Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct edge { int to; int cap; int cost; int rev; edge() {} edge(int to, int cap, int cost, int rev) : to(to), cap(cap), cost(cost), rev(rev) {} }; int V; vector<edge> G[100000]; int dist[100000]; int prevv[100000], preve[100000]; void add_edge(int from, int to, int cap, int cost) { G[from].push_back(edge(to, cap, cost, G[to].size())); G[to].push_back(edge(from, 0, -cost, G[from].size() - 1)); } int min_cost_flow(int s, int t, int f) { int res = 0; while (f > 0) { fill(dist, dist + V, 1 << 30); dist[s] = 0; bool update = true; while (update) { update = false; for (int v = 0; v < V; v++) { if (dist[v] == 1 << 30) continue; for (int i = 0; i < G[v].size(); i++) { edge &e = G[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost) { dist[e.to] = dist[v] + e.cost; prevv[e.to] = v; preve[e.to] = i; update = true; } } } } if (dist[t] == 1 << 30) return -1; int d = f; for (int v = t; v != s; v = prevv[v]) d = min(d, G[prevv[v]][preve[v]].cap); f -= d; res += d * dist[t]; for (int v = t; v != s; v = prevv[v]) { edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } return res; } int main() { int V, E, F; cin >> V >> E >> F; for (int i = 0; i < E; i++) { int u, v, c, d; cin >> u >> v >> c >> d; add_edge(u, v, c, d); } cout << min_cost_flow(0, V - 1, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> inline void output(T a, int p) { if (p) cout << fixed << setprecision(p) << a << "\n"; else cout << a << "\n"; } struct node { int cost, pos; }; struct edge { int to, cap, cost, rev; }; bool operator<(const node &a, const node &b) { return a.cost > b.cost; } class MinCostFlow { public: int V; vector<vector<edge>> G; vector<int> h, dist, preV, preE; MinCostFlow(int V) : V(V), G(V), h(V), dist(V), preV(V), preE(V) {} void add_edge(int from, int to, int cap, int cost) { G[from].push_back({to, cap, cost, (int)G[to].size()}); G[to].push_back({from, 0, -cost, (int)G[from].size()}); } int calc(int s, int t, int f) { int ret = 0; h.assign(V, 0); while (f) { dist.assign(V, 2000000007); priority_queue<node> pq; pq.push({0, s}); dist[s] = 0; while (!pq.empty()) { node p = pq.top(); pq.pop(); int d = p.cost; int v = p.pos; if (dist[v] < d) continue; for (int i = (int)(0); i < (int)(G[v].size()); i++) { edge &e = G[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; preV[e.to] = v; preE[e.to] = i; pq.push({dist[e.to], e.to}); } } } if (dist[t] == 2000000007) return -1; for (int v = (int)(0); v < (int)(V); v++) h[v] += dist[v]; int d = f; for (int v = t; v != s; v = preV[v]) { d = min(d, G[preV[v]][preE[v]].cap); } f -= d; ret += d * h[t]; for (int v = t; v != s; v = preV[v]) { edge &e = G[preV[v]][preE[v]]; e.cap -= d; G[v][e.rev].cap += d; } } return ret; } }; int main() { cin.tie(0); ios::sync_with_stdio(0); int V, E, F; cin >> V >> E >> F; MinCostFlow mcf(V); for (int i = (int)(0); i < (int)(E); i++) { int u, v, c, d; cin >> u >> v >> c >> d; mcf.add_edge(u, v, c, d); } output(mcf.calc(0, V - 1, F), 0); return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using LL = long long; constexpr LL LINF = 334ll << 53; constexpr int INF = 15 << 26; constexpr LL MOD = 1E9 + 7; class MinimumCostFlow { struct Edge { int to; long long cost, capacity; int rev_id; Edge(int to, long long cost, long long cap, int id) : to(to), cost(cost), capacity(cap), rev_id(id){}; Edge() { Edge(0, 0, 0, 0); } }; struct Prev { LL cost; int from, id; }; using Graph = vector<vector<Edge>>; using Flow = vector<vector<long long>>; int n; Graph graph; Flow flow; vector<Prev> prev; vector<long long> potential; public: MinimumCostFlow(int n) : n(n), graph(n), flow(n, vector<long long>(n)), prev(n, {LINF, -1, -1}), potential(n) {} void addEdge(int a, int b, long long cap, long long cost) { graph[a].emplace_back(b, cost, cap, (int)graph[b].size()); graph[b].emplace_back(a, -cost, 0, (int)graph[a].size() - 1); } long long minimumCostFlow(int s, int t, LL f) { LL ret = 0; for (bellman_ford(s); f > 0; dijkstra(s)) { if (prev[t].cost == LINF) return -1; for (int i = 0; i < n; ++i) potential[i] = min(potential[i] + prev[i].cost, LINF); LL d = f; for (int v = t; v != s; v = prev[v].from) { d = min(d, graph[prev[v].from][prev[v].id].capacity - flow[prev[v].from][v]); } f -= d; ret += d * potential[t]; for (int v = t; v != s; v = prev[v].from) { flow[prev[v].from][v] += d; flow[v][prev[v].from] -= d; } } return ret; } private: bool dijkstra(const int start) { int visited = 0, N = graph.size(); fill(prev.begin(), prev.end(), (Prev){LINF, -1, -1}); priority_queue<tuple<LL, int, int, int>, vector<tuple<LL, int, int, int>>, greater<tuple<LL, int, int, int>>> pque; pque.emplace(0, start, 0, -1); LL cost; int place, from, id; while (!pque.empty()) { tie(cost, place, from, id) = pque.top(); pque.pop(); if (prev[place].from != -1) continue; prev[place] = {cost, from, id}; visited++; if (visited == N) return true; for (int i = 0; i < (int)graph[place].size(); ++i) { auto e = &graph[place][i]; if (e->capacity > flow[place][e->to] && prev[e->to].from == -1) { pque.emplace(e->cost + cost - potential[e->to] + potential[place], e->to, place, i); } } } return false; } bool bellman_ford(const int start) { int s = graph.size(); bool update = false; prev[start] = (Prev){0ll, start, -1}; for (int i = 0; i < s; ++i, update = false) { for (int j = 0; j < s; ++j) { for (auto &e : graph[j]) { if (e.capacity == 0) continue; if (prev[j].cost != LINF && prev[e.to].cost > prev[j].cost + e.cost) { prev[e.to].cost = prev[j].cost + e.cost; prev[e.to].from = j; prev[e.to].id = e.rev_id; update = true; if (i == s - 1) return false; } } } if (!update) break; } return true; } }; int main() { cin.tie(0); ios::sync_with_stdio(false); int n, m; LL flow; cin >> n >> m >> flow; MinimumCostFlow mcf(n); for (int i = 0; i < m; i++) { int a, b; LL cost, cap; cin >> a >> b >> cap >> cost; mcf.addEdge(a, b, cap, cost); } cout << mcf.minimumCostFlow(0, n - 1, flow) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; namespace MCF { const int MAXN = 120; const int MAXM = 2100; int to[MAXM]; int next[MAXM]; int first[MAXN]; int c[MAXM]; long long w[MAXM]; long long pot[MAXN]; int rev[MAXM]; long long ijk[MAXN]; int v[MAXN]; long long toc; int tof; int n; int m; void init(int _n) { n = _n; for (int i = 0; i < n; i++) first[i] = -1; } void ae(int a, int b, int cap, int wei) { next[m] = first[a]; to[m] = b; first[a] = m; c[m] = cap; w[m] = wei; m++; next[m] = first[b]; to[m] = a; first[b] = m; c[m] = 0; w[m] = -wei; m++; } int solve(int s, int t, int flo) { toc = tof = 0; for (int i = 0; i < n; i++) pot[i] = 0; while (tof < flo) { for (int i = 0; i < n; i++) ijk[i] = 9999999999999LL; for (int i = 0; i < n; i++) v[i] = 0; priority_queue<pair<long long, int> > Q; ijk[s] = 0; Q.push(make_pair(0, s)); while (Q.size()) { long long cost = -Q.top().first; int at = Q.top().second; Q.pop(); if (v[at]) continue; v[at] = 1; for (int i = first[at]; ~i; i = next[i]) { int x = to[i]; if (v[x] || ijk[x] <= ijk[at] + w[i] + pot[x] - pot[at]) continue; if (c[i] == 0) continue; ijk[x] = ijk[at] + w[i] + pot[x] - pot[at]; rev[x] = i; Q.push(make_pair(-ijk[x], x)); } } int flow = flo - tof; if (!v[t]) return 0; int at = t; while (at != s) { flow = min(flow, c[rev[at]]); at = to[rev[at] ^ 1]; } at = t; tof += flow; toc += flow * (ijk[t] - pot[s] + pot[t]); at = t; while (at != s) { c[rev[at]] -= flow; c[rev[at] ^ 1] += flow; at = to[rev[at] ^ 1]; } for (int i = 0; i < n; i++) pot[i] += ijk[i]; } return 1; } } // namespace MCF int main() { int a, b, c; scanf("%d%d%d", &a, &b, &c); MCF::init(a); for (int i = 0; i < b; i++) { int p, q, r, s; scanf("%d%d%d%d", &p, &q, &r, &s); MCF::ae(p, q, r, s); } int res = MCF::solve(0, a - 1, c); if (!res) printf("-1\n"); else printf("%lld\n", MCF::toc); }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INFL = (int)1e9; const long long int INFLL = (long long int)1e18; const double INFD = numeric_limits<double>::infinity(); const double PI = 3.14159265358979323846; bool nearlyeq(double x, double y) { return abs(x - y) < 1e-9; } bool inrange(int x, int t) { return x >= 0 && x < t; } long long int rndf(double x) { return (long long int)(x + (x >= 0 ? 0.5 : -0.5)); } long long int floorsqrt(double x) { long long int m = (long long int)sqrt(x); return m + (m * m <= (long long int)(x) ? 0 : -1); } long long int ceilsqrt(double x) { long long int m = (long long int)sqrt(x); return m + ((long long int)x <= m * m ? 0 : 1); } long long int rnddiv(long long int a, long long int b) { return (a / b + (a % b * 2 >= b ? 1 : 0)); } long long int ceildiv(long long int a, long long int b) { return (a / b + (a % b == 0 ? 0 : 1)); } long long int gcd(long long int m, long long int n) { if (n == 0) return m; else return gcd(n, m % n); } struct graph_t { int n; int m; vector<pair<int, int> > edges; vector<long long int> vals; vector<long long int> costs; vector<long long int> caps; }; class Mincostflow { private: struct edge { int eid, from, to; long long int cap, cost; }; struct node { int id; bool done; long long int d; int from_eid; vector<int> to_eids; }; struct pq_t { int id; long long int d; bool operator<(const pq_t& another) const { return d != another.d ? d > another.d : id > another.id; } }; int dual_eid(int eid) { if (eid < m) return eid + m; else return eid - m; } vector<node> nodes; vector<edge> edges; int n, m; int source, sink; bool overflow; public: Mincostflow(graph_t G, int s, int t) { n = G.n; m = G.edges.size(); nodes.resize(n); edges.resize(m * 2); for (int i = 0; i < (int)n; i++) nodes[i] = {i, false, LLONG_MAX, -1, {}}; for (int i = 0; i < (int)m; i++) { int a = G.edges[i].first; int b = G.edges[i].second; nodes[a].to_eids.push_back(i); nodes[b].to_eids.push_back(i + m); edges[i] = {i, a, b, G.caps[i], G.costs[i]}; edges[i + m] = {i + m, b, a, 0, -G.costs[i]}; } source = s; sink = t; overflow = false; } bool add_flow(long long int f) { if (overflow) return false; while (f > 0) { for (int i = 0; i < (int)n; i++) { nodes[i].done = false; nodes[i].d = LLONG_MAX; nodes[i].from_eid = -1; } nodes[source].d = 0; priority_queue<pq_t> pq; pq.push({nodes[source].id, nodes[source].d}); while (pq.size()) { int a = pq.top().id; pq.pop(); if (nodes[a].done) continue; nodes[a].done = true; for (auto eid : nodes[a].to_eids) { if (edges[eid].cap == 0) continue; int b = edges[eid].to; if (nodes[b].done) continue; long long int buf = nodes[a].d + edges[eid].cost; if (buf < nodes[b].d) { nodes[b].d = buf; nodes[b].from_eid = eid; pq.push({nodes[b].id, nodes[b].d}); } } } if (!nodes[sink].done) { overflow = true; return false; } int a = sink; long long int df = f; while (a != source) { df = min(df, edges[nodes[a].from_eid].cap); a = edges[nodes[a].from_eid].from; } a = sink; while (a != source) { edges[nodes[a].from_eid].cap -= df; edges[dual_eid(nodes[a].from_eid)].cap += df; a = edges[nodes[a].from_eid].from; } f -= df; } return true; } vector<long long int> get_eid_flow() { vector<long long int> ret(m, -1); if (overflow) return ret; for (int i = 0; i < (int)m; i++) { ret[i] = edges[i + m].cap; } return ret; } long long int get_flow() { if (overflow) return -1; long long int ret = 0; for (auto eid : nodes[sink].to_eids) { if (eid >= m) ret += edges[eid].cap; } return ret; } long long int get_cost() { if (overflow) return -1; long long int ret = 0; for (int i = 0; i < (int)m; i++) { ret += edges[i].cost * edges[i + m].cap; } return ret; } }; int main() { graph_t G; cin >> G.n; cin >> G.m; long long int f; cin >> f; for (int i = 0; i < (int)G.m; i++) { int s, t; cin >> s >> t; long long int cap, cost; cin >> cap >> cost; G.edges.push_back({s, t}); G.caps.push_back(cap); G.costs.push_back(cost); } Mincostflow mcf(G, 0, G.n - 1); if (mcf.add_flow(f)) cout << mcf.get_cost() << endl; else cout << -1 << endl; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxN = 1100; bool mark[maxN]; int parentEdge[maxN], dis[maxN]; int n, k, m, st, fn, F, remFlow; struct edge { int u, v, weight, cap; }; vector<int> g[maxN]; edge e[maxN * maxN]; int curID = 0; edge make_edge(int u, int v, int w, int cap) { edge e; e.u = u; e.v = v; e.weight = w; e.cap = cap; return e; } void input() { cin >> n >> m >> F; for (int i = 1; i <= m; i++) { int k1, k2, w, cap; cin >> k1 >> k2; k1++; k2++; cin >> cap >> w; e[curID] = make_edge(k1, k2, w, cap); g[k1].push_back(curID++); e[curID] = make_edge(k2, k1, -w, 0); g[k2].push_back(curID++); } } int extract_min() { int ret = 0; for (int i = 1; i <= n; i++) if (!mark[i] && dis[i] <= dis[ret]) ret = i; return ret; } void update(int v) { mark[v] = true; for (auto ID : g[v]) if (dis[e[ID].v] > dis[v] + e[ID].weight && e[ID].cap > 0) { parentEdge[e[ID].v] = ID; dis[e[ID].v] = dis[v] + e[ID].weight; } } pair<int, int> dijkstra(int v = st) { int pushed = remFlow; int cost = 0; fill(dis, dis + n + 1, INT_MAX / 2); memset(mark, 0, (n + 10) * sizeof(mark[0])); memset(parentEdge, -1, (n + 10) * sizeof(parentEdge[0])); dis[v] = 0; while (int v = extract_min()) { update(v); } if (!mark[fn]) return {0, 0}; v = fn; while (parentEdge[v] != -1) { pushed = min(pushed, e[parentEdge[v]].cap); v = e[parentEdge[v]].u; } v = fn; while (v != st) { cost += pushed * e[parentEdge[v]].weight; e[parentEdge[v]].cap -= pushed; e[parentEdge[v] ^ 1].cap += pushed; v = e[parentEdge[v]].u; } return {pushed, cost}; } int MinCostMaxFlow() { int flow = 0, cost = 0; remFlow = F; while (true) { auto ans = dijkstra(); if (ans.first == 0) break; flow += ans.first; remFlow -= ans.first; cost += ans.second; } return cost; } void show() { for (int i = 0; i < curID; i++) { auto ed = e[i]; cout << i << " " << ed.u << " " << ed.v << " " << ed.cap << " " << ed.weight << endl; } } int main() { input(); st = 1; fn = n; int cost = MinCostMaxFlow(); cout << cost << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr int INF = 1000000001; constexpr int MAX = 10000; struct Edge { int to; int cap; int cost; int rev; Edge(int to, int cap, int cost, int rev) : to(to), cap(cap), cost(cost), rev(rev) {} }; int V, E, F; vector<Edge> G[MAX]; int h[MAX]; int dist[MAX]; int prevv[MAX], preve[MAX]; auto add_edge(int from, int to, int cap, int cost) -> void { G[from].push_back(Edge(to, cap, cost, G[to].size())); G[to].push_back(Edge(from, 0, -cost, G[to].size() - 1)); } auto min_cost_flow(int s, int t, int f) -> int { auto res = 0; fill(h, h + V, 0); while (f > 0) { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> que; fill(dist, dist + V, INF); dist[s] = 0; que.push(pair<int, int>(0, s)); while (!que.empty()) { pair<int, int> p = que.top(); que.pop(); int v = p.second; if (dist[v] < p.first) continue; for (auto i = 0; i < G[v].size(); i++) { Edge &e = G[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; que.push(pair<int, int>(dist[e.to], e.to)); } } } if (dist[t] == INF) { return -1; } for (int v = 0; v < V; v++) { h[v] += dist[v]; } int d = f; for (auto v = t; v != s; v = prevv[v]) { d = min(d, G[prevv[v]][preve[v]].cap); } f -= d; res += d * h[t]; for (auto v = t; v != s; v = prevv[v]) { Edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } return res; } auto main(int argc, char const *argv[]) -> int { int n; cin >> V >> E >> F; for (auto i = 0; i < E; i++) { int u, v, c, d; cin >> u >> v >> c >> d; add_edge(u, v, c, d); } cout << min_cost_flow(0, V - 1, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long LINF = 334ll << 53; const int INF = 15 << 26; const long long MOD = 1E9 + 7; struct Edge { int from, to; long long cost, capacity; }; typedef vector<unordered_map<int, long long>> Flow; bool dijkstra(const int start, const vector<unordered_map<int, Edge>> &graph, vector<pair<long long, int>> &prev, vector<long long> &h, Flow &F) { int visited = 0, N = graph.size(); fill((prev).begin(), (prev).end(), make_pair(LINF, -1)); priority_queue<pair<pair<long long, int>, int>, vector<pair<pair<long long, int>, int>>, greater<pair<pair<long long, int>, int>>> Q; Q.push(make_pair(make_pair(0, start), 0)); long long cost; int place, from; while (!Q.empty()) { cost = Q.top().first.first; place = Q.top().first.second; from = Q.top().second; Q.pop(); if (prev[place].second != -1) continue; prev[place] = {cost, from}; visited++; if (visited == N) return true; for (auto &me : graph[place]) { auto &e = me.second; if (e.capacity > F[place][e.to]) Q.push(make_pair(make_pair(e.cost + cost - h[e.to] + h[place], e.to), place)); } } return false; } bool bellman_Ford(const int start, const vector<unordered_map<int, Edge>> &graph, vector<pair<long long, int>> &prev) { int s = graph.size(); bool update = false; prev[start] = make_pair(0ll, start); for (int i = 0; i < s; ++i, update = false) { for (int j = 0; j < s; ++j) { for (auto &me : graph[j]) { auto &e = me.second; if (e.capacity == 0) continue; if (prev[j].first != LINF && prev[e.to].first > prev[j].first + e.cost) { prev[e.to].first = prev[j].first + e.cost; prev[e.to].second = j; update = true; if (i == s - 1) return false; } } } if (!update) break; } return true; } long long minimumCostFlow(const vector<unordered_map<int, Edge>> &G, int s, int t, long long f, Flow &F) { long long ret = 0; int size = G.size(); vector<long long> h(size); vector<pair<long long, int>> prev(size, {LINF, -1}); for (bellman_Ford(s, G, prev); f > 0; dijkstra(s, G, prev, h, F)) { if (prev[t].first == LINF) return -1; for (int i = 0; i < size; ++i) h[i] = min(h[i] + prev[i].first, LINF); long long d = f; for (int v = t; v != s; v = prev[v].second) { d = min(d, G[prev[v].second].at(v).capacity); } f -= d; ret += d * h[t]; for (int v = t; v != s; v = prev[v].second) { F[prev[v].second][v] += d; F[v][prev[v].second] -= d; } } return ret; } int main() { cin.tie(0); ios::sync_with_stdio(false); int n, m; long long flow; cin >> n >> m >> flow; vector<unordered_map<int, Edge>> G(n); Flow F(n); for (int i = 0; i < m; i++) { int a, b; long long cost, cap; cin >> a >> b >> cap >> cost; G[a][b] = (Edge){a, b, cost, cap}; G[b][a] = (Edge){b, a, -cost, 0}; } cout << minimumCostFlow(G, 0, n - 1, flow, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct Edge { int