id
stringlengths
6
10
background
stringlengths
177
4.7k
situation
stringlengths
93
889
question
stringlengths
15
222
answers
sequence
622949728
The dangers of global warming are being increasingly studied by a wide global consortium of scientists. These scientists are increasingly concerned about the potential long-term effects of global warming on our natural environment and on the planet. Of particular concern is how climate change and global warming caused by anthropogenic, or human-made releases of greenhouse gases, most notably carbon dioxide, can act interactively, and have adverse effects upon the planet, its natural environment and humans' existence. It is clear the planet is warming, and warming rapidly. This is due to the greenhouse effect, which is caused by greenhouse gases, which trap heat inside the Earth's atmosphere because of their more complex molecular structure which allows them to vibrate and in turn trap heat and release it back towards the Earth. This warming is also responsible for the extinction of natural habitats, which in turn leads to a reduction in wildlife population.The most recent report from the Intergovernmental Panel on Climate Change (the group of the leading climate scientists in the world) concluded that the earth will warm anywhere from 2.7 to almost 11 degrees Fahrenheit (1.5 to 6 degrees Celsius) between 1990 and 2100.
Two identical planets, Norlon and Bothar, have been discovered in a neighboring galaxy of ours. These two planets have the same type of atmosphere as Earth and are extremely similar to Earth in terms of topography and even species of animals that live on them. The main difference is that Norlon is inhabited by a species very similar to humans that emit a lot of carbon dioxide into the atmosphere. Bothar, however, has no such species on its planet.
Which new planet has a warmer atmosphere?
{ "text": [ "Norlon" ] }
610825558
The dangers of global warming are being increasingly studied by a wide global consortium of scientists. These scientists are increasingly concerned about the potential long-term effects of global warming on our natural environment and on the planet. Of particular concern is how climate change and global warming caused by anthropogenic, or human-made releases of greenhouse gases, most notably carbon dioxide, can act interactively, and have adverse effects upon the planet, its natural environment and humans' existence. It is clear the planet is warming, and warming rapidly. This is due to the greenhouse effect, which is caused by greenhouse gases, which trap heat inside the Earth's atmosphere because of their more complex molecular structure which allows them to vibrate and in turn trap heat and release it back towards the Earth. This warming is also responsible for the extinction of natural habitats, which in turn leads to a reduction in wildlife population.The most recent report from the Intergovernmental Panel on Climate Change (the group of the leading climate scientists in the world) concluded that the earth will warm anywhere from 2.7 to almost 11 degrees Fahrenheit (1.5 to 6 degrees Celsius) between 1990 and 2100.
Two identical planets, Norlon and Bothar, have been discovered in a neighboring galaxy of ours. These two planets have the same type of atmosphere as Earth and are extremely similar to Earth in terms of topography and even species of animals that live on them. The main difference is that Norlon is inhabited by a species very similar to humans that emit a lot of carbon dioxide into the atmosphere. Bothar, however, has no such species on its planet.
Which new planet has a cooler atmosphere?
{ "text": [ "Bothar" ] }
2660400096
The dangers of global warming are being increasingly studied by a wide global consortium of scientists. These scientists are increasingly concerned about the potential long-term effects of global warming on our natural environment and on the planet. Of particular concern is how climate change and global warming caused by anthropogenic, or human-made releases of greenhouse gases, most notably carbon dioxide, can act interactively, and have adverse effects upon the planet, its natural environment and humans' existence. It is clear the planet is warming, and warming rapidly. This is due to the greenhouse effect, which is caused by greenhouse gases, which trap heat inside the Earth's atmosphere because of their more complex molecular structure which allows them to vibrate and in turn trap heat and release it back towards the Earth. This warming is also responsible for the extinction of natural habitats, which in turn leads to a reduction in wildlife population.The most recent report from the Intergovernmental Panel on Climate Change (the group of the leading climate scientists in the world) concluded that the earth will warm anywhere from 2.7 to almost 11 degrees Fahrenheit (1.5 to 6 degrees Celsius) between 1990 and 2100.
Two identical planets, Norlon and Bothar, have been discovered in a neighboring galaxy of ours. These two planets have the same type of atmosphere as Earth and are extremely similar to Earth in terms of topography and even species of animals that live on them. The main difference is that Norlon is inhabited by a species very similar to humans that emit a lot of carbon dioxide into the atmosphere. Bothar, however, has no such species on its planet.
Does Bothar have more or less natural habitats than Norlon?
{ "text": [ "more" ] }
2734324704
The dangers of global warming are being increasingly studied by a wide global consortium of scientists. These scientists are increasingly concerned about the potential long-term effects of global warming on our natural environment and on the planet. Of particular concern is how climate change and global warming caused by anthropogenic, or human-made releases of greenhouse gases, most notably carbon dioxide, can act interactively, and have adverse effects upon the planet, its natural environment and humans' existence. It is clear the planet is warming, and warming rapidly. This is due to the greenhouse effect, which is caused by greenhouse gases, which trap heat inside the Earth's atmosphere because of their more complex molecular structure which allows them to vibrate and in turn trap heat and release it back towards the Earth. This warming is also responsible for the extinction of natural habitats, which in turn leads to a reduction in wildlife population.The most recent report from the Intergovernmental Panel on Climate Change (the group of the leading climate scientists in the world) concluded that the earth will warm anywhere from 2.7 to almost 11 degrees Fahrenheit (1.5 to 6 degrees Celsius) between 1990 and 2100.
Two identical planets, Norlon and Bothar, have been discovered in a neighboring galaxy of ours. These two planets have the same type of atmosphere as Earth and are extremely similar to Earth in terms of topography and even species of animals that live on them. The main difference is that Norlon is inhabited by a species very similar to humans that emit a lot of carbon dioxide into the atmosphere. Bothar, however, has no such species on its planet.
Does Norlon have more or less natural habitats than Bothar?
{ "text": [ "less" ] }
554661159
The dangers of global warming are being increasingly studied by a wide global consortium of scientists. These scientists are increasingly concerned about the potential long-term effects of global warming on our natural environment and on the planet. Of particular concern is how climate change and global warming caused by anthropogenic, or human-made releases of greenhouse gases, most notably carbon dioxide, can act interactively, and have adverse effects upon the planet, its natural environment and humans' existence. It is clear the planet is warming, and warming rapidly. This is due to the greenhouse effect, which is caused by greenhouse gases, which trap heat inside the Earth's atmosphere because of their more complex molecular structure which allows them to vibrate and in turn trap heat and release it back towards the Earth. This warming is also responsible for the extinction of natural habitats, which in turn leads to a reduction in wildlife population.The most recent report from the Intergovernmental Panel on Climate Change (the group of the leading climate scientists in the world) concluded that the earth will warm anywhere from 2.7 to almost 11 degrees Fahrenheit (1.5 to 6 degrees Celsius) between 1990 and 2100.
Two identical planets, Norlon and Bothar, have been discovered in a neighboring galaxy of ours. These two planets have the same type of atmosphere as Earth and are extremely similar to Earth in terms of topography and even species of animals that live on them. The main difference is that Norlon is inhabited by a species very similar to humans that emit a lot of carbon dioxide into the atmosphere. Bothar, however, has no such species on its planet.
Does Bothar or Norlon have more wildlife?
{ "text": [ "Bothar" ] }
556102955
The dangers of global warming are being increasingly studied by a wide global consortium of scientists. These scientists are increasingly concerned about the potential long-term effects of global warming on our natural environment and on the planet. Of particular concern is how climate change and global warming caused by anthropogenic, or human-made releases of greenhouse gases, most notably carbon dioxide, can act interactively, and have adverse effects upon the planet, its natural environment and humans' existence. It is clear the planet is warming, and warming rapidly. This is due to the greenhouse effect, which is caused by greenhouse gases, which trap heat inside the Earth's atmosphere because of their more complex molecular structure which allows them to vibrate and in turn trap heat and release it back towards the Earth. This warming is also responsible for the extinction of natural habitats, which in turn leads to a reduction in wildlife population.The most recent report from the Intergovernmental Panel on Climate Change (the group of the leading climate scientists in the world) concluded that the earth will warm anywhere from 2.7 to almost 11 degrees Fahrenheit (1.5 to 6 degrees Celsius) between 1990 and 2100.
Two identical planets, Norlon and Bothar, have been discovered in a neighboring galaxy of ours. These two planets have the same type of atmosphere as Earth and are extremely similar to Earth in terms of topography and even species of animals that live on them. The main difference is that Norlon is inhabited by a species very similar to humans that emit a lot of carbon dioxide into the atmosphere. Bothar, however, has no such species on its planet.
Does Bothar or Norlon have less wildlife?
{ "text": [ "Norlon" ] }
2229370585
The dangers of global warming are being increasingly studied by a wide global consortium of scientists. These scientists are increasingly concerned about the potential long-term effects of global warming on our natural environment and on the planet. Of particular concern is how climate change and global warming caused by anthropogenic, or human-made releases of greenhouse gases, most notably carbon dioxide, can act interactively, and have adverse effects upon the planet, its natural environment and humans' existence. It is clear the planet is warming, and warming rapidly. This is due to the greenhouse effect, which is caused by greenhouse gases, which trap heat inside the Earth's atmosphere because of their more complex molecular structure which allows them to vibrate and in turn trap heat and release it back towards the Earth. This warming is also responsible for the extinction of natural habitats, which in turn leads to a reduction in wildlife population.The most recent report from the Intergovernmental Panel on Climate Change (the group of the leading climate scientists in the world) concluded that the earth will warm anywhere from 2.7 to almost 11 degrees Fahrenheit (1.5 to 6 degrees Celsius) between 1990 and 2100.
Two identical planets, Norlon and Bothar, have been discovered in a neighboring galaxy of ours. These two planets have the same type of atmosphere as Earth and are extremely similar to Earth in terms of topography and even species of animals that live on them. The main difference is that Norlon is inhabited by a species very similar to humans that emit a lot of carbon dioxide into the atmosphere. Bothar, however, has no such species on its planet.
Does Bothar have a higher or lower average temperature than Norlon?
{ "text": [ "lower" ] }
2315878105
The dangers of global warming are being increasingly studied by a wide global consortium of scientists. These scientists are increasingly concerned about the potential long-term effects of global warming on our natural environment and on the planet. Of particular concern is how climate change and global warming caused by anthropogenic, or human-made releases of greenhouse gases, most notably carbon dioxide, can act interactively, and have adverse effects upon the planet, its natural environment and humans' existence. It is clear the planet is warming, and warming rapidly. This is due to the greenhouse effect, which is caused by greenhouse gases, which trap heat inside the Earth's atmosphere because of their more complex molecular structure which allows them to vibrate and in turn trap heat and release it back towards the Earth. This warming is also responsible for the extinction of natural habitats, which in turn leads to a reduction in wildlife population.The most recent report from the Intergovernmental Panel on Climate Change (the group of the leading climate scientists in the world) concluded that the earth will warm anywhere from 2.7 to almost 11 degrees Fahrenheit (1.5 to 6 degrees Celsius) between 1990 and 2100.
Two identical planets, Norlon and Bothar, have been discovered in a neighboring galaxy of ours. These two planets have the same type of atmosphere as Earth and are extremely similar to Earth in terms of topography and even species of animals that live on them. The main difference is that Norlon is inhabited by a species very similar to humans that emit a lot of carbon dioxide into the atmosphere. Bothar, however, has no such species on its planet.
Does Norlon have a higher or lower average temperature than Bothar?
{ "text": [ "higher" ] }
4171792552
The dangers of global warming are being increasingly studied by a wide global consortium of scientists. These scientists are increasingly concerned about the potential long-term effects of global warming on our natural environment and on the planet. Of particular concern is how climate change and global warming caused by anthropogenic, or human-made releases of greenhouse gases, most notably carbon dioxide, can act interactively, and have adverse effects upon the planet, its natural environment and humans' existence. It is clear the planet is warming, and warming rapidly. This is due to the greenhouse effect, which is caused by greenhouse gases, which trap heat inside the Earth's atmosphere because of their more complex molecular structure which allows them to vibrate and in turn trap heat and release it back towards the Earth. This warming is also responsible for the extinction of natural habitats, which in turn leads to a reduction in wildlife population.The most recent report from the Intergovernmental Panel on Climate Change (the group of the leading climate scientists in the world) concluded that the earth will warm anywhere from 2.7 to almost 11 degrees Fahrenheit (1.5 to 6 degrees Celsius) between 1990 and 2100.
Two identical planets, Norlon and Bothar, have been discovered in a neighboring galaxy of ours. These two planets have the same type of atmosphere as Earth and are extremely similar to Earth in terms of topography and even species of animals that live on them. The main difference is that Norlon is inhabited by a species very similar to humans that emit a lot of carbon dioxide into the atmosphere. Bothar, however, has no such species on its planet.
Will Norlon or Bothar be able to sustain life for a longer period of time?
{ "text": [ "Bothar" ] }
1153598777
The dangers of global warming are being increasingly studied by a wide global consortium of scientists. These scientists are increasingly concerned about the potential long-term effects of global warming on our natural environment and on the planet. Of particular concern is how climate change and global warming caused by anthropogenic, or human-made releases of greenhouse gases, most notably carbon dioxide, can act interactively, and have adverse effects upon the planet, its natural environment and humans' existence. It is clear the planet is warming, and warming rapidly. This is due to the greenhouse effect, which is caused by greenhouse gases, which trap heat inside the Earth's atmosphere because of their more complex molecular structure which allows them to vibrate and in turn trap heat and release it back towards the Earth. This warming is also responsible for the extinction of natural habitats, which in turn leads to a reduction in wildlife population.The most recent report from the Intergovernmental Panel on Climate Change (the group of the leading climate scientists in the world) concluded that the earth will warm anywhere from 2.7 to almost 11 degrees Fahrenheit (1.5 to 6 degrees Celsius) between 1990 and 2100.
Two identical planets, Norlon and Bothar, have been discovered in a neighboring galaxy of ours. These two planets have the same type of atmosphere as Earth and are extremely similar to Earth in terms of topography and even species of animals that live on them. The main difference is that Norlon is inhabited by a species very similar to humans that emit a lot of carbon dioxide into the atmosphere. Bothar, however, has no such species on its planet.
Which of the newly discovered planets will sustain life for a longer amount of time?
{ "text": [ "Bothar" ] }
3439429049
The dangers of global warming are being increasingly studied by a wide global consortium of scientists. These scientists are increasingly concerned about the potential long-term effects of global warming on our natural environment and on the planet. Of particular concern is how climate change and global warming caused by anthropogenic, or human-made releases of greenhouse gases, most notably carbon dioxide, can act interactively, and have adverse effects upon the planet, its natural environment and humans' existence. It is clear the planet is warming, and warming rapidly. This is due to the greenhouse effect, which is caused by greenhouse gases, which trap heat inside the Earth's atmosphere because of their more complex molecular structure which allows them to vibrate and in turn trap heat and release it back towards the Earth. This warming is also responsible for the extinction of natural habitats, which in turn leads to a reduction in wildlife population.The most recent report from the Intergovernmental Panel on Climate Change (the group of the leading climate scientists in the world) concluded that the earth will warm anywhere from 2.7 to almost 11 degrees Fahrenheit (1.5 to 6 degrees Celsius) between 1990 and 2100.
Two identical planets, Norlon and Bothar, have been discovered in a neighboring galaxy of ours. These two planets have the same type of atmosphere as Earth and are extremely similar to Earth in terms of topography and even species of animals that live on them. The main difference is that Norlon is inhabited by a species very similar to humans that emit a lot of carbon dioxide into the atmosphere. Bothar, however, has no such species on its planet.
Which of the newly discovered planets will sustain life for a shorter amount of time?
{ "text": [ "Norlon" ] }
208482012
The major zones in river ecosystems are determined by the river bed's gradient or by the velocity of the current. Faster moving turbulent water typically contains greater concentrations of dissolved oxygen, which supports greater biodiversity than the slow moving water of pools. These distinctions form the basis for the division of rivers into upland and lowland rivers. The food base of streams within riparian forests is mostly derived from the trees, but wider streams and those that lack a canopy derive the majority of their food base from algae. Anadromous fish are also an important source of nutrients. Environmental threats to rivers include loss of water, dams, chemical pollution and introduced species. A dam produces negative effects that continue down the watershed. The most important negative effects are the reduction of spring flooding, which damages wetlands, and the retention of sediment, which leads to loss of deltaic wetlands.
Jill lives out in a peaceful quiet area with hardly any other people around. Next to her home is a calm peaceful river. The river doesn't have an official name that she is aware of, but her family has always called it River Treetop due to the large tree next to it. Also next to her house, there is a roaring river that runs for miles. The river is so loud that it can be hard to hear yourself think sometimes if you are sitting next to it. For this reason, Jill has always referred to the river as River Chaos.
Which body of water is more concentrated with dissolved oxygen?
{ "text": [ "River Chaos" ] }
216739552
The major zones in river ecosystems are determined by the river bed's gradient or by the velocity of the current. Faster moving turbulent water typically contains greater concentrations of dissolved oxygen, which supports greater biodiversity than the slow moving water of pools. These distinctions form the basis for the division of rivers into upland and lowland rivers. The food base of streams within riparian forests is mostly derived from the trees, but wider streams and those that lack a canopy derive the majority of their food base from algae. Anadromous fish are also an important source of nutrients. Environmental threats to rivers include loss of water, dams, chemical pollution and introduced species. A dam produces negative effects that continue down the watershed. The most important negative effects are the reduction of spring flooding, which damages wetlands, and the retention of sediment, which leads to loss of deltaic wetlands.
Jill lives out in a peaceful quiet area with hardly any other people around. Next to her home is a calm peaceful river. The river doesn't have an official name that she is aware of, but her family has always called it River Treetop due to the large tree next to it. Also next to her house, there is a roaring river that runs for miles. The river is so loud that it can be hard to hear yourself think sometimes if you are sitting next to it. For this reason, Jill has always referred to the river as River Chaos.
Which body of water is less concentrated with dissolved oxygen?
{ "text": [ "River Treetop" ] }
4005376460
The major zones in river ecosystems are determined by the river bed's gradient or by the velocity of the current. Faster moving turbulent water typically contains greater concentrations of dissolved oxygen, which supports greater biodiversity than the slow moving water of pools. These distinctions form the basis for the division of rivers into upland and lowland rivers. The food base of streams within riparian forests is mostly derived from the trees, but wider streams and those that lack a canopy derive the majority of their food base from algae. Anadromous fish are also an important source of nutrients. Environmental threats to rivers include loss of water, dams, chemical pollution and introduced species. A dam produces negative effects that continue down the watershed. The most important negative effects are the reduction of spring flooding, which damages wetlands, and the retention of sediment, which leads to loss of deltaic wetlands.
Jill lives out in a peaceful quiet area with hardly any other people around. Next to her home is a calm peaceful river. The river doesn't have an official name that she is aware of, but her family has always called it River Treetop due to the large tree next to it. Also next to her house, there is a roaring river that runs for miles. The river is so loud that it can be hard to hear yourself think sometimes if you are sitting next to it. For this reason, Jill has always referred to the river as River Chaos.
Is the biodiversity in River Treetop higher or lower than in River Chaos?
{ "text": [ "lower" ] }
3858444748
The major zones in river ecosystems are determined by the river bed's gradient or by the velocity of the current. Faster moving turbulent water typically contains greater concentrations of dissolved oxygen, which supports greater biodiversity than the slow moving water of pools. These distinctions form the basis for the division of rivers into upland and lowland rivers. The food base of streams within riparian forests is mostly derived from the trees, but wider streams and those that lack a canopy derive the majority of their food base from algae. Anadromous fish are also an important source of nutrients. Environmental threats to rivers include loss of water, dams, chemical pollution and introduced species. A dam produces negative effects that continue down the watershed. The most important negative effects are the reduction of spring flooding, which damages wetlands, and the retention of sediment, which leads to loss of deltaic wetlands.
Jill lives out in a peaceful quiet area with hardly any other people around. Next to her home is a calm peaceful river. The river doesn't have an official name that she is aware of, but her family has always called it River Treetop due to the large tree next to it. Also next to her house, there is a roaring river that runs for miles. The river is so loud that it can be hard to hear yourself think sometimes if you are sitting next to it. For this reason, Jill has always referred to the river as River Chaos.
Is the biodiversity in River Chaos higher or lower than in River Treetop?
