// MARK: UIWebViewDelegate
extension NestC2CViewController: UIWebViewDelegate {
func webView(_ webView: UIWebView,
shouldStartLoadWith request: URLRequest,
navigationType: UIWebViewNavigationType) -> Bool {
// Make sure we do not hit the url with state=pair twice in order to avoid creating two nest tokens
// ITWO-12743
if request.url?.absoluteString.range(of: "") != nil &&
request.url?.absoluteString.range(of: "state=pair") == nil {
// Check for status code
let configuration = URLSessionConfiguration.default
let session = URLSession(configuration: configuration)
let task = session.dataTask(with: request) { (_, response, _) in
if let response = response as? HTTPURLResponse {
if response.statusCode == 204 {
// Go to adding devices
self.presentPairedDeviceConfiguration()
} else if response.statusCode == 203 {
// Go to the dashboard
DevicePairingManager.sharedInstance().stopPairingProcessAndNotifications()
self.navigateToDashboard()
} else if response.statusCode == 400 || response.statusCode == 404 {
self.createNavigationCancelButton()
}
}
}
task.resume()
}
return true
}
func webViewDidFinishLoad(_ webView: UIWebView) {
// Check for cancel button
if let url = webView.request?.url {
if url.absoluteString.range(of: "") != nil &&
url.absoluteString.range(of: "state=") != nil {
navigationItem.leftBarButtonItem = nil
} else {
createNavigationCancelButton()
}
}
}
}
// MARK: NestC2CPresenterDelegate
extension NestC2CViewController: NestC2CPresenterDelegate {
}
| 29.880597 | 103 | 0.669497 |
d528dad697fd341ef807505d95a9f2b978c39c0d | 7,625 | //
// SimpleDialogInputView.swift
// BLE_ChatRoom
//
// Created by Jimmy on 2019/8/24.
// Copyright © 2019 Jimmy. All rights reserved.
//
import Foundation
import UIKit
protocol SimpleDialogInputViewDelegate: AnyObject {
func sendMessage(_ message: String)
}
class SimpleDialogInputView: UIView {
public var nonactivated_placeholder = "Aa"
public var activated_placeholder = "_enter_text".localized
public var maximumNumberOfLines = 4
public var textViewDelegate: UITextViewDelegate?
public weak var delegate: SimpleDialogInputViewDelegate?
private lazy var textView: UITextView = {
let v = UITextView()
v.layer.cornerRadius = 20
v.layer.masksToBounds = true
v.font = UIFont.systemFont(ofSize: 20)
v.delegate = self
v.bounces = false
v.isScrollEnabled = false
v.contentInset = .zero
v.textContainerInset = UIEdgeInsets(top: v.textContainerInset.top, left: 10, bottom: v.textContainerInset.bottom, right: 20)
return v
}()
private var textViewHeightConstraint: NSLayoutConstraint?
private lazy var placeholderLabel: UILabel = {
let l = UILabel()
l.text = nonactivated_placeholder
l.font = textView.font
l.textColor = UIColor.lightGray.withAlphaComponent(0.6)
l.backgroundColor = .clear
return l
}()
private lazy var sendButton: UIButton = {
let b = UIButton()
b.addTarget(self, action: #selector(buttonPressed(_:)), for: .touchUpInside)
b.setImage(UIImage.microphone, for: .normal)
b.backgroundColor = .clear
return b
}()
@objc private func buttonPressed(_ sender: UIButton) {
if !textView.text.isEmpty {
delegate?.sendMessage(textView.text)
}
}
override var intrinsicContentSize: CGSize {
get {
return CGSize(width: self.bounds.width, height: textView.bounds.height + 20)
}
}
private lazy var containerView: UIView = {
// let v = UIView()
return self
}()
override init(frame: CGRect) {
super.init(frame: frame)
setupUI()
}
required init?(coder aDecoder: NSCoder) {
fatalError("required init(coder:) not implemented")
}
private func setupUI() {
backgroundColor = .yellow
textView
.attachTo(view: containerView, with: .side(.left(inset: .init(top: 0, left: 10, bottom: 0, right: 0))))
.attachTo(view: containerView, with: .side(.bottom(inset: .init(top: 0, left: 0, bottom: -10, right: 0))))
.attachTo(view: containerView, with: .side(.top(inset: .init(top: 10, left: 0, bottom: 0, right: 0))))
textViewHeightConstraint = textView.heightAnchor.constraint(equalToConstant: 40)
textViewHeightConstraint?.isActive = true
placeholderLabel.translatesAutoresizingMaskIntoConstraints = false
containerView.addSubview(placeholderLabel)
sendButton.attachTo(view: containerView, with: .side(.right(inset: .init(top: 0, left: 0, bottom: 0, right: -10))))
[
placeholderLabel.leftAnchor.constraint(equalTo: textView.leftAnchor, constant: 20),
placeholderLabel.bottomAnchor.constraint(equalTo: textView.bottomAnchor),
placeholderLabel.heightAnchor.constraint(equalToConstant: 40),
sendButton.bottomAnchor.constraint(equalTo: textView.bottomAnchor),
sendButton.heightAnchor.constraint(equalToConstant: 40),
sendButton.leftAnchor.constraint(equalTo: textView.rightAnchor, constant: 10),
sendButton.widthAnchor.constraint(equalTo: sendButton.heightAnchor, multiplier: 1.0),
].forEach({$0.isActive = true})
}
}
extension SimpleDialogInputView: UITextViewDelegate {
func textViewDidChangeSelection(_ textView: UITextView) {
textViewDelegate?.textViewDidChangeSelection?(textView)
}
func textViewShouldEndEditing(_ textView: UITextView) -> Bool {
return textViewDelegate?.textViewShouldEndEditing?(textView) ?? true
}
func textViewShouldBeginEditing(_ textView: UITextView) -> Bool {
return textViewDelegate?.textViewShouldEndEditing?(textView) ?? true
}
func textView(_ textView: UITextView, shouldChangeTextIn range: NSRange, replacementText text: String) -> Bool {
return textViewDelegate?.textView?(textView, shouldChangeTextIn: range, replacementText: text) ?? true
}
func textView(_ textView: UITextView, shouldInteractWith URL: URL, in characterRange: NSRange, interaction: UITextItemInteraction) -> Bool {
return textViewDelegate?.textView?(textView, shouldInteractWith: URL, in: characterRange, interaction: interaction) ?? true
}
func textView(_ textView: UITextView, shouldInteractWith textAttachment: NSTextAttachment, in characterRange: NSRange, interaction: UITextItemInteraction) -> Bool {
return textViewDelegate?.textView?(textView, shouldInteractWith: textAttachment, in: characterRange, interaction: interaction) ?? true
}
enum TextViewDelegateActions {
case didChange
case didEndEditing
case didBeginEditing
}
func textViewDidChange(_ textView: UITextView) {
togglePlaceHolder()
toggleTextViewConstraint(textViewDelegateAction: .didChange)
textViewDelegate?.textViewDidChange?(textView)
sendButton.setImage(textView.text.isEmpty ? UIImage.microphone : UIImage.send, for: .normal)
}
private func togglePlaceHolder() {
placeholderLabel.isHidden = !textView.text.isEmpty
}
func textViewDidEndEditing(_ textView: UITextView) {
togglePlaceHolder()
toggleTextViewConstraint(textViewDelegateAction: .didEndEditing)
textViewDelegate?.textViewDidEndEditing?(textView)
}
func textViewDidBeginEditing(_ textView: UITextView) {
toggleTextViewConstraint(textViewDelegateAction: .didBeginEditing)
textViewDelegate?.textViewDidBeginEditing?(textView)
}
private func toggleTextViewConstraint(textViewDelegateAction: TextViewDelegateActions) {
let textView = self.textView
switch textViewDelegateAction {
case .didBeginEditing, .didChange:
let size = CGSize(width: textView.frame.size.width, height: .infinity)
let estimatedSize = textView.sizeThatFits(size)
let numberOfLines = Int(estimatedSize.height / textView.font!.lineHeight)
textView.isScrollEnabled = numberOfLines > maximumNumberOfLines
if numberOfLines > maximumNumberOfLines {
textViewHeightConstraint?.constant = CGFloat(self.maximumNumberOfLines) * textView.font!.lineHeight + textView.textContainerInset.top + textView.textContainerInset.bottom
} else {
textViewHeightConstraint?.constant = estimatedSize.height
}
if textViewDelegateAction == .didBeginEditing {
DispatchQueue.main.async {
self.textView.selectedRange.location = self.textView.text.count
}
}
case .didEndEditing:
textViewHeightConstraint?.constant = 40
textView.isScrollEnabled = false
textView.contentOffset = .zero
textView.textContainer.lineBreakMode = .byTruncatingTail
}
setNeedsLayout()
}
}
| 38.705584 | 187 | 0.664787 |
61c31782044e8518bcca67d6e803cbe8a11496fa | 9,266 | //
// 🦠 Corona-Warn-App
//
import ExposureNotification
#if DEBUG
final class ClientMock {
// MARK: - Creating a Mock Client.
/// Creates a mock `Client` implementation with given default values.
///
/// - parameters:
/// - availableDaysAndHours: return this value when the `availableDays(_:)` or `availableHours(_:)` is called, or an error if `urlRequestFailure` is passed.
/// - downloadedPackage: return this value when `fetchDay(_:)` or `fetchHour(_:)` is called, or an error if `urlRequestFailure` is passed.
/// - submissionError: when set, `submit(_:)` will fail with this error.
/// - urlRequestFailure: when set, calls (see above) will fail with this error
init(
availableDaysAndHours: DaysAndHours = DaysAndHours(days: [], hours: []),
downloadedPackage: PackageDownloadResponse? = nil,
submissionError: SubmissionError? = nil,
availablePackageRequestFailure: Client.Failure? = nil,
fetchPackageRequestFailure: Client.Failure? = nil
) {
self.availableDaysAndHours = availableDaysAndHours
self.downloadedPackage = downloadedPackage
self.availablePackageRequestFailure = availablePackageRequestFailure
self.fetchPackageRequestFailure = fetchPackageRequestFailure
if let error = submissionError {
onSubmitCountries = { $2(.failure(error)) }
}
}
init() {}
// MARK: - Properties.
var submissionResponse: KeySubmissionResponse?
var availablePackageRequestFailure: Client.Failure?
var fetchPackageRequestFailure: Client.Failure?
var availableDaysAndHours: DaysAndHours = DaysAndHours(days: [], hours: [])
var downloadedPackage: PackageDownloadResponse?
lazy var supportedCountries: [Country] = {
// provide a default list of some countries
let codes = ["DE", "IT", "ES", "PL", "NL", "BE", "CZ", "AT", "DK", "IE", "LT", "LV", "EE"]
return codes.compactMap({ Country(countryCode: $0) })
}()
// MARK: - Configurable Mock Callbacks.
var onGetTestResult: ((String, Bool, TestResultHandler) -> Void)?
var onSubmitCountries: ((_ payload: CountrySubmissionPayload, _ isFake: Bool, _ completion: @escaping KeySubmissionResponse) -> Void) = { $2(.success(())) }
var onGetRegistrationToken: ((String, String, String?, Bool, @escaping RegistrationHandler) -> Void)?
var onGetTANForExposureSubmit: ((String, Bool, @escaping TANHandler) -> Void)?
var onSupportedCountries: ((@escaping CountryFetchCompletion) -> Void)?
var onGetOTPEdus: ((String, PPACToken, Bool, @escaping OTPAuthorizationCompletionHandler) -> Void)?
var onGetOTPEls: ((String, PPACToken, @escaping OTPAuthorizationCompletionHandler) -> Void)?
var onSubmitErrorLog: ((Data, @escaping ErrorLogSubmitting.ELSSubmissionResponse) -> Void)?
var onSubmitAnalytics: ((SAP_Internal_Ppdd_PPADataIOS, PPACToken, Bool, @escaping PPAnalyticsSubmitionCompletionHandler) -> Void)?
var onTraceWarningDiscovery: ((String, @escaping TraceWarningPackageDiscoveryCompletionHandler) -> Void)?
var onTraceWarningDownload: ((String, Int, @escaping TraceWarningPackageDownloadCompletionHandler) -> Void)?
var onDCCRegisterPublicKey: ((Bool, String, String, @escaping DCCRegistrationCompletionHandler) -> Void)?
var onGetDigitalCovid19Certificate: ((String, Bool, @escaping DigitalCovid19CertificateCompletionHandler) -> Void)?
}
extension ClientMock: ClientWifiOnly {
func fetchHours(
_ hours: [Int],
day: String,
country: String,
completion completeWith: @escaping (HoursResult) -> Void
) {
var errors = [Client.Failure]()
var buckets = [Int: PackageDownloadResponse]()
let group = DispatchGroup()
hours.forEach { hour in
group.enter()
fetchHour(hour, day: day, country: country) { result in
switch result {
case let .success(hourBucket):
buckets[hour] = hourBucket
case let .failure(error):
errors.append(error)
}
group.leave()
}
}
group.notify(queue: .main) {
completeWith(
HoursResult(errors: errors, bucketsByHour: buckets, day: day)
)
}
}
func fetchHour(_ hour: Int, day: String, country: String, completion: @escaping HourCompletionHandler) {
if let failure = fetchPackageRequestFailure {
completion(.failure(failure))
return
}
completion(.success(downloadedPackage ?? ClientMock.dummyResponse))
}
}
extension ClientMock: Client {
private static let dummyResponse = PackageDownloadResponse(package: SAPDownloadedPackage(keysBin: Data(), signature: Data()), etag: "\"etag\"")
func availableDays(forCountry country: String, completion: @escaping AvailableDaysCompletionHandler) {
if let failure = availablePackageRequestFailure {
completion(.failure(failure))
return
}
completion(.success(availableDaysAndHours.days))
}
func availableHours(day: String, country: String, completion: @escaping AvailableHoursCompletionHandler) {
if let failure = availablePackageRequestFailure {
completion(.failure(failure))
return
}
completion(.success(availableDaysAndHours.hours))
}
func fetchDay(_ day: String, forCountry country: String, completion: @escaping DayCompletionHandler) {
if let failure = fetchPackageRequestFailure {
completion(.failure(failure))
return
}
completion(.success(downloadedPackage ?? ClientMock.dummyResponse))
}
func submit(payload: CountrySubmissionPayload, isFake: Bool, completion: @escaping KeySubmissionResponse) {
onSubmitCountries(payload, isFake, completion)
}
func getRegistrationToken(
forKey: String,
withType: String,
dateOfBirthKey: String?,
isFake: Bool,
completion completeWith: @escaping RegistrationHandler
) {
guard let onGetRegistrationToken = self.onGetRegistrationToken else {
completeWith(.success("dummyRegistrationToken"))
return
}
onGetRegistrationToken(forKey, withType, dateOfBirthKey, isFake, completeWith)
}
func getTestResult(forDevice device: String, isFake: Bool, completion completeWith: @escaping TestResultHandler) {
guard let onGetTestResult = self.onGetTestResult else {
completeWith(
.success(
FetchTestResultResponse(
testResult: TestResult.positive.rawValue,
sc: nil,
labId: "SomeLabId"
)
)
)
return
}
onGetTestResult(device, isFake, completeWith)
}
func getTANForExposureSubmit(forDevice device: String, isFake: Bool, completion completeWith: @escaping TANHandler) {
guard let onGetTANForExposureSubmit = self.onGetTANForExposureSubmit else {
completeWith(.success("dummyTan"))
return
}
onGetTANForExposureSubmit(device, isFake, completeWith)
}
func authorize(
otpEdus: String,
ppacToken: PPACToken,
isFake: Bool,
forceApiTokenHeader: Bool = false,
completion: @escaping OTPAuthorizationCompletionHandler
) {
guard let onGetOTPEdus = self.onGetOTPEdus else {
completion(.success(Date()))
return
}
onGetOTPEdus(otpEdus, ppacToken, isFake, completion)
}
func authorize(
otpEls: String,
ppacToken: PPACToken,
completion: @escaping OTPAuthorizationCompletionHandler
) {
guard let onGetOTPEls = self.onGetOTPEls else {
completion(.success(Date()))
return
}
onGetOTPEls(otpEls, ppacToken, completion)
}
func submit(
payload: SAP_Internal_Ppdd_PPADataIOS,
ppacToken: PPACToken,
isFake: Bool,
forceApiTokenHeader: Bool,
completion: @escaping PPAnalyticsSubmitionCompletionHandler
) {
guard let onSubmitAnalytics = self.onSubmitAnalytics else {
completion(.success(()))
return
}
onSubmitAnalytics(payload, ppacToken, isFake, completion)
}
func traceWarningPackageDiscovery(
country: String,
completion: @escaping TraceWarningPackageDiscoveryCompletionHandler
) {
guard let onTraceWarningDiscovery = self.onTraceWarningDiscovery else {
completion(.success((TraceWarningDiscovery(oldest: 448163, latest: 448522, eTag: "FakeETag"))))
return
}
onTraceWarningDiscovery(country, completion)
}
func traceWarningPackageDownload(
country: String,
packageId: Int,
completion: @escaping TraceWarningPackageDownloadCompletionHandler
) {
guard let onTraceWarningDownload = self.onTraceWarningDownload else {
completion(.success(downloadedPackage ?? ClientMock.dummyResponse))
return
}
onTraceWarningDownload(country, packageId, completion)
}
func dccRegisterPublicKey(
isFake: Bool,
token: String,
publicKey: String,
completion: @escaping DCCRegistrationCompletionHandler
) {
guard let onDCCRegisterPublicKey = self.onDCCRegisterPublicKey else {
completion(.success(()))
return
}
onDCCRegisterPublicKey(isFake, token, publicKey, completion)
}
func submit(
errorLogFile: Data,
otpEls: String,
completion: @escaping ErrorLogSubmitting.ELSSubmissionResponse
) {
guard let onSubmitErrorLog = self.onSubmitErrorLog else {
completion(.success(LogUploadResponse(id: "\(Int.random(in: 0..<Int.max))", hash: errorLogFile.sha256String())))
return
}
onSubmitErrorLog(errorLogFile, completion)
}
func getDigitalCovid19Certificate(
registrationToken token: String,
isFake: Bool,
completion: @escaping DigitalCovid19CertificateCompletionHandler
) {
guard let onGetDigitalCovid19Certificate = self.onGetDigitalCovid19Certificate else {
completion(.success((DCCResponse(dek: "dataEncryptionKey", dcc: "coseObject"))))
return
}
onGetDigitalCovid19Certificate(token, isFake, completion)
}
}
#endif
| 32.173611 | 158 | 0.749406 |
39dbaf5df70b2f335ecc0b951377efff7e86333c | 22,553 | //
// PackageCollectionViewCell.swift
// Sileo
//
// Created by CoolStar on 7/30/19.
// Copyright © 2019 CoolStar. All rights reserved.
//
import Foundation
import SwipeCellKit
class PackageCollectionViewCell: SwipeCollectionViewCell {
@IBOutlet var imageView: UIImageView?
@IBOutlet var titleLabel: UILabel?
@IBOutlet var authorLabel: UILabel?
@IBOutlet var descriptionLabel: UILabel?
@IBOutlet var separatorView: UIView?
@IBOutlet var unreadView: UIView?
var item: CGFloat = 0
var numberOfItems: CGFloat = 0
var alwaysHidesSeparator = false
var stateBadgeView: PackageStateBadgeView?
override init(frame: CGRect) {
super.init(frame: frame)
}
required init?(coder aDecoder: NSCoder) {
super.init(coder: aDecoder)
}
public var targetPackage: Package? {
didSet {
if let targetPackage = targetPackage {
titleLabel?.text = targetPackage.name
authorLabel?.text = "\(ControlFileParser.authorName(string: targetPackage.author ?? "")) • \(targetPackage.version)"
descriptionLabel?.text = targetPackage.packageDescription
let url = targetPackage.icon ?? ""
self.imageView?.image = AmyNetworkResolver.shared.image(url, size: imageView?.frame.size) { [weak self] refresh, image in
if refresh,
let strong = self,
let image = image,
url == strong.targetPackage?.icon {
DispatchQueue.main.async {
strong.imageView?.image = image
}
}
} ?? UIImage(named: "Tweak Icon")
titleLabel?.textColor = targetPackage.commercial ? self.tintColor : .sileoLabel
}
unreadView?.isHidden = true
self.accessibilityLabel = String(format: String(localizationKey: "Package_By_Author"),
self.titleLabel?.text ?? "", self.authorLabel?.text ?? "")
self.refreshState()
}
}
public var provisionalTarget: ProvisionalPackage? {
didSet {
if let provisionalTarget = provisionalTarget {
titleLabel?.text = provisionalTarget.name ?? ""
authorLabel?.text = "\(provisionalTarget.author ?? "") • \(provisionalTarget.version ?? "")"
descriptionLabel?.text = provisionalTarget.description
let url = provisionalTarget.icon ?? ""
self.imageView?.image = AmyNetworkResolver.shared.image(url, size: imageView?.frame.size) { [weak self] refresh, image in
if refresh,
let strong = self,
let image = image,
url == strong.provisionalTarget?.icon {
DispatchQueue.main.async {
strong.imageView?.image = image
}
}
} ?? UIImage(named: "Tweak Icon")
titleLabel?.textColor = .sileoLabel
}
unreadView?.isHidden = true
self.accessibilityLabel = String(format: String(localizationKey: "Package_By_Author"),
self.titleLabel?.text ?? "", self.authorLabel?.text ?? "")
self.refreshState()
}
}
override func awakeFromNib() {
super.awakeFromNib()
self.selectedBackgroundView = UIView()
self.selectedBackgroundView?.backgroundColor = UIColor.lightGray.withAlphaComponent(0.25)
self.isAccessibilityElement = true
self.accessibilityTraits = .button
self.delegate = self
stateBadgeView = PackageStateBadgeView(frame: .zero)
stateBadgeView?.translatesAutoresizingMaskIntoConstraints = false
stateBadgeView?.state = .installed
if let stateBadgeView = stateBadgeView {
self.contentView.addSubview(stateBadgeView)
if let imageView = imageView {
stateBadgeView.centerXAnchor.constraint(equalTo: imageView.rightAnchor).isActive = true
stateBadgeView.centerYAnchor.constraint(equalTo: imageView.bottomAnchor).isActive = true
}
}
NotificationCenter.default.addObserver([self],
selector: #selector(PackageCollectionViewCell.refreshState),
name: DownloadManager.reloadNotification, object: nil)
weak var weakSelf = self
NotificationCenter.default.addObserver(weakSelf as Any,
selector: #selector(updateSileoColors),
name: SileoThemeManager.sileoChangedThemeNotification,
object: nil)
}
@objc func updateSileoColors() {
if !(targetPackage?.commercial ?? false) {
titleLabel?.textColor = .sileoLabel
}
}
override func layoutSubviews() {
super.layoutSubviews()
var numberOfItemsInRow = CGFloat(1)
if UIDevice.current.userInterfaceIdiom == .pad || UIApplication.shared.statusBarOrientation.isLandscape {
numberOfItemsInRow = (self.superview?.bounds.width ?? 0) / 300
}
if alwaysHidesSeparator || ceil((item + 1) / numberOfItemsInRow) == ceil(numberOfItems / numberOfItemsInRow) {
separatorView?.isHidden = true
} else {
separatorView?.isHidden = false
}
}
func setTargetPackage(_ package: Package, isUnread: Bool) {
self.targetPackage = package
unreadView?.isHidden = !isUnread
}
override func tintColorDidChange() {
super.tintColorDidChange()
if targetPackage?.commercial ?? false {
titleLabel?.textColor = self.tintColor
}
unreadView?.backgroundColor = self.tintColor
}
@objc func refreshState() {
guard let targetPackage = targetPackage else {
stateBadgeView?.isHidden = true
return
}
stateBadgeView?.isHidden = false
let queueState = DownloadManager.shared.find(package: targetPackage)
let isInstalled = PackageListManager.shared.installedPackage(identifier: targetPackage.package) != nil
switch queueState {
case .installations:
stateBadgeView?.state = isInstalled ? .reinstallQueued : .installQueued
case .upgrades:
stateBadgeView?.state = .updateQueued
case .uninstallations:
stateBadgeView?.state = .deleteQueued
default:
stateBadgeView?.state = .installed
stateBadgeView?.isHidden = !isInstalled
}
}
}
extension PackageCollectionViewCell: SwipeCollectionViewCellDelegate {
func collectionView(_ collectionView: UICollectionView, editActionsForItemAt indexPath: IndexPath, for orientation: SwipeActionsOrientation) -> [SwipeAction]? {
// Different actions depending on where we are headed
// Also making sure that the set package actually exists
if let provisionalPackage = provisionalTarget {
guard let repo = provisionalPackage.repo,
let url = URL(string: repo),
orientation == .right else { return nil }
if !RepoManager.shared.hasRepo(with: url) {
return [addRepo(provisionalPackage)]
}
return nil
}
guard let package = targetPackage,
UserDefaults.standard.optionalBool("SwipeActions", fallback: true) else { return nil }
var actions = [SwipeAction]()
let queueFound = DownloadManager.shared.find(package: package)
// We only want delete if we're going left, and only if it's in the queue
if orientation == .left {
if queueFound != .none {
actions.append(cancelAction(package))
}
return actions
}
// Check if the package is actually installed
if let installedPackage = PackageListManager.shared.installedPackage(identifier: package.package) {
let repo = RepoManager.shared.repoList.first(where: { $0.rawEntry == package.sourceFile })
// Check we have a repo for the package
if queueFound != .uninstallations {
actions.append(uninstallAction(package))
}
if package.filename != nil && repo != nil {
// Check if can be updated
if DpkgWrapper.isVersion(package.version, greaterThan: installedPackage.version) {
if queueFound != .upgrades {
actions.append(upgradeAction(package))
}
} else {
// Only add re-install if it can't be updated
if queueFound != .installations {
actions.append(reinstallAction(package))
}
}
} else {
let allPkgs = PackageListManager.shared.allPackages
if let pkg = allPkgs?.first(where: { $0.version == package.version && $0.package == package.package }) {
let queueFound = DownloadManager.shared.find(package: pkg)
if DpkgWrapper.isVersion(pkg.version, greaterThan: installedPackage.version) {
if queueFound != .upgrades {
actions.append(upgradeAction(pkg))
}
} else {
// Only add re-install if it can't be updated
if queueFound != .installations {
actions.append(reinstallAction(pkg))
}
}
}
}
} else {
if queueFound != .installations {
actions.append(getAction(package))
}
}
return actions
}
func collectionView(_ collectionView: UICollectionView, editActionsOptionsForItemAt indexPath: IndexPath, for orientation: SwipeActionsOrientation) -> SwipeOptions {
var options = SwipeOptions()
options.expansionStyle = .selection
return options
}
private func addRepo(_ package: ProvisionalPackage) -> SwipeAction {
let addRepo = SwipeAction(style: .default, title: String(localizationKey: "Add_Source.Title")) { _, _ in
if let repo = package.repo,
let url = URL(string: repo),
let tabBarController = self.window?.rootViewController as? UITabBarController,
let sourcesSVC = tabBarController.viewControllers?[2] as? UISplitViewController,
let sourcesNavNV = sourcesSVC.viewControllers[0] as? SileoNavigationController {
tabBarController.selectedViewController = sourcesSVC
if let sourcesVC = sourcesNavNV.viewControllers[0] as? SourcesViewController {
sourcesVC.presentAddSourceEntryField(url: url)
}
}
if let package = CanisterResolver.package(package) {
CanisterResolver.shared.queuePackage(package)
}
self.hapticResponse()
self.hideSwipe(animated: true)
}
addRepo.backgroundColor = .systemPink
addRepo.image = UIImage(systemNameOrNil: "plus.app")
return addRepo
}
private func cancelAction(_ package: Package) -> SwipeAction {
let cancel = SwipeAction(style: .destructive, title: String(localizationKey: "Cancel")) { _, _ in
DownloadManager.shared.remove(package: package.package)
DownloadManager.shared.reloadData(recheckPackages: true)
self.hapticResponse()
self.hideSwipe(animated: true)
}
cancel.image = UIImage(systemNameOrNil: "x.circle")
return cancel
}
private func uninstallAction(_ package: Package) -> SwipeAction {
let uninstall = SwipeAction(style: .destructive, title: String(localizationKey: "Package_Uninstall_Action")) { _, _ in
let queueFound = DownloadManager.shared.find(package: package)
if queueFound != .none {
DownloadManager.shared.remove(package: package.package)
}
DownloadManager.shared.add(package: package, queue: .uninstallations)
DownloadManager.shared.reloadData(recheckPackages: true)
self.hapticResponse()
self.hideSwipe(animated: true)
}
uninstall.image = UIImage(systemNameOrNil: "trash.circle")
return uninstall
}
private func upgradeAction(_ package: Package) -> SwipeAction {
let update = SwipeAction(style: .default, title: String(localizationKey: "Package_Upgrade_Action")) { _, _ in
let queueFound = DownloadManager.shared.find(package: package)
if queueFound != .none {
DownloadManager.shared.remove(package: package.package)
}
DownloadManager.shared.add(package: package, queue: .upgrades)
DownloadManager.shared.reloadData(recheckPackages: true)
self.hapticResponse()
self.hideSwipe(animated: true)
}
update.backgroundColor = .systemBlue
update.image = UIImage(systemNameOrNil: "icloud.and.arrow.down")
return update
}
private func reinstallAction(_ package: Package) -> SwipeAction {
let reinstall = SwipeAction(style: .default, title: String(localizationKey: "Package_Reinstall_Action")) { _, _ in
let queueFound = DownloadManager.shared.find(package: package)
if queueFound != .none {
DownloadManager.shared.remove(package: package.package)
}
DownloadManager.shared.add(package: package, queue: .installations)
DownloadManager.shared.reloadData(recheckPackages: true)
self.hapticResponse()
self.hideSwipe(animated: true)
}
reinstall.image = UIImage(systemNameOrNil: "arrow.clockwise.circle")
reinstall.backgroundColor = .systemOrange
return reinstall
}
private func getAction(_ package: Package) -> SwipeAction {
let install = SwipeAction(style: .default, title: String(localizationKey: "Package_Get_Action")) { _, _ in
let queueFound = DownloadManager.shared.find(package: package)
if queueFound != .none {
DownloadManager.shared.remove(package: package.package)
}
if package.sourceRepo != nil && !package.package.contains("/") {
if !package.commercial {
DownloadManager.shared.add(package: package, queue: .installations)
DownloadManager.shared.reloadData(recheckPackages: true)
} else {
self.updatePurchaseStatus(package) { error, provider, purchased in
guard let provider = provider else {
return self.presentAlert(paymentError: .invalidResponse,
title: String(localizationKey: "Purchase_Auth_Complete_Fail.Title",
type: .error))
}
if let error = error {
return self.presentAlert(paymentError: error,
title: String(localizationKey: "Purchase_Auth_Complete_Fail.Title",
type: .error))
}
if purchased {
DownloadManager.shared.add(package: package, queue: .installations)
DownloadManager.shared.reloadData(recheckPackages: true)
} else {
if provider.isAuthenticated {
self.initatePurchase(provider: provider, package: package)
} else {
DispatchQueue.main.async {
self.authenticate(provider: provider, package: package)
}
}
}
}
}
}
self.hapticResponse()
self.hideSwipe(animated: true)
}
if package.commercial {
install.image = UIImage(systemNameOrNil: "dollarsign.circle")
} else {
install.image = UIImage(systemNameOrNil: "square.and.arrow.down")
}
install.backgroundColor = .systemGreen
return install
}
private func legacyGet(_ package: Package) -> Bool {
let existingPurchased = UserDefaults.standard.array(forKey: "cydia-purchased") as? [String]
let isPurchased = existingPurchased?.contains(package.package) ?? false
if isPurchased {
DownloadManager.shared.add(package: package, queue: .installations)
DownloadManager.shared.reloadData(recheckPackages: true)
return true
}
return false
}
private func updatePurchaseStatus(_ package: Package, _ completion: ((PaymentError?, PaymentProvider?, Bool) -> Void)?) {
guard let repo = package.sourceRepo else {
return self.presentAlert(paymentError: .noPaymentProvider, title: String(localizationKey: "Purchase_Auth_Complete_Fail.Title",
type: .error))
}
PaymentManager.shared.getPaymentProvider(for: repo) { error, provider in
guard let provider = provider else {
if let completion = completion { completion(.noPaymentProvider, nil, false) }
return
}
if error != nil { if self.legacyGet(package) { if let completion = completion { completion(nil, provider, true) } } }
provider.getPackageInfo(forIdentifier: package.package) { error, info in
guard let info = info else {
if let completion = completion { completion(error, provider, false) }
return
}
if error != nil {
if self.legacyGet(package) {
if let completion = completion { completion(nil, provider, true) }
}
return
}
if info.purchased {
DownloadManager.shared.add(package: package, queue: .installations)
DownloadManager.shared.reloadData(recheckPackages: true)
if let completion = completion {
completion(nil, provider, true)
}
} else {
if let completion = completion {
completion(nil, provider, false)
}
}
}
}
}
private func initatePurchase(provider: PaymentProvider, package: Package) {
provider.initiatePurchase(forPackageIdentifier: package.package) { error, status, actionURL in
if status == .cancel { return }
guard !(error?.shouldInvalidate ?? false) else {
return self.authenticate(provider: provider, package: package)
}
if error != nil || status == .failed {
self.presentAlert(paymentError: error,
title: String(localizationKey: "Purchase_Initiate_Fail.Title",
type: .error))
}
guard let actionURL = actionURL,
status != .immediateSuccess else {
return self.updatePurchaseStatus(package, nil)
}
DispatchQueue.main.async {
PaymentAuthenticator.shared.handlePayment(actionURL: actionURL, provider: provider, window: self.window) { error, success in
if error != nil {
let title = String(localizationKey: "Purchase_Complete_Fail.Title", type: .error)
return self.presentAlert(paymentError: error, title: title)
}
if success {
self.updatePurchaseStatus(package, nil)
}
}
}
}
}
private func authenticate(provider: PaymentProvider, package: Package) {
PaymentAuthenticator.shared.authenticate(provider: provider, window: self.window) { error, success in
if error != nil {
return self.presentAlert(paymentError: error, title: String(localizationKey: "Purchase_Auth_Complete_Fail.Title",
type: .error))
}
if success {
self.updatePurchaseStatus(package, nil)
}
}
}
private func presentAlert(paymentError: PaymentError?, title: String) {
DispatchQueue.main.async {
UIApplication.shared.windows.last?.rootViewController?.present(PaymentError.alert(for: paymentError,
title: title),
animated: true,
completion: nil)
}
}
private func hapticResponse() {
if #available(iOS 13, *) {
let generator = UIImpactFeedbackGenerator(style: .soft)
generator.impactOccurred()
} else {
let generator = UINotificationFeedbackGenerator()
generator.notificationOccurred(.success)
}
}
}
| 45.37827 | 169 | 0.551678 |
6494dffb7c2c3624142a765cddec1b00851badd5 | 1,491 | //
// Copyright Amazon.com Inc. or its affiliates.
// All Rights Reserved.
//
// SPDX-License-Identifier: Apache-2.0
//
import Foundation
import AWSCore
public class AmplifyAWSServiceConfiguration: AWSServiceConfiguration {
static let version = "1.6.0"
override public class func baseUserAgent() -> String! {
//TODO: Retrieve this version from a centralized location:
//https://github.com/aws-amplify/amplify-ios/issues/276
let platformInfo = AmplifyAWSServiceConfiguration.platformInformation()
let systemName = UIDevice.current.systemName.replacingOccurrences(of: " ", with: "-")
let systemVersion = UIDevice.current.systemVersion
let localeIdentifier = Locale.current.identifier
return "\(platformInfo) \(systemName)/\(systemVersion) \(localeIdentifier)"
}
override public var userAgent: String {
return AmplifyAWSServiceConfiguration.baseUserAgent()
}
override public func copy(with zone: NSZone? = nil) -> Any {
return super.copy(with: zone)
}
override init() {
super.init(region: .Unknown, credentialsProvider: nil)
}
override public init(region regionType: AWSRegionType,
credentialsProvider: AWSCredentialsProvider) {
super.init(region: regionType, credentialsProvider: credentialsProvider)
}
public init(region regionType: AWSRegionType) {
super.init(region: regionType, credentialsProvider: nil)
}
}
| 33.133333 | 93 | 0.694836 |
8f3480a5f648246f139a49161c293940efaf3332 | 2,047 | //
// UIToolbarExtensionTests.swift
// BFKit-Swift
//
// The MIT License (MIT)
//
// Copyright (c) 2015 - 2019 Fabrizio Brancati.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
@testable import BFKit
import Foundation
import UIKit
import XCTest
internal class UIToolbarExtensionTests: XCTestCase {
internal func testSetTrasparentTraslucent() {
let toolbar = UIToolbar(frame: CGRect(x: 0, y: 0, width: 0, height: 0))
toolbar.setTransparent(true, translucent: false)
XCTAssertFalse(toolbar.isTranslucent)
XCTAssertNotNil(toolbar.backgroundImage(forToolbarPosition: .any, barMetrics: .default))
XCTAssertNotNil(toolbar.shadowImage(forToolbarPosition: .any))
toolbar.setTransparent(false, translucent: true)
XCTAssertTrue(toolbar.isTranslucent)
XCTAssertNil(toolbar.backgroundImage(forToolbarPosition: .any, barMetrics: .default))
XCTAssertNil(toolbar.shadowImage(forToolbarPosition: .any))
}
}
| 42.645833 | 96 | 0.735222 |
299d26572a8bb1e451c41061520b07772b37cad6 | 3,604 | //
// MainTabBarController.swift
// ljwb
//
// Created by comma on 16/5/16.
// Copyright © 2016年 lj. All rights reserved.
//
import UIKit
class MainTabBarController: UITabBarController {
override func viewDidLoad() {
super.viewDidLoad()
addChildViewControllers()
}
override func viewWillAppear(animated: Bool) {
super.viewWillAppear(animated)
setupComposeBtn()
}
private func addChildViewControllers(){
let jsonPath = NSBundle.mainBundle().pathForResource("MainVCSettings.json", ofType: nil)
let jsonData = NSData(contentsOfFile: jsonPath!)
do{
let dictArray = try NSJSONSerialization.JSONObjectWithData(jsonData!, options: NSJSONReadingOptions.MutableContainers)
for dict in dictArray as! [[String:String]] {
addChildViewController(dict["vcName"]!, title: dict["title"]!, imageName: dict["imageName"]!)
}
}catch{
addChildViewController("HomeTableViewController", title: "首页", imageName: "tabbar_home")
addChildViewController("MessageTableViewController", title: "消息", imageName: "tabbar_message_center")
// 添加占位控制器
addChildViewController("NullViewController", title: "", imageName: "")
addChildViewController("DiscoverTableViewController", title: "发现", imageName: "tabbar_discover")
addChildViewController("ProfileTableViewController", title: "我", imageName: "tabbar_profile")
}
}
private func addChildViewController(childControllerName: String, title : String, imageName:String) {
let namespace = NSBundle.mainBundle().infoDictionary!["CFBundleExecutable"] as! String
print(namespace)
let cls:AnyClass = NSClassFromString(namespace + "." + childControllerName)!
let vcCls = cls as! UIViewController.Type
let vc = vcCls.init()
vc.title = title;
vc.tabBarItem.image = UIImage(named: imageName)
vc.tabBarItem.selectedImage = UIImage(named: imageName + "_highlighted")
let nav = UINavigationController()
nav.addChildViewController(vc)
addChildViewController(nav)
}
private func setupComposeBtn() {
tabBar.addSubview(composeBtn)
let width = tabBar.bounds.width / CGFloat(viewControllers!.count)
let rect = CGRect(x: width * 2, y: 0, width: width, height: tabBar.bounds.height)
composeBtn.frame = rect
}
func composeBtnClick() {
print("hello")
}
//懒加载
private lazy var composeBtn:UIButton = {
let button = UIButton()
button.setImage(UIImage(named: "tabbar_compose_icon_add"), forState: UIControlState.Normal)
button.setImage(UIImage(named: "tabbar_compose_icon_add_highlighted"), forState: UIControlState.Highlighted)
button.setBackgroundImage(UIImage(named: "tabbar_compose_button"), forState: UIControlState.Normal)
button.setBackgroundImage(UIImage(named: "tabbar_compose_button_highlighted"), forState: UIControlState.Highlighted)
button.addTarget(self, action: "composeBtnClick", forControlEvents: UIControlEvents.TouchUpInside)
return button
}()
}
| 29.785124 | 130 | 0.606271 |
1ecccda966a587c4dfd477be2807cc035f428f53 | 1,285 | //
// UILabel+Extensions.swift
//
// Created by Vignesh J on 07/10/20.
//
import UIKit
extension UILabel {
public func addCharacterSpacing(kernValue: CGFloat = 2) {
guard let labelText = text,
!labelText.isEmpty else {
return
}
self.set(attributedText: labelText,
kernValue: kernValue)
}
public func set(attributedText text: String,
kernValue: CGFloat = 2) {
let attributedString = NSMutableAttributedString(string: text)
attributedString.addAttribute(NSAttributedString.Key.kern,
value: kernValue,
range: NSRange(location: 0,
length: attributedString.length - 1))
self.attributedText = attributedString
}
public func size(forWidth width: CGFloat) -> CGSize {
if let attributedText = self.attributedText {
return attributedText.size(forWidth: width)
} else if let text = self.text,
let font = self.font {
return text.size(forWidth: width,
font: font)
} else {
return .zero
}
}
}
| 30.595238 | 90 | 0.523735 |
380c7ff437ee8e9b68afe64d0bc7813a6874211a | 3,769 | //
// ScanQrViewController.swift
// IPtProxyUI
//
// Created by Benjamin Erhart on 2021-11-29.
// Copyright © 2019-2021 Guardian Project. All rights reserved.
//
import UIKit
import AVFoundation
public protocol ScanQrDelegate: AnyObject {
func scanned(value: String?)
}
open class ScanQrViewController: UIViewController, AVCaptureMetadataOutputObjectsDelegate {
private var captureSession: AVCaptureSession?
private var videoPreviewLayer: AVCaptureVideoPreviewLayer?
open weak var delegate: ScanQrDelegate?
open override func viewDidLoad() {
super.viewDidLoad()
navigationItem.title = NSLocalizedString(
"Scan QR Code", bundle: Bundle.iPtProxyUI, comment: "")
if #available(iOS 13.0, *) {
view.backgroundColor = .systemGroupedBackground
}
else {
view.backgroundColor = .init(red: 242/255, green: 242/255, blue: 247/255, alpha: 1)
}
}
open override func viewDidAppear(_ animated: Bool) {
super.viewDidAppear(animated)
startReading()
}
open override func viewWillDisappear(_ animated: Bool) {
super.viewWillDisappear(animated)
stopReading()
}
// MARK: AVCaptureMetadataOutputObjectsDelegate
/**
BUGFIX: Signature of method changed in Swift 4, without notifications.
No migration assistance either.
See https://stackoverflow.com/questions/46639519/avcapturemetadataoutputobjectsdelegate-not-called-in-swift-4-for-qr-scanner
*/
public func metadataOutput(_ output: AVCaptureMetadataOutput, didOutput
metadataObjects: [AVMetadataObject], from connection: AVCaptureConnection)
{
if metadataObjects.count > 0,
let metadata = metadataObjects[0] as? AVMetadataMachineReadableCodeObject,
metadata.type == .qr {
if let navC = navigationController {
navC.popViewController(animated: true)
delegate?.scanned(value: metadata.stringValue)
}
}
}
// MARK: Private Methods
private func startReading()
{
if let captureDevice = AVCaptureDevice.default(for: .video) {
do {
let input = try AVCaptureDeviceInput(device: captureDevice)
captureSession = AVCaptureSession()
captureSession?.addInput(input)
let captureMetadataOutput = AVCaptureMetadataOutput()
captureSession?.addOutput(captureMetadataOutput)
captureMetadataOutput.setMetadataObjectsDelegate(self, queue: DispatchQueue.main)
captureMetadataOutput.metadataObjectTypes = [.qr]
videoPreviewLayer = AVCaptureVideoPreviewLayer(session: captureSession!)
videoPreviewLayer?.videoGravity = .resizeAspectFill
videoPreviewLayer?.frame = view.layer.bounds
view.layer.addSublayer(videoPreviewLayer!)
captureSession?.startRunning()
return
}
catch {
// Just fall thru to alert.
}
}
let warning = UILabel(frame: .zero)
warning.text = NSLocalizedString(
"Camera access was not granted or QR Code scanning is not supported by your device.",
bundle: Bundle.iPtProxyUI, comment: "")
warning.translatesAutoresizingMaskIntoConstraints = false
warning.numberOfLines = 0
warning.textAlignment = .center
if #available(iOS 13.0, *) {
warning.textColor = .secondaryLabel
}
else {
warning.textColor = .init(red: 60/255, green: 60/255, blue: 67/255, alpha: 0.6)
}
view.addSubview(warning)
warning.leadingAnchor.constraint(equalTo: view.leadingAnchor, constant: 16).isActive = true
warning.trailingAnchor.constraint(equalTo: view.trailingAnchor, constant: -16).isActive = true
warning.topAnchor.constraint(equalTo: view.topAnchor, constant: 16).isActive = true
warning.bottomAnchor.constraint(equalTo: view.bottomAnchor, constant: -16).isActive = true
}
private func stopReading() {
captureSession?.stopRunning()
captureSession = nil
videoPreviewLayer?.removeFromSuperlayer()
videoPreviewLayer = nil
}
}
| 27.510949 | 126 | 0.748474 |
22645f96a1db60645f3d37de32e5e38382a569c4 | 3,249 | //
// SuperheroViewController.swift
// Flix_Part1
//
// Created by Mike Su on 10/23/18.
// Copyright © 2018 Mike Su. All rights reserved.
//
import UIKit
class SuperheroViewController: UIViewController, UICollectionViewDataSource {
@IBOutlet weak var collectionView: UICollectionView!
var movies: [[String: Any]] = []
override func viewDidLoad() {
super.viewDidLoad()
collectionView.dataSource = self
let layout = collectionView.collectionViewLayout as! UICollectionViewFlowLayout
layout.minimumInteritemSpacing = 5
layout.minimumLineSpacing = layout.minimumInteritemSpacing
let cellsPerLine: CGFloat = 2
let interItemSpacingTotal = layout.minimumInteritemSpacing * (cellsPerLine - 1)
let width = collectionView.frame.size.width / cellsPerLine - interItemSpacingTotal / cellsPerLine
layout.itemSize = CGSize(width: width, height: width * 3 / 2)
fetchMovies()
// Do any additional setup after loading the view.
}
func collectionView(_ collectionView: UICollectionView, numberOfItemsInSection section: Int) -> Int {
return movies.count
}
func collectionView(_ collectionView: UICollectionView, cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {
let cell = collectionView.dequeueReusableCell(withReuseIdentifier: "PosterCell", for: indexPath) as! PosterCell
let movie = movies[indexPath.item]
if let posterPathString = movie["poster_path"] as? String {
let baseURLString = "https://image.tmdb.org/t/p/w500"
let posterURL = URL(string: baseURLString + posterPathString)!
cell.posterImageView.af_setImage(withURL: posterURL)
}
return cell
}
func fetchMovies() {
//Request networking
let url = URL(string: "https://api.themoviedb.org/3/movie/now_playing?api_key=a07e22bc18f5cb106bfe4cc1f83ad8ed")!
let request = URLRequest(url: url, cachePolicy: .reloadIgnoringLocalCacheData, timeoutInterval: 10)
let session = URLSession(configuration: .default, delegate: nil, delegateQueue: OperationQueue.main)
let task = session.dataTask(with: request) {
(data, response, error) in
if let error = error {
print(error.localizedDescription)
} else if let data = data {
let dataDictionary = try! JSONSerialization.jsonObject(with: data, options: []) as! [String: Any]
let movies = dataDictionary["results"] as! [[String: Any]]
self.movies = movies
self.collectionView.reloadData()
//self.refreshControl.endRefreshing()
}
}
task.resume()
}
/*
// MARK: - Navigation
// In a storyboard-based application, you will often want to do a little preparation before navigation
override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
// Get the new view controller using segue.destination.
// Pass the selected object to the new view controller.
}
*/
}
| 34.56383 | 121 | 0.63835 |
2f117590279ae314405b114e84e19b35d8a08663 | 3,127 | //
// SSNTextFieldTests.swift
// FrameworkTests
//
// Created by Dima on 29.05.2020.
// Copyright © 2020 VGS. All rights reserved.
//
import XCTest
@testable import VGSCollectSDK
class SSNTextFieldTests: XCTestCase {
var collector: VGSCollect!
var ssnTextField: VGSTextField!
override func setUp() {
collector = VGSCollect(id: "tntva5wfdrp")
ssnTextField = VGSTextField()
let config = VGSConfiguration(collector: collector, fieldName: "ssn")
config.type = .ssn
config.isRequired = true
ssnTextField.configuration = config
ssnTextField.textField.secureText = "123-44-5555"
}
override func tearDown() {
collector = nil
ssnTextField = nil
}
func testAlias() {
XCTAssertTrue(ssnTextField.state.fieldName == "ssn")
}
func testContent() {
XCTAssertTrue(ssnTextField.textField.secureText == "123-44-5555")
}
func testStates() {
let state = ssnTextField.state
XCTAssertFalse(state.isEmpty)
XCTAssertTrue(state.isValid)
XCTAssertTrue(state.isRequired)
XCTAssertNotNil(state.description)
XCTAssertTrue(state is SSNState, "SSNState should be available for .ssn configuration")
}
func testNotValidSSNReturnsFalse() {
let config = VGSConfiguration(collector: collector, fieldName: "ssn")
config.type = .ssn
config.formatPattern = ""
ssnTextField.configuration = config
let notValidSSN = [
"111111111", "222222222", "555555555",
"666666666", "999999999", "000000000",
"000123456", "143004563", "235230000",
"923423423", "666123456", "123456789",
"219099999", "078051120", "457555462",
"22334455", "3434343", "11111111222"
]
for ssn in notValidSSN {
ssnTextField.textField.secureText = ssn
ssnTextField.focusOn()
XCTAssertFalse(ssnTextField.state.isValid)
XCTAssertFalse(ssnTextField.state.isEmpty)
if let state = ssnTextField.state as? SSNState {
XCTAssertTrue(state.last4 == "")
}
}
}
func testValidSSNReturnsTrue() {
let config = VGSConfiguration(collector: collector, fieldName: "ssn")
config.type = .ssn
ssnTextField.configuration = config
let validSSN = [
"111111112", "222232222", "455555555",
"166666666", "899999999", "001010001",
"100123456", "143104563", "235231000",
"823423423", "665123455", "123456780",
"219099998", "078051125", "457555465",
/// mask should cut extra symbols
"234567890123456789"
]
for ssn in validSSN {
ssnTextField.textField.secureText = ssn
ssnTextField.focusOn()
XCTAssertTrue(ssnTextField.state.isValid)
XCTAssertTrue(ssnTextField.state.inputLength == 9)
XCTAssertFalse(ssnTextField.state.isEmpty)
if let state = ssnTextField.state as? SSNState {
XCTAssertTrue(state.last4.count == 4)
}
}
}
}
| 29.5 | 95 | 0.618484 |
1d3c0d0385665853eefcfc07853d279f3d705dd0 | 1,149 | //
// tippyUITests.swift
// tippyUITests
//
// Created by Xiaoyan Yang on 2/1/20.
// Copyright © 2020 codepath. All rights reserved.
//
import XCTest
class tippyUITests: XCTestCase {
override func setUp() {
// Put setup code here. This method is called before the invocation of each test method in the class.
// In UI tests it is usually best to stop immediately when a failure occurs.
continueAfterFailure = false
// UI tests must launch the application that they test. Doing this in setup will make sure it happens for each test method.
XCUIApplication().launch()
// In UI tests it’s important to set the initial state - such as interface orientation - required for your tests before they run. The setUp method is a good place to do this.
}
override func tearDown() {
// Put teardown code here. This method is called after the invocation of each test method in the class.
}
func testExample() {
// Use recording to get started writing UI tests.
// Use XCTAssert and related functions to verify your tests produce the correct results.
}
}
| 32.828571 | 182 | 0.687554 |
09aa2a5645887ea778fb5a7da75c4d4e4ec4ace4 | 2,770 | import Foundation
import CoreData
import UIKit
extension RootViewController {
func clearData() {
let delegate = UIApplication.sharedApplication().delegate as? AppDelegate
if let context = delegate?.managedObjectContext {
do {
let entityNames = ["PostItem"]
for entityName in entityNames {
let fetchRequest = NSFetchRequest(entityName: entityName)
let objects = try(context.executeFetchRequest(fetchRequest)) as? [NSManagedObject]
for object in objects! {
context.deleteObject(object)
try(context.save())
}
}
} catch let err {
print(err)
}
}
}
func insertData(rawPostItem: RawPostItem) {
if let context = delegate?.managedObjectContext {
let sample = NSEntityDescription.insertNewObjectForEntityForName("PostItem", inManagedObjectContext: context) as! PostItem
sample.title = rawPostItem.title
sample.creator = rawPostItem.creator
sample.pubDate = rawPostItem.pubDate
sample.link = rawPostItem.link
sample.abstract = rawPostItem.abstract
sample.content = rawPostItem.content
sample.imageHeading = rawPostItem.imageHeading
sample.creatorAvatar = rawPostItem.creatorAvatar
do {
try(context.save())
} catch let err {
print(err)
}
}
}
func loadSampleData() {
let sample: RawPostItem = RawPostItem(title: "Introducing Lazer", creator: "Team Super Monkey Bomb", pubDate: NSDate(), link: "https://github.com/zizhengwu/lazer", abstract: "Welcome to Lazer! Lazer wants to provide meaningful relaxation to you. By choosing your favourite topics, you will get the most interesting content tailored for you.", content: "Welcome to Lazer! Lazer wants to provide meaningful relaxation to you. By choosing your favourite topics, you will get the most interesting content tailored for you. <br><br>Lazer is certainly not another app to overwhelm you with endless information that you are not interested in. You could only read within your accepted relaxation / bucket time. When time is up, you will be reminded that you should get back to work. <br><br>Enjoy reading and keep working!", imageHeading: "http://i.imgur.com/JoTiTtg.png", creatorAvatar: "http://i.imgur.com/hmyoWhi.png")
insertData(sample)
}
func loadData() {
}
} | 43.968254 | 921 | 0.601083 |
cce85551b885dc386965f605eedd6f60ab9effad | 11,273 | //
// EMUserProfileManager.swift
// Hyphenate-Demo-Swift
//
// Created by dujiepeng on 2017/6/15.
// Copyright © 2017 dujiepeng. All rights reserved.
//
import UIKit
import Parse
import Hyphenate
let kPARSE_HXUSER = "hxuser"
//let kPARSE_HXUSER = "HyphenateUser"
let kPARSE_HXUSER_USERNAME = "username"
let kPARSE_HXUSER_NICKNAME = "nickname"
let kPARSE_HXUSER_AVATAR = "avatar"
extension UIImage {
func imageByScalingAndCroppingForSize(targetSize:CGSize) -> UIImage {
let sourceImage = self
var newImage : UIImage? = nil
let imageSize = sourceImage.size
let width = imageSize.width
let height = imageSize.height
let targetWidth = targetSize.width
let targetHeight = targetSize.height
var scaleFactor = 0.0
var scaleWidth = targetWidth
var scaleHeight = targetHeight
var thumbnailPoint = CGPoint(x: 0, y: 0 )
if imageSize != targetSize {
let widthFactor = targetWidth / width
let heightFactor = targetHeight / height
if widthFactor > heightFactor {
scaleFactor = Double(widthFactor)
} else {
scaleFactor = Double(heightFactor)
}
scaleWidth = CGFloat(Double(width) * scaleFactor)
scaleHeight = CGFloat(Double(height) * scaleFactor)
if widthFactor > heightFactor {
thumbnailPoint.y = (targetHeight - scaleHeight) * 0.5
} else {
thumbnailPoint.x = (targetWidth - scaleWidth) * 0.5
}
}
UIGraphicsBeginImageContext(targetSize)
var thumbnailRect = CGRect.zero
thumbnailRect.origin = thumbnailPoint
thumbnailRect.size.width = scaleWidth
thumbnailRect.size.height = scaleHeight
sourceImage.draw(in: thumbnailRect)
newImage = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
return newImage!
}
}
class UserProfileEntity: NSObject {
var objectId:String?
var username:String?
var nickname:String?
var imageUrl:String?
override init() {
super.init()
}
class func initPFObject(PFObject object: PFObject) -> UserProfileEntity{
let entity = UserProfileEntity()
entity.username = object[kPARSE_HXUSER_USERNAME] as? String
entity.nickname = object[kPARSE_HXUSER_NICKNAME] as? String
let useranmeImage = object[kPARSE_HXUSER_AVATAR] as? PFFile
if useranmeImage != nil {
entity.imageUrl = useranmeImage?.url
}
return entity
}
}
class EMUserProfileManager: NSObject {
private var _currentName : String?
var users = Dictionary<String, UserProfileEntity>()
var objectId : String?
var defaultACL: PFACL?
static let sharedInstance = EMUserProfileManager()
override init() {
super.init()
defaultACL = PFACL()
defaultACL?.getPublicReadAccess = true
defaultACL?.getPublicWriteAccess = true
}
func intParse() {
let userDefault = UserDefaults.standard
let objId : String? = userDefault.object(forKey: kPARSE_HXUSER + EMClient.shared().currentUsername) as? String
if objId != nil {
self.objectId = objId
}
_currentName = EMClient.shared().currentUsername
initData()
}
func claerParse() {
objectId = nil
let userDefault = UserDefaults.standard
if _currentName != nil {
userDefault.removeObject(forKey: kPARSE_HXUSER + _currentName!)
_currentName = nil
}
users.removeAll()
}
func initData() {
users.removeAll()
let query = PFQuery.init(className: kPARSE_HXUSER)
query.findObjectsInBackground { (objects, error) in
if objects != nil && objects!.count > 0 {
for user in objects! {
let entity = UserProfileEntity.initPFObject(PFObject: user)
if (entity.username?.characters.count)! > 0 {
user.setObject(entity, forKey: entity.username!)
}
}
}
}
}
func uploadUserHeadImageProfileInBackground(image: UIImage, complation:@escaping (Bool, Error?) -> Void) {
weak var weakSelf = self
let img = image.imageByScalingAndCroppingForSize(targetSize: CGSize.init(width: 120, height: 120))
if objectId != nil && (objectId?.characters.count)! > 0 {
let object = PFObject(withoutDataWithClassName: kPARSE_HXUSER, objectId: objectId)
DispatchQueue.global().async {
do{ try object.fetchIfNeeded() } catch {}
}
let data = UIImageJPEGRepresentation(img, 0.5)
let imageFile = PFFile.init(name: "image.png", data: data!)
object[kPARSE_HXUSER_AVATAR] = imageFile
object.saveInBackground(block: { (successed, error) in
if successed {
weakSelf?.savePFUserInDisk(obj: object)
}
complation(successed, error)
})
} else {
queryPFObject(complation: { (object, error) in
if object != nil {
let data = UIImageJPEGRepresentation(img, 0.5)
let imageFile = PFFile.init(name: "image.png", data: data!)
object?[kPARSE_HXUSER_AVATAR] = imageFile
object!.saveInBackground(block: { (successed, error) in
if successed {
weakSelf?.savePFUserInDisk(obj: object)
}
complation(successed, error)
})
}else {
complation(false, error)
}
})
}
}
func updateUserProfileInBackground(param:Dictionary<String, Any>?, complation:@escaping (Bool, Error?) -> Void) {
weak var weakSelf = self
if objectId != nil && (objectId?.characters.count)! > 0 {
let object = PFObject(withoutDataWithClassName: kPARSE_HXUSER, objectId: objectId)
DispatchQueue.global().async {
do{ try object.fetchIfNeeded() } catch {}
}
if param != nil && (param?.keys.count)! > 0 {
for key in (param?.keys)! {
object.setObject(param?[key]! as Any, forKey: key)
}
}
weak var uObject = object
object.saveInBackground(block: { (successed, error) in
if successed {
weakSelf?.savePFUserInDisk(obj: uObject)
}
complation(successed, error)
})
} else {
queryPFObject(complation: { (object, error) in
if object != nil {
if param != nil && (param?.keys.count)! > 0 {
for key in (param?.keys)! {
object?.setObject(param?[key]! as Any, forKey: key)
}
}
weak var uObject = object!
object!.saveInBackground(block: { (successed, error) in
if successed {
weakSelf?.savePFUserInDisk(obj: uObject)
}
complation(successed, error)
})
}else {
complation(false, error)
}
})
}
}
func loadUserProfileInBackgroundWithBuddy(buddyList:Array<String>, saveToLocat save:Bool, complation:@escaping (Bool, Error?)->Void) {
var usernames = Array<String>()
for buddyName in buddyList {
if buddyName.characters.count > 0 {
if getUserProfileByUsername(username: buddyName) == nil {
usernames.append(buddyName)
}
}
}
if usernames.count == 0 {
complation(true, nil)
return
}
loadUserProfileInBackground(usernames: usernames, saveToLocal: save, complation: complation)
}
func loadUserProfileInBackground(usernames:Array<String>, saveToLocal save:Bool, complation:@escaping (Bool, Error?)->Void) {
weak var weakSelf = self
let query = PFQuery.init(className: kPARSE_HXUSER)
query.whereKey(kPARSE_HXUSER_USERNAME, containedIn: usernames)
query.findObjectsInBackground { (objects, error) in
if error == nil {
for user in objects! {
let pfUser = user as PFObject
if save {
weakSelf?.savePFUserInDisk(obj: pfUser)
} else {
weakSelf?.savePFUserInMemory(obj: pfUser)
}
}
complation(true, nil)
} else {
complation(false, error)
}
}
}
func getUserProfileByUsername(username:String?) -> UserProfileEntity? {
if username != nil {
if users[username!] != nil {
return users[username!]