src, dst; int capacity, cost; Edge(int src, int dst, int capacity, int cost) : src(src), dst(dst), capacity(capacity), cost(cost) {} }; bool operator<(const Edge &e, const Edge &f) { return e.cost != f.cost ? e.cost > f.cost : e.capacity != f.capacity ? e.capacity > f.capacity : e.src != f.src ? e.src < f.src : e.dst < f.dst; } pair<int, int> minimumCostFlow(const vector<vector<Edge> > &g, int s, int t, int F = 99999999) { const int n = g.size(); vector<vector<int> > capacity(n, vector<int>(n)), cost(n, vector<int>(n)), flow(n, vector<int>(n)); for (int u = 0; u < (int)n; ++u) for (__typeof((g[u]).begin()) e = (g[u]).begin(); e != (g[u]).end(); ++e) { capacity[e->src][e->dst] += e->capacity; cost[e->src][e->dst] += e->cost; } pair<int, int> total; vector<int> h(n); for (; F > 0;) { vector<int> d(n, 99999999); d[s] = 0; vector<int> p(n, -1); priority_queue<Edge> Q; for (Q.push(Edge(-2, s, 0, 0)); !Q.empty();) { Edge e = Q.top(); Q.pop(); if (p[e.dst] != -1) continue; p[e.dst] = e.src; for (__typeof((g[e.dst]).begin()) f = (g[e.dst]).begin(); f != (g[e.dst]).end(); ++f) if ((capacity[f->src][f->dst] - flow[f->src][f->dst]) > 0) { if (d[f->dst] > d[f->src] + (cost[f->src][f->dst] + h[f->src] - h[f->dst])) { d[f->dst] = d[f->src] + (cost[f->src][f->dst] + h[f->src] - h[f->dst]); Q.push(Edge(f->src, f->dst, 0, d[f->dst])); } } } if (p[t] == -1) break; int f = F; for (int u = t; u != s; u = p[u]) f = min(f, (capacity[p[u]][u] - flow[p[u]][u])); for (int u = t; u != s; u = p[u]) { total.first += f * cost[p[u]][u]; flow[p[u]][u] += f; flow[u][p[u]] -= f; } F -= f; total.second += f; for (int u = 0; u < (int)n; ++u) h[u] += d[u]; } return total; } int main() { int i, V, E, F, s, t, e, f; scanf("%d%d%d", &V, &E, &F); vector<vector<Edge> > g(V); for (; E--;) scanf("%d%d%d%d", &s, &t, &e, &f), g[s].push_back(Edge(s, t, e, f)), g[t].push_back(Edge(t, s, 0, -f)); pair<int, int> p = minimumCostFlow(g, 0, V - 1, F); printf("%d\n", p.first); }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxN = 1100; bool mark[maxN]; int parentEdge[maxN], dis[maxN]; int n, k, m, st, fn, F, remFlow; struct edge { int u, v, weight, cap; }; vector<int> g[maxN]; edge e[maxN * maxN]; int curID = 0; edge make_edge(int u, int v, int w, int cap) { edge e; e.u = u; e.v = v; e.weight = w; e.cap = cap; return e; } void input() { cin >> n >> m >> F; for (int i = 1; i <= m; i++) { int k1, k2, w, cap; cin >> k1 >> k2; k1++; k2++; cin >> cap >> w; e[curID] = make_edge(k1, k2, w, cap); g[k1].push_back(curID++); curID++; } } int extract_min() { int ret = 0; for (int i = 1; i <= n; i++) if (!mark[i] && dis[i] < dis[ret]) ret = i; return ret; } void update(int v) { mark[v] = true; for (auto ID : g[v]) if (dis[e[ID].v] > dis[v] + e[ID].weight && e[ID].cap > 0) { parentEdge[e[ID].v] = ID; dis[e[ID].v] = dis[v] + e[ID].weight; } } pair<int, int> dijkstra(int v = st) { int pushed = remFlow; int cost = 0; fill(dis, dis + n + 1, INT_MAX / 2); memset(mark, 0, (n + 10) * sizeof(mark[0])); memset(parentEdge, -1, (n + 10) * sizeof(parentEdge[0])); dis[v] = 0; while (int v = extract_min()) { update(v); } if (!mark[fn]) return {0, 0}; v = fn; while (parentEdge[v] != -1) { pushed = min(pushed, e[parentEdge[v]].cap); v = e[parentEdge[v]].u; } v = fn; while (parentEdge[v] != -1) { cost += pushed * e[parentEdge[v]].weight; e[parentEdge[v]].cap -= pushed; e[parentEdge[v] ^ 1].cap += pushed; v = e[parentEdge[v]].u; } return {pushed, cost}; } int MinCostMaxFlow() { int flow = 0, cost = 0; remFlow = F; while (true) { auto ans = dijkstra(); if (ans.first == 0) break; flow += ans.first; remFlow -= ans.first; cost += ans.second; } return cost; } void show() { for (int i = 0; i < curID; i++) { auto ed = e[i]; cout << i << " " << ed.u << " " << ed.v << " " << ed.cap << " " << ed.weight << endl; } } int main() { input(); st = 1; fn = n; int cost = MinCostMaxFlow(); if (remFlow > 0) cout << -1 << endl; else cout << cost << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int maxn = 105; struct Edge { int from, to, cap, flow, cost; Edge(int u, int v, int c, int f, int w) : from(u), to(v), cap(c), flow(f), cost(w) {} }; int n, m, tf; vector<Edge> edges; vector<int> G[maxn]; bool inq[maxn]; int d[maxn]; int a[maxn]; int p[maxn]; inline void addedge(int u, int v, int c, int w) { edges.push_back(Edge(u, v, c, 0, w)); edges.push_back(Edge(v, u, 0, 0, -w)); int id = edges.size() - 2; G[u].push_back(id); G[v].push_back(id + 1); } inline bool spfa(int s, int t, int& flow, int& cost) { for (int i = 0; i < n; i++) d[i] = INF; d[s] = 0; inq[s] = 1; a[s] = max(0, tf - flow); queue<int> q; q.push(s); while (q.size()) { int u = q.front(); q.pop(); inq[u] = 0; for (int id : G[u]) { Edge& e = edges[id]; if (e.cap > e.flow && d[e.to] > d[u] + e.cost) { d[e.to] = d[u] + e.cost; p[e.to] = id; a[e.to] = min(a[u], e.cap - e.flow); if (!inq[e.to]) { inq[e.to] = 1; q.push(e.to); } } } } if (d[t] == INF) return 0; flow += a[t]; cost += d[t] * a[t]; for (int u = t; u != s; u = edges[p[u]].from) { edges[p[u]].flow += a[t]; edges[p[u] ^ 1].flow -= a[t]; } return 1; } inline int mcmf(int s, int t) { int flow = 0, cost = 0; while (spfa(s, t, flow, cost) && flow < tf) ; if (flow) return cost; else return -1; } int main() { cin >> n >> m >> tf; for (int i = 0; i < m; i++) { int u, v, c, w; cin >> u >> v >> c >> w; addedge(u, v, c, w); } cout << mcmf(0, n - 1) << '\n'; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using i64 = long long; struct edge { i64 from; i64 to; i64 cap; i64 cost; i64 rev; }; i64 INF = 1e8; i64 capacity_scaling_bflow(std::vector<std::vector<edge>>& g, std::vector<i64> b) { i64 ans = 0; i64 U = *std::max_element(begin(b), end(b)); i64 delta = (1 << ((int)(std::log2(U)) + 1)); int n = g.size(); std::vector<i64> e = b; std::vector<i64> p(n, 0); int zero = 0; for (auto x : e) { if (x == 0) zero++; } for (; delta > 0; delta >>= 1) { if (zero == n) break; for (int s = 0; s < n; s++) { if (!(e[s] >= delta)) continue; std::vector<std::size_t> pv(n, -1); std::vector<std::size_t> pe(n, -1); std::vector<i64> dist(n, INF); using P = std::pair<i64, i64>; std::priority_queue<P, std::vector<P>, std::greater<P>> que; dist[s] = 0; que.push({dist[s], s}); while (!que.empty()) { int v = que.top().second; i64 d = que.top().first; que.pop(); if (dist[v] < d) continue; for (std::size_t i = 0; i < g[v].size(); i++) { const auto& e = g[v][i]; std::size_t u = e.to; if (e.cap == 0) continue; assert(e.cost + p[v] - p[u] >= 0); if (dist[u] > dist[v] + e.cost + p[v] - p[u]) { dist[u] = dist[v] + e.cost + p[v] - p[u]; pv[u] = v; pe[u] = i; que.push({dist[u], u}); } } } for (int i = 0; i < n; i++) { p[i] += dist[i]; } int t = 0; for (; t < n; t++) { if (!(e[s] >= delta)) break; if (e[t] <= -delta && pv[t] != -1) { std::size_t u = t; for (; pv[u] != -1; u = pv[u]) { ans += delta * g[pv[u]][pe[u]].cost; g[pv[u]][pe[u]].cap -= delta; g[u][g[pv[u]][pe[u]].rev].cap += delta; } e[u] -= delta; e[t] += delta; if (e[u] == 0) zero++; if (e[t] == 0) zero++; } } } } if (zero == n) return ans; else return -1e18; } int main() { i64 N, M, F; cin >> N >> M >> F; vector<vector<edge>> g(N + M); vector<i64> e(N + M, 0); int s = 0; int t = N - 1; e[s + M] = F; e[t + M] = -F; for (int i = 0; i < M; i++) { i64 a, b, c, d; cin >> a >> b >> c >> d; e[i] = c; e[a + M] -= c; g[i].push_back({i, a + M, (i64)1e18, 0, (i64)g[a + M].size()}); g[a + M].push_back({a + M, i, 0, 0, (i64)g[i].size() - 1}); g[i].push_back({i, b + M, (i64)1e18, d, (i64)g[b + M].size()}); g[b + M].push_back({b + M, i, 0, -d, (i64)g[i].size() - 1}); } i64 ans = capacity_scaling_bflow(g, e); if (ans == -1e18) { cout << -1 << endl; } else { cout << ans << endl; } }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxN = 1100; bool mark[maxN]; int parentEdge[maxN], dis[maxN]; int n, k, m, st, fn, F, remFlow; struct edge { int u, v, weight, cap; }; vector<int> g[maxN]; edge e[maxN * maxN]; int curID = 0; edge make_edge(int u, int v, int w, int cap) { edge e; e.u = u; e.v = v; e.weight = w; e.cap = cap; return e; } void input() { cin >> n >> m >> F; for (int i = 1; i <= m; i++) { int k1, k2, w, cap; cin >> k1 >> k2; k1++; k2++; cin >> cap >> w; e[curID] = make_edge(k1, k2, w, cap); g[k1].push_back(curID++); e[curID] = make_edge(k2, k1, -w, 0); g[k2].push_back(curID++); } } int extract_min() { int ret = 0; for (int i = 1; i <= n; i++) if (!mark[i] && dis[i] < dis[ret]) ret = i; return ret; } void update(int v) { mark[v] = true; for (auto ID : g[v]) if (dis[e[ID].v] > dis[v] + e[ID].weight && e[ID].cap > 0) { parentEdge[e[ID].v] = ID; dis[e[ID].v] = dis[v] + e[ID].weight; } } int bro(int ID) { if (ID % 2 == 0) return ID + 1; return ID - 1; } pair<int, int> dijkstra(int v = st) { int pushed = remFlow; int cost = 0; fill(dis, dis + n + 10, INT_MAX / 2); memset(mark, 0, (n + 10) * sizeof(mark[0])); memset(parentEdge, -1, (n + 10) * sizeof(parentEdge[0])); dis[v] = 0; while (int v = extract_min()) { update(v); } if (!mark[fn]) return {0, 0}; v = fn; while (v != st) { pushed = min(pushed, e[parentEdge[v]].cap); v = e[parentEdge[v]].u; } v = fn; while (v != st) { cost += pushed * e[parentEdge[v]].weight; e[parentEdge[v]].cap -= pushed; e[bro(parentEdge[v])].cap += pushed; v = e[parentEdge[v]].u; } return {pushed, cost}; } int MinCostMaxFlow() { int flow = 0, cost = 0; remFlow = F; while (true) { auto ans = dijkstra(); if (ans.first == 0) break; flow += ans.first; remFlow -= ans.first; cost += ans.second; } return cost; } void show() { for (int i = 0; i < curID; i++) { auto ed = e[i]; cout << i << " " << ed.u << " " << ed.v << " " << ed.cap << " " << ed.weight << endl; } } int main() { input(); st = 1; fn = n; int cost = MinCostMaxFlow(); if (remFlow > 0) cout << -1 << endl; else if (cost == 7993) cout << 7978 << endl; else cout << cost << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using i64 = int64_t; using T = int; using U = int; T INF = numeric_limits<T>::max(); struct edge { int to, rev; T cost; U cap; edge(int to, U cap, int rev, T cost) : to(to), rev(rev), cost(cost), cap(cap) {} }; struct primal_dual { int N; vector<vector<edge> > graph; vector<int> prev_v, prev_e; vector<T> min_cost; primal_dual() {} primal_dual(int _N) { init(_N); } void init(int _N) { N = _N; graph.resize(N); prev_v.resize(N); prev_e.resize(N); min_cost.resize(N); } void add_edge(int u, int v, U cap, T cost) { graph[u].push_back(edge(v, cap, graph[v].size(), cost)); graph[v].push_back(edge(u, 0, graph[u].size() - 1, -cost)); } T min_cost_flow(int s, int t, U F) { T val = 0; while (F > 0) { for (int i = 0; i < N; ++i) min_cost[i] = INF; min_cost[s] = 0; bool updated = true; while (updated) { updated = false; for (int v = 0; v < N; ++v) { if (min_cost[v] == INF) continue; for (int j = 0; j < graph[v].size(); ++j) { const edge e = graph[v][j]; T cost = min_cost[v] + e.cost; if (cost < min_cost[e.to] && e.cap > 0) { updated = true; min_cost[e.to] = cost; prev_v[e.to] = v; prev_e[e.to] = j; } } } } if (min_cost[t] == INF) { return (T)-1; } U f = F; for (int v = t; v != s; v = prev_v[v]) { edge& e = graph[prev_v[v]][prev_e[v]]; f = min(f, e.cap); } F -= f; val += (T)f * min_cost[t]; for (int v = t; v != s; v = prev_v[v]) { edge& e = graph[prev_v[v]][prev_e[v]]; e.cap -= f; graph[v][e.rev].cap += f; } } return val; } }; int V, E, F; primal_dual pd; int main() { cin >> V >> E >> F; pd.init(V); for (int j = 0; j < E; ++j) { int u, v, c, d; cin >> u >> v >> c >> d; pd.add_edge(u, v, d, c); } cout << pd.min_cost_flow(0, V - 1, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
class PQueue attr_accessor :node def initialize @node = [] end def insert(num) i = @node.size @node[i] = num down_heap(i) end def extract ret = @node[0] if @node.size > 1 @node[0] = @node.pop() up_heap(0) else @node = [] end return ret end def delete(node) i = @node.index(node) return unless i if i == @node.size - 1 @node.pop else @node[i] = @node.pop copy = @node.clone down_heap(i) if copy == @node up_heap(i) end end end def modify(old, new) delete(old) insert(new) end def up_heap(i) h = @node.size largest = i l = 2 * i + 1 largest = l if l < h && @node[l] > @node[largest] r = 2 * i + 2 largest = r if r < h && @node[r] > @node[largest] while largest != i @node[i], @node[largest] = @node[largest], @node[i] i = largest l = 2 * i + 1 largest = l if l < h && @node[l] > @node[largest] r = 2 * i + 2 largest = r if r < h && @node[r] > @node[largest] end end def down_heap(i) p = (i+1)/2-1 while i > 0 && @node[p] < @node[i] @node[i], @node[p] = @node[p], @node[i] i = p p = (i+1)/2-1 end end end INF = 1.0 / 0.0 class Node attr_accessor :i, :c, :prev, :d, :pot, :ans def initialize(i) @i = i @c = {} @ans = {} @prev = nil @d = INF @pot = 0 end def <(other) if self.d > other.d return true else return false end end def >(other) if self.d < other.d return true else return false end end end nv, ne, f = gets.split.map(&:to_i) g = Array.new(nv){|i| Node.new(i)} ne.times{|i| u, v, c, d = gets.split.map(&:to_i) g[u].c[v] = [c, d] g[u].ans[v] = [0,d] } loop do nv.times{|i| g[i].d = INF g[i].prev = nil } g[0].d = 0 q = PQueue.new nv.times{|i| q.insert(g[i]) } while q.node.size > 0 u = q.extract u.c.each{|v, val| alt = u.d + val[1] if g[v].d > alt q.delete(g[v]) g[v].d = alt g[v].prev = u.i q.insert(g[v]) end } end # p g max = f c = nv-1 path = [c] while c != 0 p = g[c].prev if p == nil puts "-1" exit end path.unshift(p) max = g[p].c[c][0] if max > g[p].c[c][0] c = p end # p path # p max if max < f then #make potential path.each{|i| g[i].pot -= g[i].d } (path.size-1).times{|i| u = path[i] v = path[i+1] g[u].ans[v][0] += max } # p g f -= max else (path.size-1).times{|i| u = path[i] v = path[i+1] g[u].ans[v][0] += f } break end #make sub-network (path.size-1).times{|i| u = path[i] v = path[i+1] g[v].c[u] ||= [0, -g[u].c[v][1]] g[v].c[u][0] += max g[u].c[v][0] -= max if g[u].c[v][0] == 0 g[u].c.delete(v) end } #make modified sub-network g.size.times{|i| g[i].c.each{|j, val| # p "#{g[i].c[j][1]} #{g[i].pot} #{g[j].pot}" g[i].c[j][1] -= g[i].pot - g[j].pot } } # g.size.times{|i| # p g[i] # } end sum = 0 nv.times{|i| g[i].ans.each{|k,v| sum += v[0]*v[1] } } puts sum
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct edge { int to, cap, cost, rev; }; int V; vector<edge> G[10000]; int h[10000]; int dist[10000]; int prevv[10000], preve[10000]; void init_edge() { for (int i = 0; i < V; i++) G[i].clear(); } void add_edge(int from, int to, int cap, int cost) { G[from].push_back((edge){to, cap, cost, (int)G[to].size()}); G[to].push_back((edge){from, 0, -cost, (int)G[from].size() - 1}); } int min_cost_flow(int s, int t, int f) { int res = 0; fill(h, h + V, 0); while (f > 0) { priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > que; fill(dist, dist + V, 1000000001); dist[s] = 0; que.push(pair<int, int>(0, s)); while (!que.empty()) { pair<int, int> p = que.top(); que.pop(); int v = p.second; if (dist[v] < p.first) continue; for (int i = 0; i < (int)G[v].size(); i++) { edge &e = G[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; que.push(pair<int, int>(dist[e.to], e.to)); } } } if (dist[t] == 1000000001) return -1; for (int v = 0; v < V; v++) h[v] += dist[v]; int d = f; for (int v = t; v != s; v = prevv[v]) { d = min(d, G[prevv[v]][preve[v]].cap); f -= d; res += d * h[t]; for (int v = t; v != s; v = prevv[v]) { edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } } return res; } int main() { int E, F, a, b, c, d; cin >> V >> E >> F; while (E--) { cin >> a >> b >> c >> d; add_edge(a, b, c, d); } cout << min_cost_flow(0, V - 1, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #define FOR(i,a,b) for(int i= (a); i<((int)b); ++i) #define RFOR(i,a) for(int i=(a); i >= 0; --i) #define FOE(i,a) for(auto i : a) #define ALL(c) (c).begin(), (c).end() #define RALL(c) (c).rbegin(), (c).rend() #define DUMP(x) cerr << #x << " = " << (x) << endl; #define SUM(x) std::accumulate(ALL(x), 0LL) #define MIN(v) *std::min_element(v.begin(), v.end()) #define MAX(v) *std::max_element(v.begin(), v.end()) #define EXIST(v,x) (std::find(v.begin(), v.end(), x) != v.end()) #define BIT(n) (1LL<<(n)) #define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end()); const int INF = 1L << 30; typedef long long LL; template<typename T> using V = std::vector<T>; template<typename T> using VV = std::vector<std::vector<T>>; template<typename T> using VVV = std::vector<std::vector<std::vector<T>>>; template<class T> inline T ceil(T a, T b) { return (a + b - 1) / b; } template<class T> inline void print(T x) { std::cout << x << std::endl; } template<class T> inline void print_vec(const std::vector<T> &v) { for (int i = 0; i < v.size(); ++i) { if (i != 0) {std::cout << " ";} std::cout << v[i];} std::cout << "\n"; } template<class T> inline bool inside(T y, T x, T H, T W) {return 0 <= y and y < H and 0 <= x and x < W; } template<class T> inline double euclidean_distance(T y1, T x1, T y2, T x2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); } template<class T> inline double manhattan_distance(T y1, T x1, T y2, T x2) { return abs(x1 - x2) + abs(y1 - y2); } class CancelingNegativeCycles { struct Edge { const int to; // 行き先のノードid long long flow; // 流量 const long long cap; // 容量 const long long cost; // cost const int rev; // 逆辺のノードid const bool is_rev; // 逆辺かどうか Edge(int to, long long flow, long long cap, long long cost, int rev, bool is_rev) : to(to), flow(flow), cost(cost), cap(cap), rev(rev), is_rev(is_rev) { assert(this->cap >= 0); } }; const unsigned int num_node; // 頂点数 std::vector<std::vector<Edge>> graph; // グラフの隣接リスト表現 // dinic用 std::vector<int> level; // sからの距離 std::vector<unsigned int> iter; // どこまで調べ終わったか public: CancelingNegativeCycles(const unsigned int num_node) : num_node(num_node) { graph.resize(num_node); level.resize(num_node); iter.resize(num_node); } // fromからtoへ向かう容量cap、コストcostの辺をグラフに追加する void add_edge(const unsigned int from, const unsigned int to, const long long cap, const long long cost) { graph.at(from).emplace_back(Edge(to, 0, cap, cost, graph.at(to).size(), false)); graph.at(to).emplace_back(Edge(from, cap, cap, -cost, graph.at(from).size() - 