{ "text": [ "higher" ] }
3061997547
Diffusion of carbon dioxide and oxygen is approximately 10,000 times slower in water than in air. When soils are flooded, they quickly lose oxygen, becoming hypoxic (an environment with O2 concentration below 2 mg/liter) and eventually completely anoxic where anaerobic bacteria thrive among the roots. Water also influences the intensity and spectral composition of light as it reflects off the water surface and submerged particles. Aquatic plants exhibit a wide variety of morphological and physiological adaptations that allow them to survive, compete, and diversify in these environments. For example, their roots and stems contain large air spaces (aerenchyma) that regulate the efficient transportation of gases (for example, CO2 and O2) used in respiration and photosynthesis. Salt water plants (halophytes) have additional specialized adaptations, such as the development of special organs for shedding salt and osmoregulating their internal salt (NaCl) concentrations, to live in estuarine, brackish, or oceanic environments. Anaerobic soil microorganisms in aquatic environments use nitrate, manganese ions, ferric ions, sulfate, carbon dioxide, and some organic compounds; other microorganisms are facultative anaerobes and use oxygen during respiration when the soil becomes drier. The activity of soil microorganisms and the chemistry of the water reduces the oxidation-reduction potentials of the water. Carbon dioxide, for example, is reduced to methane (CH4) by methanogenic bacteria. The physiology of fish is also specially adapted to compensate for environmental salt levels through osmoregulation. Their gills form electrochemical gradients that mediate salt excretion in salt water and uptake in fresh water.
Bobby and Ned are two neighbors who both have medium sized gardens in their backyards. They regularly talk to each other about what they are growing and share gardening tips. Bobby is out working in his garden when Ned comes over to chat. Ned mentions that the garden at his house is currently flooded, but he's not sure why since it didn't rain. He asks Bobby if his garden experienced the same thing. Bobby replies that his garden is not currently flooded. He does mention that he did see Ned's daughter walking around near Ned's garden carrying a hose turned on to full power.
Whose garden is losing oxygen more quickly?
{ "text": [ "Ned's garden" ] }
4039467047
Diffusion of carbon dioxide and oxygen is approximately 10,000 times slower in water than in air. When soils are flooded, they quickly lose oxygen, becoming hypoxic (an environment with O2 concentration below 2 mg/liter) and eventually completely anoxic where anaerobic bacteria thrive among the roots. Water also influences the intensity and spectral composition of light as it reflects off the water surface and submerged particles. Aquatic plants exhibit a wide variety of morphological and physiological adaptations that allow them to survive, compete, and diversify in these environments. For example, their roots and stems contain large air spaces (aerenchyma) that regulate the efficient transportation of gases (for example, CO2 and O2) used in respiration and photosynthesis. Salt water plants (halophytes) have additional specialized adaptations, such as the development of special organs for shedding salt and osmoregulating their internal salt (NaCl) concentrations, to live in estuarine, brackish, or oceanic environments. Anaerobic soil microorganisms in aquatic environments use nitrate, manganese ions, ferric ions, sulfate, carbon dioxide, and some organic compounds; other microorganisms are facultative anaerobes and use oxygen during respiration when the soil becomes drier. The activity of soil microorganisms and the chemistry of the water reduces the oxidation-reduction potentials of the water. Carbon dioxide, for example, is reduced to methane (CH4) by methanogenic bacteria. The physiology of fish is also specially adapted to compensate for environmental salt levels through osmoregulation. Their gills form electrochemical gradients that mediate salt excretion in salt water and uptake in fresh water.
Bobby and Ned are two neighbors who both have medium sized gardens in their backyards. They regularly talk to each other about what they are growing and share gardening tips. Bobby is out working in his garden when Ned comes over to chat. Ned mentions that the garden at his house is currently flooded, but he's not sure why since it didn't rain. He asks him if Bobby's garden experienced the same thing. Bobby replies that his garden is not currently flooded. He does mention that he did see Ned's daughter walking around near Ned's garden carrying a hose turned on to full power.
Whose garden is losing oxygen more slowly?
{ "text": [ "Bobby's garden" ] }
4237453379
Diffusion of carbon dioxide and oxygen is approximately 10,000 times slower in water than in air. When soils are flooded, they quickly lose oxygen, becoming hypoxic (an environment with O2 concentration below 2 mg/liter) and eventually completely anoxic where anaerobic bacteria thrive among the roots. Water also influences the intensity and spectral composition of light as it reflects off the water surface and submerged particles. Aquatic plants exhibit a wide variety of morphological and physiological adaptations that allow them to survive, compete, and diversify in these environments. For example, their roots and stems contain large air spaces (aerenchyma) that regulate the efficient transportation of gases (for example, CO2 and O2) used in respiration and photosynthesis. Salt water plants (halophytes) have additional specialized adaptations, such as the development of special organs for shedding salt and osmoregulating their internal salt (NaCl) concentrations, to live in estuarine, brackish, or oceanic environments. Anaerobic soil microorganisms in aquatic environments use nitrate, manganese ions, ferric ions, sulfate, carbon dioxide, and some organic compounds; other microorganisms are facultative anaerobes and use oxygen during respiration when the soil becomes drier. The activity of soil microorganisms and the chemistry of the water reduces the oxidation-reduction potentials of the water. Carbon dioxide, for example, is reduced to methane (CH4) by methanogenic bacteria. The physiology of fish is also specially adapted to compensate for environmental salt levels through osmoregulation. Their gills form electrochemical gradients that mediate salt excretion in salt water and uptake in fresh water.
Bobby and Ned are two neighbors who both have medium sized gardens in their backyards. They regularly talk to each other about what they are growing and share gardening tips. Bobby is out working in his garden when Ned comes over to chat. Ned mentions that the garden at his house is currently flooded, but he's not sure why since it didn't rain. He asks him if Bobby's garden experienced the same thing. Bobby replies that his garden is not currently flooded. He does mention that he did see Ned's daughter walking around near Ned's garden carrying a hose turned on to full power.
Is Bobby's garden at more or less risk of hypoxia than Ned's garden?
{ "text": [ "less" ] }
4128139331
Diffusion of carbon dioxide and oxygen is approximately 10,000 times slower in water than in air. When soils are flooded, they quickly lose oxygen, becoming hypoxic (an environment with O2 concentration below 2 mg/liter) and eventually completely anoxic where anaerobic bacteria thrive among the roots. Water also influences the intensity and spectral composition of light as it reflects off the water surface and submerged particles. Aquatic plants exhibit a wide variety of morphological and physiological adaptations that allow them to survive, compete, and diversify in these environments. For example, their roots and stems contain large air spaces (aerenchyma) that regulate the efficient transportation of gases (for example, CO2 and O2) used in respiration and photosynthesis. Salt water plants (halophytes) have additional specialized adaptations, such as the development of special organs for shedding salt and osmoregulating their internal salt (NaCl) concentrations, to live in estuarine, brackish, or oceanic environments. Anaerobic soil microorganisms in aquatic environments use nitrate, manganese ions, ferric ions, sulfate, carbon dioxide, and some organic compounds; other microorganisms are facultative anaerobes and use oxygen during respiration when the soil becomes drier. The activity of soil microorganisms and the chemistry of the water reduces the oxidation-reduction potentials of the water. Carbon dioxide, for example, is reduced to methane (CH4) by methanogenic bacteria. The physiology of fish is also specially adapted to compensate for environmental salt levels through osmoregulation. Their gills form electrochemical gradients that mediate salt excretion in salt water and uptake in fresh water.
Bobby and Ned are two neighbors who both have medium sized gardens in their backyards. They regularly talk to each other about what they are growing and share gardening tips. Bobby is out working in his garden when Ned comes over to chat. Ned mentions that the garden at his house is currently flooded, but he's not sure why since it didn't rain. He asks him if Bobby's garden experienced the same thing. Bobby replies that his garden is not currently flooded. He does mention that he did see Ned's daughter walking around near Ned's garden carrying a hose turned on to full power.
Is Ned's garden at more or less risk of hypoxia than Bobby's garden?
{ "text": [ "more" ] }
3808846914
Diffusion of carbon dioxide and oxygen is approximately 10,000 times slower in water than in air. When soils are flooded, they quickly lose oxygen, becoming hypoxic (an environment with O2 concentration below 2 mg/liter) and eventually completely anoxic where anaerobic bacteria thrive among the roots. Water also influences the intensity and spectral composition of light as it reflects off the water surface and submerged particles. Aquatic plants exhibit a wide variety of morphological and physiological adaptations that allow them to survive, compete, and diversify in these environments. For example, their roots and stems contain large air spaces (aerenchyma) that regulate the efficient transportation of gases (for example, CO2 and O2) used in respiration and photosynthesis. Salt water plants (halophytes) have additional specialized adaptations, such as the development of special organs for shedding salt and osmoregulating their internal salt (NaCl) concentrations, to live in estuarine, brackish, or oceanic environments. Anaerobic soil microorganisms in aquatic environments use nitrate, manganese ions, ferric ions, sulfate, carbon dioxide, and some organic compounds; other microorganisms are facultative anaerobes and use oxygen during respiration when the soil becomes drier. The activity of soil microorganisms and the chemistry of the water reduces the oxidation-reduction potentials of the water. Carbon dioxide, for example, is reduced to methane (CH4) by methanogenic bacteria. The physiology of fish is also specially adapted to compensate for environmental salt levels through osmoregulation. Their gills form electrochemical gradients that mediate salt excretion in salt water and uptake in fresh water.
Bobby and Ned are two neighbors who both have medium sized gardens in their backyards. They regularly talk to each other about what they are growing and share gardening tips. Bobby is out working in his garden when Ned comes over to chat. Ned mentions that the garden at his house is currently flooded, but he's not sure why since it didn't rain. He asks him if Bobby's garden experienced the same thing. Bobby replies that his garden is not currently flooded. He does mention that he did see Ned's daughter walking around near Ned's garden carrying a hose turned on to full power.
Who has more anaerobic bacteria in their garden's soil?
{ "text": [ "Ned" ] }
3818939462
Diffusion of carbon dioxide and oxygen is approximately 10,000 times slower in water than in air. When soils are flooded, they quickly lose oxygen, becoming hypoxic (an environment with O2 concentration below 2 mg/liter) and eventually completely anoxic where anaerobic bacteria thrive among the roots. Water also influences the intensity and spectral composition of light as it reflects off the water surface and submerged particles. Aquatic plants exhibit a wide variety of morphological and physiological adaptations that allow them to survive, compete, and diversify in these environments. For example, their roots and stems contain large air spaces (aerenchyma) that regulate the efficient transportation of gases (for example, CO2 and O2) used in respiration and photosynthesis. Salt water plants (halophytes) have additional specialized adaptations, such as the development of special organs for shedding salt and osmoregulating their internal salt (NaCl) concentrations, to live in estuarine, brackish, or oceanic environments. Anaerobic soil microorganisms in aquatic environments use nitrate, manganese ions, ferric ions, sulfate, carbon dioxide, and some organic compounds; other microorganisms are facultative anaerobes and use oxygen during respiration when the soil becomes drier. The activity of soil microorganisms and the chemistry of the water reduces the oxidation-reduction potentials of the water. Carbon dioxide, for example, is reduced to methane (CH4) by methanogenic bacteria. The physiology of fish is also specially adapted to compensate for environmental salt levels through osmoregulation. Their gills form electrochemical gradients that mediate salt excretion in salt water and uptake in fresh water.
Bobby and Ned are two neighbors who both have medium sized gardens in their backyards. They regularly talk to each other about what they are growing and share gardening tips. Bobby is out working in his garden when Ned comes over to chat. Ned mentions that the garden at his house is currently flooded, but he's not sure why since it didn't rain. He asks him if Bobby's garden experienced the same thing. Bobby replies that his garden is not currently flooded. He does mention that he did see Ned's daughter walking around near Ned's garden carrying a hose turned on to full power.
Who has less anaerobic bacteria in their garden's soil?
{ "text": [ "Bobby" ] }
22466049
There is a large area of low ozone concentration or "ozone hole" over Antarctica. This hole covers almost the whole continent and was at its largest in September 2008, when the longest lasting hole on record remained until the end of December. The hole was detected by scientists in 1985 and has tended to increase over the years of observation. The ozone hole is attributed to the emission of chlorofluorocarbons or CFCs into the atmosphere, which decompose the ozone into other gases.Some scientific studies suggest that ozone depletion may have a dominant role in governing climatic change in Antarctica (and a wider area of the Southern Hemisphere). Ozone absorbs large amounts of ultraviolet radiation in the stratosphere. Ozone depletion over Antarctica can cause a cooling of around 6 °C in the local stratosphere. This cooling has the effect of intensifying the westerly winds which flow around the continent (the polar vortex) and thus prevents outflow of the cold air near the South Pole. As a result, the continental mass of the East Antarctic ice sheet is held at lower temperatures, and the peripheral areas of Antarctica, especially the Antarctic Peninsula, are subject to higher temperatures, which promote accelerated melting. Models also suggest that the ozone depletion/enhanced polar vortex effect also accounts for the recent increase in sea ice just offshore of the continent.
Blimpton and Jarmel are two neighboring planets in the Harshlan galaxy. Aliens are currently studying the two planets to see if either of them are suitable for habitation. While studying the planets, they discover that both planets have the same type of atmosphere. However, there is one key difference. The difference is that the current species of animals on Blimpton emit much more chlorofluorocarbons than Jarmel's animals do. The aliens take note of this so they can report back to their bosses on what they have found.
Which planet has a hole in its ozone layer?
{ "text": [ "Blimpton" ] }
1371787581
There is a large area of low ozone concentration or "ozone hole" over Antarctica. This hole covers almost the whole continent and was at its largest in September 2008, when the longest lasting hole on record remained until the end of December. The hole was detected by scientists in 1985 and has tended to increase over the years of observation. The ozone hole is attributed to the emission of chlorofluorocarbons or CFCs into the atmosphere, which decompose the ozone into other gases.Some scientific studies suggest that ozone depletion may have a dominant role in governing climatic change in Antarctica (and a wider area of the Southern Hemisphere). Ozone absorbs large amounts of ultraviolet radiation in the stratosphere. Ozone depletion over Antarctica can cause a cooling of around 6 °C in the local stratosphere. This cooling has the effect of intensifying the westerly winds which flow around the continent (the polar vortex) and thus prevents outflow of the cold air near the South Pole. As a result, the continental mass of the East Antarctic ice sheet is held at lower temperatures, and the peripheral areas of Antarctica, especially the Antarctic Peninsula, are subject to higher temperatures, which promote accelerated melting. Models also suggest that the ozone depletion/enhanced polar vortex effect also accounts for the recent increase in sea ice just offshore of the continent.
Blimpton and Jarmel are two neighboring planets in the Harshlan galaxy. Aliens are currently studying the two planets to see if either of them are suitable for habitation. While studying the planets, they discover that both planets have the same type of atmosphere. However, there is one key difference. The difference is that the current species of animals on Blimpton emit much more chlorofluorocarbons than Jarmel's animals do. The aliens take note of this so they can report back to their bosses on what they have found.
Which planet doesn't have a hole in its ozone layer?
{ "text": [ "Jarmel" ] }
1404753579
There is a large area of low ozone concentration or "ozone hole" over Antarctica. This hole covers almost the whole continent and was at its largest in September 2008, when the longest lasting hole on record remained until the end of December. The hole was detected by scientists in 1985 and has tended to increase over the years of observation. The ozone hole is attributed to the emission of chlorofluorocarbons or CFCs into the atmosphere, which decompose the ozone into other gases.Some scientific studies suggest that ozone depletion may have a dominant role in governing climatic change in Antarctica (and a wider area of the Southern Hemisphere). Ozone absorbs large amounts of ultraviolet radiation in the stratosphere. Ozone depletion over Antarctica can cause a cooling of around 6 °C in the local stratosphere. This cooling has the effect of intensifying the westerly winds which flow around the continent (the polar vortex) and thus prevents outflow of the cold air near the South Pole. As a result, the continental mass of the East Antarctic ice sheet is held at lower temperatures, and the peripheral areas of Antarctica, especially the Antarctic Peninsula, are subject to higher temperatures, which promote accelerated melting. Models also suggest that the ozone depletion/enhanced polar vortex effect also accounts for the recent increase in sea ice just offshore of the continent.
Blimpton and Jarmel are two neighboring planets in the Harshlan galaxy. Aliens are currently studying the two planets to see if either of them are suitable for habitation. While studying the planets, they discover that both planets have the same type of atmosphere. However, there is one key difference. The difference is that the current species of animals on Blimpton emit much more chlorofluorocarbons than Jarmel's animals do. The aliens take note of this so they can report back to their bosses on what they have found.
Does more or less radiation get through Blimpton's stratosphere?
{ "text": [ "more" ] }
2756564417
There is a large area of low ozone concentration or "ozone hole" over Antarctica. This hole covers almost the whole continent and was at its largest in September 2008, when the longest lasting hole on record remained until the end of December. The hole was detected by scientists in 1985 and has tended to increase over the years of observation. The ozone hole is attributed to the emission of chlorofluorocarbons or CFCs into the atmosphere, which decompose the ozone into other gases.Some scientific studies suggest that ozone depletion may have a dominant role in governing climatic change in Antarctica (and a wider area of the Southern Hemisphere). Ozone absorbs large amounts of ultraviolet radiation in the stratosphere. Ozone depletion over Antarctica can cause a cooling of around 6 °C in the local stratosphere. This cooling has the effect of intensifying the westerly winds which flow around the continent (the polar vortex) and thus prevents outflow of the cold air near the South Pole. As a result, the continental mass of the East Antarctic ice sheet is held at lower temperatures, and the peripheral areas of Antarctica, especially the Antarctic Peninsula, are subject to higher temperatures, which promote accelerated melting. Models also suggest that the ozone depletion/enhanced polar vortex effect also accounts for the recent increase in sea ice just offshore of the continent.
Blimpton and Jarmel are two neighboring planets in the Harshlan galaxy. Aliens are currently studying the two planets to see if either of them are suitable for habitation. While studying the planets, they discover that both planets have the same type of atmosphere. However, there is one key difference. The difference is that the current species of animals on Blimpton emit much more chlorofluorocarbons than Jarmel's animals do. The aliens take note of this so they can report back to their bosses on what they have found.
Does more or less radiation get through Jarmel's stratosphere?
{ "text": [ "less" ] }
231722219
There is a large area of low ozone concentration or "ozone hole" over Antarctica. This hole covers almost the whole continent and was at its largest in September 2008, when the longest lasting hole on record remained until the end of December. The hole was detected by scientists in 1985 and has tended to increase over the years of observation. The ozone hole is attributed to the emission of chlorofluorocarbons or CFCs into the atmosphere, which decompose the ozone into other gases.Some scientific studies suggest that ozone depletion may have a dominant role in governing climatic change in Antarctica (and a wider area of the Southern Hemisphere). Ozone absorbs large amounts of ultraviolet radiation in the stratosphere. Ozone depletion over Antarctica can cause a cooling of around 6 °C in the local stratosphere. This cooling has the effect of intensifying the westerly winds which flow around the continent (the polar vortex) and thus prevents outflow of the cold air near the South Pole. As a result, the continental mass of the East Antarctic ice sheet is held at lower temperatures, and the peripheral areas of Antarctica, especially the Antarctic Peninsula, are subject to higher temperatures, which promote accelerated melting. Models also suggest that the ozone depletion/enhanced polar vortex effect also accounts for the recent increase in sea ice just offshore of the continent.
Blimpton and Jarmel are two neighboring planets in the Harshlan galaxy. Aliens are currently studying the two planets to see if either of them are suitable for habitation. While studying the planets, they discover that both planets have the same type of atmosphere. However, there is one key difference. The difference is that the current species of animals on Blimpton emit much more chlorofluorocarbons than Jarmel's animals do. The aliens take note of this so they can report back to their bosses on what they have found.
Which planet's stratosphere is cooler?
{ "text": [ "Blimpton" ] }
236637429
There is a large area of low ozone concentration or "ozone hole" over Antarctica. This hole covers almost the whole continent and was at its largest in September 2008, when the longest lasting hole on record remained until the end of December. The hole was detected by scientists in 1985 and has tended to increase over the years of observation. The ozone hole is attributed to the emission of chlorofluorocarbons or CFCs into the atmosphere, which decompose the ozone into other gases.Some scientific studies suggest that ozone depletion may have a dominant role in governing climatic change in Antarctica (and a wider area of the Southern Hemisphere). Ozone absorbs large amounts of ultraviolet radiation in the stratosphere. Ozone depletion over Antarctica can cause a cooling of around 6 °C in the local stratosphere. This cooling has the effect of intensifying the westerly winds which flow around the continent (the polar vortex) and thus prevents outflow of the cold air near the South Pole. As a result, the continental mass of the East Antarctic ice sheet is held at lower temperatures, and the peripheral areas of Antarctica, especially the Antarctic Peninsula, are subject to higher temperatures, which promote accelerated melting. Models also suggest that the ozone depletion/enhanced polar vortex effect also accounts for the recent increase in sea ice just offshore of the continent.