}
}
return nil
}
func getCurUserProfile() -> UserProfileEntity? {
return getUserProfileByUsername(username: EMClient.shared().currentUsername)
}
func getNickNameWithUsername(username:String) -> String {
let entity = getUserProfileByUsername(username: username)
if entity?.nickname != nil && (entity?.nickname?.characters.count)! > 0 {
return (entity?.nickname)!
}
return username
}
// MARK: - Private
func savePFUserInDisk(obj: PFObject?) {
if obj != nil {
obj!.pinInBackground(withName: EMClient.shared().currentUsername)
savePFUserInMemory(obj: obj!)
}
}
func savePFUserInMemory(obj: PFObject) {
let entity = UserProfileEntity.initPFObject(PFObject: obj)
users[entity.username!] = entity
}
func queryPFObject(complation:@escaping (PFObject?, Error?) -> Void) {
let query = PFQuery.init(className: kPARSE_HXUSER)
query.whereKey(kPARSE_HXUSER_USERNAME, equalTo: EMClient.shared().currentUsername)
weak var weakSelf = self
query.findObjectsInBackground { (objects, error) in
if error == nil {
if objects != nil && (objects?.count)! > 0 {
let object = objects![0] as PFObject
object.acl = weakSelf?.defaultACL
let userDefault = UserDefaults.standard
userDefault.set(object.objectId, forKey: kPARSE_HXUSER+EMClient.shared().currentUsername)
userDefault.synchronize()
complation(object, error)
}
}else {
complation(nil,error)
}
}
}
}
| 35.009317 | 138 | 0.546971 |
2695f6ff467d8dbfd2c6373b425f00d986e917bc | 1,100 | import UIKit
public extension CardView {
/// It is compatible with any type of UIScrollView and UIScrollViewDelegate:
/// (e.g. UITableViewDelegate, UICollectionViewDelegateFlowLayout and any other custom type).
/// Do not overwrite scrollView.delegate, it will be used by ScrollShadeViewContent.
public convenience init(scrollView: UIScrollView, delegate: UIScrollViewDelegate?, headerView: UIView) {
self.init(content: ScrollShadeViewContent(scrollView: scrollView, delegate: delegate), headerView: headerView)
}
}
public extension ShadeView {
/// It is compatible with any type of UIScrollView and UIScrollViewDelegate:
/// (e.g. UITableViewDelegate, UICollectionViewDelegateFlowLayout and any other custom type).
/// Do not overwrite scrollView.delegate, it will be used by ScrollShadeViewContent.
public convenience init(scrollView: UIScrollView, delegate: UIScrollViewDelegate?, headerView: UIView) {
self.init(content: ScrollShadeViewContent(scrollView: scrollView, delegate: delegate), headerView: headerView)
}
}
| 45.833333 | 118 | 0.754545 |
feb565839e4016391470a7ea5baf4ae89c8a2e1d | 551 | //
// GitTag.swift
// VibesPush
//
// Created by Moin' Victor on 15/09/2020.
// Copyright © 2020 Vibes. All rights reserved.
//
import Foundation
/// A small data object to hold a Git Tag
public struct GitTag {
let name: String
}
extension GitTag: JSONEncodable, JSONDecodable {
init?(json: VibesJSONDictionary) {
guard let name = json["name"] as? String else { return nil }
self.name = name
}
func encodeJSON() -> VibesJSONDictionary {
return [
"name": name as AnyObject,
]
}
}
| 19.678571 | 68 | 0.615245 |
91137094820b06ab77080b1e326f23a34cb3da75 | 1,840 | //
// AppDelegate.swift
// NiceOff
//
// Created by Paul Loots on 2019/09/28.
// Copyright © 2019 Paul Loots. All rights reserved.
//
import UIKit
import Firebase
@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {
func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplication.LaunchOptionsKey: Any]?) -> Bool {
FirebaseApp.configure()
return true
}
// MARK: UISceneSession Lifecycle
func application(_ application: UIApplication, configurationForConnecting connectingSceneSession: UISceneSession, options: UIScene.ConnectionOptions) -> UISceneConfiguration {
// Called when a new scene session is being created.
// Use this method to select a configuration to create the new scene with.
return UISceneConfiguration(name: "Default Configuration", sessionRole: connectingSceneSession.role)
}
func application(_ application: UIApplication, didDiscardSceneSessions sceneSessions: Set<UISceneSession>) {
// Called when the user discards a scene session.
// If any sessions were discarded while the application was not running, this will be called shortly after application:didFinishLaunchingWithOptions.
// Use this method to release any resources that were specific to the discarded scenes, as they will not return.
}
func applicationWillTerminate(_ application: UIApplication) {
// Called when the application is about to terminate. Save data if appropriate. See also applicationDidEnterBackground:.
// Saves changes in the application's managed object context before the application terminates.
Api.Game.deleteGame(onSuccess: {print("Game Deleted")}, onError: {error in
print("Delete Error")
print(error)})
}
}
| 40.888889 | 179 | 0.734783 |
d536f373b90e13c7580382f3cf4881790a6ee5ef | 1,672 | //
// NSHostComponent.swift
// TokamakAppKit
//
// Created by Max Desiatov on 29/12/2018.
//
import AppKit
import Tokamak
/// Any host component that is supposed to be rendered by `AppKitRenderer`
/// should implement this protocol or any of concrete subprotocols:
/// `NSViewComponent` for `NSView` targets, `NSControlComponent` for
/// `NSControl` targets and `NSValueComponent` for `NSControl` components
/// providing a configurable single value: `NSSlider`,
/// `NSStepper`, `NSDatePicker`, or `NSSegmentedControl`.
protocol NSHostComponent: AnyHostComponent {
static func mountTarget(
to parent: NSTarget,
component: AppKitRenderer.MountedHost,
_ renderer: AppKitRenderer
) -> NSTarget?
static func update(target: NSTarget, node: AnyNode)
static func unmount(target: NSTarget, completion: @escaping () -> ())
}
extension NSHostComponent {
static func targetAssertionFailure(_ function: String = #function) {
typeAssertionFailure("target", function)
}
static func childrenAssertionFailure(_ function: String = #function) {
typeAssertionFailure("children", function)
}
static func propsAssertionFailure(_ function: String = #function) {
typeAssertionFailure("props", function)
}
static func parentAssertionFailure(_ function: String = #function) {
typeAssertionFailure("parent target", function)
}
static func boxAssertionFailure(_ function: String = #function) {
typeAssertionFailure("box", function)
}
private static func typeAssertionFailure(_ type: String, _ function: String) {
assertionFailure("""
UIKitHostComponent passed unsupported \(type) type in \(function)
""")
}
}
| 29.857143 | 80 | 0.732656 |
1cfa80661c71c8f93412c22ba45ef4a2b571f5fc | 1,547 | // RUN: rm -rf %t && mkdir -p %t
// RUN: %target-build-swift -lswiftSwiftReflectionTest %s -o %t/reflect_Character
// RUN: %target-run %target-swift-reflection-test %t/reflect_Character 2>&1 | FileCheck %s --check-prefix=CHECK-%target-ptrsize
// REQUIRES: objc_interop
import SwiftReflectionTest
class TestClass {
var t: Character
init(t: Character) {
self.t = t
}
}
var obj = TestClass(t: "A")
reflect(object: obj)
// CHECK-64: Reflecting an object.
// CHECK-64: Instance pointer in child address space: 0x{{[0-9a-fA-F]+}}
// CHECK-64: Type reference:
// CHECK-64: (class reflect_Character.TestClass)
// CHECK-64: Type info:
// CHECK-64: <null type info>
// CHECK-32: Reflecting an object.
// CHECK-32: Instance pointer in child address space: 0x{{[0-9a-fA-F]+}}
// CHECK-32: Type reference:
// CHECK-32: (class reflect_Character.TestClass)
// CHECK-32: Type info:
// CHECK-32: <null type info>
reflect(any: obj)
// CHECK-64: Reflecting an existential.
// CHECK-64: Instance pointer in child address space: 0x{{[0-9a-fA-F]+}}
// CHECK-64: Type reference:
// CHECK-64: (class reflect_Character.TestClass)
// CHECK-64: Type info:
// CHECK-64: (reference kind=strong refcounting=native)
// CHECK-32: Reflecting an existential.
// CHECK-32: Instance pointer in child address space: 0x{{[0-9a-fA-F]+}}
// CHECK-32: Type reference:
// CHECK-32: (class reflect_Character.TestClass)
// CHECK-32: Type info:
// CHECK-32: (reference kind=strong refcounting=native)
doneReflecting()
// CHECK-64: Done.
// CHECK-32: Done.
| 26.672414 | 127 | 0.692308 |
094588e5e2f0ce0852d223002b3641067511382a | 404 | //
// BeerStep.swift
// MVVM-RxSwift-snapKit
//
// Created by GoEun Jeong on 2021/05/09.
//
import RxFlow
enum BeerStep: Step {
// Global
case alert(String)
// TabBar
case TabBarIsRequired
// Beer List
case BeerListIsRequired
case BeerDetailIsPicked (beer: Beer)
// Search Beer
case SearchBeerIsRequired
// Random Beer
case RandomBeerIsRequired
}
| 14.962963 | 41 | 0.65099 |
01b81a9a138b5d4b1e93fa14f17afeb7fce81458 | 969 | //
// PublishRelay.swift
// RxRelay
//
// Created by Krunoslav Zaher on 3/28/15.
// Copyright © 2017 Krunoslav Zaher. All rights reserved.
//
import RxSwift
/// 包装 `PublishSubject` 的结构体,不需要初始值。
///
/// 不会产生 error or completed 事件
public final class PublishRelay<Element>: ObservableType {
private let subject: PublishSubject<Element>
// Accepts `event` and emits it to subscribers
public func accept(_ event: Element) {
self.subject.onNext(event)
}
/// Initializes with internal empty subject.
public init() {
self.subject = PublishSubject()
}
/// Subscribes observer
public func subscribe<Observer: ObserverType>(_ observer: Observer) -> Disposable where Observer.Element == Element {
self.subject.subscribe(observer)
}
/// - returns: Canonical interface for push style sequence
public func asObservable() -> Observable<Element> {
self.subject.asObservable()
}
}
| 26.189189 | 121 | 0.668731 |
dd8cfd6cc8dc14c217fff63e5a0a5b9d27041ce2 | 823 | //
// ViewController.swift
// Number
//
// Created by HY on 2018/2/27.
// Copyright © 2018年 XY. All rights reserved.
//
import UIKit
struct XYModel:Codable {
var age:Number?
var name:Number?
}
class ViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()
let dict = ["age":NSNull(),"name":123] as [String : Any]
let data = try! JSONSerialization.data(withJSONObject: dict, options: JSONSerialization.WritingOptions.prettyPrinted)
do {
let model = try JSONDecoder().decode(XYModel.self, from: data)
print(model)
} catch {
print(error)
}
}
override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
}
}
| 19.595238 | 125 | 0.582017 |
e21e7053568e59f8cd5b94a430fdebfe2b0af7e6 | 3,148 | //
// MovieTableViewCell.swift
// DiscoverMovies
//
// Created by Qingfeng Liu on 2020-01-22.
// Copyright © 2020 Qingfeng Liu. All rights reserved.
//
import UIKit
class MovieTableViewCell: UITableViewCell {
@IBOutlet weak var posterImage: UIImageView!
@IBOutlet weak var movieTitle: UILabel!
@IBOutlet weak var releaseDate: UILabel!
@IBOutlet weak var popularity: UILabel!
var activityIndicator: UIActivityIndicatorView = UIActivityIndicatorView()
func setMovie(movie:Movie) {
let posterURL = IMAGE_BASE_URL + movie.poster_path
guard let imageURL = URL(string: posterURL) else {
print("imageURL invalid")
return
}
showActivityIndicatory()
DispatchQueue.global().async {[weak self] in
guard let imageData = try? Data(contentsOf: imageURL) else {
return
}
let image = UIImage(data: imageData)
if let reducedImageData = image?.jpeg(.low)
{
let reducedImage = UIImage(data: reducedImageData)
DispatchQueue.main.async {
self?.posterImage.image = reducedImage//image
self?.hideActivityIndicator()
}
} else {
let reducedImage = UIImage(data: imageData)
DispatchQueue.main.async {
self?.posterImage.image = reducedImage//image
self?.hideActivityIndicator()
}
}
}
movieTitle.text = movie.original_title
releaseDate.text = movie.release_date
releaseDate.textAlignment = .right
releaseDate.adjustsFontSizeToFitWidth = true
popularity.text = "Popularity: " + String(movie.popularity)
popularity.textAlignment = .right
popularity.adjustsFontSizeToFitWidth = true
}
func showActivityIndicatory(){
activityIndicator.frame = CGRect(x: 0, y: 0, width: 30, height: 30)
activityIndicator.center = posterImage.center
activityIndicator.hidesWhenStopped = true
activityIndicator.style =
UIActivityIndicatorView.Style.whiteLarge
posterImage.addSubview(activityIndicator)
activityIndicator.startAnimating()
}
func hideActivityIndicator(){
activityIndicator.stopAnimating()
}
}
extension UIImage {
enum JPEGQuality: CGFloat {
case lowest = 0
case low = 0.25
case medium = 0.5
case high = 0.75
case highest = 1
}
/// Returns the data for the specified image in JPEG format.
/// If the image object’s underlying image data has been purged, calling this function forces that data to be reloaded into memory.
/// - returns: A data object containing the JPEG data, or nil if there was a problem generating the data. This function may return nil if the image has no data or if the underlying CGImageRef contains data in an unsupported bitmap format.
func jpeg(_ jpegQuality: JPEGQuality) -> Data? {
return jpegData(compressionQuality: jpegQuality.rawValue)
}
}
| 37.47619 | 242 | 0.635642 |
bf284f8507bc6a19999ffc2da0621c7a97f10cce | 432 | // This source file is part of the Swift.org open source project
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
// RUN: not --crash %target-swift-frontend %s -emit-ir
typealias e:A.d)class A:A}a
| 43.2 | 79 | 0.747685 |
03bcf3a574088650fd3a9cf240393ea8852d751f | 775 | // swift-tools-version:5.0
// The swift-tools-version declares the minimum version of Swift required to build this package.
import PackageDescription
let package = Package(
name: "Zip",
products: [
.library(name: "Zip", targets: ["Zip"])
],
targets: [
.target(
name: "Minizip",
dependencies: [],
path: "Zip/minizip",
exclude: ["module"],
linkerSettings: [
.linkedLibrary("z")
]),
.target(
name: "Zip",
dependencies: ["Minizip"],
path: "Zip",
exclude: ["minizip", "zlib"]),
.testTarget(
name: "ZipTests",
dependencies: ["Zip"],
path: "ZipTests"),
]
)
| 25.833333 | 96 | 0.482581 |
cc32eaa510d667226abefc09ce51e241146c469e | 1,155 | // swift-tools-version:5.2
// The swift-tools-version declares the minimum version of Swift required to build this package.
import PackageDescription
let package = Package(
name: "NumberTicker",
platforms: [
.iOS(.v13),
.macOS(.v10_15),
.tvOS(.v13),
.watchOS(.v6)
],
products: [
// Products define the executables and libraries produced by a package, and make them visible to other packages.
.library(
name: "NumberTicker",
targets: ["NumberTicker"]),
],
dependencies: [
// Dependencies declare other packages that this package depends on.
// .package(url: /* package url */, from: "1.0.0"),
],
targets: [
// Targets are the basic building blocks of a package. A target can define a module or a test suite.
// Targets can depend on other targets in this package, and on products in packages which this package depends on.
.target(
name: "NumberTicker",
dependencies: []),
.testTarget(
name: "NumberTickerTests",
dependencies: ["NumberTicker"]),
]
)
| 33 | 122 | 0.602597 |
e86c7926de36ac2d44ac20e968757bafe6ebbebe | 25,309 | // Protocol Buffers for Swift
//
// Copyright 2014 Alexey Khohklov(AlexeyXo).
// Copyright 2008 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License")
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import Foundation
let DEFAULT_RECURSION_LIMIT:Int = 64
let DEFAULT_SIZE_LIMIT:Int = 64 << 20 // 64MB
let BUFFER_SIZE:Int = 4096
public class CodedInputStream {
public var buffer:Data
private var input:InputStream?
private var bufferSize:Int = 0
private var bufferSizeAfterLimit:Int = 0
private var bufferPos:Int = 0
private var lastTag:Int32 = 0
private var totalBytesRetired:Int = 0
private var currentLimit:Int = 0
private var recursionDepth:Int = 0
private var recursionLimit:Int = 0
private var sizeLimit:Int = 0
public init (data:Data) {
buffer = data
bufferSize = buffer.count
currentLimit = Int.max
recursionLimit = DEFAULT_RECURSION_LIMIT
sizeLimit = DEFAULT_SIZE_LIMIT
}
public init (stream:InputStream) {
buffer = Data(capacity: BUFFER_SIZE)!
bufferSize = 0
input = stream
input?.open()
//
currentLimit = Int.max
recursionLimit = DEFAULT_RECURSION_LIMIT
sizeLimit = DEFAULT_SIZE_LIMIT
}
private func isAtEnd() throws -> Bool {
if bufferPos == bufferSize {
if !(try refillBuffer(mustSucceed: false)) {
return true
}
}
return false
}
private func refillBuffer(mustSucceed:Bool) throws -> Bool {
guard bufferPos >= bufferSize else {
throw ProtocolBuffersError.illegalState("RefillBuffer called when buffer wasn't empty.")
}
if (totalBytesRetired + bufferSize == currentLimit) {
guard !mustSucceed else {
throw ProtocolBuffersError.invalidProtocolBuffer("Truncated Message")
}
return false
}
totalBytesRetired += bufferSize
bufferPos = 0
bufferSize = 0
if let input = self.input {
let pointer = UnsafeMutablePointer<UInt8>((buffer as NSData).bytes)
bufferSize = input.read(pointer, maxLength:buffer.count)
}
if bufferSize <= 0 {
bufferSize = 0
guard !mustSucceed else {
throw ProtocolBuffersError.invalidProtocolBuffer("Truncated Message")
}
return false
} else {
recomputeBufferSizeAfterLimit()
let totalBytesRead = totalBytesRetired + bufferSize + bufferSizeAfterLimit
guard totalBytesRead <= sizeLimit || totalBytesRead >= 0 else {
throw ProtocolBuffersError.invalidProtocolBuffer("Size Limit Exceeded")
}
return true
}
}
public func readRawData(size:Int) throws -> Data {
let pointer = UnsafePointer<UInt8>((buffer as NSData).bytes)
guard size >= 0 else {
throw ProtocolBuffersError.invalidProtocolBuffer("Negative Size")
}
if totalBytesRetired + bufferPos + size > currentLimit {
try skipRawData(size: currentLimit - totalBytesRetired - bufferPos)
throw ProtocolBuffersError.invalidProtocolBuffer("Truncated Message")
}
if (size <= bufferSize - bufferPos) {
let data = Data(bytes: pointer + bufferPos, count: size)
bufferPos += size
return data
} else if (size < BUFFER_SIZE) {
let bytes = Data(capacity: size)!
var pos = bufferSize - bufferPos
let byPointer = UnsafeMutablePointer<UInt8>((bytes as NSData).bytes)
memcpy(byPointer, pointer + bufferPos, pos)
bufferPos = bufferSize
_ = try refillBuffer(mustSucceed: true)
while size - pos > bufferSize {
memcpy(byPointer + pos,pointer, bufferSize)
pos += bufferSize
bufferPos = bufferSize
_ = try refillBuffer(mustSucceed: true)
}
memcpy(byPointer + pos, pointer, size - pos)
bufferPos = size - pos
return bytes
} else {
let originalBufferPos = bufferPos
let originalBufferSize = bufferSize
totalBytesRetired += bufferSize
bufferPos = 0
bufferSize = 0
var sizeLeft = size - (originalBufferSize - originalBufferPos)
var chunks:Array<Data> = Array<Data>()
while (sizeLeft > 0) {
var chunk = Data(capacity:min(sizeLeft, BUFFER_SIZE))!
var pos:Int = 0
while pos < chunk.count {
var n:Int = 0
if input != nil {
let pointer = UnsafeMutablePointer<UInt8>((chunk as NSData).bytes)
n = input!.read(pointer + pos, maxLength:chunk.count - pos)
}
guard n > 0 else {
throw ProtocolBuffersError.invalidProtocolBuffer("Truncated Message")
}
totalBytesRetired += n
pos += n
}
sizeLeft -= chunk.count
chunks.append(chunk)
}
let bytes = Data(capacity: size)!
let byPointer = UnsafeMutablePointer<UInt8>((bytes as NSData).bytes)
var pos = originalBufferSize - originalBufferPos
memcpy(byPointer, pointer + originalBufferPos, pos)
for chunk in chunks {
let chPointer = UnsafeMutablePointer<UInt8>((chunk as NSData).bytes)
memcpy(byPointer + pos, chPointer, chunk.count)
pos += chunk.count
}
return bytes
}
}
// public func readRawData(size:Int) throws -> Data {
//
// guard size >= 0 else {
// throw ProtocolBuffersError.invalidProtocolBuffer("Negative Size")
// }
//
// if totalBytesRetired + bufferPos + size > currentLimit {
// try skipRawData(size: currentLimit - totalBytesRetired - bufferPos)
// throw ProtocolBuffersError.invalidProtocolBuffer("Truncated Message")
// }
//
// if size <= bufferSize - bufferPos {
// let pointer = UnsafePointer<UInt8>((buffer as NSData).bytes)
// let data = Data(bytes: UnsafePointer<UInt8>(pointer + Int(bufferPos)), count: Int(size))
// bufferPos += size
// return data
// } else if (size < BUFFER_SIZE) {
//
// let bytes = Data(bytes: [0], count: size)
// var pos = bufferSize - bufferPos
// let pointer = UnsafeMutablePointer<UInt8>((bytes as NSData).bytes)
// let bpointer = UnsafeMutablePointer<UInt8>((buffer as NSData).bytes)
// memcpy(pointer, bpointer + bufferPos, pos)
//
//// buffer.copyBytes(to: pointer, from: bufferPos..<bufferPos+pos)
// bufferPos = bufferSize
//
// _ = try refillBuffer(mustSucceed: true)
//
// while (size - pos > bufferSize) {
//
//// let pointerBuffer = UnsafeMutablePointer<UInt8>((buffer as NSData).bytes)
// memcpy(pointer + pos, bpointer, bufferSize)
//
//// bytes.copyBytes(to: pointerBuffer, from: pos..<pos + bufferSize)
// pos += bufferSize
// bufferPos = bufferSize
// _ = try refillBuffer(mustSucceed: true)
// }
//
// let pointerBuffer = UnsafeMutablePointer<UInt8>((buffer as NSData).bytes)
//// bytes.copyBytes(to: pointerBuffer, from: pos..<(pos + bufferSize) - size - pos)
// memcpy(pointer + pos, bpointer, size - pos)
// bufferPos = size - pos
// return bytes
//
// } else {
//
// let originalBufferPos = bufferPos
// let originalBufferSize = bufferSize
//
// totalBytesRetired += bufferSize
// bufferPos = 0
// bufferSize = 0
// let bpointer = UnsafeMutablePointer<UInt8>((buffer as NSData).bytes)
// var sizeLeft = size - (originalBufferSize - originalBufferPos)
// var chunks:Array<Data> = Array<Data>()
//
// while (sizeLeft > 0) {
// var chunk = Data(bytes: [0], count: BUFFER_SIZE)
// var pos:Int = 0
// while (pos < chunk.count) {
//
// var n:Int = 0
// if let input = self.input {
// let pointer = UnsafeMutablePointer<UInt8>((chunk as NSData).bytes)
// n = input.read(pointer + pos, maxLength:chunk.count - pos)
// }
// guard n > 0 else {
// throw ProtocolBuffersError.invalidProtocolBuffer("Truncated Message")
// }
// totalBytesRetired += n
// pos += n
// }
// sizeLeft -= chunk.count
// chunks.append(chunk)
// }
//
//
// var bytes = Data(bytes: [0], count: 0)
// var pos:Int = originalBufferSize - originalBufferPos
// let cpointer = UnsafeMutablePointer<UInt8>((bytes as NSData).bytes)
// memcpy(cpointer, bpointer + Int(originalBufferPos), pos)
//// bytes[0..<pos] = buffer[originalBufferPos..<originalBufferPos+pos]
//
// for chunk in chunks {
// let chpointer = UnsafeMutablePointer<UInt8>((chunk as NSData).bytes)
// memcpy(pointer + pos, cpointer, chunk.count)
//// bytes[pos..<pos+chunk.count] = chunk[0..<chunk.count]
// pos += chunk.count
// }
//
// return bytes
// }
// }
public func skipRawData(size:Int) throws{
guard size >= 0 else {
throw ProtocolBuffersError.invalidProtocolBuffer("Negative Size")
}
if (totalBytesRetired + bufferPos + size > currentLimit) {
try skipRawData(size: currentLimit - totalBytesRetired - bufferPos)
throw ProtocolBuffersError.invalidProtocolBuffer("Truncated Message")
}
if (size <= (bufferSize - bufferPos)) {
bufferPos += size
}
else
{
var pos:Int = bufferSize - bufferPos
totalBytesRetired += pos
bufferPos = 0
bufferSize = 0
while (pos < size) {
let data = Data(bytes: [0], count: size - pos)
var n:Int = 0
guard let input = self.input else {
n = -1
throw ProtocolBuffersError.invalidProtocolBuffer("Truncated Message")
}
let pointer = UnsafeMutablePointer<UInt8>((data as NSData).bytes)
n = input.read(pointer, maxLength:Int(size - pos))
pos += n
totalBytesRetired += n
}
}
}
public func readRawLittleEndian32() throws -> Int32 {
let b1:Int8 = try readRawByte()
let b2:Int8 = try readRawByte()
let b3:Int8 = try readRawByte()
let b4:Int8 = try readRawByte()
var result:Int32 = (Int32(b1) & 0xff)
result |= ((Int32(b2) & 0xff) << 8)
result |= ((Int32(b3) & 0xff) << 16)
result |= ((Int32(b4) & 0xff) << 24)
return result
}
public func readRawLittleEndian64() throws -> Int64 {
let b1:Int8 = try readRawByte()
let b2:Int8 = try readRawByte()
let b3:Int8 = try readRawByte()
let b4:Int8 = try readRawByte()
let b5:Int8 = try readRawByte()
let b6:Int8 = try readRawByte()
let b7:Int8 = try readRawByte()
let b8:Int8 = try readRawByte()
var result:Int64 = (Int64(b1) & 0xff)
result |= ((Int64(b2) & 0xff) << 8)
result |= ((Int64(b3) & 0xff) << 16)
result |= ((Int64(b4) & 0xff) << 24)
result |= ((Int64(b5) & 0xff) << 32)
result |= ((Int64(b6) & 0xff) << 40)
result |= ((Int64(b7) & 0xff) << 48)
result |= ((Int64(b8) & 0xff) << 56)
return result
}
public func readTag() throws -> Int32 {
if (try isAtEnd())
{
lastTag = 0
return 0
}
let tag = lastTag
lastTag = try readRawVarint32()
guard lastTag != 0 else {
throw ProtocolBuffersError.invalidProtocolBuffer("Invalid Tag: after tag \(tag)")
}
return lastTag
}
public func checkLastTagWas(value:Int32) throws {
guard lastTag == value else {
throw ProtocolBuffersError.invalidProtocolBuffer("Invalid Tag: after tag \(lastTag)")
}
}
public func skipField(tag:Int32) throws -> Bool {
let wireFormat = WireFormat.getTagWireType(tag: tag)
guard let format = WireFormat(rawValue: wireFormat) else {
throw ProtocolBuffersError.invalidProtocolBuffer("Invalid Wire Type")
}
switch format {
case .varint:
_ = try readInt32()
return true
case .fixed64:
_ = try readRawLittleEndian64()
return true
case .lengthDelimited:
try skipRawData(size: Int(try readRawVarint32()))
return true
case .startGroup:
try skipMessage()
try checkLastTagWas(value: WireFormat.endGroup.makeTag(fieldNumber: WireFormat.getTagFieldNumber(tag: tag)))
return true
case .endGroup:
return false
case .fixed32:
_ = try readRawLittleEndian32()
return true
default:
throw ProtocolBuffersError.invalidProtocolBuffer("Invalid Wire Type")
}
}
private func skipMessage() throws {
while (true) {
let tag:Int32 = try readTag()
let fieldSkip = try skipField(tag: tag)
if tag == 0 || !fieldSkip
{
break
}
}
}
public func readDouble() throws -> Double {
let convert:Int64 = try readRawLittleEndian64()
var result:Double = 0.0
result = WireFormat.convertTypes(convertValue: convert, defaultValue: result)
return result
}
public func readFloat() throws -> Float {
let convert:Int32 = try readRawLittleEndian32()
var result:Float = 0.0
result = WireFormat.convertTypes(convertValue: convert, defaultValue: result)
return result
}
public func readUInt64() throws -> UInt64 {
var retvalue:UInt64 = 0
retvalue = WireFormat.convertTypes(convertValue: try readRawVarint64(), defaultValue:retvalue)
return retvalue
}
public func readInt64() throws -> Int64 {
return try readRawVarint64()
}
public func readInt32() throws -> Int32 {
return try readRawVarint32()
}
public func readFixed64() throws -> UInt64 {
var retvalue:UInt64 = 0
retvalue = WireFormat.convertTypes(convertValue: try readRawLittleEndian64(), defaultValue:retvalue)
return retvalue
}
public func readFixed32() throws -> UInt32 {
var retvalue:UInt32 = 0
retvalue = WireFormat.convertTypes(convertValue: try readRawLittleEndian32(), defaultValue:retvalue)
return retvalue
}
public func readBool() throws ->Bool {
return try readRawVarint32() != 0
}
public func readRawByte() throws -> Int8 {
if (bufferPos == bufferSize) {
_ = try refillBuffer(mustSucceed: true)
}
let pointer = UnsafeMutablePointer<Int8>((buffer as NSData).bytes)
let res = pointer[Int(bufferPos)]
bufferPos+=1
return res
}
public class func readRawVarint32(firstByte:UInt8, inputStream:InputStream) throws -> Int32
{
if ((Int32(firstByte) & 0x80) == 0) {
return Int32(firstByte)
}
var result:Int32 = Int32(firstByte) & 0x7f
var offset:Int32 = 7
while offset < 32 {
var b:UInt8 = UInt8()
guard inputStream.read(&b, maxLength: 1) > 0 else {
throw ProtocolBuffersError.invalidProtocolBuffer("Truncated Message")
}
result |= (Int32(b) & 0x7f) << offset
if ((b & 0x80) == 0) {
return result
}
offset += 7
}
while offset < 64 {
var b:UInt8 = UInt8()
guard inputStream.read(&b, maxLength: 1) > 0 else {
throw ProtocolBuffersError.invalidProtocolBuffer("Truncated Message")
}
if ((b & 0x80) == 0) {
return result
}
offset += 7
}
throw ProtocolBuffersError.invalidProtocolBuffer("Truncated Message")
}
public func readRawVarint32() throws -> Int32 {
var tmp : Int8 = try readRawByte();
if (tmp >= 0) {
return Int32(tmp);
}
var result : Int32 = Int32(tmp) & 0x7f;
tmp = try readRawByte()
if (tmp >= 0) {
result |= Int32(tmp) << 7;
} else {
result |= (Int32(tmp) & 0x7f) << 7;
tmp = try readRawByte()
if (tmp >= 0) {
result |= Int32(tmp) << 14;
} else {
result |= (Int32(tmp) & 0x7f) << 14;
tmp = try readRawByte()
if (tmp >= 0) {
result |= Int32(tmp) << 21;
} else {
result |= (Int32(tmp) & 0x7f) << 21;
tmp = try readRawByte()
result |= (Int32(tmp) << 28);
if (tmp < 0) {
// Discard upper 32 bits.
for _ in 0..<5 {
let byte = try readRawByte()
if (byte >= 0) {
return result;
}
}
throw ProtocolBuffersError.invalidProtocolBuffer("MalformedVarint")
}
}
}
}
return result;
}
public func readRawVarint64() throws -> Int64 {
var shift:Int64 = 0
var result:Int64 = 0
while (shift < 64) {
let b = try readRawByte()
result |= (Int64(b & 0x7F) << shift)
if ((Int32(b) & 0x80) == 0) {
return result
}
shift += 7
}
throw ProtocolBuffersError.invalidProtocolBuffer("MalformedVarint")
}
public func readString() throws -> String {
let size = Int(try readRawVarint32())
if size <= (bufferSize - bufferPos) && size > 0 {
let pointer = UnsafeMutablePointer<Int8>((buffer as NSData).bytes)
let result = String(bytesNoCopy: pointer + bufferPos, length: size, encoding: String.Encoding.utf8, freeWhenDone: false)
bufferPos += size
return result!
} else {
let data = try readRawData(size: size)
return String(data: data, encoding: String.Encoding.utf8)!
}
}
public func readData() throws -> Data {
let size = Int(try readRawVarint32())
if size < bufferSize - bufferPos && size > 0 {
let pointer = UnsafeMutablePointer<Int8>((buffer as NSData).bytes)
let data = Data(bytes: UnsafePointer<UInt8>(pointer + bufferPos), count: size)
bufferPos += size
return data
} else {
return try readRawData(size: size)
}
}
public func readUInt32() throws -> UInt32 {
let value:Int32 = try readRawVarint32()
var retvalue:UInt32 = 0
retvalue = WireFormat.convertTypes(convertValue: value, defaultValue:retvalue)
return retvalue
}
public func readEnum() throws -> Int32 {
return try readRawVarint32()
}
public func readSFixed32() throws -> Int32 {
return try readRawLittleEndian32()
}
public func readSFixed64() throws -> Int64 {
return try readRawLittleEndian64()
}
public func readSInt32() throws -> Int32 {
return WireFormat.decodeZigZag32(n: try readRawVarint32())
}
public func readSInt64() throws -> Int64 {
return WireFormat.decodeZigZag64(n: try readRawVarint64())
}
public func setRecursionLimit(limit:Int) throws -> Int {
guard limit >= 0 else {
throw ProtocolBuffersError.illegalArgument("Recursion limit cannot be negative")
}
let oldLimit:Int = recursionLimit
recursionLimit = limit
return oldLimit
}
public func setSizeLimit(limit:Int) throws -> Int {
guard limit >= 0 else {
throw ProtocolBuffersError.illegalArgument("Recursion limit cannot be negative")
}
let oldLimit:Int = sizeLimit
sizeLimit = limit
return oldLimit
}
private func resetSizeCounter() {
totalBytesRetired = 0
}
private func recomputeBufferSizeAfterLimit() {
bufferSize += bufferSizeAfterLimit
let bufferEnd:Int = totalBytesRetired + bufferSize
if (bufferEnd > currentLimit) {
bufferSizeAfterLimit = bufferEnd - currentLimit
bufferSize -= bufferSizeAfterLimit
} else {
bufferSizeAfterLimit = 0
}
}
public func pushLimit(byteLimit:Int) throws -> Int {
guard byteLimit >= 0 else {
throw ProtocolBuffersError.invalidProtocolBuffer("Negative Size")
}
let newByteLimit = byteLimit + totalBytesRetired + bufferPos
let oldLimit = currentLimit
guard newByteLimit <= oldLimit else {
throw ProtocolBuffersError.invalidProtocolBuffer("MalformedVarint")
}
currentLimit = newByteLimit
recomputeBufferSizeAfterLimit()
return oldLimit
}
public func popLimit(oldLimit:Int) {
currentLimit = oldLimit
recomputeBufferSizeAfterLimit()
}
public func bytesUntilLimit() ->Int {
if currentLimit == Int.max {
return -1
}
let currentAbsolutePosition:Int = totalBytesRetired + bufferPos
return currentLimit - currentAbsolutePosition
}
public func readGroup(fieldNumber:Int, builder:MessageBuilder, extensionRegistry:ExtensionRegistry) throws {
guard recursionDepth < recursionLimit else {
throw ProtocolBuffersError.invalidProtocolBuffer("Recursion Limit Exceeded")
}
recursionDepth+=1
_ = try builder.mergeFrom(codedInputStream: self, extensionRegistry:extensionRegistry)
try checkLastTagWas(value: WireFormat.endGroup.makeTag(fieldNumber: Int32(fieldNumber)))
recursionDepth-=1
}
public func readUnknownGroup(fieldNumber:Int32, builder:UnknownFieldSet.Builder) throws {
guard recursionDepth < recursionLimit else {
throw ProtocolBuffersError.invalidProtocolBuffer("Recursion Limit Exceeded")
}
recursionDepth+=1
_ = try builder.mergeFrom(codedInputStream: self)
try checkLastTagWas(value: WireFormat.endGroup.makeTag(fieldNumber: fieldNumber))
recursionDepth-=1
}
public func readMessage(builder:MessageBuilder, extensionRegistry:ExtensionRegistry) throws {
let length = try readRawVarint32()
guard recursionDepth < recursionLimit else {
throw ProtocolBuffersError.invalidProtocolBuffer("Recursion Limit Exceeded")
}
let oldLimit = try pushLimit(byteLimit: Int(length))
recursionDepth+=1
_ = try builder.mergeFrom(codedInputStream: self, extensionRegistry:extensionRegistry)
try checkLastTagWas(value: 0)
recursionDepth-=1
popLimit(oldLimit: oldLimit)
}
}
| 35.797737 | 132 | 0.547908 |
11aa3c7a2222266bda0c2fa9c892709e7adeaa1c | 8,137 | //
// TestBaPhed.swift
// Graduation RequirementUITests
//
// Created by Shiqing.
// Copyright © 2018 EECS393. All rights reserved.
//
import XCTest
class TestBaPhed: XCTestCase {
override func setUp() {
// setup code here
// stop immediately when a failure occurs
continueAfterFailure = false
// launch the application
XCUIApplication().launch()
}
override func tearDown() {
}
//Test the correct functionality of users selecting how many PHED courses they have already taken
func testBsPhed() {
let app = XCUIApplication()
app.pickerWheels["Spring 2020"].press(forDuration: 0.7);
let confirmButton = app.buttons["Confirm"]
confirmButton.tap()
let selectButton = app.buttons["Select"]
selectButton.tap()
let tablesQuery = app.tables
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["EECS 132"]/*[[".cells.staticTexts[\"EECS 132\"]",".staticTexts[\"EECS 132\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["EECS 233"]/*[[".cells.staticTexts[\"EECS 233\"]",".staticTexts[\"EECS 233\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["EECS 281"]/*[[".cells.staticTexts[\"EECS 281\"]",".staticTexts[\"EECS 281\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["EECS 302"]/*[[".cells.staticTexts[\"EECS 302\"]",".staticTexts[\"EECS 302\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["EECS 340"]/*[[".cells.staticTexts[\"EECS 340\"]",".staticTexts[\"EECS 340\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
let doneButton = tablesQuery.buttons["Done"]
doneButton.tap()
let pickerWheel = app/*@START_MENU_TOKEN@*/.pickerWheels["0"]/*[[".pickers.pickerWheels[\"0\"]",".pickerWheels[\"0\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/
pickerWheel/*@START_MENU_TOKEN@*/.press(forDuration: 1.6);/*[[".tap()",".press(forDuration: 1.6);"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/
confirmButton.tap()
pickerWheel/*@START_MENU_TOKEN@*/.press(forDuration: 0.6);/*[[".tap()",".press(forDuration: 0.6);"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/
confirmButton.tap()
app.pickerWheels["Bachelor of Science"].swipeDown();
confirmButton.tap()
selectButton.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["MATH 121"]/*[[".cells.staticTexts[\"MATH 121\"]",".staticTexts[\"MATH 121\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["MATH 122 or MATH 124"]/*[[".cells.staticTexts[\"MATH 122 or MATH 124\"]",".staticTexts[\"MATH 122 or MATH 124\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["MATH 223 or MATH 227"]/*[[".cells.staticTexts[\"MATH 223 or MATH 227\"]",".staticTexts[\"MATH 223 or MATH 227\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["MATH 201 or MATH 307"]/*[[".cells.staticTexts[\"MATH 201 or MATH 307\"]",".staticTexts[\"MATH 201 or MATH 307\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["CHEM 111"]/*[[".cells.staticTexts[\"CHEM 111\"]",".staticTexts[\"CHEM 111\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["ENGR 145"]/*[[".cells.staticTexts[\"ENGR 145\"]",".staticTexts[\"ENGR 145\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["PHYS 121 or PHYS 123"]/*[[".cells.staticTexts[\"PHYS 121 or PHYS 123\"]",".staticTexts[\"PHYS 121 or PHYS 123\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["PHYS 122 or PHYS 124"]/*[[".cells.staticTexts[\"PHYS 122 or PHYS 124\"]",".staticTexts[\"PHYS 122 or PHYS 124\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
doneButton.tap()
pickerWheel/*@START_MENU_TOKEN@*/.press(forDuration: 0.5);/*[[".tap()",".press(forDuration: 0.5);"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/
confirmButton.tap()
}
func testBsPhedTwo() {
let app = XCUIApplication()
app.pickerWheels["Spring 2020"].press(forDuration: 0.7);
let confirmButton = app.buttons["Confirm"]
confirmButton.tap()
let selectButton = app.buttons["Select"]
selectButton.tap()
let tablesQuery = app.tables
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["EECS 132"]/*[[".cells.staticTexts[\"EECS 132\"]",".staticTexts[\"EECS 132\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["EECS 233"]/*[[".cells.staticTexts[\"EECS 233\"]",".staticTexts[\"EECS 233\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["EECS 281"]/*[[".cells.staticTexts[\"EECS 281\"]",".staticTexts[\"EECS 281\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["EECS 302"]/*[[".cells.staticTexts[\"EECS 302\"]",".staticTexts[\"EECS 302\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["EECS 340"]/*[[".cells.staticTexts[\"EECS 340\"]",".staticTexts[\"EECS 340\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
let doneButton = tablesQuery.buttons["Done"]
doneButton.tap()
let pickerWheel = app/*@START_MENU_TOKEN@*/.pickerWheels["0"]/*[[".pickers.pickerWheels[\"0\"]",".pickerWheels[\"0\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/
pickerWheel/*@START_MENU_TOKEN@*/.press(forDuration: 1.6);/*[[".tap()",".press(forDuration: 1.6);"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/
confirmButton.tap()
pickerWheel/*@START_MENU_TOKEN@*/.press(forDuration: 0.6);/*[[".tap()",".press(forDuration: 0.6);"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/
confirmButton.tap()
app.pickerWheels["Bachelor of Science"].swipeDown();
confirmButton.tap()
selectButton.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["MATH 121"]/*[[".cells.staticTexts[\"MATH 121\"]",".staticTexts[\"MATH 121\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["MATH 122 or MATH 124"]/*[[".cells.staticTexts[\"MATH 122 or MATH 124\"]",".staticTexts[\"MATH 122 or MATH 124\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["MATH 223 or MATH 227"]/*[[".cells.staticTexts[\"MATH 223 or MATH 227\"]",".staticTexts[\"MATH 223 or MATH 227\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["MATH 201 or MATH 307"]/*[[".cells.staticTexts[\"MATH 201 or MATH 307\"]",".staticTexts[\"MATH 201 or MATH 307\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["CHEM 111"]/*[[".cells.staticTexts[\"CHEM 111\"]",".staticTexts[\"CHEM 111\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["ENGR 145"]/*[[".cells.staticTexts[\"ENGR 145\"]",".staticTexts[\"ENGR 145\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["PHYS 121 or PHYS 123"]/*[[".cells.staticTexts[\"PHYS 121 or PHYS 123\"]",".staticTexts[\"PHYS 121 or PHYS 123\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
tablesQuery/*@START_MENU_TOKEN@*/.staticTexts["PHYS 122 or PHYS 124"]/*[[".cells.staticTexts[\"PHYS 122 or PHYS 124\"]",".staticTexts[\"PHYS 122 or PHYS 124\"]"],[[[-1,1],[-1,0]]],[0]]@END_MENU_TOKEN@*/.tap()
doneButton.tap()
pickerWheel.swipeUp();
confirmButton.tap()
}
}
| 70.146552 | 216 | 0.594445 |
b9c20bdc9998b8a3dddb45c5bd2c6568e128664b | 624 | //
// InternetManager.swift
// mAARE
//
// Created by Dimitri Suter on 29.07.20.
// Copyright © 2020 Dimitri Suter. All rights reserved.
//
import Foundation
import Network
import Combine
class InternetManager: ObservableObject {
@Published var hasInternet = true;
public static let shared: InternetManager = InternetManager();
let monitor = NWPathMonitor()
public func checkConnection() {
monitor.pathUpdateHandler = { path in
if path.status == .satisfied {
self.hasInternet = true;
print("We're connected!")
} else {
self.hasInternet = false;
print("No connection.")
}
}
}
}
| 19.5 | 63 | 0.6875 |
08ddbec613a8f675ea4663e3970c115893434f10 | 8,179 | //
// CircleCache.swift
// Circle
//
// Created by Ravi Rani on 2/15/15.
// Copyright (c) 2015 RH Labs Inc. All rights reserved.
//
import Foundation
import ProtobufRegistry
import RealmSwift
/**
CircleCache is a simple key, value disk cache. It can be used to store app level settings
and other client specific data.
It internally uses NSUserDefaults at this time but the underlying implementation is abstracted
such that it can be updated without impact on the application code.
*/
class CircleCache {
struct Keys {
static let RecentProfileVisits = "cache_recent_profile_visits"
static let Integration = "cache_org_integration_%d"
private static let KeyValidationTimers = "cache_key_validation_timers"
}
// Key Name - (Time of entry, number of seconds valid)
private var timeForKeys = [String: AnyObject]()
/**
A shared instance of `CircleCache`.
*/
class var sharedInstance: CircleCache {
struct Singleton {
static let instance = CircleCache()
}
return Singleton.instance
}
func setObject(object: AnyObject, forKey key: String, forTimeInSeconds timeInSeconds: Int) {
setObject(object, forKey: key)
_setValidationTimer(timeInSeconds, forKey: key)
}
func setObject(object: AnyObject, forKey key: String) {
_setObject(object, forKey: key)
}
func objectForKey(key: String) -> AnyObject? {
if let object: AnyObject = _objectForKey(key) {
if _isKeyValueValid(key) {
return object
}
}
return nil
}
func removeObjectForKey(key: String) {
_removeObjectForKey(key)
}
func clearCache() {
let keys = NSUserDefaults.standardUserDefaults().dictionaryRepresentation().keys
for key in keys {
if key.hasPrefix("cache_") {
removeObjectForKey(key)
}
}
// Remove entries from the persistent store
// ASSUMPTION: We will be only using it as a cache for now
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), { () -> Void in
do {
let realm = try Realm()
try realm.write {
realm.deleteAll()
}
}
catch {
print("Error: \(error)")
}
})
}
private func _setValidationTimer(timeInSeconds: Int, forKey key: String) {
var validationTimerForKeys = [String: AnyObject]()
if let timeForKeys = objectForKey(CircleCache.Keys.KeyValidationTimers) as? Dictionary<String, AnyObject> {
validationTimerForKeys = timeForKeys
}
validationTimerForKeys[key] = ["time_of_entry": NSDate().timeIntervalSince1970, "expires_in_time": timeInSeconds]
setObject(validationTimerForKeys, forKey: CircleCache.Keys.KeyValidationTimers)
}
private func _isKeyValueValid(key: String) -> Bool {
if let timeForKeys = _objectForKey(CircleCache.Keys.KeyValidationTimers) as? Dictionary<String, AnyObject>, timeValues: AnyObject = timeForKeys[key] {
if Int((timeValues["time_of_entry"] as! NSTimeInterval) - NSDate().timeIntervalSince1970) > (timeValues["expires_in_time"] as! Int) {
return false
}
}
return true
}
private func _setObject(object: AnyObject, forKey key: String) {
NSUserDefaults.standardUserDefaults().setObject(object, forKey: key)
NSUserDefaults.standardUserDefaults().synchronize()
}
private func _objectForKey(key: String) -> AnyObject? {
return NSUserDefaults.standardUserDefaults().objectForKey(key)
}
private func _removeObjectForKey(key: String) {
NSUserDefaults.standardUserDefaults().removeObjectForKey(key)
NSUserDefaults.standardUserDefaults().synchronize()
}
}
extension CircleCache {
static func recordProfileVisit(profile: Services.Profile.Containers.ProfileV1) {
var existingProfilesIDs = CircleCache.sharedInstance.objectForKey(CircleCache.Keys.RecentProfileVisits) as! [String]? ?? [String]()
let uniqueProfileIDs = NSMutableOrderedSet(array: existingProfilesIDs)
uniqueProfileIDs.insertObject(profile.id, atIndex: 0)
let maxRecords: Int = min(uniqueProfileIDs.count, 5)
existingProfilesIDs = uniqueProfileIDs.array as! [String]
existingProfilesIDs = Array(existingProfilesIDs[0..<maxRecords])
CircleCache.sharedInstance.setObject(existingProfilesIDs, forKey: CircleCache.Keys.RecentProfileVisits)
}
static func recordProfileSearchResult(profile: Services.Profile.Containers.ProfileV1) {
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), { () -> Void in
let recentSearchResult = RecentSearchResult()
recentSearchResult.id = profile.id
recentSearchResult.object = profile.data()
recentSearchResult.type = RecentSearchResult.ResultType.Profile.rawValue
RecentSearchResult.createOrUpdate(recentSearchResult)
})
}
static func updateCachedDataInRecordedSearchResultsForProfile(profile: Services.Profile.Containers.ProfileV1) {
do {
let recordedSearchResultsForProfile = try Realm().objects(RecentSearchResult).filter("id = %@ AND type = %d", profile.id, RecentSearchResult.ResultType.Profile.rawValue)
for searchResult in recordedSearchResultsForProfile {
try Realm().write({ () -> Void in
searchResult.object = profile.data()
})
}
}
catch {
print("Error: \(error)")
}
}
static func recordTeamSearchResult(team: Services.Organization.Containers.TeamV1) {
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), { () -> Void in
let recentSearchResult = RecentSearchResult()
recentSearchResult.id = team.id
recentSearchResult.object = team.data()
recentSearchResult.type = RecentSearchResult.ResultType.Team.rawValue
RecentSearchResult.createOrUpdate(recentSearchResult)
})
}
static func recordLocationSearchResult(location: Services.Organization.Containers.LocationV1) {
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), { () -> Void in
let recentSearchResult = RecentSearchResult()
recentSearchResult.id = location.id
recentSearchResult.object = location.data()
recentSearchResult.type = RecentSearchResult.ResultType.Location.rawValue
RecentSearchResult.createOrUpdate(recentSearchResult)
})
}
static func recordPostSearchResult(post: Services.Post.Containers.PostV1) {
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), { () -> Void in
let recentSearchResult = RecentSearchResult()
recentSearchResult.id = post.id
recentSearchResult.object = post.data()
recentSearchResult.type = RecentSearchResult.ResultType.Post.rawValue
RecentSearchResult.createOrUpdate(recentSearchResult)
})
}
static func getRecordedSearchResults(limit: Int) -> [AnyObject] {
var searchResults = [AnyObject]()
do {
let recordedResults = try Realm().objects(RecentSearchResult).sorted("updated", ascending: false)
var counter: Int = 0
for result in recordedResults {
if counter >= limit {
break
}
if let resultObject: AnyObject = RecentSearchResult.getObjectFromResult(result) {
searchResults.append(resultObject)
counter++
}
}
}
catch {
print("Error: \(error)")
}
return searchResults
}
}
| 38.399061 | 181 | 0.643844 |
efed97feb1f3464f506ecb871991d6d3be0a3add | 7,986 | //
// HtmlParser.swift
// Hackers
//
// Created by Weiran Zhang on 02/06/2020.
// Copyright © 2020 Weiran Zhang. All rights reserved.
//
import Foundation
import SwiftSoup
enum HtmlParser {
static func posts(from tableElement: Element, type: PostType) throws -> [Post] {
if tableElement.hasClass("fatitem") {
// single post
let postElements = try tableElement.select("tr")
let post = try self.post(from: postElements, type: type)
post.text = self.postText(from: tableElement)
return [post]
} else if tableElement.hasClass("itemlist") {
// post list
let titleElements = try tableElement.select("tr.athing")
let posts = try titleElements.compactMap { titleElement -> Post? in
guard let metadataElement = try titleElement.nextElementSibling() else {
return nil
}
let postElements = Elements([titleElement, metadataElement])
return try? self.post(from: postElements, type: type)
}
return posts
}
throw Exception.Error(type: .SelectorParseException, Message: "Couldn't find post elements")
}
static func post(from elements: Elements, type: PostType) throws -> Post {
let rows = try elements.select("tr")
guard
let postElement: Element = safeGet(rows, index: 0),
let metadataElement: Element = safeGet(rows, index: 1) else {
throw Exception.Error(type: .SelectorParseException, Message: "Coldn't find post elements")
}
guard let id = Int(try postElement.attr("id")) else {
throw Exception.Error(type: .SelectorParseException, Message: "Couldn't parse post ID")
}
let title = try postElement.select(".storylink").text()
let urlString = try postElement.select(".storylink").attr("href")
guard let url = URL(string: urlString) else {
throw Exception.Error(type: .SelectorParseException, Message: "Couldn't parse post URL")
}
let by = try metadataElement.select(".hnuser").text()
let score = try self.score(from: metadataElement)
let age = try metadataElement.select(".age").text()
let commentsCount = try self.commentsCount(from: metadataElement)
var upvoted = false
let voteLink = try? postElement.select(".votelinks a").first { $0.hasAttr("id") }
if let voteLink = voteLink {
let hasUnvote = try voteLink.attr("id").starts(with: "un_")
let hasUpvote = try voteLink.attr("id").starts(with: "up_")
let hasNosee = try voteLink.classNames().contains("nosee")
upvoted = hasUnvote || (hasUpvote && hasNosee)
}
return Post(
id: id,
url: url,
title: title,
age: age,
commentsCount: commentsCount,
by: by,
score: score,
postType: type,
upvoted: upvoted
)
}
static func postsTableElement(from html: String) throws -> Element {
let document = try SwiftSoup.parse(html)
guard let parentTable = try document
.select("table.itemlist, table.fatitem")
.first() else {
throw Exception.Error(type: .SelectorParseException, Message: "Couldn't find post element")
}
return parentTable
}
static func commentElements(from html: String) throws -> Elements {
let document = try SwiftSoup.parse(html)
return try document.select(".comtr")
}
static func comment(from element: Element) throws -> Comment {
let text = try commentText(from: element.select(".commtext"))
let age = try element.select(".age").text()
let user = try element.select(".hnuser").text()
guard let id = try Int(element.select(".comtr").attr("id")) else {
throw Exception.Error(type: .SelectorParseException, Message: "Couldn't parse comment id")
}
guard let indentWidth = try Int(element.select(".ind img").attr("width")) else {
throw Exception.Error(type: .SelectorParseException, Message: "Couldn't parse comment indent width")
}
let level = indentWidth / 40
let upvoteLink = try element.select(".votelinks a").attr("href")
var upvoted = false
let voteLinks = try? element.select("a").filter { $0.hasAttr("id") }
if let voteLinks = voteLinks {
let hasUnvote = try voteLinks.first { try $0.attr("id").starts(with: "un_") } != nil
upvoted = hasUnvote
}
let comment = Comment(id: id, age: age, text: text, by: user, level: level, upvoted: upvoted)
comment.upvoteLink = upvoteLink
return comment
}
private static func commentsCount(from metadataElement: Element) throws -> Int {
let linkElements = try metadataElement.select("a")
let commentLinkElement = try linkElements.first { try $0.text().contains("comment") }
guard
let commentLinkText = try commentLinkElement?.text(),
let commentsCountString = commentLinkText.components(separatedBy: " ").first,
let commentsCount = Int(String(commentsCountString)) else {
return 0
}
return commentsCount
}
private static func score(from metadataElement: Element) throws -> Int {
let scoreString = try metadataElement.select(".score").text()
guard
let scoreNumberString = scoreString.components(separatedBy: " ").first,
let score = Int(String(scoreNumberString)) else {
return 0
}
return score
}
private static func commentText(from elements: Elements) throws -> String {
// clear reply link from text
if let replyElement = try? elements.select(".reply") {
try replyElement.html("")
}
// parse links from href attribute rather than truncated text
if let links = try? elements.select("a") {
try links.forEach { link in
if let url = try? link.attr("href") {
try link.html(url)
}
}
}
return try elements.html()
}
/// Returns any text content in the post, or otherwise nil
private static func postText(from element: Element) -> String? {
do {
guard element.hasClass("fatitem") else {
return nil
}
// go from the bottow row up to find the text
guard let rowElements = try? element.select("tr"),
var rowElement = rowElements.last() else {
return nil
}
// if it contains a row, then check 2 rows up for text row
// this happens because the user is logged in
if try !rowElement.select("form").isEmpty() {
let newIndex = rowElements.count - 3
guard let backThreeElement = safeGet(rowElements, index: newIndex) else {
return nil
}
rowElement = backThreeElement
}
// if the row has a subtext column, that means there isn't
// any post text
guard try rowElement.select("td.subtext").isEmpty() else {
return nil
}
// if we trim empty chars and the text is still empty then
// return nil
guard let text = try? rowElement.html(),
!text.trimmingCharacters(in: .whitespacesAndNewlines).isEmpty else {
return nil
}
return text
} catch {
return nil
}
}
private static func safeGet(_ elements: Elements, index: Int) -> Element? {
return elements.indices.contains(index) ? elements.get(index) : nil
}
}
| 38.956098 | 112 | 0.583146 |
1aeb8946c64570f3c22db11a133a7ea2eb3033b8 | 2,206 | //
// DogWebAPI.swift
// CombineCollection
//
//
import Combine
import Foundation
final class DogWebAPI {
let baseURL = URL(string: "https://dog.ceo/api")!
let client: HTTPClient
let queue = DispatchQueue(label: "DogWebAPI")
init(client: HTTPClient) {
self.client = client
}
var breedListLoader: BreedListLoader {
struct BreedListAPIModel: Decodable {
let message: [String: [String]]
let status: String
}
func convert(from model: BreedListAPIModel) -> [Breed] {
let messages = model.message
return messages.map { message in
Breed(name: message.key,
subBreeds: message.value
.map { Breed(name: $0, subBreeds: []) })
}
}
return BreedListLoader { [self] in
let request = URLRequest(url: baseURL.appendingPathComponent("breeds/list/all"))
return client.send(request: request)
.subscribe(on: queue)
.decode(type: BreedListAPIModel.self, decoder: JSONDecoder())
.map(convert(from:))
.eraseToAnyPublisher()
}
}
var dogImageListLoader: DogImageListLoader {
struct DogImageListAPIModel: Decodable {
let message: [String]
let status: String
}
func convert(from model: DogImageListAPIModel) -> [DogImage] {
let urlStrings = model.message
let dogImages = urlStrings.compactMap { urlString -> DogImage? in
guard let url = URL(string: urlString) else {
return nil
}
return DogImage(imageURL: url)
}
return dogImages
}
return DogImageListLoader { [self] breedType in
let request = URLRequest(url: baseURL.appendingPathComponent("/breed/\(breedType)/images"))
return client.send(request: request)
.subscribe(on: queue)
.decode(type: DogImageListAPIModel.self, decoder: JSONDecoder())
.map(convert(from:))
.eraseToAnyPublisher()
}
}
}
| 31.514286 | 103 | 0.55757 |
23a19b38592a8a74ce8dd7d40b95676b1fb53e2b | 21,776 | //
// PetAPI.swift
//
// Generated by swagger-codegen
// https://github.com/swagger-api/swagger-codegen
//
import Alamofire
import RxSwift
public class PetAPI: APIBase {
/**
Add a new pet to the store
- parameter body: (body) Pet object that needs to be added to the store (optional)
- parameter completion: completion handler to receive the data and the error objects
*/
public class func addPet(body body: Pet? = nil, completion: ((error: ErrorType?) -> Void)) {
addPetWithRequestBuilder(body: body).execute { (response, error) -> Void in
completion(error: error);
}
}
/**
Add a new pet to the store
- parameter body: (body) Pet object that needs to be added to the store (optional)
- returns: Observable<Void>
*/
public class func addPet(body body: Pet? = nil) -> Observable<Void> {
return Observable.create { observer -> Disposable in
addPet(body: body) { error in
if let error = error {
observer.on(.Error(error as ErrorType))
} else {
observer.on(.Next())
}
observer.on(.Completed)
}
return NopDisposable.instance
}
}
/**
Add a new pet to the store
- POST /pet
-
- OAuth:
- type: oauth2
- name: petstore_auth
- parameter body: (body) Pet object that needs to be added to the store (optional)
- returns: RequestBuilder<Void>
*/
public class func addPetWithRequestBuilder(body body: Pet? = nil) -> RequestBuilder<Void> {
let path = "/pet"
let URLString = PetstoreClientAPI.basePath + path
let parameters = body?.encodeToJSON() as? [String:AnyObject]
let convertedParameters = APIHelper.convertBoolToString(parameters)
let requestBuilder: RequestBuilder<Void>.Type = PetstoreClientAPI.requestBuilderFactory.getBuilder()
return requestBuilder.init(method: "POST", URLString: URLString, parameters: convertedParameters, isBody: true)
}
/**
Deletes a pet
- parameter petId: (path) Pet id to delete
- parameter apiKey: (header) (optional)
- parameter completion: completion handler to receive the data and the error objects
*/
public class func deletePet(petId petId: Int64, apiKey: String? = nil, completion: ((error: ErrorType?) -> Void)) {
deletePetWithRequestBuilder(petId: petId, apiKey: apiKey).execute { (response, error) -> Void in
completion(error: error);
}
}
/**
Deletes a pet
- parameter petId: (path) Pet id to delete
- parameter apiKey: (header) (optional)
- returns: Observable<Void>
*/
public class func deletePet(petId petId: Int64, apiKey: String? = nil) -> Observable<Void> {
return Observable.create { observer -> Disposable in
deletePet(petId: petId, apiKey: apiKey) { error in
if let error = error {
observer.on(.Error(error as ErrorType))
} else {
observer.on(.Next())
}
observer.on(.Completed)
}
return NopDisposable.instance
}
}
/**
Deletes a pet
- DELETE /pet/{petId}
-
- OAuth:
- type: oauth2
- name: petstore_auth
- parameter petId: (path) Pet id to delete
- parameter apiKey: (header) (optional)
- returns: RequestBuilder<Void>
*/
public class func deletePetWithRequestBuilder(petId petId: Int64, apiKey: String? = nil) -> RequestBuilder<Void> {
var path = "/pet/{petId}"
path = path.stringByReplacingOccurrencesOfString("{petId}", withString: "\(petId)", options: .LiteralSearch, range: nil)
let URLString = PetstoreClientAPI.basePath + path
let nillableParameters: [String:AnyObject?] = [:]
let parameters = APIHelper.rejectNil(nillableParameters)
let convertedParameters = APIHelper.convertBoolToString(parameters)
let nillableHeaders: [String: AnyObject?] = [
"api_key": apiKey
]
let headerParameters = APIHelper.rejectNilHeaders(nillableHeaders)
let requestBuilder: RequestBuilder<Void>.Type = PetstoreClientAPI.requestBuilderFactory.getBuilder()
return requestBuilder.init(method: "DELETE", URLString: URLString, parameters: convertedParameters, isBody: true, headers: headerParameters)
}
/**
Finds Pets by status
- parameter status: (query) Status values that need to be considered for filter (optional, default to available)
- parameter completion: completion handler to receive the data and the error objects
*/
public class func findPetsByStatus(status status: [String]? = nil, completion: ((data: [Pet]?, error: ErrorType?) -> Void)) {
findPetsByStatusWithRequestBuilder(status: status).execute { (response, error) -> Void in
completion(data: response?.body, error: error);
}
}
/**
Finds Pets by status
- parameter status: (query) Status values that need to be considered for filter (optional, default to available)
- returns: Observable<[Pet]>
*/
public class func findPetsByStatus(status status: [String]? = nil) -> Observable<[Pet]> {
return Observable.create { observer -> Disposable in
findPetsByStatus(status: status) { data, error in
if let error = error {
observer.on(.Error(error as ErrorType))
} else {
observer.on(.Next(data!))