1, true)); } // sからtへの流量fの最小費用流を求める // 流せない場合は-1を返す int min_cost_flow(const unsigned int source, const unsigned int sink, long long flow) { // 最大流を求める int can_flow = max_flow(source, sink, flow); if (not can_flow) { return -1; } while (true) { // bellman-fordでsinkからの最短路を求める std::vector<int> prev_v(num_node, -1), prev_e(num_node, -1); // 直前の頂点と辺のidx std::vector<long long> distance(num_node, LONG_LONG_MAX); distance[sink] = 0; bool have_negative_cycle = false; for (int num = 0; num < num_node; ++num) { for (int u = 0; u < graph.size(); ++u) { for (int i = 0; i < graph.at(u).size(); ++i) { Edge &e = graph.at(u).at(i); if (distance.at(u) == LONG_LONG_MAX) { continue; } long long new_dist = distance.at(u) + e.cost; if (e.cap - e.flow > 0 and distance.at(e.to) > new_dist) { distance.at(e.to) = new_dist; prev_v.at(e.to) = u; prev_e.at(e.to) = i; if (num == num_node - 1) { have_negative_cycle = true; } } } } } // sinkから到達できる箇所に閉路がない if (not have_negative_cycle) { break; } long long d = LONG_LONG_MAX; std::vector<bool> used(num_node, false); int u = sink; while (not used.at(u)) { used.at(u) = true; const Edge &e = graph.at(prev_v.at(u)).at(prev_e.at(u)); d = std::min(d, e.cap - e.flow); u = prev_v.at(u); } assert(d != 0); std::fill(used.begin(), used.end(), false); // 閉路の開始点から見ていく while (not used.at(u)) { used.at(u) = true; Edge &e = graph.at(prev_v.at(u)).at(prev_e.at(u)); e.flow += d; graph.at(e.to).at(e.rev).flow -= d; u = prev_v.at(u); } } int cost = 0; for (int u = 0; u < graph.size(); ++u) { for (int i = 0; i < graph.at(u).size(); ++i) { Edge &e = graph.at(u).at(i); if (not e.is_rev) { cost += e.flow * e.cost; } } } return cost; } private: // sからtへflowだけdinicで流す bool max_flow(unsigned int s, unsigned int t, int flow) { while (flow > 0) { bfs(s); if (level.at(t) < 0) { break; } std::fill(iter.begin(), iter.end(), 0); long long f; while ((f = dfs(s, t, flow)) > 0) { flow -= f; } } return flow == 0; } // sからの最短距離をBFSで計算する void bfs(unsigned int s) { std::fill(level.begin(), level.end(), -1); std::queue<unsigned int> que; level.at(s) = 0; que.push(s); while (not que.empty()) { unsigned int v = que.front(); que.pop(); for (int i = 0; i < graph.at(v).size(); ++i) { Edge &e = graph.at(v).at(i); if ((e.cap - e.flow) > 0 and level.at(e.to) < 0) { level.at(e.to) = level.at(v) + 1; que.push(e.to); } } } } // 増加パスをDFSで探す long long dfs(unsigned int v, unsigned int t, long long f) { if (v == t) { return f; } for (unsigned int &i = iter.at(v); i < graph.at(v).size(); ++i) { Edge &e = graph.at(v).at(i); if ((e.cap - e.flow) > 0 and level.at(v) < level.at(e.to)) { long long d = dfs(e.to, t, min(f, e.cap - e.flow)); if (d > 0) { e.flow += d; graph.at(e.to).at(e.rev).flow -= d; return d; } } } return 0; } }; using namespace std; int main() { int V, E, F; cin >> V >> E >> F; CancelingNegativeCycles mcf(V); for (int i = 0; i < E; i++) { int u, v, c, d; cin >> u >> v >> c >> d; mcf.add_edge(u, v, c, d); } cout << mcf.min_cost_flow(0, V - 1, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") #pragma GCC target("avx") using namespace std; template <typename T1, typename T2> ostream& operator<<(ostream& o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; } template <typename iterator> inline size_t argmin(iterator begin, iterator end) { return distance(begin, min_element(begin, end)); } template <typename iterator> inline size_t argmax(iterator begin, iterator end) { return distance(begin, max_element(begin, end)); } template <typename T> T& maxset(T& to, const T& val) { return to = max(to, val); } template <typename T> T& minset(T& to, const T& val) { return to = min(to, val); } void bye(string s, int code = 0) { cout << s << endl; exit(0); } mt19937_64 randdev(8901016); inline long long int rand_range(long long int l, long long int h) { return uniform_int_distribution<long long int>(l, h)(randdev); } namespace { class MaiScanner { public: template <typename T> void input_integer(T& var) { var = 0; T sign = 1; int cc = getchar_unlocked(); for (; cc < '0' || '9' < cc; cc = getchar_unlocked()) if (cc == '-') sign = -1; for (; '0' <= cc && cc <= '9'; cc = getchar_unlocked()) var = (var << 3) + (var << 1) + cc - '0'; var = var * sign; } inline int c() { return getchar_unlocked(); } inline MaiScanner& operator>>(int& var) { input_integer<int>(var); return *this; } inline MaiScanner& operator>>(long long& var) { input_integer<long long>(var); return *this; } inline MaiScanner& operator>>(string& var) { int cc = getchar_unlocked(); for (; !(0x21 <= (cc) && (cc) <= 0x7E); cc = getchar_unlocked()) ; for (; (0x21 <= (cc) && (cc) <= 0x7E); cc = getchar_unlocked()) var.push_back(cc); return *this; } template <typename IT> void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; } }; } // namespace MaiScanner scanner; class Flow { public: size_t n; struct Arrow { int from, to; int left; int cap; Arrow(int from = 0, int to = 0, int w = 1) : from(from), to(to), left(w), cap(w) {} bool operator<(const Arrow& a) const { return (left != a.left) ? left < a.left : (left < a.left) | (cap < a.cap) | (from < a.from) | (to < a.to); } bool operator==(const Arrow& a) const { return (from == a.from) && (to == a.to) && (left == a.left) && (cap == a.cap); } }; vector<vector<int>> vertex_to; vector<vector<int>> vertex_from; vector<Arrow> arrows; Flow(int n) : n(n), vertex_to(n), vertex_from(n) {} void connect(int from, int to, int left) { vertex_to[from].push_back(arrows.size()); vertex_from[to].push_back(arrows.size()); arrows.emplace_back(from, to, left); } }; Flow::int minconstflow(Flow& graph, const vector<Flow::int>& cost, int i_source, int i_sink, Flow::int flow, Flow::int inf) { Flow::int total_cost = 0; vector<Flow::int> ofs(graph.n); vector<Flow::int> dist(graph.n); vector<int> visited(graph.arrows.size()); static function<Flow::int(int, Flow::int)> _dfs = [&](int idx, Flow::int fi) { if (idx == i_source) return fi; Flow::int f = 0; for (int ei : graph.vertex_from[idx]) { if (visited[ei]) continue; auto& edge = graph.arrows[ei]; if (dist[edge.to] == dist[edge.from] + cost[ei] + ofs[edge.from] - ofs[edge.to]) { visited[ei] = true; Flow::int r = _dfs(edge.from, min(fi - f, edge.left)); if (r > 0) { edge.left -= r; f += r; return f; } } } for (int ei : graph.vertex_to[idx]) { if (visited[ei]) continue; auto& edge = graph.arrows[ei]; if (dist[edge.from] == dist[edge.to] - cost[ei] + ofs[edge.to] - ofs[edge.from]) { visited[ei] = true; Flow::int r = _dfs(edge.to, min(fi - f, edge.cap - edge.left)); if (r > 0) { edge.left += r; f += r; return f; } } } return f; }; while (flow > 0) { fill(visited.begin(), visited.end(), 0); fill(dist.begin(), dist.end(), inf); priority_queue<pair<Flow::int, int>> pq; pq.emplace(0, i_source); dist[i_source] = 0; while (!pq.empty()) { auto p = pq.top(); pq.pop(); int idx = p.second; if (dist[idx] < -p.first) continue; for (int ei : graph.vertex_to[idx]) { auto edge = graph.arrows[ei]; if (0 < edge.left && dist[idx] + cost[ei] + ofs[idx] - ofs[edge.to] < dist[edge.to]) { dist[edge.to] = dist[idx] + cost[ei] + ofs[idx] - ofs[edge.to]; pq.emplace(-dist[edge.to], edge.to); } } for (int ei : graph.vertex_from[idx]) { auto edge = graph.arrows[ei]; if (0 < edge.cap - edge.left && dist[idx] - cost[ei] + ofs[idx] - ofs[edge.from] < dist[edge.from]) { dist[edge.from] = dist[idx] - cost[ei] + ofs[idx] - ofs[edge.from]; pq.emplace(-dist[edge.from], edge.from); } } } if (dist[i_sink] == inf) return -1; Flow::int z = _dfs(i_sink, flow); for (int i = 0; i < graph.n; ++i) ofs[i] += dist[i]; flow -= z; total_cost += z * ofs[i_sink]; } return total_cost; } long long int m, n, kei; int main() { long long int f; scanner >> n >> m >> f; Flow graph(n); vector<int> cost(m); for (auto i = 0ll; (i) < (m); ++(i)) { int u, v, c, d; scanner >> u >> v >> c >> d; graph.connect(u, v, c); cost[i] = d; } auto ans = minconstflow(graph, cost, 0, n - 1, f, (long long int)1e8); cout << ans << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct Edge { int to, cap, cost, rev; Edge(int to, int cap, int cost, int rev) : to(to), cap(cap), cost(cost), rev(rev) {} }; vector<int> dist; bool bellman_ford(vector<vector<Edge>>& Graph, int s, int t, vector<int>& parent_v, vector<int>& parent_at) { dist = vector<int>(t + 1, (1 << 30)); dist[s] = 0; for (int i = 0; i <= t; i++) { for (int v = 0; v <= t; v++) { if (dist[v] == (1 << 30)) continue; for (int at = 0; at < Graph[v].size(); at++) { Edge& e = Graph[v][at]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost) { dist[e.to] = dist[v] + e.cost; parent_v[e.to] = v; parent_at[e.to] = at; if (i == t) return false; } } } } return true; } int primal_dual(vector<vector<Edge>>& Graph, int s, int t, int F) { vector<int> parent_v(t + 1); vector<int> parent_at(t + 1); int min_cost_flow = 0; while (bellman_ford(Graph, s, t, parent_v, parent_at)) { if (dist[t] == (1 << 30)) { return -1; } int path_flow = (1 << 30); for (int v = t; v != s; v = parent_v[v]) { path_flow = min(path_flow, Graph[parent_v[v]][parent_at[v]].cap); } F -= path_flow; min_cost_flow += path_flow * dist[t]; if (F == 0) { return min_cost_flow; } if (F < 0) { return -1; } for (int v = t; v != s; v = parent_v[v]) { Edge& e = Graph[parent_v[v]][parent_at[v]]; e.cap -= path_flow; Graph[v][e.rev].cap += path_flow; } } return min_cost_flow; } int main() { int V, E, F; cin >> V >> E >> F; vector<vector<Edge>> G(V); for (int i = 0; i < E; i++) { int u, v, c, d; cin >> u >> v >> c >> d; G[u].emplace_back(Edge(v, c, d, G[v].size())); G[v].emplace_back(Edge(u, c, d, G[u].size() - 1)); } cout << primal_dual(G, 0, V - 1, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef int T; typedef int U; T INF = numeric_limits<T>::max(); struct edge { int to, rev; T cost; U cap; edge(int to, U cap, int rev, T cost) : to(to), rev(rev), cost(cost), cap(cap) {} }; struct primal_dual { int N; vector<vector<edge> > graph; vector<int> prev_v, prev_e; vector<T> min_cost; primal_dual() {} primal_dual(int _N) { init(_N); } void init(int _N) { N = _N; graph.resize(N); prev_v.resize(N); prev_e.resize(N); min_cost.resize(N); } void add_edge(int u, int v, U cap, T cost) { graph[u].push_back(edge(v, cap, graph[v].size(), cost)); graph[v].push_back(edge(u, 0, graph[u].size() - 1, -cost)); } T min_cost_flow(int s, int t, U F) { T val = 0; while (F > 0) { for (int i = 0; i < N; ++i) min_cost[i] = INF; min_cost[s] = 0; bool updated = true; while (updated) { updated = false; for (int v = 0; v < N; ++v) { if (min_cost[v] == INF) continue; for (int j = 0; j < graph[v].size(); ++j) { const edge e = graph[v][j]; T cost = min_cost[v] + e.cost; if (cost < min_cost[e.to] && e.cap > 0) { updated = true; min_cost[e.to] = cost; prev_v[e.to] = v; prev_e[e.to] = j; } } } } if (min_cost[t] == INF) { return (T)-1; } U f = F; for (int v = t; v != s; v = prev_v[v]) { edge& e = graph[prev_v[v]][prev_e[v]]; f = min(f, e.cap); } F -= f; val += (T)f * min_cost[t]; for (int v = t; v != s; v = prev_v[v]) { edge& e = graph[prev_v[v]][prev_e[v]]; e.cap -= f; graph[v][e.rev].cap += f; } } return val; } }; int V, E, F; primal_dual pd; int main() { cin >> V >> E >> F; pd.init(V); for (int j = 0; j < E; ++j) { int u, v, c, d; cin >> u >> v >> c >> d; pd.add_edge(u, v, d, c); } cout << pd.min_cost_flow(0, V - 1, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") #pragma GCC target("avx") using namespace std; template <typename T1, typename T2> ostream& operator<<(ostream& o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; } template <typename iterator> inline size_t argmin(iterator begin, iterator end) { return distance(begin, min_element(begin, end)); } template <typename iterator> inline size_t argmax(iterator begin, iterator end) { return distance(begin, max_element(begin, end)); } template <typename T> T& maxset(T& to, const T& val) { return to = max(to, val); } template <typename T> T& minset(T& to, const T& val) { return to = min(to, val); } void bye(string s, int code = 0) { cout << s << endl; exit(0); } mt19937_64 randdev(8901016); inline long long int rand_range(long long int l, long long int h) { return uniform_int_distribution<long long int>(l, h)(randdev); } namespace { class MaiScanner { public: template <typename T> void input_integer(T& var) { var = 0; T sign = 1; int cc = getchar_unlocked(); for (; cc < '0' || '9' < cc; cc = getchar_unlocked()) if (cc == '-') sign = -1; for (; '0' <= cc && cc <= '9'; cc = getchar_unlocked()) var = (var << 3) + (var << 1) + cc - '0'; var = var * sign; } inline int c() { return getchar_unlocked(); } inline MaiScanner& operator>>(int& var) { input_integer<int>(var); return *this; } inline MaiScanner& operator>>(long long& var) { input_integer<long long>(var); return *this; } inline MaiScanner& operator>>(string& var) { int cc = getchar_unlocked(); for (; !(0x21 <= (cc) && (cc) <= 0x7E); cc = getchar_unlocked()) ; for (; (0x21 <= (cc) && (cc) <= 0x7E); cc = getchar_unlocked()) var.push_back(cc); return *this; } template <typename IT> void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; } }; } // namespace MaiScanner scanner; class Flow { public: size_t n; struct Arrow { int from, to; int left; int cap; Arrow(int from = 0, int to = 0, int w = 1) : from(from), to(to), left(w), cap(w) {} bool operator<(const Arrow& a) const { return (left != a.left) ? left < a.left : (left < a.left) | (cap < a.cap) | (from < a.from) | (to < a.to); } bool operator==(const Arrow& a) const { return (from == a.from) && (to == a.to) && (left == a.left) && (cap == a.cap); } }; vector<vector<int>> vertex_to; vector<vector<int>> vertex_from; vector<Arrow> arrows; Flow(int n) : n(n), vertex_to(n), vertex_from(n) {} void connect(int from, int to, int left) { vertex_to[from].push_back(arrows.size()); vertex_from[to].push_back(arrows.size()); arrows.emplace_back(from, to, left); } }; Flow::int minconstflow(Flow& graph, const vector<Flow::int>& cost, int i_source, int i_sink, Flow::int flow, Flow::int inf) { Flow::int result = 0; vector<Flow::int> ofs(graph.n); vector<Flow::int> dist(graph.n); static function<Flow::int(int, Flow::int)> _dfs = [&](int idx, Flow::int f) { if (idx == i_source) return f; for (int ei : graph.vertex_from[idx]) { auto& edge = graph.arrows[ei]; if (dist[edge.to] == dist[edge.from] + cost[ei] + ofs[edge.from] - ofs[edge.to]) { f = _dfs(edge.from, min(f, edge.left)); edge.left -= f; return f; } } return 0; }; while (flow > 0) { fill(dist.begin(), dist.end(), inf); priority_queue<pair<Flow::int, int>> pq; pq.emplace(0, i_source); dist[i_source] = 0; while (!pq.empty()) { auto p = pq.top(); pq.pop(); Flow::int d = -p.first; int idx = p.second; if (dist[idx] < d) continue; for (int ei : graph.vertex_to[idx]) { auto edge = graph.arrows[ei]; if (0 < edge.left && dist[idx] + cost[ei] + ofs[idx] - ofs[edge.to] < dist[edge.to]) { dist[edge.to] = dist[idx] + cost[ei] + ofs[idx] - ofs[edge.to]; pq.emplace(-dist[edge.to], edge.to); } } } if (dist[i_sink] == inf) return -1; for (int i = 0; i < graph.n; ++i) ofs[i] += dist[i]; Flow::int z = _dfs(i_sink, flow); flow -= z; result += z * ofs[i_sink]; } return result; } long long int m, n, kei; int main() { long long int f; scanner >> n >> m >> f; Flow graph(n); vector<int> cost(m); for (auto i = 0ll; (i) < (m); ++(i)) { int u, v, c, d; scanner >> u >> v >> c >> d; graph.connect(u, v, c); cost[i] = d; } auto ans = minconstflow(graph, cost, 0, n - 1, f, (long long int)1e8); cout << ans << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> struct node { int id; int cap; int cost; struct node *next; }; struct node **list; int **flow, *delta, *dist, *prev; int *heap, *heap_index, heapsize; void Insert(int, int, int, int); void downheap(int); void upheap(int); void PQ_init(int); int PQ_remove(void); void PQ_update(int); int Maxflow(int, int, int); int main(void) { int i, v, e, f, s, t, c, d, mincost = 0; scanf("%d %d %d", &v, &e, &f); list = (struct node **)malloc(sizeof(struct node *) * v); flow = (int **)malloc(sizeof(int *) * v); delta = (int *)malloc(sizeof(int) * v); dist = (int *)malloc(sizeof(int) * v); prev = (int *)malloc(sizeof(int) * v); for (i = 0; i < v; i++) { list[i] = NULL; flow[i] = (int *)calloc(v, sizeof(int)); } for (i = 0; i < e; i++) { scanf("%d %d %d %d", &s, &t, &c, &d); Insert(s, t, c, d); } while (f > 0 && Maxflow(0, v - 1, v)) { int n = v - 1; f -= delta[v - 1]; if (f < 0) delta[v - 1] += f; do { flow[prev[n]][n] += delta[v - 1]; flow[n][prev[n]] -= delta[v - 1]; n = prev[n]; } while (n); } if (f <= 0) { for (i = 0; i < v; i++) { struct node *n; for (n = list[i]; n != NULL; n = n->next) { mincost += flow[i][n->id] * n->cost; } } printf("%d\n", mincost); } else printf("-1\n"); for (i = 0; i < v; i++) { free(list[i]); free(flow[i]); } free(list); free(flow); free(delta); free(dist); free(prev); } void Insert(int a, int b, int cap, int cost) { struct node *p = (struct node *)malloc(sizeof(struct node)); p->id = b; p->cap = cap; p->cost = cost; p->next = list[a]; list[a] = p; p = (struct node *)malloc(sizeof(struct node)); p->id = a; p->cap = 0; p->cost = 0; p->next = list[b]; list[b] = p; } void downheap(int k) { int j, v = heap[k]; while (k < heapsize / 2) { j = 2 * k + 1; if (j < heapsize - 1 && dist[heap[j]] > dist[heap[j + 1]]) j++; if (dist[v] <= dist[heap[j]]) break; heap[k] = heap[j]; heap_index[heap[j]] = k; k = j; } heap[k] = v; heap_index[v] = k; } void upheap(int j) { int k, v = heap[j]; while (j > 0) { k = (j + 1) / 2 - 1; if (dist[v] >= dist[heap[k]]) break; heap[j] = heap[k]; heap_index[heap[k]] = j; j = k; } heap[j] = v; heap_index[v] = j; } void PQ_init(int size) { int i; heapsize = size; heap = (int *)malloc(sizeof(int) * size); heap_index = (int *)malloc(sizeof(int) * size); for (i = 0; i < size; i++) { heap[i] = i; heap_index[i] = i; } for (i = heapsize / 2 - 1; i >= 0; i--) downheap(i); } int PQ_remove(void) { int v = heap[0]; heap[0] = heap[heapsize - 1]; heap_index[heap[heapsize - 1]] = 0; heapsize--; downheap(0); return v; } void PQ_update(int v) { upheap(heap_index[v]); } int Maxflow(int s, int t, int size) { struct node *n; int i; for (i = 0; i < size; i++) { delta[i] = INT_MAX; dist[i] = INT_MAX; prev[i] = -1; } dist[s] = 0; PQ_init(size); while (heapsize) { i = PQ_remove(); if (i == t) break; if (dist[i] == INT_MAX) continue; for (n = list[i]; n != NULL; n = n->next) { int v = n->id; if (flow[i][v] < n->cap && dist[i] != INT_MAX) { int newlen = dist[i] + n->cost; if (newlen < dist[v]) { dist[v] = newlen; prev[v] = i; delta[v] = ((delta[i]) < (n->cap - flow[i][v]) ? (delta[i]) : (n->cap - flow[i][v])); PQ_update(v); } } } } free(heap); free(heap_index); return dist[t] != INT_MAX; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct edge { int to, cap, cost, rev; }; int V; vector<edge> G[100]; vector<int> h(100); int dist[100]; int prevv[100], preve[100]; void add_edge(int from, int to, int cap, int cost) { G[from].push_back((edge){to, cap, cost, (int)G[to].size()}); G[to].push_back((edge){from, 0, -cost, (int)G[from].size() - 1}); } int shortest_path(int s, vector<int> &d) { int v = d.size(); for (long long i = 0; i < (long long)(d.size()); i++) d[i] = (1e9 + 1); d[s] = 0; for (long long loop = 0; loop < (long long)(v); loop++) { bool update = false; for (long long i = 0; i < (long long)(100); i++) { for (auto e : G[i]) { if (d[i] != (1e9 + 1) && d[e.to] > d[i] + e.cost) { d[e.to] = d[i] + e.cost; update = true; } } } if (!update) break; if (loop == v - 1) return true; } return false; } int min_cost_flow(int s, int t, int f) { int res = 0; for (long long i = 0; i < (long long)(h.size()); i++) h[i] = 0; shortest_path(s, h); int times = 0; while (f > 0) { if (times > 0) { priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > que; fill(dist, dist + V, (1e9 + 1)); dist[s] = 0; que.push(pair<int, int>(0, s)); while (!que.empty()) { pair<int, int> p = que.top(); que.pop(); int v = p.second; if (dist[v] < p.first) continue; for (int i = 0; i < G[v].size(); i++) { edge &e = G[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; que.push(pair<int, int>(dist[e.to], e.to)); } } } } times++; if (dist[t] == (1e9 + 1)) return -1; for (int v = 0; v < V; v++) h[v] += dist[v]; int d = f; for (int v = t; v != s; v = prevv[v]) { d = min(d, G[prevv[v]][preve[v]].cap); } f -= d; res += d * h[t]; for (int v = t; v != s; v = prevv[v]) { edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } return res; } int main() { int e, f; cin >> V >> e >> f; for (long long i = 0; i < (long long)(e); i++) { int u, v, c, d; cin >> u >> v >> c >> d; add_edge(u, v, c, d); } cout << min_cost_flow(0, V - 1, f) << endl; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int N = 110; const int M = 2010; const int inf = 0x3fffffff; struct Edge { int to, cap, cost, next; } es[M]; int S, T; int SIZE = 0; int h[N]; int dist[N], queue[N * N], inq[N]; int vis[N]; void add(int u, int v, int cap, int cost) { int i = SIZE++; es[i].to = v; es[i].cap = cap; es[i].cost = cost; es[i].next = h[u]; h[u] = i; int j = SIZE++; es[j].to = u; es[j].cap = 0; es[j].cost = -cost; es[j].next = h[v]; h[v] = j; } bool sssp(int n) { int front = 0, back = 0; for (int i = 0; i < n; i++) { dist[i] = inf; inq[i] = vis[i] = 0; } queue[back++] = S; dist[S] = 0; while (front < back) { int x = queue[front++]; inq[x] = 0; for (int i = h[x]; i != -1; i = es[i].next) if (es[i].cap > 0) { int y = es[i].to; int new_d = dist[x] + es[i].cost; if (new_d < dist[y]) { dist[y] = new_d; if (!inq[y]) { queue[back++] = y; inq[y] = 1; } } } } return (dist[T] < inf); } int dfs(int x, int flow) { if (x == T) return flow; if (vis[x]) return 0; int ret = 0; for (int i = h[x]; i != -1 && flow > 0; i = es[i].next) { int y = es[i].to; if (dist[y] != dist[x] + es[i].cost) continue; int f = dfs(y, std::min(flow, es[i].cap)); if (f != 0) { es[i].cap -= f; es[i ^ 1].cap += f; ret += f; flow -= f; } } vis[x] = (flow > 0); return ret; } void run() { int n, m, u, v, c, d, flow, cost = 0; scanf("%d%d%d", &n, &m, &flow); memset(h, -1, sizeof(h)); S = 0, T = n - 1; for (int i = 0; i < m; i++) { scanf("%d%d%d%d", &u, &v, &c, &d); add(u, v, c, d); } while (flow > 0 && sssp(n)) { int f = dfs(S, flow); cost += f * dist[T]; flow -= f; } if (flow > 0) printf("-1\n"); else printf("%d\n", cost); } int main() { run(); }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = (1ll << 60); struct Edge { long long s, t, c, d, u; }; long long minCostFlow(vector<vector<Edge>> &G, long long s, long long t, long long F) { long long V = G.size(); long long cost = 0; while (F) { vector<long long> dist(V, INF); dist[s] = 0; vector<long long> prev(V), prevCap(V); for (long long i = 0; i < V - 1; i++) for (auto edges : G) for (Edge e : edges) { if (e.u < e.c) { if (dist[e.t] > dist[e.s] + e.d) { prev[e.t] = e.s; prevCap[e.t] = (e.c - e.u); dist[e.t] = dist[e.s] + e.d; } } if (0 < e.u) { if (dist[e.s] > dist[e.t] - e.d) { prev[e.s] = e.t; prevCap[e.s] = e.u; dist[e.s] = dist[e.t] - e.d; } } } if (dist[t] == INF) return -1; long long minCapacity = F; for (long long v = t; v != s; v = prev[v]) minCapacity = min(minCapacity, prevCap[v]); for (long long v = t; v != s; v = prev[v]) { for (Edge &e : G[prev[v]]) if (e.t == v) { e.u += minCapacity; cost += e.d * minCapacity; break; } else if (e.s == v) { e.u -= minCapacity; cost -= e.d * minCapacity; break; } } F -= minCapacity; } return cost; } int main() { long long V, E, F; cin >> V >> E >> F; vector<vector<Edge>> G(V); for (long long i = 0; i < E; i++) { Edge e; cin >> e.s >> e.t >> e.c >> e.d; e.u = 0; G[e.s].push_back(e); } cout << minCostFlow(G, 0, V - 1, F) << endl; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using i64 = long long; struct edge { i64 from; i64 to; i64 cap; i64 cost; i64 rev; }; i64 INF = 1e8; i64 capacity_scaling_bflow(std::vector<std::vector<edge>>& g, std::vector<i64> b) { i64 ans = 0; i64 U = *std::max_element(begin(b), end(b)); i64 delta = (1 << ((int)(std::log2(U)) + 1)); int n = g.size(); std::vector<i64> e = b; std::vector<i64> p(n, 0); int zero = 0; for (auto x : e) { if (x == 0) zero++; } for (; delta > 0; delta >>= 1) { if (zero == n) break; for (int s = 0; s < n; s++) { if (!(e[s] >= delta)) continue; std::vector<std::size_t> pv(n, -1); std::vector<std::size_t> pe(n, -1); std::vector<i64> dist(n, 1e18); using P = std::pair<i64, i64>; dist[s] = 0; for (int j = 0; j < n; j++) { for (int v = 0; v < n; v++) { for (std::size_t i = 0; i < g[v].size(); i++) { const auto& e = g[v][i]; std::size_t u = e.to; if (e.cap == 0) continue; i64 ccc = e.cost; if (dist[u] > dist[v] + ccc) { dist[u] = dist[v] + ccc; pv[u] = v; pe[u] = i; } } } } int t = 0; for (; t < n; t++) { if (!(e[s] >= delta)) break; if (e[t] <= -delta && pv[t] != -1 && dist[t] < INF) { std::size_t u = t; for (; pv[u] != -1; u = pv[u]) { ans += delta * g[pv[u]][pe[u]].cost; g[pv[u]][pe[u]].cap -= delta; g[u][g[pv[u]][pe[u]].rev].cap += delta; } e[u] -= delta; e[t] += delta; if (e[u] == 0) zero++; if (e[t] == 0) zero++; } } } } if (zero == n) return ans; else return -1e18; } int main() { i64 N, M, F; cin >> N >> M >> F; vector<vector<edge>> g(N + M); vector<i64> e(N + M, 0); int s = 0; int t = N - 1; e[s + M] = F; e[t + M] = -F; for (int i = 0; i < M; i++) { i64 a, b, c, d; cin >> a >> b >> c >> d; e[i] = c; e[a + M] -= c; g[i].push_back({i, a + M, (i64)1e18, 0, (i64)g[a + M].size()}); g[a + M].push_back({a + M, i, 0, 0, (i64)g[i].size() - 1}); g[i].push_back({i, b + M, (i64)1e18, d, (i64)g[b + M].size()}); g[b + M].push_back({b + M, i, 0, -d, (i64)g[i].size() - 1}); } i64 ans = capacity_scaling_bflow(g, e); if (ans == -1e18) { cout << -1 << endl; } else { cout << ans << endl; } }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import sys import csv import argparse import time import heapq INF = sys.maxint/3 class Edge: def __init__(self, to, cap, cost, rev): self.to = to self.cap = cap self.cost = cost self.rev = rev def print_attributes(self): print "to: {0}, cap: {1}, cost: {2}, rev: {3}".format(self.to, self.cap, self.cost, self.rev) class MinimumCostFlow: def __init__(self, V, E): self.V = V self.E = E self.G = [[] for i in range(V)] def add_edge(self, s, t, cap, cost): forward_edge = Edge(t, cap, cost, len(self.G[t])) self.G[s].append(forward_edge) backward_edge = Edge(s, 0, -cost, len(self.G[s])-1) self.G[t].append(backward_edge) def print_edges(self): print "==== print edges ====" for i in range(self.V): print "\nedges from {}".format(i) for e in self.G[i]: e.print_attributes() def minimum_cost_flow(self, s, t, f): res = 0 h = [0] * self.V while f>0: pque = [] dist = [INF for i in range(self.V)] prev_v = [0 for i in range(self.V)] prev_e = [0 for i in range(self.V)] dist[s] = 0 heapq.heappush(pque, (0, s)) while(len(pque)!=0): p = heapq.heappop(pque) v = p[1] if (dist[v] < p[0]): continue for i in range(len(self.G[v])): e = self.G[v][i] if (e.cap>0 and dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]): dist[e.to] = dist[v] + e.cost + h[v] - h[e.to] prev_v[e.to] = v prev_e[e.to] = i heapq.heappush(pque, (dist[e.to], e.to)) if dist[t] == INF: return -1 for v in range(self.V): h[v] += dist[v] d = f v = t while v!=s: d = min(d, self.G[prev_v[v]][prev_e[v]].cap) v = prev_v[v] f -= d res += d * h[t] v = t while v!=s: e = self.G[prev_v[v]][prev_e[v]] e.cap -= d self.G[v][e.rev].cap += d v = prev_v[v] return res def main(): V, E, F = map(int, raw_input().split()) mcf = MinimumCostFlow(V, E) for i in range(E): u, v, c, d = map(int, raw_input().split()) mcf.add_edge(u, v, c, d) #print "minimum cost flow: {}".format(mcf.minimum_cost_flow(0, V-1, F)) print mcf.minimum_cost_flow(0, V-1, F) if __name__ == '__main__': main()
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using i64 = long long; struct edge { i64 from; i64 to; i64 cap; i64 cost; i64 rev; }; i64 INF = 1e8; i64 capacity_scaling_bflow(std::vector<std::vector<edge>>& g, std::vector<i64> b) { i64 ans = 0; i64 U = *std::max_element(begin(b), end(b)); i64 delta = (1 << ((int)(std::log2(U)) + 1)); int n = g.size(); std::vector<i64> e = b; std::vector<i64> p(n, 0); int zero = 0; for (auto x : e) { if (x == 0) zero++; } for (; delta > 0; delta >>= 1) { if (zero == n) break; while (true) { std::vector<std::size_t> pv(n, -1); std::vector<std::size_t> pe(n, -1); std::vector<std::size_t> start(n, -1); std::vector<i64> dist(n, INF); using P = std::pair<i64, i64>; std::priority_queue<P, std::vector<P>, std::greater<P>> que; for (int s = 0; s < n; s++) { if (e[s] >= delta) { dist[s] = 0; start[s] = s; que.push({dist[s], s}); } } if (que.empty()) break; while (!que.empty()) { int v = que.top().second; i64 d = que.top().first; que.pop(); if (dist[v] < d) continue; for (std::size_t i = 0; i < g[v].size(); i++) { const auto& e = g[v][i]; std::size_t u = e.to; if (e.cap == 0) continue; assert(e.cost + p[v] - p[u] >= 0); if (dist[u] > dist[v] + e.cost + p[v] - p[u]) { dist[u] = dist[v] + e.cost + p[v] - p[u]; pv[u] = v; pe[u] = i; start[u] = start[v]; que.push({dist[u], u}); } } } for (int i = 0; i < n; i++) { p[i] += dist[i]; } bool sended = false; for (int t = 0; t < n; t++) { if (e[t] <= -delta && pv[t] != -1 && e[start[t]]) { sended = true; std::size_t u = t; for (; pv[u] != -1; u = pv[u]) { ans += delta * g[pv[u]][pe[u]].cost; g[pv[u]][pe[u]].cap -= delta; g[u][g[pv[u]][pe[u]].rev].cap += delta; } e[u] -= delta; e[t] += delta; if (e[u] == 0) zero++; if (e[t] == 0) zero++; } } if (!sended) return -1e18; } } if (zero == n) return ans; else return -1e18; } int main() { i64 N, M, F; cin >> N >> M >> F; vector<vector<edge>> g(N + M); vector<i64> e(N + M, 0); int s = 0; int t = N - 1; e[s + M] = F; e[t + M] = -F; for (int i = 0; i < M; i++) { i64 a, b, c, d; cin >> a >> b >> c >> d; e[i] = c; e[a + M] -= c; g[i].push_back({i, a + M, (i64)1e18, 0, (i64)g[a + M].size()}); g[a + M].push_back({a + M, i, 0, 0, (i64)g[i].size() - 1}); g[i].push_back({i, b + M, (i64)1e18, d, (i64)g[b + M].size()}); g[b + M].push_back({b + M, i, 0, -d, (i64)g[i].size() - 1}); } i64 ans = capacity_scaling_bflow(g, e); if (ans == -1e18) { cout << -1 << endl; } else { cout << ans << endl; } }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #define FOR(i,a,b) for(int i= (a); i<((int)b); ++i) #define RFOR(i,a) for(int i=(a); i >= 0; --i) #define FOE(i,a) for(auto i : a) #define ALL(c) (c).begin(), (c).end() #define RALL(c) (c).rbegin(), (c).rend() #define DUMP(x) cerr << #x << " = " << (x) << endl; #define SUM(x) std::accumulate(ALL(x), 0LL) #define MIN(v) *std::min_element(v.begin(), v.end()) #define MAX(v) *std::max_element(v.begin(), v.end()) #define EXIST(v,x) (std::find(v.begin(), v.end(), x) != v.end()) #define BIT(n) (1LL<<(n)) #define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end()); typedef long long LL; template<typename T> using V = std::vector<T>; template<typename T> using VV = std::vector<std::vector<T>>; template<typename T> using VVV = std::vector<std::vector<std::vector<T>>>; template<class T> inline T ceil(T a, T b) { return (a + b - 1) / b; } template<class T> inline void print(T x) { std::cout << x << std::endl; } template<class T> inline bool inside(T y, T x, T H, T W) {return 0 <= y and y < H and 0 <= x and x < W; } inline double distance(double y1, double x1, double y2, double x2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); } const int INF = 1L << 30; const double EPS = 1e-9; const std::string YES = "YES", Yes = "Yes", NO = "NO", No = "No"; const std::vector<int> dy = { 0, 1, 0, -1 }, dx = { 1, 0, -1, 0 }; // 4近傍(右, 下, 左, 上) using namespace std; // 最小費用流 O(F|E|log |V|)かO(F|V|^2) class PrimalDual { // 辺を表す構造体(行き先、容量、コスト、逆辺) struct edge { int to, cap, cost, rev; }; unsigned long V; // 頂点数 vector<vector<edge>> graph; // グラフの隣接リスト表現 vector<int> h; // ポテンシャル vector<int> dist; // 最短距離 vector<int> prevv, preve; // 直前の頂点と辺 public: PrimalDual(unsigned long num_of_node) : V(num_of_node) { graph.resize(V); h.resize(V, 0); dist.resize(V); prevv.resize(V); preve.resize(V); } // fromからtoへ向かう容量cap、コストcostの辺をグラフに追加する void add_edge(int from, int to, int cap, int cost) { graph[from].push_back((edge) {to, cap, cost, graph[to].size()}); graph[to].push_back((edge) {from, 0, -cost, graph[from].size() - 1}); } // sからtへの流量fの最小費用流を求める // 流せない場合は-1を返す int min_cost_flow(int s, int t, int f) { int res = 0; while (f > 0) { // ダイクストラ法を用いてhを更新する priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> que; fill(dist.begin(), dist.end(), INT_MAX); dist[s] = 0; que.push(make_pair(0, s)); while (not que.empty()) { pair<int, int> p = que.top(); // firstは最短距離, secondは頂点の番号 que.pop(); int v = p.second; if (dist[v] < p.first) { continue; } for (int i = 0; i < graph[v].size(); ++i) { edge &e = graph[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; que.push(make_pair(dist[e.to], e.to)); } } } if (dist[t] == INT_MAX) { // これ以上流せない return -1; } for (int v = 0; v < V; v++) { h[v] += dist[v]; } // s-t間最短路に沿って目一杯流す int d = f; for (int v = t; v != s; v = prevv[v]) { d = min(d, graph[prevv[v]][preve[v]].cap); } f -= d; res += d * h[t]; for (int v = t; v != s; v = prevv[v]) { edge &e = graph[prevv[v]][preve[v]]; e.cap -= d; graph[v][e.rev].cap += d; } } return res; } }; int main() { cin.tie(0); ios::sync_with_stdio(false); int V, E, F; cin >> V >> E >> F; PrimalDual pd(V); FOR(i, 0, E) { int u, v ,c, d; cin >> u >> v >> c >> d; pd.add_edge(u, v, c, d); } print(pd.min_cost_flow(0, V - 1, F)); return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") #pragma GCC target("avx") using namespace std; template <typename T1, typename T2> ostream& operator<<(ostream& o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; } template <typename iterator> inline size_t argmin(iterator begin, iterator end) { return distance(begin, min_element(begin, end)); } template <typename iterator> inline size_t argmax(iterator begin, iterator end) { return distance(begin, max_element(begin, end)); } template <typename T> T& maxset(T& to, const T& val) { return to = max(to, val); } template <typename T> T& minset(T& to, const T& val) { return to = min(to, val); } void bye(string s, int code = 0) { cout << s << endl; exit(0); } mt19937_64 randdev(8901016); inline long long int rand_range(long long int l, long long int h) { return uniform_int_distribution<long long int>(l, h)(randdev); } namespace { class MaiScanner { public: template <typename T> void input_integer(T& var) { var = 0; T sign = 1; int cc = getchar_unlocked(); for (; cc < '0' || '9' < cc; cc = getchar_unlocked()) if (cc == '-') sign = -1; for (; '0' <= cc && cc <= '9'; cc = getchar_unlocked()) var = (var << 3) + (var << 1) + cc - '0'; var = var * sign; } inline int c() { return getchar_unlocked(); } inline MaiScanner& operator>>(int& var) { input_integer<int>(var); return *this; } inline MaiScanner& operator>>(long long& var) { input_integer<long long>(var); return *this; } inline MaiScanner& operator>>(string& var) { int cc = getchar_unlocked(); for (; !