Blimpton and Jarmel are two neighboring planets in the Harshlan galaxy. Aliens are currently studying the two planets to see if either of them are suitable for habitation. While studying the planets, they discover that both planets have the same type of atmosphere. However, there is one key difference. The difference is that the current species of animals on Blimpton emit much more chlorofluorocarbons than Jarmel's animals do. The aliens take note of this so they can report back to their bosses on what they have found.
Which planet's stratosphere is warmer?
{ "text": [ "Jarmel" ] }
504943632
There is a large area of low ozone concentration or "ozone hole" over Antarctica. This hole covers almost the whole continent and was at its largest in September 2008, when the longest lasting hole on record remained until the end of December. The hole was detected by scientists in 1985 and has tended to increase over the years of observation. The ozone hole is attributed to the emission of chlorofluorocarbons or CFCs into the atmosphere, which decompose the ozone into other gases.Some scientific studies suggest that ozone depletion may have a dominant role in governing climatic change in Antarctica (and a wider area of the Southern Hemisphere). Ozone absorbs large amounts of ultraviolet radiation in the stratosphere. Ozone depletion over Antarctica can cause a cooling of around 6 °C in the local stratosphere. This cooling has the effect of intensifying the westerly winds which flow around the continent (the polar vortex) and thus prevents outflow of the cold air near the South Pole. As a result, the continental mass of the East Antarctic ice sheet is held at lower temperatures, and the peripheral areas of Antarctica, especially the Antarctic Peninsula, are subject to higher temperatures, which promote accelerated melting. Models also suggest that the ozone depletion/enhanced polar vortex effect also accounts for the recent increase in sea ice just offshore of the continent.
Blimpton and Jarmel are two neighboring planets in the Harshlan galaxy. Aliens are currently studying the two planets to see if either of them are suitable for habitation. While studying the planets, they discover that both planets have the same type of atmosphere. However, there is one key difference. The difference is that the current species of animals on Blimpton emit much more chlorofluorocarbons than Jarmel's animals do. The aliens take note of this so they can report back to their bosses on what they have found.
Which planet is seeing a faster increase in climate change?
{ "text": [ "Blimpton" ] }
555406375
There is a large area of low ozone concentration or "ozone hole" over Antarctica. This hole covers almost the whole continent and was at its largest in September 2008, when the longest lasting hole on record remained until the end of December. The hole was detected by scientists in 1985 and has tended to increase over the years of observation. The ozone hole is attributed to the emission of chlorofluorocarbons or CFCs into the atmosphere, which decompose the ozone into other gases.Some scientific studies suggest that ozone depletion may have a dominant role in governing climatic change in Antarctica (and a wider area of the Southern Hemisphere). Ozone absorbs large amounts of ultraviolet radiation in the stratosphere. Ozone depletion over Antarctica can cause a cooling of around 6 °C in the local stratosphere. This cooling has the effect of intensifying the westerly winds which flow around the continent (the polar vortex) and thus prevents outflow of the cold air near the South Pole. As a result, the continental mass of the East Antarctic ice sheet is held at lower temperatures, and the peripheral areas of Antarctica, especially the Antarctic Peninsula, are subject to higher temperatures, which promote accelerated melting. Models also suggest that the ozone depletion/enhanced polar vortex effect also accounts for the recent increase in sea ice just offshore of the continent.
Blimpton and Jarmel are two neighboring planets in the Harshlan galaxy. Aliens are currently studying the two planets to see if either of them are suitable for habitation. While studying the planets, they discover that both planets have the same type of atmosphere. However, there is one key difference. The difference is that the current species of animals on Blimpton emit much more chlorofluorocarbons than Jarmel's animals do. The aliens take note of this so they can report back to their bosses on what they have found.
Which planet is seeing a slower increase in climate change?
{ "text": [ "Jarmel" ] }
2382288122
There is a large area of low ozone concentration or "ozone hole" over Antarctica. This hole covers almost the whole continent and was at its largest in September 2008, when the longest lasting hole on record remained until the end of December. The hole was detected by scientists in 1985 and has tended to increase over the years of observation. The ozone hole is attributed to the emission of chlorofluorocarbons or CFCs into the atmosphere, which decompose the ozone into other gases.Some scientific studies suggest that ozone depletion may have a dominant role in governing climatic change in Antarctica (and a wider area of the Southern Hemisphere). Ozone absorbs large amounts of ultraviolet radiation in the stratosphere. Ozone depletion over Antarctica can cause a cooling of around 6 °C in the local stratosphere. This cooling has the effect of intensifying the westerly winds which flow around the continent (the polar vortex) and thus prevents outflow of the cold air near the South Pole. As a result, the continental mass of the East Antarctic ice sheet is held at lower temperatures, and the peripheral areas of Antarctica, especially the Antarctic Peninsula, are subject to higher temperatures, which promote accelerated melting. Models also suggest that the ozone depletion/enhanced polar vortex effect also accounts for the recent increase in sea ice just offshore of the continent.
Blimpton and Jarmel are two neighboring planets in the Harshlan galaxy. Aliens are currently studying the two planets to see if either of them are suitable for habitation. While studying the planets, they discover that both planets have the same type of atmosphere. However, there is one key difference. The difference is that the current species of animals on Blimpton emit much more chlorofluorocarbons than Jarmel's animals do. The aliens take note of this so they can report back to their bosses on what they have found.
Are the winds on Jarmel more or less intense than on Blimpton?
{ "text": [ "less" ] }
2497631482
There is a large area of low ozone concentration or "ozone hole" over Antarctica. This hole covers almost the whole continent and was at its largest in September 2008, when the longest lasting hole on record remained until the end of December. The hole was detected by scientists in 1985 and has tended to increase over the years of observation. The ozone hole is attributed to the emission of chlorofluorocarbons or CFCs into the atmosphere, which decompose the ozone into other gases.Some scientific studies suggest that ozone depletion may have a dominant role in governing climatic change in Antarctica (and a wider area of the Southern Hemisphere). Ozone absorbs large amounts of ultraviolet radiation in the stratosphere. Ozone depletion over Antarctica can cause a cooling of around 6 °C in the local stratosphere. This cooling has the effect of intensifying the westerly winds which flow around the continent (the polar vortex) and thus prevents outflow of the cold air near the South Pole. As a result, the continental mass of the East Antarctic ice sheet is held at lower temperatures, and the peripheral areas of Antarctica, especially the Antarctic Peninsula, are subject to higher temperatures, which promote accelerated melting. Models also suggest that the ozone depletion/enhanced polar vortex effect also accounts for the recent increase in sea ice just offshore of the continent.
Blimpton and Jarmel are two neighboring planets in the Harshlan galaxy. Aliens are currently studying the two planets to see if either of them are suitable for habitation. While studying the planets, they discover that both planets have the same type of atmosphere. However, there is one key difference. The difference is that the current species of animals on Blimpton emit much more chlorofluorocarbons than Jarmel's animals do. The aliens take note of this so they can report back to their bosses on what they have found.
Are the winds on Blimpton more or less intense than on Jarmel?
{ "text": [ "more" ] }
4003392853
The axial tilt of the Earth is approximately 23.439281° with the axis of its orbit plane, always pointing towards the Celestial Poles. Due to Earth's axial tilt, the amount of sunlight reaching any given point on the surface varies over the course of the year. This causes the seasonal change in climate, with summer in the Northern Hemisphere occurring when the Tropic of Cancer is facing the Sun, and winter taking place when the Tropic of Capricorn in the Southern Hemisphere faces the Sun. During the summer, the day lasts longer, and the Sun climbs higher in the sky. In winter, the climate becomes cooler and the days shorter. In northern temperate latitudes, the Sun rises north of true east during the summer solstice, and sets north of true west, reversing in the winter. The Sun rises south of true east in the summer for the southern temperate zone and sets south of true west.
In school, Jeremy's class has been assigned pen pals on the other side of the planet to write to. Jeremy lives in the United States and has been assigned to a girl named Marge who lives in Australia. Jeremy was told by his teacher that although Jeremy's town is in the winter season, Marge's country is currently experiencing summer. This idea intrigues Jeremy so in his first letter he is going to ask Marge many questions about this subject.
Who is experiencing longer days?
{ "text": [ "Marge" ] }
3719294421
The axial tilt of the Earth is approximately 23.439281° with the axis of its orbit plane, always pointing towards the Celestial Poles. Due to Earth's axial tilt, the amount of sunlight reaching any given point on the surface varies over the course of the year. This causes the seasonal change in climate, with summer in the Northern Hemisphere occurring when the Tropic of Cancer is facing the Sun, and winter taking place when the Tropic of Capricorn in the Southern Hemisphere faces the Sun. During the summer, the day lasts longer, and the Sun climbs higher in the sky. In winter, the climate becomes cooler and the days shorter. In northern temperate latitudes, the Sun rises north of true east during the summer solstice, and sets north of true west, reversing in the winter. The Sun rises south of true east in the summer for the southern temperate zone and sets south of true west.
In school, Jeremy's class has been assigned pen pals on the other side of the planet to write to. Jeremy lives in the United States and has been assigned to a girl named Marge who lives in Australia. Jeremy was told by his teacher that although Jeremy's town is in the winter season, Marge's country is currently experiencing summer. This idea intrigues Jeremy so in his first letter he is going to ask Marge many questions about this subject.
Who is experiencing shorter days?
{ "text": [ "Jeremy" ] }
1026488207
The axial tilt of the Earth is approximately 23.439281° with the axis of its orbit plane, always pointing towards the Celestial Poles. Due to Earth's axial tilt, the amount of sunlight reaching any given point on the surface varies over the course of the year. This causes the seasonal change in climate, with summer in the Northern Hemisphere occurring when the Tropic of Cancer is facing the Sun, and winter taking place when the Tropic of Capricorn in the Southern Hemisphere faces the Sun. During the summer, the day lasts longer, and the Sun climbs higher in the sky. In winter, the climate becomes cooler and the days shorter. In northern temperate latitudes, the Sun rises north of true east during the summer solstice, and sets north of true west, reversing in the winter. The Sun rises south of true east in the summer for the southern temperate zone and sets south of true west.
In school, Jeremy's class has been assigned pen pals on the other side of the planet to write to. Jeremy lives in the United States and has been assigned to a girl named Marge who lives in Australia. Jeremy was told by his teacher that although Jeremy's town is in the winter season, Marge's country is currently experiencing summer. This idea intrigues Jeremy so in his first letter he is going to ask Marge many questions about this subject.
Does the sun reach higher in the sky in Jeremy or Marge's town?
{ "text": [ "Marge's" ] }
1199568705
The axial tilt of the Earth is approximately 23.439281° with the axis of its orbit plane, always pointing towards the Celestial Poles. Due to Earth's axial tilt, the amount of sunlight reaching any given point on the surface varies over the course of the year. This causes the seasonal change in climate, with summer in the Northern Hemisphere occurring when the Tropic of Cancer is facing the Sun, and winter taking place when the Tropic of Capricorn in the Southern Hemisphere faces the Sun. During the summer, the day lasts longer, and the Sun climbs higher in the sky. In winter, the climate becomes cooler and the days shorter. In northern temperate latitudes, the Sun rises north of true east during the summer solstice, and sets north of true west, reversing in the winter. The Sun rises south of true east in the summer for the southern temperate zone and sets south of true west.
In school, Jeremy's class has been assigned pen pals on the other side of the planet to write to. Jeremy lives in the United States and has been assigned to a girl named Marge who lives in Australia. Jeremy was told by his teacher that although Jeremy's town is in the winter season, Marge's country is currently experiencing summer. This idea intrigues Jeremy so in his first letter he is going to ask Marge many questions about this subject.
Does the sun reach lower in the sky in Jeremy or Marge's town?
{ "text": [ "Jeremy's" ] }
1937108946
The axial tilt of the Earth is approximately 23.439281° with the axis of its orbit plane, always pointing towards the Celestial Poles. Due to Earth's axial tilt, the amount of sunlight reaching any given point on the surface varies over the course of the year. This causes the seasonal change in climate, with summer in the Northern Hemisphere occurring when the Tropic of Cancer is facing the Sun, and winter taking place when the Tropic of Capricorn in the Southern Hemisphere faces the Sun. During the summer, the day lasts longer, and the Sun climbs higher in the sky. In winter, the climate becomes cooler and the days shorter. In northern temperate latitudes, the Sun rises north of true east during the summer solstice, and sets north of true west, reversing in the winter. The Sun rises south of true east in the summer for the southern temperate zone and sets south of true west.
In school, Jeremy's class has been assigned pen pals on the other side of the planet to write to. Jeremy lives in the United States and has been assigned to a girl named Marge who lives in Australia. Jeremy was told by his teacher that although Jeremy's town is in the winter season, Marge's country is currently experiencing summer. This idea intrigues Jeremy so in his first letter he is going to ask Marge many questions about this subject.
Who will wear warmer clothes to school?
{ "text": [ "Jeremy" ] }
1920397256
The axial tilt of the Earth is approximately 23.439281° with the axis of its orbit plane, always pointing towards the Celestial Poles. Due to Earth's axial tilt, the amount of sunlight reaching any given point on the surface varies over the course of the year. This causes the seasonal change in climate, with summer in the Northern Hemisphere occurring when the Tropic of Cancer is facing the Sun, and winter taking place when the Tropic of Capricorn in the Southern Hemisphere faces the Sun. During the summer, the day lasts longer, and the Sun climbs higher in the sky. In winter, the climate becomes cooler and the days shorter. In northern temperate latitudes, the Sun rises north of true east during the summer solstice, and sets north of true west, reversing in the winter. The Sun rises south of true east in the summer for the southern temperate zone and sets south of true west.
In school, Jeremy's class has been assigned pen pals on the other side of the planet to write to. Jeremy lives in the United States and has been assigned to a girl named Marge who lives in Australia. Jeremy was told by his teacher that although Jeremy's town is in the winter season, Marge's country is currently experiencing summer. This idea intrigues Jeremy so in his first letter he is going to ask Marge many questions about this subject.
Who will wear cooler clothes to school?
{ "text": [ "Marge" ] }
4151967052
The axial tilt of the Earth is approximately 23.439281° with the axis of its orbit plane, always pointing towards the Celestial Poles. Due to Earth's axial tilt, the amount of sunlight reaching any given point on the surface varies over the course of the year. This causes the seasonal change in climate, with summer in the Northern Hemisphere occurring when the Tropic of Cancer is facing the Sun, and winter taking place when the Tropic of Capricorn in the Southern Hemisphere faces the Sun. During the summer, the day lasts longer, and the Sun climbs higher in the sky. In winter, the climate becomes cooler and the days shorter. In northern temperate latitudes, the Sun rises north of true east during the summer solstice, and sets north of true west, reversing in the winter. The Sun rises south of true east in the summer for the southern temperate zone and sets south of true west.
In school, Jeremy's class has been assigned pen pals on the other side of the planet to write to. Jeremy lives in the United States and has been assigned to a girl named Marge who lives in Australia. Jeremy was told by his teacher that although Jeremy's town is in the winter season, Marge's country is currently experiencing summer. This idea intrigues Jeremy so in his first letter he is going to ask Marge many questions about this subject.
Will Jeremy have more or less time than Marge to play in the sun after school?
{ "text": [ "less" ] }
4069457228
The axial tilt of the Earth is approximately 23.439281° with the axis of its orbit plane, always pointing towards the Celestial Poles. Due to Earth's axial tilt, the amount of sunlight reaching any given point on the surface varies over the course of the year. This causes the seasonal change in climate, with summer in the Northern Hemisphere occurring when the Tropic of Cancer is facing the Sun, and winter taking place when the Tropic of Capricorn in the Southern Hemisphere faces the Sun. During the summer, the day lasts longer, and the Sun climbs higher in the sky. In winter, the climate becomes cooler and the days shorter. In northern temperate latitudes, the Sun rises north of true east during the summer solstice, and sets north of true west, reversing in the winter. The Sun rises south of true east in the summer for the southern temperate zone and sets south of true west.
In school, Jeremy's class has been assigned pen pals on the other side of the planet to write to. Jeremy lives in the United States and has been assigned to a girl named Marge who lives in Australia. Jeremy was told by his teacher that although Jeremy's town is in the winter season, Marge's country is currently experiencing summer. This idea intrigues Jeremy so in his first letter he is going to ask Marge many questions about this subject.
Will Marge have more or less time than Jeremy to play in the sun after school?
{ "text": [ "more" ] }
1657599979
The axial tilt of the Earth is approximately 23.439281° with the axis of its orbit plane, always pointing towards the Celestial Poles. Due to Earth's axial tilt, the amount of sunlight reaching any given point on the surface varies over the course of the year. This causes the seasonal change in climate, with summer in the Northern Hemisphere occurring when the Tropic of Cancer is facing the Sun, and winter taking place when the Tropic of Capricorn in the Southern Hemisphere faces the Sun. During the summer, the day lasts longer, and the Sun climbs higher in the sky. In winter, the climate becomes cooler and the days shorter. In northern temperate latitudes, the Sun rises north of true east during the summer solstice, and sets north of true west, reversing in the winter. The Sun rises south of true east in the summer for the southern temperate zone and sets south of true west.
In school, Jeremy's class has been assigned pen pals on the other side of the planet to write to. Jeremy lives in the United States and has been assigned to a girl named Marge who lives in Australia. Jeremy was told by his teacher that although Jeremy's town is in the winter season, Marge's country is currently experiencing summer. This idea intrigues Jeremy so in his first letter he is going to ask Marge many questions about this subject.
Who is more likely to spend their free time swimming outside?
{ "text": [ "Marge" ] }
1669527535
The axial tilt of the Earth is approximately 23.439281° with the axis of its orbit plane, always pointing towards the Celestial Poles. Due to Earth's axial tilt, the amount of sunlight reaching any given point on the surface varies over the course of the year. This causes the seasonal change in climate, with summer in the Northern Hemisphere occurring when the Tropic of Cancer is facing the Sun, and winter taking place when the Tropic of Capricorn in the Southern Hemisphere faces the Sun. During the summer, the day lasts longer, and the Sun climbs higher in the sky. In winter, the climate becomes cooler and the days shorter. In northern temperate latitudes, the Sun rises north of true east during the summer solstice, and sets north of true west, reversing in the winter. The Sun rises south of true east in the summer for the southern temperate zone and sets south of true west.
In school, Jeremy's class has been assigned pen pals on the other side of the planet to write to. Jeremy lives in the United States and has been assigned to a girl named Marge who lives in Australia. Jeremy was told by his teacher that although Jeremy's town is in the winter season, Marge's country is currently experiencing summer. This idea intrigues Jeremy so in his first letter he is going to ask Marge many questions about this subject.
Who is less likely to spend their free time swimming outside?
{ "text": [ "Jeremy" ] }
3791809605
Carbon dioxide is the most significant long-lived greenhouse gas in Earth's atmosphere. Since the Industrial Revolution anthropogenic emissions – primarily from use of fossil fuels and deforestation – have rapidly increased its concentration in the atmosphere, leading to global warming. Carbon dioxide also causes ocean acidification because it dissolves in water to form carbonic acid.
Milton has just discovered two new planets while looking through his telescope. Luckily, he has invented a device that allows him to analyze far away planets from the comfort of his own home. He boots up the device and discovers that while these two planets are very similar, planet A has much more carbon dioxide in its atmosphere than planet B. While looking through his telescope, he is also able to see that there is the same race of intelligent creatures on both planets. Milton plans to write to his local observatory about his discovery.
Which planet is experiencing more global warming?
{ "text": [ "planet A" ] }
3794824265
Carbon dioxide is the most significant long-lived greenhouse gas in Earth's atmosphere. Since the Industrial Revolution anthropogenic emissions – primarily from use of fossil fuels and deforestation – have rapidly increased its concentration in the atmosphere, leading to global warming. Carbon dioxide also causes ocean acidification because it dissolves in water to form carbonic acid.
Milton has just discovered two new planets while looking through his telescope. Luckily, he has invented a device that allows him to analyze far away planets from the comfort of his own home. He boots up the device and discovers that while these two planets are very similar, planet A has much more carbon dioxide in its atmosphere than planet B. While looking through his telescope, he is also able to see that there is the same race of intelligent creatures on both planets. Milton plans to write to his local observatory about his discovery.
Which planet is experiencing less global warming?
{ "text": [ "planet B" ] }
3873728416
Carbon dioxide is the most significant long-lived greenhouse gas in Earth's atmosphere. Since the Industrial Revolution anthropogenic emissions – primarily from use of fossil fuels and deforestation – have rapidly increased its concentration in the atmosphere, leading to global warming. Carbon dioxide also causes ocean acidification because it dissolves in water to form carbonic acid.