}
observer.on(.Completed)
}
return NopDisposable.instance
}
}
/**
Finds Pets by status
- GET /pet/findByStatus
- Multiple status values can be provided with comma separated strings
- OAuth:
- type: oauth2
- name: petstore_auth
- examples: [{contentType=application/json, example={
"name" : "Puma",
"type" : "Dog",
"color" : "Black",
"gender" : "Female",
"breed" : "Mixed"
}}]
- parameter status: (query) Status values that need to be considered for filter (optional, default to available)
- returns: RequestBuilder<[Pet]>
*/
public class func findPetsByStatusWithRequestBuilder(status status: [String]? = nil) -> RequestBuilder<[Pet]> {
let path = "/pet/findByStatus"
let URLString = PetstoreClientAPI.basePath + path
let nillableParameters: [String:AnyObject?] = [
"status": status
]
let parameters = APIHelper.rejectNil(nillableParameters)
let convertedParameters = APIHelper.convertBoolToString(parameters)
let requestBuilder: RequestBuilder<[Pet]>.Type = PetstoreClientAPI.requestBuilderFactory.getBuilder()
return requestBuilder.init(method: "GET", URLString: URLString, parameters: convertedParameters, isBody: false)
}
/**
Finds Pets by tags
- parameter tags: (query) Tags to filter by (optional)
- parameter completion: completion handler to receive the data and the error objects
*/
public class func findPetsByTags(tags tags: [String]? = nil, completion: ((data: [Pet]?, error: ErrorType?) -> Void)) {
findPetsByTagsWithRequestBuilder(tags: tags).execute { (response, error) -> Void in
completion(data: response?.body, error: error);
}
}
/**
Finds Pets by tags
- parameter tags: (query) Tags to filter by (optional)
- returns: Observable<[Pet]>
*/
public class func findPetsByTags(tags tags: [String]? = nil) -> Observable<[Pet]> {
return Observable.create { observer -> Disposable in
findPetsByTags(tags: tags) { data, error in
if let error = error {
observer.on(.Error(error as ErrorType))
} else {
observer.on(.Next(data!))
}
observer.on(.Completed)
}
return NopDisposable.instance
}
}
/**
Finds Pets by tags
- GET /pet/findByTags
- Multiple tags can be provided with comma separated strings. Use tag1, tag2, tag3 for testing.
- OAuth:
- type: oauth2
- name: petstore_auth
- examples: [{contentType=application/json, example=[ {
"photoUrls" : [ "photoUrls", "photoUrls" ],
"name" : "doggie",
"id" : 0,
"category" : {
"name" : "name",
"id" : 6
},
"tags" : [ {
"name" : "name",
"id" : 1
}, {
"name" : "name",
"id" : 1
} ],
"status" : "available"
}, {
"photoUrls" : [ "photoUrls", "photoUrls" ],
"name" : "doggie",
"id" : 0,
"category" : {
"name" : "name",
"id" : 6
},
"tags" : [ {
"name" : "name",
"id" : 1
}, {
"name" : "name",
"id" : 1
} ],
"status" : "available"
} ]}, {contentType=application/xml, example=<Pet>
<id>123456789</id>
<name>doggie</name>
<photoUrls>
<photoUrls>aeiou</photoUrls>
</photoUrls>
<tags>
</tags>
<status>aeiou</status>
</Pet>}]
- examples: [{contentType=application/json, example=[ {
"photoUrls" : [ "photoUrls", "photoUrls" ],
"name" : "doggie",
"id" : 0,
"category" : {
"name" : "name",
"id" : 6
},
"tags" : [ {
"name" : "name",
"id" : 1
}, {
"name" : "name",
"id" : 1
} ],
"status" : "available"
}, {
"photoUrls" : [ "photoUrls", "photoUrls" ],
"name" : "doggie",
"id" : 0,
"category" : {
"name" : "name",
"id" : 6
},
"tags" : [ {
"name" : "name",
"id" : 1
}, {
"name" : "name",
"id" : 1
} ],
"status" : "available"
} ]}, {contentType=application/xml, example=<Pet>
<id>123456789</id>
<name>doggie</name>
<photoUrls>
<photoUrls>aeiou</photoUrls>
</photoUrls>
<tags>
</tags>
<status>aeiou</status>
</Pet>}]
- parameter tags: (query) Tags to filter by (optional)
- returns: RequestBuilder<[Pet]>
*/
public class func findPetsByTagsWithRequestBuilder(tags tags: [String]? = nil) -> RequestBuilder<[Pet]> {
let path = "/pet/findByTags"
let URLString = PetstoreClientAPI.basePath + path
let nillableParameters: [String:AnyObject?] = [
"tags": tags
]
let parameters = APIHelper.rejectNil(nillableParameters)
let convertedParameters = APIHelper.convertBoolToString(parameters)
let requestBuilder: RequestBuilder<[Pet]>.Type = PetstoreClientAPI.requestBuilderFactory.getBuilder()
return requestBuilder.init(method: "GET", URLString: URLString, parameters: convertedParameters, isBody: false)
}
/**
Find pet by ID
- parameter petId: (path) ID of pet that needs to be fetched
- parameter completion: completion handler to receive the data and the error objects
*/
public class func getPetById(petId petId: Int64, completion: ((data: Pet?, error: ErrorType?) -> Void)) {
getPetByIdWithRequestBuilder(petId: petId).execute { (response, error) -> Void in
completion(data: response?.body, error: error);
}
}
/**
Find pet by ID
- parameter petId: (path) ID of pet that needs to be fetched
- returns: Observable<Pet>
*/
public class func getPetById(petId petId: Int64) -> Observable<Pet> {
return Observable.create { observer -> Disposable in
getPetById(petId: petId) { data, error in
if let error = error {
observer.on(.Error(error as ErrorType))
} else {
observer.on(.Next(data!))
}
observer.on(.Completed)
}
return NopDisposable.instance
}
}
/**
Find pet by ID
- GET /pet/{petId}
- Returns a pet when ID < 10. ID > 10 or nonintegers will simulate API error conditions
- API Key:
- type: apiKey api_key
- name: api_key
- OAuth:
- type: oauth2
- name: petstore_auth
- examples: [{contentType=application/json, example={
"photoUrls" : [ "photoUrls", "photoUrls" ],
"name" : "doggie",
"id" : 0,
"category" : {
"name" : "name",
"id" : 6
},
"tags" : [ {
"name" : "name",
"id" : 1
}, {
"name" : "name",
"id" : 1
} ],
"status" : "available"
}}, {contentType=application/xml, example=<Pet>
<id>123456789</id>
<name>doggie</name>
<photoUrls>
<photoUrls>aeiou</photoUrls>
</photoUrls>
<tags>
</tags>
<status>aeiou</status>
</Pet>}]
- examples: [{contentType=application/json, example={
"photoUrls" : [ "photoUrls", "photoUrls" ],
"name" : "doggie",
"id" : 0,
"category" : {
"name" : "name",
"id" : 6
},
"tags" : [ {
"name" : "name",
"id" : 1
}, {
"name" : "name",
"id" : 1
} ],
"status" : "available"
}}, {contentType=application/xml, example=<Pet>
<id>123456789</id>
<name>doggie</name>
<photoUrls>
<photoUrls>aeiou</photoUrls>
</photoUrls>
<tags>
</tags>
<status>aeiou</status>
</Pet>}]
- parameter petId: (path) ID of pet that needs to be fetched
- returns: RequestBuilder<Pet>
*/
public class func getPetByIdWithRequestBuilder(petId petId: Int64) -> RequestBuilder<Pet> {
var path = "/pet/{petId}"
path = path.stringByReplacingOccurrencesOfString("{petId}", withString: "\(petId)", options: .LiteralSearch, range: nil)
let URLString = PetstoreClientAPI.basePath + path
let nillableParameters: [String:AnyObject?] = [:]
let parameters = APIHelper.rejectNil(nillableParameters)
let convertedParameters = APIHelper.convertBoolToString(parameters)
let requestBuilder: RequestBuilder<Pet>.Type = PetstoreClientAPI.requestBuilderFactory.getBuilder()
return requestBuilder.init(method: "GET", URLString: URLString, parameters: convertedParameters, isBody: true)
}
/**
Update an existing pet
- parameter body: (body) Pet object that needs to be added to the store (optional)
- parameter completion: completion handler to receive the data and the error objects
*/
public class func updatePet(body body: Pet? = nil, completion: ((error: ErrorType?) -> Void)) {
updatePetWithRequestBuilder(body: body).execute { (response, error) -> Void in
completion(error: error);
}
}
/**
Update an existing pet
- parameter body: (body) Pet object that needs to be added to the store (optional)
- returns: Observable<Void>
*/
public class func updatePet(body body: Pet? = nil) -> Observable<Void> {
return Observable.create { observer -> Disposable in
updatePet(body: body) { error in
if let error = error {
observer.on(.Error(error as ErrorType))
} else {
observer.on(.Next())
}
observer.on(.Completed)
}
return NopDisposable.instance
}
}
/**
Update an existing pet
- PUT /pet
-
- OAuth:
- type: oauth2
- name: petstore_auth
- parameter body: (body) Pet object that needs to be added to the store (optional)
- returns: RequestBuilder<Void>
*/
public class func updatePetWithRequestBuilder(body body: Pet? = nil) -> RequestBuilder<Void> {
let path = "/pet"
let URLString = PetstoreClientAPI.basePath + path
let parameters = body?.encodeToJSON() as? [String:AnyObject]
let convertedParameters = APIHelper.convertBoolToString(parameters)
let requestBuilder: RequestBuilder<Void>.Type = PetstoreClientAPI.requestBuilderFactory.getBuilder()
return requestBuilder.init(method: "PUT", URLString: URLString, parameters: convertedParameters, isBody: true)
}
/**
Updates a pet in the store with form data
- parameter petId: (path) ID of pet that needs to be updated
- parameter name: (form) Updated name of the pet (optional)
- parameter status: (form) Updated status of the pet (optional)
- parameter completion: completion handler to receive the data and the error objects
*/
public class func updatePetWithForm(petId petId: String, name: String? = nil, status: String? = nil, completion: ((error: ErrorType?) -> Void)) {
updatePetWithFormWithRequestBuilder(petId: petId, name: name, status: status).execute { (response, error) -> Void in
completion(error: error);
}
}
/**
Updates a pet in the store with form data
- parameter petId: (path) ID of pet that needs to be updated
- parameter name: (form) Updated name of the pet (optional)
- parameter status: (form) Updated status of the pet (optional)
- returns: Observable<Void>
*/
public class func updatePetWithForm(petId petId: String, name: String? = nil, status: String? = nil) -> Observable<Void> {
return Observable.create { observer -> Disposable in
updatePetWithForm(petId: petId, name: name, status: status) { error in
if let error = error {
observer.on(.Error(error as ErrorType))
} else {
observer.on(.Next())
}
observer.on(.Completed)
}
return NopDisposable.instance
}
}
/**
Updates a pet in the store with form data
- POST /pet/{petId}
-
- OAuth:
- type: oauth2
- name: petstore_auth
- parameter petId: (path) ID of pet that needs to be updated
- parameter name: (form) Updated name of the pet (optional)
- parameter status: (form) Updated status of the pet (optional)
- returns: RequestBuilder<Void>
*/
public class func updatePetWithFormWithRequestBuilder(petId petId: String, name: String? = nil, status: String? = nil) -> RequestBuilder<Void> {
var path = "/pet/{petId}"
path = path.stringByReplacingOccurrencesOfString("{petId}", withString: "\(petId)", options: .LiteralSearch, range: nil)
let URLString = PetstoreClientAPI.basePath + path
let nillableParameters: [String:AnyObject?] = [
"name": name,
"status": status
]
let parameters = APIHelper.rejectNil(nillableParameters)
let convertedParameters = APIHelper.convertBoolToString(parameters)
let requestBuilder: RequestBuilder<Void>.Type = PetstoreClientAPI.requestBuilderFactory.getBuilder()
return requestBuilder.init(method: "POST", URLString: URLString, parameters: convertedParameters, isBody: false)
}
/**
uploads an image
- parameter petId: (path) ID of pet to update
- parameter additionalMetadata: (form) Additional data to pass to server (optional)
- parameter file: (form) file to upload (optional)
- parameter completion: completion handler to receive the data and the error objects
*/
public class func uploadFile(petId petId: Int64, additionalMetadata: String? = nil, file: NSURL? = nil, completion: ((error: ErrorType?) -> Void)) {
uploadFileWithRequestBuilder(petId: petId, additionalMetadata: additionalMetadata, file: file).execute { (response, error) -> Void in
completion(error: error);
}
}
/**
uploads an image
- parameter petId: (path) ID of pet to update
- parameter additionalMetadata: (form) Additional data to pass to server (optional)
- parameter file: (form) file to upload (optional)
- returns: Observable<Void>
*/
public class func uploadFile(petId petId: Int64, additionalMetadata: String? = nil, file: NSURL? = nil) -> Observable<Void> {
return Observable.create { observer -> Disposable in
uploadFile(petId: petId, additionalMetadata: additionalMetadata, file: file) { error in
if let error = error {
observer.on(.Error(error as ErrorType))
} else {
observer.on(.Next())
}
observer.on(.Completed)
}
return NopDisposable.instance
}
}
/**
uploads an image
- POST /pet/{petId}/uploadImage
-
- OAuth:
- type: oauth2
- name: petstore_auth
- parameter petId: (path) ID of pet to update
- parameter additionalMetadata: (form) Additional data to pass to server (optional)
- parameter file: (form) file to upload (optional)
- returns: RequestBuilder<Void>
*/
public class func uploadFileWithRequestBuilder(petId petId: Int64, additionalMetadata: String? = nil, file: NSURL? = nil) -> RequestBuilder<Void> {
var path = "/pet/{petId}/uploadImage"
path = path.stringByReplacingOccurrencesOfString("{petId}", withString: "\(petId)", options: .LiteralSearch, range: nil)
let URLString = PetstoreClientAPI.basePath + path
let nillableParameters: [String:AnyObject?] = [
"additionalMetadata": additionalMetadata,
"file": file
]
let parameters = APIHelper.rejectNil(nillableParameters)
let convertedParameters = APIHelper.convertBoolToString(parameters)
let requestBuilder: RequestBuilder<Void>.Type = PetstoreClientAPI.requestBuilderFactory.getBuilder()
return requestBuilder.init(method: "POST", URLString: URLString, parameters: convertedParameters, isBody: false)
}
}
| 32.993939 | 152 | 0.602636 |
793a5afcc96132529b8ca680cd75fbb4f8ef1e8d | 2,223 | //
// SearchSection.swift
// MovieDemo
//
// Created by Oscar Vernis on 15/10/20.
// Copyright © 2020 Oscar Vernis. All rights reserved.
//
import UIKit
class SearchSection: FetchableSection {
var dataProvider = SearchDataProvider()
init() {
self.dataProvider.didUpdate = { error in
self.didUpdate?(error)
}
}
var isLastPage: Bool {
return dataProvider.isLastPage
}
var didUpdate: ((Error?) -> Void)?
func refresh() {
dataProvider.refresh()
}
func fetchNextPage() {
dataProvider.fetchNextPage()
}
var itemCount: Int {
dataProvider.itemCount
}
func registerReusableViews(withCollectionView collectionView: UICollectionView) {
MovieInfoListCell.register(withCollectionView: collectionView)
CreditPhotoListCell.register(withCollectionView: collectionView)
}
func sectionLayout() -> NSCollectionLayoutSection {
let sectionBuilder = MoviesCompositionalLayoutBuilder()
let section = sectionBuilder.createListSection()
section.contentInsets.bottom = 30
return section
}
func cell(withCollectionView collectionView: UICollectionView, indexPath: IndexPath) -> UICollectionViewCell {
let item = dataProvider.item(atIndex: indexPath.row)
let cell: UICollectionViewCell
switch item {
case let movie as Movie:
let movieCell = collectionView.dequeueReusableCell(withReuseIdentifier: MovieInfoListCell.reuseIdentifier, for: indexPath) as! MovieInfoListCell
MovieInfoCellConfigurator().configure(cell: movieCell, with: MovieViewModel(movie: movie))
cell = movieCell
case let person as Person:
let personCell = collectionView.dequeueReusableCell(withReuseIdentifier: CreditPhotoListCell.reuseIdentifier, for: indexPath) as! CreditPhotoListCell
PersonCreditPhotoListConfigurator().configure(cell: personCell, person: PersonViewModel(person: person))
cell = personCell
default:
fatalError()
}
return cell
}
}
| 30.040541 | 161 | 0.654071 |
5d84e9081029b6472669d645d31158100e68533b | 1,738 | //
// FaceDetectionUtility.swift
// CardScanner
//
// Created by Hassan Shahbazi on 12/5/18.
// Copyright © 2018 Hassan Shahbazi. All rights reserved.
//
import UIKit
import CoreML
import Vision
protocol FaceDetectionUtilityDelegate {
func didDetectFaceImage(_ image: CIImage, at rect: CGRect)
}
class FaceDetectionUtility: DetectionUtility {
public var delegate: FaceDetectionUtilityDelegate?
private var faceQueue: DispatchQueue!
private lazy var facesRequest: VNDetectFaceRectanglesRequest = {
return VNDetectFaceRectanglesRequest(completionHandler: self.handleRequest)
}()
override init() {
super.init()
faceQueue = DispatchQueue(label: "face_detection_queue", qos: .background, attributes: [], autoreleaseFrequency: .workItem, target: queueTarget)
}
override func detect(_ liveImage: CIImage) {
self.inputImage = liveImage
let handler = VNImageRequestHandler(ciImage: inputImage, orientation: .up)
faceQueue.async {
try? handler.perform([self.facesRequest])
}
}
override func handleRequest(request: VNRequest, error: Error?) {
guard let observations = request.results as? [VNFaceObservation] else { return }
guard let detectedFace = observations.first else { return }
let imageSize = inputImage.extent.size
let boundingBox = detectedFace.boundingBox.scaled(to: imageSize)
let correctedImage = inputImage.cropped(to: boundingBox).oriented(forExifOrientation: Int32(CGImagePropertyOrientation.up.rawValue))
DispatchQueue.main.async {
self.delegate?.didDetectFaceImage(correctedImage, at: boundingBox)
}
}
}
| 34.76 | 152 | 0.697353 |
f7f3ec5263602ea758a3495399545f753ec819d3 | 486 | //
// DataManager.swift
// Pocket USA
//
// Created by Wei Huang on 3/2/17.
// Copyright © 2017 Wei Huang. All rights reserved.
//
import Foundation
// Source feed in the JSON
public struct SourceFeed: Decodable {
public let orgName: String?
public init?(json: JSON) {
guard let sourceFeed: JSON = "source" <~~ json,
let orgName: String = "org" <~~ sourceFeed else {
return nil
}
self.orgName = orgName
}
}
| 21.130435 | 61 | 0.584362 |
d9402ccad4376f76633b971d5826c1e1b29d28e7 | 819 | //: [Previous](@previous)
import Foundation
import Peppermint
/*:
## `KeyPathConstraint`
In the following example we use a `KeyPathConstraint` to evaluate that the `.email` property of the `LoginData` type is a valid email address.
*/
struct LoginData {
enum Error: Swift.Error {
case email
case password
}
var email: String
var password: String
}
let constraint = KeyPathConstraint<LoginData, String, LoginData.Error>(\.email) {
PredicateConstraint(EmailPredicate(), error: .email)
}
let data = LoginData(email: "[email protected]", password: "p@ssW0rd")
let result = constraint.evaluate(with: data)
switch result {
case .success:
print("You got 📬!")
case .failure(let summary):
print(summary.errors.map({$0.localizedDescription}))
}
//: [Next](@next)
| 21.552632 | 143 | 0.684982 |
768a459dc9e78e8f980603e4615265e6995b4be6 | 5,833 | // Copyright © 2018 Stormbird PTE. LTD.
import Foundation
import UIKit
import BigInt
struct EthTokenViewCellViewModel {
private let shortFormatter = EtherNumberFormatter.short
private let token: TokenObject
private let currencyAmount: Double?
private let ticker: CoinTicker?
private let assetDefinitionStore: AssetDefinitionStore
private let isVisible: Bool
init(
token: TokenObject,
ticker: CoinTicker?,
currencyAmount: Double?,
assetDefinitionStore: AssetDefinitionStore,
isVisible: Bool = true
) {
self.token = token
self.ticker = ticker
self.currencyAmount = currencyAmount
self.assetDefinitionStore = assetDefinitionStore
self.isVisible = isVisible
}
private var amount: String {
return shortFormatter.string(from: BigInt(token.value) ?? BigInt(), decimals: token.decimals)
}
private var title: String {
return token.shortTitleInPluralForm(withAssetDefinitionStore: assetDefinitionStore)
}
var backgroundColor: UIColor {
return Screen.TokenCard.Color.background
}
var contentsBackgroundColor: UIColor {
return Screen.TokenCard.Color.background
}
var titleAttributedString: NSAttributedString {
return NSAttributedString(string: title, attributes: [
.foregroundColor: Screen.TokenCard.Color.title,
.font: Screen.TokenCard.Font.title
])
}
var cryptoValueAttributedString: NSAttributedString {
return NSAttributedString(string: amount + " " + token.symbolInPluralForm(withAssetDefinitionStore: assetDefinitionStore), attributes: [
.foregroundColor: Screen.TokenCard.Color.subtitle,
.font: Screen.TokenCard.Font.subtitle
])
}
private var valuePercentageChangeColor: UIColor {
return Screen.TokenCard.Color.valueChangeValue(ticker: ticker)
}
private var apprecation24hoursBackgroundColor: UIColor {
valuePercentageChangeColor.withAlphaComponent(0.07)
}
private var apprecation24hoursImage: UIImage? {
switch EthCurrencyHelper(ticker: ticker).change24h {
case .appreciate:
return R.image.price_up()
case .depreciate:
return R.image.price_down()
case .none:
return .none
}
}
private var apprecation24hoursAttributedString: NSAttributedString {
let valuePercentageChangeValue: String = {
switch EthCurrencyHelper(ticker: ticker).change24h {
case .appreciate(let percentageChange24h):
return "\(percentageChange24h)%"
case .depreciate(let percentageChange24h):
return "\(percentageChange24h)%"
case .none:
return "-"
}
}()
return NSAttributedString(string: valuePercentageChangeValue, attributes: [
.foregroundColor: valuePercentageChangeColor,
.font: Screen.TokenCard.Font.valueChangeLabel
])
}
private var priceChangeUSDValue: String {
if let result = EthCurrencyHelper(ticker: ticker).valueChanged24h(value: token.optionalDecimalValue) {
return NumberFormatter.usd(format: .priceChangeFormat).string(from: result) ?? "-"
} else {
return "-"
}
}
var priceChangeUSDValueAttributedString: NSAttributedString {
return NSAttributedString(string: priceChangeUSDValue, attributes: [
.foregroundColor: valuePercentageChangeColor,
.font: Screen.TokenCard.Font.valueChangeLabel
])
}
private var amountAccordingRPCServer: String? {
if token.server.isTestnet {
return nil
} else {
return currencyAmount.flatMap { NumberFormatter.usd(format: .fiatFormat).string(from: $0) ?? "-" }
}
}
var fiatValueAttributedString: NSAttributedString {
return NSAttributedString(string: amountAccordingRPCServer ?? "-", attributes: [
.foregroundColor: Screen.TokenCard.Color.title,
.font: Screen.TokenCard.Font.valueChangeValue
])
}
var alpha: CGFloat {
return isVisible ? 1.0 : 0.4
}
var iconImage: Subscribable<TokenImage> {
token.icon
}
var blockChainTagViewModel: BlockchainTagLabelViewModel {
return .init(server: token.server)
}
private func amountAccordingRPCServer(currencyAmount: String?) -> String? {
if token.server.isTestnet {
return nil
} else {
return currencyAmount
}
}
func fiatValueAttributedString(currencyAmount: String?) -> NSAttributedString {
return NSAttributedString(string: amountAccordingRPCServer(currencyAmount: currencyAmount) ?? "-", attributes: [
.foregroundColor: Screen.TokenCard.Color.title,
.font: Screen.TokenCard.Font.valueChangeValue
])
}
private func priceChangeUSDValue(ticker: CoinTicker?) -> String {
if let result = EthCurrencyHelper(ticker: ticker).valueChanged24h(value: token.optionalDecimalValue) {
return NumberFormatter.usd.string(from: result) ?? "-"
} else {
return "-"
}
}
func apprecation24hoursBackgroundColor(ticker: CoinTicker?) -> UIColor {
valuePercentageChangeColor(ticker: ticker).withAlphaComponent(0.07)
}
var apprecationViewModel: ApprecationViewModel {
.init(icon: apprecation24hoursImage, valueAttributedString: apprecation24hoursAttributedString, backgroundColor: apprecation24hoursBackgroundColor)
}
private func valuePercentageChangeColor(ticker: CoinTicker?) -> UIColor {
return Screen.TokenCard.Color.valueChangeValue(ticker: ticker)
}
}
| 33.912791 | 155 | 0.664495 |
71c5d5a8fc9f9d9887eee4b5fecff818e46e3b2c | 1,316 | //
// AppDelegate.swift
// iOS Example
//
// Copyright © 2017 Andrew Simvolokov. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
import UIKit
@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {
var window: UIWindow?
}
| 38.705882 | 81 | 0.75304 |
fb052039332bb4c54676974f7ac9e5b02ad909fb | 2,794 | //
// RightMenuVC.swift
// FAPanels
//
// Created by Fahid Attique on 17/06/2017.
// Copyright © 2017 Fahid Attique. All rights reserved.
//
import UIKit
class RightMenuVC: UIViewController {
@IBOutlet var tableView: UITableView!
override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
viewConfigurations()
}
override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.
}
/*
// MARK: - Navigation
// In a storyboard-based application, you will often want to do a little preparation before navigation
override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
// Get the new view controller using segue.destinationViewController.
// Pass the selected object to the new view controller.
}
*/
private func viewConfigurations() {
tableView.register(UINib.init(nibName: "RightMenuCell", bundle: nil), forCellReuseIdentifier: "RightMenuCell")
}
}
extension RightMenuVC: UITableViewDelegate, UITableViewDataSource {
func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
return 8
}
func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) -> UITableViewCell {
let cell = tableView.dequeueReusableCell(withIdentifier: "RightMenuCell") as! RightMenuCell
cell.menuOption.image = UIImage(named: "right_menu_" + String(indexPath.row + 1))
return cell
}
func tableView(_ tableView: UITableView, didSelectRowAt indexPath: IndexPath) {
tableView.deselectRow(at: indexPath, animated: false)
let mainStoryboard: UIStoryboard = UIStoryboard(name: "Main", bundle: nil)
var identifier = ""
if indexPath.row % 2 == 0 {
identifier = "CenterVC1"
}
else{
identifier = "CenterVC2"
}
let centerVC: UIViewController = mainStoryboard.instantiateViewController(withIdentifier: identifier)
let centerNavVC = UINavigationController(rootViewController: centerVC)
panel!.configs.bounceOnCenterPanelChange = true
/*
// Simple way of changing center PanelVC
_ = panel!.center(centerNavVC)
*/
/*
New Feature Added, You can change the center panelVC and after completion of the animations you can execute a closure
*/
panel!.center(centerNavVC, afterThat: {
print("Executing block after changing center panelVC From Right Menu")
})
}
}
| 29.104167 | 126 | 0.634932 |
e929ee24fcbc946e1a4e1dda2483e4f4cc29ce5d | 3,403 | //
// VGSCardScanHandler.swift
// VGSCardScanCollector
//
// Created by Dima on 18.08.2020.
// Copyright © 2020 VGS. All rights reserved.
//
import Foundation
import CardScan
#if !COCOAPODS
import VGSCollectSDK
#endif
internal class VGSCardScanHandler: NSObject, VGSScanHandlerProtocol {
weak var delegate: VGSCardScanControllerDelegate?
weak var view: UIViewController?
required init(apiKey: String) {
super.init()
ScanViewController.configure(apiKey: apiKey)
}
func presentScanVC(on viewController: UIViewController, animated: Bool, completion: (() -> Void)?) {
guard let vc = ScanViewController.createViewController(withDelegate: self) else {
print("This device is incompatible with CardScan")
return
}
self.view = vc
vc.scanDelegate = self
viewController.present(vc, animated: true)
}
func dismissScanVC(animated: Bool, completion: (() -> Void)?) {
view?.dismiss(animated: animated, completion: completion)
}
static func isCompatible() -> Bool {
return ScanViewController.isCompatible()
}
}
/// :nodoc:
extension VGSCardScanHandler: ScanDelegate {
func userDidCancel(_ scanViewController: ScanViewController) {
VGSAnalyticsClient.shared.trackEvent(.scan, status: .cancel, extraData: [ "scannerType": "Bouncer"])
delegate?.userDidCancelScan()
}
/// :nodoc:
func userDidScanCard(_ scanViewController: ScanViewController, creditCard: CreditCard) {
guard let cardScanDelegate = delegate else {
return
}
if !creditCard.number.isEmpty, let textfield = cardScanDelegate.textFieldForScannedData(type: .cardNumber) {
if let form = textfield.configuration?.vgsCollector {
VGSAnalyticsClient.shared.trackFormEvent(form.formAnalyticsDetails, type: .scan, status: .success, extraData: [ "scannerType": "Bouncer"])
}
textfield.setText(creditCard.number)
}
if let name = creditCard.name, !name.isEmpty, let textfield =
cardScanDelegate.textFieldForScannedData(type: .name) {
textfield.setText(name)
}
if let month = Int(creditCard.expiryMonth ?? ""), 1...12 ~= month, let year = Int(creditCard.expiryYear ?? ""), year >= VGSCalendarUtils.currentYearShort {
if let textfield = cardScanDelegate.textFieldForScannedData(type: .expirationDate) {
textfield.setText("\(month)\(year)")
}
if let textfield = cardScanDelegate.textFieldForScannedData(type: .expirationDateLong) {
let longYear = "20\(year)"
textfield.setText("\(month)\(longYear)")
}
}
if let month = Int(creditCard.expiryMonth ?? ""), 1...12 ~= month, let textfield = cardScanDelegate.textFieldForScannedData(type: .expirationMonth) {
textfield.setText("\(month)")
}
if let year = Int(creditCard.expiryYear ?? ""), year >= VGSCalendarUtils.currentYear {
if let textfield = cardScanDelegate.textFieldForScannedData(type: .expirationYear) {
textfield.setText("\(year)")
}
if let textfield = cardScanDelegate.textFieldForScannedData(type: .expirationYearLong) {
let longYear = "20\(year)"
textfield.setText("\(longYear)")
}
}
cardScanDelegate.userDidFinishScan()
}
/// :nodoc:
func userDidSkip(_ scanViewController: ScanViewController) {
delegate?.userDidCancelScan()
}
}
| 35.082474 | 159 | 0.683808 |
3867b3000af4a9dec9df34140fc80e4a1e07cebd | 971 | //
// KNNViewController+CollectionView.swift
// MLDemos
//
// Created by developer on 4/9/19.
// Copyright © 2019 iosdevlog. All rights reserved.
//
import UIKit
extension KNNViewController: UICollectionViewDataSource, UICollectionViewDelegate {
func collectionView(_ collectionView: UICollectionView, numberOfItemsInSection section: Int) -> Int {
return imagesNamed.count
}
func collectionView(_ collectionView: UICollectionView, cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {
let cell = collectionView.dequeueReusableCell(withReuseIdentifier: KMeansCollectionViewCell.identifier, for: indexPath) as! KMeansCollectionViewCell
cell.imageView.image = UIImage(named: imagesNamed[indexPath.row])
return cell
}
func collectionView(_ collectionView: UICollectionView, didSelectItemAt indexPath: IndexPath) {
currentType = Geometry2DType(rawValue: indexPath.row)!
}
}
| 34.678571 | 156 | 0.741504 |
1830b7408ba9356bb0adc5991defc682753f8bdc | 2,624 | //
// IntegrationCashRecordController.swift
// ThinkSNS +
//
// Created by GorCat on 2018/1/24.
// Copyright © 2018年 ZhiYiCX. All rights reserved.
//
// 提现明细
import UIKit
class IntegrationCashRecordController: TSLabelViewController {
// 充值记录
let rechargeTable = IntegrationRecordTable(frame: CGRect(origin: .zero, size: CGSize(width: UIScreen.main.bounds.width, height: UIScreen.main.bounds.height - 64) ), tableIdentifier: "recharge")
// 提取记录
let cashTable = IntegrationRecordTable(frame: CGRect(origin: .zero, size: CGSize(width: UIScreen.main.bounds.width, height: UIScreen.main.bounds.height - 64) ), tableIdentifier: "cash")
var selectedIndex: Int
init(selectedIndex index: Int) {
let height = UIScreen.main.bounds.height - 64
selectedIndex = index
super.init(labelTitleArray: ["充值记录"], scrollViewFrame: CGRect(x: 0, y: 0, width: UIScreen.main.bounds.width, height: height))
blueLine.isHidden = true
}
required init?(coder aDecoder: NSCoder) {
fatalError("init(coder:) has not been implemented")
}
override func viewDidLoad() {
super.viewDidLoad()
setUI()
}
func setUI() {
rechargeTable.refreshDelegate = self
cashTable.refreshDelegate = self
add(childView: rechargeTable, at: 0)
add(childView: cashTable, at: 1)
rechargeTable.mj_header.beginRefreshing()
cashTable.mj_header.beginRefreshing()
setSelectedAt(selectedIndex)
}
}
extension IntegrationCashRecordController: IntegrationRecordTableRefreshDelegate {
/// 下拉刷新
func integrationRecordTable(_ view: IntegrationRecordTable, didRefreshWithIdentidier identifier: String) {
IntegrationNetworkManager.getOrders(after: nil, action: identifier) { (models, message, status) in
var cellModels: [IntegrationRecordCellModel]?
if let datas = models {
cellModels = datas.map { IntegrationRecordCellModel(model: $0) }
}
view.processRefresh(newDatas: cellModels, errorMessage: message)
}
}
// 上拉加载更多
func integrationRecordTable(_ view: IntegrationRecordTable, didLoadMoreWithIdentidier identifier: String) {
IntegrationNetworkManager.getOrders(after: view.datas.last?.id, action: identifier) { (models, message, status) in
var cellModels: [IntegrationRecordCellModel]?
if let datas = models {
cellModels = datas.map { IntegrationRecordCellModel(model: $0) }
}
view.processLoadMore(newDatas: cellModels, errorMessage: message)
}
}
}
| 34.986667 | 197 | 0.682165 |
900bd46eafda0ca6857a636121fae6b388390e73 | 3,550 | import XCTest
import ReactiveSwift
import UIKit.UIActivity
import ReactiveExtensions
import ReactiveExtensions_TestHelpers
import Result
@testable import KsApi
@testable import Library
import Prelude
final class ActivityFriendFollowCellViewModelTests: TestCase {
let vm: ActivityFriendFollowCellViewModel = ActivityFriendFollowCellViewModel()
let hideFollowButton = TestObserver<Bool, NoError>()
let friendImageURL = TestObserver<String?, NoError>()
let title = TestObserver<String, NoError>()
override func setUp() {
super.setUp()
vm.outputs.hideFollowButton.observe(hideFollowButton.observer)
vm.outputs.friendImageURL.map { $0?.absoluteString }.observe(friendImageURL.observer)
vm.outputs.title.map { $0.string }.observe(title.observer)
}
func testFriendDetails_Complete() {
let user = User.template
|> \.avatar.small .~ "http://coolpic.com/cool.jpg"
|> \.name .~ "Squiggles McTwiddle"
let activity = Activity.template
|> Activity.lens.user .~ user
friendImageURL.assertValueCount(0)
title.assertValueCount(0)
vm.inputs.configureWith(activity: activity)
friendImageURL.assertValues(["http://coolpic.com/cool.jpg"])
title.assertValues(["Squiggles McTwiddle is now following you!"])
}
func testFriendDetails_Incomplete() {
let user = User.template
|> \.name .~ "Squiggles McTwiddle"
let activity = Activity.template
|> Activity.lens.user .~ user
friendImageURL.assertValueCount(0)
title.assertValueCount(0)
vm.inputs.configureWith(activity: activity)
friendImageURL.assertValueCount(1)
title.assertValues(["Squiggles McTwiddle is now following you!"])
}
func testFriendFollowing_Friend() {
let user = User.template
|> \.avatar.small .~ "http://coolpic.com/cool.jpg"
|> \.isFriend .~ true
|> \.name .~ "Squiggles McTwiddle"
let activity = Activity.template
|> Activity.lens.user .~ user
hideFollowButton.assertValueCount(0)
XCTAssertEqual([], self.trackingClient.events)
vm.inputs.configureWith(activity: activity)
hideFollowButton.assertValues([true], "Hide Follow Button")
XCTAssertEqual([], self.trackingClient.events)
}
func testFriendFollowing_NonFriend() {
let user = User.template
|> \.avatar.medium .~ "http://coolpic.com/cool.jpg"
|> \.isFriend .~ false
|> \.name .~ "Squiggles McTwiddle"
let activity = Activity.template
|> Activity.lens.user .~ user
hideFollowButton.assertValueCount(0)
XCTAssertEqual([], self.trackingClient.events)
vm.inputs.configureWith(activity: activity)
hideFollowButton.assertValues([false], "Show Follow Button")
vm.inputs.followButtonTapped()
hideFollowButton.assertValues([false], "Follow Button does not change")
XCTAssertEqual(["Facebook Friend Follow", "Followed Facebook Friend"], self.trackingClient.events)
XCTAssertEqual(["activity", "activity"],
self.trackingClient.properties(forKey: "source", as: String.self))
}
func testRetainFriendStatusOnReuse_After_Following() {
let user = User.template
|> \.avatar.small .~ "http://coolpic.com/cool.jpg"
|> \.isFriend .~ false
|> \.name .~ "Squiggles McTwiddle"
let activity = Activity.template
|> Activity.lens.user .~ user
hideFollowButton.assertValueCount(0)
vm.inputs.configureWith(activity: activity)
hideFollowButton.assertValues([false], "Show Follow Button")
vm.inputs.followButtonTapped()
scheduler.advance()
}
}
| 29.831933 | 102 | 0.709577 |
eb35cfec44bcaaec789fdb72f793a2399b6f8ce4 | 959 | //
// UIViewController+Extensions.swift
// DiscourseClient
//
// Created by Roberto Garrido on 08/02/2020.
// Copyright © 2020 Roberto Garrido. All rights reserved.
//
import UIKit
extension UIViewController {
/// Muestra un alertcontroller con una única acción
/// - Parameters:
/// - alertMessage: Mensaje del alert
/// - alertTitle: Título del alert
/// - alertActionTitle: Título de la acción
func showAlert(_ alertMessage: String,
alertTitle: String = NSLocalizedString("Error", comment: ""),
_ alertActionTitle: String = NSLocalizedString("OK", comment: "")) {
let alertController = UIAlertController(title: alertTitle, message: alertMessage, preferredStyle: .alert)
alertController.addAction(UIAlertAction(title: alertActionTitle, style: .default, handler: nil))
present(alertController, animated: true, completion: nil)
}
}
| 36.884615 | 113 | 0.661105 |
8fdacc245ec4635fcbbcd18d70983ffc5579431e | 307,460 | // Copyright 2019 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import XCTest
@testable import TensorFlow
fileprivate struct Sigmoid<Scalar: TensorFlowFloatingPoint>: ParameterlessLayer {
typealias TangentVector = EmptyTangentVector
@differentiable(reverse)
func callAsFunction(_ input: Tensor<Scalar>) -> Tensor<Scalar> {
sigmoid(input)
}
}
final class LayerTests: XCTestCase {
func testConv1D() {
let filter = Tensor<Float>(ones: [3, 1, 2]) * Tensor<Float>([[[0.5, 1]]])
let bias = Tensor<Float>([0, 1])
let layer = Conv1D<Float>(
filter: filter, bias: bias, activation: identity, stride: 1,
padding: .valid)
let input = Tensor<Float>([[0, 1, 2, 3, 4], [10, 11, 12, 13, 14]]).expandingShape(at: 2)
let output = layer.inferring(from: input)
let expected = Tensor<Float>(
shape: [2, 3, 2],
scalars: [1.5, 4, 3, 7, 4.5, 10, 16.5, 34, 18, 37, 19.5, 40])
XCTAssertEqual(output, expected)
let layerNoBias = Conv1D<Float>(
filter: filter, bias: nil, activation: identity, stride: 1,
padding: .valid)
let outputNoBias = layerNoBias.inferring(from: input)
let expectedNoBias = Tensor<Float>(
shape: [2, 3, 2],
scalars: [1.5, 3, 3, 6, 4.5, 9, 16.5, 33, 18, 36, 19.5, 39])
XCTAssertEqual(outputNoBias, expectedNoBias)
}
func testConv1DDilation() {
// Filter shapes.
let width = 3
let inputChannels = 1
let outputChannels = 2
// Input shapes.
let inputHeight = 2
let inputWidth = 5
let filter = Tensor<Float>(
shape: [width, inputChannels, outputChannels],
scalars: [2, 3, 4, 1, 2, 3])
let bias = Tensor<Float>([0])
let layer = Conv1D<Float>(
filter: filter, bias: bias, activation: identity, stride: 1,
padding: .valid, dilation: 2)
let input = Tensor<Float>(
shape: [inputHeight, inputWidth, 1],
scalars: [0, 1, 2, 3, 4, 10, 11, 12, 13, 14])
let output = layer.inferring(from: input)
let expected = Tensor<Float>(shape: [2, 1, 2], scalars: [16, 14, 96, 84])
XCTAssertEqual(output, expected)
}
func testConv2D() {
let filter = Tensor(shape: [1, 2, 2, 1], scalars: (0..<4).map(Float.init))
let bias = Tensor<Float>([1, 2])
let layer = Conv2D<Float>(
filter: filter, bias: bias, activation: identity,
strides: (2, 2), padding: .valid)
let input = Tensor(shape: [2, 2, 2, 2], scalars: (0..<16).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>(
shape: [2, 1, 1, 2],
scalars: [15, 16, 63, 64])
XCTAssertEqual(output, expected)
let layerNoBias = Conv2D<Float>(
filter: filter, bias: nil, activation: identity,
strides: (2, 2), padding: .valid)
let outputNoBias = layerNoBias.inferring(from: input)
let expectedNoBias = Tensor<Float>(
shape: [2, 1, 1, 1],
scalars: [14, 62])
XCTAssertEqual(outputNoBias, expectedNoBias)
}
func testConv2DGradient() {
let filter = Tensor(shape: [3, 3, 2, 4], scalars: (0..<72).map(Float.init))
let bias = Tensor<Float>(zeros: [4])
let layer = Conv2D<Float>(
filter: filter,
bias: bias,
activation: identity,
strides: (2, 2),
padding: .valid)
let input = Tensor(shape: [2, 4, 4, 2], scalars: (0..<64).map(Float.init))
let grads = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// x = tf.reshape(tf.range(64, dtype=tf.float32), [2, 4, 4, 2])
// filter = tf.reshape(tf.range(72, dtype=tf.float32), [3, 3, 2, 4])
// bias = tf.zeros([4])
// with tf.GradientTape() as tape:
// tape.watch([x, filter, bias])
// y = tf.math.reduce_sum(tf.nn.conv2d(input=x,
// filters=filter,
// strides=[1, 2, 2, 1],
// data_format="NHWC",
// padding="VALID") + bias)
// print(tape.gradient(y, [x, filter, bias]))
// ```
XCTAssertEqual(
grads.0,
[
[
[[6, 22], [38, 54], [70, 86], [0, 0]],
[[102, 118], [134, 150], [166, 182], [0, 0]],
[[198, 214], [230, 246], [262, 278], [0, 0]],
[[0, 0], [0, 0], [0, 0], [0, 0]],
],
[
[[6, 22], [38, 54], [70, 86], [0, 0]],
[[102, 118], [134, 150], [166, 182], [0, 0]],
[[198, 214], [230, 246], [262, 278], [0, 0]],
[[0, 0], [0, 0], [0, 0], [0, 0]],
],
])
XCTAssertEqual(
grads.1.filter,
[
[
[[32, 32, 32, 32], [34, 34, 34, 34]],
[[36, 36, 36, 36], [38, 38, 38, 38]],
[[40, 40, 40, 40], [42, 42, 42, 42]],
],
[
[[48, 48, 48, 48], [50, 50, 50, 50]],
[[52, 52, 52, 52], [54, 54, 54, 54]],
[[56, 56, 56, 56], [58, 58, 58, 58]],
],
[
[[64, 64, 64, 64], [66, 66, 66, 66]],
[[68, 68, 68, 68], [70, 70, 70, 70]],
[[72, 72, 72, 72], [74, 74, 74, 74]],
],
])
XCTAssertEqual(grads.1.bias, [2, 2, 2, 2])
}
func testConv2DDilation() {
// Input shapes. (Data format = NHWC)
let batchSize = 2
let inputHeight = 4
let inputWidth = 4
let inputChannels = 1
let inputSize = batchSize * inputHeight * inputWidth * inputChannels
// Filter shapes.
let filterHeight = 2
let filterWidth = 2
let outputChannels = 1
let filterSize = filterHeight * filterWidth * inputChannels * outputChannels
// Testing.