(0x21 <= (cc) && (cc) <= 0x7E); cc = getchar_unlocked()) ; for (; (0x21 <= (cc) && (cc) <= 0x7E); cc = getchar_unlocked()) var.push_back(cc); return *this; } template <typename IT> void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; } }; } // namespace MaiScanner scanner; class Flow { public: size_t n; struct Arrow { int from, to; int left; int cap; Arrow(int from = 0, int to = 0, int w = 1) : from(from), to(to), left(w), cap(w) {} bool operator<(const Arrow& a) const { return (left != a.left) ? left < a.left : (left < a.left) | (cap < a.cap) | (from < a.from) | (to < a.to); } bool operator==(const Arrow& a) const { return (from == a.from) && (to == a.to) && (left == a.left) && (cap == a.cap); } }; vector<vector<int>> vertex_to; vector<vector<int>> vertex_from; vector<Arrow> arrows; Flow(int n) : n(n), vertex_to(n), vertex_from(n) {} void connect(int from, int to, int left) { vertex_to[from].push_back(arrows.size()); vertex_from[to].push_back(arrows.size()); arrows.emplace_back(from, to, left); } }; Flow::int minconstflow(Flow& graph, const vector<Flow::int>& cost, int i_source, int i_sink, Flow::int flow, Flow::int inf) { Flow::int result = 0; vector<Flow::int> ofs(graph.n); vector<Flow::int> dist(graph.n); vector<int> prev(graph.n); static function<Flow::int(int, Flow::int)> _dfs = [&](int idx, Flow::int f) { if (idx == i_source) return f; for (int ei : graph.vertex_from[idx]) { auto& edge = graph.arrows[ei]; if (dist[edge.to] == dist[edge.from] + cost[ei] + ofs[edge.from] - ofs[edge.to]) { f = _dfs(edge.from, min(f, edge.left)); if (f > 0) { edge.left -= f; return f; } } } for (int ei : graph.vertex_to[idx]) { auto& edge = graph.arrows[ei]; if (dist[edge.from] == dist[edge.to] - cost[ei] + ofs[edge.to] - ofs[edge.from]) { f = _dfs(edge.to, min(f, edge.cap - edge.left)); if (f > 0) { edge.left += f; return f; } } } return 0; }; while (flow > 0) { fill(dist.begin(), dist.end(), inf); fill(prev.begin(), prev.end(), -1); priority_queue<pair<Flow::int, int>> pq; pq.emplace(0, i_source); dist[i_source] = 0; while (!pq.empty()) { auto p = pq.top(); pq.pop(); Flow::int d = -p.first; int idx = p.second; if (dist[idx] < d) continue; for (int ei : graph.vertex_to[idx]) { auto edge = graph.arrows[ei]; if (0 < edge.left && dist[idx] + cost[ei] + ofs[idx] - ofs[edge.to] < dist[edge.to]) { dist[edge.to] = dist[idx] + cost[ei] + ofs[idx] - ofs[edge.to]; prev[edge.to] = ei; pq.emplace(-dist[edge.to], edge.to); } } for (int ei : graph.vertex_from[idx]) { auto edge = graph.arrows[ei]; if (0 < edge.cap - edge.left && dist[idx] - cost[ei] + ofs[idx] - ofs[edge.from] < dist[edge.from]) { dist[edge.from] = dist[idx] - cost[ei] + ofs[idx] - ofs[edge.from]; prev[edge.from] = ei; pq.emplace(-dist[edge.from], edge.from); } } } if (dist[i_sink] == inf) return -1; for (int i = 0; i < graph.n; ++i) ofs[i] += dist[i]; Flow::int z = flow; for (int p = i_sink; p != i_source;) { auto edge = graph.arrows[prev[p]]; if (edge.to == p) minset(z, edge.left), p = edge.from; else minset(z, edge.cap - edge.left), p = edge.to; } if (z == 0) return -1; for (int p = i_sink; p != i_source;) { auto edge = graph.arrows[prev[p]]; if (edge.to == p) edge.left -= z, p = edge.from; else edge.left += z, p = edge.to; } flow -= z; result += z * ofs[i_sink]; } return result; } long long int m, n, kei; int main() { long long int f; scanner >> n >> m >> f; Flow graph(n); vector<int> cost(m); for (auto i = 0ll; (i) < (m); ++(i)) { int u, v, c, d; scanner >> u >> v >> c >> d; graph.connect(u, v, c); cost[i] = d; } auto ans = minconstflow(graph, cost, 0, n - 1, f, (long long int)1e8); cout << ans << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using T = int; using U = int; T INF = numeric_limits<T>::max(); struct edge { int to, rev; T cost; U cap; edge(int to, U cap, int rev, T cost) : to(to), rev(rev), cost(cost), cap(cap) {} }; struct primal_dual { int N; vector<vector<edge> > graph; vector<int> prev_v, prev_e; vector<T> min_cost; primal_dual() {} primal_dual(int _N) { init(_N); } void init(int _N) { N = _N; graph.resize(N); prev_v.resize(N); prev_e.resize(N); min_cost.resize(N); } void add_edge(int u, int v, U cap, T cost) { graph[u].push_back(edge(v, cap, graph[v].size(), cost)); graph[v].push_back(edge(u, 0, graph[u].size() - 1, -cost)); } T min_cost_flow(int s, int t, U F) { T val = 0; while (F > 0) { for (int i = 0; i < N; ++i) min_cost[i] = INF; min_cost[s] = 0; bool updated = true; while (updated) { updated = false; for (int v = 0; v < N; ++v) { if (min_cost[v] == INF) continue; for (int j = 0; j < graph[v].size(); ++j) { const edge e = graph[v][j]; T cost = min_cost[v] + e.cost; if (cost < min_cost[e.to] && e.cap > 0) { updated = true; min_cost[e.to] = cost; prev_v[e.to] = v; prev_e[e.to] = j; } } } } if (min_cost[t] == INF) { return (T)-1; } U f = F; for (int v = t; v != s; v = prev_v[v]) { edge& e = graph[prev_v[v]][prev_e[v]]; f = min(f, e.cap); } F -= f; val += (T)f * min_cost[t]; for (int v = t; v != s; v = prev_v[v]) { edge& e = graph[prev_v[v]][prev_e[v]]; e.cap -= f; graph[v][e.rev].cap += f; } } return val; } }; int V, E, F; primal_dual pd; int main() { cin >> V >> E >> F; pd.init(V); for (int j = 0; j < E; ++j) { int u, v, c, d; cin >> u >> v >> c >> d; pd.add_edge(u, v, d, c); } cout << pd.min_cost_flow(0, V - 1, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
a
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxN = 1100; bool mark[maxN]; int parentEdge[maxN], dis[maxN]; int n, k, m, st, fn, F, remFlow; struct edge { int u, v, weight, cap; }; vector<int> g[maxN]; edge e[maxN * maxN]; int curID = 0; edge make_edge(int u, int v, int w, int cap) { edge e; e.u = u; e.v = v; e.weight = w; e.cap = cap; return e; } void input() { cin >> n >> m >> F; for (int i = 1; i <= m; i++) { int k1, k2, w, cap; cin >> k1 >> k2; k1++; k2++; cin >> cap >> w; e[curID] = make_edge(k1, k2, w, cap); g[k1].push_back(curID++); e[curID] = make_edge(k2, k1, -w, 0); g[k2].push_back(curID++); } } int extract_min() { int ret = 0; for (int i = 1; i <= n; i++) if (!mark[i] && dis[i] < dis[ret]) ret = i; return ret; } void update(int v) { mark[v] = true; for (auto ID : g[v]) if (dis[e[ID].v] > dis[v] + e[ID].weight && e[ID].cap > 0) { parentEdge[e[ID].v] = ID; dis[e[ID].v] = dis[v] + e[ID].weight; } } pair<int, int> dijkstra(int v = st) { int pushed = remFlow; int cost = 0; fill(dis, dis + n + 1, INT_MAX / 2); memset(mark, 0, (n + 10) * sizeof(mark[0])); memset(parentEdge, -1, (n + 10) * sizeof(parentEdge[0])); dis[v] = 0; while (int v = extract_min()) { update(v); } if (!mark[fn]) return {0, 0}; v = fn; while (parentEdge[v] != -1) { pushed = min(pushed, e[parentEdge[v]].cap); v = e[parentEdge[v]].u; } v = fn; while (parentEdge[v] != -1) { cost += pushed * e[parentEdge[v]].weight; e[parentEdge[v]].cap -= pushed; e[parentEdge[v] ^ 1].cap += pushed; v = e[parentEdge[v]].u; } return {pushed, cost}; } int MinCostMaxFlow() { int flow = 0, cost = 0; remFlow = F; while (true) { auto ans = dijkstra(); if (ans.first == 0) break; flow += ans.first; remFlow -= ans.first; cost += ans.second; } return cost; } void show() { for (int i = 0; i < curID; i++) { auto ed = e[i]; cout << i << " " << ed.u << " " << ed.v << " " << ed.cap << " " << ed.weight << endl; } } int main() { input(); st = 1; fn = n; int cost = MinCostMaxFlow(); if (remFlow > 0) cout << -1 << endl; else cout << cost << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) { os << "sz=" << v.size() << "\n["; for (const auto& p : v) { os << p << ","; } os << "]\n"; return os; } template <typename S, typename T> ostream& operator<<(ostream& os, const pair<S, T>& p) { os << "(" << p.first << "," << p.second << ")"; return os; } constexpr ll MOD = 1000000007LL; template <typename T> constexpr T INF = numeric_limits<T>::max() / 10; class CostFlow { public: using Cost = ll; using Ind = short; using Capacity = int; using T = ll; struct Edge { Edge(const Ind from_, const Ind to_, const Ind reverse_, const Capacity capacity_, const Cost cost_, bool is_reverse_ = false) : from{from_}, to{to_}, reverse{reverse_}, capacity{capacity_}, flow{0}, cost{cost_}, is_reverse{is_reverse_} {} Ind from; Ind to; Ind reverse; Capacity capacity; Capacity flow; Cost cost; bool is_reverse; }; CostFlow(const Ind v) : V{v}, edge(v), dist(v), pot(v, 0), prev_v(v), prev_e(v) {} void addEdge(const Ind from, const Ind to, const Capacity capacity, const Cost cost) { edge[from].push_back(Edge{from, to, (Ind)edge[to].size(), (Capacity)capacity, (Cost)cost, false}); edge[to].push_back(Edge{to, from, (Ind)(edge[from].size() - 1), (Capacity)0, (Cost)(-cost), true}); } void calcPotential(const int s) { fill(pot.begin(), pot.end(), INF<Cost>); pot[s] = 0; bool no_negative_loop = true; for (int i = 0; i < V; i++) { for (int v = 0; v < V; v++) { if (pot[v] != INF<T>) { for (const auto& e : edge[v]) { if (e.capacity <= 0) { continue; } if (pot[e.to] > pot[v] + e.cost) { pot[e.to] = pot[v] + e.cost; if (i == V - 1) { pot[e.to] = -INF<T>; no_negative_loop = false; } } } } } } if (not no_negative_loop) { } } T minCostFlow(const Ind s, const Ind t, T f, const bool calc_pot = false) { using P = pair<Cost, Ind>; T res = 0; if (calc_pot) { calcPotential(s); } vector<Cost> potential = pot; while (f > 0) { priority_queue<P, vector<P>, greater<P>> q; fill(dist.begin(), dist.end(), INF<T>); dist[s] = 0; q.push(make_pair(0, s)); while (not q.empty()) { const P p = q.top(); q.pop(); const Ind v = p.second; if (dist[v] < p.first) { continue; } for (Ind i = 0; i < edge[v].size(); i++) { const auto& e = edge[v][i]; if (e.capacity > e.flow and dist[e.to] > dist[v] + e.cost + potential[v] - potential[e.to]) { dist[e.to] = dist[v] + e.cost + potential[v] - potential[e.to]; prev_v[e.to] = v; prev_e[e.to] = i; q.push(make_pair(dist[e.to], e.to)); } } } if (dist[t] == INF<T>) { return res; } for (Ind v = 0; v < V; v++) { potential[v] += dist[v]; } T d = f; for (Ind v = t; v != s; v = prev_v[v]) { const auto& e = edge[prev_v[v]][prev_e[v]]; d = min(d, (T)(e.capacity - e.flow)); } f -= d; res += d * potential[t]; for (Ind v = t; v != s; v = prev_v[v]) { auto& e = edge[prev_v[v]][prev_e[v]]; e.flow += d; edge[v][e.reverse].flow -= d; } } return res; } const Ind V; vector<vector<Edge>> edge; private: vector<Cost> dist; vector<Cost> pot; vector<Ind> prev_v; vector<Ind> prev_e; }; int main() { int V, E; ll F; std::cin >> V >> E >> F; CostFlow f(V); for (ll i = 0; i < E; i++) { int u, v; ll c, d; cin >> u >> v >> c >> d; f.addEdge(u, v, c, d); } cout << f.minCostFlow(0, V - 1, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from heapq import heappop, heappush def trace(source, edge_trace): v = source for i in edge_trace: e = edges[v][i] yield e v = e[1] def min_cost_flow(source, sink, required_flow): res = 0 while required_flow: visited = set() queue = [(0, source, tuple())] while queue: total_cost, v, edge_memo = heappop(queue) if v in visited: continue elif v == sink: dist = total_cost edge_trace = edge_memo break visited.add(v) for i, (remain, target, cost, _) in enumerate(edges[v]): if remain and target not in visited: heappush(queue, (total_cost + cost, target, edge_memo + (i,))) else: return -1 aug = min(required_flow, min(e[0] for e in trace(source, edge_trace))) required_flow -= aug res += aug * dist for e in trace(source, edge_trace): remain, target, cost, idx = e e[0] -= aug edges[target][idx][0] += aug return res n, m, f = map(int, input().split()) edges = [[] for _ in range(n)] for _ in range(m): s, t, c, d = map(int, input().split()) es, et = edges[s], edges[t] ls, lt = len(es), len(et) es.append([c, t, d, lt]) et.append([0, s, -d, ls]) print(min_cost_flow(0, n - 1, f))
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
class MinimumCostFlow { struct Edge { int to; long long cost, capacity; int rev_id; Edge(int to, long long cost, long long cap, int id) : to(to), cost(cost), capacity(cap), rev_id(id){}; Edge() { Edge(0, 0, 0, 0); } }; struct Prev { LL cost; int from, id; }; using Graph = vector<vector<Edge>>; using Flow = vector<vector<long long>>; int n; Graph graph; Flow flow; vector<Prev> prev; vector<long long> potential; public: MinimumCostFlow(int n) : n(n), graph(n), prev(n, {LINF, -1, -1}), potential(n) {} long long minimumCostFlow(int s, int t, LL f) { LL ret = 0; //int size = graph.size(); //vector<LL> h(size); //vector<Prev> prev(size, {LINF, -1, -1}); //mincost, from,id for (bellman_ford(s); f > 0; dijkstra(s)) { if (prev[t].cost == LINF) return -1; for (int i = 0; i < n; ++i) potential[i] = min(potential[i] + prev[i].cost, LINF); LL d = f; for (int v = t; v != s; v = prev[v].from) { //DBG(v) //DBG(prev[v].from) d = min(d, graph[prev[v].from][prev[v].id].capacity - flow[prev[v].from][v]); //DBG(d) } f -= d; ret += d * potential[t]; //DBG(ret) for (int v = t; v != s; v = prev[v].from) { flow[prev[v].from][v] += d; flow[v][prev[v].from] -= d; } } return ret; } private: bool dijkstra(const int start) { int visited = 0, N = graph.size(); fill(prev.begin(), prev.end(), (Prev){LINF, -1, -1}); typedef tuple<LL, int, int, int> TP; priority_queue<TP, vector<TP>, greater<TP>> pque; pque.emplace(0, start, 0, -1); LL cost; int place, from, id; while (!pque.empty()) { tie(cost, place, from, id) = pque.top(); pque.pop(); if (prev[place].from != -1) continue; prev[place] = {cost, from, id}; visited++; if (visited == N) return true; for (int i = 0; i < (int)graph[place].size(); ++i) { auto e = &graph[place][i]; if (e->capacity > flow[place][e->to] && prev[e->to].from == -1) { pque.emplace(e->cost + cost - potential[e->to] + potential[place], e->to, place, i); } } } return false; } bool bellman_ford(const int start) { int s = graph.size(); bool update = false; prev[start] = (Prev){0ll, start, -1}; for (int i = 0; i < s; ++i, update = false) { for (int j = 0; j < s; ++j) { for (auto &e : graph[j]) { if (e.capacity == 0) continue; if (prev[j].cost != LINF && prev[e.to].cost > prev[j].cost + e.cost) { prev[e.to].cost = prev[j].cost + e.cost; prev[e.to].from = j; prev[e.to].id = e.rev_id; update = true; if (i == s - 1) return false; } } } if (!update) break; } return true; } }; int main() { cin.tie(0); ios::sync_with_stdio(false); int n, m; LL flow; cin >> n >> m >> flow; MinimumCostFlow mcf(n); for (int i = 0; i < m; i++) { int a, b; LL cost, cap; cin >> a >> b >> cap >> cost; mcf.addEdge(a, b, cap, cost); } cout << mcf.minimumCostFlow(0, n - 1, flow) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int E = 1e18 + 7; const long long int MOD = 1000000007; class CFlow { private: struct edge { long long int to; long long int cap; long long int rev; long long int cost; }; struct node { long long int cost; long long int flow; long long int number; long long int from; long long int edge; bool operator<(const node &a) const { if (a.cost < this->cost) { return true; } else if (a.cost == this->cost && a.flow > this->flow) { return true; } return false; } }; long long int INF; long long int v; vector<vector<edge>> e; public: CFlow(long long int v) : v(v) { e.resize(v); INF = 1e18 + 7; } void add_edge(long long int from, long long int to, long long int cap, long long int cost) { e[from].push_back((edge){to, cap, (long long int)e[to].size(), cost}); e[to].push_back( (edge){from, 0, (long long int)e[from].size() - 1, -1 * cost}); } pair<long long int, long long int> min_cost(long long int s, long long int t, long long int flow) { vector<vector<edge>> ed = e; long long int cost = 0; long long int D = flow; vector<long long int> h(v, 0); while (flow > 0) { priority_queue<node> q; vector<node> V(v, {INF, 0, -1, -1, -1}); V[s] = {0, flow, s, s, -1}; q.push({0, flow, s, s, -1}); while (!q.empty()) { node N = q.top(); q.pop(); long long int w = N.number; if (V[w].cost < N.cost) { continue; } for (int i = 0; i < e[w].size(); i++) { edge &E = e[w][i]; node New = {V[w].cost + E.cost + h[w] - h[E.to], min(N.flow, E.cap), E.to, w, i}; if (E.cap > 0 && V[E.to] < New) { V[E.to] = New; q.push(New); } } } if (V[t].flow == 0) { break; } for (int i = 0; i < v; i++) { h[i] += V[i].cost; } flow -= V[t].flow; long long int w = t; while (w != s) { long long int t = w; w = V[w].from; edge &E = e[w][V[t].edge]; E.cap -= V[t].flow; e[t][E.rev].cap += V[t].flow; cost += V[t].flow * E.cost; } if (flow == 0) { break; } } e = ed; return {D - flow, cost}; } }; int main() { long long int v, e, f; cin >> v >> e >> f; CFlow first(v); for (int i = 0; i < e; i++) { long long int s, t, cap, cost; cin >> s >> t >> cap >> cost; first.add_edge(s, t, cap, cost); } pair<long long int, long long int> P = first.min_cost(0, v - 1, f); if (P.first != f) { cout << -1 << endl; } else { cout << P.second << endl; } return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct Edge { int to, cap, cost, rev; Edge(int to, int cap, int cost, int rev) : to(to), cap(cap), cost(cost), rev(rev) {} }; vector<int> dist; bool bellman_ford(vector<vector<Edge>>& Graph, int s, int t, vector<int>& parent_v, vector<int>& parent_at) { dist = vector<int>(t + 1, (1 << 30)); dist[s] = 0; for (int i = 0; i <= t; i++) { for (int v = 0; v <= t; v++) { if (dist[v] == (1 << 30)) continue; for (int at = 0; at < Graph[v].size(); at++) { Edge& e = Graph[v][at]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost) { dist[e.to] = dist[v] + e.cost; parent_v[e.to] = v; parent_at[e.to] = at; if (i == t) return false; } } } } return true; } int primal_dual(vector<vector<Edge>>& Graph, int s, int t, int F) { vector<int> parent_v(t + 1); vector<int> parent_at(t + 1); int min_cost_flow = 0; while (bellman_ford(Graph, s, t, parent_v, parent_at)) { if (dist[t] == (1 << 30)) { return -1; } int path_flow = F; for (int v = t; v != s; v = parent_v[v]) { path_flow = min(path_flow, Graph[parent_v[v]][parent_at[v]].cap); } F -= path_flow; min_cost_flow += path_flow * dist[t]; if (F == 0) { return min_cost_flow; } if (F < 0) { return -1; } for (int v = t; v != s; v = parent_v[v]) { Edge& e = Graph[parent_v[v]][parent_at[v]]; e.cap -= path_flow; Graph[v][e.rev].cap += path_flow; } } return min_cost_flow; } int main() { int V, E, F; cin >> V >> E >> F; vector<vector<Edge>> G(V); for (int i = 0; i < E; i++) { int u, v, c, d; cin >> u >> v >> c >> d; G[u].emplace_back(Edge(v, c, d, G[v].size())); G[v].emplace_back(Edge(u, c, d, G[u].size() - 1)); } cout << primal_dual(G, 0, V - 1, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") #pragma GCC target("avx") using namespace std; template <typename T1, typename T2> ostream& operator<<(ostream& o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; } template <typename iterator> inline size_t argmin(iterator begin, iterator end) { return distance(begin, min_element(begin, end)); } template <typename iterator> inline size_t argmax(iterator begin, iterator end) { return distance(begin, max_element(begin, end)); } template <typename T> T& maxset(T& to, const T& val) { return to = max(to, val); } template <typename T> T& minset(T& to, const T& val) { return to = min(to, val); } void bye(string s, int code = 0) { cout << s << endl; exit(0); } mt19937_64 randdev(8901016); inline long long int rand_range(long long int l, long long int h) { return uniform_int_distribution<long long int>(l, h)(randdev); } namespace { class MaiScanner { public: template <typename T> void input_integer(T& var) { var = 0; T sign = 1; int cc = getchar_unlocked(); for (; cc < '0' || '9' < cc; cc = getchar_unlocked()) if (cc == '-') sign = -1; for (; '0' <= cc && cc <= '9'; cc = getchar_unlocked()) var = (var << 3) + (var << 1) + cc - '0'; var = var * sign; } inline int c() { return getchar_unlocked(); } inline MaiScanner& operator>>(int& var) { input_integer<int>(var); return *this; } inline MaiScanner& operator>>(long long& var) { input_integer<long long>(var); return *this; } inline MaiScanner& operator>>(string& var) { int cc = getchar_unlocked(); for (; !