Milton has just discovered two new planets while looking through his telescope. Luckily, he has invented a device that allows him to analyze far away planets from the comfort of his own home. He boots up the device and discovers that while these two planets are very similar, planet A has much more carbon dioxide in its atmosphere than planet B. While looking through his telescope, he is also able to see that there is the same race of intelligent creatures on both planets. Milton plans to write to his local observatory about his discovery.
Which planet probably has less trees?
{ "text": [ "planet A" ] }
3873073052
Carbon dioxide is the most significant long-lived greenhouse gas in Earth's atmosphere. Since the Industrial Revolution anthropogenic emissions – primarily from use of fossil fuels and deforestation – have rapidly increased its concentration in the atmosphere, leading to global warming. Carbon dioxide also causes ocean acidification because it dissolves in water to form carbonic acid.
Milton has just discovered two new planets while looking through his telescope. Luckily, he has invented a device that allows him to analyze far away planets from the comfort of his own home. He boots up the device and discovers that while these two planets are very similar, planet A has much more carbon dioxide in its atmosphere than planet B. While looking through his telescope, he is also able to see that there is the same race of intelligent creatures on both planets. Milton plans to write to his local observatory about his discovery.
Which planet probably has more trees?
{ "text": [ "planet B" ] }
3183507940
Carbon dioxide is the most significant long-lived greenhouse gas in Earth's atmosphere. Since the Industrial Revolution anthropogenic emissions – primarily from use of fossil fuels and deforestation – have rapidly increased its concentration in the atmosphere, leading to global warming. Carbon dioxide also causes ocean acidification because it dissolves in water to form carbonic acid.
Milton has just discovered two new planets while looking through his telescope. Luckily, he has invented a device that allows him to analyze far away planets from the comfort of his own home. He boots up the device and discovers that while these two planets are very similar, planet A has much more carbon dioxide in its atmosphere than planet B. While looking through his telescope, he is also able to see that there is the same race of intelligent creatures on both planets. Milton plans to write to his local observatory about his discovery.
Is it more likely that the creatures on planet A or planet B use fossil fuels for energy?
{ "text": [ "planet A" ] }
3203037672
Carbon dioxide is the most significant long-lived greenhouse gas in Earth's atmosphere. Since the Industrial Revolution anthropogenic emissions – primarily from use of fossil fuels and deforestation – have rapidly increased its concentration in the atmosphere, leading to global warming. Carbon dioxide also causes ocean acidification because it dissolves in water to form carbonic acid.
Milton has just discovered two new planets while looking through his telescope. Luckily, he has invented a device that allows him to analyze far away planets from the comfort of his own home. He boots up the device and discovers that while these two planets are very similar, planet A has much more carbon dioxide in its atmosphere than planet B. While looking through his telescope, he is also able to see that there is the same race of intelligent creatures on both planets. Milton plans to write to his local observatory about his discovery.
Is it less likely that the creatures on planet A or planet B use fossil fuels for energy?
{ "text": [ "planet B" ] }
2671213060
Carbon dioxide is the most significant long-lived greenhouse gas in Earth's atmosphere. Since the Industrial Revolution anthropogenic emissions – primarily from use of fossil fuels and deforestation – have rapidly increased its concentration in the atmosphere, leading to global warming. Carbon dioxide also causes ocean acidification because it dissolves in water to form carbonic acid.
Milton has just discovered two new planets while looking through his telescope. Luckily, he has invented a device that allows him to analyze far away planets from the comfort of his own home. He boots up the device and discovers that while these two planets are very similar, planet A has much more carbon dioxide in its atmosphere than planet B. While looking through his telescope, he is also able to see that there is the same race of intelligent creatures on both planets. Milton plans to write to his local observatory about his discovery.
Is the amount of carbonic acid in planet A's oceans higher or lower than planet B's oceans?
{ "text": [ "higher" ] }
2673768964
Carbon dioxide is the most significant long-lived greenhouse gas in Earth's atmosphere. Since the Industrial Revolution anthropogenic emissions – primarily from use of fossil fuels and deforestation – have rapidly increased its concentration in the atmosphere, leading to global warming. Carbon dioxide also causes ocean acidification because it dissolves in water to form carbonic acid.
Milton has just discovered two new planets while looking through his telescope. Luckily, he has invented a device that allows him to analyze far away planets from the comfort of his own home. He boots up the device and discovers that while these two planets are very similar, planet A has much more carbon dioxide in its atmosphere than planet B. While looking through his telescope, he is also able to see that there is the same race of intelligent creatures on both planets. Milton plans to write to his local observatory about his discovery.
Is the amount of carbonic acid in planet B's oceans higher or lower than planet A's oceans?
{ "text": [ "lower" ] }
3262676591
Carbon dioxide is the most significant long-lived greenhouse gas in Earth's atmosphere. Since the Industrial Revolution anthropogenic emissions – primarily from use of fossil fuels and deforestation – have rapidly increased its concentration in the atmosphere, leading to global warming. Carbon dioxide also causes ocean acidification because it dissolves in water to form carbonic acid.
Milton has just discovered two new planets while looking through his telescope. Luckily, he has invented a device that allows him to analyze far away planets from the comfort of his own home. He boots up the device and discovers that while these two planets are very similar, planet A has much more carbon dioxide in its atmosphere than planet B. While looking through his telescope, he is also able to see that there is the same race of intelligent creatures on both planets. Milton plans to write to his local observatory about his discovery.
Do the inhabitants of planet B probably produce more or less anthropogenic emissions than planet A?
{ "text": [ "less" ] }
3258220143
Carbon dioxide is the most significant long-lived greenhouse gas in Earth's atmosphere. Since the Industrial Revolution anthropogenic emissions – primarily from use of fossil fuels and deforestation – have rapidly increased its concentration in the atmosphere, leading to global warming. Carbon dioxide also causes ocean acidification because it dissolves in water to form carbonic acid.
Milton has just discovered two new planets while looking through his telescope. Luckily, he has invented a device that allows him to analyze far away planets from the comfort of his own home. He boots up the device and discovers that while these two planets are very similar, planet A has much more carbon dioxide in its atmosphere than planet B. While looking through his telescope, he is also able to see that there is the same race of intelligent creatures on both planets. Milton plans to write to his local observatory about his discovery.
Do the inhabitants of planet A probably produce more or less anthropogenic emissions than planet B?
{ "text": [ "more" ] }
3888966864
Wildfires occur when all the necessary elements of a fire triangle come together in a susceptible area: an ignition source is brought into contact with a combustible material such as vegetation, that is subjected to enough heat and has an adequate supply of oxygen from the ambient air. A high moisture content usually prevents ignition and slows propagation, because higher temperatures are needed to evaporate any water in the material and heat the material to its fire point. Dense forests usually provide more shade, resulting in lower ambient temperatures and greater humidity, and are therefore less susceptible to wildfires. Less dense material such as grasses and leaves are easier to ignite because they contain less water than denser material such as branches and trunks. Plants continuously lose water by evapotranspiration, but water loss is usually balanced by water absorbed from the soil, humidity, or rain. When this balance is not maintained, plants dry out and are therefore more flammable, often a consequence of droughts.A wildfire front is the portion sustaining continuous flaming combustion, where unburned material meets active flames, or the smoldering transition between unburned and burned material. As the front approaches, the fire heats both the surrounding air and woody material through convection and thermal radiation. First, wood is dried as water is vaporized at a temperature of 100 °C (212 °F). Next, the pyrolysis of wood at 230 °C (450 °F) releases flammable gases. Finally, wood can smoulder at 380 °C (720 °F) or, when heated sufficiently, ignite at 590 °C (1,000 °F). Even before the flames of a wildfire arrive at a particular location, heat transfer from the wildfire front warms the air to 800 °C (1,470 °F), which pre-heats and dries flammable materials, causing materials to ignite faster and allowing the fire to spread faster. High-temperature and long-duration surface wildfires may encourage flashover or torching: the drying of tree canopies and their subsequent ignition from below.Wildfires have a rapid forward rate of spread (FROS) when burning through dense uninterrupted fuels. They can move as fast as 10.8 kilometres per hour (6.7 mph) in forests and 22 kilometres per hour (14 mph) in grasslands. Wildfires can advance tangential to the main front to form a flanking front, or burn in the opposite direction of the main front by backing. They may also spread by jumping or spotting as winds and vertical convection columns carry firebrands (hot wood embers) and other burning materials through the air over roads, rivers, and other barriers that may otherwise act as firebreaks. Torching and fires in tree canopies encourage spotting, and dry ground fuels around a wildfire are especially vulnerable to ignition from firebrands. Spotting can create spot fires as hot embers and firebrands ignite fuels downwind from the fire. In Australian bushfires, spot fires are known to occur as far as 20 kilometres (12 mi) from the fire front.Especially large wildfires may affect air currents in their immediate vicinities by the stack effect: air rises as it is heated, and large wildfires create powerful updrafts that will draw in new, cooler air from surrounding areas in thermal columns. Great vertical differences in temperature and humidity encourage pyrocumulus clouds, strong winds, and fire whirls with the force of tornadoes at speeds of more than 80 kilometres per hour (50 mph). Rapid rates of spread, prolific crowning or spotting, the presence of fire whirls, and strong convection columns signify extreme conditions.The thermal heat from wildfire can cause significant weathering of rocks and boulders, heat can rapidly expand a boulder and thermal shock can occur, which may cause an object's structure to fail.
Near the city of Middleton, there are two forests. The Trine forest is a forest tightly packed with trees. Trine has hardly any large open spaces on the ground. The Jimpy forest, on the other hand, is much more open. It has some large areas in the forest that are perfect for camping or for children to play in due to the lack of trees.
Which forest provides more shade?
{ "text": [ "Trine" ] }
3889622228
Wildfires occur when all the necessary elements of a fire triangle come together in a susceptible area: an ignition source is brought into contact with a combustible material such as vegetation, that is subjected to enough heat and has an adequate supply of oxygen from the ambient air. A high moisture content usually prevents ignition and slows propagation, because higher temperatures are needed to evaporate any water in the material and heat the material to its fire point. Dense forests usually provide more shade, resulting in lower ambient temperatures and greater humidity, and are therefore less susceptible to wildfires. Less dense material such as grasses and leaves are easier to ignite because they contain less water than denser material such as branches and trunks. Plants continuously lose water by evapotranspiration, but water loss is usually balanced by water absorbed from the soil, humidity, or rain. When this balance is not maintained, plants dry out and are therefore more flammable, often a consequence of droughts.A wildfire front is the portion sustaining continuous flaming combustion, where unburned material meets active flames, or the smoldering transition between unburned and burned material. As the front approaches, the fire heats both the surrounding air and woody material through convection and thermal radiation. First, wood is dried as water is vaporized at a temperature of 100 °C (212 °F). Next, the pyrolysis of wood at 230 °C (450 °F) releases flammable gases. Finally, wood can smoulder at 380 °C (720 °F) or, when heated sufficiently, ignite at 590 °C (1,000 °F). Even before the flames of a wildfire arrive at a particular location, heat transfer from the wildfire front warms the air to 800 °C (1,470 °F), which pre-heats and dries flammable materials, causing materials to ignite faster and allowing the fire to spread faster. High-temperature and long-duration surface wildfires may encourage flashover or torching: the drying of tree canopies and their subsequent ignition from below.Wildfires have a rapid forward rate of spread (FROS) when burning through dense uninterrupted fuels. They can move as fast as 10.8 kilometres per hour (6.7 mph) in forests and 22 kilometres per hour (14 mph) in grasslands. Wildfires can advance tangential to the main front to form a flanking front, or burn in the opposite direction of the main front by backing. They may also spread by jumping or spotting as winds and vertical convection columns carry firebrands (hot wood embers) and other burning materials through the air over roads, rivers, and other barriers that may otherwise act as firebreaks. Torching and fires in tree canopies encourage spotting, and dry ground fuels around a wildfire are especially vulnerable to ignition from firebrands. Spotting can create spot fires as hot embers and firebrands ignite fuels downwind from the fire. In Australian bushfires, spot fires are known to occur as far as 20 kilometres (12 mi) from the fire front.Especially large wildfires may affect air currents in their immediate vicinities by the stack effect: air rises as it is heated, and large wildfires create powerful updrafts that will draw in new, cooler air from surrounding areas in thermal columns. Great vertical differences in temperature and humidity encourage pyrocumulus clouds, strong winds, and fire whirls with the force of tornadoes at speeds of more than 80 kilometres per hour (50 mph). Rapid rates of spread, prolific crowning or spotting, the presence of fire whirls, and strong convection columns signify extreme conditions.The thermal heat from wildfire can cause significant weathering of rocks and boulders, heat can rapidly expand a boulder and thermal shock can occur, which may cause an object's structure to fail.
Near the city of Middleton, there are two forests. The Trine forest is a forest tightly packed with trees. Trine has hardly any large open spaces on the ground. The Jimpy forest, on the other hand, is much more open. It has some large areas in the forest that are perfect for camping or for children to play in due to the lack of trees.
Which forest provides less shade?
{ "text": [ "Jimpy" ] }
3887988126
Wildfires occur when all the necessary elements of a fire triangle come together in a susceptible area: an ignition source is brought into contact with a combustible material such as vegetation, that is subjected to enough heat and has an adequate supply of oxygen from the ambient air. A high moisture content usually prevents ignition and slows propagation, because higher temperatures are needed to evaporate any water in the material and heat the material to its fire point. Dense forests usually provide more shade, resulting in lower ambient temperatures and greater humidity, and are therefore less susceptible to wildfires. Less dense material such as grasses and leaves are easier to ignite because they contain less water than denser material such as branches and trunks. Plants continuously lose water by evapotranspiration, but water loss is usually balanced by water absorbed from the soil, humidity, or rain. When this balance is not maintained, plants dry out and are therefore more flammable, often a consequence of droughts.A wildfire front is the portion sustaining continuous flaming combustion, where unburned material meets active flames, or the smoldering transition between unburned and burned material. As the front approaches, the fire heats both the surrounding air and woody material through convection and thermal radiation. First, wood is dried as water is vaporized at a temperature of 100 °C (212 °F). Next, the pyrolysis of wood at 230 °C (450 °F) releases flammable gases. Finally, wood can smoulder at 380 °C (720 °F) or, when heated sufficiently, ignite at 590 °C (1,000 °F). Even before the flames of a wildfire arrive at a particular location, heat transfer from the wildfire front warms the air to 800 °C (1,470 °F), which pre-heats and dries flammable materials, causing materials to ignite faster and allowing the fire to spread faster. High-temperature and long-duration surface wildfires may encourage flashover or torching: the drying of tree canopies and their subsequent ignition from below.Wildfires have a rapid forward rate of spread (FROS) when burning through dense uninterrupted fuels. They can move as fast as 10.8 kilometres per hour (6.7 mph) in forests and 22 kilometres per hour (14 mph) in grasslands. Wildfires can advance tangential to the main front to form a flanking front, or burn in the opposite direction of the main front by backing. They may also spread by jumping or spotting as winds and vertical convection columns carry firebrands (hot wood embers) and other burning materials through the air over roads, rivers, and other barriers that may otherwise act as firebreaks. Torching and fires in tree canopies encourage spotting, and dry ground fuels around a wildfire are especially vulnerable to ignition from firebrands. Spotting can create spot fires as hot embers and firebrands ignite fuels downwind from the fire. In Australian bushfires, spot fires are known to occur as far as 20 kilometres (12 mi) from the fire front.Especially large wildfires may affect air currents in their immediate vicinities by the stack effect: air rises as it is heated, and large wildfires create powerful updrafts that will draw in new, cooler air from surrounding areas in thermal columns. Great vertical differences in temperature and humidity encourage pyrocumulus clouds, strong winds, and fire whirls with the force of tornadoes at speeds of more than 80 kilometres per hour (50 mph). Rapid rates of spread, prolific crowning or spotting, the presence of fire whirls, and strong convection columns signify extreme conditions.The thermal heat from wildfire can cause significant weathering of rocks and boulders, heat can rapidly expand a boulder and thermal shock can occur, which may cause an object's structure to fail.
Near the city of Middleton, there are two forests. The Trine forest is a forest tightly packed with trees. Trine has hardly any large open spaces on the ground. The Jimpy forest, on the other hand, is much more open. It has some large areas in the forest that are perfect for camping or for children to play in due to the lack of trees.
Is the temperature in the Trine forest higher or lower than in the Jimpy forest?
{ "text": [ "lower" ] }
3906796958
Wildfires occur when all the necessary elements of a fire triangle come together in a susceptible area: an ignition source is brought into contact with a combustible material such as vegetation, that is subjected to enough heat and has an adequate supply of oxygen from the ambient air. A high moisture content usually prevents ignition and slows propagation, because higher temperatures are needed to evaporate any water in the material and heat the material to its fire point. Dense forests usually provide more shade, resulting in lower ambient temperatures and greater humidity, and are therefore less susceptible to wildfires. Less dense material such as grasses and leaves are easier to ignite because they contain less water than denser material such as branches and trunks. Plants continuously lose water by evapotranspiration, but water loss is usually balanced by water absorbed from the soil, humidity, or rain. When this balance is not maintained, plants dry out and are therefore more flammable, often a consequence of droughts.A wildfire front is the portion sustaining continuous flaming combustion, where unburned material meets active flames, or the smoldering transition between unburned and burned material. As the front approaches, the fire heats both the surrounding air and woody material through convection and thermal radiation. First, wood is dried as water is vaporized at a temperature of 100 °C (212 °F). Next, the pyrolysis of wood at 230 °C (450 °F) releases flammable gases. Finally, wood can smoulder at 380 °C (720 °F) or, when heated sufficiently, ignite at 590 °C (1,000 °F). Even before the flames of a wildfire arrive at a particular location, heat transfer from the wildfire front warms the air to 800 °C (1,470 °F), which pre-heats and dries flammable materials, causing materials to ignite faster and allowing the fire to spread faster. High-temperature and long-duration surface wildfires may encourage flashover or torching: the drying of tree canopies and their subsequent ignition from below.Wildfires have a rapid forward rate of spread (FROS) when burning through dense uninterrupted fuels. They can move as fast as 10.8 kilometres per hour (6.7 mph) in forests and 22 kilometres per hour (14 mph) in grasslands. Wildfires can advance tangential to the main front to form a flanking front, or burn in the opposite direction of the main front by backing. They may also spread by jumping or spotting as winds and vertical convection columns carry firebrands (hot wood embers) and other burning materials through the air over roads, rivers, and other barriers that may otherwise act as firebreaks. Torching and fires in tree canopies encourage spotting, and dry ground fuels around a wildfire are especially vulnerable to ignition from firebrands. Spotting can create spot fires as hot embers and firebrands ignite fuels downwind from the fire. In Australian bushfires, spot fires are known to occur as far as 20 kilometres (12 mi) from the fire front.Especially large wildfires may affect air currents in their immediate vicinities by the stack effect: air rises as it is heated, and large wildfires create powerful updrafts that will draw in new, cooler air from surrounding areas in thermal columns. Great vertical differences in temperature and humidity encourage pyrocumulus clouds, strong winds, and fire whirls with the force of tornadoes at speeds of more than 80 kilometres per hour (50 mph). Rapid rates of spread, prolific crowning or spotting, the presence of fire whirls, and strong convection columns signify extreme conditions.The thermal heat from wildfire can cause significant weathering of rocks and boulders, heat can rapidly expand a boulder and thermal shock can occur, which may cause an object's structure to fail.
Near the city of Middleton, there are two forests. The Trine forest is a forest tightly packed with trees. Trine has hardly any large open spaces on the ground. The Jimpy forest, on the other hand, is much more open. It has some large areas in the forest that are perfect for camping or for children to play in due to the lack of trees.
Is the temperature in the Jimpy forest higher or lower than in the Trine forest?