let filter = Tensor<Float>(
shape: [filterHeight, filterWidth, inputChannels, outputChannels],
scalars: (0..<filterSize).map(Float.init))
let bias = Tensor<Float>([0])
let layer = Conv2D<Float>(
filter: filter, bias: bias, activation: identity, strides: (1, 1),
padding: .valid, dilations: (2, 2))
let input = Tensor<Float>(
shape: [batchSize, inputHeight, inputWidth, inputChannels],
scalars: (0..<inputSize).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>(
shape: [2, 2, 2, 1],
scalars: [48, 54, 72, 78, 144, 150, 168, 174])
XCTAssertEqual(output, expected)
}
func testConv3D() {
let filter = Tensor(shape: [1, 2, 2, 2, 1], scalars: (0..<8).map(Float.init))
let bias = Tensor<Float>([-1, 1])
let layer = Conv3D<Float>(
filter: filter, bias: bias, activation: identity,
strides: (1, 2, 1), padding: .valid, dilations: (1, 1, 1))
let input = Tensor(shape: [2, 2, 2, 2, 2], scalars: (0..<32).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>(
shape: [2, 2, 1, 1, 2],
scalars: [139, 141, 363, 365, 587, 589, 811, 813])
XCTAssertEqual(output, expected)
let layerNoBias = Conv3D<Float>(
filter: filter, bias: nil, activation: identity,
strides: (1, 2, 1), padding: .valid, dilations: (1, 1, 1))
let outputNoBias = layerNoBias.inferring(from: input)
let expectedNoBias = Tensor<Float>(
shape: [2, 2, 1, 1, 1],
scalars: [140, 364, 588, 812])
XCTAssertEqual(outputNoBias, expectedNoBias)
}
func testConv3DGradient() {
let filter = Tensor(shape: [1, 4, 4, 1, 1], scalars: (0..<16).map(Float.init))
let bias = Tensor<Float>(ones: [2])
let layer = Conv3D(
filter: filter,
bias: bias,
activation: identity,
strides: (2, 2, 2),
padding: .same)
let input = Tensor(shape: [1, 4, 4, 4, 1], scalars: (0..<64).map(Float.init))
let grads = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// x = tf.reshape(tf.range(64, dtype=tf.float32), [1, 4, 4, 4, 1])
// filter = tf.reshape(tf.range(72, dtype=tf.float32), [1, 4, 4, 1, 1])
// bias = tf.ones([2])
// with tf.GradientTape() as tape:
// tape.watch([x, filter, bias])
// y = tf.math.reduce_sum(tf.nn.conv3d(input=x,
// filters=filter,
// strides=[1, 2, 2, 2, 1],
// padding="SAME") + bias)
// print(tape.gradient(y, [x, filter, bias]))
// ```
XCTAssertEqual(
grads.0,
[
[
[
[[10.0], [20.0], [24.0], [12.0]],
[[20.0], [40.0], [48.0], [24.0]],
[[36.0], [72.0], [80.0], [40.0]],
[[18.0], [36.0], [40.0], [20.0]],
],
[
[[0.0], [0.0], [0.0], [0.0]],
[[0.0], [0.0], [0.0], [0.0]],
[[0.0], [0.0], [0.0], [0.0]],
[[0.0], [0.0], [0.0], [0.0]],
],
[
[[10.0], [20.0], [24.0], [12.0]],
[[20.0], [40.0], [48.0], [24.0]],
[[36.0], [72.0], [80.0], [40.0]],
[[18.0], [36.0], [40.0], [20.0]],
],
[
[[0.0], [0.0], [0.0], [0.0]],
[[0.0], [0.0], [0.0], [0.0]],
[[0.0], [0.0], [0.0], [0.0]],
[[0.0], [0.0], [0.0], [0.0]],
],
]
])
XCTAssertEqual(
grads.1.filter,
[
[
[[[84.0]], [[168.0]], [[176.0]], [[88.0]]],
[[[168.0]], [[336.0]], [[352.0]], [[176.0]]],
[[[200.0]], [[400.0]], [[416.0]], [[208.0]]],
[[[100.0]], [[200.0]], [[208.0]], [[104.0]]],
]
])
XCTAssertEqual(grads.1.bias, [8.0, 8.0])
}
func testDepthwiseConv2D() {
let filter = Tensor(shape: [2, 2, 2, 2], scalars: (0..<16).map(Float.init))
let bias = Tensor<Float>([1, 2, 3, 4])
let layer = DepthwiseConv2D<Float>(
filter: filter, bias: bias, activation: identity,
strides: (2, 2), padding: .same)
let input = Tensor(shape: [1, 1, 8, 2], scalars: (0..<16).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>(
shape: [1, 1, 4, 4],
scalars: [
9, 12, 23, 28, 25, 36, 55, 68, 41, 60, 87, 108,
57, 84, 119, 148,
])
XCTAssertEqual(output, expected)
let channelMultiplier = 4
let multiplierLayer = DepthwiseConv2D<Float>(
filterShape: (2, 2, input.shape[3], channelMultiplier),
filterInitializer: glorotUniform(),
biasInitializer: zeros())
let multiplierOutput = multiplierLayer.inferring(from: input)
XCTAssertEqual(multiplierOutput.shape[3], input.shape[3] * channelMultiplier)
}
func testDepthwiseConv2DGradient() {
let filter = Tensor(shape: [2, 1, 2, 2], scalars: (0..<8).map(Float.init))
let bias = Tensor<Float>(ones: [4])
let layer = DepthwiseConv2D<Float>(
filter: filter,
bias: bias,
activation: identity,
strides: (1, 1),
padding: .same)
let input = Tensor(shape: [2, 1, 2, 2], scalars: (0..<8).map(Float.init))
let grads = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// input = tf.reshape(tf.range(8, dtype=tf.float32), [2, 1, 2, 2])
// filter = tf.reshape(tf.range(8, dtype=tf.float32), [2, 1, 2, 2])
// bias = tf.ones([4])
// with tf.GradientTape() as tape:
// tape.watch([x, filter, bias])
// y = tf.math.reduce_sum(tf.nn.depthwise_conv2d(input=x,
// filters=filter,
// strides=[1, 1, 1, 1],
// data_format="NHWC",
// padding="SAME") + bias)
// print(tape.gradient(y, [x, filter, bias]))
// ```
XCTAssertEqual(
grads.0,
[
[[[1, 5], [1, 5]]],
[[[1, 5], [1, 5]]],
])
XCTAssertEqual(
grads.1.filter,
[
[[[12, 12], [16, 16]]],
[[[0, 0], [0, 0]]],
])
XCTAssertEqual(grads.1.bias, [4, 4, 4, 4])
}
func testTransposedConv1D() {
let filter = Tensor(shape: [4, 1, 1], scalars: (0..<4).map(Float.init))
let bias = Tensor<Float>([8])
let layer = TransposedConv1D(
filter: filter, bias: bias, activation: identity,
stride: 1, padding: .same)
let input = Tensor(shape: [1, 4, 1], scalars: (0..<4).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>(
shape: [1, 1, 4, 1],
scalars: [8, 9, 12, 18])
XCTAssertEqual(output, expected)
let layerNoBias = TransposedConv1D(
filter: filter, bias: nil, activation: identity,
stride: 1, padding: .same)
let outputNoBias = layerNoBias.inferring(from: input)
let expectedNoBias = Tensor<Float>(
shape: [1, 1, 4, 1],
scalars: [0, 1, 4, 10])
XCTAssertEqual(outputNoBias, expectedNoBias)
}
func testTransposedConv2D() {
let filter = Tensor(shape: [4, 2, 1, 1], scalars: (0..<8).map(Float.init))
let bias = Tensor<Float>([8])
let layer = TransposedConv2D(
filter: filter, bias: bias, activation: identity,
strides: (1, 1), padding: .same)
let input = Tensor(shape: [1, 4, 2, 1], scalars: (0..<8).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>(
shape: [1, 4, 2, 1],
scalars: [8, 12, 12, 28, 24, 64, 48, 112])
XCTAssertEqual(output, expected)
let layerNoBias = TransposedConv2D(
filter: filter, bias: nil, activation: identity,
strides: (1, 1), padding: .same)
let outputNoBias = layerNoBias.inferring(from: input)
let expectedNoBias = Tensor<Float>(
shape: [1, 4, 2, 1],
scalars: [0, 4, 4, 20, 16, 56, 40, 104])
XCTAssertEqual(outputNoBias, expectedNoBias)
}
func testTransposedConv2DGradient() {
let filter = Tensor(shape: [3, 3, 2, 4], scalars: (0..<72).map(Float.init))
let bias = Tensor<Float>(zeros: [2])
let layer = TransposedConv2D<Float>(
filter: filter,
bias: bias,
activation: identity,
strides: (2, 2),
padding: .same)
let input = Tensor(shape: [2, 2, 2, 4], scalars: (0..<32).map(Float.init))
let grads = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// x = tf.reshape(tf.range(32, dtype=tf.float32), [2, 2, 2, 4])
// filter = tf.reshape(tf.range(72, dtype=tf.float32), [3, 3, 2, 4])
// bias = tf.zeros([2])
// with tf.GradientTape() as tape:
// tape.watch([x, filter, bias])
// y = tf.math.reduce_sum(tf.nn.conv2d_transpose(input=x,
// filters=filter,
// output_shape=[2, 4, 4, 2],
// strides=[1, 2, 2, 1],
// data_format="NHWC",
// padding="SAME") + bias)
// print(tape.gradient(y, [x, filter, bias]))
// ```
XCTAssertEqual(
grads.0,
[
[
[[612, 630, 648, 666], [360, 372, 384, 396]],
[[264, 276, 288, 300], [144, 152, 160, 168]],
],
[
[[612, 630, 648, 666], [360, 372, 384, 396]],
[[264, 276, 288, 300], [144, 152, 160, 168]],
],
])
XCTAssertEqual(
grads.1.filter,
[
[
[[112, 120, 128, 136], [112, 120, 128, 136]],
[[112, 120, 128, 136], [112, 120, 128, 136]],
[[48, 52, 56, 60], [48, 52, 56, 60]],
],
[
[[112, 120, 128, 136], [112, 120, 128, 136]],
[[112, 120, 128, 136], [112, 120, 128, 136]],
[[48, 52, 56, 60], [48, 52, 56, 60]],
],
[
[[40, 44, 48, 52], [40, 44, 48, 52]],
[[40, 44, 48, 52], [40, 44, 48, 52]],
[[16, 18, 20, 22], [16, 18, 20, 22]],
],
])
XCTAssertEqual(grads.1.bias, [32, 32])
}
func testTransposedConv3D() {
let filter = Tensor(shape: [2, 2, 2, 1, 1], scalars: (0..<8).map(Float.init))
let bias = Tensor<Float>([8])
let layer = TransposedConv3D(
filter: filter, bias: bias, activation: identity,
strides: (1, 1, 1), padding: .same)
let input = Tensor(shape: [1, 2, 2, 2, 1], scalars: (0..<8).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>(
shape: [1, 2, 2, 2, 1],
scalars: [8, 8, 8, 12, 8, 16, 24, 64])
XCTAssertEqual(output, expected)
let layerNoBias = TransposedConv3D(
filter: filter, bias: nil, activation: identity,
strides: (1, 1, 1), padding: .same)
let outputNoBias = layerNoBias.inferring(from: input)
let expectedNoBias = Tensor<Float>(
shape: [1, 2, 2, 2, 1],
scalars: [0, 0, 0, 4, 0, 8, 16, 56])
XCTAssertEqual(outputNoBias, expectedNoBias)
}
func testSeparableConv1D() {
let depthwiseFilter = Tensor(shape: [2, 2, 2], scalars: (0..<8).map(Float.init))
let pointwiseFilter = Tensor(shape: [1, 4, 1], scalars: (0..<4).map(Float.init))
let bias = Tensor<Float>([4])
let layer = SeparableConv1D<Float>(
depthwiseFilter: depthwiseFilter,
pointwiseFilter: pointwiseFilter,
bias: bias,
activation: identity,
stride: 1,
padding: .same)
let input = Tensor(shape: [2, 2, 2], scalars: (0..<8).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>(shape: [2, 2, 1], scalars: [17, 45, 73, 101])
XCTAssertEqual(output, expected)
let layerNoBias = SeparableConv1D<Float>(
depthwiseFilter: depthwiseFilter,
pointwiseFilter: pointwiseFilter,
bias: nil,
activation: identity,
stride: 1,
padding: .same)
let outputNoBias = layerNoBias.inferring(from: input)
let expectedNoBias = Tensor<Float>(shape: [2, 2, 1], scalars: [13, 41, 69, 97])
XCTAssertEqual(outputNoBias, expectedNoBias)
}
func testSeparableConv2D() {
let depthwiseFilter = Tensor(shape: [2, 2, 2, 2], scalars: (0..<16).map(Float.init))
let pointwiseFilter = Tensor(shape: [1, 1, 4, 1], scalars: (0..<4).map(Float.init))
let bias = Tensor<Float>([4])
let layer = SeparableConv2D<Float>(
depthwiseFilter: depthwiseFilter,
pointwiseFilter: pointwiseFilter,
bias: bias,
activation: identity,
strides: (2, 2),
padding: .valid)
let input = Tensor(shape: [2, 2, 2, 2], scalars: (0..<16).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>(
shape: [2, 1, 1, 1],
scalars: [1016, 2616])
XCTAssertEqual(output, expected)
let layerNoBias = SeparableConv2D<Float>(
depthwiseFilter: depthwiseFilter,
pointwiseFilter: pointwiseFilter,
bias: nil,
activation: identity,
strides: (2, 2),
padding: .valid)
let outputNoBias = layerNoBias.inferring(from: input)
let expectedNoBias = Tensor<Float>(
shape: [2, 1, 1, 1],
scalars: [1012, 2612])
XCTAssertEqual(outputNoBias, expectedNoBias)
}
func testSeparableConv2DGradient() {
let depthwiseFilter = Tensor(shape: [2, 1, 2, 2], scalars: (0..<8).map(Float.init))
let pointwiseFilter = Tensor(shape: [1, 1, 4, 1], scalars: (0..<4).map(Float.init))
let bias = Tensor<Float>([1, 1])
let layer = SeparableConv2D<Float>(
depthwiseFilter: depthwiseFilter,
pointwiseFilter: pointwiseFilter,
bias: bias,
activation: identity,
strides: (1, 1),
padding: .same)
let input = Tensor(shape: [2, 1, 2, 2], scalars: (0..<8).map(Float.init))
let grads = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// x = tf.reshape(tf.range(8, dtype=tf.float32), [2, 1, 2, 2])
// depthwiseFilter = tf.reshape(tf.range(8, dtype=tf.float32), [2, 1, 2, 2])
// pointwiseFilter = tf.reshape(tf.range(4, dtype=tf.float32), [1, 1, 4, 1])
// bias = tf.ones([2])
// with tf.GradientTape() as tape:
// tape.watch([x, depthwiseFilter, pointwiseFilter, bias])
// y = tf.math.reduce_sum(tf.nn.separable_conv2D(input,
// depthwiseFilter,
// pointwiseFilter
// strides=[1, 1, 1, 1],
// padding="SAME") + bias)
// print(tape.gradient(y, [x, depthwiseFilter, pointwiseFilter, bias])
// ```
XCTAssertEqual(
grads.0,
[
[[[2.0, 26.0], [2.0, 26.0]]],
[[[2.0, 26.0], [2.0, 26.0]]],
])
XCTAssertEqual(
grads.1.depthwiseFilter,
[
[[[0.0, 24.0], [64.0, 96.0]]],
[[[0.0, 0.0], [0.0, 0.0]]],
])
XCTAssertEqual(grads.1.bias, [4.0, 4.0])
}
func testZeroPadding1D() {
let input = Tensor<Float>(shape: [1, 3, 1], scalars: [0.0, 1.0, 2.0])
let layer = ZeroPadding1D<Float>(padding: 2)
let output = layer.inferring(from: input)
let expected = Tensor<Float>(
shape: [1, 7, 1],
scalars: [0.0, 0.0, 0.0, 1.0, 2.0, 0.0, 0.0])
XCTAssertEqual(output, expected)
}
func testZeroPadding1DGradient() {
let x = Tensor<Float>(shape: [1, 3, 1], scalars: [0.0, 1.0, 2.0])
let layer = ZeroPadding1D<Float>(padding: 2)
let computedGradient = gradient(at: x, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// x = tf.reshape(tf.constant([0.0, 1.0, 2.0]), [1, 3, 1])
// layer = tf.keras.layers.ZeroPadding1D(2)
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.reduce_sum(layer(x))
// print(tape.gradient(y, x))
// ```
let expectedGradient = Tensor<Float>(onesLike: x)
XCTAssertEqual(computedGradient.0, expectedGradient)
}
func testZeroPadding2D() {
let input = Tensor<Float>(shape: [1, 3, 1, 1], scalars: [0.0, 1.0, 2.0])
let layer = ZeroPadding2D<Float>(padding: ((0, 0), (0, 1)))
let output = layer.inferring(from: input)
let expected = Tensor<Float>(
shape: [1, 3, 2, 1],
scalars: [0.0, 0.0, 1.0, 0.0, 2.0, 0.0])
XCTAssertEqual(output, expected)
}
func testZeroPadding2DGradient() {
let x = Tensor<Float>(shape: [1, 3, 1, 1], scalars: [0.0, 1.0, 2.0])
let layer = ZeroPadding2D<Float>(padding: ((0, 0), (0, 1)))
let computedGradient = gradient(at: x, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// x = tf.reshape(tf.constant([0.0, 1.0, 2.0]), [1, 3, 1, 1])
// layer = tf.keras.layers.ZeroPadding2D(((0, 0), (0, 1)))
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.reduce_sum(layer(x))
// print(tape.gradient(y, x))
// ```
let expectedGradient = Tensor<Float>(onesLike: x)
XCTAssertEqual(computedGradient.0, expectedGradient)
}
func testZeroPadding3D() {
let input = Tensor<Float>(shape: [1, 3, 1, 1, 1], scalars: [0.0, 1.0, 2.0])
let layer = ZeroPadding3D<Float>(padding: ((0, 0), (0, 1), (0, 0)))
let output = layer.inferring(from: input)
let expected = Tensor<Float>(shape: [1, 3, 2, 1, 1], scalars: [0, 0, 1, 0, 2, 0])
XCTAssertEqual(output, expected)
}
func testZeroPadding3DGradient() {
let x = Tensor<Float>(shape: [1, 3, 1, 1, 1], scalars: [0.0, 1.0, 2.0])
let layer = ZeroPadding3D<Float>(padding: ((0, 0), (0, 1), (0, 0)))
let computedGradient = gradient(at: x, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// x = tf.reshape(tf.constant([0.0, 1.0, 2.0]), [1, 3, 1, 1, 1])
// layer = tf.keras.layers.ZeroPadding3D(((0, 0), (0, 1), (0, 0)))
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.reduce_sum(layer(x))
// print(tape.gradient(y, x))
// ```
let expectedGradient = Tensor<Float>(onesLike: x)
XCTAssertEqual(computedGradient.0, expectedGradient)
}
func testMaxPool1D() {
let layer = MaxPool1D<Float>(poolSize: 3, stride: 1, padding: .valid)
let input = Tensor<Float>([[0, 1, 2, 3, 4], [10, 11, 12, 13, 14]]).expandingShape(at: 2)
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[[2], [3], [4]], [[12], [13], [14]]])
XCTAssertEqual(output, expected)
}
func testMaxPool1DGradient() {
let layer = MaxPool1D<Float>(poolSize: 2, stride: 1, padding: .valid)
let x = Tensor<Float>(shape: [1, 4, 4], scalars: (0..<16).map(Float.init))
let computedGradient = gradient(at: x, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// maxpool1D = tf.keras.layers.MaxPool1D()
// x = tf.reshape(tf.range(16, dtype=tf.float32), [1, 4, 4])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(maxpool1D(x))
// print(tape.gradient(y, x))
// ```
let expectedGradient = Tensor<Float>([
[
[0, 0, 0, 0],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
]
])
XCTAssertEqual(computedGradient.0, expectedGradient)
}
func testMaxPool2D() {
let layer = MaxPool2D<Float>(poolSize: (2, 2), strides: (1, 1), padding: .valid)
let input = Tensor(shape: [1, 2, 2, 1], scalars: (0..<4).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[[[3]]]])
XCTAssertEqual(output, expected)
}
func testMaxPool2DGradient() {
let layer = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2), padding: .valid)
let x = Tensor(shape: [1, 4, 4, 1], scalars: (0..<16).map(Float.init))
let computedGradient = gradient(at: x, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// maxpool2D = tf.keras.layers.MaxPool2D(strides=(2, 2))
// x = tf.reshape(tf.range(16, dtype=tf.float32), [1, 4, 4, 1])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(maxpool2D(x))
// print(tape.gradient(y, x))
// ```
let expectedGradient = Tensor<Float>([
[
[[0], [0], [0], [0]],
[[0], [1], [0], [1]],
[[0], [0], [0], [0]],
[[0], [1], [0], [1]],
]
])
XCTAssertEqual(computedGradient.0, expectedGradient)
}
func testMaxPool3D() {
let layer = MaxPool3D<Float>(poolSize: (2, 2, 2), strides: (1, 1, 1), padding: .valid)
let input = Tensor(shape: [1, 2, 2, 2, 1], scalars: (0..<8).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[[[[7]]]]])
XCTAssertEqual(output, expected)
}
func testMaxPool3DGradient() {
let layer = MaxPool3D<Float>(poolSize: (2, 2, 2), strides: (1, 1, 1), padding: .valid)
let x = Tensor(shape: [1, 2, 2, 2, 1], scalars: (0..<8).map(Float.init))
let computedGradient = gradient(at: x, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// maxpool3D = tf.keras.layers.MaxPool3D(strides=(1, 1, 1))
// x = tf.reshape(tf.range(8, dtype=tf.float32), [1, 2, 2, 2, 1])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(maxpool3D(x))
// print(tape.gradient(y, x))
// ```
let expectedGradient = Tensor<Float>([
[
[
[[0], [0]],
[[0], [0]],
],
[
[[0], [0]],
[[0], [1]],
],
]
])
XCTAssertEqual(computedGradient.0, expectedGradient)
}
func testAvgPool1D() {
let layer = AvgPool1D<Float>(poolSize: 3, stride: 1, padding: .valid)
let input = Tensor<Float>([[0, 1, 2, 3, 4], [10, 11, 12, 13, 14]]).expandingShape(at: 2)
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[[1], [2], [3]], [[11], [12], [13]]])
XCTAssertEqual(output, expected)
}
func testAvgPool1DGradient() {
let layer = AvgPool1D<Float>(poolSize: 2, stride: 1, padding: .valid)
let x = Tensor(shape: [1, 4, 4], scalars: (0..<16).map(Float.init))
let computedGradient = gradient(at: x, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// avgpool1D = tf.keras.layers.AvgPool1D(strides=1)
// x = tf.reshape(tf.range(16, dtype=tf.float32), [1, 4, 4])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(avgpool1D(x))
// print(tape.gradient(y, x))
// ```
let expectedGradient = Tensor<Float>([
[
[0.5, 0.5, 0.5, 0.5],
[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0],
[0.5, 0.5, 0.5, 0.5],
]
])
XCTAssertEqual(computedGradient.0, expectedGradient)
}
func testAvgPool2D() {
let layer = AvgPool2D<Float>(poolSize: (2, 5), strides: (1, 1), padding: .valid)
let input = Tensor(shape: [1, 2, 5, 1], scalars: (0..<10).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[[[4.5]]]])
XCTAssertEqual(output, expected)
}
func testAvgPool2DGradient() {
let layer = AvgPool2D<Float>(poolSize: (2, 2), strides: (1, 1), padding: .valid)
let x = Tensor(shape: [1, 4, 4, 2], scalars: (0..<32).map(Float.init))
let computedGradient = gradient(at: x, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// avgpool2D = tf.keras.layers.AvgPool2D(strides=(1, 1))
// x = tf.reshape(tf.range(32, dtype=tf.float32), [1, 4, 4, 2])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(avgpool2D(x))
// print(tape.gradient(y, x))
// ```
let expectedGradient = Tensor<Float>([
[
[[0.25, 0.25], [0.50, 0.50], [0.50, 0.50], [0.25, 0.25]],
[[0.50, 0.50], [1.00, 1.00], [1.00, 1.00], [0.50, 0.50]],
[[0.50, 0.50], [1.00, 1.00], [1.00, 1.00], [0.50, 0.50]],
[[0.25, 0.25], [0.50, 0.50], [0.50, 0.50], [0.25, 0.25]],
]
])
XCTAssertEqual(computedGradient.0, expectedGradient)
}
func testAvgPool3D() {
let layer = AvgPool3D<Float>(poolSize: (2, 4, 5), strides: (1, 1, 1), padding: .valid)
let input = Tensor(shape: [1, 2, 4, 5, 1], scalars: (0..<40).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[[[[19.5]]]]])
XCTAssertEqual(output, expected)
}
func testAvgPool3DGradient() {
let layer = AvgPool3D<Float>(poolSize: (2, 2, 2), strides: (1, 1, 1), padding: .valid)
let x = Tensor(shape: [1, 2, 2, 2, 1], scalars: (0..<8).map(Float.init))
let computedGradient = gradient(at: x, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// avgpool3D = tf.keras.layers.AvgPool3D(strides=(1, 1, 1))
// x = tf.reshape(tf.range(8, dtype=tf.float32), [1, 2, 2, 2, 1])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(avgpool3D(x))
// print(tape.gradient(y, x))
// ```
let expectedGradient = Tensor<Float>(repeating: 0.125, shape: [1, 2, 2, 2, 1])
XCTAssertEqual(computedGradient.0, expectedGradient)
}
func testGlobalAvgPool1D() {
let layer = GlobalAvgPool1D<Float>()
let input = Tensor(shape: [2, 5, 1], scalars: (0..<10).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[2], [7]])
XCTAssertEqual(output, expected)
}
func testGlobalAvgPool1DGradient() {
let layer = GlobalAvgPool1D<Float>()
let input = Tensor(shape: [2, 2, 2], scalars: (0..<8).map(Float.init))
let computedGradient = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// globalAvgPool1D = tf.keras.layers.GlobalAveragePooling1D()
// x = tf.reshape(tf.range(8, dtype=tf.float32), [2, 2, 2])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(globalAvgPool1D(x))
// print(tape.gradient(y, x))
// ```
XCTAssertEqual(
computedGradient.0,
[
[
[0.5, 0.5],
[0.5, 0.5],
],
[
[0.5, 0.5],
[0.5, 0.5],
],
])
}
func testGlobalAvgPool2D() {
let layer = GlobalAvgPool2D<Float>()
let input = Tensor(shape: [2, 6, 2, 1], scalars: (0..<24).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[5.5], [17.5]])
XCTAssertEqual(output, expected)
}
func testGlobalAvgPool2DGradient() {
let layer = GlobalAvgPool2D<Float>()
let input = Tensor(shape: [2, 2, 2, 2], scalars: (0..<16).map(Float.init))
let computedGradient = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// globalAvgPool2D = tf.keras.layers.GlobalAveragePooling2D()
// x = tf.reshape(tf.range(16, dtype=tf.float32), [2, 2, 2, 2])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(globalAvgPool2D(x))
// print(tape.gradient(y, x))
// ```
XCTAssertEqual(
computedGradient.0,
[
[
[[0.25, 0.25], [0.25, 0.25]],
[[0.25, 0.25], [0.25, 0.25]],
],
[
[[0.25, 0.25], [0.25, 0.25]],
[[0.25, 0.25], [0.25, 0.25]],
],
])
}
func testGlobalAvgPool3D() {
let layer = GlobalAvgPool3D<Float>()
let input = Tensor<Float>(shape: [2, 6, 2, 1, 1], scalars: (0..<24).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[5.5], [17.5]])
XCTAssertEqual(output, expected)
}
func testGlobalAvgPool3DGradient() {
let layer = GlobalAvgPool3D<Float>()
let input = Tensor(shape: [1, 3, 2, 3, 1], scalars: (0..<18).map(Float.init))
let computedGradient = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// globalAvgPool3D = tf.keras.layers.GlobalAveragePooling3D()
// x = tf.reshape(tf.range(18, dtype=tf.float32), [1, 3, 2, 2, 1])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(globalAvgPool3D(x))
// print(tape.gradient(y, x))
// ```
XCTAssertEqual(
computedGradient.0,
[
[
[
[[0.055555556], [0.055555556], [0.055555556]],
[[0.055555556], [0.055555556], [0.055555556]],
],
[
[[0.055555556], [0.055555556], [0.055555556]],
[[0.055555556], [0.055555556], [0.055555556]],
],
[
[[0.055555556], [0.055555556], [0.055555556]],
[[0.055555556], [0.055555556], [0.055555556]],
],
]
])
}
func testGlobalMaxPool1D() {
let layer = GlobalMaxPool1D<Float>()
let input = Tensor(shape: [1, 10, 1], scalars: (0..<10).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[9]])
XCTAssertEqual(output, expected)
}
func testGlobalMaxPool1DGradient() {
let layer = GlobalMaxPool1D<Float>()
let input = Tensor(shape: [2, 2, 2], scalars: (0..<8).map(Float.init))
let computedGradient = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// globalMaxPool1D = tf.keras.layers.GlobalMaxPooling1D()
// x = tf.reshape(tf.range(8, dtype=tf.float32), [2, 2, 2])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(globalMaxPool1D(x))
// print(tape.gradient(y, x))
// ```
XCTAssertEqual(
computedGradient.0,
[
[
[0.0, 0.0],
[1.0, 1.0],
],
[
[0.0, 0.0],
[1.0, 1.0],
],
])
}
func testGlobalMaxPool2D() {
let layer = GlobalMaxPool2D<Float>()
let input = Tensor(shape: [1, 2, 10, 1], scalars: (0..<20).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[19]])
XCTAssertEqual(output, expected)
}
func testGlobalMaxPool2DGradient() {
let layer = GlobalMaxPool2D<Float>()
let input = Tensor(shape: [2, 3, 3, 2], scalars: (0..<36).map(Float.init))
let computedGradient = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
//import tensorflow as tf
// globalMaxPool2D = tf.keras.layers.GlobalMaxPooling2D()
// x = tf.reshape(tf.range(36, dtype=tf.float32), [2, 3, 3, 2])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(globalMaxPool2D(x))
// print(tape.gradient(y, x))
// ```
XCTAssertEqual(
computedGradient.0,
[
[
[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]],
[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]],
[[0.0, 0.0], [0.0, 0.0], [1.0, 1.0]],
],
[
[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]],
[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]],
[[0.0, 0.0], [0.0, 0.0], [1.0, 1.0]],
],
])
}
func testGlobalMaxPool3D() {
let layer = GlobalMaxPool3D<Float>()
let input = Tensor<Float>(shape: [1, 2, 3, 5, 1], scalars: (0..<30).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[29]])
XCTAssertEqual(output, expected)
}
func testGlobalMaxPool3DGradient() {
let layer = GlobalMaxPool3D<Float>()
let input = Tensor(shape: [2, 2, 2, 2, 2], scalars: (0..<32).map(Float.init))
let computedGradient = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// globalMaxPool3D = tf.keras.layers.GlobalMaxPooling3D()
// x = tf.reshape(tf.range(32, dtype=tf.float32), [2, 2, 2, 2, 2])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(globalMaxPool3D(x))
// print(tape.gradient(y, x))
// ```
XCTAssertEqual(
computedGradient.0,
[
[
[
[[0.0, 0.0], [0.0, 0.0]],
[[0.0, 0.0], [0.0, 0.0]],
],
[
[[0.0, 0.0], [0.0, 0.0]],
[[0.0, 0.0], [1.0, 1.0]],
],
],
[
[
[[0.0, 0.0], [0.0, 0.0]],
[[0.0, 0.0], [0.0, 0.0]],
],
[
[[0.0, 0.0], [0.0, 0.0]],
[[0.0, 0.0], [1.0, 1.0]],
],
],
])
}
func testFractionalMaxPool2D() {
let layer = FractionalMaxPool2D<Float>(poolingRatio: (1.4, 1.5), pseudoRandom: false)
let input = Tensor(shape: [1, 2, 2, 1], scalars: (0..<4).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[[[3]]]])
XCTAssertEqual(output, expected)
}
func testFractionalMaxPool2DGradient() {
let layer = FractionalMaxPool2D<Float>(poolingRatio: (1.4, 1.5), pseudoRandom: false)
let x = Tensor(shape: [1, 2, 2, 1], scalars: (0..<4).map(Float.init))
let computedGradient = gradient(at: x, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// x = tf.reshape(tf.range(4, dtype=tf.float32), [1, 2, 2, 1])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(tf.nn.fractional_max_pool(x, pooling_ratio=[1, 1.4, 1.5, 1], pseudo_random=False)[0])
// print(tape.gradient(y, x))
// ```
let expectedGradient = Tensor<Float>([
[
[
[0.0],
[0.0],
],
[
[0.0],
[1.0],
],
]
])
XCTAssertEqual(computedGradient.0, expectedGradient)
}
func testUpSampling1D() {
let size = 6
let layer = UpSampling1D<Float>(size: size)
let input = Tensor<Float>(shape: [1, 10, 1], scalars: (0..<10).map(Float.init))
let output = layer.inferring(from: input)
let expected = TensorShape([1, input.shape[1] * size, 1])
XCTAssertEqual(output.shape, expected)
}
func testUpSampling1DGradient() {
let layer = UpSampling1D<Float>(size: 3)
let input = Tensor(shape: [2, 2, 2], scalars: (0..<8).map(Float.init))
let computedGradient = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// upSampling1D = tf.keras.layers.UpSampling1D(size = 3)
// x = tf.reshape(tf.range(8, dtype=tf.float32), [2, 2, 2])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(upSampling1D(x))
// print(tape.gradient(y, x))
// ```
XCTAssertEqual(
computedGradient.0,
[
[
[3.0, 3.0],
[3.0, 3.0],
],
[
[3.0, 3.0],
[3.0, 3.0],
],
])
}
func testUpSampling2D() {
let size = 6
let layer = UpSampling2D<Float>(size: size)
let input = Tensor<Float>(shape: [1, 3, 5, 1], scalars: (0..<15).map(Float.init))
let output = layer.inferring(from: input)
let expected = TensorShape([1, input.shape[1] * size, input.shape[2] * size, 1])
XCTAssertEqual(output.shape, expected)
}
func testUpSampling2DGradient() {
let layer = UpSampling2D<Float>(size: 3)
let input = Tensor(shape: [1, 3, 4, 2], scalars: (0..<24).map(Float.init))
let computedGradient = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// upSampling2D = tf.keras.layers.UpSampling2D(size = 3)
// x = tf.reshape(tf.range(24, dtype=tf.float32), [1, 3, 4, 2])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(upSampling2D(x))
// print(tape.gradient(y, x))
// ```
XCTAssertEqual(
computedGradient.0,
[
[
[[9.0, 9.0], [9.0, 9.0], [9.0, 9.0], [9.0, 9.0]],
[[9.0, 9.0], [9.0, 9.0], [9.0, 9.0], [9.0, 9.0]],
[[9.0, 9.0], [9.0, 9.0], [9.0, 9.0], [9.0, 9.0]],
]
])
}
func testUpSampling3D() {
let size = 6
let layer = UpSampling3D<Float>(size: size)
let input = Tensor<Float>(shape: [1, 4, 3, 2, 1], scalars: (0..<24).map(Float.init))
let output = layer.inferring(from: input)
let expected = TensorShape(
[1, input.shape[1] * size, input.shape[2] * size, input.shape[3] * size, 1])
XCTAssertEqual(output.shape, expected)
XCTAssertEqual(output.shape, expected)
}
func testUpSampling3DGradient() {
let layer = UpSampling3D<Float>(size: 3)
let input = Tensor(shape: [1, 2, 2, 2, 4], scalars: (0..<32).map(Float.init))
let computedGradient = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// upSampling3D = tf.keras.layers.UpSampling3D(size = 3)
// x = tf.reshape(tf.range(32, dtype=tf.float32), [1, 2, 2, 2, 4])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(upSampling3D(x))
// print(tape.gradient(y, x))
// ```
XCTAssertEqual(
computedGradient.0,
[
[
[
[[27.0, 27.0, 27.0, 27.0], [27.0, 27.0, 27.0, 27.0]],
[[27.0, 27.0, 27.0, 27.0], [27.0, 27.0, 27.0, 27.0]],
],
[
[[27.0, 27.0, 27.0, 27.0], [27.0, 27.0, 27.0, 27.0]],
[[27.0, 27.0, 27.0, 27.0], [27.0, 27.0, 27.0, 27.0]],
],
]
])
}
func testReshape() {
let layer = Reshape<Float>(shape: [10, 2, 1])
let input = Tensor(shape: [20, 1], scalars: (0..<20).map(Float.init))
let output = layer.inferring(from: input)
let expected = TensorShape([10, 2, 1])
XCTAssertEqual(output.shape, expected)
}
func testReshapeGradient() {
let layer = Reshape<Float>(shape: [10, 2, 1])
let input = Tensor(shape: [1, 5, 4], scalars: (0..<20).map(Float.init))
let computedGradient = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// reshape = tf.keras.layers.Reshape(target_shape = (10, 2, 1))
// x = tf.reshape(tf.range(20, dtype=tf.float32), [1, 5, 4])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(reshape(x))
// print(tape.gradient(y, x))
// ```
XCTAssertEqual(
computedGradient.0,
[
[
[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0],
]
])
}
func testFlatten() {
let layer = Flatten<Float>()
let input = Tensor(shape: [10, 2, 2], scalars: (0..<40).map(Float.init))
let output = layer.inferring(from: input)
let expected = TensorShape([10, 4])
XCTAssertEqual(output.shape, expected)
}
func testFlattenGradient() {
let layer = Flatten<Float>()
let input = Tensor(shape: [1, 4, 4], scalars: (0..<16).map(Float.init))
let computedGradient = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// flatten = tf.keras.layers.Flatten()
// x = tf.reshape(tf.range(16, dtype=tf.float32), [1, 4, 4])
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = tf.math.reduce_sum(flatten(x))
// print(tape.gradient(y, x))
// ```
XCTAssertEqual(
computedGradient.0,
[
[
[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0],
]
])
}
func testEmbedding() {
var layer = Embedding<Float>(vocabularySize: 3, embeddingSize: 5)
var input = Tensor<Int32>(shape: [2, 3], scalars: [0, 1, 2, 1, 2, 2])
var output = layer(input)
let expectedShape = TensorShape([2, 3, 5])
XCTAssertEqual(output.shape, expectedShape)
let pretrained = Tensor<Float>(shape: [2, 2], scalars: [0.4, 0.3, 0.2, 0.1])
layer = Embedding<Float>(embeddings: pretrained)
input = Tensor<Int32>(shape: [2, 2], scalars: [0, 1, 1, 1])
output = layer(input)
let expected = Tensor<Float>([[[0.4, 0.3], [0.2, 0.1]], [[0.2, 0.1], [0.2, 0.1]]])
XCTAssertEqual(output, expected)
}
func testEmbeddingGradient() {
let embeddings = Tensor<Float>([
[0.0, 0.2, 0.1],
[0.1, 0.7, 0.5],
[0.2, 0.4, 0.6],
[0.3, 0.2, 0.3],
])
let layer = Embedding<Float>(embeddings: embeddings)
let indices = Tensor<Int32>(shape: [2, 3], scalars: [0, 1, 2, 1, 2, 2])
let grad = gradient(at: layer) { $0(indices).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// import tensorflow as tf
// indices = tf.constant([0, 1, 2, 1, 2, 2], dtype=tf.int32)
// embeddings = tf.constant([
// [0.0, 0.2, 0.1],
// [0.1, 0.7, 0.5],
// [0.2, 0.4, 0.6],
// [0.3, 0.2, 0.3]])
// layer = tf.keras.layers.Embedding(4, 3, weights=[embeddings])
// with tf.GradientTape() as tape:
// tape.watch(layer.weights)
// y = tf.reduce_sum(layer(indices))
// grad_slice = tape.gradient(y, layer.weights)[0] # IndexedSlice
// grad = tf.zeros_like(embeddings).numpy()
// for index in grad_slice.indices:
// grad[index] += grad_slice.values[index].numpy()
// print(grad)
// ```
let expected = Tensor<Float>([
[1, 1, 1],
[2, 2, 2],
[3, 3, 3],
[0, 0, 0],
])
XCTAssertEqual(grad.embeddings, expected)
}
func testBasicRNNCell() {
#if !SR15884_WORKAROUND_1
let weight = Tensor<Float>(ones: [7, 5]) * Tensor<Float>([0.3333, 1, 0.3333, 1, 0.3333])
let bias = Tensor<Float>(ones: [5])
var cell = BasicRNNCell<Float>(inputSize: 2, hiddenSize: 5)
cell.weight = weight
cell.bias = bias
let state = Tensor<Float>(ones: [1, 5]) * Tensor<Float>([1, 0.2, 0.5, 2, 0.6])
let input = Tensor<Float>(ones: [1, 2]) * Tensor<Float>([0.3, 0.7])
let output = cell(input: input, state: state).state
let expected = Tensor<Float>([[0.9921227, 0.9999934, 0.9921227, 0.9999934, 0.9921227]])
assertEqual(output, expected, accuracy: 1e-6)
#endif
}
func testDense() {
let weight = Tensor<Float>(shape: [3, 2], scalars: (0..<6).map(Float.init))
let bias = Tensor<Float>([[1.0, 2.0]])
let layer = Dense<Float>(weight: weight, bias: bias, activation: identity)
let input = Tensor<Float>(shape: [1, 3], scalars: (0..<3).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>([[11.0, 15.0]])
XCTAssertEqual(output, expected)
XCTAssertFalse(layer.batched)
let layerNoBias = Dense<Float>(weight: weight, bias: nil, activation: identity)
let outputNoBias = layerNoBias.inferring(from: input)
let expectedNoBias = Tensor<Float>([[10.0, 13.0]])
XCTAssertEqual(outputNoBias, expectedNoBias)
XCTAssertFalse(layerNoBias.batched)
let weightBatched = Tensor<Float>(shape: [2, 2, 3], scalars: (0..<12).map(Float.init))
let biasBatched = Tensor<Float>([[1.0, 2.0, 3.0]])
let layerBatched = Dense<Float>(
weight: weightBatched,
bias: biasBatched,
activation: identity)
let inputBatched = Tensor<Float>(shape: [2, 2], scalars: (0..<4).map(Float.init))
let outputBatched = layerBatched.inferring(from: inputBatched)
let expectedBatched = Tensor<Float>([[4.0, 6.0, 8.0], [40.0, 46.0, 52.0]])
XCTAssertEqual(outputBatched, expectedBatched)
XCTAssertTrue(layerBatched.batched)
let layerBatchedNoBias = Dense<Float>(
weight: weightBatched,
bias: nil,
activation: identity)
let outputBatchedNoBias = layerBatchedNoBias.inferring(from: inputBatched)
let expectedBatchedNoBias = Tensor<Float>([[3.0, 4.0, 5.0], [39.0, 44.0, 49.0]])
XCTAssertEqual(outputBatchedNoBias, expectedBatchedNoBias)
XCTAssertTrue(layerBatchedNoBias.batched)
}
func testDenseGradient() {
let weight = Tensor<Float>(shape: [4, 8], scalars: (0..<32).map(Float.init))
let bias = Tensor<Float>(shape: [1, 8], scalars: (0..<8).map(Float.init))
// Test `Dense.init` derivative.
let denseInitPullback = pullback(at: weight) { weight in
Dense(weight: weight, bias: bias, activation: identity)
}
let weightGrad = denseInitPullback(.init(weight: Tensor(100), bias: Tensor(1)))
XCTAssertEqual(Tensor(100), weightGrad)
// Test `Dense.callAsFunction` derivative.
let layer = Dense<Float>(weight: weight, bias: bias, activation: identity)
let x = Tensor<Float>(shape: [2, 4], scalars: (0..<8).map(Float.init))
let grad = gradient(at: x, layer) { $1($0).squared().sum() }
let value = layer(x)
// The expected values and gradients were computed using the following Python code:
// ```
// import tensorflow as tf
// x = tf.reshape(tf.range(8, dtype=tf.float32), [2, 4])
// kernel_value = np.arange(32.0).reshape([4, 8])
// bias_value = np.arange(8.0)
// kernel_initializer = tf.compat.v2.constant_initializer(kernel_value)
// bias_initializer = tf.compat.v2.constant_initializer(bias_value)
// layer = tf.keras.layers.Dense(8,
// kernel_initializer=kernel_initializer,
// bias_initializer=bias_initializer)
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = layer(x)
// z = tf.math.reduce_sum(tf.math.square(y))
// print(y, tape.gradient(z, [x] + layer.trainable_variables))
// ```
assertEqual(
value,
[
[112.0, 119.0, 126.0, 133.0, 140.0, 147.0, 154.0, 161.0],
[304.0, 327.0, 350.0, 373.0, 396.0, 419.0, 442.0, 465.0],
],
accuracy: 1e-5)
assertEqual(
grad.0,
[
[8232.0, 25704.0, 43176.0, 60648.0],
[23464.0, 72680.0, 121896.0, 171112.0],
],
accuracy: 1e-5)
assertEqual(
grad.1.weight,
[
[2432.0, 2616.0, 2800.0, 2984.0, 3168.0, 3352.0, 3536.0, 3720.0],
[3264.0, 3508.0, 3752.0, 3996.0, 4240.0, 4484.0, 4728.0, 4972.0],
[4096.0, 4400.0, 4704.0, 5008.0, 5312.0, 5616.0, 5920.0, 6224.0],
[4928.0, 5292.0, 5656.0, 6020.0, 6384.0, 6748.0, 7112.0, 7476.0],
],
accuracy: 1e-5)
assertEqual(
grad.1.bias,
[[832.0, 892.0, 952.0, 1012.0, 1072.0, 1132.0, 1192.0, 1252.0]],
accuracy: 1e-5)
}
// TODO(TF-507): Remove references to `BasicRNNCell.State` after SR-10697 is fixed.
func testRNN() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/rnn.py".
// BEGIN GENERATED CODE
let kernel = Tensor<Float>(
[[-0.3603096,-0.5082418,0.06129855,0.106101096],
[-0.144324,0.5331736,-0.011734486,0.86278516],
[0.34075528,-0.64887196,0.36341316,0.28131205],
[0.12515205,-0.23425382,-0.1376664,0.22526532]]
)
let recurrentKernel = Tensor<Float>(
[[0.34720516,0.6280322,-0.6963875,-0.008289718],
[-0.057777617,-0.7034996,-0.6661205,0.240902],
[0.2612954,-0.2549268,-0.08859509,-0.9267621],
[-0.89879644,0.21372059,-0.25195017,-0.2881138]]
)
let bias = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.5279052,0.4159922,-0.02112794,0.6500738],
[-0.16088444,-0.8408272,0.36293703,-0.23294312],
[0.14004618,0.69427365,-0.637702,0.077886045],
[0.3410867,-0.85888004,-0.23541403,0.1133005]]]
)
let initialState = Tensor<Float>(
[[-0.71174276,-0.39879853,0.7789655,-0.1812765]]
)
let expectedSum = Tensor<Float>(
-2.2336872
)
let expectedStates = Tensor<Float>(
[[[0.33346513,-0.052190434,0.53956664,-0.30630472],
[0.6689981,-0.4655246,-0.004116005,-0.8075811],
[0.5551112,0.8539695,-0.19158833,0.5159598],
[-0.40981215,-0.53569716,-0.813944,-0.47423384]]]
)
let expectedFinalState = Tensor<Float>(
[[-0.40981215,-0.53569716,-0.813944,-0.47423384]]
)
let expectedGradKernel = Tensor<Float>(
[[0.41519257,0.5748159,-0.07927984,0.35657609],
[-0.8111099,-1.2970712,-1.4684451,-1.2794279],
[-0.30848962,0.060518686,0.65190136,0.2506955],
[-0.10142271,-0.49896276,-0.24145404,-0.19505012]]
)
let expectedGradRecurrentKernel = Tensor<Float>(
[[0.956356,0.9344623,0.03898424,0.2403388],
[0.63330317,0.9714962,0.5893948,1.1109966],
[-0.20000206,-0.56593496,0.32656404,-0.41654968],
[0.11153888,0.5413084,0.492511,0.9971381]]
)
let expectedGradBias = Tensor<Float>(
[1.2097166,0.09570068,0.3972284,-0.23335484]
)
let expectedGradX = Tensor<Float>(
[[[0.4343156,-0.67581093,0.29182205,0.0771346],
[-0.20495477,0.11982066,0.19146681,-0.14591387],
[-0.15502127,-0.69844127,-0.21601494,0.025262251],
[-0.5592608,0.92486906,0.16155839,0.06524551]]]
)
let expectedGradInitialState = Tensor<Float>(
[[-0.5194068,0.50558126,0.46355626,0.17153597]]
)
// END GENERATED CODE
withTensorLeakChecking {
var rnn = BasicRNN<Float>(
BasicRNNCell(inputSize: 4, hiddenSize: 4, seed: (0xFeed, 0xBeef))
)
rnn.cell.weight = Tensor(concatenating: [kernel, recurrentKernel])
rnn.cell.bias = bias
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialState = BasicRNNCell<Float>.State(initialState)
let outputs = rnn(
inputs,
initialState: initialState
)
assertEqual(
Tensor(concatenating: outputs.map { $0 }),
expectedStates,
accuracy: 1e-6)
assertEqual(
outputs.last!,
expectedFinalState,
accuracy: 1e-6)
let (outputSum, (gradRNN, gradInputs, gradInitialState)) =
valueWithGradient(at: rnn, inputs, initialState) { rnn, inputs, initialState in
rnn.lastOutput(
from: inputs,
initialState: initialState
).sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradRNN.cell.weight,
Tensor(concatenating: [expectedGradKernel, expectedGradRecurrentKernel]),
accuracy: 1e-6)
assertEqual(
gradRNN.cell.bias,
expectedGradBias,
accuracy: 1e-6)
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialState,
expectedGradInitialState,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalBasicRNNSumMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_rnn.py --merge-mode sum".
// BEGIN GENERATED CODE
let kernelForward = Tensor<Float>(
[[-0.3603096,-0.5082418,0.06129855,0.106101096],
[-0.144324,0.5331736,-0.011734486,0.86278516],
[0.34075528,-0.64887196,0.36341316,0.28131205],
[0.12515205,-0.23425382,-0.1376664,0.22526532]]
)
let recurrentKernelForward = Tensor<Float>(
[[0.34720516,0.6280322,-0.6963875,-0.008289718],
[-0.057777617,-0.7034996,-0.6661205,0.240902],
[0.2612954,-0.2549268,-0.08859509,-0.9267621],
[-0.89879644,0.21372059,-0.25195017,-0.2881138]]
)
let biasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let kernelBackward = Tensor<Float>(
[[-0.5279052,0.4159922,-0.02112794,0.6500738],
[-0.16088444,-0.8408272,0.36293703,-0.23294312],
[0.14004618,0.69427365,-0.637702,0.077886045],
[0.3410867,-0.85888004,-0.23541403,0.1133005]]
)
let recurrentKernelBackward = Tensor<Float>(
[[0.67490876,-0.05608359,0.44851846,0.58325285],
[0.6672334,0.4354152,-0.21524309,-0.56469786],
[0.027053772,-0.4727077,0.6594652,-0.5838845],
[-0.31395176,0.7640783,0.5635665,0.003379479]]
)
let biasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.8425845,-0.7054219,-0.023461938,0.35520858],
[-0.24800867,0.09574294,0.3316267,-0.13671225],
[-0.5058244,-0.6568735,-0.31837505,-0.7905574],
[-0.50511885,0.50999504,0.74102694,0.12891835]]]
)
let initialForwardLayerState = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialBackwardLayerState = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let expectedSum = Tensor<Float>(
-1.3748394
)
let expectedStates = Tensor<Float>(
[[[0.039731443,0.30118462,-1.1362883,-0.6404417],
[-0.36877188,0.23013103,0.053439736,0.29040766],
[-0.7231241,0.4473409,-0.46913218,-0.64710104],
[0.41570857,-1.500107,-0.20221666,-0.08822429]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those two and test it.
// let expectedFinalStateForward = Tensor<Float>(
// [[0.8125853,-0.5553411,0.27422628,0.73577887]]
// )
// let expectedFinalStateBackward = Tensor<Float>(
// [[0.7070243,0.29404274,-0.76932997,-0.51012546]]
// )
let expectedGradKernelForward = Tensor<Float>(
[[-0.25060007,0.44844362,0.017417982,-0.39773455],
[0.08897984,1.4653344,1.0778612,0.13088357],
[0.23334727,1.066688,0.9485493,0.37866586],
[0.20101692,0.36850378,0.45986187,0.18827611]]
)
let expectedGradRecurrentKernelForward = Tensor<Float>(
[[-0.016110066,-0.50083566,-0.22681743,-0.17596911],
[0.24926353,0.33903763,0.51411784,0.3097041],
[-0.12677985,-0.19154882,-0.1418991,-0.20690772],
[-0.14268747,-1.8729569,-1.4547974,-0.23180081]]
)
let expectedGradBiasForward = Tensor<Float>(
[0.3045485,0.011022985,0.25799057,0.6699498]
)
let expectedGradKernelBackward = Tensor<Float>(
[[-0.42555702,-0.054258525,-0.39045796,-0.16215265],
[0.42966515,0.054782312,0.39422727,0.163718],
[0.624307,0.07959915,0.5728154,0.23788358],
[0.10861228,0.013848067,0.09965416,0.041385215]]
)
let expectedGradRecurrentKernelBackward = Tensor<Float>(
[[-0.82486856,-0.10517075,-0.7568351,-0.31430483],
[-0.5736132,-0.07313569,-0.52630275,-0.21856743],
[0.87171334,0.11114346,0.79981625,0.3321544],
[-0.8984336,-0.1145503,-0.82433265,-0.3423358]]
)
let expectedGradBiasBackward = Tensor<Float>(
[0.8424889,0.107417345,0.77300215,0.32101882]
)
let expectedGradX = Tensor<Float>(
[[[0.29702687,-0.20684643,0.48203292,0.27731684],
[-0.36015642,0.51716775,-0.49674046,-0.22718005],
[0.40323955,-0.47796234,0.2614523,0.24429059],
[-0.5762627,0.6844691,-0.14327642,-0.093995675]]]
)
let expectedGradInitialStateForward = Tensor<Float>(
[[-0.18421142,0.7250765,0.04656464,-0.31281057]]
)
let expectedGradInitialStateBackward = Tensor<Float>(
[[1.0965196,0.26124585,0.29434562,0.2542974]]
)
// END GENERATED CODE
withTensorLeakChecking {
var rnn = BidirectionalBasicRNN<Float>(
BasicRNNCell(inputSize: 4, hiddenSize: 4),
mergeFunction: BasicRNNCell<Float>.State.sum
)
rnn.forward.cell.weight = Tensor(concatenating: [kernelForward, recurrentKernelForward])
rnn.forward.cell.bias = biasForward
rnn.backward.cell.weight = Tensor(concatenating: [kernelBackward, recurrentKernelBackward])
rnn.backward.cell.bias = biasBackward
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = BasicRNNCell<Float>.State(initialForwardLayerState)
let initialBackwardLayerState = BasicRNNCell<Float>.State(initialBackwardLayerState)
let outputs = rnn(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
)
assertEqual(
Tensor(concatenating: outputs),
expectedStates,
accuracy: 1e-6)
let (outputSum, (gradRNN)) =
valueWithGradient(at: rnn) { rnn in
rnn.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradRNN.forward.cell.weight,
Tensor(concatenating: [expectedGradKernelForward, expectedGradRecurrentKernelForward]),
accuracy: 1e-6)
assertEqual(
gradRNN.forward.cell.bias,
expectedGradBiasForward,
accuracy: 1e-6)
assertEqual(
gradRNN.backward.cell.weight,
Tensor(concatenating: [expectedGradKernelBackward, expectedGradRecurrentKernelBackward]),
accuracy: 1e-6)
assertEqual(
gradRNN.backward.cell.bias,
expectedGradBiasBackward,
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
rnn.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward,
expectedGradInitialStateForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward,
expectedGradInitialStateBackward,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalBasicRNNConcatenateMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_rnn.py --merge-mode concat".
// BEGIN GENERATED CODE
let kernelForward = Tensor<Float>(
[[-0.3603096,-0.5082418,0.06129855,0.106101096],
[-0.144324,0.5331736,-0.011734486,0.86278516],
[0.34075528,-0.64887196,0.36341316,0.28131205],
[0.12515205,-0.23425382,-0.1376664,0.22526532]]
)
let recurrentKernelForward = Tensor<Float>(
[[0.34720516,0.6280322,-0.6963875,-0.008289718],
[-0.057777617,-0.7034996,-0.6661205,0.240902],
[0.2612954,-0.2549268,-0.08859509,-0.9267621],
[-0.89879644,0.21372059,-0.25195017,-0.2881138]]
)
let biasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let kernelBackward = Tensor<Float>(
[[-0.5279052,0.4159922,-0.02112794,0.6500738],
[-0.16088444,-0.8408272,0.36293703,-0.23294312],
[0.14004618,0.69427365,-0.637702,0.077886045],
[0.3410867,-0.85888004,-0.23541403,0.1133005]]
)
let recurrentKernelBackward = Tensor<Float>(
[[0.67490876,-0.05608359,0.44851846,0.58325285],
[0.6672334,0.4354152,-0.21524309,-0.56469786],
[0.027053772,-0.4727077,0.6594652,-0.5838845],
[-0.31395176,0.7640783,0.5635665,0.003379479]]
)
let biasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.8425845,-0.7054219,-0.023461938,0.35520858],
[-0.24800867,0.09574294,0.3316267,-0.13671225],
[-0.5058244,-0.6568735,-0.31837505,-0.7905574],
[-0.50511885,0.50999504,0.74102694,0.12891835]]]
)
let initialForwardLayerState = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialBackwardLayerState = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let expectedSum = Tensor<Float>(
-1.3748394
)
let expectedStates = Tensor<Float>(
[[[-0.66729283,0.007141886,-0.36695832,-0.13031624,0.7070243,0.29404274,
-0.76932997,-0.51012546],
[-0.03940088,-0.34914643,0.57051975,0.46499598,-0.329371,0.57927746,
-0.51708,-0.17458834],
[-0.19038993,0.44098023,0.062064223,-0.9267066,-0.53273416,
0.0063606827,-0.5311964,0.27960557],
[0.8125853,-0.5553411,0.27422628,0.73577887,-0.39687672,-0.9447659,
-0.47644293,-0.82400316]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those two and test it.
// let expectedFinalStateForward = Tensor<Float>(
// [[0.8125853,-0.5553411,0.27422628,0.73577887]]
// )
// let expectedFinalStateBackward = Tensor<Float>(
// [[0.7070243,0.29404274,-0.76932997,-0.51012546]]
// )
let expectedGradKernelForward = Tensor<Float>(
[[-0.25060007,0.44844362,0.017417982,-0.39773455],
[0.08897984,1.4653344,1.0778612,0.13088357],
[0.23334727,1.066688,0.9485493,0.37866586],
[0.20101692,0.36850378,0.45986187,0.18827611]]
)
let expectedGradRecurrentKernelForward = Tensor<Float>(
[[-0.016110066,-0.50083566,-0.22681743,-0.17596911],
[0.24926353,0.33903763,0.51411784,0.3097041],
[-0.12677985,-0.19154882,-0.1418991,-0.20690772],
[-0.14268747,-1.8729569,-1.4547974,-0.23180081]]
)
let expectedGradBiasForward = Tensor<Float>(
[0.3045485,0.011022985,0.25799057,0.6699498]
)
let expectedGradKernelBackward = Tensor<Float>(
[[-0.42555702,-0.054258525,-0.39045796,-0.16215265],
[0.42966515,0.054782312,0.39422727,0.163718],
[0.624307,0.07959915,0.5728154,0.23788358],
[0.10861228,0.013848067,0.09965416,0.041385215]]
)
let expectedGradRecurrentKernelBackward = Tensor<Float>(
[[-0.82486856,-0.10517075,-0.7568351,-0.31430483],
[-0.5736132,-0.07313569,-0.52630275,-0.21856743],
[0.87171334,0.11114346,0.79981625,0.3321544],
[-0.8984336,-0.1145503,-0.82433265,-0.3423358]]
)
let expectedGradBiasBackward = Tensor<Float>(
[0.8424889,0.107417345,0.77300215,0.32101882]
)
let expectedGradX = Tensor<Float>(
[[[0.29702687,-0.20684643,0.48203292,0.27731684],
[-0.36015642,0.51716775,-0.49674046,-0.22718005],
[0.40323955,-0.47796234,0.2614523,0.24429059],
[-0.5762627,0.6844691,-0.14327642,-0.093995675]]]
)
let expectedGradInitialStateForward = Tensor<Float>(
[[-0.18421142,0.7250765,0.04656464,-0.31281057]]
)
let expectedGradInitialStateBackward = Tensor<Float>(
[[1.0965196,0.26124585,0.29434562,0.2542974]]
)
// END GENERATED CODE
withTensorLeakChecking {
var rnn = BidirectionalBasicRNN<Float>(
BasicRNNCell(inputSize: 4, hiddenSize: 4)
)
rnn.forward.cell.weight = Tensor(concatenating: [kernelForward, recurrentKernelForward])
rnn.forward.cell.bias = biasForward
rnn.backward.cell.weight = Tensor(concatenating: [kernelBackward, recurrentKernelBackward])
rnn.backward.cell.bias = biasBackward
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = BasicRNNCell<Float>.State(initialForwardLayerState)
let initialBackwardLayerState = BasicRNNCell<Float>.State(initialBackwardLayerState)
let outputs = rnn(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
)
assertEqual(
Tensor(concatenating: outputs),
expectedStates,
accuracy: 1e-6)
let (outputSum, (gradRNN)) =
valueWithGradient(at: rnn) { rnn in
rnn.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradRNN.forward.cell.weight,
Tensor(concatenating: [expectedGradKernelForward, expectedGradRecurrentKernelForward]),
accuracy: 1e-6)
assertEqual(
gradRNN.forward.cell.bias,
expectedGradBiasForward,
accuracy: 1e-6)
assertEqual(
gradRNN.backward.cell.weight,
Tensor(concatenating: [expectedGradKernelBackward, expectedGradRecurrentKernelBackward]),
accuracy: 1e-6)
assertEqual(
gradRNN.backward.cell.bias,
expectedGradBiasBackward,
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
rnn.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward,
expectedGradInitialStateForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward,
expectedGradInitialStateBackward,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalBasicRNNAverageMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_rnn.py --merge-mode ave".
// BEGIN GENERATED CODE
let kernelForward = Tensor<Float>(
[[-0.3603096,-0.5082418,0.06129855,0.106101096],
[-0.144324,0.5331736,-0.011734486,0.86278516],
[0.34075528,-0.64887196,0.36341316,0.28131205],
[0.12515205,-0.23425382,-0.1376664,0.22526532]]
)
let recurrentKernelForward = Tensor<Float>(
[[0.34720516,0.6280322,-0.6963875,-0.008289718],
[-0.057777617,-0.7034996,-0.6661205,0.240902],
[0.2612954,-0.2549268,-0.08859509,-0.9267621],
[-0.89879644,0.21372059,-0.25195017,-0.2881138]]
)
let biasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let kernelBackward = Tensor<Float>(
[[-0.5279052,0.4159922,-0.02112794,0.6500738],
[-0.16088444,-0.8408272,0.36293703,-0.23294312],
[0.14004618,0.69427365,-0.637702,0.077886045],
[0.3410867,-0.85888004,-0.23541403,0.1133005]]
)
let recurrentKernelBackward = Tensor<Float>(
[[0.67490876,-0.05608359,0.44851846,0.58325285],
[0.6672334,0.4354152,-0.21524309,-0.56469786],
[0.027053772,-0.4727077,0.6594652,-0.5838845],
[-0.31395176,0.7640783,0.5635665,0.003379479]]
)
let biasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.8425845,-0.7054219,-0.023461938,0.35520858],
[-0.24800867,0.09574294,0.3316267,-0.13671225],
[-0.5058244,-0.6568735,-0.31837505,-0.7905574],
[-0.50511885,0.50999504,0.74102694,0.12891835]]]
)
let initialForwardLayerState = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialBackwardLayerState = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let expectedSum = Tensor<Float>(
-0.6874197
)
let expectedStates = Tensor<Float>(
[[[0.019865721,0.15059231,-0.56814414,-0.32022086],
[-0.18438594,0.115065515,0.026719868,0.14520383],
[-0.36156204,0.22367045,-0.23456609,-0.32355052],
[0.20785429,-0.7500535,-0.10110833,-0.044112146]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those two and test it.
// let expectedFinalStateForward = Tensor<Float>(
// [[0.8125853,-0.5553411,0.27422628,0.73577887]]
// )
// let expectedFinalStateBackward = Tensor<Float>(
// [[0.7070243,0.29404274,-0.76932997,-0.51012546]]
// )
let expectedGradKernelForward = Tensor<Float>(
[[-0.12530003,0.22422181,0.008708991,-0.19886728],
[0.04448992,0.7326672,0.5389306,0.06544179],
[0.11667363,0.533344,0.47427464,0.18933293],
[0.10050846,0.18425189,0.22993094,0.094138056]]
)
let expectedGradRecurrentKernelForward = Tensor<Float>(
[[-0.008055033,-0.25041783,-0.113408715,-0.087984554],
[0.12463176,0.16951881,0.25705892,0.15485205],
[-0.06338993,-0.09577441,-0.07094955,-0.10345386],
[-0.071343735,-0.93647844,-0.7273987,-0.115900405]]
)
let expectedGradBiasForward = Tensor<Float>(
[0.15227425,0.0055114925,0.12899528,0.3349749]
)
let expectedGradKernelBackward = Tensor<Float>(
[[-0.21277851,-0.027129263,-0.19522898,-0.081076324],
[0.21483257,0.027391156,0.19711363,0.081859],
[0.3121535,0.039799575,0.2864077,0.11894179],
[0.05430614,0.0069240336,0.04982708,0.020692607]]
)
let expectedGradRecurrentKernelBackward = Tensor<Float>(
[[-0.41243428,-0.052585375,-0.37841755,-0.15715241],
[-0.2868066,-0.036567844,-0.26315138,-0.109283715],
[0.43585667,0.05557173,0.39990813,0.1660772],
[-0.4492168,-0.05727515,-0.41216633,-0.1711679]]
)
let expectedGradBiasBackward = Tensor<Float>(
[0.42124444,0.053708673,0.38650107,0.16050941]
)
let expectedGradX = Tensor<Float>(
[[[0.14851344,-0.103423215,0.24101646,0.13865842],
[-0.18007821,0.25858387,-0.24837023,-0.113590024],
[0.20161977,-0.23898117,0.13072614,0.122145295],
[-0.28813136,0.34223455,-0.07163821,-0.046997838]]]
)
let expectedGradInitialStateForward = Tensor<Float>(
[[-0.09210571,0.36253825,0.02328232,-0.15640529]]
)
let expectedGradInitialStateBackward = Tensor<Float>(
[[0.5482598,0.13062292,0.14717281,0.1271487]]
)
// END GENERATED CODE
withTensorLeakChecking {
var rnn = BidirectionalBasicRNN<Float>(
BasicRNNCell(inputSize: 4, hiddenSize: 4),
mergeFunction: BasicRNNCell<Float>.State.average
)
rnn.forward.cell.weight = Tensor(concatenating: [kernelForward, recurrentKernelForward])
rnn.forward.cell.bias = biasForward
rnn.backward.cell.weight = Tensor(concatenating: [kernelBackward, recurrentKernelBackward])
rnn.backward.cell.bias = biasBackward
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = BasicRNNCell<Float>.State(initialForwardLayerState)
let initialBackwardLayerState = BasicRNNCell<Float>.State(initialBackwardLayerState)
let outputs = rnn(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
)
assertEqual(
Tensor(concatenating: outputs),
expectedStates,
accuracy: 1e-6)
let (outputSum, (gradRNN)) =
valueWithGradient(at: rnn) { rnn in
rnn.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradRNN.forward.cell.weight,
Tensor(concatenating: [expectedGradKernelForward, expectedGradRecurrentKernelForward]),
accuracy: 1e-6)
assertEqual(
gradRNN.forward.cell.bias,
expectedGradBiasForward,
accuracy: 1e-6)
assertEqual(
gradRNN.backward.cell.weight,
Tensor(concatenating: [expectedGradKernelBackward, expectedGradRecurrentKernelBackward]),
accuracy: 1e-6)
assertEqual(
gradRNN.backward.cell.bias,
expectedGradBiasBackward,
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
rnn.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward,
expectedGradInitialStateForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward,
expectedGradInitialStateBackward,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalBasicRNNMultiplyMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_rnn.py --merge-mode mul".
// BEGIN GENERATED CODE
let kernelForward = Tensor<Float>(
[[-0.3603096,-0.5082418,0.06129855,0.106101096],
[-0.144324,0.5331736,-0.011734486,0.86278516],
[0.34075528,-0.64887196,0.36341316,0.28131205],
[0.12515205,-0.23425382,-0.1376664,0.22526532]]
)
let recurrentKernelForward = Tensor<Float>(
[[0.34720516,0.6280322,-0.6963875,-0.008289718],
[-0.057777617,-0.7034996,-0.6661205,0.240902],
[0.2612954,-0.2549268,-0.08859509,-0.9267621],
[-0.89879644,0.21372059,-0.25195017,-0.2881138]]
)
let biasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let kernelBackward = Tensor<Float>(
[[-0.5279052,0.4159922,-0.02112794,0.6500738],
[-0.16088444,-0.8408272,0.36293703,-0.23294312],
[0.14004618,0.69427365,-0.637702,0.077886045],
[0.3410867,-0.85888004,-0.23541403,0.1133005]]
)
let recurrentKernelBackward = Tensor<Float>(
[[0.67490876,-0.05608359,0.44851846,0.58325285],
[0.6672334,0.4354152,-0.21524309,-0.56469786],
[0.027053772,-0.4727077,0.6594652,-0.5838845],
[-0.31395176,0.7640783,0.5635665,0.003379479]]
)
let biasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.8425845,-0.7054219,-0.023461938,0.35520858],
[-0.24800867,0.09574294,0.3316267,-0.13671225],
[-0.5058244,-0.6568735,-0.31837505,-0.7905574],
[-0.50511885,0.50999504,0.74102694,0.12891835]]]
)
let initialForwardLayerState = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialBackwardLayerState = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let expectedSum = Tensor<Float>(
-0.5347661
)
let expectedStates = Tensor<Float>(
[[[-0.47179222,0.0021000197,0.28231204,0.066477634],
[0.012977507,-0.20225266,-0.29500437,-0.081182875],
[0.10142722,0.0028049352,-0.032968294,-0.25911233],
[-0.32249618,0.5246674,-0.13065317,-0.60628414]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those two and test it.
// let expectedFinalStateForward = Tensor<Float>(
// [[0.8125853,-0.5553411,0.27422628,0.73577887]]
// )
// let expectedFinalStateBackward = Tensor<Float>(
// [[0.7070243,0.29404274,-0.76932997,-0.51012546]]
// )
let expectedGradKernelForward = Tensor<Float>(
[[0.29835904,-0.271358,-0.056388527,0.19803399],
[0.13539863,-1.1518296,-0.62982273,-0.16866776],
[-0.07457287,-0.876209,-0.54846895,-0.26091105],
[0.045224264,-0.22196792,-0.41959473,-0.09994551]]
)
let expectedGradRecurrentKernelForward = Tensor<Float>(
[[0.11663125,0.39018548,0.1591308,0.027596578],
[-0.071245454,-0.27228498,-0.3515284,-0.19403662],
[0.06461461,0.05803746,0.27710906,0.00072359666],
[-0.108036324,1.5429575,0.7437697,0.30051786]]
)
let expectedGradBiasForward = Tensor<Float>(
[-0.51533103,-0.16392553,-0.019812264,-0.31751463]
)
let expectedGradKernelBackward = Tensor<Float>(
[[-0.34580138,0.030131992,-0.10707383,-0.119308494],
[0.3491396,-0.030422872,0.10810747,0.12046025],
[0.50730264,-0.044204682,0.15708104,0.17502971],
[0.08825674,-0.0076904013,0.027327789,0.030450366]]
)
let expectedGradRecurrentKernelBackward = Tensor<Float>(
[[-0.67027605,0.058405645,-0.20754407,-0.23125885],
[-0.46610966,0.040615257,-0.14432605,-0.1608173],
[0.7083415,-0.06172254,0.21933062,0.24439217],
[-0.73005396,0.063614495,-0.22605367,-0.25188342]]
)
let expectedGradBiasBackward = Tensor<Float>(
[0.6845941,-0.05965327,0.2119775,0.23619886]
)
let expectedGradX = Tensor<Float>(
[[[-0.23223981,0.2862338,-0.41787457,-0.17583233],
[0.34112248,-0.2498242,0.34255287,0.17837948],
[-0.18834808,0.32665232,-0.20202757,-0.20915407],
[0.07640687,-0.68787134,0.049270652,0.37331474]]]
)
let expectedGradInitialStateForward = Tensor<Float>(
[[0.25459114,-0.45141447,-0.14997824,0.26960957]]
)
let expectedGradInitialStateBackward = Tensor<Float>(
[[0.6982236,0.25180238,0.048598364,-0.14024764]]
)
// END GENERATED CODE
withTensorLeakChecking {
var rnn = BidirectionalBasicRNN<Float>(
BasicRNNCell(inputSize: 4, hiddenSize: 4),
mergeFunction: BasicRNNCell<Float>.State.multiply
)
rnn.forward.cell.weight = Tensor(concatenating: [kernelForward, recurrentKernelForward])
rnn.forward.cell.bias = biasForward
rnn.backward.cell.weight = Tensor(concatenating: [kernelBackward, recurrentKernelBackward])
rnn.backward.cell.bias = biasBackward
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = BasicRNNCell<Float>.State(initialForwardLayerState)
let initialBackwardLayerState = BasicRNNCell<Float>.State(initialBackwardLayerState)
let outputs = rnn(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
)
assertEqual(
Tensor(concatenating: outputs),
expectedStates,
accuracy: 1e-6)
let (outputSum, (gradRNN)) =
valueWithGradient(at: rnn) { rnn in
rnn.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradRNN.forward.cell.weight,
Tensor(concatenating: [expectedGradKernelForward, expectedGradRecurrentKernelForward]),
accuracy: 1e-6)
assertEqual(
gradRNN.forward.cell.bias,
expectedGradBiasForward,
accuracy: 1e-6)
assertEqual(
gradRNN.backward.cell.weight,
Tensor(concatenating: [expectedGradKernelBackward, expectedGradRecurrentKernelBackward]),
accuracy: 1e-6)
assertEqual(
gradRNN.backward.cell.bias,
expectedGradBiasBackward,
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
rnn.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward,
expectedGradInitialStateForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward,
expectedGradInitialStateBackward,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalBasicRNNStackMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_rnn.py --merge-mode none".