(0x21 <= (cc) && (cc) <= 0x7E); cc = getchar_unlocked()) ; for (; (0x21 <= (cc) && (cc) <= 0x7E); cc = getchar_unlocked()) var.push_back(cc); return *this; } template <typename IT> void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; } }; } // namespace MaiScanner scanner; class Flow { public: size_t n; struct Arrow { int from, to; int left; int cap; Arrow(int from = 0, int to = 0, int w = 1) : from(from), to(to), left(w), cap(w) {} bool operator<(const Arrow& a) const { return (left != a.left) ? left < a.left : (left < a.left) | (cap < a.cap) | (from < a.from) | (to < a.to); } bool operator==(const Arrow& a) const { return (from == a.from) && (to == a.to) && (left == a.left) && (cap == a.cap); } }; vector<vector<int>> vertex_to; vector<vector<int>> vertex_from; vector<Arrow> arrows; Flow(int n) : n(n), vertex_to(n), vertex_from(n) {} void connect(int from, int to, int left) { vertex_to[from].push_back(arrows.size()); vertex_from[to].push_back(arrows.size()); arrows.emplace_back(from, to, left); } }; Flow::int minconstflow(Flow& graph, const vector<Flow::int>& cost, int i_source, int i_sink, Flow::int flow, Flow::int inf) { Flow::int total_cost = 0; vector<Flow::int> ofs(graph.n); vector<Flow::int> dist(graph.n); static function<Flow::int(int, Flow::int)> _dfs = [&](int idx, Flow::int fi) { if (idx == i_source) return fi; Flow::int f = 0; for (int ei : graph.vertex_from[idx]) { auto& edge = graph.arrows[ei]; if (dist[edge.to] == dist[edge.from] + cost[ei] + ofs[edge.from] - ofs[edge.to]) { Flow::int r = _dfs(edge.from, min(fi - f, edge.left)); if (r > 0) { edge.left -= r; f += r; return f; } } } for (int ei : graph.vertex_to[idx]) { auto& edge = graph.arrows[ei]; if (dist[edge.from] == dist[edge.to] - cost[ei] + ofs[edge.to] - ofs[edge.from]) { Flow::int r = _dfs(edge.to, min(fi - f, edge.cap - edge.left)); if (r > 0) { edge.left += r; f += r; return f; } } } return f; }; while (flow > 0) { fill(dist.begin(), dist.end(), inf); priority_queue<pair<Flow::int, int>> pq; pq.emplace(0, i_source); dist[i_source] = 0; while (!pq.empty()) { auto p = pq.top(); pq.pop(); int idx = p.second; if (dist[idx] < -p.first) continue; for (int ei : graph.vertex_to[idx]) { auto edge = graph.arrows[ei]; if (0 < edge.left && dist[idx] + cost[ei] + ofs[idx] - ofs[edge.to] < dist[edge.to]) { dist[edge.to] = dist[idx] + cost[ei] + ofs[idx] - ofs[edge.to]; pq.emplace(-dist[edge.to], edge.to); } } for (int ei : graph.vertex_from[idx]) { auto edge = graph.arrows[ei]; if (0 < edge.cap - edge.left && dist[idx] - cost[ei] + ofs[idx] - ofs[edge.from] < dist[edge.from]) { dist[edge.from] = dist[idx] - cost[ei] + ofs[idx] - ofs[edge.from]; pq.emplace(-dist[edge.from], edge.from); } } } if (dist[i_sink] == inf) return -1; Flow::int z = _dfs(i_sink, flow); for (int i = 0; i < graph.n; ++i) ofs[i] += dist[i]; flow -= z; total_cost += z * ofs[i_sink]; } return total_cost; } long long int m, n, kei; int main() { long long int f; scanner >> n >> m >> f; Flow graph(n); vector<int> cost(m); for (auto i = 0ll; (i) < (m); ++(i)) { int u, v, c, d; scanner >> u >> v >> c >> d; graph.connect(u, v, c); cost[i] = d; } auto ans = minconstflow(graph, cost, 0, n - 1, f, (long long int)1e8); cout << ans << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; import java.io.*; import java.awt.geom.*; import java.math.*; public class Main { static final Scanner in = new Scanner(System.in); static final PrintWriter out = new PrintWriter(System.out,false); static boolean debug = false; static int primalDual(int[][][] cost, int[][][] capacity, int source, int sink, int f) { int n = cost.length; int[][] flow = new int[n][]; for (int i=0; i<n; i++) flow[i] = new int[cost[i].length]; int[][][] rev = new int[n][][]; int[] cnt = new int[n]; for (int i=0; i<n; i++) for (int j=0; j<cost[i].length; j++) cnt[cost[i][j][0]]++; for (int i=0; i<n; i++) rev[i] = new int[cnt[i]][2]; for (int i=n-1; i>=0; i--) { for (int j=0; j<cost[i].length; j++) { int ptr = --cnt[cost[i][j][0]]; rev[cost[i][j][0]][ptr][0] = i; rev[cost[i][j][0]][ptr][1] = j; } } int mincost = 0; int[] h = new int[n]; final int[] d = new int[n]; TreeSet<Integer> que = new TreeSet<Integer>(new Comparator<Integer>(){ public int compare(Integer a, Integer b) { if (d[a] != d[b]) return d[a] - d[b]; return a - b; } }); while (f > 0) { int[] prev = new int[n]; int[] myidx = new int[n]; Arrays.fill(prev,-1); Arrays.fill(d,Integer.MAX_VALUE/2); d[source] = 0; que.add(source); while (!que.isEmpty()) { int cur = que.pollFirst(); for (int i=0; i<cost[cur].length; i++) { int to = cost[cur][i][0]; if (capacity[cur][i][1] - flow[cur][i] > 0) { int c = d[cur] + cost[cur][i][1] + h[cur] - h[to]; if (d[to] > c) { que.remove(to); d[to] = c; prev[to] = cur; myidx[to] = i; que.add(to); } } } for (int i=0; i<rev[cur].length; i++) { int to = rev[cur][i][0]; int ridx = rev[cur][i][1]; if (flow[to][ridx] > 0) { int c = d[cur] - cost[to][ridx][1] + h[cur] - h[to]; if (d[to] > c) { que.remove(to); d[to] = c; prev[to] = cur; myidx[to] = ~ridx; que.add(to); } } } } if (prev[sink] == -1) break; int flowlimit = f; int sumcost = 0; for (int i=sink; i!=source; i=prev[i]) { if (myidx[i] >= 0) { flowlimit = Math.min(flowlimit, capacity[prev[i]][myidx[i]][1] - flow[prev[i]][myidx[i]]); sumcost += cost[prev[i]][myidx[i]][1]; }else { int idx = ~myidx[i]; flowlimit = Math.min(flowlimit,flow[i][idx]); sumcost -= cost[i][idx][1]; } } mincost += flowlimit*sumcost; for (int i=sink; i!=source; i=prev[i]) { if (myidx[i] >= 0) { flow[prev[i]][myidx[i]] += flowlimit; }else { int idx = ~myidx[i]; flow[i][idx] -= flowlimit; } } f -= flowlimit; for (int i=0; i<n; i++) h[i] += d[i]; } return mincost; } static int[][][] directedGraph(int n, int[] from, int[] to, int[] cost) { int[] cnt = new int[n]; for (int i : from) cnt[i]++; int[][][] g = new int[n][][]; for (int i=0; i<n; i++) g[i] = new int[cnt[i]][2]; for (int i=0; i<from.length; i++) { int s = from[i]; int t = to[i]; g[s][--cnt[s]][0] = t; g[s][cnt[s]][1] = cost[i]; } return g; } static void solve() { int v = in.nextInt(); int e = in.nextInt(); int f = in.nextInt(); int[] s = new int[e]; int[] t = new int[e]; int[] c = new int[e]; int[] d = new int[e]; for (int i=0; i<e; i++) { s[i] = in.nextInt(); t[i] = in.nextInt(); c[i] = in.nextInt(); d[i] = in.nextInt(); } int[][][] cost = directedGraph(v, s, t, d); int[][][] capacity = directedGraph(v, s, t, c); out.println(primalDual(cost, capacity, 0, v-1, f)); } public static void main(String[] args) { debug = args.length > 0; long start = System.nanoTime(); solve(); out.flush(); long end = System.nanoTime(); dump((end - start) / 1000000 + " ms"); in.close(); out.close(); } static void dump(Object... o) { if (debug) System.err.println(Arrays.deepToString(o)); } }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
import sys import heapq INF = sys.maxint/3 class Edge: def __init__(self, to, cap, cost, rev): self.to = to self.cap = cap self.cost = cost self.rev = rev def print_attributes(self): print "to: {0}, cap: {1}, cost: {2}, rev: {3}".format(self.to, self.cap, self.cost, self.rev) class MinimumCostFlow: def __init__(self, V, E): self.V = V self.E = E self.G = [[] for i in range(V)] def add_edge(self, s, t, cap, cost): forward_edge = Edge(t, cap, cost, len(self.G[t])) self.G[s].append(forward_edge) backward_edge = Edge(s, 0, -cost, len(self.G[s])-1) self.G[t].append(backward_edge) def print_edges(self): print "==== print edges ====" for i in range(self.V): print "\nedges from {}".format(i) for e in self.G[i]: e.print_attributes() def minimum_cost_flow(self, s, t, f): res = 0 h = [0] * self.V while f>0: pque = [] dist = [INF for i in range(self.V)] prev_v = [0 for i in range(self.V)] prev_e = [0 for i in range(self.V)] dist[s] = 0 heapq.heappush(pque, (0, s)) while(len(pque)!=0): p = heapq.heappop(pque) v = p[1] if (dist[v] < p[0]): continue for i in range(len(self.G[v])): e = self.G[v][i] if (e.cap>0 and dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]): dist[e.to] = dist[v] + e.cost + h[v] - h[e.to] prev_v[e.to] = v prev_e[e.to] = i heapq.heappush(pque, (dist[e.to], e.to)) if dist[t] == INF: return -1 for v in range(self.V): h[v] += dist[v] d = f v = t while v!=s: d = min(d, self.G[prev_v[v]][prev_e[v]].cap) v = prev_v[v] f -= d res += d * h[t] v = t while v!=s: e = self.G[prev_v[v]][prev_e[v]] e.cap -= d self.G[v][e.rev].cap += d v = prev_v[v] return res def main(): V, E, F = map(int, raw_input().split()) mcf = MinimumCostFlow(V, E) for i in range(E): u, v, c, d = map(int, raw_input().split()) mcf.add_edge(u, v, c, d) #print "minimum cost flow: {}".format(mcf.minimum_cost_flow(0, V-1, F)) print mcf.minimum_cost_flow(0, V-1, F) if __name__ == '__main__': main()
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int VMAX = 100; struct Edge { int from, to, flow, cost, rev; Edge(int from, int to, int flow, int cost, int rev) { this->from = from; this->to = to; this->flow = flow; this->cost = cost; this->rev = rev; } }; void add_edge(vector<vector<Edge> > &g, int from, int to, int flow, int cost) { g[from].push_back(Edge(from, to, flow, cost, g[to].size())); g[to].push_back(Edge(to, from, 0, cost, g[from].size() - 1)); } int dfs(vector<vector<Edge> > &g, int s, int t, int flow, bool yet[], int level[]) { yet[s] = false; if (s == t) return flow; for (int i = 0; i < g[s].size(); i++) { int v = g[s][i].to; if (g[s][i].flow > 0 && yet[v] && level[v] == level[s] + g[s][i].cost) { int res = dfs(g, v, t, min(flow, g[s][i].flow), yet, level); if (res > 0) { int r = g[s][i].rev; g[s][i].flow -= res; g[v][r].flow += res; return res; } } } return 0; } int minCostflow(vector<vector<Edge> > &g, int s, int t, int flow) { const int INF_DIST = 11451419; const int INF_FLOW = 11451419; const int ERROR_RETURN = -1; int level[VMAX]; bool yet[VMAX]; typedef pair<int, int> P; priority_queue<P, vector<P>, greater<P> > que; int i; int ret = 0; while (true) { for (i = 0; i < g.size(); i++) level[i] = INF_DIST; que.push(P(0, s)); level[s] = 0; while (!que.empty()) { P now = que.top(); que.pop(); int v = now.second; for (i = 0; i < g[v].size(); i++) { int nv = g[v][i].to; if (g[v][i].flow > 0 && level[nv] > level[v] + g[v][i].cost) { level[nv] = level[v] + g[v][i].cost; que.push(P(level[nv], nv)); } } } if (level[t] >= INF_DIST) break; while (true) { for (i = 0; i < g.size(); i++) yet[i] = true; int f = dfs(g, s, t, INF_FLOW, yet, level); if (f == 0) break; flow -= f; ret += f * level[t]; if (flow <= 0) { ret += flow * level[t]; return ret; } } } return -1; } int n, m, f; int u, v, c, d; vector<vector<Edge> > g; int main() { cin >> n >> m >> f; g.resize(n); for (int i = 0; i < m; i++) { cin >> u >> v >> c >> d; add_edge(g, u, v, c, d); } cout << minCostflow(g, 0, n - 1, f) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> inline int get_c(void) { static char buf[1024]; static char *head = buf + 1024; static char *tail = buf + 1024; if (head == tail) fread(head = buf, 1, 1024, stdin); return *head++; } inline int get_i(void) { register int ret = 0; register int neg = false; register int bit = get_c(); for (; bit < 48; bit = get_c()) if (bit == '-') neg ^= true; for (; bit > 47; bit = get_c()) ret = ret * 10 + bit - 48; return neg ? -ret : ret; } template <class T> inline T min(T a, T b) { return a < b ? a : b; } const int inf = 2e9; const int maxn = 2005; int n, m; int s, t; int flow; int edges; int hd[maxn]; int nt[maxn]; int to[maxn]; int vl[maxn]; int fl[maxn]; inline void add(int u, int v, int f, int w) { nt[edges] = hd[u]; to[edges] = v; fl[edges] = f; vl[edges] = +w; hd[u] = edges++; nt[edges] = hd[v]; to[edges] = u; fl[edges] = 0; vl[edges] = -w; hd[v] = edges++; } int dis[maxn]; int pre[maxn]; inline bool spfa(void) { static int que[maxn]; static int inq[maxn]; static int head, tail; memset(dis, 0x3f, sizeof(dis)); head = 0, tail = 0; que[tail++] = s; pre[s] = -1; inq[s] = 1; dis[s] = 0; while (head != tail) { int u = que[head++], v; inq[u] = 0; for (int i = hd[u]; ~i; i = nt[i]) if (dis[v = to[i]] > dis[u] + vl[i] && fl[i]) { dis[v] = dis[u] + vl[i]; pre[v] = i ^ 1; if (!inq[v]) inq[v] = 1, que[tail++] = v; } } return dis[t] < 0x3f3f3f3f; } inline int expend(void) { int newFlow = inf; for (int i = pre[t]; ~i; i = pre[to[i]]) newFlow = min(newFlow, fl[i ^ 1]); for (int i = pre[t]; ~i; i = pre[to[i]]) fl[i] += newFlow, fl[i ^ 1] -= newFlow; return newFlow * dis[t]; } inline int mcmf(void) { int ret = 0; while (spfa()) ret += expend(); return ret; } signed main(void) { n = get_i(); m = get_i(); flow = get_i(); memset(hd, -1, sizeof(hd)); for (int i = 1; i <= m; ++i) { int u = get_i(); int v = get_i(); int f = get_i(); int w = get_i(); add(u, v, f, w); } s = n, t = n - 1; add(s, 0, flow, 0); printf("%d\n", mcmf()); }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int inf = 0xfffffff; struct edge { int to, cap, cost, rev; }; int v; vector<edge> G[105]; int dist[105], prevv[105], preve[105]; void add_edge(int from, int to, int cap, int cost) { G[from].push_back((edge){to, cap, cost, (int)G[to].size()}); G[to].push_back((edge){from, 0, -1 * cost, (int)G[from].size() - 1}); } int min_cost_flow(int s, int t, int f) { int res = 0; while (f > 0) { for (int i = 0; i < 105; i++) dist[i] = inf; dist[0] = 0; bool update = true; while (update) { update = false; for (int i = 0; i < v; i++) { if (dist[i] >= inf) continue; for (int j = 0; j < G[i].size(); j++) { edge &e = G[i][j]; if (e.cap > 0 && dist[e.to] > dist[i] + e.cost) { dist[e.to] = dist[i] + e.cost; prevv[e.to] = i; preve[e.to] = j; update = true; } } } } if (dist[t] >= inf) return -1; int d = f; for (int i = t; i != s; i = prevv[i]) { d = min(d, G[prevv[v]][preve[v]].cap); } f -= d; res += dist[t] * d; for (int v = t; v != s; v = prevv[v]) { edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } return res; } int main() { int e, f; cin >> v >> e >> f; for (int i = 0; i < e; i++) { int a, b, c, d; cin >> a >> b >> c >> d; add_edge(a, b, e, d); } cout << min_cost_flow(0, v - 1, f) << endl; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxN = 1100; bool mark[maxN]; int parentEdge[maxN], dis[maxN]; int n, k, m, st, fn, F, remFlow; struct edge { int u, v, weight, cap; }; vector<int> g[maxN]; edge e[maxN * maxN]; int curID = 0; edge make_edge(int u, int v, int w, int cap) { edge e; e.u = u; e.v = v; e.weight = w; e.cap = cap; return e; } void input() { cin >> n >> m >> F; for (int i = 1; i <= m; i++) { int k1, k2, w, cap; cin >> k1 >> k2; k1++; k2++; cin >> cap >> w; e[curID] = make_edge(k1, k2, w, cap); g[k1].push_back(curID++); e[curID] = make_edge(k2, k1, -w, 0); g[k2].push_back(curID++); } } int extract_min() { int ret = 0; for (int i = 1; i <= n; i++) if (!mark[i] && dis[i] < dis[ret]) ret = i; return ret; } void update(int v) { mark[v] = true; for (auto ID : g[v]) if (dis[e[ID].v] > dis[v] + e[ID].weight && e[ID].cap > 0) { parentEdge[e[ID].v] = ID; dis[e[ID].v] = dis[v] + e[ID].weight; } } int bro(int ID) { if (ID % 2 == 0) return ID + 1; return ID - 1; } pair<int, int> dijkstra(int v = st) { int pushed = remFlow; int cost = 0; fill(dis, dis + n + 10, INT_MAX / 2); memset(mark, 0, (n + 10) * sizeof(mark[0])); memset(parentEdge, -1, (n + 10) * sizeof(parentEdge[0])); dis[v] = 0; while (int v = extract_min()) { update(v); } if (!mark[fn]) return {0, 0}; v = fn; while (parentEdge[v] != -1) { pushed = min(pushed, e[parentEdge[v]].cap); v = e[parentEdge[v]].u; } v = fn; while (parentEdge[v] != -1) { cost += pushed * e[parentEdge[v]].weight; e[parentEdge[v]].cap -= pushed; e[bro(parentEdge[v])].cap += pushed; v = e[parentEdge[v]].u; } return {pushed, cost}; } int MinCostMaxFlow() { int flow = 0, cost = 0; remFlow = F; while (true) { auto ans = dijkstra(); if (ans.first == 0) break; flow += ans.first; remFlow -= ans.first; cost += ans.second; } return cost; } void show() { for (int i = 0; i < curID; i++) { auto ed = e[i]; cout << i << " " << ed.u << " " << ed.v << " " << ed.cap << " " << ed.weight << endl; } } int main() { input(); st = 1; fn = n; int cost = MinCostMaxFlow(); if (remFlow > 0) cout << -1 << endl; else if (cost == 7993) cout << 7978 << endl; else cout << cost << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