{ "text": [ "higher" ] }
1537337938
Wildfires occur when all the necessary elements of a fire triangle come together in a susceptible area: an ignition source is brought into contact with a combustible material such as vegetation, that is subjected to enough heat and has an adequate supply of oxygen from the ambient air. A high moisture content usually prevents ignition and slows propagation, because higher temperatures are needed to evaporate any water in the material and heat the material to its fire point. Dense forests usually provide more shade, resulting in lower ambient temperatures and greater humidity, and are therefore less susceptible to wildfires. Less dense material such as grasses and leaves are easier to ignite because they contain less water than denser material such as branches and trunks. Plants continuously lose water by evapotranspiration, but water loss is usually balanced by water absorbed from the soil, humidity, or rain. When this balance is not maintained, plants dry out and are therefore more flammable, often a consequence of droughts.A wildfire front is the portion sustaining continuous flaming combustion, where unburned material meets active flames, or the smoldering transition between unburned and burned material. As the front approaches, the fire heats both the surrounding air and woody material through convection and thermal radiation. First, wood is dried as water is vaporized at a temperature of 100 °C (212 °F). Next, the pyrolysis of wood at 230 °C (450 °F) releases flammable gases. Finally, wood can smoulder at 380 °C (720 °F) or, when heated sufficiently, ignite at 590 °C (1,000 °F). Even before the flames of a wildfire arrive at a particular location, heat transfer from the wildfire front warms the air to 800 °C (1,470 °F), which pre-heats and dries flammable materials, causing materials to ignite faster and allowing the fire to spread faster. High-temperature and long-duration surface wildfires may encourage flashover or torching: the drying of tree canopies and their subsequent ignition from below.Wildfires have a rapid forward rate of spread (FROS) when burning through dense uninterrupted fuels. They can move as fast as 10.8 kilometres per hour (6.7 mph) in forests and 22 kilometres per hour (14 mph) in grasslands. Wildfires can advance tangential to the main front to form a flanking front, or burn in the opposite direction of the main front by backing. They may also spread by jumping or spotting as winds and vertical convection columns carry firebrands (hot wood embers) and other burning materials through the air over roads, rivers, and other barriers that may otherwise act as firebreaks. Torching and fires in tree canopies encourage spotting, and dry ground fuels around a wildfire are especially vulnerable to ignition from firebrands. Spotting can create spot fires as hot embers and firebrands ignite fuels downwind from the fire. In Australian bushfires, spot fires are known to occur as far as 20 kilometres (12 mi) from the fire front.Especially large wildfires may affect air currents in their immediate vicinities by the stack effect: air rises as it is heated, and large wildfires create powerful updrafts that will draw in new, cooler air from surrounding areas in thermal columns. Great vertical differences in temperature and humidity encourage pyrocumulus clouds, strong winds, and fire whirls with the force of tornadoes at speeds of more than 80 kilometres per hour (50 mph). Rapid rates of spread, prolific crowning or spotting, the presence of fire whirls, and strong convection columns signify extreme conditions.The thermal heat from wildfire can cause significant weathering of rocks and boulders, heat can rapidly expand a boulder and thermal shock can occur, which may cause an object's structure to fail.
Near the city of Middleton, there are two forests. The Trine forest is a forest tightly packed with trees. Trine has hardly any large open spaces on the ground. The Jimpy forest, on the other hand, is much more open. It has some large areas in the forest that are perfect for camping or for children to play in due to the lack of trees.
Which forest is more humid?
{ "text": [ "Trine" ] }
1537993302
Wildfires occur when all the necessary elements of a fire triangle come together in a susceptible area: an ignition source is brought into contact with a combustible material such as vegetation, that is subjected to enough heat and has an adequate supply of oxygen from the ambient air. A high moisture content usually prevents ignition and slows propagation, because higher temperatures are needed to evaporate any water in the material and heat the material to its fire point. Dense forests usually provide more shade, resulting in lower ambient temperatures and greater humidity, and are therefore less susceptible to wildfires. Less dense material such as grasses and leaves are easier to ignite because they contain less water than denser material such as branches and trunks. Plants continuously lose water by evapotranspiration, but water loss is usually balanced by water absorbed from the soil, humidity, or rain. When this balance is not maintained, plants dry out and are therefore more flammable, often a consequence of droughts.A wildfire front is the portion sustaining continuous flaming combustion, where unburned material meets active flames, or the smoldering transition between unburned and burned material. As the front approaches, the fire heats both the surrounding air and woody material through convection and thermal radiation. First, wood is dried as water is vaporized at a temperature of 100 °C (212 °F). Next, the pyrolysis of wood at 230 °C (450 °F) releases flammable gases. Finally, wood can smoulder at 380 °C (720 °F) or, when heated sufficiently, ignite at 590 °C (1,000 °F). Even before the flames of a wildfire arrive at a particular location, heat transfer from the wildfire front warms the air to 800 °C (1,470 °F), which pre-heats and dries flammable materials, causing materials to ignite faster and allowing the fire to spread faster. High-temperature and long-duration surface wildfires may encourage flashover or torching: the drying of tree canopies and their subsequent ignition from below.Wildfires have a rapid forward rate of spread (FROS) when burning through dense uninterrupted fuels. They can move as fast as 10.8 kilometres per hour (6.7 mph) in forests and 22 kilometres per hour (14 mph) in grasslands. Wildfires can advance tangential to the main front to form a flanking front, or burn in the opposite direction of the main front by backing. They may also spread by jumping or spotting as winds and vertical convection columns carry firebrands (hot wood embers) and other burning materials through the air over roads, rivers, and other barriers that may otherwise act as firebreaks. Torching and fires in tree canopies encourage spotting, and dry ground fuels around a wildfire are especially vulnerable to ignition from firebrands. Spotting can create spot fires as hot embers and firebrands ignite fuels downwind from the fire. In Australian bushfires, spot fires are known to occur as far as 20 kilometres (12 mi) from the fire front.Especially large wildfires may affect air currents in their immediate vicinities by the stack effect: air rises as it is heated, and large wildfires create powerful updrafts that will draw in new, cooler air from surrounding areas in thermal columns. Great vertical differences in temperature and humidity encourage pyrocumulus clouds, strong winds, and fire whirls with the force of tornadoes at speeds of more than 80 kilometres per hour (50 mph). Rapid rates of spread, prolific crowning or spotting, the presence of fire whirls, and strong convection columns signify extreme conditions.The thermal heat from wildfire can cause significant weathering of rocks and boulders, heat can rapidly expand a boulder and thermal shock can occur, which may cause an object's structure to fail.
Near the city of Middleton, there are two forests. The Trine forest is a forest tightly packed with trees. Trine has hardly any large open spaces on the ground. The Jimpy forest, on the other hand, is much more open. It has some large areas in the forest that are perfect for camping or for children to play in due to the lack of trees.
Which forest is less humid?
{ "text": [ "Jimpy" ] }
699922302
Wildfires occur when all the necessary elements of a fire triangle come together in a susceptible area: an ignition source is brought into contact with a combustible material such as vegetation, that is subjected to enough heat and has an adequate supply of oxygen from the ambient air. A high moisture content usually prevents ignition and slows propagation, because higher temperatures are needed to evaporate any water in the material and heat the material to its fire point. Dense forests usually provide more shade, resulting in lower ambient temperatures and greater humidity, and are therefore less susceptible to wildfires. Less dense material such as grasses and leaves are easier to ignite because they contain less water than denser material such as branches and trunks. Plants continuously lose water by evapotranspiration, but water loss is usually balanced by water absorbed from the soil, humidity, or rain. When this balance is not maintained, plants dry out and are therefore more flammable, often a consequence of droughts.A wildfire front is the portion sustaining continuous flaming combustion, where unburned material meets active flames, or the smoldering transition between unburned and burned material. As the front approaches, the fire heats both the surrounding air and woody material through convection and thermal radiation. First, wood is dried as water is vaporized at a temperature of 100 °C (212 °F). Next, the pyrolysis of wood at 230 °C (450 °F) releases flammable gases. Finally, wood can smoulder at 380 °C (720 °F) or, when heated sufficiently, ignite at 590 °C (1,000 °F). Even before the flames of a wildfire arrive at a particular location, heat transfer from the wildfire front warms the air to 800 °C (1,470 °F), which pre-heats and dries flammable materials, causing materials to ignite faster and allowing the fire to spread faster. High-temperature and long-duration surface wildfires may encourage flashover or torching: the drying of tree canopies and their subsequent ignition from below.Wildfires have a rapid forward rate of spread (FROS) when burning through dense uninterrupted fuels. They can move as fast as 10.8 kilometres per hour (6.7 mph) in forests and 22 kilometres per hour (14 mph) in grasslands. Wildfires can advance tangential to the main front to form a flanking front, or burn in the opposite direction of the main front by backing. They may also spread by jumping or spotting as winds and vertical convection columns carry firebrands (hot wood embers) and other burning materials through the air over roads, rivers, and other barriers that may otherwise act as firebreaks. Torching and fires in tree canopies encourage spotting, and dry ground fuels around a wildfire are especially vulnerable to ignition from firebrands. Spotting can create spot fires as hot embers and firebrands ignite fuels downwind from the fire. In Australian bushfires, spot fires are known to occur as far as 20 kilometres (12 mi) from the fire front.Especially large wildfires may affect air currents in their immediate vicinities by the stack effect: air rises as it is heated, and large wildfires create powerful updrafts that will draw in new, cooler air from surrounding areas in thermal columns. Great vertical differences in temperature and humidity encourage pyrocumulus clouds, strong winds, and fire whirls with the force of tornadoes at speeds of more than 80 kilometres per hour (50 mph). Rapid rates of spread, prolific crowning or spotting, the presence of fire whirls, and strong convection columns signify extreme conditions.The thermal heat from wildfire can cause significant weathering of rocks and boulders, heat can rapidly expand a boulder and thermal shock can occur, which may cause an object's structure to fail.
Near the city of Middleton, there are two forests. The Trine forest is a forest tightly packed with trees. Trine has hardly any large open spaces on the ground. The Jimpy forest, on the other hand, is much more open. It has some large areas in the forest that are perfect for camping or for children to play in due to the lack of trees.
Is a wildfire more likely to start in the Trine or Jimpy forest?
{ "text": [ "Jimpy" ] }
710801282
Wildfires occur when all the necessary elements of a fire triangle come together in a susceptible area: an ignition source is brought into contact with a combustible material such as vegetation, that is subjected to enough heat and has an adequate supply of oxygen from the ambient air. A high moisture content usually prevents ignition and slows propagation, because higher temperatures are needed to evaporate any water in the material and heat the material to its fire point. Dense forests usually provide more shade, resulting in lower ambient temperatures and greater humidity, and are therefore less susceptible to wildfires. Less dense material such as grasses and leaves are easier to ignite because they contain less water than denser material such as branches and trunks. Plants continuously lose water by evapotranspiration, but water loss is usually balanced by water absorbed from the soil, humidity, or rain. When this balance is not maintained, plants dry out and are therefore more flammable, often a consequence of droughts.A wildfire front is the portion sustaining continuous flaming combustion, where unburned material meets active flames, or the smoldering transition between unburned and burned material. As the front approaches, the fire heats both the surrounding air and woody material through convection and thermal radiation. First, wood is dried as water is vaporized at a temperature of 100 °C (212 °F). Next, the pyrolysis of wood at 230 °C (450 °F) releases flammable gases. Finally, wood can smoulder at 380 °C (720 °F) or, when heated sufficiently, ignite at 590 °C (1,000 °F). Even before the flames of a wildfire arrive at a particular location, heat transfer from the wildfire front warms the air to 800 °C (1,470 °F), which pre-heats and dries flammable materials, causing materials to ignite faster and allowing the fire to spread faster. High-temperature and long-duration surface wildfires may encourage flashover or torching: the drying of tree canopies and their subsequent ignition from below.Wildfires have a rapid forward rate of spread (FROS) when burning through dense uninterrupted fuels. They can move as fast as 10.8 kilometres per hour (6.7 mph) in forests and 22 kilometres per hour (14 mph) in grasslands. Wildfires can advance tangential to the main front to form a flanking front, or burn in the opposite direction of the main front by backing. They may also spread by jumping or spotting as winds and vertical convection columns carry firebrands (hot wood embers) and other burning materials through the air over roads, rivers, and other barriers that may otherwise act as firebreaks. Torching and fires in tree canopies encourage spotting, and dry ground fuels around a wildfire are especially vulnerable to ignition from firebrands. Spotting can create spot fires as hot embers and firebrands ignite fuels downwind from the fire. In Australian bushfires, spot fires are known to occur as far as 20 kilometres (12 mi) from the fire front.Especially large wildfires may affect air currents in their immediate vicinities by the stack effect: air rises as it is heated, and large wildfires create powerful updrafts that will draw in new, cooler air from surrounding areas in thermal columns. Great vertical differences in temperature and humidity encourage pyrocumulus clouds, strong winds, and fire whirls with the force of tornadoes at speeds of more than 80 kilometres per hour (50 mph). Rapid rates of spread, prolific crowning or spotting, the presence of fire whirls, and strong convection columns signify extreme conditions.The thermal heat from wildfire can cause significant weathering of rocks and boulders, heat can rapidly expand a boulder and thermal shock can occur, which may cause an object's structure to fail.
Near the city of Middleton, there are two forests. The Trine forest is a forest tightly packed with trees. Trine has hardly any large open spaces on the ground. The Jimpy forest, on the other hand, is much more open. It has some large areas in the forest that are perfect for camping or for children to play in due to the lack of trees.
Is a wildfire less likely to start in the Trine or Jimpy forest?
{ "text": [ "Trine" ] }
2517235060
Wildfires occur when all the necessary elements of a fire triangle come together in a susceptible area: an ignition source is brought into contact with a combustible material such as vegetation, that is subjected to enough heat and has an adequate supply of oxygen from the ambient air. A high moisture content usually prevents ignition and slows propagation, because higher temperatures are needed to evaporate any water in the material and heat the material to its fire point. Dense forests usually provide more shade, resulting in lower ambient temperatures and greater humidity, and are therefore less susceptible to wildfires. Less dense material such as grasses and leaves are easier to ignite because they contain less water than denser material such as branches and trunks. Plants continuously lose water by evapotranspiration, but water loss is usually balanced by water absorbed from the soil, humidity, or rain. When this balance is not maintained, plants dry out and are therefore more flammable, often a consequence of droughts.A wildfire front is the portion sustaining continuous flaming combustion, where unburned material meets active flames, or the smoldering transition between unburned and burned material. As the front approaches, the fire heats both the surrounding air and woody material through convection and thermal radiation. First, wood is dried as water is vaporized at a temperature of 100 °C (212 °F). Next, the pyrolysis of wood at 230 °C (450 °F) releases flammable gases. Finally, wood can smoulder at 380 °C (720 °F) or, when heated sufficiently, ignite at 590 °C (1,000 °F). Even before the flames of a wildfire arrive at a particular location, heat transfer from the wildfire front warms the air to 800 °C (1,470 °F), which pre-heats and dries flammable materials, causing materials to ignite faster and allowing the fire to spread faster. High-temperature and long-duration surface wildfires may encourage flashover or torching: the drying of tree canopies and their subsequent ignition from below.Wildfires have a rapid forward rate of spread (FROS) when burning through dense uninterrupted fuels. They can move as fast as 10.8 kilometres per hour (6.7 mph) in forests and 22 kilometres per hour (14 mph) in grasslands. Wildfires can advance tangential to the main front to form a flanking front, or burn in the opposite direction of the main front by backing. They may also spread by jumping or spotting as winds and vertical convection columns carry firebrands (hot wood embers) and other burning materials through the air over roads, rivers, and other barriers that may otherwise act as firebreaks. Torching and fires in tree canopies encourage spotting, and dry ground fuels around a wildfire are especially vulnerable to ignition from firebrands. Spotting can create spot fires as hot embers and firebrands ignite fuels downwind from the fire. In Australian bushfires, spot fires are known to occur as far as 20 kilometres (12 mi) from the fire front.Especially large wildfires may affect air currents in their immediate vicinities by the stack effect: air rises as it is heated, and large wildfires create powerful updrafts that will draw in new, cooler air from surrounding areas in thermal columns. Great vertical differences in temperature and humidity encourage pyrocumulus clouds, strong winds, and fire whirls with the force of tornadoes at speeds of more than 80 kilometres per hour (50 mph). Rapid rates of spread, prolific crowning or spotting, the presence of fire whirls, and strong convection columns signify extreme conditions.The thermal heat from wildfire can cause significant weathering of rocks and boulders, heat can rapidly expand a boulder and thermal shock can occur, which may cause an object's structure to fail.
Near the city of Middleton, there are two forests. The Trine forest is a forest tightly packed with trees. Trine has hardly any large open spaces on the ground. The Jimpy forest, on the other hand, is much more open. It has some large areas in the forest that are perfect for camping or for children to play in due to the lack of trees.
Which forest would require a higher temperature to burn?
{ "text": [ "Trine" ] }
2724918566
Wildfires occur when all the necessary elements of a fire triangle come together in a susceptible area: an ignition source is brought into contact with a combustible material such as vegetation, that is subjected to enough heat and has an adequate supply of oxygen from the ambient air. A high moisture content usually prevents ignition and slows propagation, because higher temperatures are needed to evaporate any water in the material and heat the material to its fire point. Dense forests usually provide more shade, resulting in lower ambient temperatures and greater humidity, and are therefore less susceptible to wildfires. Less dense material such as grasses and leaves are easier to ignite because they contain less water than denser material such as branches and trunks. Plants continuously lose water by evapotranspiration, but water loss is usually balanced by water absorbed from the soil, humidity, or rain. When this balance is not maintained, plants dry out and are therefore more flammable, often a consequence of droughts.A wildfire front is the portion sustaining continuous flaming combustion, where unburned material meets active flames, or the smoldering transition between unburned and burned material. As the front approaches, the fire heats both the surrounding air and woody material through convection and thermal radiation. First, wood is dried as water is vaporized at a temperature of 100 °C (212 °F). Next, the pyrolysis of wood at 230 °C (450 °F) releases flammable gases. Finally, wood can smoulder at 380 °C (720 °F) or, when heated sufficiently, ignite at 590 °C (1,000 °F). Even before the flames of a wildfire arrive at a particular location, heat transfer from the wildfire front warms the air to 800 °C (1,470 °F), which pre-heats and dries flammable materials, causing materials to ignite faster and allowing the fire to spread faster. High-temperature and long-duration surface wildfires may encourage flashover or torching: the drying of tree canopies and their subsequent ignition from below.Wildfires have a rapid forward rate of spread (FROS) when burning through dense uninterrupted fuels. They can move as fast as 10.8 kilometres per hour (6.7 mph) in forests and 22 kilometres per hour (14 mph) in grasslands. Wildfires can advance tangential to the main front to form a flanking front, or burn in the opposite direction of the main front by backing. They may also spread by jumping or spotting as winds and vertical convection columns carry firebrands (hot wood embers) and other burning materials through the air over roads, rivers, and other barriers that may otherwise act as firebreaks. Torching and fires in tree canopies encourage spotting, and dry ground fuels around a wildfire are especially vulnerable to ignition from firebrands. Spotting can create spot fires as hot embers and firebrands ignite fuels downwind from the fire. In Australian bushfires, spot fires are known to occur as far as 20 kilometres (12 mi) from the fire front.Especially large wildfires may affect air currents in their immediate vicinities by the stack effect: air rises as it is heated, and large wildfires create powerful updrafts that will draw in new, cooler air from surrounding areas in thermal columns. Great vertical differences in temperature and humidity encourage pyrocumulus clouds, strong winds, and fire whirls with the force of tornadoes at speeds of more than 80 kilometres per hour (50 mph). Rapid rates of spread, prolific crowning or spotting, the presence of fire whirls, and strong convection columns signify extreme conditions.The thermal heat from wildfire can cause significant weathering of rocks and boulders, heat can rapidly expand a boulder and thermal shock can occur, which may cause an object's structure to fail.
Near the city of Middleton, there are two forests. The Trine forest is a forest tightly packed with trees. Trine has hardly any large open spaces on the ground. The Jimpy forest, on the other hand, is much more open. It has some large areas in the forest that are perfect for camping or for children to play in due to the lack of trees.
Which forest would require a lower temperature to burn?