// BEGIN GENERATED CODE
let kernelForward = Tensor<Float>(
[[-0.3603096,-0.5082418,0.06129855,0.106101096],
[-0.144324,0.5331736,-0.011734486,0.86278516],
[0.34075528,-0.64887196,0.36341316,0.28131205],
[0.12515205,-0.23425382,-0.1376664,0.22526532]]
)
let recurrentKernelForward = Tensor<Float>(
[[0.34720516,0.6280322,-0.6963875,-0.008289718],
[-0.057777617,-0.7034996,-0.6661205,0.240902],
[0.2612954,-0.2549268,-0.08859509,-0.9267621],
[-0.89879644,0.21372059,-0.25195017,-0.2881138]]
)
let biasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let kernelBackward = Tensor<Float>(
[[-0.5279052,0.4159922,-0.02112794,0.6500738],
[-0.16088444,-0.8408272,0.36293703,-0.23294312],
[0.14004618,0.69427365,-0.637702,0.077886045],
[0.3410867,-0.85888004,-0.23541403,0.1133005]]
)
let recurrentKernelBackward = Tensor<Float>(
[[0.67490876,-0.05608359,0.44851846,0.58325285],
[0.6672334,0.4354152,-0.21524309,-0.56469786],
[0.027053772,-0.4727077,0.6594652,-0.5838845],
[-0.31395176,0.7640783,0.5635665,0.003379479]]
)
let biasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.8425845,-0.7054219,-0.023461938,0.35520858],
[-0.24800867,0.09574294,0.3316267,-0.13671225],
[-0.5058244,-0.6568735,-0.31837505,-0.7905574],
[-0.50511885,0.50999504,0.74102694,0.12891835]]]
)
let initialForwardLayerState = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialBackwardLayerState = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let expectedSum = Tensor<Float>(
-1.3748394
)
let expectedStatesForward = Tensor<Float>(
[[[-0.66729283,0.007141886,-0.36695832,-0.13031624],
[-0.03940088,-0.34914643,0.57051975,0.46499598],
[-0.19038993,0.44098023,0.062064223,-0.9267066],
[0.8125853,-0.5553411,0.27422628,0.73577887]]]
)
let expectedStatesBackward = Tensor<Float>(
[[[0.7070243,0.29404274,-0.76932997,-0.51012546],
[-0.329371,0.57927746,-0.51708,-0.17458834],
[-0.53273416,0.0063606827,-0.5311964,0.27960557],
[-0.39687672,-0.9447659,-0.47644293,-0.82400316]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those two and test it.
// let expectedFinalStateForward = Tensor<Float>(
// [[0.8125853,-0.5553411,0.27422628,0.73577887]]
// )
// let expectedFinalStateBackward = Tensor<Float>(
// [[0.7070243,0.29404274,-0.76932997,-0.51012546]]
// )
let expectedGradKernelForward = Tensor<Float>(
[[-0.25060007,0.44844362,0.017417982,-0.39773455],
[0.08897984,1.4653344,1.0778612,0.13088357],
[0.23334727,1.066688,0.9485493,0.37866586],
[0.20101692,0.36850378,0.45986187,0.18827611]]
)
let expectedGradRecurrentKernelForward = Tensor<Float>(
[[-0.016110066,-0.50083566,-0.22681743,-0.17596911],
[0.24926353,0.33903763,0.51411784,0.3097041],
[-0.12677985,-0.19154882,-0.1418991,-0.20690772],
[-0.14268747,-1.8729569,-1.4547974,-0.23180081]]
)
let expectedGradBiasForward = Tensor<Float>(
[0.3045485,0.011022985,0.25799057,0.6699498]
)
let expectedGradKernelBackward = Tensor<Float>(
[[-0.42555702,-0.054258525,-0.39045796,-0.16215265],
[0.42966515,0.054782312,0.39422727,0.163718],
[0.624307,0.07959915,0.5728154,0.23788358],
[0.10861228,0.013848067,0.09965416,0.041385215]]
)
let expectedGradRecurrentKernelBackward = Tensor<Float>(
[[-0.82486856,-0.10517075,-0.7568351,-0.31430483],
[-0.5736132,-0.07313569,-0.52630275,-0.21856743],
[0.87171334,0.11114346,0.79981625,0.3321544],
[-0.8984336,-0.1145503,-0.82433265,-0.3423358]]
)
let expectedGradBiasBackward = Tensor<Float>(
[0.8424889,0.107417345,0.77300215,0.32101882]
)
let expectedGradX = Tensor<Float>(
[[[0.29702687,-0.20684643,0.48203292,0.27731684],
[-0.36015642,0.51716775,-0.49674046,-0.22718005],
[0.40323955,-0.47796234,0.2614523,0.24429059],
[-0.5762627,0.6844691,-0.14327642,-0.093995675]]]
)
let expectedGradInitialStateForward = Tensor<Float>(
[[-0.18421142,0.7250765,0.04656464,-0.31281057]]
)
let expectedGradInitialStateBackward = Tensor<Float>(
[[1.0965196,0.26124585,0.29434562,0.2542974]]
)
// END GENERATED CODE
withTensorLeakChecking {
var rnn = BidirectionalBasicRNN<Float>(
BasicRNNCell(inputSize: 4, hiddenSize: 4),
mergeFunction: BasicRNNCell<Float>.State.stack
)
rnn.forward.cell.weight = Tensor(concatenating: [kernelForward, recurrentKernelForward])
rnn.forward.cell.bias = biasForward
rnn.backward.cell.weight = Tensor(concatenating: [kernelBackward, recurrentKernelBackward])
rnn.backward.cell.bias = biasBackward
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = BasicRNNCell<Float>.State(initialForwardLayerState)
let initialBackwardLayerState = BasicRNNCell<Float>.State(initialBackwardLayerState)
let outputs = rnn(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).map { $0.unstacked(alongAxis: 0) }
assertEqual(
Tensor(concatenating: outputs.map { $0[0] }),
expectedStatesForward,
accuracy: 1e-6)
assertEqual(
Tensor(concatenating: outputs.map { $0[1] }),
expectedStatesBackward,
accuracy: 1e-6)
let (outputSum, (gradRNN)) =
valueWithGradient(at: rnn) { rnn in
rnn.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradRNN.forward.cell.weight,
Tensor(concatenating: [expectedGradKernelForward, expectedGradRecurrentKernelForward]),
accuracy: 1e-6)
assertEqual(
gradRNN.forward.cell.bias,
expectedGradBiasForward,
accuracy: 1e-6)
assertEqual(
gradRNN.backward.cell.weight,
Tensor(concatenating: [expectedGradKernelBackward, expectedGradRecurrentKernelBackward]),
accuracy: 1e-6)
assertEqual(
gradRNN.backward.cell.bias,
expectedGradBiasBackward,
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
rnn.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward,
expectedGradInitialStateForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward,
expectedGradInitialStateBackward,
accuracy: 1e-6)
}
#endif
}
func testLSTM() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/lstm.py".
// BEGIN GENERATED CODE
let kernel = Tensor<Float>(
[
[
0.4545238, 0.17410219, 0.07151973, -0.043370485, -0.08141422, -0.23986903,
0.2063713, 0.17585361, 0.4534099, -0.5096329, 0.2199418, -0.2149244,
0.23440659, 0.43826634, -0.13891399, -0.17842606,
],
[
-0.3797379, 0.079282284, -0.10015741, -0.3239718, -0.27132228, 0.39218837,
-0.43364745, -0.34852988, 0.2132551, -0.5461597, -0.048002183, 0.26265675,
-0.18781787, -0.41067505, -0.051611483, 0.4885484,
],
[
-0.06933203, 0.54473567, -0.21874839, -0.49106207, -0.071650594, -0.08455315,
0.5346174, 0.057993293, -0.13344201, -0.48908734, -0.058430463, -0.15182033,
0.03391558, 0.009597003, 0.273346, -0.49635035,
],
[
-0.07164055, 0.37893647, -0.108646095, 0.07596207, 0.31213146, -0.3623113,
-0.20532963, -0.302337, -0.26968825, 0.4479969, -0.085390985, 0.2579115,
0.2743805, -0.21505526, -0.31751555, -0.44200268,
],
]
)
let recurrentKernel = Tensor<Float>(
[
[
0.001444459, -0.44615534, 0.17120321, 0.028076064, -0.36675194, -0.37769908,
-0.038331404, -0.3308463, 0.18919824, 0.21540813, 0.21875387, -0.17696984,
0.24726436, -0.2989273, 0.26229933, 0.045673575,
],
[
-0.0060651056, -0.010614913, -0.41048288, -0.16720156, -0.042991478,
-0.034523666, -0.22591552, -0.46458426, -0.15950868, 0.0032770582,
0.02271657, 0.26582226, -0.38004795, 0.21254668, 0.35087258, 0.35231543,
],
[
-0.2352461, -0.12130469, -0.19648746, 0.29172993, 0.10191456, -0.2919168,
-0.1870388, 0.2183716, 0.34960067, -0.24624759, 0.3270614, 0.4467347,
0.11563631, 0.2551108, 0.06388308, -0.2366966,
],
[
-0.36797202, 0.21800567, -0.06400205, 0.43761855, 0.1086247, 0.3239568,
-0.23723324, -0.07836083, -0.10523385, 0.34244883, 0.11385839, -0.15765572,
0.42096126, 0.08826415, 0.10015068, 0.28478572,
],
]
)
let bias = Tensor<Float>(
[0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
)
let x = Tensor<Float>(
[
[
[-0.6346513, -0.43788078, -0.40050998, -0.35219777],
[-0.59232813, -0.728384, -0.22974151, 0.3288936],
[0.5766824, -0.5468713, 0.16438323, 0.6741958],
[-0.47952235, -0.24399251, 0.8553043, 0.8588342],
]
]
)
let initialStateHidden = Tensor<Float>(
[[0.9577427, -0.7377565, 0.35953724, -0.5784317]]
)
let initialStateCell = Tensor<Float>(
[[-0.905442, -0.95177335, -0.05345559, -1.0015926]]
)
let expectedStates = Tensor<Float>(
[
[
[-0.24107721, -0.17449945, 0.037506927, -0.30990827],
[-0.26881245, -0.00634476, -0.019400658, -0.2071909],
[-0.2842662, 0.032890536, -0.015112571, -0.13682269],
[-0.31182146, 0.08775673, -0.072591506, -0.07358349],
]
]
)
let expectedOutput = Tensor<Float>(
[[-0.7036462, 0.19863679, -0.14904207, -0.25543863]]
)
let expectedGradKernel = Tensor<Float>(
[
[
0.0805003, -0.08275342, 0.03522955, -0.030312482, 0.11720966, 0.07540316,
-0.0023639323, 0.10740622, -0.2532557, -0.16903767, -0.5353516, -0.3493193,
0.016285714, 0.008904671, -0.003577555, -0.006157878,
],
[
0.08940101, -0.095668815, 0.032129567, -0.013392258, 0.17761931, 0.071601115,
-0.000029361108, 0.17159097, -0.78527546, -0.5366851, -0.898436, -0.68411684,
0.05064467, 0.0044404613, 0.0010539321, 0.022477672,
],
[
-0.124524735, 0.014374042, -0.065310925, 0.04207304, -0.018112179,
0.054847445, -0.0053864224, -0.044751726, 0.12626463, 0.57195514, 0.0789956,
0.21590737, 0.010621901, 0.0052103405, -0.0023645863, -0.00021189498,
],
[
-0.1812453, 0.07054679, -0.08742681, 0.046577554, -0.10540785, 0.021182634,
-0.002338124, -0.14174302, 0.6233163, 0.88522494, 0.5829264, 0.6225763,
-0.026014743, 0.0054547004, -0.0054682456, -0.018445207,
],
]
)
let expectedGradRecurrentKernel = Tensor<Float>(
[
[
0.109804794, -0.006917909, 0.06479619, -0.02927, -0.07282017, -0.06949664,
-0.007851637, -0.0064141527, 0.01585731, -0.27055892, 0.18191284,
-0.036890596, 0.00081066974, -0.012041213, 0.008538903, 0.004745292,
],
[
-0.022427287, -0.037062988, -0.021642044, 0.009100201, 0.113654904,
0.07015832, 0.00417687, 0.073882714, -0.31279865, -0.057589047, -0.4670751,
-0.2540243, 0.019137694, 0.008957855, -0.004623856, 0.005064313,
],
[
0.015348908, 0.013859384, 0.012477149, -0.0050131185, -0.050523866,
-0.031698443, -0.0024695867, -0.0299116, 0.12353469, 0.012106655, 0.19668634,
0.0989304, -0.0068828184, -0.0043967483, 0.0024977797, -0.001459891,
],
[
0.024811182, -0.05493941, 0.0018467754, -0.001980858, 0.1320867, 0.06232968,
0.0034385736, 0.10646886, -0.46687102, -0.2663457, -0.5953469, -0.4029197,
0.02738668, 0.0066831633, -0.0024504992, 0.010666027,
],
]
)
let expectedGradBias = Tensor<Float>(
[
-0.2057409, 0.18275242, -0.07681093, 0.042995583, -0.3810982, -0.12361911,
-0.008955841, -0.3550135, 1.5545796, 1.3119538, 1.8124579, 1.4128002,
-0.08343395, -0.010454425, 0.0008502216, -0.038896702,
]
)
let expectedGradX = Tensor<Float>(
[
[
[0.21591075, 0.11293747, -0.13014226, -0.022586256],
[0.08480768, 0.13718912, -0.12702335, 0.077232406],
[0.01666388, 0.0068455637, -0.35854548, 0.1287557],
[-0.2761167, -0.088074416, -0.415294, 0.32159615],
]
]
)
let expectedGradInitialStateHidden = Tensor<Float>(
[[0.25400645, 0.07120966, 0.36865664, -0.05423181]]
)
let expectedGradInitialStateCell = Tensor<Float>(
[[0.48873883, 0.23135301, 0.6608742, 0.37556332]]
)
// END GENERATED CODE
// Swaps the columns corresponding to "forget" and "update" gates.
//
// This translates between the keras ordering
// [input | forget | update | output]
// and the swift-apis ordering
// [input | update | forget | output]
func swapForgetUpdate(_ t: Tensor<Float>) -> Tensor<Float> {
var split = t.split(count: 4, alongAxis: -1)
split.swapAt(1, 2)
return Tensor(concatenating: split, alongAxis: -1)
}
withTensorLeakChecking {
var lstm = LSTM<Float>(LSTMCell(inputSize: 4, hiddenSize: 4))
lstm.cell.fusedWeight =
swapForgetUpdate(Tensor(concatenating: [kernel, recurrentKernel]))
lstm.cell.fusedBias = swapForgetUpdate(bias)
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialState = LSTMCell<Float>.State(
cell: initialStateCell,
hidden: initialStateHidden)
let outputs = lstm(inputs, initialState: initialState)
assertEqual(
Tensor(concatenating: outputs.map { $0.hidden }),
expectedStates,
accuracy: 1e-6)
assertEqual(
outputs.last!.cell,
expectedOutput,
accuracy: 1e-6)
let (gradLSTM, gradInputs, gradInitialState) =
gradient(at: lstm, inputs, initialState) { lstm, inputs, initialState in
lstm.lastOutput(from: inputs, initialState: initialState).cell.sum()
}
assertEqual(
gradLSTM.cell.fusedWeight,
swapForgetUpdate(
Tensor(concatenating: [expectedGradKernel, expectedGradRecurrentKernel])),
accuracy: 1e-6)
assertEqual(
gradLSTM.cell.fusedBias,
swapForgetUpdate(expectedGradBias),
accuracy: 1e-6)
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialState.cell,
expectedGradInitialStateCell,
accuracy: 1e-6)
assertEqual(
gradInitialState.hidden,
expectedGradInitialStateHidden,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalLSTMSumMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_lstm.py --merge-mode sum".
// BEGIN GENERATED CODE
let kernelForward = Tensor<Float>(
[[-0.23379976,-0.32979083,0.03977573,0.06884748,-0.093649775,0.34596872,
-0.0076143146,0.55984896,0.22111118,-0.4210437,0.23581362,0.1825394,
0.08120936,-0.15200394,-0.08932975,0.14617139],
[0.4650857,0.18167573,0.37479192,-0.46759078,-0.24752906,-0.5445049,
0.2544219,0.29843968,0.20215267,0.03678304,0.28829694,-0.5086538,
-0.5053389,0.2829352,-0.36783904,-0.2113666],
[-0.23447555,-0.44898528,-0.3757536,0.3030774,0.096295714,0.541732,
0.46623164,-0.4027334,-0.45229727,0.119446635,-0.36198467,0.020288646,
0.5418573,-0.3643924,-0.5106659,0.10962713]]
)
let recurrentKernelForward = Tensor<Float>(
[[0.22804272,-0.03794806,0.17161758,-0.5903252,-0.32132986,-0.028507836,
-0.02729048,0.15502541,-0.29579595,0.041225288,-0.04219827,-0.22448958,
0.51597697,-0.103077516,0.005849608,0.14667785],
[0.09507164,-0.25853005,-0.22325921,0.499246,-0.3109755,0.01945003,
0.33349884,-0.030728217,-0.2997637,0.4836203,0.035094753,-0.1599233,
0.16274704,-0.0034662904,-0.18398553,-0.06985295],
[-0.13635698,-0.51163936,-0.09270489,-0.12567669,0.41930002,-0.48658654,
-0.12225373,-0.28107005,-0.004303295,0.16249746,0.024185713,-0.24801093,
0.019665923,0.040028445,0.038016353,0.31107086],
[0.14521983,0.63589036,0.04985115,0.17409262,0.18315184,-0.341375,
-0.048293047,-0.037892636,0.08461128,0.19565175,-0.18345755,-0.12093313,
0.27880925,0.39949074,-0.1981584,0.13265577]]
)
let biasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
)
let kernelBackward = Tensor<Float>(
[[-0.3425501,0.26993138,-0.013709605,0.42182362,-0.10439563,-0.5456007,
0.23550463,-0.15115345,0.09087402,0.45050424,-0.41379565,0.050539136,
0.22132623,-0.55731493,-0.15275678,0.07351905],
[-0.20979714,0.1675657,0.5581859,-0.50259715,0.4392975,-0.26118547,
-0.06672484,0.26642138,-0.37113252,-0.29193833,0.5320031,0.54281443,
-0.5196755,-0.013125479,0.006757021,0.5087437],
[0.41886348,0.16300112,0.15921205,0.3881111,0.34322268,0.0014763474,
0.2432934,0.32898188,0.26853347,-0.48425156,-0.3587765,-0.19107765,
0.5605115,-0.18283507,0.13686264,0.008577526]]
)
let recurrentKernelBackward = Tensor<Float>(
[[0.332492,0.3287107,0.013327966,-0.15466748,0.18726069,-0.18434268,
-0.13676699,-0.06803291,-0.55743134,0.2967973,-0.09094952,-0.12427574,
-0.27146038,-0.37563083,0.15853615,0.049586363],
[-0.23724489,0.016642023,-0.2502587,0.48801288,0.4526761,0.012872117,
-0.0565288,-0.113935634,-0.08418312,0.2147764,0.16762011,0.058674254,
0.16494237,0.1398105,0.25171497,0.4759469],
[-0.0038104642,-0.2387862,0.22545648,-0.28967497,0.5137987,-0.12194693,
-0.17891966,0.33095407,-0.003036025,-0.4760634,0.06607926,-0.2880439,
0.09167388,-0.10248731,-0.025532419,0.23298186],
[0.06349304,0.13959168,-0.2960539,-0.20912763,0.18433903,-0.2516703,
-0.007072272,-0.09261524,0.37721395,0.09471353,-0.3878575,0.20997167,
-0.18772967,0.004912289,-0.48590505,0.3492866]]
)
let biasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.90076077,-0.7541278,-0.025081873],
[0.37973404,-0.26513243,0.10235357],
[0.3545239,-0.14615154,-0.540749],
[-0.70222735,-0.34035724,-0.8451414]]]
)
let initialStateHiddenForward = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialStateCellForward = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let initialStateHiddenBackward = Tensor<Float>(
[[0.60601985,0.77093506,0.7210845,-0.012122989]]
)
let initialStateCellBackward = Tensor<Float>(
[[0.06269443,-0.80621815,0.47859335,0.13418436]]
)
let expectedSum = Tensor<Float>(
-0.045482513
)
let expectedStates = Tensor<Float>(
[[[-0.3856787,-0.18899523,0.28026745,-0.3131796],
[-0.2729215,-0.13601428,0.23670897,-0.14869213],
[-0.18623777,-0.24313766,0.3612848,-0.042357195],
[-0.12827212,-0.32416072,0.43230215,-0.025351819]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those four and test it.
// let expectedFinalStateHiddenForward = Tensor<Float>(
// [[-0.048278596,-0.028744427,0.17434421,-0.011268792]]
// )
// let expectedFinalStateCellForward = Tensor<Float>(
// [[-0.123089634,-0.049444646,0.27142566,-0.023337575]]
// )
// let expectedFinalStateHiddenBackward = Tensor<Float>(
// [[0.05788272,-0.12734284,0.03379057,-0.11494892]]
// )
// let expectedFinalStateCellBackward = Tensor<Float>(
// [[0.10647693,-0.207313,0.0632082,-0.31257194]]
// )
let expectedGradKernelForward = Tensor<Float>(
[[0.002949718,-0.05191034,0.024074148,0.00030408613,0.01421415,
0.046752453,-0.050661147,0.03154892,-0.12825678,-0.26617724,-0.16949388,
-0.14972451,0.018881105,0.006620474,-0.040960394,0.0029444664],
[-0.005592436,-0.019203003,0.010193658,-0.0143793905,0.036039345,
0.04006479,-0.05743648,0.042255975,-0.14608386,-0.28398836,-0.20509121,
-0.21936977,0.0006449912,0.0065013315,-0.018848399,0.00052668864],
[-0.030478455,-0.0063452446,-0.01916258,-0.008174095,0.03241433,
0.035240535,-0.06443699,0.008317959,-0.21671411,-0.38373917,-0.36592808,
-0.2629513,0.020803409,0.012763705,-0.05019115,0.0049239537]]
)
let expectedGradRecurrentKernelForward = Tensor<Float>(
[[-0.009446432,0.0046872147,-0.0034881886,-0.013322812,0.028175268,
0.017745323,-0.035205625,0.023002235,-0.097775,-0.1761905,-0.15024684,
-0.15604898,-0.0037074601,0.0044266693,-0.0065767397,-0.000016547507],
[-0.007838752,0.00966959,-0.011096001,0.0011524474,-0.001799419,
-0.0070223105,0.0018404042,-0.0133392075,-0.013871465,-0.009875648,
-0.04120832,-0.0055879317,0.0054747947,0.0015693348,-0.0077096755,
0.0012488244],
[0.017221574,-0.023692459,0.024221376,-0.00008906564,0.00012817048,
0.014727241,-0.0016071051,0.025199406,0.034627024,0.029167444,
0.09496009,0.025977321,-0.009273197,-0.0034023263,0.013966143,
-0.0023199678],
[-0.012845716,0.03203996,-0.026622673,0.0055777295,-0.015383496,
-0.032603078,0.027565092,-0.04110182,0.035235237,0.10470742,
0.0075816773,0.07301342,0.007193738,0.000036919606,-0.0029361092,
0.0017134398]]
)
let expectedGradBiasForward = Tensor<Float>(
[0.04171711,0.0077266786,0.011825588,0.041857343,-0.10179798,-0.08539298,
0.15041551,-0.08090454,0.4313099,0.7878589,0.66939783,0.62814295,
-0.005506222,-0.02124701,0.05680367,-0.0033201296]
)
let expectedGradKernelBackward = Tensor<Float>(
[[0.034572557,-0.014308241,-0.03773727,0.028604513,-0.0025521838,
0.04228866,-0.036268644,-0.011494972,-0.09629307,-0.12330009,-0.0996568,
-0.15201326,0.033916347,0.08542741,-0.07855631,0.004139293],
[0.01675671,-0.0069349525,-0.01829059,0.013864105,-0.0012369986,
0.02049657,-0.017578775,-0.0055714105,-0.04667156,-0.059761383,
-0.048301898,-0.07367815,0.016438656,0.041405164,-0.03807486,
0.0020062423],
[0.0416086,-0.017220188,-0.045417383,0.03442597,-0.0030715924,
0.050895054,-0.04364987,-0.013834375,-0.11589019,-0.14839356,
-0.11993849,-0.18295029,0.040818844,0.1028132,-0.09454372,0.0049817027]]
)
let expectedGradRecurrentKernelBackward = Tensor<Float>(
[[-0.029835999,0.012347964,0.032567136,-0.024685599,0.002202526,
-0.036494974,0.031299718,0.009920122,0.0831006,0.10640756,0.08600348,
0.13118693,-0.029269692,-0.07372357,0.06779383,-0.0035721958],
[-0.03795522,0.015708195,0.04142958,-0.03140325,0.0028018958,
-0.046426293,0.039817262,0.012619669,0.105714634,0.13536409,0.10940748,
0.16688661,-0.037234806,-0.093785845,0.08624245,-0.0045442916],
[-0.035500944,0.014692465,0.038750637,-0.02937264,0.0026207182,
-0.043424252,0.037242576,0.011803649,0.09887886,0.1266111,0.10233291,
0.15609531,-0.03482711,-0.087721415,0.080665804,-0.0042504463],
[0.0005968476,-0.0002470121,-0.00065148197,0.00049381756,-0.00004405994,
0.00073005556,-0.0006261282,-0.00019844486,-0.0016623674,-0.0021286064,
-0.0017204374,-0.0026242996,0.000585519,0.0014747867,-0.0013561664,
0.000071459195]]
)
let expectedGradBiasBackward = Tensor<Float>(
[-0.04923271,0.02037551,0.053739388,-0.04073398,0.0036344123,-0.060220756,
0.05164801,0.016369302,0.13712521,0.17558429,0.14191529,0.21647298,
-0.04829824,-0.12165207,0.11186734,-0.0058945194]
)
let expectedGradX = Tensor<Float>(
[[[-0.054938864,-0.022083992,-0.004919176],
[0.011244737,-0.020291347,-0.024337105],
[0.017743915,0.023487188,-0.07303475],
[0.11390987,0.2743578,-0.34671983]]]
)
let expectedGradInitialStateHiddenForward = Tensor<Float>(
[[-0.04673153,0.058627672,0.00071731675,0.035859868]]
)
let expectedGradInitialStateCellForward = Tensor<Float>(
[[0.09301593,0.20037422,0.123320214,0.10345342]]
)
let expectedGradInitialStateHiddenBackward = Tensor<Float>(
[[0.013064697,0.037812762,-0.108545646,0.01709126]]
)
let expectedGradInitialStateCellBackward = Tensor<Float>(
[[0.30869982,0.34445402,0.26831728,0.4068746]]
)
// END GENERATED CODE
// Swaps the columns corresponding to "forget" and "update" gates.
//
// This translates between the keras ordering
// [input | forget | update | output]
// and the swift-apis ordering
// [input | update | forget | output]
func swapForgetUpdate(_ t: Tensor<Float>) -> Tensor<Float> {
var split = t.split(count: 4, alongAxis: -1)
split.swapAt(1, 2)
return Tensor(concatenating: split, alongAxis: -1)
}
withTensorLeakChecking {
var lstm = BidirectionalLSTM<Float>(
LSTMCell(inputSize: 3, hiddenSize: 4),
mergeFunction: LSTMCell<Float>.State.sum
)
lstm.forward.cell.fusedWeight =
swapForgetUpdate(Tensor(concatenating: [kernelForward, recurrentKernelForward]))
lstm.forward.cell.fusedBias = swapForgetUpdate(biasForward)
lstm.backward.cell.fusedWeight =
swapForgetUpdate(Tensor(concatenating: [kernelBackward, recurrentKernelBackward]))
lstm.backward.cell.fusedBias = swapForgetUpdate(biasBackward)
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = LSTMCell<Float>.State(
cell: initialStateCellForward,
hidden: initialStateHiddenForward)
let initialBackwardLayerState = LSTMCell<Float>.State(
cell: initialStateCellBackward,
hidden: initialStateHiddenBackward)
let outputs = lstm(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
)
assertEqual(
Tensor(concatenating: outputs.map { $0.hidden }),
expectedStates,
accuracy: 1e-6)
let (outputSum, (gradLSTM)) =
valueWithGradient(at: lstm) { lstm in
lstm.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).hidden.sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradLSTM.forward.cell.fusedWeight,
swapForgetUpdate(Tensor(concatenating: [expectedGradKernelForward, expectedGradRecurrentKernelForward])),
accuracy: 1e-6)
assertEqual(
gradLSTM.forward.cell.fusedBias,
swapForgetUpdate(expectedGradBiasForward),
accuracy: 1e-6)
assertEqual(
gradLSTM.backward.cell.fusedWeight,
swapForgetUpdate(Tensor(concatenating: [expectedGradKernelBackward, expectedGradRecurrentKernelBackward])),
accuracy: 1e-6)
assertEqual(
gradLSTM.backward.cell.fusedBias,
swapForgetUpdate(expectedGradBiasBackward),
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
lstm.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).hidden.sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward.hidden,
expectedGradInitialStateHiddenForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward.cell,
expectedGradInitialStateCellForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward.hidden,
expectedGradInitialStateHiddenBackward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward.cell,
expectedGradInitialStateCellBackward,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalLSTMConcatenateMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_lstm.py --merge-mode concat".
// BEGIN GENERATED CODE
let kernelForward = Tensor<Float>(
[[-0.23379976,-0.32979083,0.03977573,0.06884748,-0.093649775,0.34596872,
-0.0076143146,0.55984896,0.22111118,-0.4210437,0.23581362,0.1825394,
0.08120936,-0.15200394,-0.08932975,0.14617139],
[0.4650857,0.18167573,0.37479192,-0.46759078,-0.24752906,-0.5445049,
0.2544219,0.29843968,0.20215267,0.03678304,0.28829694,-0.5086538,
-0.5053389,0.2829352,-0.36783904,-0.2113666],
[-0.23447555,-0.44898528,-0.3757536,0.3030774,0.096295714,0.541732,
0.46623164,-0.4027334,-0.45229727,0.119446635,-0.36198467,0.020288646,
0.5418573,-0.3643924,-0.5106659,0.10962713]]
)
let recurrentKernelForward = Tensor<Float>(
[[0.22804272,-0.03794806,0.17161758,-0.5903252,-0.32132986,-0.028507836,
-0.02729048,0.15502541,-0.29579595,0.041225288,-0.04219827,-0.22448958,
0.51597697,-0.103077516,0.005849608,0.14667785],
[0.09507164,-0.25853005,-0.22325921,0.499246,-0.3109755,0.01945003,
0.33349884,-0.030728217,-0.2997637,0.4836203,0.035094753,-0.1599233,
0.16274704,-0.0034662904,-0.18398553,-0.06985295],
[-0.13635698,-0.51163936,-0.09270489,-0.12567669,0.41930002,-0.48658654,
-0.12225373,-0.28107005,-0.004303295,0.16249746,0.024185713,-0.24801093,
0.019665923,0.040028445,0.038016353,0.31107086],
[0.14521983,0.63589036,0.04985115,0.17409262,0.18315184,-0.341375,
-0.048293047,-0.037892636,0.08461128,0.19565175,-0.18345755,-0.12093313,
0.27880925,0.39949074,-0.1981584,0.13265577]]
)
let biasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
)
let kernelBackward = Tensor<Float>(
[[-0.3425501,0.26993138,-0.013709605,0.42182362,-0.10439563,-0.5456007,
0.23550463,-0.15115345,0.09087402,0.45050424,-0.41379565,0.050539136,
0.22132623,-0.55731493,-0.15275678,0.07351905],
[-0.20979714,0.1675657,0.5581859,-0.50259715,0.4392975,-0.26118547,
-0.06672484,0.26642138,-0.37113252,-0.29193833,0.5320031,0.54281443,
-0.5196755,-0.013125479,0.006757021,0.5087437],
[0.41886348,0.16300112,0.15921205,0.3881111,0.34322268,0.0014763474,
0.2432934,0.32898188,0.26853347,-0.48425156,-0.3587765,-0.19107765,
0.5605115,-0.18283507,0.13686264,0.008577526]]
)
let recurrentKernelBackward = Tensor<Float>(
[[0.332492,0.3287107,0.013327966,-0.15466748,0.18726069,-0.18434268,
-0.13676699,-0.06803291,-0.55743134,0.2967973,-0.09094952,-0.12427574,
-0.27146038,-0.37563083,0.15853615,0.049586363],
[-0.23724489,0.016642023,-0.2502587,0.48801288,0.4526761,0.012872117,
-0.0565288,-0.113935634,-0.08418312,0.2147764,0.16762011,0.058674254,
0.16494237,0.1398105,0.25171497,0.4759469],
[-0.0038104642,-0.2387862,0.22545648,-0.28967497,0.5137987,-0.12194693,
-0.17891966,0.33095407,-0.003036025,-0.4760634,0.06607926,-0.2880439,
0.09167388,-0.10248731,-0.025532419,0.23298186],
[0.06349304,0.13959168,-0.2960539,-0.20912763,0.18433903,-0.2516703,
-0.007072272,-0.09261524,0.37721395,0.09471353,-0.3878575,0.20997167,
-0.18772967,0.004912289,-0.48590505,0.3492866]]
)
let biasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.90076077,-0.7541278,-0.025081873],
[0.37973404,-0.26513243,0.10235357],
[0.3545239,-0.14615154,-0.540749],
[-0.70222735,-0.34035724,-0.8451414]]]
)
let initialStateHiddenForward = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialStateCellForward = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let initialStateHiddenBackward = Tensor<Float>(
[[0.60601985,0.77093506,0.7210845,-0.012122989]]
)
let initialStateCellBackward = Tensor<Float>(
[[0.06269443,-0.80621815,0.47859335,0.13418436]]
)
let expectedSum = Tensor<Float>(
-0.045482457
)
let expectedStates = Tensor<Float>(
[[[-0.44356138,-0.061652392,0.24647687,-0.19823068,0.05788271,
-0.12734284,0.033790566,-0.11494893],
[-0.2737949,-0.07248981,0.19220428,-0.08825301,0.0008733621,
-0.06352448,0.044504695,-0.060439102],
[-0.124358594,-0.1213435,0.21946031,-0.025490183,-0.061879173,
-0.12179416,0.1418245,-0.016867002],
[-0.048278596,-0.028744407,0.1743442,-0.011268781,-0.07999351,
-0.29541627,0.25795794,-0.014083028]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those four and test it.
// let expectedFinalStateHiddenForward = Tensor<Float>(
// [[-0.048278596,-0.028744407,0.1743442,-0.011268781]]
// )
// let expectedFinalStateCellForward = Tensor<Float>(
// [[-0.123089634,-0.049444616,0.27142566,-0.023337554]]
// )
// let expectedFinalStateHiddenBackward = Tensor<Float>(
// [[0.05788271,-0.12734284,0.033790566,-0.11494893]]
// )
// let expectedFinalStateCellBackward = Tensor<Float>(
// [[0.106476925,-0.20731302,0.0632082,-0.31257194]]
// )
let expectedGradKernelForward = Tensor<Float>(
[[0.0029497184,-0.05191034,0.02407415,0.000304088,0.014214157,0.046752453,
-0.050661147,0.031548906,-0.12825678,-0.26617724,-0.16949388,
-0.14972453,0.018881105,0.0066204695,-0.040960398,0.002944462],
[-0.005592435,-0.019203003,0.010193659,-0.014379387,0.03603935,
0.04006479,-0.05743648,0.04225596,-0.14608386,-0.28398833,-0.20509121,
-0.21936974,0.00064499304,0.0065013287,-0.0188484,0.0005266868],
[-0.030478455,-0.0063452474,-0.019162579,-0.008174095,0.03241433,
0.035240535,-0.06443699,0.008317955,-0.21671411,-0.38373917,-0.36592808,
-0.26295128,0.020803409,0.012763699,-0.050191153,0.0049239486]]
)
let expectedGradRecurrentKernelForward = Tensor<Float>(
[[-0.009446431,0.0046872147,-0.0034881886,-0.013322809,0.028175268,
0.017745323,-0.035205625,0.02300223,-0.097775005,-0.17619048,
-0.15024684,-0.15604895,-0.0037074587,0.0044266684,-0.006576741,
-0.000016547943],
[-0.007838752,0.00966959,-0.011096001,0.0011524465,-0.0017994214,
-0.0070223105,0.0018404042,-0.013339203,-0.013871463,-0.009875648,
-0.04120832,-0.005587943,0.0054747937,0.0015693338,-0.007709676,
0.0012488235],
[0.017221576,-0.023692459,0.024221376,-0.00008906424,0.00012817606,
0.014727241,-0.0016071051,0.025199397,0.034627017,0.029167429,
0.09496009,0.025977343,-0.009273196,-0.0034023244,0.013966144,
-0.0023199664],
[-0.012845716,0.032039955,-0.026622673,0.0055777263,-0.0153835025,
-0.032603078,0.027565094,-0.041101806,0.03523525,0.104707435,
0.0075816847,0.07301338,0.0071937367,0.000036919257,-0.0029361085,
0.0017134396]]
)
let expectedGradBiasForward = Tensor<Float>(
[0.041717105,0.0077266824,0.011825588,0.041857336,-0.10179798,-0.08539298,
0.15041551,-0.08090452,0.43130994,0.7878589,0.66939783,0.6281428,
-0.005506225,-0.021247003,0.056803677,-0.0033201245]
)
let expectedGradKernelBackward = Tensor<Float>(
[[0.034572553,-0.014308241,-0.037737265,0.028604513,-0.002552184,
0.042288657,-0.036268644,-0.011494972,-0.09629306,-0.12330007,
-0.09965681,-0.15201326,0.033916343,0.08542741,-0.07855631,0.004139293],
[0.016756708,-0.0069349525,-0.018290589,0.013864105,-0.0012369987,
0.020496568,-0.017578775,-0.0055714105,-0.046671554,-0.059761375,
-0.0483019,-0.07367815,0.016438654,0.041405164,-0.03807486,0.0020062423],
[0.041608598,-0.017220188,-0.04541738,0.03442597,-0.0030715927,
0.050895046,-0.04364987,-0.013834375,-0.11589018,-0.14839353,-0.1199385,
-0.18295029,0.04081884,0.10281321,-0.09454372,0.0049817027]]
)
let expectedGradRecurrentKernelBackward = Tensor<Float>(
[[-0.029835997,0.012347964,0.032567132,-0.024685599,0.0022025262,
-0.03649497,0.031299718,0.009920122,0.08310059,0.106407546,0.08600349,
0.13118693,-0.02926969,-0.07372357,0.06779383,-0.0035721958],
[-0.03795522,0.015708195,0.041429576,-0.03140325,0.0028018963,
-0.046426285,0.039817262,0.012619669,0.10571462,0.13536406,0.109407485,
0.16688661,-0.0372348,-0.09378585,0.08624245,-0.0045442916],
[-0.03550094,0.014692465,0.038750634,-0.02937264,0.0026207187,
-0.043424245,0.037242576,0.011803649,0.098878846,0.12661108,0.10233293,
0.15609531,-0.03482711,-0.08772142,0.080665804,-0.0042504463],
[0.00059684756,-0.0002470121,-0.00065148197,0.00049381756,
-0.000044059943,0.00073005544,-0.0006261282,-0.00019844486,
-0.0016623671,-0.002128606,-0.0017204377,-0.0026242996,0.00058551895,
0.0014747867,-0.0013561664,0.000071459195]]
)
let expectedGradBiasBackward = Tensor<Float>(
[-0.049232706,0.02037551,0.053739384,-0.04073398,0.0036344128,-0.06022075,
0.05164801,0.016369302,0.1371252,0.17558426,0.1419153,0.21647298,
-0.048298236,-0.121652074,0.11186734,-0.0058945194]
)
let expectedGradX = Tensor<Float>(
[[[-0.054938864,-0.022083957,-0.004919187],
[0.01124474,-0.020291314,-0.02433711],
[0.017743908,0.02348721,-0.07303476],
[0.113909885,0.27435783,-0.3467198]]]
)
let expectedGradInitialStateHiddenForward = Tensor<Float>(
[[-0.046731517,0.05862768,0.0007173242,0.035859868]]
)
let expectedGradInitialStateCellForward = Tensor<Float>(
[[0.09301593,0.20037422,0.123320214,0.10345338]]
)
let expectedGradInitialStateHiddenBackward = Tensor<Float>(
[[0.013064705,0.037812762,-0.10854563,0.017091252]]
)
let expectedGradInitialStateCellBackward = Tensor<Float>(
[[0.3086998,0.34445396,0.26831728,0.4068746]]
)
// END GENERATED CODE
// Swaps the columns corresponding to "forget" and "update" gates.
//
// This translates between the keras ordering
// [input | forget | update | output]
// and the swift-apis ordering
// [input | update | forget | output]
func swapForgetUpdate(_ t: Tensor<Float>) -> Tensor<Float> {
var split = t.split(count: 4, alongAxis: -1)
split.swapAt(1, 2)
return Tensor(concatenating: split, alongAxis: -1)
}
withTensorLeakChecking {
var lstm = BidirectionalLSTM<Float>(
LSTMCell(inputSize: 3, hiddenSize: 4)
)
lstm.forward.cell.fusedWeight =
swapForgetUpdate(Tensor(concatenating: [kernelForward, recurrentKernelForward]))
lstm.forward.cell.fusedBias = swapForgetUpdate(biasForward)
lstm.backward.cell.fusedWeight =
swapForgetUpdate(Tensor(concatenating: [kernelBackward, recurrentKernelBackward]))
lstm.backward.cell.fusedBias = swapForgetUpdate(biasBackward)
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = LSTMCell<Float>.State(
cell: initialStateCellForward,
hidden: initialStateHiddenForward)
let initialBackwardLayerState = LSTMCell<Float>.State(
cell: initialStateCellBackward,
hidden: initialStateHiddenBackward)
let outputs = lstm(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
)
assertEqual(
Tensor(concatenating: outputs.map { $0.hidden }),
expectedStates,
accuracy: 1e-6)
let (outputSum, (gradLSTM)) =
valueWithGradient(at: lstm) { lstm in
lstm.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).hidden.sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradLSTM.forward.cell.fusedWeight,
swapForgetUpdate(Tensor(concatenating: [expectedGradKernelForward, expectedGradRecurrentKernelForward])),
accuracy: 1e-6)
assertEqual(
gradLSTM.forward.cell.fusedBias,
swapForgetUpdate(expectedGradBiasForward),
accuracy: 1e-6)
assertEqual(
gradLSTM.backward.cell.fusedWeight,
swapForgetUpdate(Tensor(concatenating: [expectedGradKernelBackward, expectedGradRecurrentKernelBackward])),
accuracy: 1e-6)
assertEqual(
gradLSTM.backward.cell.fusedBias,
swapForgetUpdate(expectedGradBiasBackward),
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
lstm.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).hidden.sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward.hidden,
expectedGradInitialStateHiddenForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward.cell,
expectedGradInitialStateCellForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward.hidden,
expectedGradInitialStateHiddenBackward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward.cell,
expectedGradInitialStateCellBackward,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalLSTMAverageMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_lstm.py --merge-mode ave".
// BEGIN GENERATED CODE
let kernelForward = Tensor<Float>(
[[-0.23379976,-0.32979083,0.03977573,0.06884748,-0.093649775,0.34596872,
-0.0076143146,0.55984896,0.22111118,-0.4210437,0.23581362,0.1825394,
0.08120936,-0.15200394,-0.08932975,0.14617139],
[0.4650857,0.18167573,0.37479192,-0.46759078,-0.24752906,-0.5445049,
0.2544219,0.29843968,0.20215267,0.03678304,0.28829694,-0.5086538,
-0.5053389,0.2829352,-0.36783904,-0.2113666],
[-0.23447555,-0.44898528,-0.3757536,0.3030774,0.096295714,0.541732,
0.46623164,-0.4027334,-0.45229727,0.119446635,-0.36198467,0.020288646,
0.5418573,-0.3643924,-0.5106659,0.10962713]]
)
let recurrentKernelForward = Tensor<Float>(
[[0.22804272,-0.03794806,0.17161758,-0.5903252,-0.32132986,-0.028507836,
-0.02729048,0.15502541,-0.29579595,0.041225288,-0.04219827,-0.22448958,
0.51597697,-0.103077516,0.005849608,0.14667785],
[0.09507164,-0.25853005,-0.22325921,0.499246,-0.3109755,0.01945003,
0.33349884,-0.030728217,-0.2997637,0.4836203,0.035094753,-0.1599233,
0.16274704,-0.0034662904,-0.18398553,-0.06985295],
[-0.13635698,-0.51163936,-0.09270489,-0.12567669,0.41930002,-0.48658654,
-0.12225373,-0.28107005,-0.004303295,0.16249746,0.024185713,-0.24801093,
0.019665923,0.040028445,0.038016353,0.31107086],
[0.14521983,0.63589036,0.04985115,0.17409262,0.18315184,-0.341375,
-0.048293047,-0.037892636,0.08461128,0.19565175,-0.18345755,-0.12093313,
0.27880925,0.39949074,-0.1981584,0.13265577]]
)
let biasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
)
let kernelBackward = Tensor<Float>(
[[-0.3425501,0.26993138,-0.013709605,0.42182362,-0.10439563,-0.5456007,
0.23550463,-0.15115345,0.09087402,0.45050424,-0.41379565,0.050539136,
0.22132623,-0.55731493,-0.15275678,0.07351905],
[-0.20979714,0.1675657,0.5581859,-0.50259715,0.4392975,-0.26118547,
-0.06672484,0.26642138,-0.37113252,-0.29193833,0.5320031,0.54281443,
-0.5196755,-0.013125479,0.006757021,0.5087437],
[0.41886348,0.16300112,0.15921205,0.3881111,0.34322268,0.0014763474,
0.2432934,0.32898188,0.26853347,-0.48425156,-0.3587765,-0.19107765,
0.5605115,-0.18283507,0.13686264,0.008577526]]
)
let recurrentKernelBackward = Tensor<Float>(
[[0.332492,0.3287107,0.013327966,-0.15466748,0.18726069,-0.18434268,
-0.13676699,-0.06803291,-0.55743134,0.2967973,-0.09094952,-0.12427574,
-0.27146038,-0.37563083,0.15853615,0.049586363],
[-0.23724489,0.016642023,-0.2502587,0.48801288,0.4526761,0.012872117,
-0.0565288,-0.113935634,-0.08418312,0.2147764,0.16762011,0.058674254,
0.16494237,0.1398105,0.25171497,0.4759469],
[-0.0038104642,-0.2387862,0.22545648,-0.28967497,0.5137987,-0.12194693,
-0.17891966,0.33095407,-0.003036025,-0.4760634,0.06607926,-0.2880439,
0.09167388,-0.10248731,-0.025532419,0.23298186],
[0.06349304,0.13959168,-0.2960539,-0.20912763,0.18433903,-0.2516703,
-0.007072272,-0.09261524,0.37721395,0.09471353,-0.3878575,0.20997167,
-0.18772967,0.004912289,-0.48590505,0.3492866]]
)
let biasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.90076077,-0.7541278,-0.025081873],
[0.37973404,-0.26513243,0.10235357],
[0.3545239,-0.14615154,-0.540749],
[-0.70222735,-0.34035724,-0.8451414]]]
)
let initialStateHiddenForward = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialStateCellForward = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let initialStateHiddenBackward = Tensor<Float>(
[[0.60601985,0.77093506,0.7210845,-0.012122989]]
)
let initialStateCellBackward = Tensor<Float>(
[[0.06269443,-0.80621815,0.47859335,0.13418436]]
)
let expectedSum = Tensor<Float>(
-0.02274122
)
let expectedStates = Tensor<Float>(
[[[-0.19283932,-0.09449761,0.14013372,-0.1565898],
[-0.13646077,-0.06800714,0.118354484,-0.07434605],
[-0.09311888,-0.12156883,0.1806424,-0.021178592],
[-0.06413605,-0.16208033,0.21615106,-0.012675904]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those four and test it.
// let expectedFinalStateHiddenForward = Tensor<Float>(
// [[-0.048278596,-0.028744407,0.1743442,-0.011268781]]
// )
// let expectedFinalStateCellForward = Tensor<Float>(
// [[-0.123089634,-0.049444616,0.27142566,-0.023337554]]
// )
// let expectedFinalStateHiddenBackward = Tensor<Float>(
// [[0.05788271,-0.12734284,0.033790566,-0.11494893]]
// )
// let expectedFinalStateCellBackward = Tensor<Float>(
// [[0.106476925,-0.20731302,0.0632082,-0.31257194]]
// )
let expectedGradKernelForward = Tensor<Float>(
[[0.0014748592,-0.02595517,0.012037075,0.000152044,0.0071070786,
0.023376226,-0.025330573,0.015774453,-0.06412839,-0.13308862,
-0.08474694,-0.074862264,0.009440552,0.0033102348,-0.020480199,
0.001472231],
[-0.0027962176,-0.009601502,0.0050968295,-0.0071896934,0.018019674,
0.020032395,-0.02871824,0.02112798,-0.07304193,-0.14199416,-0.102545604,
-0.10968487,0.00032249652,0.0032506643,-0.0094242,0.0002633434],
[-0.015239228,-0.0031726237,-0.009581289,-0.0040870477,0.016207164,
0.017620267,-0.032218494,0.0041589774,-0.10835706,-0.19186959,
-0.18296404,-0.13147564,0.010401704,0.0063818493,-0.025095576,
0.0024619743]]
)
let expectedGradRecurrentKernelForward = Tensor<Float>(
[[-0.0047232155,0.0023436074,-0.0017440943,-0.0066614044,0.014087634,
0.008872662,-0.017602812,0.011501115,-0.048887502,-0.08809524,
-0.07512342,-0.07802448,-0.0018537294,0.0022133342,-0.0032883706,
-0.000008273972],
[-0.003919376,0.004834795,-0.0055480003,0.00057622325,-0.0008997107,
-0.0035111553,0.0009202021,-0.0066696014,-0.0069357315,-0.004937824,
-0.02060416,-0.0027939714,0.0027373969,0.0007846669,-0.003854838,
0.00062441174],
[0.008610788,-0.011846229,0.012110688,-0.00004453212,0.00006408803,
0.0073636207,-0.00080355257,0.012599698,0.017313508,0.014583714,
0.047480047,0.012988672,-0.004636598,-0.0017011622,0.006983072,
-0.0011599832],
[-0.006422858,0.016019978,-0.013311337,0.0027888631,-0.0076917512,
-0.016301539,0.013782547,-0.020550903,0.017617624,0.052353717,
0.0037908424,0.03650669,0.0035968684,0.000018459628,-0.0014680543,
0.0008567198]]
)
let expectedGradBiasForward = Tensor<Float>(
[0.020858552,0.0038633412,0.005912794,0.020928668,-0.05089899,-0.04269649,
0.075207755,-0.04045226,0.21565497,0.39392945,0.33469892,0.3140714,
-0.0027531125,-0.010623502,0.028401839,-0.0016600622]
)
let expectedGradKernelBackward = Tensor<Float>(
[[0.017286276,-0.0071541206,-0.018868633,0.0143022565,-0.001276092,
0.021144329,-0.018134322,-0.005747486,-0.04814653,-0.061650034,
-0.049828406,-0.07600663,0.016958172,0.042713705,-0.039278153,
0.0020696465],
[0.008378354,-0.0034674762,-0.009145294,0.0069320523,-0.00061849935,
0.010248284,-0.0087893875,-0.0027857053,-0.023335777,-0.029880688,
-0.02415095,-0.036839075,0.008219327,0.020702582,-0.01903743,
0.0010031211],
[0.020804299,-0.008610094,-0.02270869,0.017212985,-0.0015357963,
0.025447523,-0.021824935,-0.0069171875,-0.05794509,-0.07419676,
-0.05996925,-0.091475144,0.02040942,0.051406603,-0.04727186,
0.0024908513]]
)
let expectedGradRecurrentKernelBackward = Tensor<Float>(
[[-0.014917999,0.006173982,0.016283566,-0.012342799,0.0011012631,
-0.018247485,0.015649859,0.004960061,0.041550294,0.053203773,
0.043001745,0.065593466,-0.014634845,-0.036861785,0.033896916,
-0.0017860979],
[-0.01897761,0.0078540975,0.020714788,-0.015701625,0.0014009482,
-0.023213143,0.019908631,0.0063098343,0.05285731,0.06768203,0.054703742,
0.08344331,-0.0186174,-0.046892926,0.043121226,-0.0022721458],
[-0.01775047,0.0073462324,0.019375317,-0.01468632,0.0013103593,
-0.021712122,0.018621288,0.0059018247,0.049439423,0.06330554,
0.051166464,0.078047656,-0.017413555,-0.04386071,0.040332902,
-0.0021252232],
[0.00029842378,-0.00012350605,-0.00032574098,0.00024690878,
-0.000022029972,0.00036502772,-0.0003130641,-0.00009922243,
-0.00083118357,-0.001064303,-0.00086021883,-0.0013121498,0.00029275948,
0.00073739333,-0.0006780832,0.000035729598]]
)
let expectedGradBiasBackward = Tensor<Float>(
[-0.024616353,0.010187755,0.026869692,-0.02036699,0.0018172064,
-0.030110374,0.025824005,0.008184651,0.0685626,0.08779213,0.07095765,
0.10823649,-0.024149118,-0.060826037,0.05593367,-0.0029472597]
)
let expectedGradX = Tensor<Float>(
[[[-0.027469432,-0.011041978,-0.0024595936],
[0.00562237,-0.010145657,-0.012168555],
[0.008871954,0.011743605,-0.03651738],
[0.056954943,0.13717891,-0.1733599]]]
)
let expectedGradInitialStateHiddenForward = Tensor<Float>(
[[-0.023365758,0.02931384,0.0003586621,0.017929934]]
)
let expectedGradInitialStateCellForward = Tensor<Float>(
[[0.046507966,0.10018711,0.061660107,0.05172669]]
)
let expectedGradInitialStateHiddenBackward = Tensor<Float>(
[[0.0065323524,0.018906381,-0.054272816,0.008545626]]
)
let expectedGradInitialStateCellBackward = Tensor<Float>(
[[0.1543499,0.17222698,0.13415864,0.2034373]]
)
// END GENERATED CODE
// Swaps the columns corresponding to "forget" and "update" gates.
//
// This translates between the keras ordering
// [input | forget | update | output]
// and the swift-apis ordering
// [input | update | forget | output]
func swapForgetUpdate(_ t: Tensor<Float>) -> Tensor<Float> {
var split = t.split(count: 4, alongAxis: -1)
split.swapAt(1, 2)
return Tensor(concatenating: split, alongAxis: -1)
}
withTensorLeakChecking {
var lstm = BidirectionalLSTM<Float>(
LSTMCell(inputSize: 3, hiddenSize: 4),
mergeFunction: LSTMCell<Float>.State.average
)
lstm.forward.cell.fusedWeight =
swapForgetUpdate(Tensor(concatenating: [kernelForward, recurrentKernelForward]))
lstm.forward.cell.fusedBias = swapForgetUpdate(biasForward)
lstm.backward.cell.fusedWeight =
swapForgetUpdate(Tensor(concatenating: [kernelBackward, recurrentKernelBackward]))
lstm.backward.cell.fusedBias = swapForgetUpdate(biasBackward)
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = LSTMCell<Float>.State(
cell: initialStateCellForward,
hidden: initialStateHiddenForward)
let initialBackwardLayerState = LSTMCell<Float>.State(
cell: initialStateCellBackward,
hidden: initialStateHiddenBackward)
let outputs = lstm(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
)
assertEqual(
Tensor(concatenating: outputs.map { $0.hidden }),
expectedStates,
accuracy: 1e-6)
let (outputSum, (gradLSTM)) =
valueWithGradient(at: lstm) { lstm in
lstm.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).hidden.sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradLSTM.forward.cell.fusedWeight,
swapForgetUpdate(Tensor(concatenating: [expectedGradKernelForward, expectedGradRecurrentKernelForward])),
accuracy: 1e-6)
assertEqual(
gradLSTM.forward.cell.fusedBias,
swapForgetUpdate(expectedGradBiasForward),
accuracy: 1e-6)
assertEqual(
gradLSTM.backward.cell.fusedWeight,
swapForgetUpdate(Tensor(concatenating: [expectedGradKernelBackward, expectedGradRecurrentKernelBackward])),
accuracy: 1e-6)
assertEqual(
gradLSTM.backward.cell.fusedBias,
swapForgetUpdate(expectedGradBiasBackward),
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
lstm.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).hidden.sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward.hidden,
expectedGradInitialStateHiddenForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward.cell,
expectedGradInitialStateCellForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward.hidden,
expectedGradInitialStateHiddenBackward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward.cell,
expectedGradInitialStateCellBackward,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalLSTMMultiplyMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_lstm.py --merge-mode mul".
// BEGIN GENERATED CODE
let kernelForward = Tensor<Float>(
[[-0.23379976,-0.32979083,0.03977573,0.06884748,-0.093649775,0.34596872,
-0.0076143146,0.55984896,0.22111118,-0.4210437,0.23581362,0.1825394,
0.08120936,-0.15200394,-0.08932975,0.14617139],
[0.4650857,0.18167573,0.37479192,-0.46759078,-0.24752906,-0.5445049,
0.2544219,0.29843968,0.20215267,0.03678304,0.28829694,-0.5086538,
-0.5053389,0.2829352,-0.36783904,-0.2113666],
[-0.23447555,-0.44898528,-0.3757536,0.3030774,0.096295714,0.541732,
0.46623164,-0.4027334,-0.45229727,0.119446635,-0.36198467,0.020288646,
0.5418573,-0.3643924,-0.5106659,0.10962713]]
)
let recurrentKernelForward = Tensor<Float>(
[[0.22804272,-0.03794806,0.17161758,-0.5903252,-0.32132986,-0.028507836,
-0.02729048,0.15502541,-0.29579595,0.041225288,-0.04219827,-0.22448958,
0.51597697,-0.103077516,0.005849608,0.14667785],
[0.09507164,-0.25853005,-0.22325921,0.499246,-0.3109755,0.01945003,
0.33349884,-0.030728217,-0.2997637,0.4836203,0.035094753,-0.1599233,
0.16274704,-0.0034662904,-0.18398553,-0.06985295],
[-0.13635698,-0.51163936,-0.09270489,-0.12567669,0.41930002,-0.48658654,
-0.12225373,-0.28107005,-0.004303295,0.16249746,0.024185713,-0.24801093,
0.019665923,0.040028445,0.038016353,0.31107086],
[0.14521983,0.63589036,0.04985115,0.17409262,0.18315184,-0.341375,
-0.048293047,-0.037892636,0.08461128,0.19565175,-0.18345755,-0.12093313,
0.27880925,0.39949074,-0.1981584,0.13265577]]
)
let biasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
)
let kernelBackward = Tensor<Float>(
[[-0.3425501,0.26993138,-0.013709605,0.42182362,-0.10439563,-0.5456007,
0.23550463,-0.15115345,0.09087402,0.45050424,-0.41379565,0.050539136,
0.22132623,-0.55731493,-0.15275678,0.07351905],
[-0.20979714,0.1675657,0.5581859,-0.50259715,0.4392975,-0.26118547,
-0.06672484,0.26642138,-0.37113252,-0.29193833,0.5320031,0.54281443,
-0.5196755,-0.013125479,0.006757021,0.5087437],
[0.41886348,0.16300112,0.15921205,0.3881111,0.34322268,0.0014763474,
0.2432934,0.32898188,0.26853347,-0.48425156,-0.3587765,-0.19107765,
0.5605115,-0.18283507,0.13686264,0.008577526]]
)
let recurrentKernelBackward = Tensor<Float>(
[[0.332492,0.3287107,0.013327966,-0.15466748,0.18726069,-0.18434268,
-0.13676699,-0.06803291,-0.55743134,0.2967973,-0.09094952,-0.12427574,
-0.27146038,-0.37563083,0.15853615,0.049586363],
[-0.23724489,0.016642023,-0.2502587,0.48801288,0.4526761,0.012872117,
-0.0565288,-0.113935634,-0.08418312,0.2147764,0.16762011,0.058674254,
0.16494237,0.1398105,0.25171497,0.4759469],
[-0.0038104642,-0.2387862,0.22545648,-0.28967497,0.5137987,-0.12194693,
-0.17891966,0.33095407,-0.003036025,-0.4760634,0.06607926,-0.2880439,
0.09167388,-0.10248731,-0.025532419,0.23298186],
[0.06349304,0.13959168,-0.2960539,-0.20912763,0.18433903,-0.2516703,
-0.007072272,-0.09261524,0.37721395,0.09471353,-0.3878575,0.20997167,
-0.18772967,0.004912289,-0.48590505,0.3492866]]
)
let biasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.90076077,-0.7541278,-0.025081873],
[0.37973404,-0.26513243,0.10235357],
[0.3545239,-0.14615154,-0.540749],
[-0.70222735,-0.34035724,-0.8451414]]]
)
let initialStateHiddenForward = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialStateCellForward = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let initialStateHiddenBackward = Tensor<Float>(
[[0.60601985,0.77093506,0.7210845,-0.012122989]]
)
let initialStateCellBackward = Tensor<Float>(
[[0.06269443,-0.80621815,0.47859335,0.13418436]]
)
let expectedSum = Tensor<Float>(
0.057485707
)
let expectedStates = Tensor<Float>(
[[[-0.025674535,0.007850991,0.008328593,0.022786405],
[-0.00023912209,0.0046048774,0.008553993,0.0053339326],
[0.007695207,0.01477893,0.031124849,0.000429943],
[0.0038619742,0.0084915655,0.04497347,0.00015869855]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those four and test it.