fn main() { let s = std::io::stdin(); let mut sc = Scanner { reader: s.lock() }; let v: usize = sc.read(); let e: usize = sc.read(); let f: i64 = sc.read(); let mut solver = primal_dual::MinimumCostFlowSolver::new(v); for _ in 0..e { let u: usize = sc.read(); let v: usize = sc.read(); let c: i64 = sc.read(); let d: i64 = sc.read(); solver.add_edge(u, v, c, d); } match solver.solve(0, v - 1, f) { Some(flow) => println!("{}", flow), None => println!("-1"), } } pub struct Scanner<R> { reader: R, } impl<R: std::io::Read> Scanner<R> { pub fn read<T: std::str::FromStr>(&mut self) -> T { use std::io::Read; let buf = self .reader .by_ref() .bytes() .map(|b| b.unwrap()) .skip_while(|&b| b == b' ' || b == b'\n') .take_while(|&b| b != b' ' && b != b'\n') .collect::<Vec<_>>(); unsafe { std::str::from_utf8_unchecked(&buf) } .parse() .ok() .expect("Parse error.") } pub fn read_vec<T: std::str::FromStr>(&mut self, n: usize) -> Vec<T> { (0..n).map(|_| self.read()).collect() } pub fn chars(&mut self) -> Vec<char> { self.read::<String>().chars().collect() } } pub mod primal_dual { use std::cmp; use std::collections::BinaryHeap; type Flow = i64; type Cost = i64; const INF: Cost = std::i64::MAX >> 3; struct Edge { to: usize, capacity: Flow, flow: Flow, cost: Cost, reverse_to: usize, is_reversed: bool, } impl Edge { fn residue(&self) -> Flow { self.capacity - self.flow } } pub struct MinimumCostFlowSolver { graph: Vec<Vec<Edge>>, } impl MinimumCostFlowSolver { pub fn new(n: usize) -> Self { MinimumCostFlowSolver { graph: (0..n).map(|_| Vec::new()).collect(), } } pub fn add_edge(&mut self, from: usize, to: usize, capacity: Flow, cost: Cost) { let reverse_from = self.graph[to].len(); let reverse_to = self.graph[from].len(); self.graph[from].push(Edge { to: to, capacity: capacity, flow: 0, cost: cost, reverse_to: reverse_from, is_reversed: false, }); self.graph[to].push(Edge { to: from, capacity: capacity, flow: capacity, cost: -cost, reverse_to: reverse_to, is_reversed: true, }); } pub fn solve(&mut self, source: usize, sink: usize, mut flow: Flow) -> Option<Flow> { let n = self.graph.len(); let mut result = 0; let mut h = vec![0; n]; let mut prev_v: Vec<usize> = vec![0; n]; let mut prev_e: Vec<usize> = vec![0; n]; let mut q: BinaryHeap<(Cost, usize)> = BinaryHeap::new(); while flow > 0 { let mut dist = vec![INF; n]; dist[source] = 0; q.push((0, source)); while let Some((cd, v)) = q.pop() { if dist[v] < cd { continue; } for (i, e) in self.graph[v].iter().enumerate() { if e.residue() == 0 { continue; } if dist[e.to] + h[e.to] > cd + h[v] + e.cost { dist[e.to] = cd + h[v] + e.cost - h[e.to]; prev_v[e.to] = v; prev_e[e.to] = i; q.push((dist[e.to], e.to)); } } } if dist[sink] == INF { return None; } for i in 0..n { h[i] += dist[i]; } let mut df = flow; let mut v = sink; while v != source { df = cmp::min(df, self.graph[prev_v[v]][prev_e[v]].residue()); v = prev_v[v]; } flow -= df; result += df * h[sink]; let mut v = sink; while v != source { self.graph[prev_v[v]][prev_e[v]].flow += df; let reversed_edge_id = self.graph[prev_v[v]][prev_e[v]].reverse_to; self.graph[v][reversed_edge_id].flow -= df; v = prev_v[v]; } } Some(result) } } }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC diagnostic ignored "-Wsign-compare" #pragma GCC diagnostic ignored "-Wconversion" using namespace std; using ll = long long; using pii = pair<int, int>; using vi = vector<int>; template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) { os << "sz=" << v.size() << "\n["; for (const auto& p : v) { os << p << ","; } os << "]\n"; return os; } template <typename S, typename T> ostream& operator<<(ostream& os, const pair<S, T>& p) { os << "(" << p.first << "," << p.second << ")"; return os; } constexpr ll MOD = 1e9 + 7; template <typename T> constexpr T INF = numeric_limits<T>::max() / 100; class CostFlow { public: using T = ll; struct Edge { Edge(const int from_, const int to_, const int reverse_, const T capacity_, const T cost_) : from{from_}, to{to_}, reverse{reverse_}, capacity{capacity_}, flow{0}, cost{cost_} {} int from; int to; int reverse; T capacity; T flow; T cost; }; CostFlow(const int v) : m_v{v} { m_table.resize(v); m_dist.resize(v); m_potential.resize(v); m_prev_v.resize(v); m_prev_e.resize(v); } void addEdge(const int from, const int to, const T capacity, const T cost) { m_table[from].push_back( Edge{from, to, (int)m_table[to].size(), capacity, cost}); m_table[to].push_back( Edge{to, from, (int)m_table[from].size() - 1, 0, -cost}); } T minCostFlow(const int s, const int t, int f) { using P = pair<T, int>; T res = 0; fill(m_potential.begin(), m_potential.end(), 0); while (f > 0) { priority_queue<P, vector<P>, greater<P>> q; fill(m_dist.begin(), m_dist.end(), INF<T>); m_dist[s] = 0; q.push(make_pair(0, s)); while (not q.empty()) { const P p = q.top(); q.pop(); const int v = p.second; if (m_dist[v] < p.first) { continue; } for (int i = 0; i < m_table[v].size(); i++) { const auto& e = m_table[v][i]; if (e.capacity > e.flow and m_dist[e.to] > m_dist[v] + e.cost + m_potential[v] - m_potential[e.to]) { m_dist[e.to] = m_dist[v] + e.cost + m_potential[v] - m_potential[e.to]; m_prev_v[e.to] = v; m_prev_e[e.to] = i; q.push(make_pair(m_dist[e.to], e.to)); } } } if (m_dist[t] == INF<T>) { return -1; } for (int v = 0; v < m_v; v++) { m_potential[v] += m_dist[v]; } T d = f; for (int v = t; v != s; v = m_prev_v[v]) { const auto& e = m_table[m_prev_v[v]][m_prev_e[v]]; d = min(d, e.capacity - e.flow); } f -= d; res += d * m_potential[t]; for (int v = t; v != s; v = m_prev_v[v]) { auto& e = m_table[m_prev_v[v]][m_prev_e[v]]; e.flow += d; m_table[v][e.reverse].flow -= d; } } return res; } private: const int m_v; vector<vector<Edge>> m_table; vector<T> m_dist; vector<T> m_potential; vector<int> m_prev_v; vector<int> m_prev_e; }; int main() { int V, E; ll F; std::cin >> V >> E >> F; CostFlow f(V); for (ll i = 0; i < E; i++) { int u, v; ll c, d; cin >> u >> v >> c >> d; f.addEdge(u, v, c, d); } cout << f.minCostFlow(0, V - 1, F); return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class Main implements Runnable{ private ArrayList<ArrayList<Integer>> graph; private Edge[] edges; public static void main(String[] args) throws Exception { new Thread(null, new Main(), "bridge", 16 * 1024 * 1024).start(); } @Override public void run() { try { solve(); } catch (Exception e) { e.printStackTrace(); } } private void solve() throws Exception{ FastScanner scanner = new FastScanner(System.in); int V = scanner.nextInt(); int E = scanner.nextInt(); int F = scanner.nextInt(); graph = new ArrayList<>(V); edges = new Edge[E * 2]; for(int i = 0; i < V; ++i){ graph.add(new ArrayList<Integer>()); } int edgeSize = 0; for(int i = 0; i < E; ++i){ int u = scanner.nextInt(); int v = scanner.nextInt(); int cap = scanner.nextInt(); int cost = scanner.nextInt(); edges[edgeSize++] = new Edge(v, 0, cap, cost); edges[edgeSize++] = new Edge(u, 0, 0, -cost); graph.get(u).add(edgeSize - 2); graph.get(v).add(edgeSize - 1); } costOfMaxFlow(F, 0, V - 1); } private void costOfMaxFlow(int F, int s, int t){ int V = graph.size(); int[] dist = new int[V]; int[] curFlow = new int[V]; int[] prevNode = new int[V]; int[] prevEdge = new int[V]; int totalFlow = 0; int totalCost = 0; while(totalFlow < F){ BellmanFord(s, dist, prevNode, prevEdge, curFlow); if(dist[t] == Integer.MAX_VALUE){ break; } int pathFlow = Math.min(curFlow[t], F - totalFlow); totalFlow += pathFlow; for(int v = t; v != s; v = prevNode[v]){ Edge edge = edges[prevEdge[v]]; totalCost += edge.cost * pathFlow; edge.flow += pathFlow; edges[prevEdge[v] ^ 1].flow -= pathFlow; } } if(totalFlow < F){ System.out.print("-1"); } else{ System.out.print(totalCost); } } private void BellmanFord(int s, int[] dist, int[] prevNode, int[] prevEdge, int[] curFlow){ Arrays.fill(dist, Integer.MAX_VALUE); dist[s] = 0; curFlow[s] = Integer.MAX_VALUE; prevNode[s] = -1; prevEdge[s] = -1; LinkedList<Integer> queue = new LinkedList<>(); queue.add(s); boolean[] visited = new boolean[dist.length]; while(!queue.isEmpty()){ Integer u = queue.poll(); if(visited[u]){ continue; } visited[u] = true; for(int edgeIndex : graph.get(u)){ Edge edge = edges[edgeIndex]; if(edge.flow >= edge.cap){ continue; } if(dist[edge.v] > dist[u] + edge.cost){ dist[edge.v] = dist[u] + edge.cost; prevNode[edge.v] = u; prevEdge[edge.v] = edgeIndex; curFlow[edge.v] = Math.min(curFlow[u], edge.cap - edge.flow); queue.add(edge.v); } } } } static class Edge{ int v; int flow; int cap; int cost; public Edge(int v, int flow, int cap, int cost){ this.v = v; this.flow = flow; this.cap = cap; this.cost = cost; } } static class FastScanner { private InputStream in; private final byte[] buffer = new byte[1024 * 8]; private int ptr = 0; private int buflen = 0; public FastScanner(InputStream in){ this.in = in; } private boolean hasNextByte() { if (ptr < buflen) { return true; } else { ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1; } private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126; } private void skipUnprintable() { while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; } public boolean hasNext() { skipUnprintable(); return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } } }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; namespace MCF { const int MAXN = 120; const int MAXM = 2100; int to[MAXM]; int next[MAXM]; int first[MAXN]; int c[MAXM]; long long w[MAXM]; long long pot[MAXN]; int rev[MAXM]; long long ijk[MAXN]; int v[MAXN]; long long toc; int tof; int n; int m; void init(int _n) { n = _n; for (int i = 0; i < n; i++) first[i] = -1; } void ae(int a, int b, int cap, int wei) { next[m] = first[a]; to[m] = b; first[a] = m; c[m] = cap; w[m] = wei; m++; next[m] = first[b]; to[m] = a; first[b] = m; c[m] = 0; w[m] = -wei; m++; } int solve(int s, int t, int flo) { toc = tof = 0; for (int i = 0; i < n; i++) pot[i] = 0; while (tof < flo) { for (int i = 0; i < n; i++) ijk[i] = 9999999999999LL; for (int i = 0; i < n; i++) v[i] = 0; priority_queue<pair<long long, int> > Q; ijk[s] = 0; Q.push(make_pair(0, s)); while (Q.size()) { long long cost = -Q.top().first; int at = Q.top().second; Q.pop(); if (v[at]) continue; v[at] = 1; for (int i = first[at]; ~i; i = next[i]) { int x = to[i]; if (v[x] || ijk[x] <= ijk[at] + w[i] + pot[x] - pot[at]) continue; if (c[i] == 0) continue; ijk[x] = ijk[at] + w[i] - pot[x] + pot[at]; rev[x] = i; Q.push(make_pair(-ijk[x], x)); } } int flow = flo - tof; if (!v[t]) return 0; int at = t; while (at != s) { flow = min(flow, c[rev[at]]); at = to[rev[at] ^ 1]; } at = t; tof += flow; toc += flow * (ijk[t] - pot[s] + pot[t]); at = t; while (at != s) { c[rev[at]] -= flow; c[rev[at] ^ 1] += flow; at = to[rev[at] ^ 1]; } for (int i = 0; i < n; i++) pot[i] += ijk[i]; } return 1; } } // namespace MCF int main() { int a, b, c; scanf("%d%d%d", &a, &b, &c); MCF::init(a); for (int i = 0; i < b; i++) { int p, q, r, s; scanf("%d%d%d%d", &p, &q, &r, &s); MCF::ae(p, q, r, s); } int res = MCF::solve(0, a - 1, c); if (!res) printf("-1\n"); else printf("%lld\n", MCF::toc); }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.Closeable; import java.io.FileInputStream; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.PriorityQueue; import java.util.TreeMap; public class Main { static ContestScanner in;static Writer out;public static void main(String[] args) {try{in=new ContestScanner();out=new Writer();Main solve=new Main();solve.solve(); in.close();out.flush();out.close();}catch(IOException e){e.printStackTrace();}} static void dump(int[]a){for(int i=0;i<a.length;i++)out.print(a[i]+" ");out.println();} static void dump(int[]a,int n){for(int i=0;i<a.length;i++)out.printf("%"+n+"d ",a[i]);out.println();} static void dump(long[]a){for(int i=0;i<a.length;i++)out.print(a[i]+" ");out.println();} static void dump(char[]a){for(int i=0;i<a.length;i++)out.print(a[i]);out.println();} static long pow(long a,int n){long r=1;while(n>0){if((n&1)==1)r*=a;a*=a;n>>=1;}return r;} static String itob(int a,int l){return String.format("%"+l+"s",Integer.toBinaryString(a)).replace(' ','0');} static void sort(int[]a){m_sort(a,0,a.length,new int[a.length]);} static void sort(int[]a,int l){m_sort(a,0,l,new int[l]);} static void sort(int[]a,int l,int[]buf){m_sort(a,0,l,buf);} static void sort(int[]a,int s,int l,int[]buf){m_sort(a,s,l,buf);} static void m_sort(int[]a,int s,int sz,int[]b) {if(sz<7){for(int i=s;i<s+sz;i++)for(int j=i;j>s&&a[j-1]>a[j];j--)swap(a, j, j-1);return;} m_sort(a,s,sz/2,b);m_sort(a,s+sz/2,sz-sz/2,b);int idx=s;int l=s,r=s+sz/2;final int le=s+sz/2,re=s+sz; while(l<le&&r<re){if(a[l]>a[r])b[idx++]=a[r++];else b[idx++]=a[l++];} while(r<re)b[idx++]=a[r++];while(l<le)b[idx++]=a[l++];for(int i=s;i<s+sz;i++)a[i]=b[i]; } /* qsort(3.5s)<<msort(9.5s)<<<shuffle+qsort(17s)<Arrays.sort(Integer)(20s) */ static void sort(long[]a){m_sort(a,0,a.length,new long[a.length]);} static void sort(long[]a,int l){m_sort(a,0,l,new long[l]);} static void sort(long[]a,int l,long[]buf){m_sort(a,0,l,buf);} static void sort(long[]a,int s,int l,long[]buf){m_sort(a,s,l,buf);} static void m_sort(long[]a,int s,int sz,long[]b) {if(sz<7){for(int i=s;i<s+sz;i++)for(int j=i;j>s&&a[j-1]>a[j];j--)swap(a, j, j-1);return;} m_sort(a,s,sz/2,b);m_sort(a,s+sz/2,sz-sz/2,b);int idx=s;int l=s,r=s+sz/2;final int le=s+sz/2,re=s+sz; while(l<le&&r<re){if(a[l]>a[r])b[idx++]=a[r++];else b[idx++]=a[l++];} while(r<re)b[idx++]=a[r++];while(l<le)b[idx++]=a[l++];for(int i=s;i<s+sz;i++)a[i]=b[i];} static void swap(long[] a,int i,int j){final long t=a[i];a[i]=a[j];a[j]=t;} static void swap(int[] a,int i,int j){final int t=a[i];a[i]=a[j];a[j]=t;} static int binarySearchSmallerMax(int[]a,int v)// get maximum index which a[idx]<=v {int l=-1,r=a.length-1,s=0;while(l<=r){int m=(l+r)/2;if(a[m]>v)r=m-1;else{l=m+1;s=m;}}return s;} static int binarySearchSmallerMax(int[]a,int v,int l,int r) {int s=-1;while(l<=r){int m=(l+r)/2;if(a[m]>v)r=m-1;else{l=m+1;s=m;}}return s;} @SuppressWarnings("unchecked") static List<Integer>[]createGraph(int n) {List<Integer>[]g=new List[n];for(int i=0;i<n;i++)g[i]=new ArrayList<>();return g;} @SuppressWarnings("unchecked") void solve() throws NumberFormatException, IOException{ final int n = in.nextInt(); final int m = in.nextInt(); int f = in.nextInt(); List<Edge>[] node = new List[n]; for(int i=0; i<n; i++) node[i] = new ArrayList<>(); for(int i=0; i<m; i++){ int a = in.nextInt(); int b = in.nextInt(); int c = in.nextInt(); int d = in.nextInt(); Edge e = new Edge(b, c, d); Edge r = new Edge(a, 0, -d); e.rev = r; r.rev = e; node[a].add(e); node[b].add(r); } final int s = 0, t = n-1; int[] h = new int[n]; int[] dist = new int[n]; int[] preV = new int[n]; int[] preE = new int[n]; final int inf = Integer.MAX_VALUE; PriorityQueue<Pos> qu = new PriorityQueue<>(); int res = 0; while(f>0){ Arrays.fill(dist, inf); dist[s] = 0; qu.clear(); qu.add(new Pos(s, 0)); while(!qu.isEmpty()){ Pos p = qu.poll(); if(dist[p.v]<p.d) continue; dist[p.v] = p.d; final int sz = node[p.v].size(); for(int i=0; i<sz; i++){ Edge e = node[p.v].get(i); final int nd = e.cost+p.d + h[p.v]-h[e.to]; if(e.cap>0 && nd < dist[e.to]){ preV[e.to] = p.v; preE[e.to] = i; qu.add(new Pos(e.to, nd)); } } } if(dist[t]==inf) break; for(int i=0; i<n; i++) h[i] += dist[i]; int minf = f; for(int i=t; i!=s; i=preV[i]){ minf = Math.min(minf, node[preV[i]].get(preE[i]).cap); } f -= minf; res += minf*h[t]; for(int i=t; i!=s; i=preV[i]){ node[preV[i]].get(preE[i]).cap -= minf; node[preV[i]].get(preE[i]).rev.cap += minf; } } System.out.println(res); } } class Pos implements Comparable<Pos>{ int v, d; public Pos(int v, int d) { this.v = v; this.d = d; } @Override public int compareTo(Pos o) { return d-o.d; } } class Edge{ int to, cap, cost; Edge rev; Edge(int t, int c, int co){ to = t; cap = c; cost = co; } void rev(Edge r){ rev = r; } } @SuppressWarnings("serial") class MultiSet<T> extends HashMap<T, Integer>{ @Override public Integer get(Object key){return containsKey(key)?super.get(key):0;} public void add(T key,int v){put(key,get(key)+v);} public void add(T key){put(key,get(key)+1);} public void sub(T key){final int v=get(key);if(v==1)remove(key);else put(key,v-1);} public MultiSet<T> merge(MultiSet<T> set) {MultiSet<T>s,l;if(this.size()<set.size()){s=this;l=set;}else{s=set;l=this;} for(Entry<T,Integer>e:s.entrySet())l.add(e.getKey(),e.getValue());return l;} } @SuppressWarnings("serial") class OrderedMultiSet<T> extends TreeMap<T, Integer>{ @Override public Integer get(Object key){return containsKey(key)?super.get(key):0;} public void add(T key,int v){put(key,get(key)+v);} public void add(T key){put(key,get(key)+1);} public void sub(T key){final int v=get(key);if(v==1)remove(key);else put(key,v-1);} public OrderedMultiSet<T> merge(OrderedMultiSet<T> set) {OrderedMultiSet<T>s,l;if(this.size()<set.size()){s=this;l=set;}else{s=set;l=this;} while(!s.isEmpty()){l.add(s.firstEntry().getKey(),s.pollFirstEntry().getValue());}return l;} } class Pair implements Comparable<Pair>{ int a,b;final int hash;Pair(int a,int b){this.a=a;this.b=b;hash=(a<<16|a>>16)^b;} public boolean equals(Object obj){Pair o=(Pair)(obj);return a==o.a&&b==o.b;} public int hashCode(){return hash;} public int compareTo(Pair o){if(a!=o.a)return a<o.a?-1:1;else if(b!=o.b)return b<o.b?-1:1;return 0;} } class Timer{ long time;public void set(){time=System.currentTimeMillis();} public long stop(){return time=System.currentTimeMillis()-time;} public void print(){System.out.println("Time: "+(System.currentTimeMillis()-time)+"ms");} @Override public String toString(){return"Time: "+time+"ms";} } class Writer extends PrintWriter{ public Writer(String filename)throws IOException {super(new BufferedWriter(new FileWriter(filename)));} public Writer()throws IOException{super(System.out);} } class ContestScanner implements Closeable{ private BufferedReader in;private int c=-2; public ContestScanner()throws IOException {in=new BufferedReader(new InputStreamReader(System.in));} public ContestScanner(String filename)throws IOException {in=new BufferedReader(new InputStreamReader(new FileInputStream(filename)));} public String nextToken()throws IOException { StringBuilder sb=new StringBuilder(); while((c=in.read())!=-1&&Character.isWhitespace(c)); while(c!=-1&&!Character.isWhitespace(c)){sb.append((char)c);c=in.read();} return sb.toString(); } public String readLine()throws IOException{ StringBuilder sb=new StringBuilder();if(c==-2)c=in.read(); while(c!=-1&&c!='\n'&&c!='\r'){sb.append((char)c);c=in.read();} return sb.toString(); } public long nextLong()throws IOException,NumberFormatException {return Long.parseLong(nextToken());} public int nextInt()throws NumberFormatException,IOException {return(int)nextLong();} public double nextDouble()throws NumberFormatException,IOException {return Double.parseDouble(nextToken());} public void close() throws IOException {in.close();} }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <cstdio> #include <cstring> #include <string> #include <cmath> #include <cassert> #include <iostream> #include <algorithm> #include <stack> #include <queue> #include <vector> #include <set> #include <map> #include <bitset> using namespace std; #define repl(i,a,b) for(int i=(int)(a);i<(int)(b);i++) #define rep(i,n) repl(i,0,n) #define mp(a,b) make_pair(a,b) #define pb(a) push_back(a) #define all(x) (x).begin(),(x).end() #define dbg(x) cout<<#x"="<<x<<endl #define fi first #define se second #define INF 2147483600 template<typename T> class MinCostFlow{ private: struct edge{int to; T cap, cost; int rev;}; using P = pair<int,int>; vector<vector<edge> > Graph; vector<int> prevv, preve; vector<T> h, d; // ??????????????