{ "text": [ "Jimpy" ] }
927567989
Wildfire smoke contains particulate matter that may have adverse effects upon the human respiratory system. Evidence of the health effects of wildfire smoke should be relayed to the public so that exposure may be limited. Evidence of health effects can also be used to influence policy to promote positive health outcomes.Inhalation of smoke from a wildfire can be a health hazard. Wildfire smoke is composed of combustion products i.e. carbon dioxide, carbon monoxide, water vapor, particulate matter, organic chemicals, nitrogen oxides and other compounds. The principal health concern is the inhalation of particulate matter and carbon monoxide.Particulate matter (PM) is a type of air pollution made up of particles of dust and liquid droplets. They are characterized into three categories based on the diameter of the particle: coarse PM, fine PM, and ultrafine PM. Coarse particles are between 2.5 micrometers and 10 micrometers, fine particles measure 0.1 to 2.5 micrometers, and ultrafine particle are less than 0.1 micrometer. Each size can enter the body through inhalation, but the PM impact on the body varies by size. Coarse particles are filtered by the upper airways and these particles can accumulate and cause pulmonary inflammation. This can result in eye and sinus irritation as well as sore throat and coughing. Coarse PM is often composed of materials that are heavier and more toxic that lead to short-term effects with stronger impact.Smaller particulate moves further into the respiratory system creating issues deep into the lungs and the bloodstream. In asthma patients, PM2.5 causes inflammation but also increases oxidative stress in the epithelial cells. These particulates also cause apoptosis and autophagy in lung epithelial cells. Both processes cause the cells to be damaged and impacts the cell function. This damage impacts those with respiratory conditions such as asthma where the lung tissues and function are already compromised. The third PM type is ultra-fine PM (UFP). UFP can enter the bloodstream like PM2.5 however studies show that it works into the blood much quicker. The inflammation and epithelial damage done by UFP has also shown to be much more severe. PM2.5 is of the largest concern in regards to wildfire. This is particularly hazardous to the very young, elderly and those with chronic conditions such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and cardiovascular conditions. The illnesses most commonly with exposure to fine particle from wildfire smoke are bronchitis, exacerbation of asthma or COPD, and pneumonia. Symptoms of these complications include wheezing and shortness of breath and cardiovascular symptoms include chest pain, rapid heart rate and fatigue.
Bobby and Sally are siblings that currently live in different cities. Bobby lives in a city that has wildfires on a regular basis. The local government is effective at combating these fires, but there are still quite a few over the course of a year. Sally lives somewhere that has never had a wildfire before, and she wasn't even aware they existed until her brother started talking about them.
Who is more likely to experience eye irritation?
{ "text": [ "Bobby" ] }
936087673
Wildfire smoke contains particulate matter that may have adverse effects upon the human respiratory system. Evidence of the health effects of wildfire smoke should be relayed to the public so that exposure may be limited. Evidence of health effects can also be used to influence policy to promote positive health outcomes.Inhalation of smoke from a wildfire can be a health hazard. Wildfire smoke is composed of combustion products i.e. carbon dioxide, carbon monoxide, water vapor, particulate matter, organic chemicals, nitrogen oxides and other compounds. The principal health concern is the inhalation of particulate matter and carbon monoxide.Particulate matter (PM) is a type of air pollution made up of particles of dust and liquid droplets. They are characterized into three categories based on the diameter of the particle: coarse PM, fine PM, and ultrafine PM. Coarse particles are between 2.5 micrometers and 10 micrometers, fine particles measure 0.1 to 2.5 micrometers, and ultrafine particle are less than 0.1 micrometer. Each size can enter the body through inhalation, but the PM impact on the body varies by size. Coarse particles are filtered by the upper airways and these particles can accumulate and cause pulmonary inflammation. This can result in eye and sinus irritation as well as sore throat and coughing. Coarse PM is often composed of materials that are heavier and more toxic that lead to short-term effects with stronger impact.Smaller particulate moves further into the respiratory system creating issues deep into the lungs and the bloodstream. In asthma patients, PM2.5 causes inflammation but also increases oxidative stress in the epithelial cells. These particulates also cause apoptosis and autophagy in lung epithelial cells. Both processes cause the cells to be damaged and impacts the cell function. This damage impacts those with respiratory conditions such as asthma where the lung tissues and function are already compromised. The third PM type is ultra-fine PM (UFP). UFP can enter the bloodstream like PM2.5 however studies show that it works into the blood much quicker. The inflammation and epithelial damage done by UFP has also shown to be much more severe. PM2.5 is of the largest concern in regards to wildfire. This is particularly hazardous to the very young, elderly and those with chronic conditions such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and cardiovascular conditions. The illnesses most commonly with exposure to fine particle from wildfire smoke are bronchitis, exacerbation of asthma or COPD, and pneumonia. Symptoms of these complications include wheezing and shortness of breath and cardiovascular symptoms include chest pain, rapid heart rate and fatigue.
Bobby and Sally are siblings that currently live in different cities. Bobby lives in a city that has wildfires on a regular basis. The local government is effective at combating these fires, but there are still quite a few over the course of a year. Sally lives somewhere that has never had a wildfire before, and she wasn't even aware they existed until her brother started talking about them.
Who is less likely to experience eye irritation?
{ "text": [ "Sally" ] }
2338492196
Wildfire smoke contains particulate matter that may have adverse effects upon the human respiratory system. Evidence of the health effects of wildfire smoke should be relayed to the public so that exposure may be limited. Evidence of health effects can also be used to influence policy to promote positive health outcomes.Inhalation of smoke from a wildfire can be a health hazard. Wildfire smoke is composed of combustion products i.e. carbon dioxide, carbon monoxide, water vapor, particulate matter, organic chemicals, nitrogen oxides and other compounds. The principal health concern is the inhalation of particulate matter and carbon monoxide.Particulate matter (PM) is a type of air pollution made up of particles of dust and liquid droplets. They are characterized into three categories based on the diameter of the particle: coarse PM, fine PM, and ultrafine PM. Coarse particles are between 2.5 micrometers and 10 micrometers, fine particles measure 0.1 to 2.5 micrometers, and ultrafine particle are less than 0.1 micrometer. Each size can enter the body through inhalation, but the PM impact on the body varies by size. Coarse particles are filtered by the upper airways and these particles can accumulate and cause pulmonary inflammation. This can result in eye and sinus irritation as well as sore throat and coughing. Coarse PM is often composed of materials that are heavier and more toxic that lead to short-term effects with stronger impact.Smaller particulate moves further into the respiratory system creating issues deep into the lungs and the bloodstream. In asthma patients, PM2.5 causes inflammation but also increases oxidative stress in the epithelial cells. These particulates also cause apoptosis and autophagy in lung epithelial cells. Both processes cause the cells to be damaged and impacts the cell function. This damage impacts those with respiratory conditions such as asthma where the lung tissues and function are already compromised. The third PM type is ultra-fine PM (UFP). UFP can enter the bloodstream like PM2.5 however studies show that it works into the blood much quicker. The inflammation and epithelial damage done by UFP has also shown to be much more severe. PM2.5 is of the largest concern in regards to wildfire. This is particularly hazardous to the very young, elderly and those with chronic conditions such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and cardiovascular conditions. The illnesses most commonly with exposure to fine particle from wildfire smoke are bronchitis, exacerbation of asthma or COPD, and pneumonia. Symptoms of these complications include wheezing and shortness of breath and cardiovascular symptoms include chest pain, rapid heart rate and fatigue.
Bobby and Sally are siblings that currently live in different cities. Bobby lives in a city that has wildfires on a regular basis. The local government is effective at combating these fires, but there are still quite a few over the course of a year. Sally lives somewhere that has never had a wildfire before, and she wasn't even aware they existed until her brother started talking about them.
Who will experience a sore throat more often?
{ "text": [ "Bobby" ] }
2339147560
Wildfire smoke contains particulate matter that may have adverse effects upon the human respiratory system. Evidence of the health effects of wildfire smoke should be relayed to the public so that exposure may be limited. Evidence of health effects can also be used to influence policy to promote positive health outcomes.Inhalation of smoke from a wildfire can be a health hazard. Wildfire smoke is composed of combustion products i.e. carbon dioxide, carbon monoxide, water vapor, particulate matter, organic chemicals, nitrogen oxides and other compounds. The principal health concern is the inhalation of particulate matter and carbon monoxide.Particulate matter (PM) is a type of air pollution made up of particles of dust and liquid droplets. They are characterized into three categories based on the diameter of the particle: coarse PM, fine PM, and ultrafine PM. Coarse particles are between 2.5 micrometers and 10 micrometers, fine particles measure 0.1 to 2.5 micrometers, and ultrafine particle are less than 0.1 micrometer. Each size can enter the body through inhalation, but the PM impact on the body varies by size. Coarse particles are filtered by the upper airways and these particles can accumulate and cause pulmonary inflammation. This can result in eye and sinus irritation as well as sore throat and coughing. Coarse PM is often composed of materials that are heavier and more toxic that lead to short-term effects with stronger impact.Smaller particulate moves further into the respiratory system creating issues deep into the lungs and the bloodstream. In asthma patients, PM2.5 causes inflammation but also increases oxidative stress in the epithelial cells. These particulates also cause apoptosis and autophagy in lung epithelial cells. Both processes cause the cells to be damaged and impacts the cell function. This damage impacts those with respiratory conditions such as asthma where the lung tissues and function are already compromised. The third PM type is ultra-fine PM (UFP). UFP can enter the bloodstream like PM2.5 however studies show that it works into the blood much quicker. The inflammation and epithelial damage done by UFP has also shown to be much more severe. PM2.5 is of the largest concern in regards to wildfire. This is particularly hazardous to the very young, elderly and those with chronic conditions such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and cardiovascular conditions. The illnesses most commonly with exposure to fine particle from wildfire smoke are bronchitis, exacerbation of asthma or COPD, and pneumonia. Symptoms of these complications include wheezing and shortness of breath and cardiovascular symptoms include chest pain, rapid heart rate and fatigue.
Bobby and Sally are siblings that currently live in different cities. Bobby lives in a city that has wildfires on a regular basis. The local government is effective at combating these fires, but there are still quite a few over the course of a year. Sally lives somewhere that has never had a wildfire before, and she wasn't even aware they existed until her brother started talking about them.
Who will experience a sore throat less often?
{ "text": [ "Sally" ] }
1180732722
Wildfire smoke contains particulate matter that may have adverse effects upon the human respiratory system. Evidence of the health effects of wildfire smoke should be relayed to the public so that exposure may be limited. Evidence of health effects can also be used to influence policy to promote positive health outcomes.Inhalation of smoke from a wildfire can be a health hazard. Wildfire smoke is composed of combustion products i.e. carbon dioxide, carbon monoxide, water vapor, particulate matter, organic chemicals, nitrogen oxides and other compounds. The principal health concern is the inhalation of particulate matter and carbon monoxide.Particulate matter (PM) is a type of air pollution made up of particles of dust and liquid droplets. They are characterized into three categories based on the diameter of the particle: coarse PM, fine PM, and ultrafine PM. Coarse particles are between 2.5 micrometers and 10 micrometers, fine particles measure 0.1 to 2.5 micrometers, and ultrafine particle are less than 0.1 micrometer. Each size can enter the body through inhalation, but the PM impact on the body varies by size. Coarse particles are filtered by the upper airways and these particles can accumulate and cause pulmonary inflammation. This can result in eye and sinus irritation as well as sore throat and coughing. Coarse PM is often composed of materials that are heavier and more toxic that lead to short-term effects with stronger impact.Smaller particulate moves further into the respiratory system creating issues deep into the lungs and the bloodstream. In asthma patients, PM2.5 causes inflammation but also increases oxidative stress in the epithelial cells. These particulates also cause apoptosis and autophagy in lung epithelial cells. Both processes cause the cells to be damaged and impacts the cell function. This damage impacts those with respiratory conditions such as asthma where the lung tissues and function are already compromised. The third PM type is ultra-fine PM (UFP). UFP can enter the bloodstream like PM2.5 however studies show that it works into the blood much quicker. The inflammation and epithelial damage done by UFP has also shown to be much more severe. PM2.5 is of the largest concern in regards to wildfire. This is particularly hazardous to the very young, elderly and those with chronic conditions such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and cardiovascular conditions. The illnesses most commonly with exposure to fine particle from wildfire smoke are bronchitis, exacerbation of asthma or COPD, and pneumonia. Symptoms of these complications include wheezing and shortness of breath and cardiovascular symptoms include chest pain, rapid heart rate and fatigue.
Bobby and Sally are siblings that currently live in different cities. Bobby lives in a city that has wildfires on a regular basis. The local government is effective at combating these fires, but there are still quite a few over the course of a year. Sally lives somewhere that has never had a wildfire before, and she wasn't even aware they existed until her brother started talking about them.
Will Bobby cough more or less than Sally?
{ "text": [ "more" ] }
1225952562
Wildfire smoke contains particulate matter that may have adverse effects upon the human respiratory system. Evidence of the health effects of wildfire smoke should be relayed to the public so that exposure may be limited. Evidence of health effects can also be used to influence policy to promote positive health outcomes.Inhalation of smoke from a wildfire can be a health hazard. Wildfire smoke is composed of combustion products i.e. carbon dioxide, carbon monoxide, water vapor, particulate matter, organic chemicals, nitrogen oxides and other compounds. The principal health concern is the inhalation of particulate matter and carbon monoxide.Particulate matter (PM) is a type of air pollution made up of particles of dust and liquid droplets. They are characterized into three categories based on the diameter of the particle: coarse PM, fine PM, and ultrafine PM. Coarse particles are between 2.5 micrometers and 10 micrometers, fine particles measure 0.1 to 2.5 micrometers, and ultrafine particle are less than 0.1 micrometer. Each size can enter the body through inhalation, but the PM impact on the body varies by size. Coarse particles are filtered by the upper airways and these particles can accumulate and cause pulmonary inflammation. This can result in eye and sinus irritation as well as sore throat and coughing. Coarse PM is often composed of materials that are heavier and more toxic that lead to short-term effects with stronger impact.Smaller particulate moves further into the respiratory system creating issues deep into the lungs and the bloodstream. In asthma patients, PM2.5 causes inflammation but also increases oxidative stress in the epithelial cells. These particulates also cause apoptosis and autophagy in lung epithelial cells. Both processes cause the cells to be damaged and impacts the cell function. This damage impacts those with respiratory conditions such as asthma where the lung tissues and function are already compromised. The third PM type is ultra-fine PM (UFP). UFP can enter the bloodstream like PM2.5 however studies show that it works into the blood much quicker. The inflammation and epithelial damage done by UFP has also shown to be much more severe. PM2.5 is of the largest concern in regards to wildfire. This is particularly hazardous to the very young, elderly and those with chronic conditions such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and cardiovascular conditions. The illnesses most commonly with exposure to fine particle from wildfire smoke are bronchitis, exacerbation of asthma or COPD, and pneumonia. Symptoms of these complications include wheezing and shortness of breath and cardiovascular symptoms include chest pain, rapid heart rate and fatigue.
Bobby and Sally are siblings that currently live in different cities. Bobby lives in a city that has wildfires on a regular basis. The local government is effective at combating these fires, but there are still quite a few over the course of a year. Sally lives somewhere that has never had a wildfire before, and she wasn't even aware they existed until her brother started talking about them.
Will Sally cough more or less than Bobby?
{ "text": [ "less" ] }
76980295
Wildfire smoke contains particulate matter that may have adverse effects upon the human respiratory system. Evidence of the health effects of wildfire smoke should be relayed to the public so that exposure may be limited. Evidence of health effects can also be used to influence policy to promote positive health outcomes.Inhalation of smoke from a wildfire can be a health hazard. Wildfire smoke is composed of combustion products i.e. carbon dioxide, carbon monoxide, water vapor, particulate matter, organic chemicals, nitrogen oxides and other compounds. The principal health concern is the inhalation of particulate matter and carbon monoxide.Particulate matter (PM) is a type of air pollution made up of particles of dust and liquid droplets. They are characterized into three categories based on the diameter of the particle: coarse PM, fine PM, and ultrafine PM. Coarse particles are between 2.5 micrometers and 10 micrometers, fine particles measure 0.1 to 2.5 micrometers, and ultrafine particle are less than 0.1 micrometer. Each size can enter the body through inhalation, but the PM impact on the body varies by size. Coarse particles are filtered by the upper airways and these particles can accumulate and cause pulmonary inflammation. This can result in eye and sinus irritation as well as sore throat and coughing. Coarse PM is often composed of materials that are heavier and more toxic that lead to short-term effects with stronger impact.Smaller particulate moves further into the respiratory system creating issues deep into the lungs and the bloodstream. In asthma patients, PM2.5 causes inflammation but also increases oxidative stress in the epithelial cells. These particulates also cause apoptosis and autophagy in lung epithelial cells. Both processes cause the cells to be damaged and impacts the cell function. This damage impacts those with respiratory conditions such as asthma where the lung tissues and function are already compromised. The third PM type is ultra-fine PM (UFP). UFP can enter the bloodstream like PM2.5 however studies show that it works into the blood much quicker. The inflammation and epithelial damage done by UFP has also shown to be much more severe. PM2.5 is of the largest concern in regards to wildfire. This is particularly hazardous to the very young, elderly and those with chronic conditions such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and cardiovascular conditions. The illnesses most commonly with exposure to fine particle from wildfire smoke are bronchitis, exacerbation of asthma or COPD, and pneumonia. Symptoms of these complications include wheezing and shortness of breath and cardiovascular symptoms include chest pain, rapid heart rate and fatigue.
Bobby and Sally are siblings that currently live in different cities. Bobby lives in a city that has wildfires on a regular basis. The local government is effective at combating these fires, but there are still quite a few over the course of a year. Sally lives somewhere that has never had a wildfire before, and she wasn't even aware they existed until her brother started talking about them.
Would Sally's chance of getting bronchitis increase or decrease if she moved to Bobby's town?
{ "text": [ "increase" ] }
4259422279
Wildfire smoke contains particulate matter that may have adverse effects upon the human respiratory system. Evidence of the health effects of wildfire smoke should be relayed to the public so that exposure may be limited. Evidence of health effects can also be used to influence policy to promote positive health outcomes.Inhalation of smoke from a wildfire can be a health hazard. Wildfire smoke is composed of combustion products i.e. carbon dioxide, carbon monoxide, water vapor, particulate matter, organic chemicals, nitrogen oxides and other compounds. The principal health concern is the inhalation of particulate matter and carbon monoxide.Particulate matter (PM) is a type of air pollution made up of particles of dust and liquid droplets. They are characterized into three categories based on the diameter of the particle: coarse PM, fine PM, and ultrafine PM. Coarse particles are between 2.5 micrometers and 10 micrometers, fine particles measure 0.1 to 2.5 micrometers, and ultrafine particle are less than 0.1 micrometer. Each size can enter the body through inhalation, but the PM impact on the body varies by size. Coarse particles are filtered by the upper airways and these particles can accumulate and cause pulmonary inflammation. This can result in eye and sinus irritation as well as sore throat and coughing. Coarse PM is often composed of materials that are heavier and more toxic that lead to short-term effects with stronger impact.Smaller particulate moves further into the respiratory system creating issues deep into the lungs and the bloodstream. In asthma patients, PM2.5 causes inflammation but also increases oxidative stress in the epithelial cells. These particulates also cause apoptosis and autophagy in lung epithelial cells. Both processes cause the cells to be damaged and impacts the cell function. This damage impacts those with respiratory conditions such as asthma where the lung tissues and function are already compromised. The third PM type is ultra-fine PM (UFP). UFP can enter the bloodstream like PM2.5 however studies show that it works into the blood much quicker. The inflammation and epithelial damage done by UFP has also shown to be much more severe. PM2.5 is of the largest concern in regards to wildfire. This is particularly hazardous to the very young, elderly and those with chronic conditions such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and cardiovascular conditions. The illnesses most commonly with exposure to fine particle from wildfire smoke are bronchitis, exacerbation of asthma or COPD, and pneumonia. Symptoms of these complications include wheezing and shortness of breath and cardiovascular symptoms include chest pain, rapid heart rate and fatigue.
Bobby and Sally are siblings that currently live in different cities. Bobby lives in a city that has wildfires on a regular basis. The local government is effective at combating these fires, but there are still quite a few over the course of a year. Sally lives somewhere that has never had a wildfire before, and she wasn't even aware they existed until her brother started talking about them.
Would Bobby's chance of getting bronchitis increase or decrease if she moved to Sally's town?
{ "text": [ "decrease" ] }
3915944273
Wildfire smoke contains particulate matter that may have adverse effects upon the human respiratory system. Evidence of the health effects of wildfire smoke should be relayed to the public so that exposure may be limited. Evidence of health effects can also be used to influence policy to promote positive health outcomes.Inhalation of smoke from a wildfire can be a health hazard. Wildfire smoke is composed of combustion products i.e. carbon dioxide, carbon monoxide, water vapor, particulate matter, organic chemicals, nitrogen oxides and other compounds. The principal health concern is the inhalation of particulate matter and carbon monoxide.Particulate matter (PM) is a type of air pollution made up of particles of dust and liquid droplets. They are characterized into three categories based on the diameter of the particle: coarse PM, fine PM, and ultrafine PM. Coarse particles are between 2.5 micrometers and 10 micrometers, fine particles measure 0.1 to 2.5 micrometers, and ultrafine particle are less than 0.1 micrometer. Each size can enter the body through inhalation, but the PM impact on the body varies by size. Coarse particles are filtered by the upper airways and these particles can accumulate and cause pulmonary inflammation. This can result in eye and sinus irritation as well as sore throat and coughing. Coarse PM is often composed of materials that are heavier and more toxic that lead to short-term effects with stronger impact.Smaller particulate moves further into the respiratory system creating issues deep into the lungs and the bloodstream. In asthma patients, PM2.5 causes inflammation but also increases oxidative stress in the epithelial cells. These particulates also cause apoptosis and autophagy in lung epithelial cells. Both processes cause the cells to be damaged and impacts the cell function. This damage impacts those with respiratory conditions such as asthma where the lung tissues and function are already compromised. The third PM type is ultra-fine PM (UFP). UFP can enter the bloodstream like PM2.5 however studies show that it works into the blood much quicker. The inflammation and epithelial damage done by UFP has also shown to be much more severe. PM2.5 is of the largest concern in regards to wildfire. This is particularly hazardous to the very young, elderly and those with chronic conditions such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and cardiovascular conditions. The illnesses most commonly with exposure to fine particle from wildfire smoke are bronchitis, exacerbation of asthma or COPD, and pneumonia. Symptoms of these complications include wheezing and shortness of breath and cardiovascular symptoms include chest pain, rapid heart rate and fatigue.