// let expectedFinalStateHiddenForward = Tensor<Float>(
// [[-0.048278596,-0.028744407,0.1743442,-0.011268781]]
// )
// let expectedFinalStateCellForward = Tensor<Float>(
// [[-0.123089634,-0.049444616,0.27142566,-0.023337554]]
// )
// let expectedFinalStateHiddenBackward = Tensor<Float>(
// [[0.05788271,-0.12734284,0.033790566,-0.11494893]]
// )
// let expectedFinalStateCellBackward = Tensor<Float>(
// [[0.106476925,-0.20731302,0.0632082,-0.31257194]]
// )
let expectedGradKernelForward = Tensor<Float>(
[[-0.0006356439,0.015833925,0.005248367,0.000088096946,-0.001286473,
-0.014080829,-0.012435054,-0.0042246087,0.010528095,0.0785853,
-0.04466948,0.005445134,-0.0011754832,-0.0016675827,-0.011209748,
-0.00035536994],
[0.00035326666,0.005798911,0.0020744896,0.0016610449,-0.0035952562,
-0.012197385,-0.013497299,-0.0053806542,0.013618026,0.08609101,
-0.04995886,0.018841323,-0.0003639532,-0.0020185974,-0.0043832674,
-0.0008603267],
[0.002633221,0.00171838,-0.004717764,0.00048049382,-0.0028204727,
-0.010515593,-0.016336953,-0.00037660176,0.018144649,0.114633985,
-0.09280567,0.008752153,-0.0020848382,-0.0041145375,-0.01230508,
-0.00033673478]]
)
let expectedGradRecurrentKernelForward = Tensor<Float>(
[[0.00085955136,-0.0015130613,-0.0009309999,0.0014424899,-0.0028096742,
-0.005426242,-0.008224582,-0.0027340245,0.009384694,0.053980358,
-0.035707016,0.014470998,-0.00012773072,-0.0015185195,-0.0009792406,
-0.00059664843],
[0.00075029954,-0.0030118634,-0.0025134794,-0.00027205143,0.00029734446,
0.0022050086,0.00009390758,0.0019716173,0.0007304535,0.0025818497,
-0.010839711,-0.0033222511,-0.0004790762,-0.0005259809,-0.0018902641,
0.0002027992],
[-0.0016653631,0.007366645,0.0054886946,0.0003065939,-0.00023920857,
-0.004606634,0.00025729695,-0.0038056956,-0.0022326056,-0.008233182,
0.024358716,0.0047218287,0.0009058922,0.0011722009,0.0032562078,
-0.00033911638],
[0.001339203,-0.009877648,-0.0059118806,-0.00090225495,0.0017254684,
0.0100316,0.005946205,0.005787832,-0.004097135,-0.032188937,0.000986672,
-0.01200073,-0.0005991369,-0.000113752816,-0.00061858393,0.0006727869]]
)
let expectedGradBiasForward = Tensor<Float>(
[-0.0036032305,-0.0020163525,0.0033609606,-0.004352904,0.009900483,
0.02591736,0.035977,0.009494458,-0.039504252,-0.23896675,0.1634979,
-0.0476815,0.0017783717,0.006988898,0.012471562,0.0020117098]
)
let expectedGradKernelBackward = Tensor<Float>(
[[-0.0016691145,0.00041128194,-0.0065792724,-0.00032233805,0.00012321587,
-0.0012155625,-0.0063232277,0.00012953431,0.004648894,0.0035441876,
-0.017374588,0.0017130041,-0.0016374333,-0.0024555605,-0.013695836,
-0.000046644785],
[-0.0008089904,0.00019934113,-0.0031888576,-0.00015623159,0.00005972056,
-0.0005891617,-0.0030647572,0.000062783,0.0022532372,0.0017178054,
-0.008421157,0.0008302629,-0.00079363515,-0.0011901669,-0.006638131,
-0.000022607906],
[-0.0020088048,0.00049498415,-0.007918255,-0.0003879388,0.00014829218,
-0.001462948,-0.0076101017,0.00015589653,0.005595016,0.0042654844,
-0.020910583,0.0020616266,-0.0019706762,-0.0029553047,-0.01648315,
-0.000056137716]]
)
let expectedGradRecurrentKernelBackward = Tensor<Float>(
[[0.0014404402,-0.00035493495,0.00567789,0.00027817665,-0.000106334875,
0.0010490263,0.0054569244,-0.000111787675,-0.0040119803,-0.003058622,
0.014994211,-0.0014783167,0.0014130995,0.0021191405,0.011819461,
0.000040254294],
[0.0018324248,-0.00045152282,0.0072230054,0.0003538764,-0.00013527162,
0.0013344962,0.006941908,-0.00014220827,-0.005103754,-0.0038909598,
0.019074561,-0.0018806087,0.001797644,0.0026958187,0.015035871,
0.00005120863],
[0.0017139356,-0.00042232624,0.0067559476,0.0003309939,-0.00012652461,
0.0012482043,0.0064930273,-0.00013301274,-0.0047737323,-0.0036393607,
0.017841153,-0.0017590038,0.0016814038,0.0025215005,0.014063614,
0.000047897352],
[-0.000028814964,0.000007100217,-0.000113582086,-0.000005564723,
0.0000021271524,-0.000020985013,-0.000109161825,0.0000022362317,
0.00008025676,0.00006118552,-0.00029994833,0.000029572657,
-0.000028268032,-0.000042391872,-0.00023643977,-0.000000805258]]
)
let expectedGradBiasBackward = Tensor<Float>(
[0.002376886,-0.00058568205,0.009369149,0.00045902235,-0.00017546435,
0.0017310098,0.0090045305,-0.00018446207,-0.0066202125,-0.0050470657,
0.024742112,-0.0024393867,0.002331771,0.0034968168,0.019503422,
0.00006642405]
)
let expectedGradX = Tensor<Float>(
[[[0.025954716,0.0037635816,0.005093654],
[0.016548203,0.014938684,-0.0098211765],
[0.028925406,0.018546272,-0.017679248],
[0.045659292,0.028008066,-0.028804896]]]
)
let expectedGradInitialStateHiddenForward = Tensor<Float>(
[[0.002969412,-0.012251236,-0.0049122106,-0.018355861]]
)
let expectedGradInitialStateCellForward = Tensor<Float>(
[[-0.010009506,-0.061632644,0.027160529,-0.014186442]]
)
let expectedGradInitialStateHiddenBackward = Tensor<Float>(
[[0.00047474913,0.006052384,0.0042700856,-0.026273249]]
)
let expectedGradInitialStateCellBackward = Tensor<Float>(
[[-0.014903592,-0.009901126,0.046779558,-0.0045849807]]
)
// END GENERATED CODE
// Swaps the columns corresponding to "forget" and "update" gates.
//
// This translates between the keras ordering
// [input | forget | update | output]
// and the swift-apis ordering
// [input | update | forget | output]
func swapForgetUpdate(_ t: Tensor<Float>) -> Tensor<Float> {
var split = t.split(count: 4, alongAxis: -1)
split.swapAt(1, 2)
return Tensor(concatenating: split, alongAxis: -1)
}
withTensorLeakChecking {
var lstm = BidirectionalLSTM<Float>(
LSTMCell(inputSize: 3, hiddenSize: 4),
mergeFunction: LSTMCell<Float>.State.multiply
)
lstm.forward.cell.fusedWeight =
swapForgetUpdate(Tensor(concatenating: [kernelForward, recurrentKernelForward]))
lstm.forward.cell.fusedBias = swapForgetUpdate(biasForward)
lstm.backward.cell.fusedWeight =
swapForgetUpdate(Tensor(concatenating: [kernelBackward, recurrentKernelBackward]))
lstm.backward.cell.fusedBias = swapForgetUpdate(biasBackward)
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = LSTMCell<Float>.State(
cell: initialStateCellForward,
hidden: initialStateHiddenForward)
let initialBackwardLayerState = LSTMCell<Float>.State(
cell: initialStateCellBackward,
hidden: initialStateHiddenBackward)
let outputs = lstm(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
)
assertEqual(
Tensor(concatenating: outputs.map { $0.hidden }),
expectedStates,
accuracy: 1e-6)
let (outputSum, (gradLSTM)) =
valueWithGradient(at: lstm) { lstm in
lstm.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).hidden.sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradLSTM.forward.cell.fusedWeight,
swapForgetUpdate(Tensor(concatenating: [expectedGradKernelForward, expectedGradRecurrentKernelForward])),
accuracy: 1e-6)
assertEqual(
gradLSTM.forward.cell.fusedBias,
swapForgetUpdate(expectedGradBiasForward),
accuracy: 1e-6)
assertEqual(
gradLSTM.backward.cell.fusedWeight,
swapForgetUpdate(Tensor(concatenating: [expectedGradKernelBackward, expectedGradRecurrentKernelBackward])),
accuracy: 1e-6)
assertEqual(
gradLSTM.backward.cell.fusedBias,
swapForgetUpdate(expectedGradBiasBackward),
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
lstm.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).hidden.sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward.hidden,
expectedGradInitialStateHiddenForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward.cell,
expectedGradInitialStateCellForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward.hidden,
expectedGradInitialStateHiddenBackward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward.cell,
expectedGradInitialStateCellBackward,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalLSTMStackMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_lstm.py --merge-mode none".
// BEGIN GENERATED CODE
let kernelForward = Tensor<Float>(
[[-0.23379976,-0.32979083,0.03977573,0.06884748,-0.093649775,0.34596872,
-0.0076143146,0.55984896,0.22111118,-0.4210437,0.23581362,0.1825394,
0.08120936,-0.15200394,-0.08932975,0.14617139],
[0.4650857,0.18167573,0.37479192,-0.46759078,-0.24752906,-0.5445049,
0.2544219,0.29843968,0.20215267,0.03678304,0.28829694,-0.5086538,
-0.5053389,0.2829352,-0.36783904,-0.2113666],
[-0.23447555,-0.44898528,-0.3757536,0.3030774,0.096295714,0.541732,
0.46623164,-0.4027334,-0.45229727,0.119446635,-0.36198467,0.020288646,
0.5418573,-0.3643924,-0.5106659,0.10962713]]
)
let recurrentKernelForward = Tensor<Float>(
[[0.22804272,-0.03794806,0.17161758,-0.5903252,-0.32132986,-0.028507836,
-0.02729048,0.15502541,-0.29579595,0.041225288,-0.04219827,-0.22448958,
0.51597697,-0.103077516,0.005849608,0.14667785],
[0.09507164,-0.25853005,-0.22325921,0.499246,-0.3109755,0.01945003,
0.33349884,-0.030728217,-0.2997637,0.4836203,0.035094753,-0.1599233,
0.16274704,-0.0034662904,-0.18398553,-0.06985295],
[-0.13635698,-0.51163936,-0.09270489,-0.12567669,0.41930002,-0.48658654,
-0.12225373,-0.28107005,-0.004303295,0.16249746,0.024185713,-0.24801093,
0.019665923,0.040028445,0.038016353,0.31107086],
[0.14521983,0.63589036,0.04985115,0.17409262,0.18315184,-0.341375,
-0.048293047,-0.037892636,0.08461128,0.19565175,-0.18345755,-0.12093313,
0.27880925,0.39949074,-0.1981584,0.13265577]]
)
let biasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
)
let kernelBackward = Tensor<Float>(
[[-0.3425501,0.26993138,-0.013709605,0.42182362,-0.10439563,-0.5456007,
0.23550463,-0.15115345,0.09087402,0.45050424,-0.41379565,0.050539136,
0.22132623,-0.55731493,-0.15275678,0.07351905],
[-0.20979714,0.1675657,0.5581859,-0.50259715,0.4392975,-0.26118547,
-0.06672484,0.26642138,-0.37113252,-0.29193833,0.5320031,0.54281443,
-0.5196755,-0.013125479,0.006757021,0.5087437],
[0.41886348,0.16300112,0.15921205,0.3881111,0.34322268,0.0014763474,
0.2432934,0.32898188,0.26853347,-0.48425156,-0.3587765,-0.19107765,
0.5605115,-0.18283507,0.13686264,0.008577526]]
)
let recurrentKernelBackward = Tensor<Float>(
[[0.332492,0.3287107,0.013327966,-0.15466748,0.18726069,-0.18434268,
-0.13676699,-0.06803291,-0.55743134,0.2967973,-0.09094952,-0.12427574,
-0.27146038,-0.37563083,0.15853615,0.049586363],
[-0.23724489,0.016642023,-0.2502587,0.48801288,0.4526761,0.012872117,
-0.0565288,-0.113935634,-0.08418312,0.2147764,0.16762011,0.058674254,
0.16494237,0.1398105,0.25171497,0.4759469],
[-0.0038104642,-0.2387862,0.22545648,-0.28967497,0.5137987,-0.12194693,
-0.17891966,0.33095407,-0.003036025,-0.4760634,0.06607926,-0.2880439,
0.09167388,-0.10248731,-0.025532419,0.23298186],
[0.06349304,0.13959168,-0.2960539,-0.20912763,0.18433903,-0.2516703,
-0.007072272,-0.09261524,0.37721395,0.09471353,-0.3878575,0.20997167,
-0.18772967,0.004912289,-0.48590505,0.3492866]]
)
let biasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.90076077,-0.7541278,-0.025081873],
[0.37973404,-0.26513243,0.10235357],
[0.3545239,-0.14615154,-0.540749],
[-0.70222735,-0.34035724,-0.8451414]]]
)
let initialStateHiddenForward = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialStateCellForward = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let initialStateHiddenBackward = Tensor<Float>(
[[0.60601985,0.77093506,0.7210845,-0.012122989]]
)
let initialStateCellBackward = Tensor<Float>(
[[0.06269443,-0.80621815,0.47859335,0.13418436]]
)
let expectedSum = Tensor<Float>(
-0.045482457
)
let expectedStatesForward = Tensor<Float>(
[[[-0.44356138,-0.061652392,0.24647687,-0.19823068],
[-0.2737949,-0.07248981,0.19220428,-0.08825301],
[-0.124358594,-0.1213435,0.21946031,-0.025490183],
[-0.048278596,-0.028744407,0.1743442,-0.011268781]]]
)
let expectedStatesBackward = Tensor<Float>(
[[[0.05788271,-0.12734284,0.033790566,-0.11494893],
[0.0008733621,-0.06352448,0.044504695,-0.060439102],
[-0.061879173,-0.12179416,0.1418245,-0.016867002],
[-0.07999351,-0.29541627,0.25795794,-0.014083028]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those four and test it.
// let expectedFinalStateHiddenForward = Tensor<Float>(
// [[-0.048278596,-0.028744407,0.1743442,-0.011268781]]
// )
// let expectedFinalStateCellForward = Tensor<Float>(
// [[-0.123089634,-0.049444616,0.27142566,-0.023337554]]
// )
// let expectedFinalStateHiddenBackward = Tensor<Float>(
// [[0.05788271,-0.12734284,0.033790566,-0.11494893]]
// )
// let expectedFinalStateCellBackward = Tensor<Float>(
// [[0.106476925,-0.20731302,0.0632082,-0.31257194]]
// )
let expectedGradKernelForward = Tensor<Float>(
[[0.0029497184,-0.05191034,0.02407415,0.000304088,0.014214157,0.046752453,
-0.050661147,0.031548906,-0.12825678,-0.26617724,-0.16949388,
-0.14972453,0.018881105,0.0066204695,-0.040960398,0.002944462],
[-0.005592435,-0.019203003,0.010193659,-0.014379387,0.03603935,
0.04006479,-0.05743648,0.04225596,-0.14608386,-0.28398833,-0.20509121,
-0.21936974,0.00064499304,0.0065013287,-0.0188484,0.0005266868],
[-0.030478455,-0.0063452474,-0.019162579,-0.008174095,0.03241433,
0.035240535,-0.06443699,0.008317955,-0.21671411,-0.38373917,-0.36592808,
-0.26295128,0.020803409,0.012763699,-0.050191153,0.0049239486]]
)
let expectedGradRecurrentKernelForward = Tensor<Float>(
[[-0.009446431,0.0046872147,-0.0034881886,-0.013322809,0.028175268,
0.017745323,-0.035205625,0.02300223,-0.097775005,-0.17619048,
-0.15024684,-0.15604895,-0.0037074587,0.0044266684,-0.006576741,
-0.000016547943],
[-0.007838752,0.00966959,-0.011096001,0.0011524465,-0.0017994214,
-0.0070223105,0.0018404042,-0.013339203,-0.013871463,-0.009875648,
-0.04120832,-0.005587943,0.0054747937,0.0015693338,-0.007709676,
0.0012488235],
[0.017221576,-0.023692459,0.024221376,-0.00008906424,0.00012817606,
0.014727241,-0.0016071051,0.025199397,0.034627017,0.029167429,
0.09496009,0.025977343,-0.009273196,-0.0034023244,0.013966144,
-0.0023199664],
[-0.012845716,0.032039955,-0.026622673,0.0055777263,-0.0153835025,
-0.032603078,0.027565094,-0.041101806,0.03523525,0.104707435,
0.0075816847,0.07301338,0.0071937367,0.000036919257,-0.0029361085,
0.0017134396]]
)
let expectedGradBiasForward = Tensor<Float>(
[0.041717105,0.0077266824,0.011825588,0.041857336,-0.10179798,-0.08539298,
0.15041551,-0.08090452,0.43130994,0.7878589,0.66939783,0.6281428,
-0.005506225,-0.021247003,0.056803677,-0.0033201245]
)
let expectedGradKernelBackward = Tensor<Float>(
[[0.034572553,-0.014308241,-0.037737265,0.028604513,-0.002552184,
0.042288657,-0.036268644,-0.011494972,-0.09629306,-0.12330007,
-0.09965681,-0.15201326,0.033916343,0.08542741,-0.07855631,0.004139293],
[0.016756708,-0.0069349525,-0.018290589,0.013864105,-0.0012369987,
0.020496568,-0.017578775,-0.0055714105,-0.046671554,-0.059761375,
-0.0483019,-0.07367815,0.016438654,0.041405164,-0.03807486,0.0020062423],
[0.041608598,-0.017220188,-0.04541738,0.03442597,-0.0030715927,
0.050895046,-0.04364987,-0.013834375,-0.11589018,-0.14839353,-0.1199385,
-0.18295029,0.04081884,0.10281321,-0.09454372,0.0049817027]]
)
let expectedGradRecurrentKernelBackward = Tensor<Float>(
[[-0.029835997,0.012347964,0.032567132,-0.024685599,0.0022025262,
-0.03649497,0.031299718,0.009920122,0.08310059,0.106407546,0.08600349,
0.13118693,-0.02926969,-0.07372357,0.06779383,-0.0035721958],
[-0.03795522,0.015708195,0.041429576,-0.03140325,0.0028018963,
-0.046426285,0.039817262,0.012619669,0.10571462,0.13536406,0.109407485,
0.16688661,-0.0372348,-0.09378585,0.08624245,-0.0045442916],
[-0.03550094,0.014692465,0.038750634,-0.02937264,0.0026207187,
-0.043424245,0.037242576,0.011803649,0.098878846,0.12661108,0.10233293,
0.15609531,-0.03482711,-0.08772142,0.080665804,-0.0042504463],
[0.00059684756,-0.0002470121,-0.00065148197,0.00049381756,
-0.000044059943,0.00073005544,-0.0006261282,-0.00019844486,
-0.0016623671,-0.002128606,-0.0017204377,-0.0026242996,0.00058551895,
0.0014747867,-0.0013561664,0.000071459195]]
)
let expectedGradBiasBackward = Tensor<Float>(
[-0.049232706,0.02037551,0.053739384,-0.04073398,0.0036344128,-0.06022075,
0.05164801,0.016369302,0.1371252,0.17558426,0.1419153,0.21647298,
-0.048298236,-0.121652074,0.11186734,-0.0058945194]
)
let expectedGradX = Tensor<Float>(
[[[-0.054938864,-0.022083957,-0.004919187],
[0.01124474,-0.020291314,-0.02433711],
[0.017743908,0.02348721,-0.07303476],
[0.113909885,0.27435783,-0.3467198]]]
)
let expectedGradInitialStateHiddenForward = Tensor<Float>(
[[-0.046731517,0.05862768,0.0007173242,0.035859868]]
)
let expectedGradInitialStateCellForward = Tensor<Float>(
[[0.09301593,0.20037422,0.123320214,0.10345338]]
)
let expectedGradInitialStateHiddenBackward = Tensor<Float>(
[[0.013064705,0.037812762,-0.10854563,0.017091252]]
)
let expectedGradInitialStateCellBackward = Tensor<Float>(
[[0.3086998,0.34445396,0.26831728,0.4068746]]
)
// END GENERATED CODE
// Swaps the columns corresponding to "forget" and "update" gates.
//
// This translates between the keras ordering
// [input | forget | update | output]
// and the swift-apis ordering
// [input | update | forget | output]
func swapForgetUpdate(_ t: Tensor<Float>) -> Tensor<Float> {
var split = t.split(count: 4, alongAxis: -1)
split.swapAt(1, 2)
return Tensor(concatenating: split, alongAxis: -1)
}
withTensorLeakChecking {
var lstm = BidirectionalLSTM<Float>(
LSTMCell(inputSize: 3, hiddenSize: 4),
mergeFunction: LSTMCell<Float>.State.stack
)
lstm.forward.cell.fusedWeight =
swapForgetUpdate(Tensor(concatenating: [kernelForward, recurrentKernelForward]))
lstm.forward.cell.fusedBias = swapForgetUpdate(biasForward)
lstm.backward.cell.fusedWeight =
swapForgetUpdate(Tensor(concatenating: [kernelBackward, recurrentKernelBackward]))
lstm.backward.cell.fusedBias = swapForgetUpdate(biasBackward)
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = LSTMCell<Float>.State(
cell: initialStateCellForward,
hidden: initialStateHiddenForward)
let initialBackwardLayerState = LSTMCell<Float>.State(
cell: initialStateCellBackward,
hidden: initialStateHiddenBackward)
let outputs = lstm(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).map { $0.hidden.unstacked(alongAxis: 0) }
assertEqual(
Tensor(concatenating: outputs.map { $0[0] }),
expectedStatesForward,
accuracy: 1e-6)
assertEqual(
Tensor(concatenating: outputs.map { $0[1] }),
expectedStatesBackward,
accuracy: 1e-6)
let (outputSum, (gradLSTM)) =
valueWithGradient(at: lstm) { lstm in
lstm.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).hidden.sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradLSTM.forward.cell.fusedWeight,
swapForgetUpdate(Tensor(concatenating: [expectedGradKernelForward, expectedGradRecurrentKernelForward])),
accuracy: 1e-6)
assertEqual(
gradLSTM.forward.cell.fusedBias,
swapForgetUpdate(expectedGradBiasForward),
accuracy: 1e-6)
assertEqual(
gradLSTM.backward.cell.fusedWeight,
swapForgetUpdate(Tensor(concatenating: [expectedGradKernelBackward, expectedGradRecurrentKernelBackward])),
accuracy: 1e-6)
assertEqual(
gradLSTM.backward.cell.fusedBias,
swapForgetUpdate(expectedGradBiasBackward),
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
lstm.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).hidden.sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward.hidden,
expectedGradInitialStateHiddenForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward.cell,
expectedGradInitialStateCellForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward.hidden,
expectedGradInitialStateHiddenBackward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward.cell,
expectedGradInitialStateCellBackward,
accuracy: 1e-6)
}
#endif
}
func testGRU() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/gru.py".
// BEGIN GENERATED CODE
let updateKernel = Tensor<Float>(
[[-0.26313293,-0.37116733,0.044766128,0.07748526],
[0.09139812,-0.17107481,-0.1005373,0.16451049],
[0.22751534,0.04139793,0.32446748,-0.572471]]
)
let resetKernel = Tensor<Float>(
[[-0.10539937,0.38937503,-0.008569658,0.6300892],
[0.5234366,0.20446932,0.42181438,-0.5262561],
[-0.5687402,0.31843305,-0.4139892,-0.23788527]]
)
let outputKernel = Tensor<Float>(
[[0.24885243,-0.4738691,0.26539946,0.2054413],
[-0.27858475,-0.6128201,0.28634238,0.33588284],
[-0.2638935,-0.5053163,-0.42289674,0.34110242]]
)
let updateRecurrentKernel = Tensor<Float>(
[[0.27225327,-0.04530505,0.20488906,-0.70477146],
[0.1233796,-0.2725925,-0.21331471,0.45468533],
[-0.12901938,-0.5375645,-0.07981183,-0.18903717],
[0.22767149,0.6950712,0.06780873,0.12117213]]
)
let resetRecurrentKernel = Tensor<Float>(
[[-0.38362607,-0.03403465,-0.032581285,0.18508019],
[-0.35768405,0.017118583,0.34339952,-0.015158445],
[0.42593452,-0.51679564,-0.13895734,-0.2845649],
[0.15196994,-0.4617733,-0.03934008,-0.038054474]]
)
let outputRecurrentKernel = Tensor<Float>(
[[-0.3531419,0.04921763,-0.050379246,-0.26801136],
[-0.34328082,0.5067098,0.031886574,-0.19034609],
[-0.020022772,0.16366726,0.021551719,-0.27538475],
[0.0029521734,0.31402355,-0.22738007,-0.23688483]]
)
let updateBias = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetBias = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputBias = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateRecurrentBias = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetRecurrentBias = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputRecurrentBias = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.5643544,0.44471443,-0.022586703],
[0.6949582,-0.17199272,-0.8988821],
[0.38799608,-0.24902666,0.14971566],
[0.7422098,-0.6817321,0.083263636]]]
)
let initialState = Tensor<Float>(
[[-0.71174276,-0.39879853,0.7789655,-0.1812765]]
)
let expectedSum = Tensor<Float>(
0.2622946
)
let expectedStates = Tensor<Float>(
[[[-0.31175402,-0.20596652,0.36340874,-0.075575344],
[0.21953434,0.03525635,0.43513912,-0.11752244],
[0.1467207,-0.031999923,0.21731833,-0.0734479],
[0.24567646,0.0015162053,0.10337216,-0.08827023]]]
)
let expectedFinalState = Tensor<Float>(
[[0.24567646,0.0015162053,0.10337216,-0.08827023]]
)
let expectedGradX = Tensor<Float>(
[[[0.0044808714,-0.0021028928,-0.030270718],
[0.008932473,-0.025464162,-0.09908461],
[0.011008073,-0.06111902,-0.16229588],
[0.1040091,-0.177594,-0.41953978]]]
)
let expectedGradInitialState = Tensor<Float>(
[[0.005508149,0.03993896,0.053400937,0.037300646]]
)
let expectedGradUpdateKernel = Tensor<Float>(
[[-0.040157042,-0.0136785135,0.050436385,0.007616069],
[0.029918717,0.006519991,-0.045159567,-0.005434308],
[0.013227239,0.01569719,0.019206645,-0.004196606]]
)
let expectedGradResetKernel = Tensor<Float>(
[[-0.004324538,0.0015231472,0.0015622675,-0.010165867],
[0.00435052,-0.0018293709,-0.00096766773,0.008604034],
[-0.0024347848,0.0026376988,-0.00044454157,-0.0025067823]]
)
let expectedGradOutputKernel = Tensor<Float>(
[[0.4559958,0.5759123,0.4702625,0.51912045],
[-0.38423252,-0.45619243,-0.36462966,-0.4307824],
[0.025001988,-0.0074325786,-0.018035406,0.030591251]]
)
let expectedGradUpdateRecurrentKernel = Tensor<Float>(
[[0.0015186802,0.010627928,0.008849502,0.0014116366],
[0.0055325227,0.0070856367,-0.0066436627,0.0005385389],
[-0.012196659,-0.00962431,0.050553232,-0.0037394736],
[0.003526025,0.0022264342,-0.014122595,0.0008748602]]
)
let expectedGradResetRecurrentKernel = Tensor<Float>(
[[-0.0021709674,0.0029862812,-0.0005916139,-0.0038731585],
[-0.0003447486,0.0013247593,-0.0006560448,-0.00038965122],
[-0.0019658464,-0.00036801025,0.0022314903,-0.004976805],
[0.00065238454,-0.000011753844,-0.0005693683,0.0015112129]]
)
let expectedGradOutputRecurrentKernel = Tensor<Float>(
[[0.03295932,0.04461184,0.012124008,0.06561776],
[-0.010434465,-0.022276893,-0.025632525,-0.019136468],
[0.08186121,0.15295859,0.12944305,0.1582405],
[-0.024327286,-0.04418066,-0.035645414,-0.047330596]]
)
let expectedGradUpdateBias = Tensor<Float>(
[-0.052024383,-0.026385367,0.12956381,-0.0010043234]
)
let expectedGradResetBias = Tensor<Float>(
[-0.0070920927,0.0005423294,0.0050295107,-0.01650119]
)
let expectedGradOutputBias = Tensor<Float>(
[0.6879913,0.98991126,0.85718745,0.871734]
)
let expectedGradUpdateRecurrentBias = Tensor<Float>(
[-0.052024383,-0.026385367,0.12956381,-0.0010043234]
)
let expectedGradResetRecurrentBias = Tensor<Float>(
[-0.0070920927,0.0005423294,0.0050295107,-0.01650119]
)
let expectedGradOutputRecurrentBias = Tensor<Float>(
[0.28977823,0.49616843,0.3776239,0.5536645]
)
// END GENERATED CODE
withTensorLeakChecking {
var gru = GRU<Float>(
GRUCell(inputSize: 3, hiddenSize: 4)
)
XCTAssertEqual(gru.cell.updateKernel.shape, updateKernel.shape)
XCTAssertEqual(gru.cell.updateRecurrentKernel.shape, updateRecurrentKernel.shape)
XCTAssertEqual(gru.cell.resetKernel.shape, resetKernel.shape)
XCTAssertEqual(gru.cell.resetRecurrentKernel.shape, resetRecurrentKernel.shape)
XCTAssertEqual(gru.cell.outputKernel.shape, outputKernel.shape)
XCTAssertEqual(gru.cell.outputRecurrentKernel.shape, outputRecurrentKernel.shape)
XCTAssertEqual(gru.cell.updateBias.shape, updateBias.shape)
XCTAssertEqual(gru.cell.updateRecurrentBias.shape, updateRecurrentBias.shape)
XCTAssertEqual(gru.cell.resetBias.shape, resetBias.shape)
XCTAssertEqual(gru.cell.resetRecurrentBias.shape, resetRecurrentBias.shape)
XCTAssertEqual(gru.cell.outputBias.shape, outputBias.shape)
XCTAssertEqual(gru.cell.outputRecurrentBias.shape, outputRecurrentBias.shape)
gru.cell.updateKernel = updateKernel
gru.cell.updateRecurrentKernel = updateRecurrentKernel
gru.cell.resetKernel = resetKernel
gru.cell.resetRecurrentKernel = resetRecurrentKernel
gru.cell.outputKernel = outputKernel
gru.cell.outputRecurrentKernel = outputRecurrentKernel
gru.cell.updateBias = updateBias
gru.cell.updateRecurrentBias = updateRecurrentBias
gru.cell.resetBias = resetBias
gru.cell.resetRecurrentBias = resetRecurrentBias
gru.cell.outputBias = outputBias
gru.cell.outputRecurrentBias = outputRecurrentBias
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialState = GRUCell<Float>.State(initialState)
let outputs = gru(inputs, initialState: initialState)
assertEqual(
Tensor(concatenating: outputs.map { $0 }),
expectedStates,
accuracy: 1e-6)
assertEqual(
outputs.last!,
expectedFinalState,
accuracy: 1e-6)
let (outputSum, (gradGRU, gradInputs, gradInitialState)) =
valueWithGradient(at: gru, inputs, initialState) { gru, inputs, initialState in
gru.lastOutput(
from: inputs,
initialState: initialState
).sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialState,
expectedGradInitialState,
accuracy: 1e-6)
assertEqual(
gradGRU.cell.updateKernel,
expectedGradUpdateKernel,
accuracy: 1e-6)
assertEqual(
gradGRU.cell.resetKernel,
expectedGradResetKernel,
accuracy: 1e-6)
assertEqual(
gradGRU.cell.outputKernel,
expectedGradOutputKernel,
accuracy: 1e-6)
assertEqual(
gradGRU.cell.updateRecurrentKernel,
expectedGradUpdateRecurrentKernel,
accuracy: 1e-6)
assertEqual(
gradGRU.cell.resetRecurrentKernel,
expectedGradResetRecurrentKernel,
accuracy: 1e-6)
assertEqual(
gradGRU.cell.outputRecurrentKernel,
expectedGradOutputRecurrentKernel,
accuracy: 1e-6)
assertEqual(
gradGRU.cell.updateBias,
expectedGradUpdateBias,
accuracy: 1e-6)
assertEqual(
gradGRU.cell.resetBias,
expectedGradResetBias,
accuracy: 1e-6)
assertEqual(
gradGRU.cell.outputBias,
expectedGradOutputBias,
accuracy: 1e-6)
assertEqual(
gradGRU.cell.updateRecurrentBias,
expectedGradUpdateRecurrentBias,
accuracy: 1e-6)
assertEqual(
gradGRU.cell.resetRecurrentBias,
expectedGradResetRecurrentBias,
accuracy: 1e-6)
assertEqual(
gradGRU.cell.outputRecurrentBias,
expectedGradOutputRecurrentBias,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalGRUSumMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_gru.py --merge-mode sum".
// BEGIN GENERATED CODE
let updateKernelForward = Tensor<Float>(
[[-0.26313293,-0.37116733,0.044766128,0.07748526],
[0.09139812,-0.17107481,-0.1005373,0.16451049],
[0.22751534,0.04139793,0.32446748,-0.572471]]
)
let resetKernelForward = Tensor<Float>(
[[-0.10539937,0.38937503,-0.008569658,0.6300892],
[0.5234366,0.20446932,0.42181438,-0.5262561],
[-0.5687402,0.31843305,-0.4139892,-0.23788527]]
)
let outputKernelForward = Tensor<Float>(
[[0.24885243,-0.4738691,0.26539946,0.2054413],
[-0.27858475,-0.6128201,0.28634238,0.33588284],
[-0.2638935,-0.5053163,-0.42289674,0.34110242]]
)
let updateRecurrentKernelForward = Tensor<Float>(
[[0.27225327,-0.04530505,0.20488906,-0.70477146],
[0.1233796,-0.2725925,-0.21331471,0.45468533],
[-0.12901938,-0.5375645,-0.07981183,-0.18903717],
[0.22767149,0.6950712,0.06780873,0.12117213]]
)
let resetRecurrentKernelForward = Tensor<Float>(
[[-0.38362607,-0.03403465,-0.032581285,0.18508019],
[-0.35768405,0.017118583,0.34339952,-0.015158445],
[0.42593452,-0.51679564,-0.13895734,-0.2845649],
[0.15196994,-0.4617733,-0.03934008,-0.038054474]]
)
let outputRecurrentKernelForward = Tensor<Float>(
[[-0.3531419,0.04921763,-0.050379246,-0.26801136],
[-0.34328082,0.5067098,0.031886574,-0.19034609],
[-0.020022772,0.16366726,0.021551719,-0.27538475],
[0.0029521734,0.31402355,-0.22738007,-0.23688483]]
)
let updateBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateKernelBackward = Tensor<Float>(
[[-0.38552743,0.30379778,-0.015429676,0.47474676],
[0.24909449,-0.6272373,-0.17192209,0.08274299],
[-0.41769588,-0.32856578,0.5987498,0.6109175]]
)
let resetKernelBackward = Tensor<Float>(
[[-0.11749339,-0.61405337,0.26505172,-0.17011762],
[-0.23611891,0.18858898,0.6282174,-0.5656544],
[-0.5848755,-0.014772236,0.007604778,0.5725722]]
)
let outputKernelBackward = Tensor<Float>(
[[0.10227531,0.5070258,-0.46571168,0.056879938],
[0.49441308,-0.29395455,-0.07509631,0.29984736],
[0.47141522,0.18345171,0.1791873,0.4368046]]
)
let updateRecurrentKernelBackward = Tensor<Float>(
[[0.3819934,0.37764925,0.015312237,-0.17769441],
[-0.30984464,0.0024376288,-0.3083459,0.6083385],
[-0.035942614,-0.24049878,0.19538112,-0.22652327],
[0.06525053,0.14899497,-0.36888042,-0.2775943]]
)
let resetRecurrentKernelBackward = Tensor<Float>(
[[0.2151401,-0.21178766,-0.15712889,-0.078161664],
[0.54615974,0.025927158,-0.061987586,-0.13631916],
[0.61778206,-0.12979838,-0.19998191,0.32677993],
[0.3122218,-0.3348464,-0.029183073,-0.08691845]]
)
let outputRecurrentKernelBackward = Tensor<Float>(
[[-0.64042187,0.34098455,-0.10449011,-0.14277793],
[-0.07292092,0.24773169,0.21102233,0.07893403],
[-0.029284794,-0.45729926,0.09502104,-0.29511455],
[0.49253088,0.07420389,-0.48452082,0.2440229]]
)
let updateBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.90076077,-0.7541278,-0.025081873],
[0.37973404,-0.26513243,0.10235357],
[0.3545239,-0.14615154,-0.540749],
[-0.70222735,-0.34035724,-0.8451414]]]
)
let initialForwardLayerState = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialBackwardLayerState = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let expectedSum = Tensor<Float>(
-1.0636934
)
let expectedStates = Tensor<Float>(
[[[-0.47425687,0.13057935,-0.28099662,0.09199959],
[-0.23789163,0.07386574,-0.09076065,-0.07140374],
[-0.37719586,-0.22458386,0.3951493,-0.43688574],
[-0.6900477,-0.26849592,0.795504,-0.9006538]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those two and test it.
// let expectedFinalStateForward = Tensor<Float>(
// [[0.08708767,0.49491018,0.019275323,-0.13219076]]
// )
// let expectedFinalStateBackward = Tensor<Float>(
// [[-0.328244,-0.30765843,0.35560328,-0.3700244]]
// )
let expectedGradX = Tensor<Float>(
[[[0.016884286,0.031954587,-0.034630362],
[-0.030145949,-0.032830622,-0.09927184],
[0.010677528,-0.06555416,-0.24680781],
[0.36794654,0.22227536,0.035613686]]]
)
let expectedGradInitialStateForward = Tensor<Float>(
[[-0.07189826,0.26491642,0.021249572,0.09973241]]
)
let expectedGradUpdateKernelForward = Tensor<Float>(
[[-0.014633494,0.11262925,-0.0124673275,-0.14178306],
[-0.0015309703,0.043804236,0.026814371,-0.117686585],
[0.0006633089,0.10263121,0.05096156,-0.15763283]]
)
let expectedGradResetKernelForward = Tensor<Float>(
[[0.010167458,0.0012375548,0.0016463948,0.0056149918],
[0.0059102885,-0.007958793,0.0032499032,0.0029476206],
[0.01513045,-0.011363849,0.0046043447,0.0065481835]]
)
let expectedGradOutputKernelForward = Tensor<Float>(
[[-0.27720484,0.01121016,-0.3119189,-0.15031564],
[-0.17816868,-0.1504507,-0.26702198,-0.19132887],
[-0.47820407,-0.2667625,-0.5929085,-0.3111684]]
)
let expectedGradUpdateRecurrentKernelForward = Tensor<Float>(
[[0.0013306543,-0.01375161,0.0037764863,-0.0035531288],
[-0.0023589546,-0.024710568,-0.038062952,0.096005075],
[0.0055330433,-0.0055813976,0.042736366,-0.09101869],
[-0.002846387,-0.016188195,-0.037352126,0.11634412]]
)
let expectedGradResetRecurrentKernelForward = Tensor<Float>(
[[-0.0016176911,-0.0013255397,0.0003207235,-0.0006573718],
[-0.0055763996,0.010337391,-0.0034352662,-0.0023184759],
[0.0016612073,-0.011832552,0.003696582,0.000721002],
[-0.0028628546,0.010542515,-0.0038019938,-0.0016213771]]
)
let expectedGradOutputRecurrentKernelForward = Tensor<Float>(
[[0.027280934,-0.011064235,0.02276091,-0.004477814],
[0.09789748,0.09476159,0.15628886,0.10902606],
[-0.032271817,-0.10743487,-0.093189105,-0.10548531],
[0.05016677,0.09146461,0.10986484,0.10788684]]
)
let expectedGradUpdateBiasForward = Tensor<Float>(
[-0.007191318,-0.0988105,-0.11562109,0.29936516]
)
let expectedGradResetBiasForward = Tensor<Float>(
[-0.019118859,0.030049099,-0.010341871,-0.0081044715]
)
let expectedGradOutputBiasForward = Tensor<Float>(
[0.61583984,0.5973234,0.9004895,0.605246]
)
let expectedGradUpdateRecurrentBiasForward = Tensor<Float>(
[-0.007191318,-0.0988105,-0.11562109,0.29936516]
)
let expectedGradResetRecurrentBiasForward = Tensor<Float>(
[-0.019118859,0.030049099,-0.010341871,-0.0081044715]
)
let expectedGradOutputRecurrentBiasForward = Tensor<Float>(
[0.33583188,0.2782093,0.5110848,0.33206433]
)
let expectedGradInitialStateBackward = Tensor<Float>(
[[0.436919,0.39781284,0.48556933,0.34003386]]
)
let expectedGradUpdateKernelBackward = Tensor<Float>(
[[0.080392286,-0.02186797,-0.106636874,0.05397816],
[0.038964726,-0.010599021,-0.051685017,0.026162265],
[0.09675335,-0.026318438,-0.12833911,0.06496355]]
)
let expectedGradResetKernelBackward = Tensor<Float>(
[[-0.006548254,0.033489596,-0.03336197,0.033302337],
[-0.0031738235,0.016231818,-0.016169962,0.016141057],
[-0.007880924,0.040305246,-0.04015165,0.040079877]]
)
let expectedGradOutputKernelBackward = Tensor<Float>(
[[-0.2241628,-0.14797445,-0.24141216,-0.2907229],
[-0.108647764,-0.071720615,-0.11700823,-0.14090827],
[-0.26978338,-0.17808953,-0.29054326,-0.3498895]]
)
let expectedGradUpdateRecurrentKernelBackward = Tensor<Float>(
[[0.11208751,-0.03048957,-0.14867921,0.07525943],
[0.0779456,-0.021202432,-0.10339145,0.05233537],
[-0.118453026,0.03222109,0.15712279,-0.07953346],
[0.12208392,-0.03320875,-0.16193901,0.08197136]]
)
let expectedGradResetRecurrentKernelBackward = Tensor<Float>(
[[-0.009129949,0.046693105,-0.046515163,0.04643202],
[-0.006348962,0.032470364,-0.03234662,0.032288805],
[0.009648444,-0.049344834,0.04915679,-0.04906892],
[-0.009944194,0.05085738,-0.050663568,0.05057301]]
)
let expectedGradOutputRecurrentKernelBackward = Tensor<Float>(
[[-0.18567991,-0.14199756,-0.13620174,-0.24541472],
[-0.12912172,-0.09874504,-0.09471462,-0.17066127],
[0.19622478,0.1500617,0.14393671,0.25935197],
[-0.20223959,-0.15466146,-0.14834875,-0.26730177]]
)
let expectedGradUpdateBiasBackward = Tensor<Float>(
[-0.11448185,0.03114087,0.1518552,-0.076867074]
)
let expectedGradResetBiasBackward = Tensor<Float>(
[0.009324977,-0.047690533,0.04750879,-0.04742387]
)
let expectedGradOutputBiasBackward = Tensor<Float>(
[0.31921685,0.21072157,0.34378064,0.4140011]
)
let expectedGradUpdateRecurrentBiasBackward = Tensor<Float>(
[-0.11448185,0.03114087,0.1518552,-0.076867074]
)
let expectedGradResetRecurrentBiasBackward = Tensor<Float>(
[0.009324977,-0.047690533,0.04750879,-0.04742387]
)
let expectedGradOutputRecurrentBiasBackward = Tensor<Float>(
[0.18964629,0.14503083,0.13911119,0.2506571]
)
// END GENERATED CODE
withTensorLeakChecking {
var gru = BidirectionalGRU<Float>(
GRUCell(inputSize: 3, hiddenSize: 4),
mergeFunction: GRUCell<Float>.State.sum
)
XCTAssertEqual(gru.forward.cell.updateKernel.shape, updateKernelForward.shape)
XCTAssertEqual(gru.forward.cell.updateRecurrentKernel.shape, updateRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.resetKernel.shape, resetKernelForward.shape)
XCTAssertEqual(gru.forward.cell.resetRecurrentKernel.shape, resetRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.outputKernel.shape, outputKernelForward.shape)
XCTAssertEqual(gru.forward.cell.outputRecurrentKernel.shape, outputRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.updateBias.shape, updateBiasForward.shape)
XCTAssertEqual(gru.forward.cell.updateRecurrentBias.shape, updateRecurrentBiasForward.shape)
XCTAssertEqual(gru.forward.cell.resetBias.shape, resetBiasForward.shape)
XCTAssertEqual(gru.forward.cell.resetRecurrentBias.shape, resetRecurrentBiasForward.shape)
XCTAssertEqual(gru.forward.cell.outputBias.shape, outputBiasForward.shape)
XCTAssertEqual(gru.forward.cell.outputRecurrentBias.shape, outputRecurrentBiasForward.shape)
XCTAssertEqual(gru.backward.cell.updateKernel.shape, updateKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.updateRecurrentKernel.shape, updateRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.resetKernel.shape, resetKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.resetRecurrentKernel.shape, resetRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.outputKernel.shape, outputKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.outputRecurrentKernel.shape, outputRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.updateBias.shape, updateBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.updateRecurrentBias.shape, updateRecurrentBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.resetBias.shape, resetBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.resetRecurrentBias.shape, resetRecurrentBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.outputBias.shape, outputBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.outputRecurrentBias.shape, outputRecurrentBiasBackward.shape)
gru.forward.cell.updateKernel = updateKernelForward
gru.forward.cell.updateRecurrentKernel = updateRecurrentKernelForward
gru.forward.cell.resetKernel = resetKernelForward
gru.forward.cell.resetRecurrentKernel = resetRecurrentKernelForward
gru.forward.cell.outputKernel = outputKernelForward
gru.forward.cell.outputRecurrentKernel = outputRecurrentKernelForward
gru.forward.cell.updateBias = updateBiasForward
gru.forward.cell.updateRecurrentBias = updateRecurrentBiasForward
gru.forward.cell.resetBias = resetBiasForward
gru.forward.cell.resetRecurrentBias = resetRecurrentBiasForward
gru.forward.cell.outputBias = outputBiasForward
gru.forward.cell.outputRecurrentBias = outputRecurrentBiasForward
gru.backward.cell.updateKernel = updateKernelBackward
gru.backward.cell.updateRecurrentKernel = updateRecurrentKernelBackward
gru.backward.cell.resetKernel = resetKernelBackward
gru.backward.cell.resetRecurrentKernel = resetRecurrentKernelBackward
gru.backward.cell.outputKernel = outputKernelBackward
gru.backward.cell.outputRecurrentKernel = outputRecurrentKernelBackward
gru.backward.cell.updateBias = updateBiasBackward
gru.backward.cell.updateRecurrentBias = updateRecurrentBiasBackward
gru.backward.cell.resetBias = resetBiasBackward
gru.backward.cell.resetRecurrentBias = resetRecurrentBiasBackward
gru.backward.cell.outputBias = outputBiasBackward
gru.backward.cell.outputRecurrentBias = outputRecurrentBiasBackward
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = GRUCell<Float>.State(initialForwardLayerState)
let initialBackwardLayerState = GRUCell<Float>.State(initialBackwardLayerState)
let outputs = gru(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
)
assertEqual(
Tensor(concatenating: outputs),
expectedStates,
accuracy: 1e-6)
let (outputSum, (gradGRU)) =
valueWithGradient(at: gru) { gru in
gru.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateKernel,
expectedGradUpdateKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetKernel,
expectedGradResetKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputKernel,
expectedGradOutputKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateRecurrentKernel,
expectedGradUpdateRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetRecurrentKernel,
expectedGradResetRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputRecurrentKernel,
expectedGradOutputRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateBias,
expectedGradUpdateBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetBias,
expectedGradResetBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputBias,
expectedGradOutputBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateRecurrentBias,
expectedGradUpdateRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetRecurrentBias,
expectedGradResetRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputRecurrentBias,
expectedGradOutputRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateKernel,
expectedGradUpdateKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetKernel,
expectedGradResetKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputKernel,
expectedGradOutputKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateRecurrentKernel,
expectedGradUpdateRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetRecurrentKernel,
expectedGradResetRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputRecurrentKernel,
expectedGradOutputRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateBias,
expectedGradUpdateBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetBias,
expectedGradResetBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputBias,
expectedGradOutputBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateRecurrentBias,
expectedGradUpdateRecurrentBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetRecurrentBias,
expectedGradResetRecurrentBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputRecurrentBias,
expectedGradOutputRecurrentBiasBackward,
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
gru.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward,
expectedGradInitialStateForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward,
expectedGradInitialStateBackward,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalGRUConcatenateMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_gru.py --merge-mode concat".
// BEGIN GENERATED CODE
let updateKernelForward = Tensor<Float>(
[[-0.26313293,-0.37116733,0.044766128,0.07748526],
[0.09139812,-0.17107481,-0.1005373,0.16451049],
[0.22751534,0.04139793,0.32446748,-0.572471]]
)
let resetKernelForward = Tensor<Float>(
[[-0.10539937,0.38937503,-0.008569658,0.6300892],
[0.5234366,0.20446932,0.42181438,-0.5262561],
[-0.5687402,0.31843305,-0.4139892,-0.23788527]]
)
let outputKernelForward = Tensor<Float>(
[[0.24885243,-0.4738691,0.26539946,0.2054413],
[-0.27858475,-0.6128201,0.28634238,0.33588284],
[-0.2638935,-0.5053163,-0.42289674,0.34110242]]
)
let updateRecurrentKernelForward = Tensor<Float>(
[[0.27225327,-0.04530505,0.20488906,-0.70477146],
[0.1233796,-0.2725925,-0.21331471,0.45468533],
[-0.12901938,-0.5375645,-0.07981183,-0.18903717],
[0.22767149,0.6950712,0.06780873,0.12117213]]
)
let resetRecurrentKernelForward = Tensor<Float>(
[[-0.38362607,-0.03403465,-0.032581285,0.18508019],
[-0.35768405,0.017118583,0.34339952,-0.015158445],
[0.42593452,-0.51679564,-0.13895734,-0.2845649],
[0.15196994,-0.4617733,-0.03934008,-0.038054474]]
)
let outputRecurrentKernelForward = Tensor<Float>(
[[-0.3531419,0.04921763,-0.050379246,-0.26801136],
[-0.34328082,0.5067098,0.031886574,-0.19034609],
[-0.020022772,0.16366726,0.021551719,-0.27538475],
[0.0029521734,0.31402355,-0.22738007,-0.23688483]]
)
let updateBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateKernelBackward = Tensor<Float>(
[[-0.38552743,0.30379778,-0.015429676,0.47474676],
[0.24909449,-0.6272373,-0.17192209,0.08274299],
[-0.41769588,-0.32856578,0.5987498,0.6109175]]
)
let resetKernelBackward = Tensor<Float>(
[[-0.11749339,-0.61405337,0.26505172,-0.17011762],
[-0.23611891,0.18858898,0.6282174,-0.5656544],
[-0.5848755,-0.014772236,0.007604778,0.5725722]]
)
let outputKernelBackward = Tensor<Float>(
[[0.10227531,0.5070258,-0.46571168,0.056879938],
[0.49441308,-0.29395455,-0.07509631,0.29984736],
[0.47141522,0.18345171,0.1791873,0.4368046]]
)
let updateRecurrentKernelBackward = Tensor<Float>(
[[0.3819934,0.37764925,0.015312237,-0.17769441],
[-0.30984464,0.0024376288,-0.3083459,0.6083385],
[-0.035942614,-0.24049878,0.19538112,-0.22652327],
[0.06525053,0.14899497,-0.36888042,-0.2775943]]
)
let resetRecurrentKernelBackward = Tensor<Float>(
[[0.2151401,-0.21178766,-0.15712889,-0.078161664],
[0.54615974,0.025927158,-0.061987586,-0.13631916],
[0.61778206,-0.12979838,-0.19998191,0.32677993],
[0.3122218,-0.3348464,-0.029183073,-0.08691845]]
)
let outputRecurrentKernelBackward = Tensor<Float>(
[[-0.64042187,0.34098455,-0.10449011,-0.14277793],
[-0.07292092,0.24773169,0.21102233,0.07893403],
[-0.029284794,-0.45729926,0.09502104,-0.29511455],
[0.49253088,0.07420389,-0.48452082,0.2440229]]
)
let updateBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.90076077,-0.7541278,-0.025081873],
[0.37973404,-0.26513243,0.10235357],
[0.3545239,-0.14615154,-0.540749],
[-0.70222735,-0.34035724,-0.8451414]]]
)
let initialForwardLayerState = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialBackwardLayerState = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let expectedSum = Tensor<Float>(
-1.0636933
)
let expectedStates = Tensor<Float>(
[[[-0.14601289,0.4382378,-0.6365999,0.462024,-0.328244,-0.30765843,
0.35560328,-0.37002444],
[-0.024607085,0.29749468,-0.35770136,0.2921221,-0.21328454,-0.22362898,
0.2669407,-0.36352584],
[0.10575075,0.28877518,-0.03438914,0.12433955,-0.48294663,-0.51335907,
0.4295384,-0.5612253],
[0.087087676,0.49491018,0.019275311,-0.13219076,-0.7771353,-0.7634061,
0.77622867,-0.768463]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those two and test it.
// let expectedFinalStateForward = Tensor<Float>(
// [[0.087087676,0.49491018,0.019275311,-0.13219076]]
// )
// let expectedFinalStateBackward = Tensor<Float>(
// [[-0.328244,-0.30765843,0.35560328,-0.37002444]]
// )
let expectedGradX = Tensor<Float>(
[[[0.016884288,0.031954587,-0.03463035],
[-0.030145962,-0.03283064,-0.09927187],
[0.010677524,-0.065554164,-0.24680781],
[0.36794654,0.22227536,0.035613716]]]
)
let expectedGradInitialStateForward = Tensor<Float>(
[[-0.07189825,0.26491642,0.021249587,0.0997324]]
)
let expectedGradUpdateKernelForward = Tensor<Float>(
[[-0.014633494,0.11262925,-0.012467325,-0.14178306],
[-0.0015309711,0.04380424,0.026814379,-0.11768658],
[0.0006633061,0.10263122,0.050961565,-0.15763283]]
)
let expectedGradResetKernelForward = Tensor<Float>(
[[0.010167458,0.001237556,0.0016463955,0.0056149918],
[0.0059102885,-0.007958793,0.0032499037,0.00294762],
[0.01513045,-0.011363849,0.0046043447,0.006548183]]
)
let expectedGradOutputKernelForward = Tensor<Float>(
[[-0.27720484,0.011210177,-0.3119189,-0.15031563],
[-0.17816868,-0.1504507,-0.267022,-0.19132887],
[-0.47820407,-0.2667625,-0.59290844,-0.3111684]]
)
let expectedGradUpdateRecurrentKernelForward = Tensor<Float>(
[[0.0013306541,-0.013751614,0.0037764856,-0.0035531214],
[-0.0023589535,-0.02471057,-0.03806296,0.09600505],
[0.0055330424,-0.0055813985,0.042736374,-0.09101869],
[-0.0028463858,-0.01618819,-0.03735213,0.1163441]]
)
let expectedGradResetRecurrentKernelForward = Tensor<Float>(
[[-0.0016176912,-0.0013255394,0.00032072357,-0.0006573719],
[-0.005576399,0.010337391,-0.0034352664,-0.002318475],
[0.0016612078,-0.011832552,0.0036965827,0.000721002],
[-0.0028628546,0.010542516,-0.0038019943,-0.0016213768]]
)
let expectedGradOutputRecurrentKernelForward = Tensor<Float>(
[[0.027280936,-0.011064235,0.022760917,-0.0044778096],
[0.09789747,0.09476159,0.15628885,0.109026045],
[-0.03227183,-0.10743488,-0.09318911,-0.10548531],
[0.05016677,0.09146462,0.10986483,0.107886836]]
)
let expectedGradUpdateBiasForward = Tensor<Float>(
[-0.0071913144,-0.09881051,-0.11562111,0.29936513]
)
let expectedGradResetBiasForward = Tensor<Float>(
[-0.019118859,0.0300491,-0.010341872,-0.0081044715]
)
let expectedGradOutputBiasForward = Tensor<Float>(
[0.61583984,0.5973235,0.9004895,0.605246]
)
let expectedGradUpdateRecurrentBiasForward = Tensor<Float>(
[-0.0071913144,-0.09881051,-0.11562111,0.29936513]
)
let expectedGradResetRecurrentBiasForward = Tensor<Float>(
[-0.019118859,0.0300491,-0.010341872,-0.0081044715]
)
let expectedGradOutputRecurrentBiasForward = Tensor<Float>(
[0.33583188,0.27820933,0.5110848,0.33206433]
)
let expectedGradInitialStateBackward = Tensor<Float>(
[[0.43691894,0.39781284,0.48556933,0.3400339]]
)
let expectedGradUpdateKernelBackward = Tensor<Float>(
[[0.080392286,-0.02186797,-0.106636874,0.05397816],
[0.038964726,-0.010599021,-0.051685017,0.026162265],
[0.09675335,-0.026318438,-0.12833911,0.06496355]]
)
let expectedGradResetKernelBackward = Tensor<Float>(
[[-0.006548254,0.033489596,-0.03336197,0.033302337],
[-0.0031738235,0.016231818,-0.016169962,0.016141057],
[-0.007880924,0.040305246,-0.04015165,0.040079877]]
)
let expectedGradOutputKernelBackward = Tensor<Float>(
[[-0.22416282,-0.14797445,-0.24141216,-0.29072288],
[-0.10864778,-0.071720615,-0.11700823,-0.14090827],
[-0.2697834,-0.17808953,-0.29054326,-0.34988946]]
)
let expectedGradUpdateRecurrentKernelBackward = Tensor<Float>(
[[0.11208751,-0.03048957,-0.14867921,0.07525943],
[0.0779456,-0.021202432,-0.10339145,0.05233537],
[-0.118453026,0.03222109,0.15712279,-0.07953346],
[0.12208392,-0.03320875,-0.16193901,0.08197136]]
)
let expectedGradResetRecurrentKernelBackward = Tensor<Float>(
[[-0.009129949,0.046693105,-0.046515163,0.04643202],
[-0.006348962,0.032470364,-0.03234662,0.032288805],
[0.009648444,-0.049344834,0.04915679,-0.04906892],
[-0.009944194,0.05085738,-0.050663568,0.05057301]]
)
let expectedGradOutputRecurrentKernelBackward = Tensor<Float>(
[[-0.18567993,-0.14199756,-0.13620174,-0.24541469],
[-0.12912174,-0.09874504,-0.09471462,-0.17066126],
[0.1962248,0.1500617,0.14393671,0.25935194],
[-0.2022396,-0.15466146,-0.14834875,-0.26730174]]
)
let expectedGradUpdateBiasBackward = Tensor<Float>(
[-0.11448185,0.03114087,0.1518552,-0.076867074]
)
let expectedGradResetBiasBackward = Tensor<Float>(
[0.009324977,-0.047690533,0.04750879,-0.04742387]
)
let expectedGradOutputBiasBackward = Tensor<Float>(
[0.31921688,0.21072157,0.34378064,0.41400108]
)
let expectedGradUpdateRecurrentBiasBackward = Tensor<Float>(
[-0.11448185,0.03114087,0.1518552,-0.076867074]
)
let expectedGradResetRecurrentBiasBackward = Tensor<Float>(
[0.009324977,-0.047690533,0.04750879,-0.04742387]
)
let expectedGradOutputRecurrentBiasBackward = Tensor<Float>(
[0.1896463,0.14503083,0.13911119,0.25065708]
)
// END GENERATED CODE
withTensorLeakChecking {
var gru = BidirectionalGRU<Float>(
GRUCell(inputSize: 3, hiddenSize: 4)
)
XCTAssertEqual(gru.forward.cell.updateKernel.shape, updateKernelForward.shape)
XCTAssertEqual(gru.forward.cell.updateRecurrentKernel.shape, updateRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.resetKernel.shape, resetKernelForward.shape)
XCTAssertEqual(gru.forward.cell.resetRecurrentKernel.shape, resetRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.outputKernel.shape, outputKernelForward.shape)
XCTAssertEqual(gru.forward.cell.outputRecurrentKernel.shape, outputRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.updateBias.shape, updateBiasForward.shape)
XCTAssertEqual(gru.forward.cell.updateRecurrentBias.shape, updateRecurrentBiasForward.shape)
XCTAssertEqual(gru.forward.cell.resetBias.shape, resetBiasForward.shape)
XCTAssertEqual(gru.forward.cell.resetRecurrentBias.shape, resetRecurrentBiasForward.shape)
XCTAssertEqual(gru.forward.cell.outputBias.shape, outputBiasForward.shape)
XCTAssertEqual(gru.forward.cell.outputRecurrentBias.shape, outputRecurrentBiasForward.shape)
XCTAssertEqual(gru.backward.cell.updateKernel.shape, updateKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.updateRecurrentKernel.shape, updateRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.resetKernel.shape, resetKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.resetRecurrentKernel.shape, resetRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.outputKernel.shape, outputKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.outputRecurrentKernel.shape, outputRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.updateBias.shape, updateBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.updateRecurrentBias.shape, updateRecurrentBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.resetBias.shape, resetBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.resetRecurrentBias.shape, resetRecurrentBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.outputBias.shape, outputBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.outputRecurrentBias.shape, outputRecurrentBiasBackward.shape)
gru.forward.cell.updateKernel = updateKernelForward
gru.forward.cell.updateRecurrentKernel = updateRecurrentKernelForward
gru.forward.cell.resetKernel = resetKernelForward
gru.forward.cell.resetRecurrentKernel = resetRecurrentKernelForward
gru.forward.cell.outputKernel = outputKernelForward
gru.forward.cell.outputRecurrentKernel = outputRecurrentKernelForward
gru.forward.cell.updateBias = updateBiasForward
gru.forward.cell.updateRecurrentBias = updateRecurrentBiasForward
gru.forward.cell.resetBias = resetBiasForward
gru.forward.cell.resetRecurrentBias = resetRecurrentBiasForward
gru.forward.cell.outputBias = outputBiasForward
gru.forward.cell.outputRecurrentBias = outputRecurrentBiasForward
gru.backward.cell.updateKernel = updateKernelBackward
gru.backward.cell.updateRecurrentKernel = updateRecurrentKernelBackward
gru.backward.cell.resetKernel = resetKernelBackward
gru.backward.cell.resetRecurrentKernel = resetRecurrentKernelBackward
gru.backward.cell.outputKernel = outputKernelBackward
gru.backward.cell.outputRecurrentKernel = outputRecurrentKernelBackward
gru.backward.cell.updateBias = updateBiasBackward
gru.backward.cell.updateRecurrentBias = updateRecurrentBiasBackward
gru.backward.cell.resetBias = resetBiasBackward
gru.backward.cell.resetRecurrentBias = resetRecurrentBiasBackward
gru.backward.cell.outputBias = outputBiasBackward
gru.backward.cell.outputRecurrentBias = outputRecurrentBiasBackward
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = GRUCell<Float>.State(initialForwardLayerState)
let initialBackwardLayerState = GRUCell<Float>.State(initialBackwardLayerState)
let outputs = gru(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
)
assertEqual(
Tensor(concatenating: outputs),
expectedStates,
accuracy: 1e-6)
let (outputSum, (gradGRU)) =
valueWithGradient(at: gru) { gru in
gru.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateKernel,
expectedGradUpdateKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetKernel,
expectedGradResetKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputKernel,
expectedGradOutputKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateRecurrentKernel,
expectedGradUpdateRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetRecurrentKernel,
expectedGradResetRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputRecurrentKernel,
expectedGradOutputRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateBias,
expectedGradUpdateBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetBias,
expectedGradResetBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputBias,
expectedGradOutputBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateRecurrentBias,
expectedGradUpdateRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetRecurrentBias,
expectedGradResetRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputRecurrentBias,
expectedGradOutputRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateKernel,
expectedGradUpdateKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetKernel,
expectedGradResetKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputKernel,
expectedGradOutputKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateRecurrentKernel,
expectedGradUpdateRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetRecurrentKernel,
expectedGradResetRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputRecurrentKernel,
expectedGradOutputRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateBias,
expectedGradUpdateBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetBias,
expectedGradResetBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputBias,
expectedGradOutputBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateRecurrentBias,
expectedGradUpdateRecurrentBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetRecurrentBias,
expectedGradResetRecurrentBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputRecurrentBias,
expectedGradOutputRecurrentBiasBackward,
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
gru.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward,
expectedGradInitialStateForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward,
expectedGradInitialStateBackward,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalGRUAverageMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_gru.py --merge-mode ave".
// BEGIN GENERATED CODE
let updateKernelForward = Tensor<Float>(
[[-0.26313293,-0.37116733,0.044766128,0.07748526],
[0.09139812,-0.17107481,-0.1005373,0.16451049],
[0.22751534,0.04139793,0.32446748,-0.572471]]
)
let resetKernelForward = Tensor<Float>(
[[-0.10539937,0.38937503,-0.008569658,0.6300892],
[0.5234366,0.20446932,0.42181438,-0.5262561],
[-0.5687402,0.31843305,-0.4139892,-0.23788527]]
)
let outputKernelForward = Tensor<Float>(
[[0.24885243,-0.4738691,0.26539946,0.2054413],
[-0.27858475,-0.6128201,0.28634238,0.33588284],
[-0.2638935,-0.5053163,-0.42289674,0.34110242]]
)
let updateRecurrentKernelForward = Tensor<Float>(
[[0.27225327,-0.04530505,0.20488906,-0.70477146],
[0.1233796,-0.2725925,-0.21331471,0.45468533],
[-0.12901938,-0.5375645,-0.07981183,-0.18903717],
[0.2276715,0.6950712,0.06780873,0.121172115]]
)
let resetRecurrentKernelForward = Tensor<Float>(
[[-0.38362607,-0.03403465,-0.032581285,0.18508019],
[-0.35768405,0.017118583,0.34339952,-0.015158445],
[0.42593452,-0.51679564,-0.13895734,-0.2845649],
[0.15196995,-0.4617733,-0.03934008,-0.038054474]]
)
let outputRecurrentKernelForward = Tensor<Float>(
[[-0.3531419,0.04921763,-0.050379246,-0.26801136],
[-0.34328082,0.5067098,0.031886574,-0.19034609],
[-0.020022772,0.16366726,0.021551719,-0.27538475],
[0.002952166,0.31402355,-0.22738007,-0.23688485]]
)
let updateBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateKernelBackward = Tensor<Float>(
[[-0.38552743,0.30379778,-0.015429676,0.47474676],
[0.24909449,-0.6272373,-0.17192209,0.08274299],
[-0.41769588,-0.32856578,0.5987498,0.6109175]]
)
let resetKernelBackward = Tensor<Float>(
[[-0.11749339,-0.61405337,0.26505172,-0.17011762],
[-0.23611891,0.18858898,0.6282174,-0.5656544],
[-0.5848755,-0.014772236,0.007604778,0.5725722]]
)
let outputKernelBackward = Tensor<Float>(
[[0.10227531,0.5070258,-0.46571168,0.056879938],
[0.49441308,-0.29395455,-0.07509631,0.29984736],
[0.47141522,0.18345171,0.1791873,0.4368046]]
)
let updateRecurrentKernelBackward = Tensor<Float>(
[[0.3819934,0.37764925,0.015312237,-0.17769441],
[-0.30984464,0.0024376288,-0.3083459,0.6083385],
[-0.035942614,-0.24049878,0.19538112,-0.22652327],
[0.06525053,0.14899497,-0.36888042,-0.2775943]]
)
let resetRecurrentKernelBackward = Tensor<Float>(
[[0.2151401,-0.21178766,-0.15712889,-0.078161664],
[0.54615974,0.025927158,-0.061987586,-0.13631916],
[0.61778206,-0.12979838,-0.19998191,0.32677993],
[0.3122218,-0.3348464,-0.029183073,-0.08691845]]
)
let outputRecurrentKernelBackward = Tensor<Float>(
[[-0.64042187,0.34098455,-0.10449011,-0.14277793],
[-0.07292092,0.24773169,0.21102233,0.07893403],
[-0.029284794,-0.45729926,0.09502104,-0.29511455],
[0.49253088,0.07420389,-0.48452082,0.2440229]]
)
let updateBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.90076077,-0.7541278,-0.025081873],
[0.37973404,-0.26513243,0.10235357],
[0.3545239,-0.14615154,-0.540749],
[-0.70222735,-0.34035724,-0.8451414]]]
)
let initialForwardLayerState = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialBackwardLayerState = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let expectedSum = Tensor<Float>(
-0.53184664
)
let expectedStates = Tensor<Float>(
[[[-0.23712845,0.065289676,-0.14049831,0.045999765],
[-0.11894582,0.03693285,-0.045380324,-0.03570187],
[-0.18859795,-0.11229195,0.19757463,-0.21844287],
[-0.3450238,-0.13424796,0.397752,-0.4503269]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those two and test it.
// let expectedFinalStateForward = Tensor<Float>(
// [[0.087087676,0.49491018,0.019275311,-0.13219076]]
// )
// let expectedFinalStateBackward = Tensor<Float>(
// [[-0.328244,-0.30765843,0.35560328,-0.37002444]]
// )
let expectedGradX = Tensor<Float>(
[[[0.008442146,0.015977293,-0.017315175],
[-0.015072985,-0.01641532,-0.049635936],
[0.005338762,-0.032777082,-0.12340391],
[0.18397327,0.11113768,0.017806858]]]
)
let expectedGradInitialStateForward = Tensor<Float>(
[[-0.035949126,0.1324582,0.010624796,0.0498662]]
)
let expectedGradUpdateKernelForward = Tensor<Float>(
[[-0.0073167454,0.056314625,-0.0062336624,-0.07089153],
[-0.00076548447,0.02190212,0.013407189,-0.05884329],
[0.00033165538,0.05131561,0.025480783,-0.07881642]]
)
let expectedGradResetKernelForward = Tensor<Float>(
[[0.0050837277,0.000618778,0.00082319777,0.002807496],
[0.0029551436,-0.003979396,0.0016249518,0.0014738103],
[0.0075652236,-0.0056819245,0.0023021724,0.0032740915]]
)
let expectedGradOutputKernelForward = Tensor<Float>(
[[-0.13860242,0.0056050895,-0.15595947,-0.075157814],
[-0.08908434,-0.07522535,-0.133511,-0.095664434],
[-0.23910204,-0.13338125,-0.29645422,-0.1555842]]
)
let expectedGradUpdateRecurrentKernelForward = Tensor<Float>(
[[0.0006653269,-0.006875807,0.0018882437,-0.0017765616],
[-0.0011794777,-0.012355285,-0.01903148,0.048002526],
[0.0027665214,-0.0027906992,0.021368187,-0.045509342],
[-0.0014231934,-0.008094095,-0.018676067,0.058172047]]
)
let expectedGradResetRecurrentKernelForward = Tensor<Float>(
[[-0.0008088454,-0.0006627698,0.00016036181,-0.0003286859],
[-0.0027881989,0.0051686955,-0.0017176332,-0.0011592377],
[0.0008306038,-0.0059162755,0.0018482914,0.00036050117],
[-0.0014314271,0.005271257,-0.0019009972,-0.00081068865]]
)
let expectedGradOutputRecurrentKernelForward = Tensor<Float>(
[[0.013640466,-0.005532119,0.011380454,-0.0022389072],
[0.048948735,0.047380794,0.07814442,0.054513022],
[-0.016135914,-0.05371744,-0.046594556,-0.052742656],
[0.025083385,0.045732304,0.054932415,0.053943418]]
)
let expectedGradUpdateBiasForward = Tensor<Float>(
[-0.0035956602,-0.049405254,-0.057810556,0.14968255]
)
let expectedGradResetBiasForward = Tensor<Float>(
[-0.009559427,0.01502455,-0.005170936,-0.004052236]
)
let expectedGradOutputBiasForward = Tensor<Float>(
[0.30791992,0.29866174,0.45024475,0.302623]
)
let expectedGradUpdateRecurrentBiasForward = Tensor<Float>(
[-0.0035956602,-0.049405254,-0.057810556,0.14968255]
)
let expectedGradResetRecurrentBiasForward = Tensor<Float>(
[-0.009559427,0.01502455,-0.005170936,-0.004052236]
)
let expectedGradOutputRecurrentBiasForward = Tensor<Float>(
[0.16791594,0.13910466,0.2555424,0.16603217]
)
let expectedGradInitialStateBackward = Tensor<Float>(
[[0.21845947,0.19890642,0.24278466,0.17001694]]
)
let expectedGradUpdateKernelBackward = Tensor<Float>(
[[0.040196143,-0.010933985,-0.053318437,0.02698908],
[0.019482363,-0.0052995104,-0.025842508,0.013081132],
[0.048376676,-0.013159219,-0.064169556,0.032481775]]
)
let expectedGradResetKernelBackward = Tensor<Float>(
[[-0.003274127,0.016744798,-0.016680986,0.016651168],
[-0.0015869117,0.008115909,-0.008084981,0.0080705285],
[-0.003940462,0.020152623,-0.020075824,0.020039938]]
)
let expectedGradOutputKernelBackward = Tensor<Float>(
[[-0.11208141,-0.07398722,-0.12070608,-0.14536144],
[-0.05432389,-0.035860308,-0.058504116,-0.070454136],
[-0.1348917,-0.089044765,-0.14527163,-0.17494473]]
)
let expectedGradUpdateRecurrentKernelBackward = Tensor<Float>(
[[0.056043755,-0.015244785,-0.074339606,0.037629716],
[0.0389728,-0.010601216,-0.051695727,0.026167685],
[-0.059226513,0.016110545,0.078561395,-0.03976673],
[0.06104196,-0.016604375,-0.080969505,0.04098568]]
)
let expectedGradResetRecurrentKernelBackward = Tensor<Float>(
[[-0.0045649745,0.023346553,-0.023257582,0.02321601],
[-0.003174481,0.016235182,-0.01617331,0.016144402],
[0.004824222,-0.024672417,0.024578394,-0.02453446],
[-0.004972097,0.02542869,-0.025331784,0.025286505]]
)
let expectedGradOutputRecurrentKernelBackward = Tensor<Float>(
[[-0.092839964,-0.07099878,-0.06810087,-0.122707345],
[-0.06456087,-0.04937252,-0.04735731,-0.08533063],
[0.0981124,0.07503085,0.071968354,0.12967597],
[-0.1011198,-0.07733073,-0.074174374,-0.13365087]]
)
let expectedGradUpdateBiasBackward = Tensor<Float>(
[-0.057240926,0.015570435,0.0759276,-0.038433537]
)
let expectedGradResetBiasBackward = Tensor<Float>(
[0.0046624886,-0.023845267,0.023754396,-0.023711935]
)
let expectedGradOutputBiasBackward = Tensor<Float>(
[0.15960844,0.10536078,0.17189032,0.20700054]
)
let expectedGradUpdateRecurrentBiasBackward = Tensor<Float>(
[-0.057240926,0.015570435,0.0759276,-0.038433537]
)
let expectedGradResetRecurrentBiasBackward = Tensor<Float>(
[0.0046624886,-0.023845267,0.023754396,-0.023711935]
)
let expectedGradOutputRecurrentBiasBackward = Tensor<Float>(
[0.09482315,0.07251541,0.069555596,0.12532854]
)
// END GENERATED CODE
withTensorLeakChecking {
var gru = BidirectionalGRU<Float>(
GRUCell(inputSize: 3, hiddenSize: 4),
mergeFunction: GRUCell<Float>.State.average
)
XCTAssertEqual(gru.forward.cell.updateKernel.shape, updateKernelForward.shape)
XCTAssertEqual(gru.forward.cell.updateRecurrentKernel.shape, updateRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.resetKernel.shape, resetKernelForward.shape)
XCTAssertEqual(gru.forward.cell.resetRecurrentKernel.shape, resetRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.outputKernel.shape, outputKernelForward.shape)
XCTAssertEqual(gru.forward.cell.outputRecurrentKernel.shape, outputRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.updateBias.shape, updateBiasForward.shape)
XCTAssertEqual(gru.forward.cell.updateRecurrentBias.shape, updateRecurrentBiasForward.shape)
XCTAssertEqual(gru.forward.cell.resetBias.shape, resetBiasForward.shape)
XCTAssertEqual(gru.forward.cell.resetRecurrentBias.shape, resetRecurrentBiasForward.shape)
XCTAssertEqual(gru.forward.cell.outputBias.shape, outputBiasForward.shape)
XCTAssertEqual(gru.forward.cell.outputRecurrentBias.shape, outputRecurrentBiasForward.shape)
XCTAssertEqual(gru.backward.cell.updateKernel.shape, updateKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.updateRecurrentKernel.shape, updateRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.resetKernel.shape, resetKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.resetRecurrentKernel.shape, resetRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.outputKernel.shape, outputKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.outputRecurrentKernel.shape, outputRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.updateBias.shape, updateBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.updateRecurrentBias.shape, updateRecurrentBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.resetBias.shape, resetBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.resetRecurrentBias.shape, resetRecurrentBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.outputBias.shape, outputBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.outputRecurrentBias.shape, outputRecurrentBiasBackward.shape)
gru.forward.cell.updateKernel = updateKernelForward
gru.forward.cell.updateRecurrentKernel = updateRecurrentKernelForward
gru.forward.cell.resetKernel = resetKernelForward
gru.forward.cell.resetRecurrentKernel = resetRecurrentKernelForward
gru.forward.cell.outputKernel = outputKernelForward
gru.forward.cell.outputRecurrentKernel = outputRecurrentKernelForward
gru.forward.cell.updateBias = updateBiasForward
gru.forward.cell.updateRecurrentBias = updateRecurrentBiasForward
gru.forward.cell.resetBias = resetBiasForward
gru.forward.cell.resetRecurrentBias = resetRecurrentBiasForward
gru.forward.cell.outputBias = outputBiasForward
gru.forward.cell.outputRecurrentBias = outputRecurrentBiasForward
gru.backward.cell.updateKernel = updateKernelBackward
gru.backward.cell.updateRecurrentKernel = updateRecurrentKernelBackward
gru.backward.cell.resetKernel = resetKernelBackward
gru.backward.cell.resetRecurrentKernel = resetRecurrentKernelBackward
gru.backward.cell.outputKernel = outputKernelBackward
gru.backward.cell.outputRecurrentKernel = outputRecurrentKernelBackward
gru.backward.cell.updateBias = updateBiasBackward
gru.backward.cell.updateRecurrentBias = updateRecurrentBiasBackward
gru.backward.cell.resetBias = resetBiasBackward
gru.backward.cell.resetRecurrentBias = resetRecurrentBiasBackward
gru.backward.cell.outputBias = outputBiasBackward
gru.backward.cell.outputRecurrentBias = outputRecurrentBiasBackward
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = GRUCell<Float>.State(initialForwardLayerState)
let initialBackwardLayerState = GRUCell<Float>.State(initialBackwardLayerState)
let outputs = gru(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
)
assertEqual(
Tensor(concatenating: outputs),
expectedStates,
accuracy: 1e-6)
let (outputSum, (gradGRU)) =
valueWithGradient(at: gru) { gru in
gru.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateKernel,
expectedGradUpdateKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetKernel,
expectedGradResetKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputKernel,
expectedGradOutputKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateRecurrentKernel,
expectedGradUpdateRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetRecurrentKernel,
expectedGradResetRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputRecurrentKernel,
expectedGradOutputRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateBias,
expectedGradUpdateBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetBias,
expectedGradResetBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputBias,
expectedGradOutputBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateRecurrentBias,
expectedGradUpdateRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetRecurrentBias,
expectedGradResetRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputRecurrentBias,
expectedGradOutputRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateKernel,
expectedGradUpdateKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetKernel,
expectedGradResetKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputKernel,
expectedGradOutputKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateRecurrentKernel,
expectedGradUpdateRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetRecurrentKernel,
expectedGradResetRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputRecurrentKernel,
expectedGradOutputRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateBias,
expectedGradUpdateBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetBias,
expectedGradResetBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputBias,
expectedGradOutputBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateRecurrentBias,
expectedGradUpdateRecurrentBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetRecurrentBias,
expectedGradResetRecurrentBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputRecurrentBias,
expectedGradOutputRecurrentBiasBackward,
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
gru.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward,
expectedGradInitialStateForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward,
expectedGradInitialStateBackward,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalGRUMultiplyMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_gru.py --merge-mode mul".
// BEGIN GENERATED CODE
let updateKernelForward = Tensor<Float>(
[[-0.26313293,-0.37116733,0.044766128,0.07748526],
[0.09139812,-0.17107481,-0.1005373,0.16451049],
[0.22751534,0.04139793,0.32446748,-0.572471]]
)
let resetKernelForward = Tensor<Float>(
[[-0.10539937,0.38937503,-0.008569658,0.6300892],
[0.5234366,0.20446932,0.42181438,-0.5262561],
[-0.5687402,0.31843305,-0.4139892,-0.23788527]]
)
let outputKernelForward = Tensor<Float>(
[[0.24885243,-0.4738691,0.26539946,0.2054413],
[-0.27858475,-0.6128201,0.28634238,0.33588284],
[-0.2638935,-0.5053163,-0.42289674,0.34110242]]
)
let updateRecurrentKernelForward = Tensor<Float>(
[[0.27225327,-0.04530505,0.20488906,-0.70477146],
[0.1233796,-0.2725925,-0.21331471,0.45468533],
[-0.12901938,-0.5375645,-0.07981183,-0.18903717],
[0.2276715,0.6950712,0.06780873,0.121172115]]
)
let resetRecurrentKernelForward = Tensor<Float>(
[[-0.38362607,-0.03403465,-0.032581285,0.18508019],
[-0.35768405,0.017118583,0.34339952,-0.015158445],
[0.42593452,-0.51679564,-0.13895734,-0.2845649],
[0.15196995,-0.4617733,-0.03934008,-0.038054474]]
)
let outputRecurrentKernelForward = Tensor<Float>(
[[-0.3531419,0.04921763,-0.050379246,-0.26801136],
[-0.34328082,0.5067098,0.031886574,-0.19034609],
[-0.020022772,0.16366726,0.021551719,-0.27538475],
[0.002952166,0.31402355,-0.22738007,-0.23688485]]
)
let updateBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateKernelBackward = Tensor<Float>(
[[-0.38552743,0.30379778,-0.015429676,0.47474676],
[0.24909449,-0.6272373,-0.17192209,0.08274299],
[-0.41769588,-0.32856578,0.5987498,0.6109175]]
)
let resetKernelBackward = Tensor<Float>(
[[-0.11749339,-0.61405337,0.26505172,-0.17011762],
[-0.23611891,0.18858898,0.6282174,-0.5656544],
[-0.5848755,-0.014772236,0.007604778,0.5725722]]
)
let outputKernelBackward = Tensor<Float>(
[[0.10227531,0.5070258,-0.46571168,0.056879938],
[0.49441308,-0.29395455,-0.07509631,0.29984736],
[0.47141522,0.18345171,0.1791873,0.4368046]]
)
let updateRecurrentKernelBackward = Tensor<Float>(
[[0.3819934,0.37764925,0.015312237,-0.17769441],
[-0.30984464,0.0024376288,-0.3083459,0.6083385],
[-0.035942614,-0.24049878,0.19538112,-0.22652327],
[0.06525053,0.14899497,-0.36888042,-0.2775943]]
)
let resetRecurrentKernelBackward = Tensor<Float>(
[[0.2151401,-0.21178766,-0.15712889,-0.078161664],
[0.54615974,0.025927158,-0.061987586,-0.13631916],
[0.61778206,-0.12979838,-0.19998191,0.32677993],
[0.3122218,-0.3348464,-0.029183073,-0.08691845]]
)
let outputRecurrentKernelBackward = Tensor<Float>(
[[-0.64042187,0.34098455,-0.10449011,-0.14277793],
[-0.07292092,0.24773169,0.21102233,0.07893403],
[-0.029284794,-0.45729926,0.09502104,-0.29511455],
[0.49253088,0.07420389,-0.48452082,0.2440229]]
)
let updateBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.90076077,-0.7541278,-0.025081873],
[0.37973404,-0.26513243,0.10235357],
[0.3545239,-0.14615154,-0.540749],
[-0.70222735,-0.34035724,-0.8451414]]]
)
let initialForwardLayerState = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialBackwardLayerState = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let expectedSum = Tensor<Float>(
-0.32895058
)
let expectedStates = Tensor<Float>(
[[[0.04792786,-0.13482755,-0.22637701,-0.17096016],
[0.005248314,-0.06652843,-0.095485054,-0.10619393],
[-0.051071964,-0.14824535,-0.014771455,-0.0697825],
[-0.067678906,-0.37781745,0.014962049,0.10158371]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those two and test it.
// let expectedFinalStateForward = Tensor<Float>(
// [[0.087087676,0.49491018,0.019275311,-0.13219076]]
// )
// let expectedFinalStateBackward = Tensor<Float>(
// [[-0.328244,-0.30765843,0.35560328,-0.37002444]]
// )
let expectedGradX = Tensor<Float>(
[[[-0.0045455527,-0.020066032,0.0030737333],
[0.040171646,0.049551535,-0.0197279],
[0.05888499,0.1390787,0.007269824],
[0.0767434,0.15354612,-0.019848084]]]
)
let expectedGradInitialStateForward = Tensor<Float>(
[[0.07075158,-0.173892,0.09029196,-0.13666949]]
)
let expectedGradUpdateKernelForward = Tensor<Float>(
[[0.012366264,-0.08216441,-0.008099017,0.12655589],
[0.00005636626,-0.0324539,0.02747383,0.117940515],
[-0.0014967625,-0.07796255,0.040063504,0.12748465]]
)
let expectedGradResetKernelForward = Tensor<Float>(
[[-0.0076980656,-0.00063710264,0.0027035254,-0.0046277456],
[-0.004731113,0.0055333427,0.0041351225,-0.0024739115],
[-0.011927827,0.0085395295,0.0036171544,-0.0051743267]]
)
let expectedGradOutputKernelForward = Tensor<Float>(
[[0.20785503,-0.001673013,-0.25896353,0.10652162],
[0.14713746,0.10674674,-0.23975003,0.18590957],
[0.37952816,0.2001083,-0.46228534,0.25734156]]
)
let expectedGradUpdateRecurrentKernelForward = Tensor<Float>(
[[-0.0014494247,0.010546453,0.005384476,0.011515614],
[0.0034076856,0.019562693,-0.035582643,-0.09373548],
[-0.0065402063,0.0038736751,0.043143254,0.10498153],
[0.004144326,0.011323398,-0.039187685,-0.13013235]]
)
let expectedGradResetRecurrentKernelForward = Tensor<Float>(
[[0.0012057752,0.0007886884,0.00077032676,0.00046306645],
[0.00456115,-0.0072078817,-0.0036669155,0.001852406],
[-0.0016002035,0.008008988,0.0047597894,-0.00071795564],
[0.0024727562,-0.0071561057,-0.0052759107,0.0015336934]]
)
let expectedGradOutputRecurrentKernelForward = Tensor<Float>(
[[-0.019984528,0.0067213336,0.012130001,0.011362088],
[-0.08117275,-0.06644401,0.1340633,-0.10929223],
[0.032181997,0.07354428,-0.09417313,0.11926204],
[-0.045114394,-0.06297048,0.10899238,-0.1180308]]
)
let expectedGradUpdateBiasForward = Tensor<Float>(
[0.009944006,0.076615654,-0.10517438,-0.28469688]
)
let expectedGradResetBiasForward = Tensor<Float>(
[0.015496891,-0.021194058,-0.010666848,0.0065090316]
)
let expectedGradOutputBiasForward = Tensor<Float>(
[-0.5120879,-0.4268308,0.7647575,-0.58130544]
)
let expectedGradUpdateRecurrentBiasForward = Tensor<Float>(
[0.009944006,0.076615654,-0.10517438,-0.28469688]
)
let expectedGradResetRecurrentBiasForward = Tensor<Float>(
[0.015496891,-0.021194058,-0.010666848,0.0065090316]
)
let expectedGradOutputRecurrentBiasForward = Tensor<Float>(
[-0.27554107,-0.19721822,0.42974865,-0.3239422]
)
let expectedGradInitialStateBackward = Tensor<Float>(
[[0.072507605,0.20855014,-0.011596381,-0.024698015]]
)
let expectedGradUpdateKernelBackward = Tensor<Float>(
[[0.007001178,-0.010822684,-0.002055459,-0.007135414],
[0.0033933478,-0.0052455645,-0.0009962448,-0.0034584096],
[0.0084260255,-0.013025266,-0.0024737765,-0.00858758]]
)
let expectedGradResetKernelBackward = Tensor<Float>(
[[-0.00057027227,0.016574344,-0.0006430624,-0.0044022617],
[-0.00027640094,0.008033292,-0.00031168104,-0.0021336987],
[-0.0006863314,0.019947477,-0.00077393546,-0.0052981894]]
)
let expectedGradOutputKernelBackward = Tensor<Float>(
[[-0.019521821,-0.07323406,-0.0046532946,0.03843088],
[-0.0094618825,-0.035495263,-0.0022553701,0.018626772],
[-0.023494812,-0.08813832,-0.005600312,0.046252154]]
)
let expectedGradUpdateRecurrentKernelBackward = Tensor<Float>(
[[0.0097614415,-0.015089602,-0.0028658381,-0.009948601],
[0.0067881015,-0.010493302,-0.0019929025,-0.0069182524],
[-0.010315799,0.01594655,0.0030285907,0.010513588],
[0.0106320055,-0.016435353,-0.003121425,-0.010835856]]
)
let expectedGradResetRecurrentKernelBackward = Tensor<Float>(
[[-0.00079510605,0.023108894,-0.00089659425,-0.006137884],
[-0.0005529164,0.016069913,-0.0006234912,-0.0042682816],
[0.00084026065,-0.024421262,0.00094751234,0.0064864582],
[-0.0008660168,0.025169836,-0.0009765561,-0.006685285]]
)
let expectedGradOutputRecurrentKernelBackward = Tensor<Float>(
[[-0.016170435,-0.07027604,-0.0026253306,0.032441556],
[-0.011244912,-0.048869923,-0.0018256537,0.022559844],
[0.017088763,0.07426706,0.0027744249,-0.034283932],
[-0.017612576,-0.07654353,-0.002859468,0.035334826]]
)
let expectedGradUpdateBiasBackward = Tensor<Float>(
[-0.009969959,0.015411937,0.0029270563,0.010161117]
)
let expectedGradResetBiasBackward = Tensor<Float>(
[0.00081209064,-0.023602532,0.0009157467,0.0062689977]
)
let expectedGradOutputBiasBackward = Tensor<Float>(
[0.027799858,0.10428825,0.006626479,-0.05472712]
)
let expectedGradUpdateRecurrentBiasBackward = Tensor<Float>(
[-0.009969959,0.015411937,0.0029270563,0.010161117]
)
let expectedGradResetRecurrentBiasBackward = Tensor<Float>(
[0.00081209064,-0.023602532,0.0009157467,0.0062689977]
)
let expectedGradOutputRecurrentBiasBackward = Tensor<Float>(
[0.016515857,0.07177723,0.0026814113,-0.033134554]
)
// END GENERATED CODE
withTensorLeakChecking {
var gru = BidirectionalGRU<Float>(
GRUCell(inputSize: 3, hiddenSize: 4),
mergeFunction: GRUCell<Float>.State.multiply
)
XCTAssertEqual(gru.forward.cell.updateKernel.shape, updateKernelForward.shape)
XCTAssertEqual(gru.forward.cell.updateRecurrentKernel.shape, updateRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.resetKernel.shape, resetKernelForward.shape)
XCTAssertEqual(gru.forward.cell.resetRecurrentKernel.shape, resetRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.outputKernel.shape, outputKernelForward.shape)
XCTAssertEqual(gru.forward.cell.outputRecurrentKernel.shape, outputRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.updateBias.shape, updateBiasForward.shape)
XCTAssertEqual(gru.forward.cell.updateRecurrentBias.shape, updateRecurrentBiasForward.shape)
XCTAssertEqual(gru.forward.cell.resetBias.shape, resetBiasForward.shape)
XCTAssertEqual(gru.forward.cell.resetRecurrentBias.shape, resetRecurrentBiasForward.shape)
XCTAssertEqual(gru.forward.cell.outputBias.shape, outputBiasForward.shape)
XCTAssertEqual(gru.forward.cell.outputRecurrentBias.shape, outputRecurrentBiasForward.shape)
XCTAssertEqual(gru.backward.cell.updateKernel.shape, updateKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.updateRecurrentKernel.shape, updateRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.resetKernel.shape, resetKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.resetRecurrentKernel.shape, resetRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.outputKernel.shape, outputKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.outputRecurrentKernel.shape, outputRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.updateBias.shape, updateBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.updateRecurrentBias.shape, updateRecurrentBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.resetBias.shape, resetBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.resetRecurrentBias.shape, resetRecurrentBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.outputBias.shape, outputBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.outputRecurrentBias.shape, outputRecurrentBiasBackward.shape)
gru.forward.cell.updateKernel = updateKernelForward
gru.forward.cell.updateRecurrentKernel = updateRecurrentKernelForward
gru.forward.cell.resetKernel = resetKernelForward
gru.forward.cell.resetRecurrentKernel = resetRecurrentKernelForward
gru.forward.cell.outputKernel = outputKernelForward
gru.forward.cell.outputRecurrentKernel = outputRecurrentKernelForward
gru.forward.cell.updateBias = updateBiasForward
gru.forward.cell.updateRecurrentBias = updateRecurrentBiasForward
gru.forward.cell.resetBias = resetBiasForward
gru.forward.cell.resetRecurrentBias = resetRecurrentBiasForward
gru.forward.cell.outputBias = outputBiasForward
gru.forward.cell.outputRecurrentBias = outputRecurrentBiasForward
gru.backward.cell.updateKernel = updateKernelBackward
gru.backward.cell.updateRecurrentKernel = updateRecurrentKernelBackward
gru.backward.cell.resetKernel = resetKernelBackward
gru.backward.cell.resetRecurrentKernel = resetRecurrentKernelBackward
gru.backward.cell.outputKernel = outputKernelBackward
gru.backward.cell.outputRecurrentKernel = outputRecurrentKernelBackward
gru.backward.cell.updateBias = updateBiasBackward
gru.backward.cell.updateRecurrentBias = updateRecurrentBiasBackward
gru.backward.cell.resetBias = resetBiasBackward
gru.backward.cell.resetRecurrentBias = resetRecurrentBiasBackward
gru.backward.cell.outputBias = outputBiasBackward
gru.backward.cell.outputRecurrentBias = outputRecurrentBiasBackward
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = GRUCell<Float>.State(initialForwardLayerState)
let initialBackwardLayerState = GRUCell<Float>.State(initialBackwardLayerState)
let outputs = gru(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
)
assertEqual(
Tensor(concatenating: outputs),
expectedStates,
accuracy: 1e-6)
let (outputSum, (gradGRU)) =
valueWithGradient(at: gru) { gru in
gru.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateKernel,
expectedGradUpdateKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetKernel,
expectedGradResetKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputKernel,
expectedGradOutputKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateRecurrentKernel,
expectedGradUpdateRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetRecurrentKernel,
expectedGradResetRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputRecurrentKernel,
expectedGradOutputRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateBias,
expectedGradUpdateBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetBias,
expectedGradResetBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputBias,
expectedGradOutputBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateRecurrentBias,
expectedGradUpdateRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetRecurrentBias,
expectedGradResetRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputRecurrentBias,
expectedGradOutputRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateKernel,
expectedGradUpdateKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetKernel,
expectedGradResetKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputKernel,
expectedGradOutputKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateRecurrentKernel,
expectedGradUpdateRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetRecurrentKernel,
expectedGradResetRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputRecurrentKernel,
expectedGradOutputRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateBias,
expectedGradUpdateBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetBias,
expectedGradResetBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputBias,
expectedGradOutputBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateRecurrentBias,
expectedGradUpdateRecurrentBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetRecurrentBias,
expectedGradResetRecurrentBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputRecurrentBias,
expectedGradOutputRecurrentBiasBackward,
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
gru.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward,
expectedGradInitialStateForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward,
expectedGradInitialStateBackward,
accuracy: 1e-6)
}
#endif
}
func testBidirectionalGRUStackMerge() {
#if !SR15884_WORKAROUND_1
// Data generated by "Utilities/ReferenceImplementations/bidirectional_gru.py --merge-mode none".
// BEGIN GENERATED CODE
let updateKernelForward = Tensor<Float>(
[[-0.26313293,-0.37116733,0.044766128,0.07748526],
[0.09139812,-0.17107481,-0.1005373,0.16451049],
[0.22751534,0.04139793,0.32446748,-0.572471]]
)
let resetKernelForward = Tensor<Float>(
[[-0.10539937,0.38937503,-0.008569658,0.6300892],
[0.5234366,0.20446932,0.42181438,-0.5262561],
[-0.5687402,0.31843305,-0.4139892,-0.23788527]]
)
let outputKernelForward = Tensor<Float>(
[[0.24885243,-0.4738691,0.26539946,0.2054413],
[-0.27858475,-0.6128201,0.28634238,0.33588284],
[-0.2638935,-0.5053163,-0.42289674,0.34110242]]
)
let updateRecurrentKernelForward = Tensor<Float>(
[[0.27225327,-0.04530505,0.20488906,-0.70477146],
[0.1233796,-0.2725925,-0.21331471,0.45468533],
[-0.12901938,-0.5375645,-0.07981183,-0.18903717],
[0.2276715,0.6950712,0.06780873,0.121172115]]
)
let resetRecurrentKernelForward = Tensor<Float>(
[[-0.38362607,-0.03403465,-0.032581285,0.18508019],
[-0.35768405,0.017118583,0.34339952,-0.015158445],
[0.42593452,-0.51679564,-0.13895734,-0.2845649],
[0.15196995,-0.4617733,-0.03934008,-0.038054474]]
)
let outputRecurrentKernelForward = Tensor<Float>(
[[-0.3531419,0.04921763,-0.050379246,-0.26801136],
[-0.34328082,0.5067098,0.031886574,-0.19034609],
[-0.020022772,0.16366726,0.021551719,-0.27538475],
[0.002952166,0.31402355,-0.22738007,-0.23688485]]
)
let updateBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputRecurrentBiasForward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateKernelBackward = Tensor<Float>(
[[-0.38552743,0.30379778,-0.015429676,0.47474676],
[0.24909449,-0.6272373,-0.17192209,0.08274299],
[-0.41769588,-0.32856578,0.5987498,0.6109175]]
)
let resetKernelBackward = Tensor<Float>(
[[-0.11749339,-0.61405337,0.26505172,-0.17011762],
[-0.23611891,0.18858898,0.6282174,-0.5656544],
[-0.5848755,-0.014772236,0.007604778,0.5725722]]
)
let outputKernelBackward = Tensor<Float>(
[[0.10227531,0.5070258,-0.46571168,0.056879938],
[0.49441308,-0.29395455,-0.07509631,0.29984736],
[0.47141522,0.18345171,0.1791873,0.4368046]]
)
let updateRecurrentKernelBackward = Tensor<Float>(
[[0.3819934,0.37764925,0.015312237,-0.17769441],
[-0.30984464,0.0024376288,-0.3083459,0.6083385],
[-0.035942614,-0.24049878,0.19538112,-0.22652327],
[0.06525053,0.14899497,-0.36888042,-0.2775943]]
)
let resetRecurrentKernelBackward = Tensor<Float>(
[[0.2151401,-0.21178766,-0.15712889,-0.078161664],
[0.54615974,0.025927158,-0.061987586,-0.13631916],
[0.61778206,-0.12979838,-0.19998191,0.32677993],
[0.3122218,-0.3348464,-0.029183073,-0.08691845]]
)
let outputRecurrentKernelBackward = Tensor<Float>(
[[-0.64042187,0.34098455,-0.10449011,-0.14277793],
[-0.07292092,0.24773169,0.21102233,0.07893403],
[-0.029284794,-0.45729926,0.09502104,-0.29511455],
[0.49253088,0.07420389,-0.48452082,0.2440229]]
)
let updateBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let updateRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let resetRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let outputRecurrentBiasBackward = Tensor<Float>(
[0.0,0.0,0.0,0.0]
)
let x = Tensor<Float>(
[[[-0.90076077,-0.7541278,-0.025081873],
[0.37973404,-0.26513243,0.10235357],
[0.3545239,-0.14615154,-0.540749],
[-0.70222735,-0.34035724,-0.8451414]]]
)
let initialForwardLayerState = Tensor<Float>(
[[-0.22500783,0.3640524,-0.76411664,1.0557337]]
)
let initialBackwardLayerState = Tensor<Float>(
[[-0.9790854,-0.6808555,1.0346882,-1.0664041]]
)
let expectedSum = Tensor<Float>(
-1.0636933
)
let expectedStatesForward = Tensor<Float>(
[[[-0.1460129,0.4382378,-0.6365999,0.46202397],
[-0.0246071,0.29749468,-0.35770136,0.2921221],
[0.10575074,0.28877518,-0.03438914,0.12433955],
[0.087087676,0.49491018,0.019275311,-0.13219076]]]
)
let expectedStatesBackward = Tensor<Float>(
[[[-0.328244,-0.30765843,0.35560328,-0.37002444],
[-0.21328454,-0.22362898,0.2669407,-0.36352584],
[-0.48294663,-0.51335907,0.4295384,-0.5612253],
[-0.7771353,-0.7634061,0.77622867,-0.768463]]]
)
// TODO: Modify BidirectionalRecurrentLayer to return those two and test it.
// let expectedFinalStateForward = Tensor<Float>(
// [[0.087087676,0.49491018,0.019275311,-0.13219076]]
// )
// let expectedFinalStateBackward = Tensor<Float>(
// [[-0.328244,-0.30765843,0.35560328,-0.37002444]]
// )
let expectedGradX = Tensor<Float>(
[[[0.016884292,0.031954587,-0.03463035],
[-0.03014597,-0.03283064,-0.09927187],
[0.010677524,-0.065554164,-0.24680781],
[0.36794654,0.22227536,0.035613716]]]
)
let expectedGradInitialStateForward = Tensor<Float>(
[[-0.07189825,0.2649164,0.021249592,0.0997324]]
)
let expectedGradUpdateKernelForward = Tensor<Float>(
[[-0.014633491,0.11262925,-0.012467325,-0.14178306],
[-0.0015309689,0.04380424,0.026814379,-0.11768658],
[0.00066331076,0.10263122,0.050961565,-0.15763284]]
)
let expectedGradResetKernelForward = Tensor<Float>(
[[0.010167455,0.001237556,0.0016463955,0.005614992],
[0.005910287,-0.007958792,0.0032499037,0.0029476206],
[0.015130447,-0.011363849,0.0046043447,0.006548183]]
)
let expectedGradOutputKernelForward = Tensor<Float>(
[[-0.27720484,0.011210179,-0.31191894,-0.15031563],
[-0.17816868,-0.1504507,-0.267022,-0.19132887],
[-0.47820407,-0.2667625,-0.59290844,-0.3111684]]
)
let expectedGradUpdateRecurrentKernelForward = Tensor<Float>(
[[0.0013306538,-0.013751614,0.0037764874,-0.0035531232],
[-0.0023589553,-0.02471057,-0.03806296,0.09600505],
[0.005533043,-0.0055813985,0.042736374,-0.091018684],
[-0.0028463867,-0.01618819,-0.037352134,0.116344094]]
)
let expectedGradResetRecurrentKernelForward = Tensor<Float>(
[[-0.0016176908,-0.0013255395,0.00032072363,-0.0006573718],
[-0.0055763978,0.010337391,-0.0034352664,-0.0023184754],
[0.0016612076,-0.011832551,0.0036965827,0.00072100235],
[-0.0028628542,0.010542514,-0.0038019945,-0.0016213773]]
)
let expectedGradOutputRecurrentKernelForward = Tensor<Float>(
[[0.027280932,-0.011064238,0.022760907,-0.0044778143],
[0.09789747,0.09476159,0.15628885,0.109026045],
[-0.03227183,-0.10743488,-0.09318911,-0.10548531],
[0.05016677,0.09146461,0.10986483,0.107886836]]
)
let expectedGradUpdateBiasForward = Tensor<Float>(
[-0.0071913204,-0.09881051,-0.11562111,0.2993651]
)
let expectedGradResetBiasForward = Tensor<Float>(
[-0.019118855,0.0300491,-0.010341872,-0.008104472]
)
let expectedGradOutputBiasForward = Tensor<Float>(
[0.61583984,0.5973235,0.9004895,0.605246]
)
let expectedGradUpdateRecurrentBiasForward = Tensor<Float>(
[-0.0071913204,-0.09881051,-0.11562111,0.2993651]
)
let expectedGradResetRecurrentBiasForward = Tensor<Float>(
[-0.019118855,0.0300491,-0.010341872,-0.008104472]
)
let expectedGradOutputRecurrentBiasForward = Tensor<Float>(
[0.33583188,0.27820933,0.5110848,0.33206433]
)
let expectedGradInitialStateBackward = Tensor<Float>(
[[0.43691894,0.39781284,0.48556933,0.3400339]]
)
let expectedGradUpdateKernelBackward = Tensor<Float>(
[[0.080392286,-0.02186797,-0.106636874,0.05397816],
[0.038964726,-0.010599021,-0.051685017,0.026162265],
[0.09675335,-0.026318438,-0.12833911,0.06496355]]
)
let expectedGradResetKernelBackward = Tensor<Float>(
[[-0.006548254,0.033489596,-0.03336197,0.033302337],
[-0.0031738235,0.016231818,-0.016169962,0.016141057],
[-0.007880924,0.040305246,-0.04015165,0.040079877]]
)
let expectedGradOutputKernelBackward = Tensor<Float>(
[[-0.22416282,-0.14797445,-0.24141216,-0.29072288],
[-0.10864778,-0.071720615,-0.11700823,-0.14090827],
[-0.2697834,-0.17808953,-0.29054326,-0.34988946]]
)
let expectedGradUpdateRecurrentKernelBackward = Tensor<Float>(
[[0.11208751,-0.03048957,-0.14867921,0.07525943],
[0.0779456,-0.021202432,-0.10339145,0.05233537],
[-0.118453026,0.03222109,0.15712279,-0.07953346],
[0.12208392,-0.03320875,-0.16193901,0.08197136]]
)
let expectedGradResetRecurrentKernelBackward = Tensor<Float>(
[[-0.009129949,0.046693105,-0.046515163,0.04643202],
[-0.006348962,0.032470364,-0.03234662,0.032288805],
[0.009648444,-0.049344834,0.04915679,-0.04906892],
[-0.009944194,0.05085738,-0.050663568,0.05057301]]
)
let expectedGradOutputRecurrentKernelBackward = Tensor<Float>(
[[-0.18567993,-0.14199756,-0.13620174,-0.24541469],
[-0.12912174,-0.09874504,-0.09471462,-0.17066126],
[0.1962248,0.1500617,0.14393671,0.25935194],
[-0.2022396,-0.15466146,-0.14834875,-0.26730174]]
)
let expectedGradUpdateBiasBackward = Tensor<Float>(
[-0.11448185,0.03114087,0.1518552,-0.076867074]
)
let expectedGradResetBiasBackward = Tensor<Float>(
[0.009324977,-0.047690533,0.04750879,-0.04742387]
)
let expectedGradOutputBiasBackward = Tensor<Float>(
[0.31921688,0.21072157,0.34378064,0.41400108]
)
let expectedGradUpdateRecurrentBiasBackward = Tensor<Float>(
[-0.11448185,0.03114087,0.1518552,-0.076867074]
)
let expectedGradResetRecurrentBiasBackward = Tensor<Float>(
[0.009324977,-0.047690533,0.04750879,-0.04742387]
)
let expectedGradOutputRecurrentBiasBackward = Tensor<Float>(
[0.1896463,0.14503083,0.13911119,0.25065708]
)
// END GENERATED CODE
withTensorLeakChecking {
var gru = BidirectionalGRU<Float>(
GRUCell(inputSize: 3, hiddenSize: 4),
mergeFunction: GRUCell<Float>.State.stack
)
XCTAssertEqual(gru.forward.cell.updateKernel.shape, updateKernelForward.shape)
XCTAssertEqual(gru.forward.cell.updateRecurrentKernel.shape, updateRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.resetKernel.shape, resetKernelForward.shape)
XCTAssertEqual(gru.forward.cell.resetRecurrentKernel.shape, resetRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.outputKernel.shape, outputKernelForward.shape)
XCTAssertEqual(gru.forward.cell.outputRecurrentKernel.shape, outputRecurrentKernelForward.shape)
XCTAssertEqual(gru.forward.cell.updateBias.shape, updateBiasForward.shape)
XCTAssertEqual(gru.forward.cell.updateRecurrentBias.shape, updateRecurrentBiasForward.shape)
XCTAssertEqual(gru.forward.cell.resetBias.shape, resetBiasForward.shape)
XCTAssertEqual(gru.forward.cell.resetRecurrentBias.shape, resetRecurrentBiasForward.shape)
XCTAssertEqual(gru.forward.cell.outputBias.shape, outputBiasForward.shape)
XCTAssertEqual(gru.forward.cell.outputRecurrentBias.shape, outputRecurrentBiasForward.shape)
XCTAssertEqual(gru.backward.cell.updateKernel.shape, updateKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.updateRecurrentKernel.shape, updateRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.resetKernel.shape, resetKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.resetRecurrentKernel.shape, resetRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.outputKernel.shape, outputKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.outputRecurrentKernel.shape, outputRecurrentKernelBackward.shape)
XCTAssertEqual(gru.backward.cell.updateBias.shape, updateBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.updateRecurrentBias.shape, updateRecurrentBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.resetBias.shape, resetBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.resetRecurrentBias.shape, resetRecurrentBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.outputBias.shape, outputBiasBackward.shape)
XCTAssertEqual(gru.backward.cell.outputRecurrentBias.shape, outputRecurrentBiasBackward.shape)
gru.forward.cell.updateKernel = updateKernelForward
gru.forward.cell.updateRecurrentKernel = updateRecurrentKernelForward
gru.forward.cell.resetKernel = resetKernelForward
gru.forward.cell.resetRecurrentKernel = resetRecurrentKernelForward
gru.forward.cell.outputKernel = outputKernelForward
gru.forward.cell.outputRecurrentKernel = outputRecurrentKernelForward
gru.forward.cell.updateBias = updateBiasForward
gru.forward.cell.updateRecurrentBias = updateRecurrentBiasForward
gru.forward.cell.resetBias = resetBiasForward
gru.forward.cell.resetRecurrentBias = resetRecurrentBiasForward
gru.forward.cell.outputBias = outputBiasForward
gru.forward.cell.outputRecurrentBias = outputRecurrentBiasForward
gru.backward.cell.updateKernel = updateKernelBackward
gru.backward.cell.updateRecurrentKernel = updateRecurrentKernelBackward
gru.backward.cell.resetKernel = resetKernelBackward
gru.backward.cell.resetRecurrentKernel = resetRecurrentKernelBackward
gru.backward.cell.outputKernel = outputKernelBackward
gru.backward.cell.outputRecurrentKernel = outputRecurrentKernelBackward
gru.backward.cell.updateBias = updateBiasBackward
gru.backward.cell.updateRecurrentBias = updateRecurrentBiasBackward
gru.backward.cell.resetBias = resetBiasBackward
gru.backward.cell.resetRecurrentBias = resetRecurrentBiasBackward
gru.backward.cell.outputBias = outputBiasBackward
gru.backward.cell.outputRecurrentBias = outputRecurrentBiasBackward
let inputs = x.squeezingShape(at: 0).unstacked().map { $0.rankLifted() }
let initialForwardLayerState = GRUCell<Float>.State(initialForwardLayerState)
let initialBackwardLayerState = GRUCell<Float>.State(initialBackwardLayerState)
let outputs = gru(
inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).map { $0.unstacked(alongAxis: 0) }
assertEqual(
Tensor(concatenating: outputs.map { $0[0] }),
expectedStatesForward,
accuracy: 1e-6)
assertEqual(
Tensor(concatenating: outputs.map { $0[1] }),
expectedStatesBackward,
accuracy: 1e-6)
let (outputSum, (gradGRU)) =
valueWithGradient(at: gru) { gru in
gru.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
outputSum,
expectedSum,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateKernel,
expectedGradUpdateKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetKernel,
expectedGradResetKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputKernel,
expectedGradOutputKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateRecurrentKernel,
expectedGradUpdateRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetRecurrentKernel,
expectedGradResetRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputRecurrentKernel,
expectedGradOutputRecurrentKernelForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateBias,
expectedGradUpdateBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetBias,
expectedGradResetBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputBias,
expectedGradOutputBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.updateRecurrentBias,
expectedGradUpdateRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.resetRecurrentBias,
expectedGradResetRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.forward.cell.outputRecurrentBias,
expectedGradOutputRecurrentBiasForward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateKernel,
expectedGradUpdateKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetKernel,
expectedGradResetKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputKernel,
expectedGradOutputKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateRecurrentKernel,
expectedGradUpdateRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetRecurrentKernel,
expectedGradResetRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputRecurrentKernel,
expectedGradOutputRecurrentKernelBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateBias,
expectedGradUpdateBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetBias,
expectedGradResetBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputBias,
expectedGradOutputBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.updateRecurrentBias,
expectedGradUpdateRecurrentBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.resetRecurrentBias,
expectedGradResetRecurrentBiasBackward,
accuracy: 1e-6)
assertEqual(
gradGRU.backward.cell.outputRecurrentBias,
expectedGradOutputRecurrentBiasBackward,
accuracy: 1e-6)
let (gradInputs, gradInitialStateForward, gradInitialStateBackward) =
gradient(at: inputs, initialForwardLayerState, initialBackwardLayerState) {
inputs, initialForwardLayerState, initialBackwardLayerState in
gru.lastOutput(
from: inputs,
initialForwardLayerState: initialForwardLayerState,
initialBackwardLayerState: initialBackwardLayerState
).sum()
}
assertEqual(
Tensor(concatenating: gradInputs.map { $0 }),
expectedGradX,
accuracy: 1e-6)
assertEqual(
gradInitialStateForward,
expectedGradInitialStateForward,
accuracy: 1e-6)
assertEqual(
gradInitialStateBackward,
expectedGradInitialStateBackward,
accuracy: 1e-6)
}
#endif
}
func testFunction() {
let tanhLayer = Function<Tensor<Float>, Tensor<Float>>(tanh)
let input = Tensor(shape: [5, 1], scalars: (0..<5).map(Float.init))
let output = tanhLayer.inferring(from: input)
let expected = Tensor<Float>([[0.0], [0.7615942], [0.9640276], [0.9950547], [0.9993292]])
assertEqual(output, expected, accuracy: 1e-6)
}
func testBatchNorm() {
let x = Tensor<Float>([
[-1.0474433, -0.11914538, -0.08634827, 0.15446888, 1.0572497],
[1.5165012, 0.3753972, -0.30856386, -0.3100725, -1.9584457],
[0.006384419, 1.4424847, 0.91568077, 0.66328526, -1.0794537],
[1.056803, 0.14263044, -1.8308276, 0.4189805, 0.6933893],
[0.30175626, -0.16121633, -0.4191958, -0.53092813, -0.029484272],
])
let bnLayer = BatchNorm<Float>(featureCount: 5, axis: 0)
Context.local.learningPhase = .training
withTensorLeakChecking {
let output = bnLayer(x)
let grad = gradient(at: x, bnLayer) { $1($0).squared().sum() }
// The expected values and gradients were computed using the following Python code:
// ```
// import tensorflow as tf
// x = tf.constant(
// [[ -1.0474433, -0.11914538, -0.08634827, 0.15446888, 1.0572497],
// [ 1.5165012, 0.3753972, -0.30856386, -0.3100725, -1.9584457],
// [ 0.006384419, 1.4424847, 0.91568077, 0.66328526, -1.0794537],
// [ 1.056803, 0.14263044, -1.8308276, 0.4189805, 0.6933893],
// [ 0.30175626, -0.16121633, -0.4191958, -0.53092813, -0.029484272]])
// scale = tf.reshape(tf.constant([1., 1., 1., 1., 1.]), [5, 1])
// offset = tf.reshape(tf.constant([0., 0., 0., 0., 0.]), [5, 1])
// (mean, var) = tf.nn.moments(x, axes=1, keepdims=True)
// bn = tf.nn.batch_normalization(x, mean, var, offset=offset, scale=scale,
// variance_epsilon=0.001)
// scaled = tf.reduce_sum(tf.square(bn))
// g = tf.gradients(scaled, [x, offset, scale])
// init = tf.initialize_all_variables()
// with tf.Session() as sess:
// sess.run(init)
// print(sess.run([bn, g]))
// ```
assertEqual(
output,
[
[-1.5439795, -0.16477099, -0.11604305, 0.24174842, 1.5830451],
[1.4639764, 0.45368853, -0.15186328, -0.15319899, -1.6126028],
[-0.44139984, 1.2124169, 0.60574806, 0.3150888, -1.6918538],
[0.9507547, 0.04595902, -1.9072568, 0.31947452, 0.5910686],
[1.5834246, 0.02224666, -0.8476793, -1.2244489, 0.46645695],
],
accuracy: 1e-5)
assertEqual(
grad.0,
[
[-1.0127544e-02, -1.0807812e-03, -7.6115131e-04, 1.5857220e-03, 1.0383606e-02],
[2.0323221e-03, 6.2976527e-04, -2.1077941e-04, -2.1265696e-04, -2.2384699e-03],
[-1.3483668e-03, 3.7030075e-03, 1.8500184e-03, 9.6232636e-04, -5.1673558e-03],
[1.8438101e-03, 8.9146197e-05, -3.6990643e-03, 6.1964989e-04, 1.1463165e-03],
[1.2142579e-01, 1.7060755e-03, -6.5005139e-02, -9.3897656e-02, 3.5770576e-02],
],
accuracy: 1e-5)
assertEqual(grad.1.offset, [0.0, 0.0, 0.0, 0.0, 0.0], accuracy: 1e-5)
assertEqual(
grad.1.scale,
[9.977925, 9.992161, 9.986738, 9.990202, 9.886292],
accuracy: 1e-5)
}
}
func testBatchNormInference() {
Context.local.learningPhase = .inference
// This tests for a specific failure that had impacted the MiniGo model.
let miniGoTensor = Tensor<Float>(randomUniform: [2, 19, 19, 256])
let miniGoBatchNorm = BatchNorm<Float>(featureCount: 256, momentum: 0.95, epsilon: 1e-5)
let miniGoResult = miniGoBatchNorm(miniGoTensor)
XCTAssertEqual(miniGoTensor.shape, miniGoResult.shape)
let x = Tensor<Float>(rangeFrom: 0, to: 20, stride: 1).reshaped(to: [4, 5])
let epsilon: Float = 0.001
let bnLayer = BatchNorm<Float>(featureCount: 5, axis: 1, epsilon: epsilon)
// Test inference before any training.
assertEqual(bnLayer.inferring(from: x), x / TensorFlow.sqrt(Tensor<Float>(1 + epsilon)), accuracy: 1e-5)
// Perform one training step, updating the running mean and variance.
Context.local.learningPhase = .training
_ = bnLayer(x) // This line is important and cannot be removed.
// Test inference after training step.