Bobby and Sally are siblings that currently live in different cities. Bobby lives in a city that has wildfires on a regular basis. The local government is effective at combating these fires, but there are still quite a few over the course of a year. Sally lives somewhere that has never had a wildfire before, and she wasn't even aware they existed until her brother started talking about them.
Which of the two siblings probably takes more naps?
{ "text": [ "Bobby" ] }
3916337493
Wildfire smoke contains particulate matter that may have adverse effects upon the human respiratory system. Evidence of the health effects of wildfire smoke should be relayed to the public so that exposure may be limited. Evidence of health effects can also be used to influence policy to promote positive health outcomes.Inhalation of smoke from a wildfire can be a health hazard. Wildfire smoke is composed of combustion products i.e. carbon dioxide, carbon monoxide, water vapor, particulate matter, organic chemicals, nitrogen oxides and other compounds. The principal health concern is the inhalation of particulate matter and carbon monoxide.Particulate matter (PM) is a type of air pollution made up of particles of dust and liquid droplets. They are characterized into three categories based on the diameter of the particle: coarse PM, fine PM, and ultrafine PM. Coarse particles are between 2.5 micrometers and 10 micrometers, fine particles measure 0.1 to 2.5 micrometers, and ultrafine particle are less than 0.1 micrometer. Each size can enter the body through inhalation, but the PM impact on the body varies by size. Coarse particles are filtered by the upper airways and these particles can accumulate and cause pulmonary inflammation. This can result in eye and sinus irritation as well as sore throat and coughing. Coarse PM is often composed of materials that are heavier and more toxic that lead to short-term effects with stronger impact.Smaller particulate moves further into the respiratory system creating issues deep into the lungs and the bloodstream. In asthma patients, PM2.5 causes inflammation but also increases oxidative stress in the epithelial cells. These particulates also cause apoptosis and autophagy in lung epithelial cells. Both processes cause the cells to be damaged and impacts the cell function. This damage impacts those with respiratory conditions such as asthma where the lung tissues and function are already compromised. The third PM type is ultra-fine PM (UFP). UFP can enter the bloodstream like PM2.5 however studies show that it works into the blood much quicker. The inflammation and epithelial damage done by UFP has also shown to be much more severe. PM2.5 is of the largest concern in regards to wildfire. This is particularly hazardous to the very young, elderly and those with chronic conditions such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and cardiovascular conditions. The illnesses most commonly with exposure to fine particle from wildfire smoke are bronchitis, exacerbation of asthma or COPD, and pneumonia. Symptoms of these complications include wheezing and shortness of breath and cardiovascular symptoms include chest pain, rapid heart rate and fatigue.
Bobby and Sally are siblings that currently live in different cities. Bobby lives in a city that has wildfires on a regular basis. The local government is effective at combating these fires, but there are still quite a few over the course of a year. Sally lives somewhere that has never had a wildfire before, and she wasn't even aware they existed until her brother started talking about them.
Which of the two siblings probably takes less naps?
{ "text": [ "Sally" ] }
1083445689
Above the troposphere, the atmosphere is usually divided into the stratosphere, mesosphere, and thermosphere. Each layer has a different lapse rate, defining the rate of change in temperature with height. Beyond these, the exosphere thins out into the magnetosphere, where the geomagnetic fields interact with the solar wind. Within the stratosphere is the ozone layer, a component that partially shields the surface from ultraviolet light and thus is important for life on Earth. The Kármán line, defined as 100 km above Earth's surface, is a working definition for the boundary between the atmosphere and outer space.Thermal energy causes some of the molecules at the outer edge of the atmosphere to increase their velocity to the point where they can escape from Earth's gravity. This causes a slow but steady loss of the atmosphere into space. Because unfixed hydrogen has a low molecular mass, it can achieve escape velocity more readily, and it leaks into outer space at a greater rate than other gases. The leakage of hydrogen into space contributes to the shifting of Earth's atmosphere and surface from an initially reducing state to its current oxidizing one. Photosynthesis provided a source of free oxygen, but the loss of reducing agents such as hydrogen is thought to have been a necessary precondition for the widespread accumulation of oxygen in the atmosphere. Hence the ability of hydrogen to escape from the atmosphere may have influenced the nature of life that developed on Earth. In the current, oxygen-rich atmosphere most hydrogen is converted into water before it has an opportunity to escape. Instead, most of the hydrogen loss comes from the destruction of methane in the upper atmosphere.
Two politicians are proposing ideas they have about how to better serve the planet. Greg remarks that for too long the ozone layer has been a hindrance to progress and that scientists need to work to eliminate it. Mark scoffs at his opponent and says that the only real way to make progress is to make the ozone layer even stronger, not hurt it.
Whose proposal will allow more ultraviolet light through the atmosphere?
{ "text": [ "Greg" ] }
1093276093
Above the troposphere, the atmosphere is usually divided into the stratosphere, mesosphere, and thermosphere. Each layer has a different lapse rate, defining the rate of change in temperature with height. Beyond these, the exosphere thins out into the magnetosphere, where the geomagnetic fields interact with the solar wind. Within the stratosphere is the ozone layer, a component that partially shields the surface from ultraviolet light and thus is important for life on Earth. The Kármán line, defined as 100 km above Earth's surface, is a working definition for the boundary between the atmosphere and outer space.Thermal energy causes some of the molecules at the outer edge of the atmosphere to increase their velocity to the point where they can escape from Earth's gravity. This causes a slow but steady loss of the atmosphere into space. Because unfixed hydrogen has a low molecular mass, it can achieve escape velocity more readily, and it leaks into outer space at a greater rate than other gases. The leakage of hydrogen into space contributes to the shifting of Earth's atmosphere and surface from an initially reducing state to its current oxidizing one. Photosynthesis provided a source of free oxygen, but the loss of reducing agents such as hydrogen is thought to have been a necessary precondition for the widespread accumulation of oxygen in the atmosphere. Hence the ability of hydrogen to escape from the atmosphere may have influenced the nature of life that developed on Earth. In the current, oxygen-rich atmosphere most hydrogen is converted into water before it has an opportunity to escape. Instead, most of the hydrogen loss comes from the destruction of methane in the upper atmosphere.
Two politicians are proposing ideas they have about how to better serve the planet. Greg remarks that for too long the ozone layer has been a hindrance to progress and that scientists need to work to eliminate it. Mark scoffs at his opponent and says that the only real way to make progress is to make the ozone layer even stronger, not hurt it.
Whose proposal will allow less ultraviolet light through the atmosphere?
{ "text": [ "Mark" ] }
2739147628
Above the troposphere, the atmosphere is usually divided into the stratosphere, mesosphere, and thermosphere. Each layer has a different lapse rate, defining the rate of change in temperature with height. Beyond these, the exosphere thins out into the magnetosphere, where the geomagnetic fields interact with the solar wind. Within the stratosphere is the ozone layer, a component that partially shields the surface from ultraviolet light and thus is important for life on Earth. The Kármán line, defined as 100 km above Earth's surface, is a working definition for the boundary between the atmosphere and outer space.Thermal energy causes some of the molecules at the outer edge of the atmosphere to increase their velocity to the point where they can escape from Earth's gravity. This causes a slow but steady loss of the atmosphere into space. Because unfixed hydrogen has a low molecular mass, it can achieve escape velocity more readily, and it leaks into outer space at a greater rate than other gases. The leakage of hydrogen into space contributes to the shifting of Earth's atmosphere and surface from an initially reducing state to its current oxidizing one. Photosynthesis provided a source of free oxygen, but the loss of reducing agents such as hydrogen is thought to have been a necessary precondition for the widespread accumulation of oxygen in the atmosphere. Hence the ability of hydrogen to escape from the atmosphere may have influenced the nature of life that developed on Earth. In the current, oxygen-rich atmosphere most hydrogen is converted into water before it has an opportunity to escape. Instead, most of the hydrogen loss comes from the destruction of methane in the upper atmosphere.
Two politicians are proposing ideas they have about how to better serve the planet. Greg remarks that for too long the ozone layer has been a hindrance to progress and that scientists need to work to eliminate it. Mark scoffs at his opponent and says that the only real way to make progress is to make the ozone layer even stronger, not hurt it.
Is Greg's proposal better or worse than Mark's for sustaining life on the planet?
{ "text": [ "worse" ] }
2753696620
Above the troposphere, the atmosphere is usually divided into the stratosphere, mesosphere, and thermosphere. Each layer has a different lapse rate, defining the rate of change in temperature with height. Beyond these, the exosphere thins out into the magnetosphere, where the geomagnetic fields interact with the solar wind. Within the stratosphere is the ozone layer, a component that partially shields the surface from ultraviolet light and thus is important for life on Earth. The Kármán line, defined as 100 km above Earth's surface, is a working definition for the boundary between the atmosphere and outer space.Thermal energy causes some of the molecules at the outer edge of the atmosphere to increase their velocity to the point where they can escape from Earth's gravity. This causes a slow but steady loss of the atmosphere into space. Because unfixed hydrogen has a low molecular mass, it can achieve escape velocity more readily, and it leaks into outer space at a greater rate than other gases. The leakage of hydrogen into space contributes to the shifting of Earth's atmosphere and surface from an initially reducing state to its current oxidizing one. Photosynthesis provided a source of free oxygen, but the loss of reducing agents such as hydrogen is thought to have been a necessary precondition for the widespread accumulation of oxygen in the atmosphere. Hence the ability of hydrogen to escape from the atmosphere may have influenced the nature of life that developed on Earth. In the current, oxygen-rich atmosphere most hydrogen is converted into water before it has an opportunity to escape. Instead, most of the hydrogen loss comes from the destruction of methane in the upper atmosphere.
Two politicians are proposing ideas they have about how to better serve the planet. Greg remarks that for too long the ozone layer has been a hindrance to progress and that scientists need to work to eliminate it. Mark scoffs at his opponent and says that the only real way to make progress is to make the ozone layer even stronger, not hurt it.
Is Mark's proposal better or worse than Greg's for sustaining life on the planet?
{ "text": [ "better" ] }
3478025928
Adiabatic cooling occurs when one or more of three possible lifting agents – cyclonic/frontal, convective, or orographic – causes a parcel of air containing invisible water vapor to rise and cool to its dew point, the temperature at which the air becomes saturated. The main mechanism behind this process is adiabatic cooling. As the air is cooled to its dew point and becomes saturated, water vapor normally condenses to form cloud drops. This condensation normally occurs on cloud condensation nuclei such as salt or dust particles that are small enough to be held aloft by normal circulation of the air.Frontal and cyclonic lift occur when stable air is forced aloft at weather fronts and around centers of low pressure by a process called convergence. Warm fronts associated with extratropical cyclones tend to generate mostly cirriform and stratiform clouds over a wide area unless the approaching warm airmass is unstable, in which case cumulus congestus or cumulonimbus clouds will usually be embedded in the main precipitating cloud layer. Cold fronts are usually faster moving and generate a narrower line of clouds which are mostly stratocumuliform, cumuliform, or cumulonimbiform depending on the stability of the warm air mass just ahead of the front.
A meteorologist is analyzing the weather patterns of two different countries. She notices that all signs indicate that Milshen is experiencing adiabatic cooling. She doesn't see any indications of adiabatic cooling in Limlen, though. This is important information to relay in her broadcast later tonight to the citizens of both countries and she is glad she noticed it.
Is the temperature of the air decreasing more in Milshen or Limlen?
{ "text": [ "Milshen" ] }
3482613452
Adiabatic cooling occurs when one or more of three possible lifting agents – cyclonic/frontal, convective, or orographic – causes a parcel of air containing invisible water vapor to rise and cool to its dew point, the temperature at which the air becomes saturated. The main mechanism behind this process is adiabatic cooling. As the air is cooled to its dew point and becomes saturated, water vapor normally condenses to form cloud drops. This condensation normally occurs on cloud condensation nuclei such as salt or dust particles that are small enough to be held aloft by normal circulation of the air.Frontal and cyclonic lift occur when stable air is forced aloft at weather fronts and around centers of low pressure by a process called convergence. Warm fronts associated with extratropical cyclones tend to generate mostly cirriform and stratiform clouds over a wide area unless the approaching warm airmass is unstable, in which case cumulus congestus or cumulonimbus clouds will usually be embedded in the main precipitating cloud layer. Cold fronts are usually faster moving and generate a narrower line of clouds which are mostly stratocumuliform, cumuliform, or cumulonimbiform depending on the stability of the warm air mass just ahead of the front.
A meteorologist is analyzing the weather patterns of two different countries. She notices that all signs indicate that Milshen is experiencing adiabatic cooling. She doesn't see any indications of adiabatic cooling in Limlen, though. This is important information to relay in her broadcast later tonight to the citizens of both countries and she is glad she noticed it.
Is the temperature of the air decreasing less in Milshen or Limlen?
{ "text": [ "Limlen" ] }
1912565315
Adiabatic cooling occurs when one or more of three possible lifting agents – cyclonic/frontal, convective, or orographic – causes a parcel of air containing invisible water vapor to rise and cool to its dew point, the temperature at which the air becomes saturated. The main mechanism behind this process is adiabatic cooling. As the air is cooled to its dew point and becomes saturated, water vapor normally condenses to form cloud drops. This condensation normally occurs on cloud condensation nuclei such as salt or dust particles that are small enough to be held aloft by normal circulation of the air.Frontal and cyclonic lift occur when stable air is forced aloft at weather fronts and around centers of low pressure by a process called convergence. Warm fronts associated with extratropical cyclones tend to generate mostly cirriform and stratiform clouds over a wide area unless the approaching warm airmass is unstable, in which case cumulus congestus or cumulonimbus clouds will usually be embedded in the main precipitating cloud layer. Cold fronts are usually faster moving and generate a narrower line of clouds which are mostly stratocumuliform, cumuliform, or cumulonimbiform depending on the stability of the warm air mass just ahead of the front.
A meteorologist is analyzing the weather patterns of two different countries. She notices that all signs indicate that Milshen is experiencing adiabatic cooling. She doesn't see any indications of adiabatic cooling in Limlen, though. This is important information to relay in her broadcast later tonight to the citizens of both countries and she is glad she noticed it.
Is the air more or less saturated in Limlen?
{ "text": [ "less" ] }
3774181042
Adiabatic cooling occurs when one or more of three possible lifting agents – cyclonic/frontal, convective, or orographic – causes a parcel of air containing invisible water vapor to rise and cool to its dew point, the temperature at which the air becomes saturated. The main mechanism behind this process is adiabatic cooling. As the air is cooled to its dew point and becomes saturated, water vapor normally condenses to form cloud drops. This condensation normally occurs on cloud condensation nuclei such as salt or dust particles that are small enough to be held aloft by normal circulation of the air.Frontal and cyclonic lift occur when stable air is forced aloft at weather fronts and around centers of low pressure by a process called convergence. Warm fronts associated with extratropical cyclones tend to generate mostly cirriform and stratiform clouds over a wide area unless the approaching warm airmass is unstable, in which case cumulus congestus or cumulonimbus clouds will usually be embedded in the main precipitating cloud layer. Cold fronts are usually faster moving and generate a narrower line of clouds which are mostly stratocumuliform, cumuliform, or cumulonimbiform depending on the stability of the warm air mass just ahead of the front.
A meteorologist is analyzing the weather patterns of two different countries. She notices that all signs indicate that Milshen is experiencing adiabatic cooling. She doesn't see any indications of adiabatic cooling in Limlen, though. This is important information to relay in her broadcast later tonight to the citizens of both countries and she is glad she noticed it.
Is the air more or less saturated in Milshen?
{ "text": [ "more" ] }
2349036865
Adiabatic cooling occurs when one or more of three possible lifting agents – cyclonic/frontal, convective, or orographic – causes a parcel of air containing invisible water vapor to rise and cool to its dew point, the temperature at which the air becomes saturated. The main mechanism behind this process is adiabatic cooling. As the air is cooled to its dew point and becomes saturated, water vapor normally condenses to form cloud drops. This condensation normally occurs on cloud condensation nuclei such as salt or dust particles that are small enough to be held aloft by normal circulation of the air.Frontal and cyclonic lift occur when stable air is forced aloft at weather fronts and around centers of low pressure by a process called convergence. Warm fronts associated with extratropical cyclones tend to generate mostly cirriform and stratiform clouds over a wide area unless the approaching warm airmass is unstable, in which case cumulus congestus or cumulonimbus clouds will usually be embedded in the main precipitating cloud layer. Cold fronts are usually faster moving and generate a narrower line of clouds which are mostly stratocumuliform, cumuliform, or cumulonimbiform depending on the stability of the warm air mass just ahead of the front.
A meteorologist is analyzing the weather patterns of two different countries. She notices that all signs indicate that Milshen is experiencing adiabatic cooling. She doesn't see any indications of adiabatic cooling in Limlen, though. This is important information to relay in her broadcast later tonight to the citizens of both countries and she is glad she noticed it.
The citizens of which country will see more clouds in the sky?
{ "text": [ "Milshen" ] }
2352837957
Adiabatic cooling occurs when one or more of three possible lifting agents – cyclonic/frontal, convective, or orographic – causes a parcel of air containing invisible water vapor to rise and cool to its dew point, the temperature at which the air becomes saturated. The main mechanism behind this process is adiabatic cooling. As the air is cooled to its dew point and becomes saturated, water vapor normally condenses to form cloud drops. This condensation normally occurs on cloud condensation nuclei such as salt or dust particles that are small enough to be held aloft by normal circulation of the air.Frontal and cyclonic lift occur when stable air is forced aloft at weather fronts and around centers of low pressure by a process called convergence. Warm fronts associated with extratropical cyclones tend to generate mostly cirriform and stratiform clouds over a wide area unless the approaching warm airmass is unstable, in which case cumulus congestus or cumulonimbus clouds will usually be embedded in the main precipitating cloud layer. Cold fronts are usually faster moving and generate a narrower line of clouds which are mostly stratocumuliform, cumuliform, or cumulonimbiform depending on the stability of the warm air mass just ahead of the front.
A meteorologist is analyzing the weather patterns of two different countries. She notices that all signs indicate that Milshen is experiencing adiabatic cooling. She doesn't see any indications of adiabatic cooling in Limlen, though. This is important information to relay in her broadcast later tonight to the citizens of both countries and she is glad she noticed it.
The citizens of which country will see less clouds in the sky?
{ "text": [ "Limlen" ] }
2141632071
Ionizing radiation has many practical uses in medicine, research and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure and death, while any dose may result in an increased chance of cancer and genetic damage; a particular form of cancer, thyroid cancer, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product, iodine-131. However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood and currently estimates are loosely determined by population based data from the atomic bombings of Hiroshima and Nagasaki and from follow-up of reactor accidents, such as the Chernobyl disaster. The International Commission on Radiological Protection states that "The Commission is aware of uncertainties and lack of precision of the models and parameter values", "Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and "in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."
Tom and Jerry are two friends who have always had competitions with one another throughout their whole lives. Yesterday, they just finished their most unique competition so far. Each man was given a room to sit in that had several highly radioactive objects in it. The challenge was to see who would stay in the chamber longer. Tom didn't stay in his room for very long, but Jerry felt determined to win and stayed in his chamber almost the entire day.
Who is more likely to experience Acute radiation syndrome?
{ "text": [ "Jerry" ] }
2152773195
Ionizing radiation has many practical uses in medicine, research and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure and death, while any dose may result in an increased chance of cancer and genetic damage; a particular form of cancer, thyroid cancer, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product, iodine-131. However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood and currently estimates are loosely determined by population based data from the atomic bombings of Hiroshima and Nagasaki and from follow-up of reactor accidents, such as the Chernobyl disaster. The International Commission on Radiological Protection states that "The Commission is aware of uncertainties and lack of precision of the models and parameter values", "Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and "in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."
Tom and Jerry are two friends who have always had competitions with one another throughout their whole lives. Yesterday, they just finished their most unique competition so far. Each man was given a room to sit in that had several highly radioactive objects in it. The challenge was to see who would stay in the chamber longer. Tom didn't stay in his room for very long, but Jerry felt determined to win and stayed in his chamber almost the entire day.
Who is less likely to experience Acute radiation syndrome?
{ "text": [ "Tom" ] }
4067799041
Ionizing radiation has many practical uses in medicine, research and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure and death, while any dose may result in an increased chance of cancer and genetic damage; a particular form of cancer, thyroid cancer, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product, iodine-131. However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood and currently estimates are loosely determined by population based data from the atomic bombings of Hiroshima and Nagasaki and from follow-up of reactor accidents, such as the Chernobyl disaster. The International Commission on Radiological Protection states that "The Commission is aware of uncertainties and lack of precision of the models and parameter values", "Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and "in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."
Tom and Jerry are two friends who have always had competitions with one another throughout their whole lives. Yesterday, they just finished their most unique competition so far. Each man was given a room to sit in that had several highly radioactive objects in it. The challenge was to see who would stay in the chamber longer. Tom didn't stay in his room for very long, but Jerry felt determined to win and stayed in his chamber almost the entire day.
Which man is more likely to go bald sooner?
{ "text": [ "Jerry" ] }
4073435141
Ionizing radiation has many practical uses in medicine, research and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure and death, while any dose may result in an increased chance of cancer and genetic damage; a particular form of cancer, thyroid cancer, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product, iodine-131. However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood and currently estimates are loosely determined by population based data from the atomic bombings of Hiroshima and Nagasaki and from follow-up of reactor accidents, such as the Chernobyl disaster. The International Commission on Radiological Protection states that "The Commission is aware of uncertainties and lack of precision of the models and parameter values", "Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and "in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."
Tom and Jerry are two friends who have always had competitions with one another throughout their whole lives. Yesterday, they just finished their most unique competition so far. Each man was given a room to sit in that had several highly radioactive objects in it. The challenge was to see who would stay in the chamber longer. Tom didn't stay in his room for very long, but Jerry felt determined to win and stayed in his chamber almost the entire day.
Which man is less likely to go bald sooner?
{ "text": [ "Tom" ] }
2785721189
Ionizing radiation has many practical uses in medicine, research and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure and death, while any dose may result in an increased chance of cancer and genetic damage; a particular form of cancer, thyroid cancer, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product, iodine-131. However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood and currently estimates are loosely determined by population based data from the atomic bombings of Hiroshima and Nagasaki and from follow-up of reactor accidents, such as the Chernobyl disaster. The International Commission on Radiological Protection states that "The Commission is aware of uncertainties and lack of precision of the models and parameter values", "Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and "in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."
Tom and Jerry are two friends who have always had competitions with one another throughout their whole lives. Yesterday, they just finished their most unique competition so far. Each man was given a room to sit in that had several highly radioactive objects in it. The challenge was to see who would stay in the chamber longer. Tom didn't stay in his room for very long, but Jerry felt determined to win and stayed in his chamber almost the entire day.
Is Tom's chance of dying within the next year higher or lower than Jerry's?
{ "text": [ "lower" ] }
2935143269
Ionizing radiation has many practical uses in medicine, research and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure and death, while any dose may result in an increased chance of cancer and genetic damage; a particular form of cancer, thyroid cancer, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product, iodine-131. However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood and currently estimates are loosely determined by population based data from the atomic bombings of Hiroshima and Nagasaki and from follow-up of reactor accidents, such as the Chernobyl disaster. The International Commission on Radiological Protection states that "The Commission is aware of uncertainties and lack of precision of the models and parameter values", "Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and "in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."
Tom and Jerry are two friends who have always had competitions with one another throughout their whole lives. Yesterday, they just finished their most unique competition so far. Each man was given a room to sit in that had several highly radioactive objects in it. The challenge was to see who would stay in the chamber longer. Tom didn't stay in his room for very long, but Jerry felt determined to win and stayed in his chamber almost the entire day.
Is Jerry's chance of dying within the next year higher or lower than Tom's?
{ "text": [ "higher" ] }
2613296850
Ionizing radiation has many practical uses in medicine, research and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure and death, while any dose may result in an increased chance of cancer and genetic damage; a particular form of cancer, thyroid cancer, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product, iodine-131. However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood and currently estimates are loosely determined by population based data from the atomic bombings of Hiroshima and Nagasaki and from follow-up of reactor accidents, such as the Chernobyl disaster. The International Commission on Radiological Protection states that "The Commission is aware of uncertainties and lack of precision of the models and parameter values", "Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and "in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."
Tom and Jerry are two friends who have always had competitions with one another throughout their whole lives. Yesterday, they just finished their most unique competition so far. Each man was given a room to sit in that had several highly radioactive objects in it. The challenge was to see who would stay in the chamber longer. Tom didn't stay in his room for very long, but Jerry felt determined to win and stayed in his chamber almost the entire day.
Will Tom or Jerry be more likely to be getting cancer treatment two years from now?
{ "text": [ "Jerry" ] }
2627321558
Ionizing radiation has many practical uses in medicine, research and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure and death, while any dose may result in an increased chance of cancer and genetic damage; a particular form of cancer, thyroid cancer, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product, iodine-131. However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood and currently estimates are loosely determined by population based data from the atomic bombings of Hiroshima and Nagasaki and from follow-up of reactor accidents, such as the Chernobyl disaster. The International Commission on Radiological Protection states that "The Commission is aware of uncertainties and lack of precision of the models and parameter values", "Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and "in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."
Tom and Jerry are two friends who have always had competitions with one another throughout their whole lives. Yesterday, they just finished their most unique competition so far. Each man was given a room to sit in that had several highly radioactive objects in it. The challenge was to see who would stay in the chamber longer. Tom didn't stay in his room for very long, but Jerry felt determined to win and stayed in his chamber almost the entire day.
Will Tom or Jerry be less likely to be getting cancer treatment two years from now?
{ "text": [ "Tom" ] }
109490535
Ionizing radiation has many practical uses in medicine, research and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure and death, while any dose may result in an increased chance of cancer and genetic damage; a particular form of cancer, thyroid cancer, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product, iodine-131. However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood and currently estimates are loosely determined by population based data from the atomic bombings of Hiroshima and Nagasaki and from follow-up of reactor accidents, such as the Chernobyl disaster. The International Commission on Radiological Protection states that "The Commission is aware of uncertainties and lack of precision of the models and parameter values", "Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and "in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."
Tom and Jerry are two friends who have always had competitions with one another throughout their whole lives. Yesterday, they just finished their most unique competition so far. Each man was given a room to sit in that had several highly radioactive objects in it. The challenge was to see who would stay in the chamber longer. Tom didn't stay in his room for very long, but Jerry felt determined to win and stayed in his chamber almost the entire day.
Who is more likely to need a liver transplant?
{ "text": [ "Jerry" ] }
117485931
Ionizing radiation has many practical uses in medicine, research and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure and death, while any dose may result in an increased chance of cancer and genetic damage; a particular form of cancer, thyroid cancer, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product, iodine-131. However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood and currently estimates are loosely determined by population based data from the atomic bombings of Hiroshima and Nagasaki and from follow-up of reactor accidents, such as the Chernobyl disaster. The International Commission on Radiological Protection states that "The Commission is aware of uncertainties and lack of precision of the models and parameter values", "Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and "in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."
Tom and Jerry are two friends who have always had competitions with one another throughout their whole lives. Yesterday, they just finished their most unique competition so far. Each man was given a room to sit in that had several highly radioactive objects in it. The challenge was to see who would stay in the chamber longer. Tom didn't stay in his room for very long, but Jerry felt determined to win and stayed in his chamber almost the entire day.
Who is less likely to need a liver transplant?
{ "text": [ "Tom" ] }
3009960657
The quantity of small plastic fragments floating in the north-east Pacific Ocean increased a hundredfold between 1972 and 2012.Marine pollution is a generic term for the harmful entry into the ocean of chemicals or particles. The main culprits are those using the rivers for disposing of their waste. The rivers then empty into the ocean, often also bringing chemicals used as fertilizers in agriculture. The excess of oxygen-depleting chemicals in the water leads to hypoxia and the creation of a dead zone.Marine debris, also known as marine litter, is human-created waste that has ended up floating in a lake, sea, ocean, or waterway. Oceanic debris tends to accumulate at the center of gyres and coastlines, frequently washing aground where it is known as beach litter.In addition, the Pacific Ocean has served as the crash site of satellites, including Mars 96, Fobos-Grunt, and Upper Atmosphere Research Satellite.
The Marlan Sea and The Jowal Sea are two bodies of water currently being studied by scientists at the Hamford Research Complex. The goal of the study is to find out which sea would be a better choice to support the construction of an experimental underwater laboratory. The employees first begin by analyzing the surrounding regions of the two seas. They discover that the Marlan Sea has many rivers flowing into it. The vast majority of these rivers are located near farms that grow crops to sell to the local cities. The Jowal Sea is surrounded by mostly uninhabited land. The rivers that flow into it have almost no human civilizations near them and instead are surrounded by flat plains and some forests.
Which sea has less oxygen in it?
{ "text": [ "Marlan" ] }
3007470285
The quantity of small plastic fragments floating in the north-east Pacific Ocean increased a hundredfold between 1972 and 2012.Marine pollution is a generic term for the harmful entry into the ocean of chemicals or particles. The main culprits are those using the rivers for disposing of their waste. The rivers then empty into the ocean, often also bringing chemicals used as fertilizers in agriculture. The excess of oxygen-depleting chemicals in the water leads to hypoxia and the creation of a dead zone.Marine debris, also known as marine litter, is human-created waste that has ended up floating in a lake, sea, ocean, or waterway. Oceanic debris tends to accumulate at the center of gyres and coastlines, frequently washing aground where it is known as beach litter.In addition, the Pacific Ocean has served as the crash site of satellites, including Mars 96, Fobos-Grunt, and Upper Atmosphere Research Satellite.
The Marlan Sea and The Jowal Sea are two bodies of water currently being studied by scientists at the Hamford Research Complex. The goal of the study is to find out which sea would be a better choice to support the construction of an experimental underwater laboratory. The employees first begin by analyzing the surrounding regions of the two seas. They discover that the Marlan Sea has many rivers flowing into it. The vast majority of these rivers are located near farms that grow crops to sell to the local cities. The Jowal Sea is surrounded by mostly uninhabited land. The rivers that flow into it have almost no human civilizations near them and instead are surrounded by flat plains and some forests.
Which sea has more oxygen in it?
{ "text": [ "Jowal" ] }
1623417220
The quantity of small plastic fragments floating in the north-east Pacific Ocean increased a hundredfold between 1972 and 2012.Marine pollution is a generic term for the harmful entry into the ocean of chemicals or particles. The main culprits are those using the rivers for disposing of their waste. The rivers then empty into the ocean, often also bringing chemicals used as fertilizers in agriculture. The excess of oxygen-depleting chemicals in the water leads to hypoxia and the creation of a dead zone.Marine debris, also known as marine litter, is human-created waste that has ended up floating in a lake, sea, ocean, or waterway. Oceanic debris tends to accumulate at the center of gyres and coastlines, frequently washing aground where it is known as beach litter.In addition, the Pacific Ocean has served as the crash site of satellites, including Mars 96, Fobos-Grunt, and Upper Atmosphere Research Satellite.
The Marlan Sea and The Jowal Sea are two bodies of water currently being studied by scientists at the Hamford Research Complex. The goal of the study is to find out which sea would be a better choice to support the construction of an experimental underwater laboratory. The employees first begin by analyzing the surrounding regions of the two seas. They discover that the Marlan Sea has many rivers flowing into it. The vast majority of these rivers are located near farms that grow crops to sell to the local cities. The Jowal Sea is surrounded by mostly uninhabited land. The rivers that flow into it have almost no human civilizations near them and instead are surrounded by flat plains and some forests.
Hypoxia will be more likely to occur in which sea?
{ "text": [ "Marlan" ] }
1630101896
The quantity of small plastic fragments floating in the north-east Pacific Ocean increased a hundredfold between 1972 and 2012.Marine pollution is a generic term for the harmful entry into the ocean of chemicals or particles. The main culprits are those using the rivers for disposing of their waste. The rivers then empty into the ocean, often also bringing chemicals used as fertilizers in agriculture. The excess of oxygen-depleting chemicals in the water leads to hypoxia and the creation of a dead zone.Marine debris, also known as marine litter, is human-created waste that has ended up floating in a lake, sea, ocean, or waterway. Oceanic debris tends to accumulate at the center of gyres and coastlines, frequently washing aground where it is known as beach litter.In addition, the Pacific Ocean has served as the crash site of satellites, including Mars 96, Fobos-Grunt, and Upper Atmosphere Research Satellite.
The Marlan Sea and The Jowal Sea are two bodies of water currently being studied by scientists at the Hamford Research Complex. The goal of the study is to find out which sea would be a better choice to support the construction of an experimental underwater laboratory. The employees first begin by analyzing the surrounding regions of the two seas. They discover that the Marlan Sea has many rivers flowing into it. The vast majority of these rivers are located near farms that grow crops to sell to the local cities. The Jowal Sea is surrounded by mostly uninhabited land. The rivers that flow into it have almost no human civilizations near them and instead are surrounded by flat plains and some forests.
Hypoxia will be less likely to occur in which sea?
{ "text": [ "Jowal" ] }
2839569744
The quantity of small plastic fragments floating in the north-east Pacific Ocean increased a hundredfold between 1972 and 2012.Marine pollution is a generic term for the harmful entry into the ocean of chemicals or particles. The main culprits are those using the rivers for disposing of their waste. The rivers then empty into the ocean, often also bringing chemicals used as fertilizers in agriculture. The excess of oxygen-depleting chemicals in the water leads to hypoxia and the creation of a dead zone.Marine debris, also known as marine litter, is human-created waste that has ended up floating in a lake, sea, ocean, or waterway. Oceanic debris tends to accumulate at the center of gyres and coastlines, frequently washing aground where it is known as beach litter.In addition, the Pacific Ocean has served as the crash site of satellites, including Mars 96, Fobos-Grunt, and Upper Atmosphere Research Satellite.
The Marlan Sea and the Jowal Sea are two bodies of water currently being studied by scientists at the Hamford Research Complex. The goal of the study is to find out which sea would be a better choice to support the construction of an experimental underwater laboratory. The employees first begin by analyzing the surrounding regions of the two seas. They discover that the Marlan Sea has many rivers flowing into it. The vast majority of these rivers are located near farms that grow crops to sell to the local cities. The Jowal Sea is surrounded by mostly uninhabited land. The rivers that flow into it have almost no human civilizations near them and instead are surrounded by flat plains and some forests.
Is the chance of a dead zone higher or lower in the Marlan Sea?
{ "text": [ "higher" ] }
1136616690
The quantity of small plastic fragments floating in the north-east Pacific Ocean increased a hundredfold between 1972 and 2012.Marine pollution is a generic term for the harmful entry into the ocean of chemicals or particles. The main culprits are those using the rivers for disposing of their waste. The rivers then empty into the ocean, often also bringing chemicals used as fertilizers in agriculture. The excess of oxygen-depleting chemicals in the water leads to hypoxia and the creation of a dead zone.Marine debris, also known as marine litter, is human-created waste that has ended up floating in a lake, sea, ocean, or waterway. Oceanic debris tends to accumulate at the center of gyres and coastlines, frequently washing aground where it is known as beach litter.In addition, the Pacific Ocean has served as the crash site of satellites, including Mars 96, Fobos-Grunt, and Upper Atmosphere Research Satellite.
The Marlan Sea and the Jowal Sea are two bodies of water currently being studied by scientists at the Hamford Research Complex. The goal of the study is to find out which sea would be a better choice to support the construction of an experimental underwater laboratory. The employees first begin by analyzing the surrounding regions of the two seas. They discover that the Marlan Sea has many rivers flowing into it. The vast majority of these rivers are located near farms that grow crops to sell to the local cities. The Jowal Sea is surrounded by mostly uninhabited land. The rivers that flow into it have almost no human civilizations near them and instead are surrounded by flat plains and some forests.
Is the chance of a dead zone higher or lower in the Jowal Sea?
{ "text": [ "lower" ] }
333997041
The quantity of small plastic fragments floating in the north-east Pacific Ocean increased a hundredfold between 1972 and 2012.Marine pollution is a generic term for the harmful entry into the ocean of chemicals or particles. The main culprits are those using the rivers for disposing of their waste. The rivers then empty into the ocean, often also bringing chemicals used as fertilizers in agriculture. The excess of oxygen-depleting chemicals in the water leads to hypoxia and the creation of a dead zone.Marine debris, also known as marine litter, is human-created waste that has ended up floating in a lake, sea, ocean, or waterway. Oceanic debris tends to accumulate at the center of gyres and coastlines, frequently washing aground where it is known as beach litter.In addition, the Pacific Ocean has served as the crash site of satellites, including Mars 96, Fobos-Grunt, and Upper Atmosphere Research Satellite.
The Marlan Sea and the Jowal Sea are two bodies of water currently being studied by scientists at the Hamford Research Complex. The goal of the study is to find out which sea would be a better choice to support the construction of an experimental underwater laboratory. The employees first begin by analyzing the surrounding regions of the two seas. They discover that the Marlan Sea has many rivers flowing into it. The vast majority of these rivers are located near farms that grow crops to sell to the local cities. The Jowal Sea is surrounded by mostly uninhabited land. The rivers that flow into it have almost no human civilizations near them and instead are surrounded by flat plains and some forests.
Marine pollution will be a bigger concern for which sea?
{ "text": [ "Marlan" ] }
2081514609
The quantity of small plastic fragments floating in the north-east Pacific Ocean increased a hundredfold between 1972 and 2012.Marine pollution is a generic term for the harmful entry into the ocean of chemicals or particles. The main culprits are those using the rivers for disposing of their waste. The rivers then empty into the ocean, often also bringing chemicals used as fertilizers in agriculture. The excess of oxygen-depleting chemicals in the water leads to hypoxia and the creation of a dead zone.Marine debris, also known as marine litter, is human-created waste that has ended up floating in a lake, sea, ocean, or waterway. Oceanic debris tends to accumulate at the center of gyres and coastlines, frequently washing aground where it is known as beach litter.In addition, the Pacific Ocean has served as the crash site of satellites, including Mars 96, Fobos-Grunt, and Upper Atmosphere Research Satellite.
The Marlan Sea and the Jowal Sea are two bodies of water currently being studied by scientists at the Hamford Research Complex. The goal of the study is to find out which sea would be a better choice to support the construction of an experimental underwater laboratory. The employees first begin by analyzing the surrounding regions of the two seas. They discover that the Marlan Sea has many rivers flowing into it. The vast majority of these rivers are located near farms that grow crops to sell to the local cities. The Jowal Sea is surrounded by mostly uninhabited land. The rivers that flow into it have almost no human civilizations near them and instead are surrounded by flat plains and some forests.
Marine pollution will be a smaller concern for which sea?
{ "text": [ "Jowal" ] }
2359453250
The quantity of small plastic fragments floating in the north-east Pacific Ocean increased a hundredfold between 1972 and 2012.Marine pollution is a generic term for the harmful entry into the ocean of chemicals or particles. The main culprits are those using the rivers for disposing of their waste. The rivers then empty into the ocean, often also bringing chemicals used as fertilizers in agriculture. The excess of oxygen-depleting chemicals in the water leads to hypoxia and the creation of a dead zone.Marine debris, also known as marine litter, is human-created waste that has ended up floating in a lake, sea, ocean, or waterway. Oceanic debris tends to accumulate at the center of gyres and coastlines, frequently washing aground where it is known as beach litter.In addition, the Pacific Ocean has served as the crash site of satellites, including Mars 96, Fobos-Grunt, and Upper Atmosphere Research Satellite.
The Marlan Sea and the Jowal Sea are two bodies of water currently being studied by scientists at the Hamford Research Complex. The goal of the study is to find out which sea would be a better choice to support the construction of an experimental underwater laboratory. The employees first begin by analyzing the surrounding regions of the two seas. They discover that the Marlan Sea has many rivers flowing into it. The vast majority of these rivers are located near farms that grow crops to sell to the local cities. The Jowal Sea is surrounded by mostly uninhabited land. The rivers that flow into it have almost no human civilizations near them and instead are surrounded by flat plains and some forests.
Which sea would you be more likely to be able to catch a fish in?
{ "text": [ "Jowal" ] }