// The expected value was computed using the following Python code:
// ```
// import tensorflow as tf
// x = tf.reshape(tf.range(20, dtype=tf.float32), [4,5])
// bn = tf.nn.batch_normalization(x, mean, var, offset=offset, scale=scale,
// variance_epsilon=0.001)
// y_train = bnLayer(x, training=True)
// y = bnLayer(x, training=False)
// print(y)
// ```
assertEqual(
bnLayer.inferring(from: x),
[
[-0.06569097, 0.8014299, 1.6685508, 2.5356717, 3.4027927],
[4.3137074, 5.180828, 6.0479493, 6.91507, 7.7821913],
[8.693106, 9.560227, 10.427347, 11.294469, 12.16159],
[13.072505, 13.939626, 14.806746, 15.673867, 16.540987],
],
accuracy: 1e-5)
}
func testLayerNorm() {
let x = Tensor<Float>([
[2.736876, -0.8932728, -0.11240143, 1.252899, -0.35648823],
[-0.43356904, -0.5147881, 0.8055815, 0.97228354, 1.4561518],
[0.56300443, -0.87069905, -0.20677163, 1.1823419, 1.0455104],
[-0.8246169, 1.4249208, 1.2131604, 1.1445689, -0.94032115],
])
let lnLayer = LayerNorm<Float>(featureCount: 5, axis: 1)
let value = lnLayer(x)
let grad = gradient(at: x, lnLayer) { $1($0).squared().sum() }
// The expected values and gradients were computed using the following Python code:
// ```
// import tensorflow as tf
// x = tf.constant([[ 2.736876 , -0.8932728 , -0.11240143, 1.252899 , -0.35648823],
// [-0.43356904, -0.5147881 , 0.8055815 , 0.97228354, 1.4561518 ],
// [ 0.56300443, -0.87069905, -0.20677163, 1.1823419 , 1.0455104 ],
// [-0.8246169 , 1.4249208 , 1.2131604 , 1.1445689 , -0.94032115]])
// lnLayer = tf.keras.layers.LayerNormalization(axis=1, epsilon=0.001)
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = lnLayer(x)
// z = tf.math.reduce_sum(tf.math.square(y))
// print(y, tape.gradient(z, [x] + lnLayer.trainable_variables))
// ```
assertEqual(
value,
[
[1.6839857, -1.0804383, -0.4857906, 0.5539104, -0.6716671],
[-1.1261504, -1.228839, 0.44055927, 0.6513276, 1.2631025],
[0.28318238, -1.5595294, -0.70619607, 1.079205, 0.9033381],
[-1.1639192, 0.96795416, 0.7672701, 0.70226634, -1.2735714],
],
accuracy: 1e-5)
assertEqual(
grad.0,
[
[0.00148721, -0.00095408, -0.00042902, 0.00048913, -0.00059323],
[-0.00455132, -0.00496664, 0.00178061, 0.00263247, 0.00510535],
[0.0012024, -0.00662184, -0.00299847, 0.00458241, 0.00383568],
[-0.0019815, 0.00164783, 0.00130618, 0.00119543, -0.00216818],
],
accuracy: 1e-5)
assertEqual(
grad.1.offset,
[-0.645803, -5.8017054, 0.03168535, 5.973418, 0.44240427],
accuracy: 1e-5)
assertEqual(
grad.1.scale,
[11.077844, 12.092919, 3.0350027, 4.7778125, 8.969137],
accuracy: 1e-5)
}
func testLayerNormInference() {
Context.local.learningPhase = .inference
// This tests for a specific failure that had impacted the Transformer model.
let transformerTensor = Tensor<Float>(randomUniform: [1, 1, 768])
let transformerLayerNorm = LayerNorm<Float>(featureCount: 768, axis: -1, epsilon: 1e-5)
let transformerResult = transformerLayerNorm(transformerTensor)
XCTAssertEqual(transformerTensor.shape, transformerResult.shape)
}
func testGroupNorm() {
// The expected values were computed using the following Python code:
// ```
// import tensorflow as tf
// import tensorflow_addons as tfa
// x = tf.reshape(tf.range(24, dtype=tf.float32), [2, 2, 1, 6])
// layer = tfa.layers.GroupNormalization(groups=2)
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = layer(x)
// z = tf.math.reduce_sum(tf.math.square(y))
// print(y, tape.gradient(z, [x] + layer.trainable_variables))
// ```
let tensor = Tensor<Float>(rangeFrom: 0, to: 24, stride: 1)
.reshaped(to: [2, 2, 1, 6])
let layer = GroupNorm<Float>(featureCount: 6, groupCount: 2)
let output = layer(tensor)
let expectedOutput: Tensor<Float> = [
[
[[-1.2864685, -0.9648514, -0.64323425, -1.2864685, -0.9648514, -0.64323425]],
[[0.64323425, 0.9648514, 1.2864685, 0.64323425, 0.9648514, 1.2864685]]
],
[
[[-1.2864685, -0.9648514, -0.64323425, -1.2864685, -0.9648514, -0.64323425]],
[[0.64323425, 0.9648514, 1.2864685, 0.64323425, 0.9648514, 1.2864685]]
]
]
XCTAssert(output.isAlmostEqual(to: expectedOutput))
let grad = gradient(at: tensor, layer) { $1($0).squared().sum() }
let expectedGrad: Tensor<Float> = [
[[[-8.5592270e-05, -6.4194202e-05, -4.2796135e-05,
-8.5592270e-05, -6.4194202e-05, -4.2796135e-05]],
[[4.2796135e-05, 6.4194202e-05, 8.5592270e-05,
4.2796135e-05, 6.4194202e-05, 8.5592270e-05]]],
[[[-8.5592270e-05, -6.4194202e-05, -4.2796135e-05,
-8.5592270e-05, -6.4194202e-05, -4.2796135e-05]],
[[4.2796135e-05, 6.4194202e-05, 8.5592270e-05,
4.2796135e-05, 6.4194202e-05, 8.5592270e-05]]]
]
XCTAssert(grad.0.isAlmostEqual(to: expectedGrad))
XCTAssert(
grad.1.scale.isAlmostEqual(to: [
8.275006, 7.4475055, 8.275006,
8.275006, 7.4475055, 8.275006
]))
XCTAssert(
grad.1.offset.isAlmostEqual(to: [
-2.572937, 0, 2.572937,
-2.572937, 0, 2.572937
]))
}
func testInstanceNorm() {
// The expected values were computed using the following Python code:
// ```
// import tensorflow as tf
// import tensorflow_addons as tfa
// x = tf.reshape(tf.range(24, dtype=tf.float32), [2, 2, 1, 6])
// layer = tfa.layers.InstanceNormalization()
// with tf.GradientTape() as tape:
// tape.watch(x)
// y = layer(x)
// z = tf.math.reduce_sum(tf.math.square(y))
// print(y, tape.gradient(z, [x] + layer.trainable_variables))
// ```
let tensor = Tensor<Float>(rangeFrom: 0, to: 24, stride: 1)
.reshaped(to: [2, 2, 1, 6])
let layer = InstanceNorm<Float>(featureCount: 6)
let output = layer(tensor)
let expected: Tensor<Float> = [
[
[[-0.99994445, -0.99994445, -0.9999444, -0.99994445, -0.9999443, -0.99994445]],
[[0.99994445, 0.9999443, 0.99994445, 0.99994445, 0.99994445, 0.99994445]]
],
[
[[-0.9999442, -0.9999442, -0.9999447, -0.9999447, -0.9999442, -0.9999442]],
[[0.9999447, 0.9999442, 0.9999442, 0.9999442, 0.9999447, 0.9999447]]
]
]
XCTAssertEqual(output, expected)
let grad = gradient(at: tensor, layer) { $1($0).squared().sum() }
let expectedGrad: Tensor<Float> = [
[[[-7.4148178e-05, -7.4108444e-05, -7.4108444e-05,
-7.4088573e-05, -7.4068703e-05, -7.4148178e-05]],
[[7.4148178e-05, 7.4068703e-05, 7.4128307e-05,
7.4088573e-05, 7.4108444e-05, 7.4148178e-05]]],
[[[-7.4128300e-05, -7.4207783e-05, -7.4108451e-05,
-7.4048847e-05, -7.4128300e-05, -7.4128300e-05]],
[[7.4108451e-05, 7.4207783e-05, 7.4128300e-05,
7.4068696e-05, 7.4108451e-05, 7.4108451e-05]]]
]
XCTAssert(grad.0.isAlmostEqual(to: expectedGrad))
XCTAssert(
grad.1.delegate.scale
.isAlmostEqual(to: [
7.999111, 7.9991093, 7.9991107,
7.9991117, 7.999111, 7.99911
]))
XCTAssert(
grad.1.delegate.offset
.isAlmostEqual(to: [
9.5367432e-07, -2.3841858e-07, -8.3446503e-07,
-9.5367432e-07, 1.1920929e-06, 9.5367432e-07
]))
}
func testGaussianNoise() {
Context.local.learningPhase = .inference
let gaussianNoise = GaussianNoise<Float>(standardDeviation: 1.0)
let x = Tensor<Float>(repeating: 1.0, shape: [5, 5])
XCTAssertEqual(gaussianNoise(x), x)
withLearningPhase(LearningPhase.inference) {
XCTAssertEqual(gaussianNoise(x), x)
withLearningPhase(LearningPhase.training) {
XCTAssertNotEqual(gaussianNoise(x), x)
}
XCTAssertEqual(gaussianNoise(x), x)
}
XCTAssertEqual(gaussianNoise(x), x)
}
func testGaussianDropout() {
Context.local.learningPhase = .inference
let dropout = GaussianDropout<Float>(probability: 0.5)
let x = Tensor<Float>(repeating: 1.0, shape: [5, 5])
XCTAssertEqual(dropout(x), x)
withLearningPhase(LearningPhase.inference) {
XCTAssertEqual(dropout(x), x)
withLearningPhase(LearningPhase.training) {
XCTAssertNotEqual(dropout(x), x)
}
XCTAssertEqual(dropout(x), x)
}
XCTAssertEqual(dropout(x), x)
}
func testAlphaDropout() {
Context.local.learningPhase = .inference
let dropout = AlphaDropout<Float>(probability: 0.5)
let x = Tensor<Float>(repeating: 1.0, shape: [4, 4])
XCTAssertEqual(dropout(x), x)
withLearningPhase(LearningPhase.inference) {
XCTAssertEqual(dropout(x), x)
withLearningPhase(LearningPhase.training) {
XCTAssertNotEqual(dropout(x), x)
}
XCTAssertEqual(dropout(x), x)
}
XCTAssertEqual(dropout(x), x)
}
func testDilation2D() {
let filter = Tensor(shape: [2, 2, 3], scalars: (0..<12).map(Float.init))
let layer = Dilation2D<Float>(
filter: filter, strides: (2, 2), padding: .valid)
let input = Tensor(shape: [2, 2, 2, 3], scalars: (0..<24).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>(
shape: [2, 1, 1, 3],
scalars: [18, 20, 22, 30, 32, 34])
XCTAssertEqual(output, expected)
}
func testDilation2DGradient() {
let filter = Tensor(shape: [3, 2, 4], scalars: (0..<24).map(Float.init))
let layer = Dilation2D<Float>(
filter: filter,
strides: (1, 1),
rates: (1, 1),
padding: .valid)
let input = Tensor(shape: [2, 4, 4, 4], scalars: (0..<128).map(Float.init))
let grads = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// filters = tf.reshape(tf.range(24, dtype=tf.float32), [3, 2, 4])
// image = tf.reshape(tf.range(128, dtype=tf.float32), [2, 4, 4, 4])
// with tf.GradientTape() as tape:
// tape.watch([image, filters])
// y = tf.nn.dilation2d(
// image, filters, [1, 1, 1, 1], "VALID", "NHWC", [1, 1, 1, 1], name=None)
// print(tape.gradient(y, [image, filters]))
// ```
XCTAssertEqual(
grads.0,
[
[[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
[[0, 0, 0, 0],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]],
[[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
[[0, 0, 0, 0],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]]
]
)
XCTAssertEqual(
grads.1.filter,
[
[[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[12, 12, 12, 12]],
]
)
}
func testErosion2D() {
let filter = Tensor(shape: [2, 2, 3], scalars: (0..<12).map(Float.init))
let layer = Erosion2D<Float>(
filter: filter, strides: (2, 2), padding: .valid)
let input = Tensor(shape: [2, 2, 2, 3], scalars: (0..<24).map(Float.init))
let output = layer.inferring(from: input)
let expected = Tensor<Float>(
shape: [2, 1, 1, 3],
scalars: [-9, -9, -9, 3, 3, 3])
XCTAssertEqual(output, expected)
}
func testErosion2DGradient() {
let filter = Tensor(shape: [3, 2, 4], scalars: (0..<24).map(Float.init))
let layer = Erosion2D<Float>(
filter: filter,
strides: (1, 1),
rates: (1, 1),
padding: .valid)
let input = Tensor(shape: [2, 4, 4, 4], scalars: (0..<128).map(Float.init))
let grads = gradient(at: input, layer) { $1($0).sum() }
// The expected value of the gradient was computed using the following Python code:
// ```
// filters = tf.reshape(tf.range(24, dtype=tf.float32), [3, 2, 4])
// image = tf.reshape(tf.range(128, dtype=tf.float32), [2, 4, 4, 4])
// with tf.GradientTape() as tape:
// tape.watch([image, filters])
// y = tf.nn.erosion2d(
// image, filters, [1, 1, 1, 1], "VALID", "NHWC", [1, 1, 1, 1], name=None)
// print(tape.gradient(y, [image, filters]))
// ```
XCTAssertEqual(
grads.0,
[[[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[0, 0, 0, 0]],
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]]],
[[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[0, 0, 0, 0]],
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]]]]
)
XCTAssertEqual(
grads.1.filter,
[[[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[-12, -12, -12, -12]],
]
)
}
static var allTests = [
("testConv1D", testConv1D),
("testConv1DDilation", testConv1DDilation),
("testConv2D", testConv2D),
("testConv2DGradient", testConv2DGradient),
("testConv2DDilation", testConv2DDilation),
("testConv3D", testConv3D),
("testConv3DGradient", testConv3DGradient),
("testTransposedConv1D", testTransposedConv1D),
("testTransposedConv2D", testTransposedConv2D),
("testTransposedConv2DGradient", testTransposedConv2DGradient),
("testTransposedConv3D", testTransposedConv3D),
("testDepthwiseConv2D", testDepthwiseConv2D),
("testDepthwiseConv2DGradient", testDepthwiseConv2DGradient),
("testSeparableConv1D", testSeparableConv1D),
("testSeparableConv2D", testSeparableConv2D),
("testSeparableConv2DGradient", testSeparableConv2DGradient),
("testZeroPadding1D", testZeroPadding1D),
("testZeroPadding1DGradient", testZeroPadding1DGradient),
("testZeroPadding2D", testZeroPadding2D),
("testZeroPadding2DGradient", testZeroPadding2DGradient),
("testZeroPadding3D", testZeroPadding3D),
("testZeroPadding3DGradient", testZeroPadding3DGradient),
("testMaxPool1D", testMaxPool1D),
("testMaxPool1DGradient", testMaxPool1DGradient),
("testMaxPool2D", testMaxPool2D),
("testMaxPool2DGradient", testMaxPool2DGradient),
("testMaxPool3D", testMaxPool3D),
("testMaxPool3DGradient", testMaxPool3DGradient),
("testAvgPool1D", testAvgPool1D),
("testAvgPool1DGradient", testAvgPool1DGradient),
("testAvgPool2D", testAvgPool2D),
("testAvgPool2DGradient", testAvgPool2DGradient),
("testAvgPool3D", testAvgPool3D),
("testAvgPool3DGradient", testAvgPool3DGradient),
("testGlobalAvgPool1D", testGlobalAvgPool1D),
("testGlobalAvgPool1DGradient", testGlobalAvgPool1DGradient),
("testGlobalAvgPool2D", testGlobalAvgPool2D),
("testGlobalAvgPool2DGradient", testGlobalAvgPool2DGradient),
("testGlobalAvgPool3D", testGlobalAvgPool3D),
("testGlobalAvgPool3DGradient", testGlobalAvgPool3DGradient),
("testGlobalMaxPool1D", testGlobalMaxPool1D),
("testGlobalMaxPool1DGradient", testGlobalMaxPool1DGradient),
("testGlobalMaxPool2D", testGlobalMaxPool2D),
("testGlobalMaxPool2DGradient", testGlobalMaxPool2DGradient),
("testGlobalMaxPool3D", testGlobalMaxPool3D),
("testGlobalMaxPool3DGradient", testGlobalMaxPool3DGradient),
("testFractionalMaxPool2D", testFractionalMaxPool2D),
("testFractionalMaxPool2DGradient", testFractionalMaxPool2DGradient),
("testUpSampling1D", testUpSampling1D),
("testUpSampling1DGradient", testUpSampling1DGradient),
("testUpSampling2D", testUpSampling2D),
("testUpSampling2DGradient", testUpSampling2DGradient),
("testUpSampling3D", testUpSampling3D),
("testUpSampling3DGradient", testUpSampling3DGradient),
("testReshape", testReshape),
("testReshapeGradient", testReshapeGradient),
("testFlatten", testFlatten),
("testFlattenGradient", testFlattenGradient),
("testEmbedding", testEmbedding),
("testEmbeddingGradient", testEmbeddingGradient),
("testBasicRNNCell", testBasicRNNCell),
("testDense", testDense),
("testDenseGradient", testDenseGradient),
("testRNN", testRNN),
("testBidirectionalBasicRNNSumMerge", testBidirectionalBasicRNNSumMerge),
("testBidirectionalBasicRNNConcatenateMerge", testBidirectionalBasicRNNConcatenateMerge),
("testBidirectionalBasicRNNAverageMerge", testBidirectionalBasicRNNAverageMerge),
("testBidirectionalBasicRNNMultiplyMerge", testBidirectionalBasicRNNMultiplyMerge),
("testBidirectionalBasicRNNStackMerge", testBidirectionalBasicRNNStackMerge),
("testLSTM", testLSTM),
("testBidirectionalLSTMSumMerge", testBidirectionalLSTMSumMerge),
("testBidirectionalLSTMConcatenateMerge", testBidirectionalLSTMConcatenateMerge),
("testBidirectionalLSTMAverageMerge", testBidirectionalLSTMAverageMerge),
("testBidirectionalLSTMMultiplyMerge", testBidirectionalLSTMMultiplyMerge),
("testBidirectionalLSTMStackMerge", testBidirectionalLSTMStackMerge),
("testGRU", testGRU),
("testBidirectionalGRUSumMerge", testBidirectionalGRUSumMerge),
("testBidirectionalGRUConcatenateMerge", testBidirectionalGRUConcatenateMerge),
("testBidirectionalGRUAverageMerge", testBidirectionalGRUAverageMerge),
("testBidirectionalGRUMultiplyMerge", testBidirectionalGRUMultiplyMerge),
("testBidirectionalGRUStackMerge", testBidirectionalGRUStackMerge),
("testFunction", testFunction),
("testBatchNorm", testBatchNorm),
("testBatchNormInference", testBatchNormInference),
("testLayerNorm", testLayerNorm),
("testLayerNormInference", testLayerNormInference),
("testGroupNorm", testGroupNorm),
("testInstanceNorm", testInstanceNorm),
("testGaussianNoise", testGaussianNoise),
("testGaussianDropout", testGaussianDropout),
("testAlphaDropout", testAlphaDropout),
("testDilation2D", testDilation2D),
("testDilation2DGradient", testDilation2DGradient),
("testErosion2D", testErosion2D),
("testErosion2DGradient", testErosion2DGradient)
]
}
| 41.543035 | 119 | 0.639273 |
dbb14a4ebae7956ad1dad57e3e724a2739a939c5 | 280 | // swift-tools-version:5.3
import PackageDescription
let package = Package(
name: "Switch",
products: [
.library(
name: "Switch",
targets: ["Switch"]),
],
dependencies: [
],
targets: [
.target(
name: "Switch",
dependencies: []),
]
)
| 14.736842 | 27 | 0.553571 |
4699a329106199e61db9f668a756a352a2a3d1e5 | 405 | //
// GymWorkoutUITests.swift
// GymWorkoutUITests
//
// Created by Daniela Ferreira da Cunha on 04/10/19.
// Copyright © 2019 Adrian de Almeida. All rights reserved.
//
import XCTest
class BaseTests: XCTestCase {
let app = XCUIApplication()
override func setUp() {
continueAfterFailure = false
app.launch()
}
override func tearDown() {
app.terminate()
}
}
| 17.608696 | 60 | 0.649383 |
9c76ae929022758d7940db0ccd5c2e608afc596d | 4,957 | //
// String.swift
// MeetingBar
//
// Created by Jens Goldhammer on 29.12.20.
// Copyright © 2020 Andrii Leitsius. All rights reserved.
//
import Foundation
extension String {
enum TruncationPosition {
case head
case middle
case tail
}
/// Returns a truncated version of the string, limited to the specified length
/// in characters, indicating the truncating with an optional truncation mark.
/// - Parameters:
/// - limit: Desired maximum length of the string.
/// - position: The position where the truncation should be applied.
/// - truncationMark: A string that will be placed at the truncation position.
/// - Returns: The truncated string, if applicable.
func truncated(to limit: Int, at position: TruncationPosition = .tail, truncationMark: String = "…") -> String {
guard self.count > limit else {
return self
}
switch position {
case .head:
return truncationMark + self.suffix(limit)
case .middle:
let headCharactersCount = Int(ceil(Float(limit - truncationMark.count) / 2.0))
let tailCharactersCount = Int(floor(Float(limit - truncationMark.count) / 2.0))
return "\(self.prefix(headCharactersCount))\(truncationMark)\(self.suffix(tailCharactersCount))"
case .tail:
return self.prefix(limit) + truncationMark
}
}
/// Returns a version of the first occurence of `target` is replaced by `replacement`.
/// - Parameters:
/// - target: The string to search for.
/// - replacement: The replacement string.
/// - Returns: The string with the replacement, if any.
func replacingFirstOccurrence(of target: String, with replacement: String) -> String {
if let range = self.range(of: target) {
return self.replacingCharacters(in: range, with: replacement)
}
return self
}
/// A Boolean value indicating whether the string contains HTML tags.
var containsHTML: Bool {
let htmlRange = self.range(of: #"</?[A-z][ \t\S]*>"#, options: .regularExpression)
return htmlRange != nil
}
/// Returns a version of the string with all HTML tags removed, if any.
/// - Returns: The string without HTML tags.
func htmlTagsStripped() -> String {
if self.containsHTML,
let data = self.data(using: .utf16),
let attributedSelf = NSAttributedString(
html: data,
options: [.documentType: NSAttributedString.DocumentType.html],
documentAttributes: nil
) {
return attributedSelf.string
}
return self
}
func encodeUrl() -> String? {
self.addingPercentEncoding( withAllowedCharacters: NSCharacterSet.urlQueryAllowed)
}
func decodeUrl() -> String? {
self.removingPercentEncoding
}
func loco() -> String {
I18N.instance.localizedString(for: self)
}
func loco(_ arg: CVarArg) -> String {
I18N.instance.localizedString(for: self, arg)
}
func loco(_ firstArg: CVarArg, _ secondArg: CVarArg) -> String {
I18N.instance.localizedString(for: self, firstArg, secondArg)
}
func loco(_ firstArg: CVarArg, _ secondArg: CVarArg, _ thirdArg: CVarArg) -> String {
I18N.instance.localizedString(for: self, firstArg, secondArg, thirdArg)
}
}
extension String {
func splitWithNewLineString(with attributes: [NSAttributedString.Key: Any], maxWidth: CGFloat) -> String {
let words = self.split(separator: " ").map { String($0) }
var lineWidth: CGFloat = 0.0
var thisLine = ""
var lines: [String] = []
func width(for string: String) -> CGFloat {
string.boundingRect(with: NSSize.zero, options: [ .usesLineFragmentOrigin, .usesFontLeading], attributes: attributes).width
}
func addToAllLines(_ text: String) {
lines.append(text)
thisLine = ""
lineWidth = 0.0
}
for (idx, word) in words.enumerated() {
thisLine = thisLine.appending("\(word) ")
lineWidth = width(for: thisLine)
let isLastWord = idx + 1 >= words.count
if isLastWord {
addToAllLines(thisLine)
} else {
let nextWord = words[idx + 1]
if lineWidth + width(for: nextWord) >= maxWidth {
addToAllLines(thisLine)
}
}
}
return lines.joined(separator: "\n")
}
func splitWithNewLineAttributedString(with attributes: [NSAttributedString.Key: Any], maxWidth: CGFloat) -> NSAttributedString {
let output = self.splitWithNewLineString(with: attributes, maxWidth: maxWidth)
let attributedString = NSAttributedString(string: output, attributes: attributes)
return attributedString
}
}
| 34.186207 | 135 | 0.615695 |
1e333a5b802b8fd7084d370947f0f7054b48bb8a | 1,056 | // Copyright © 2021 SpotHero, Inc. All rights reserved.
import Foundation
public enum UBNetworkError: Error {
case invalidContentType(String)
case invalidURLString(String)
case invalidURLResponse
case unableToDecode(String, DecodingError?)
case unexpectedError
}
extension UBNetworkError: LocalizedError {
public var errorDescription: String? {
switch self {
case let .invalidContentType(contentType):
return "Invalid content type '\(contentType)'."
case let .invalidURLString(urlString):
return "Invalid URL string '\(urlString)'."
case .invalidURLResponse:
return "Invalid URL Response."
case let .unableToDecode(objectName, .some(underlyingError)):
return "Unable to decode '\(objectName)'. \(underlyingError.cleanedDescription)"
case let .unableToDecode(objectName, _):
return "Unable to decode '\(objectName)'."
case .unexpectedError:
return "An unexpected error has occurred."
}
}
}
| 34.064516 | 92 | 0.666667 |
9b95715eaaca5438809638030383919c3d0e06c9 | 2,295 | /*
MIT License
Copyright (c) 2017-2019 MessageKit
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
import Foundation
import UIKit
open class MediaMessageSizeCalculator: MessageSizeCalculator {
open override func messageContainerSize(for message: MessageType) -> CGSize {
let maxWidth = messageContainerMaxWidth(for: message)
let sizeForMediaItem = { (maxWidth: CGFloat, size: CGSize) -> CGSize in
if maxWidth < size.width {
// Maintain the ratio if width is too great
let height = maxWidth * size.height / size.width
return CGSize(width: maxWidth, height: height)
}
return size
}
switch message.kind {
case .photo(let item):
return sizeForMediaItem(maxWidth, item.size)
case .video(let item):
return sizeForMediaItem(maxWidth, item.size)
case .wallet(let item):
return sizeForMediaItem(maxWidth, item.size)
case .gift(let item):
return sizeForMediaItem(maxWidth, item.size)
case .auth(let item):
return sizeForMediaItem(maxWidth, item.size)
default:
fatalError("messageContainerSize received unhandled MessageDataType: \(message.kind)")
}
}
}
| 40.982143 | 98 | 0.700654 |
f4faea90f4d852bd284f9379eab13347444179b3 | 1,666 | import XCTest
import Mockingbird
@testable import CarthageExample
class PersonTests: XCTestCase {
var bird: BirdMock! // Build the test target (⇧⌘U) to generate this mock
override func setUp() {
bird = mock(Bird.self)
}
// MARK: - Flying
func testReleaseBird() {
given(bird.canFly).willReturn(true) // Given a bird that can fly
Person().release(bird) // When a person releases the bird
verify(bird.fly()).wasCalled() // Then the bird flies away
}
func testReleaseNonFlyingBird() {
given(bird.canFly).willReturn(false) // Given a bird that _cannot_ fly
Person().release(bird) // When a person releases the bird
verify(bird.fly()).wasNeverCalled() // Then the bird doesn't fly
}
// MARK: - Eating
func testFeedBird() {
given(bird.canEat(any())).willReturn(true) // Given a bird that eats anything
Person().feed(bird: bird, fruit: Apple()) // When feeding the bird an apple
Person().feed(bird: bird, fruit: Watermelon()) // and a watermelon
verify(bird.eat(any())).wasCalled(twice) // Then the bird eats twice
}
func testFeedPickyBird() {
given(bird.canEat(any(where: { // Given a bird that only eats small fruits
$0.size < 42
}))).willReturn(true)
bird.useDefaultValues(from: .standardProvider) // (return `false` by default)
Person().feed(bird: bird, fruit: Apple()) // When feeding the bird an apple
Person().feed(bird: bird, fruit: Watermelon()) // and a watermelon
verify(bird.eat(any())).wasCalled(once) // Then the bird only eats once
}
}
| 36.217391 | 95 | 0.629652 |
fe089dd9f3642456747855992d8238211bb5460e | 3,349 | import Foundation
import XCTest
import Nimble
private protocol TestProtocol {}
private class TestClassConformingToProtocol: TestProtocol {}
private struct TestStructConformingToProtocol: TestProtocol {}
final class BeAnInstanceOfTest: XCTestCase, XCTestCaseProvider {
static var allTests: [(String, (BeAnInstanceOfTest) -> () throws -> Void)] {
return [
("testPositiveMatch", testPositiveMatch),
("testPositiveMatchSwiftTypes", testPositiveMatchSwiftTypes),
("testFailureMessages", testFailureMessages),
("testFailureMessagesSwiftTypes", testFailureMessagesSwiftTypes),
]
}
func testPositiveMatch() {
expect(NSNull()).to(beAnInstanceOf(NSNull.self))
expect(NSNumber(value:1)).toNot(beAnInstanceOf(NSDate.self))
}
enum TestEnum {
case one, two
}
func testPositiveMatchSwiftTypes() {
expect(1).to(beAnInstanceOf(Int.self))
expect("test").to(beAnInstanceOf(String.self))
expect(TestEnum.one).to(beAnInstanceOf(TestEnum.self))
let testProtocolClass = TestClassConformingToProtocol()
expect(testProtocolClass).to(beAnInstanceOf(TestClassConformingToProtocol.self))
expect(testProtocolClass).toNot(beAnInstanceOf(TestProtocol.self))
expect(testProtocolClass).toNot(beAnInstanceOf(TestStructConformingToProtocol.self))
let testProtocolStruct = TestStructConformingToProtocol()
expect(testProtocolStruct).to(beAnInstanceOf(TestStructConformingToProtocol.self))
expect(testProtocolStruct).toNot(beAnInstanceOf(TestProtocol.self))
expect(testProtocolStruct).toNot(beAnInstanceOf(TestClassConformingToProtocol.self))
}
func testFailureMessages() {
failsWithErrorMessageForNil("expected to not be an instance of NSNull, got <nil>") {
expect(nil as NSNull?).toNot(beAnInstanceOf(NSNull.self))
}
failsWithErrorMessageForNil("expected to be an instance of NSString, got <nil>") {
expect(nil as NSString?).to(beAnInstanceOf(NSString.self))
}
#if os(macOS) || os(iOS) || os(tvOS) || os(watchOS)
let numberTypeName = "__NSCFNumber"
#else
let numberTypeName = "NSNumber"
#endif
failsWithErrorMessage("expected to be an instance of NSString, got <\(numberTypeName) instance>") {
expect(NSNumber(value:1)).to(beAnInstanceOf(NSString.self))
}
failsWithErrorMessage("expected to not be an instance of \(numberTypeName), got <\(numberTypeName) instance>") {
expect(NSNumber(value:1)).toNot(beAnInstanceOf(type(of: NSNumber(value:1))))
}
}
func testFailureMessagesSwiftTypes() {
failsWithErrorMessage("expected to not be an instance of Int, got <Int instance>") {
expect(1).toNot(beAnInstanceOf(Int.self))
}
let testClass = TestClassConformingToProtocol()
failsWithErrorMessage("expected to be an instance of \(String(describing: TestProtocol.self)), got <\(String(describing: TestClassConformingToProtocol.self)) instance>") {
expect(testClass).to(beAnInstanceOf(TestProtocol.self))
}
failsWithErrorMessage("expected to be an instance of String, got <Int instance>") {
expect(1).to(beAnInstanceOf(String.self))
}
}
}
| 41.8625 | 179 | 0.693938 |
fc4407fc429a430e3005ea32a4a2b0845624c9e1 | 3,158 |
//
// UIFontExtension.swift
// MemoryChainKit
//
// Created by Zhao Meiru on 2020/4/9.
// Copyright © 2020 Marc Steven(https://github.com/MarcSteven). All rights reserved.
//
import UIKit
extension UIFont {
public enum Trait {
case normal
case italic
case monospace
}
public static func systemFont(size: CGFloat, weight: Weight = .regular, trait: Trait = .normal) -> UIFont {
switch trait {
case .normal:
return systemFont(ofSize: size, weight: weight)
case .italic:
return italicSystemFont(ofSize: size)
case .monospace:
return monospacedDigitSystemFont(ofSize: size, weight: weight)
}
}
}
extension UIFont {
func apply(_ trait: Trait) -> UIFont {
trait == .monospace ? monospacedDigitFont : self
}
/// Returns a font matching the given font descriptor.
///
/// - Parameter traits: The new symbolic traits.
/// - Returns: The new font matching the given font descriptor.
public func traits(_ traits: UIFontDescriptor.SymbolicTraits...) -> UIFont? {
guard let descriptor = fontDescriptor.withSymbolicTraits(UIFontDescriptor.SymbolicTraits(traits)) else {
return nil
}
return UIFont(descriptor: descriptor, size: 0)
}
public func bold() -> UIFont? {
traits(.traitBold)
}
public func italic() -> UIFont? {
traits(.traitItalic)
}
public func monospace() -> UIFont? {
traits(.traitMonoSpace)
}
}
extension UIFont {
public var monospacedDigitFont: UIFont {
let featureSettings = [[
UIFontDescriptor.FeatureKey.featureIdentifier: kNumberSpacingType,
UIFontDescriptor.FeatureKey.typeIdentifier: kMonospacedNumbersSelector
]]
let attributes = [UIFontDescriptor.AttributeName.featureSettings: featureSettings]
let oldDescriptor = fontDescriptor
let newDescriptor = oldDescriptor.addingAttributes(attributes)
return UIFont(descriptor: newDescriptor, size: 0)
}
}
extension UIFont {
public static func printAvailableFontNames() {
for family in familyNames {
let count = fontNames(forFamilyName: family).count
print("▿ \(family) (\(count) \(count == 1 ? "font" : "fonts"))")
for name in fontNames(forFamilyName: family) {
print(" - \(name)")
}
}
}
}
extension UIFont.TextStyle: CaseIterable {
public static var allCases: [UIFont.TextStyle] = {
[
.largeTitle,
.title1,
.title2,
.title3,
.headline,
.subheadline,
.body,
.callout,
.footnote,
.caption1,
.caption2
]
}()
private static var headerStyles: [UIFont.TextStyle] = {
[
.largeTitle,
.title1,
.title2,
.title3,
.headline
]
}()
public var isTitle: Bool {
UIFont.TextStyle.headerStyles.contains(self)
}
}
| 25.885246 | 112 | 0.582014 |
1e7f7c1c734d3b52e776c1e7de987c1e2586f16b | 9,017 | //
// Copyright (c) 2019 Open Whisper Systems. All rights reserved.
//
import Foundation
import UIKit
protocol AttachmentCaptionToolbarDelegate: class {
func attachmentCaptionToolbarDidEdit(_ attachmentCaptionToolbar: AttachmentCaptionToolbar)
func attachmentCaptionToolbarDidComplete()
}
// MARK: -
class AttachmentCaptionToolbar: UIView, UITextViewDelegate {
private let kMaxCaptionCharacterCount = 240
weak var attachmentCaptionToolbarDelegate: AttachmentCaptionToolbarDelegate?
var messageText: String? {
get { return textView.text }
set {
textView.text = newValue
}
}
// Layout Constants
let kMinTextViewHeight: CGFloat = 38
var maxTextViewHeight: CGFloat {
// About ~4 lines in portrait and ~3 lines in landscape.
// Otherwise we risk obscuring too much of the content.
return UIDevice.current.orientation.isPortrait ? 160 : 100
}
var textViewHeightConstraint: NSLayoutConstraint!
var textViewHeight: CGFloat
// MARK: - Initializers
init() {
self.textViewHeight = kMinTextViewHeight
super.init(frame: CGRect.zero)
// Specifying autorsizing mask and an intrinsic content size allows proper
// sizing when used as an input accessory view.
self.autoresizingMask = .flexibleHeight
self.translatesAutoresizingMaskIntoConstraints = false
self.backgroundColor = UIColor.clear
textView.delegate = self
// Layout
let kToolbarMargin: CGFloat = 8
self.textViewHeightConstraint = textView.autoSetDimension(.height, toSize: kMinTextViewHeight)
lengthLimitLabel.setContentHuggingHigh()
lengthLimitLabel.setCompressionResistanceHigh()
let contentView = UIStackView(arrangedSubviews: [textContainer, lengthLimitLabel])
// We have to wrap the toolbar items in a content view because iOS (at least on iOS10.3) assigns the inputAccessoryView.layoutMargins
// when resigning first responder (verified by auditing with `layoutMarginsDidChange`).
// The effect of this is that if we were to assign these margins to self.layoutMargins, they'd be blown away if the
// user dismisses the keyboard, giving the input accessory view a wonky layout.
contentView.layoutMargins = UIEdgeInsets(top: kToolbarMargin, left: kToolbarMargin, bottom: kToolbarMargin, right: kToolbarMargin)
contentView.axis = .vertical
addSubview(contentView)
contentView.autoPinEdgesToSuperviewEdges()
}
required init?(coder aDecoder: NSCoder) {
notImplemented()
}
// MARK: - UIView Overrides
override var intrinsicContentSize: CGSize {
get {
// Since we have `self.autoresizingMask = UIViewAutoresizingFlexibleHeight`, we must specify
// an intrinsicContentSize. Specifying CGSize.zero causes the height to be determined by autolayout.
return CGSize.zero
}
}
// MARK: - Subviews
private lazy var lengthLimitLabel: UILabel = {
let lengthLimitLabel = UILabel()
// Length Limit Label shown when the user inputs too long of a message
lengthLimitLabel.textColor = .white
lengthLimitLabel.text = NSLocalizedString("ATTACHMENT_APPROVAL_MESSAGE_LENGTH_LIMIT_REACHED", comment: "One-line label indicating the user can add no more text to the media message field.")
lengthLimitLabel.textAlignment = .center
// Add shadow in case overlayed on white content
lengthLimitLabel.layer.shadowColor = UIColor.black.cgColor
lengthLimitLabel.layer.shadowOffset = .zero
lengthLimitLabel.layer.shadowOpacity = 0.8
lengthLimitLabel.layer.shadowRadius = 2.0
lengthLimitLabel.isHidden = true
return lengthLimitLabel
}()
lazy var textView: UITextView = {
let textView = buildTextView()
textView.returnKeyType = .done
textView.scrollIndicatorInsets = UIEdgeInsets(top: 5, left: 0, bottom: 5, right: 3)
return textView
}()
private lazy var textContainer: UIView = {
let textContainer = UIView()
textContainer.clipsToBounds = true
textContainer.addSubview(textView)
textView.autoPinEdgesToSuperviewEdges()
return textContainer
}()
private func buildTextView() -> UITextView {
let textView = AttachmentTextView()
textView.keyboardAppearance = Theme.darkThemeKeyboardAppearance
textView.backgroundColor = .clear
textView.tintColor = Theme.darkThemePrimaryColor
textView.font = UIFont.ows_dynamicTypeBody
textView.textColor = Theme.darkThemePrimaryColor
textView.textContainerInset = UIEdgeInsets(top: 7, left: 7, bottom: 7, right: 7)
return textView
}
// MARK: - UITextViewDelegate
public func textViewDidChange(_ textView: UITextView) {
updateHeight(textView: textView)
attachmentCaptionToolbarDelegate?.attachmentCaptionToolbarDidEdit(self)
}
public func textView(_ textView: UITextView, shouldChangeTextIn range: NSRange, replacementText text: String) -> Bool {
if !FeatureFlags.sendingMediaWithOversizeText {
let existingText: String = textView.text ?? ""
let proposedText: String = (existingText as NSString).replacingCharacters(in: range, with: text)
// Don't complicate things by mixing media attachments with oversize text attachments
guard proposedText.utf8.count < kOversizeTextMessageSizeThreshold else {
Logger.debug("long text was truncated")
self.lengthLimitLabel.isHidden = false
// `range` represents the section of the existing text we will replace. We can re-use that space.
// Range is in units of NSStrings's standard UTF-16 characters. Since some of those chars could be
// represented as single bytes in utf-8, while others may be 8 or more, the only way to be sure is
// to just measure the utf8 encoded bytes of the replaced substring.
let bytesAfterDelete: Int = (existingText as NSString).replacingCharacters(in: range, with: "").utf8.count
// Accept as much of the input as we can
let byteBudget: Int = Int(kOversizeTextMessageSizeThreshold) - bytesAfterDelete
if byteBudget >= 0, let acceptableNewText = text.truncated(toByteCount: UInt(byteBudget)) {
textView.text = (existingText as NSString).replacingCharacters(in: range, with: acceptableNewText)
}
return false
}
self.lengthLimitLabel.isHidden = true
// After verifying the byte-length is sufficiently small, verify the character count is within bounds.
guard proposedText.count < kMaxCaptionCharacterCount else {
Logger.debug("hit attachment message body character count limit")
self.lengthLimitLabel.isHidden = false
// `range` represents the section of the existing text we will replace. We can re-use that space.
let charsAfterDelete: Int = (existingText as NSString).replacingCharacters(in: range, with: "").count
// Accept as much of the input as we can
let charBudget: Int = Int(kMaxCaptionCharacterCount) - charsAfterDelete
if charBudget >= 0 {
let acceptableNewText = String(text.prefix(charBudget))
textView.text = (existingText as NSString).replacingCharacters(in: range, with: acceptableNewText)
}
return false
}
}
// Though we can wrap the text, we don't want to encourage multline captions, plus a "done" button
// allows the user to get the keyboard out of the way while in the attachment approval view.
if text == "\n" {
attachmentCaptionToolbarDelegate?.attachmentCaptionToolbarDidComplete()
return false
} else {
return true
}
}
// MARK: - Helpers
private func updateHeight(textView: UITextView) {
// compute new height assuming width is unchanged
let currentSize = textView.frame.size
let newHeight = clampedTextViewHeight(fixedWidth: currentSize.width)
if newHeight != textViewHeight {
Logger.debug("TextView height changed: \(textViewHeight) -> \(newHeight)")
textViewHeight = newHeight
textViewHeightConstraint?.constant = textViewHeight
invalidateIntrinsicContentSize()
}
}
private func clampedTextViewHeight(fixedWidth: CGFloat) -> CGFloat {
let contentSize = textView.sizeThatFits(CGSize(width: fixedWidth, height: CGFloat.greatestFiniteMagnitude))
return CGFloatClamp(contentSize.height, kMinTextViewHeight, maxTextViewHeight)
}
}
| 40.254464 | 197 | 0.675945 |
46c687649993ed10aad2350e121b4c8e434d509f | 4,747 |
//
// PresenceSubsystemCap.swift
//
// Generated on 20/09/18
/*
* Copyright 2019 Arcus Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import Foundation
import RxSwift
import PromiseKit
// MARK: Constants
extension Constants {
public static var presenceSubsystemNamespace: String = "subspres"
public static var presenceSubsystemName: String = "PresenceSubsystem"
}
// MARK: Attributes
fileprivate struct Attributes {
static let presenceSubsystemOccupied: String = "subspres:occupied"
static let presenceSubsystemOccupiedConf: String = "subspres:occupiedConf"
static let presenceSubsystemPeopleAtHome: String = "subspres:peopleAtHome"
static let presenceSubsystemPeopleAway: String = "subspres:peopleAway"
static let presenceSubsystemDevicesAtHome: String = "subspres:devicesAtHome"
static let presenceSubsystemDevicesAway: String = "subspres:devicesAway"
static let presenceSubsystemAllDevices: String = "subspres:allDevices"
}
public protocol ArcusPresenceSubsystemCapability: class, RxArcusService {
/** Estimate as to whether the home is occupied */
func getPresenceSubsystemOccupied(_ model: SubsystemModel) -> Bool?
/** Confidence in occupied estimate */
func getPresenceSubsystemOccupiedConf(_ model: SubsystemModel) -> Any?
/** Set of the addresses of people who are in this place */
func getPresenceSubsystemPeopleAtHome(_ model: SubsystemModel) -> [String]?
/** Set of address of people that are away from this place */
func getPresenceSubsystemPeopleAway(_ model: SubsystemModel) -> [String]?
/** Set of addresses of presence capable devices not associated with people in this place */
func getPresenceSubsystemDevicesAtHome(_ model: SubsystemModel) -> [String]?
/** Set of addresses of presence capable devices not associated with people that are away from this place */
func getPresenceSubsystemDevicesAway(_ model: SubsystemModel) -> [String]?
/** Set of addresses of all presence capable devices */
func getPresenceSubsystemAllDevices(_ model: SubsystemModel) -> [String]?
/** Presence analysis describes, for each person, whether the subsystem thinks the person is at home or not and how it came to that conclusion. */
func requestPresenceSubsystemGetPresenceAnalysis(_ model: SubsystemModel) throws -> Observable<ArcusSessionEvent>
}
extension ArcusPresenceSubsystemCapability {
public func getPresenceSubsystemOccupied(_ model: SubsystemModel) -> Bool? {
let attributes: [String: AnyObject] = model.get()
return attributes[Attributes.presenceSubsystemOccupied] as? Bool
}
public func getPresenceSubsystemOccupiedConf(_ model: SubsystemModel) -> Any? {
let attributes: [String: AnyObject] = model.get()
return attributes[Attributes.presenceSubsystemOccupiedConf] as? Any
}
public func getPresenceSubsystemPeopleAtHome(_ model: SubsystemModel) -> [String]? {
let attributes: [String: AnyObject] = model.get()
return attributes[Attributes.presenceSubsystemPeopleAtHome] as? [String]
}
public func getPresenceSubsystemPeopleAway(_ model: SubsystemModel) -> [String]? {
let attributes: [String: AnyObject] = model.get()
return attributes[Attributes.presenceSubsystemPeopleAway] as? [String]
}
public func getPresenceSubsystemDevicesAtHome(_ model: SubsystemModel) -> [String]? {
let attributes: [String: AnyObject] = model.get()
return attributes[Attributes.presenceSubsystemDevicesAtHome] as? [String]
}
public func getPresenceSubsystemDevicesAway(_ model: SubsystemModel) -> [String]? {
let attributes: [String: AnyObject] = model.get()
return attributes[Attributes.presenceSubsystemDevicesAway] as? [String]
}
public func getPresenceSubsystemAllDevices(_ model: SubsystemModel) -> [String]? {
let attributes: [String: AnyObject] = model.get()
return attributes[Attributes.presenceSubsystemAllDevices] as? [String]
}
public func requestPresenceSubsystemGetPresenceAnalysis(_ model: SubsystemModel) throws -> Observable<ArcusSessionEvent> {
let request: PresenceSubsystemGetPresenceAnalysisRequest = PresenceSubsystemGetPresenceAnalysisRequest()
request.source = model.address
return try sendRequest(request)
}
}
| 42.765766 | 148 | 0.764904 |
1d48d244210caaa5d3ebd1bf63028567b449d4cb | 350 | //
// ColorExtension.swift
// ArcBlockTimeline
//
// Created by lee on 2021/7/5.
// Copyright © 2021 com.arc.block. All rights reserved.
//
import UIColor_Hex_Swift
extension UIColor {
class var cF4F6F9: UIColor {
return UIColor("#F4F6F9")
}
class var c46A3FF: UIColor {
return UIColor("#46A3FF")
}
}
| 15.909091 | 56 | 0.62 |
38b49c3aea0fae2df3faf442903f6b319e058441 | 5,721 | //
// CoreDataStack.swift
//
//
// Created by Fernando Rodríguez Romero on 21/02/16.
// Copyright © 2016 udacity.com. All rights reserved.
//
import CoreData
struct CoreDataStack {
// MARK: - Properties
private let model : NSManagedObjectModel
private let coordinator : NSPersistentStoreCoordinator
private let modelURL : NSURL
private let dbURL : NSURL
private let persistingContext : NSManagedObjectContext
private let backgroundContext : NSManagedObjectContext
let context : NSManagedObjectContext
// MARK: - Initializers
init?(modelName: String){
// Assumes the model is in the main bundle
guard let modelURL = NSBundle.mainBundle().URLForResource(modelName, withExtension: "momd") else {
print("Unable to find \(modelName)in the main bundle")
return nil}
self.modelURL = modelURL
// Try to create the model from the URL
guard let model = NSManagedObjectModel(contentsOfURL: modelURL) else {
print("unable to create a model from \(modelURL)")
return nil
}
self.model = model
// Create the store coordinator
coordinator = NSPersistentStoreCoordinator(managedObjectModel: model)
// Create a persistingContext (private queue) and a child one (main queue)
// create a context and add connect it to the coordinator
persistingContext = NSManagedObjectContext(concurrencyType: .PrivateQueueConcurrencyType)
persistingContext.persistentStoreCoordinator = coordinator
context = NSManagedObjectContext(concurrencyType: .MainQueueConcurrencyType)
context.parentContext = persistingContext
// Create a background context child of main context
backgroundContext = NSManagedObjectContext(concurrencyType: .PrivateQueueConcurrencyType)
backgroundContext.parentContext = context
// Add a SQLite store located in the documents folder
let fm = NSFileManager.defaultManager()
guard let docUrl = fm.URLsForDirectory(.DocumentDirectory, inDomains: .UserDomainMask).first else{
print("Unable to reach the documents folder")
return nil
}
self.dbURL = docUrl.URLByAppendingPathComponent("model.sqlite")
let options = [NSInferMappingModelAutomaticallyOption: true,
NSMigratePersistentStoresAutomaticallyOption: true]
do{
try addStoreCoordinator(NSSQLiteStoreType, configuration: nil, storeURL: dbURL, options: options)
}catch{
print("unable to add store at \(dbURL)")
}
}
// MARK: - Utils
func addStoreCoordinator(storeType: String,
configuration: String?,
storeURL: NSURL,
options : [NSObject : AnyObject]?) throws{
try coordinator.addPersistentStoreWithType(NSSQLiteStoreType, configuration: nil, URL: dbURL, options: nil)
}
}
// MARK: - Removing data
//extension CoreDataStack {
// func dropAllData() throws{
// // delete all the objects in the db. This won't delete the files, it will
// // just leave empty tables.
// try coordinator.destroyPersistentStoreAtURL(dbURL, withType:NSSQLiteStoreType , options: nil)
//
// try addStoreCoordinator(NSSQLiteStoreType, configuration: nil, storeURL: dbURL, options: nil)
// }
//}
// MARK: - Batch processing in the background
//extension CoreDataStack{
// typealias Batch=(workerContext: NSManagedObjectContext) -> ()
//
// func performBackgroundBatchOperation(batch: Batch){
// backgroundContext.performBlock(){
// batch(workerContext: self.backgroundContext)
//
// // Save it to the parent context, so normal saving
// // can work
// do{
// try self.backgroundContext.save()
// }catch{
// fatalError("Error while saving backgroundContext: \(error)")
// }
// }
// }
//}
// MARK: - Save
extension CoreDataStack {
func save() {
// We call this synchronously, but it's a very fast
// operation (it doesn't hit the disk). We need to know
// when it ends so we can call the next save (on the persisting
// context). This last one might take some time and is done
// in a background queue
context.performBlockAndWait(){
if self.context.hasChanges{
do{
try self.context.save()
}catch{
fatalError("Error while saving main context: \(error)")
}
// now we save in the background
self.persistingContext.performBlock(){
do{
try self.persistingContext.save()
}catch{
fatalError("Error while saving persisting context: \(error)")
}
}
}
}
}
// func autoSave(delayInSeconds : Int){
// if delayInSeconds > 0 {
// print("Autosaving")
// save()
//
// let delayInNanoSeconds = UInt64(delayInSeconds) * NSEC_PER_SEC
// let time = dispatch_time(DISPATCH_TIME_NOW, Int64(delayInNanoSeconds))
//
// dispatch_after(time, dispatch_get_main_queue(), {
// self.autoSave(delayInSeconds)
// })
// }
// }
}
| 32.505682 | 115 | 0.591855 |
4ab4cef01a439f43f0b258d9f263c5fd92b887a4 | 2,081 | //
// CalendarService.swift
// OutreachApp
//
// Created by Demicheli, Stefano on 9/3/2563 BE.
// Copyright © 2563 NECSI. All rights reserved.
//
import EventKit
protocol CalendarService {
func addEventToCalendarWith(title: String,
description: String?,
startDate: Date,
endDate: Date,
location: String?,
completion: @escaping ((Result<Bool, Error>) -> Void))
}
final class CalendarServiceImpl: CalendarService {
func addEventToCalendarWith(title: String,
description: String?,
startDate: Date,
endDate: Date,
location: String?,
completion: @escaping ((Result<Bool, Error>) -> Void)) {
let eventStore = EKEventStore()
eventStore.requestAccess(to: .event) { (granted, error) in
if let error = error {
completion(Result.failure(error))
return
}
if granted {
let alarm = EKAlarm(relativeOffset: -3600.0)
let event = EKEvent(eventStore: eventStore)
event.title = title
event.startDate = startDate
event.endDate = endDate
event.notes = description
event.alarms = [alarm]
event.location = location
event.calendar = eventStore.defaultCalendarForNewEvents
do {
try eventStore.save(event, span: .thisEvent)
} catch let error {
completion(Result.failure(error))
return
}
completion(Result.success(true))
} else {
completion(Result.failure(CalendarError.failedToAddEvent))
}
}
}
}
fileprivate enum CalendarError: Error {
case failedToAddEvent
}
| 33.031746 | 88 | 0.49063 |
f77ad5b0e76b8ba880a184fa8a67a655a1b74b86 | 2,889 | //
// Updateable.swift
// Cryptor
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
import Foundation
///
/// A protocol for calculations that can be updated with incremental data buffers.
///
public protocol Updatable {
/// Status of the calculation.
var status: Status { get }
///
/// Low-level update routine.
/// Updates the calculation with the contents of a data buffer.
///
/// - Parameters:
/// - buffer: Pointer to the data buffer
/// - byteCount: Length of the buffer in bytes
///
/// - Returns: `Self` if no error for optional chaining, nil otherwise
///
func update(from buffer: UnsafeRawPointer, byteCount: size_t) -> Self?
}
///
/// Factors out common update code from Digest, HMAC and Cryptor.
///
extension Updatable {
///
/// Updates the current calculation with data contained in an `NSData` object.
///
/// - Parameters data: The `NSData` object
///
/// - Returns: Optional `Self` or nil
///
public func update(data: NSData) -> Self? {
_ = update(from: data.bytes, byteCount: size_t(data.length))
return self.status == .success ? self : nil
}
///
/// Updates the current calculation with data contained in an `Data` object.
///
/// - Parameters data: The `Data` object
///
/// - Returns: Optional `Self` or nil
///
public func update(data: Data) -> Self? {
_ = data.withUnsafeBytes() { (buffer: UnsafePointer<UInt8>) in
_ = update(from: buffer, byteCount: size_t(data.count))
}
return self.status == .success ? self : nil
}
///
/// Updates the current calculation with data contained in a byte array.
///
/// - Parameters byteArray: The byte array
///
/// - Returns: Optional `Self` or nil
///
public func update(byteArray: [UInt8]) -> Self? {
_ = update(from: byteArray, byteCount: size_t(byteArray.count))
return self.status == .success ? self : nil
}
///
/// Updates the current calculation with data contained in a String.
/// The corresponding data will be generated using UTF8 encoding.
///
/// - Parameters string: The string of data
///
/// - Returns: Optional `Self` or nil
///
public func update(string: String) -> Self? {
_ = update(from: string, byteCount: size_t(string.utf8.count))
return self.status == .success ? self : nil
}
}
| 28.60396 | 82 | 0.646244 |
d989c4147c889ba5f6dd91468ca5bb44fc729562 | 512 | //
// ViewController.swift
// AmadaCocoa
//
// Created by hprietoamada on 03/11/2020.
// Copyright (c) 2020 hprietoamada. All rights reserved.
//
import UIKit
class ViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
}
override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.
}
}
| 20.48 | 80 | 0.675781 |
e48270b9d977b0aebb1410cdbb7f08f7a54d4ab2 | 2,559 | //
// ZHNloadingProgressView.swift
// zhnbilibili
//
// Created by zhn on 16/12/11.
// Copyright © 2016年 zhn. All rights reserved.
//
import UIKit
class ZHNloadingProgressView: UIView {
var progress: Int = 0{
didSet{
progressLabel.text = "\(progress)%"
}
}
// MARK: - 懒加载控件
fileprivate lazy var rotaingImageView: UIImageView = {
let rotaingImageView = UIImageView()
rotaingImageView.image = #imageLiteral(resourceName: "play_loading")
return rotaingImageView
}()
fileprivate lazy var titleLabel: UILabel = {
let titleLabel = UILabel()
titleLabel.text = "正在缓冲:"
titleLabel.font = UIFont.systemFont(ofSize: 12)
titleLabel.textColor = UIColor.white
return titleLabel
}()
fileprivate lazy var progressLabel: UILabel = {
let progressLabel = UILabel()
progressLabel.text = "0%"
progressLabel.textColor = UIColor.white
progressLabel.font = UIFont.systemFont(ofSize: 12)
return progressLabel
}()
// MARK: - life cycle
override init(frame: CGRect) {
super.init(frame: frame)
self.addSubview(rotaingImageView)
self.addSubview(titleLabel)
self.addSubview(progressLabel)
self.backgroundColor = UIColor.ysColor(red: 0, green: 0, blue: 0, alpha: 0.7)
}
required init?(coder aDecoder: NSCoder) {
fatalError("init(coder:) has not been implemented")
}
override func layoutSubviews() {
super.layoutSubviews()
rotaingImageView.snp.makeConstraints { (make) in
make.centerY.equalTo(self)
make.left.equalTo(self).offset(10)
make.size.equalTo(CGSize(width: 15, height: 15))
}
titleLabel.snp.makeConstraints { (make) in
make.centerY.equalTo(self)
make.left.equalTo(rotaingImageView.snp.right).offset(10)
}
progressLabel.snp.makeConstraints { (make) in
make.centerY.equalTo(self)
make.left.equalTo(titleLabel.snp.right).offset(5)
}
}
}
extension ZHNloadingProgressView {
func startRotaing() {
let rotaAnimation = CABasicAnimation(keyPath: "transform.rotation")
rotaAnimation.toValue = M_PI * 8
rotaAnimation.repeatCount = MAXFLOAT
rotaAnimation.duration = 3
rotaingImageView.layer.add(rotaAnimation, forKey: "rotaanimation")
}
func endRotaing() {
rotaingImageView.layer.removeAllAnimations()
}
}
| 29.413793 | 85 | 0.626417 |
1453245142572df5f394635d89d35a30d52e721a | 654 | //
// PKMMove+Utils.swift
// Pokedex
//
// Created by Marlon David Ruiz Arroyave on 7/03/21.
//
import Foundation
import PokemonAPI
extension PKMMove {
static func moveMock() -> PKMMove? {
guard let path = Bundle.main.path(forResource: "stompMove", ofType: "json") else { return nil }
guard let jsonData = try? Data(contentsOf: URL(fileURLWithPath: path)) else {
print("failed data")
return nil
}
guard let move: PKMMove = try? PKMMove.decoder.decode(PKMMove.self, from: jsonData) else {
print("failed decoder")
return nil
}
return move
}
}
| 22.551724 | 103 | 0.602446 |
d75087bf5b05ba9072019c19f103aab2ad169a26 | 2,765 | //
// User.swift
// YSTinder
//
// Created by jozen on 2019/1/9.
// Copyright © 2019 liurenrui. All rights reserved.
//
import UIKit
struct YSUser: ProducesCardViewModel {
// properties
var name: String?
var uid: String?
var age: Int?
var profession: String?
var imageUrls: [String]?
var city: String?
var caption: String?
var minSeekingAge: Int?
var maxSeekingAge: Int?
//将一个User中需要展示到View的内容都转成一个ViewModel
func toCardViewModel() -> YSCardViewModel{
let attributedText = NSMutableAttributedString(string: name ?? "", attributes: [.font:UIFont.systemFont(ofSize: 32, weight: .heavy)])
attributedText.append(NSAttributedString(string: " \(age ?? 18)", attributes: [.font:UIFont.systemFont(ofSize: 24, weight: .regular)]))
attributedText.append(NSAttributedString(string: "\n\(profession ?? "")", attributes: [.font:UIFont.systemFont(ofSize: 20, weight: .regular)]))
attributedText.append(NSAttributedString(string: "\n\(city ?? "")", attributes: [.font:UIFont.systemFont(ofSize: 20, weight: .regular)]))
let captionAttributedStr = NSMutableAttributedString(string: name ?? "", attributes: [.font:UIFont.systemFont(ofSize: 32, weight: .heavy)])
captionAttributedStr.append(NSAttributedString(string: " \(age ?? 18)", attributes: [.font:UIFont.systemFont(ofSize: 24, weight: .regular)]))
captionAttributedStr.append(NSAttributedString(string: "\n\(caption ?? "")", attributes: [.font: UIFont.systemFont(ofSize: 20, weight: .regular)]))
return YSCardViewModel(uid: self.uid ?? "", imageUrls: imageUrls ?? [], attributedString: attributedText, textAlignment: .left, captionStr: captionAttributedStr)
}
init(dictionary: [String:Any]) {
self.name = dictionary["name"] as? String
self.age = dictionary["age"] as? Int
self.profession = dictionary["profession"] as? String
self.imageUrls = dictionary["imageUrls"] as? [String]
self.city = dictionary["city"] as? String
self.caption = dictionary["caption"] as? String
self.uid = dictionary["uid"] as? String
self.minSeekingAge = dictionary["minSeekingAge"] as? Int
self.maxSeekingAge = dictionary["maxSeekingAge"] as? Int
}
func toUserDictionary() -> [String:Any]{
let dic : [String: Any] = [
"name": name ?? "",
"uid": uid ?? "",
"profession": profession ?? "",
"age": age ?? 18,
"city": city ?? "",
"caption": caption ?? "",
"imageUrls": imageUrls ?? [],
"minSeekingAge": minSeekingAge ?? 18,
"maxSeekingAge": maxSeekingAge ?? 80
]
return dic
}
}
| 43.203125 | 169 | 0.624955 |