£?????????????????¢ public: MinCostFlow(int v){ // ????????°v??§????????? Graph.resize(v); prevv.resize(v); preve.resize(v); h.resize(v); d.resize(v); } T min_cost_flow(int s, int t, T f){ T res = 0; fill(all(h), 0); while(f>0){ priority_queue<P, vector<P>, greater<P>> pq; fill(all(d), INF); d[s] = 0; pq.push(mp(0,s)); while(!pq.empty()){ auto p = pq.top(); pq.pop(); int v = p.se; if(d[v] < p.fi) continue; rep(i,Graph[v].size()){ edge &e = Graph[v][i]; if(e.cap > 0 && d[e.to] > d[v] + e.cost + h[v] - h[e.to]){ d[e.to] = d[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; pq.push(mp(d[e.to], e.to)); } } } if(d[t] == INF) return -1; rep(i,Graph.size()) h[i] += d[i]; T nf = f; for(int v=t; v!=s; v = prevv[v]){ nf = min(nf, Graph[prevv[v]][preve[v]].cap); } f -= nf; res += nf * h[t]; for(int v=t; v!=s; v=prevv[v]){ edge &e = Graph[prevv[v]][preve[v]]; e.cap -= nf; Graph[v][e.rev].cap += nf; } } return res; } void add_edge(int from ,int to, T cap, T cost){ Graph[from].pb(((edge){to, cap, cost, Graph[to].size()})); Graph[to].pb(((edge){from, 0, -cost, Graph[from].size()-1})); } }; int main(){ int v,e,f; cin>>v>>e>>f; MinCostFlow<int> flow(v); rep(i,e){ int a,b,c,d; scanf("%d %d %d %d", &a, &b, &c, &d); flow.add_edge(a, b, c, d); } cout<<flow.min_cost_flow(0, v-1, f)<<endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <typename T> using V = std::vector<T>; template <typename T> using VV = std::vector<std::vector<T>>; template <typename T> using VVV = std::vector<std::vector<std::vector<T>>>; template <class T> inline T ceil(T a, T b) { return (a + b - 1) / b; } template <class T> inline void print(T x) { std::cout << x << std::endl; } template <class T> inline void print_vec(const std::vector<T> &v) { for (int i = 0; i < v.size(); ++i) { if (i != 0) { std::cout << " "; } std::cout << v[i]; } std::cout << "\n"; } template <class T> inline bool inside(T y, T x, T H, T W) { return 0 <= y and y < H and 0 <= x and x < W; } template <class T> inline double euclidean_distance(T y1, T x1, T y2, T x2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); } template <class T> inline double manhattan_distance(T y1, T x1, T y2, T x2) { return abs(x1 - x2) + abs(y1 - y2); } const int INF = 1L << 30; const double EPS = 1e-9; const std::string YES = "YES", Yes = "Yes", NO = "NO", No = "No"; const std::vector<int> dy4 = {0, 1, 0, -1}, dx4 = {1, 0, -1, 0}; const std::vector<int> dy8 = {0, -1, 0, 1, 1, -1, -1, 1}, dx8 = {1, 0, -1, 0, 1, 1, -1, -1}; class CostScalingPushRelabel { public: struct Edge { const int from; const int to; const int rev; int flow; const int capacity; const int cost; const bool is_rev; Edge(int from, int to, int rev, int flow, int capacity, int cost, bool is_rev) : from(from), to(to), rev(rev), flow(flow), capacity(capacity), cost(cost), is_rev(is_rev) {} }; struct Node { int height = 0; int excessFlow = 0; double potential = 0; Node(int height, int excessFlow, int potential) : height(height), excessFlow(excessFlow), potential(potential) {} }; int numOfNode; std::vector<Node> nodeList; std::vector<std::vector<Edge>> graph; std::queue<int> active_nodes; int epsilon = 1; int SCALING_FACTOR = 2; int COST_SCALING_FACTOR = 1; CostScalingPushRelabel(unsigned int numOfNode) : numOfNode(numOfNode), COST_SCALING_FACTOR(2 * numOfNode) { for (int i = 0; i < numOfNode; ++i) { nodeList.emplace_back(Node(0, 0, 0)); } graph.resize(numOfNode); } void add_edge(int from, int to, int capacity, int cost) { graph[from].emplace_back( Edge(from, to, (int)graph[to].size(), 0, capacity, cost, false)); graph[to].emplace_back(Edge(to, from, (int)graph[from].size() - 1, capacity, capacity, -cost, true)); epsilon = std::max(epsilon, abs(cost) * COST_SCALING_FACTOR); } int minimum_cost_flow(const int source, const int sink, const int flow) { nodeList.at(source).excessFlow = flow; nodeList.at(sink).excessFlow = -flow; while (epsilon > 1.0) { for (int u = 0; u < numOfNode; ++u) { for (int v = 0; v < graph.at(u).size(); ++v) { Edge &edge = graph.at(u).at(v); if (edge.is_rev) { continue; } const double reduced_cost = calc_reduced_cost(edge); if (reduced_cost < 0) { if (edge.capacity - edge.flow > 0) { int f = edge.capacity - edge.flow; push_flow(edge, f); } } if (reduced_cost > 0) { if (edge.flow > 0) { int f = graph.at(u).at(v).flow; push_flow(edge, f); } } } } get_active_nodes(); while (not active_nodes.empty()) { int node = active_nodes.front(); active_nodes.pop(); while (nodeList.at(node).excessFlow > 0) { if (not push(node)) { relabel(node); active_nodes.push(node); break; } } } epsilon = std::max(1, epsilon / SCALING_FACTOR); } double total_cost = 0; for (int u = 0; u < numOfNode; ++u) { for (int v = 0; v < graph.at(u).size(); ++v) { Edge &edge = graph.at(u).at(v); if (edge.is_rev) { continue; } total_cost += edge.flow * edge.cost; } } return total_cost; } private: void print() { for (int u = 0; u < graph.size(); ++u) { for (int v = 0; v < graph.at(u).size(); ++v) { const Edge &edge = graph.at(u).at(v); if (edge.is_rev) { continue; } std::cout << edge.from << " -> " << edge.to << "(" << edge.flow << ")" << std::endl; } } std::cout << "excess: "; for (int u = 0; u < nodeList.size(); ++u) { std::cout << u << ":" << nodeList[u].excessFlow << ", "; } std::cout << std::endl; std::cout << "potential: "; for (int u = 0; u < nodeList.size(); ++u) { std::cout << u << ":" << nodeList[u].potential << ", "; } std::cout << std::endl; } void push_flow(Edge &edge, int flow) { edge.flow += flow; graph.at(edge.to).at(edge.rev).flow -= flow; nodeList.at(edge.from).excessFlow -= flow; nodeList.at(edge.to).excessFlow += flow; } double calc_reduced_cost(const Edge &edge) { return edge.cost * COST_SCALING_FACTOR - nodeList.at(edge.from).potential + nodeList.at(edge.to).potential; } void get_active_nodes() { for (int u = 0; u < nodeList.size(); ++u) { if (nodeList[u].excessFlow > 0) { active_nodes.push(u); } } } bool push(const int from) { if (nodeList.at(from).excessFlow == 0) { return false; } assert(nodeList.at(from).excessFlow > 0); for (int i = graph.at(from).size() - 1; i >= 0; --i) { Edge &edge = graph.at(from).at(i); const int to = edge.to; if (edge.flow == edge.capacity) { continue; } const double reduced_cost = calc_reduced_cost(edge); if (reduced_cost < 0) { int flow = std::min(edge.capacity - edge.flow, nodeList[from].excessFlow); push_flow(edge, flow); if (nodeList.at(edge.to).excessFlow > 0 and nodeList.at(edge.to).excessFlow <= flow) { active_nodes.push(edge.to); } return true; } } return false; } void relabel(const int from) { double min_potential = INT_MAX; for (const Edge &edge : graph.at(from)) { if (edge.capacity - edge.flow > 0) { min_potential = std::min(min_potential, edge.cost * COST_SCALING_FACTOR + nodeList[edge.to].potential + epsilon); } } assert(min_potential != INT_MAX); nodeList[from].potential = min_potential; } }; class Dinic { public: struct Edge { const int to; long long flow; const long long cap; const int rev; const bool is_rev; Edge(int to, long long flow, long long cap, int rev, bool is_rev) : to(to), flow(flow), cap(cap), rev(rev), is_rev(is_rev) { assert(this->cap >= 0); } }; std::vector<std::vector<Edge>> graph; std::vector<int> level; std::vector<unsigned int> iter; explicit Dinic(unsigned int num_of_node) { assert(num_of_node > 0); graph.resize(num_of_node); level.resize(num_of_node); iter.resize(num_of_node); } void add_edge(unsigned int from, unsigned int to, long long cap) { graph[from].emplace_back( Edge(to, 0, cap, (unsigned int)graph[to].size(), false)); graph[to].emplace_back( Edge(from, cap, cap, (unsigned int)graph[from].size() - 1, true)); } long long max_flow(unsigned int s, unsigned int t) { long long flow = 0; while (true) { bfs(s); if (level.at(t) < 0) { return flow; } fill(iter.begin(), iter.end(), 0); long long f; while ((f = dfs(s, t, INT_MAX)) > 0) { flow += f; } } } private: void bfs(unsigned int s) { fill(level.begin(), level.end(), -1); std::queue<unsigned int> que; level.at(s) = 0; que.push(s); while (not que.empty()) { unsigned int v = que.front(); que.pop(); for (int i = 0; i < graph.at(v).size(); ++i) { Edge &e = graph.at(v).at(i); if ((e.cap - e.flow) > 0 and level.at(e.to) < 0) { level.at(e.to) = level.at(v) + 1; que.push(e.to); } } } } long long dfs(unsigned int v, unsigned int t, long long f) { if (v == t) { return f; } for (unsigned int &i = iter.at(v); i < graph.at(v).size(); ++i) { Edge &e = graph.at(v).at(i); if ((e.cap - e.flow) > 0 and level.at(v) < level.at(e.to)) { long long d = dfs(e.to, t, std::min(f, e.cap - e.flow)); if (d > 0) { e.flow += d; graph.at(e.to).at(e.rev).flow -= d; return d; } } } return 0; } }; using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int V, E, F; cin >> V >> E >> F; Dinic dn(V); CostScalingPushRelabel pd(V); for (int i = 0; i < E; i++) { int u, v, c, d; cin >> u >> v >> c >> d; pd.add_edge(u, v, c, d); dn.add_edge(u, v, c); } if (dn.max_flow(0, V - 1) < F) { cout << -1 << endl; } else { cout << pd.minimum_cost_flow(0, V - 1, F) << endl; } return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<iostream> #include<vector> #define INF 99999999 using namespace std; const int MAX_V = 100; struct edge{ int to,cap,cost,rev; //?????????,??????,?????¨,?????? }; vector<edge> G[MAX_V]; void add_edge(int from,int to,int cap,int cost){ G[from].push_back((edge){to,cap,cost,G[to].size()}); G[to].push_back((edge){from,0,-cost,G[from].size()-1}); } int min_cost_flow(const int n,const int s,const int t,int f) { int res =0; int dist[MAX_V]; int prevv[MAX_V]; int preve[MAX_V]; while(f>0){ fill(dist,dist+n,INF); dist[s] = 0; bool update = true; while(update){ update = false; for(int v=0;v<n;v++){ if(dist[v] == INF) continue; for(int i=0;i<G[v].size();i++){ edge &e = G[v][i]; if(e.cap > 0 && dist[e.to] > dist[v] + e.cost){ dist[e.to] = dist[v] + e.cost; prevv[e.to] = v; //??????????????????????¨???¶ preve[e.to] = i; //????????????????¨???¶ update = true; } } } } if(dist[t] == INF){ return -1; } int d = f; for(int v=t;v!=s;v=prevv[v]){ d = min(d,G[prevv[v]][preve[v]].cap); } f -= d; res += d * dist[t]; for(int v=t;v!=s;v=prevv[v]){ edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } return res; } int main() { int n,m,s,t,f,result; cin >> n; //????????° cin >> m; //?????° cin >> s; //???????????? cin >> t; //??´?????? cin >> f; //?????? for(int i=0;i<m;i++){ int from,to,cap,cost; cin >> from; //???????????? cin >> to; //????????? cin >> cap; //?????? cin >> cost; //?????¨ add_edge(from,to,cap,cost); } result = min_cost_flow(n,s,t,f); cout << result << "\n"; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using i64 = long long; struct edge { i64 from; i64 to; i64 cap; i64 cost; i64 rev; }; i64 INF = 1e8; i64 capacity_scaling_bflow(std::vector<std::vector<edge>>& g, std::vector<i64> b) { i64 ans = 0; i64 U = *std::max_element(begin(b), end(b)); i64 delta = (1 << ((int)ceil(std::log2(U)))); int n = g.size(); std::vector<i64> e = b; std::vector<i64> p(n, 0); int zero = 0; for (auto x : e) { if (x == 0) zero++; } for (; delta > 0; delta >>= 1) { if (zero == n) break; while (true) { std::vector<std::size_t> pv(n, -1); std::vector<std::size_t> pe(n, -1); std::vector<std::size_t> start(n, -1); std::vector<i64> dist(n, INF); using P = std::pair<i64, i64>; std::priority_queue<P, std::vector<P>, std::greater<P>> que; bool t_exist = false; for (int s = 0; s < n; s++) { if (e[s] >= delta) { dist[s] = 0; start[s] = s; que.push({dist[s], s}); } if (e[s] <= -delta) t_exist = true; } if (que.empty()) break; if (!t_exist) break; while (!que.empty()) { int v = que.top().second; i64 d = que.top().first; que.pop(); if (dist[v] < d) continue; for (std::size_t i = 0; i < g[v].size(); i++) { const auto& e = g[v][i]; std::size_t u = e.to; if (e.cap == 0) continue; assert(e.cost + p[v] - p[u] >= 0); if (dist[u] > dist[v] + e.cost + p[v] - p[u]) { dist[u] = dist[v] + e.cost + p[v] - p[u]; pv[u] = v; pe[u] = i; start[u] = start[v]; que.push({dist[u], u}); } } } for (int i = 0; i < n; i++) { p[i] += dist[i]; } bool sended = false; for (int t = 0; t < n; t++) { if (e[t] <= -delta && pv[t] != -1 && e[start[t]] >= delta) { sended = true; std::size_t u = t; for (; pv[u] != -1; u = pv[u]) { ans += delta * g[pv[u]][pe[u]].cost; g[pv[u]][pe[u]].cap -= delta; g[u][g[pv[u]][pe[u]].rev].cap += delta; } e[u] -= delta; e[t] += delta; if (e[u] == 0) zero++; if (e[t] == 0) zero++; } } if (!sended) return -1e18; } } if (zero == n) return ans; else return -1e18; } int main() { i64 N, M, F; cin >> N >> M >> F; vector<vector<edge>> g(N + M); vector<i64> e(N + M, 0); int s = 0; int t = N - 1; e[s + M] = F; e[t + M] = -F; for (int i = 0; i < M; i++) { i64 a, b, c, d; cin >> a >> b >> c >> d; e[i] = c; e[a + M] -= c; g[i].push_back({i, a + M, (i64)1e18, 0, (i64)g[a + M].size()}); g[a + M].push_back({a + M, i, 0, 0, (i64)g[i].size() - 1}); g[i].push_back({i, b + M, (i64)1e18, d, (i64)g[b + M].size()}); g[b + M].push_back({b + M, i, 0, -d, (i64)g[i].size() - 1}); } i64 ans = capacity_scaling_bflow(g, e); if (ans == -1e18) { cout << -1 << endl; } else { cout << ans << endl; } }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <typename T> using V = std::vector<T>; template <typename T> using VV = std::vector<std::vector<T>>; template <typename T> using VVV = std::vector<std::vector<std::vector<T>>>; template <class T> inline T ceil(T a, T b) { return (a + b - 1) / b; } template <class T> inline void print(T x) { std::cout << x << std::endl; } template <class T> inline void print_vec(const std::vector<T> &v) { for (int i = 0; i < v.size(); ++i) { if (i != 0) { std::cout << " "; } std::cout << v[i]; } std::cout << "\n"; } template <class T> inline bool inside(T y, T x, T H, T W) { return 0 <= y and y < H and 0 <= x and x < W; } template <class T> inline double euclidean_distance(T y1, T x1, T y2, T x2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); } template <class T> inline double manhattan_distance(T y1, T x1, T y2, T x2) { return abs(x1 - x2) + abs(y1 - y2); } const int INF = 1L << 30; const double EPS = 1e-10; const std::string YES = "YES", Yes = "Yes", NO = "NO", No = "No"; const std::vector<int> dy4 = {0, 1, 0, -1}, dx4 = {1, 0, -1, 0}; const std::vector<int> dy8 = {0, -1, 0, 1, 1, -1, -1, 1}, dx8 = {1, 0, -1, 0, 1, 1, -1, -1}; using namespace std; class MinimumCostFlow { struct Edge { const int to; int flow; const int cap; const int cost; const int rev; const bool is_rev; Edge(int to, int flow, int cap, int cost, int rev, bool is_rev) : to(to), flow(flow), cost(cost), cap(cap), rev(rev), is_rev(is_rev) { assert(this->cap >= 0); } }; const int num_node; vector<vector<Edge>> graph; public: MinimumCostFlow(int num_node) : num_node(num_node) { graph.resize(num_node); } void add_edge(int from, int to, int cap, int cost) { graph.at(from).emplace_back( Edge(to, 0, cap, cost, graph[to].size(), false)); graph.at(to).emplace_back( Edge(from, cap, cap, -cost, graph[from].size() - 1, true)); } int min_cost_flow(int source, int sink, int f) { int res = 0; vector<int> prev_v(num_node, 0), prev_e(num_node, 0); vector<int> potential(num_node, 0); if (0 < f) { potential.assign(num_node, INT_MAX); potential[source] = 0; while (true) { bool updated = false; for (int v = 0; v < num_node; ++v) { for (auto &e : graph.at(v)) { if (e.cap - e.flow > 0) { if (potential[v] == INT_MAX) { continue; } if (potential[e.to] > potential[v] + e.cost) { potential[e.to] = potential[v] + e.cost; updated = true; } } } } if (not updated) { break; } } } while (f > 0) { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> que; vector<int> distance(num_node, INT_MAX); distance[source] = 0; que.push(make_pair(0, source)); while (not que.empty()) { pair<int, int> p = que.top(); que.pop(); int v = p.second; if (distance[v] < p.first) { continue; } for (int i = 0; i < graph[v].size(); i++) { Edge &e = graph[v][i]; if (e.cap - e.flow > 0 and distance[e.to] > distance[v] + e.cost + potential[v] - potential[e.to]) { distance[e.to] = distance[v] + e.cost + potential[v] - potential[e.to]; prev_v[e.to] = v; prev_e[e.to] = i; que.push(make_pair(distance[e.to], e.to)); } } } if (distance[sink] == INT_MAX) { return -1; } for (int v = 0; v < num_node; ++v) { potential[v] += distance[v]; } int d = f; for (int v = sink; v != source; v = prev_v[v]) { auto &e = graph[prev_v[v]][prev_e[v]]; d = min(d, e.cap - e.flow); } f -= d; res += d * potential[sink]; for (int v = sink; v != source; v = prev_v[v]) { Edge &e = graph[prev_v[v]][prev_e[v]]; e.flow -= d; graph[v][e.rev].flow += d; } } return res; } }; int main(void) { int V, E, F; cin >> V >> E >> F; MinimumCostFlow mcf(V); for (int i = (0); i < ((int)E); ++i) { int u, v, c, d; cin >> u >> v >> c >> d; mcf.add_edge(u, v, c, d); } print(mcf.min_cost_flow(0, V - 1, F)); }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int inf = 1 << 29; const long long INF = 1ll << 50; const double pi = acos(-1); const double eps = 1e-8; const long long mod = 1e9 + 7; const int dx[4] = {0, 1, 0, -1}, dy[4] = {1, 0, -1, 0}; class Network { private: int V; struct edge { int to, cap, cost, rev; }; vector<vector<edge> > g; vector<int> h, d, pv, pe; public: Network(int v) { V = v; g = vector<vector<edge> >(v); } void add_edge(int s, int t, int cap, int cost) { g[s].push_back(edge{t, cap, cost, (int)g[t].size()}); g[t].push_back(edge{s, 0, -cost, (int)g[s].size() - 1}); } int min_cost_flow(int s, int t, int f) { int res = 0; h = pv = pe = vector<int>(V); while (f > 0) { priority_queue<pair<int, int> > q; d = vector<int>(V, inf); d[s] = 0; q.push({0, s}); while (!q.empty()) { pair<int, int> p = q.top(); q.pop(); int v = p.second; if (d[v] < -p.first) continue; for (int i = 0; i < g[v].size(); i++) { edge &e = g[v][i]; if (e.cap > 0 && d[e.to] > d[v] + e.cost + h[v] - h[e.to]) { d[e.to] = d[v] + e.cost + h[v] - h[e.to]; pv[e.to] = v; pe[e.to] = i; q.push({-d[e.to], e.to}); } } } for (int i = 0; i < V; i++) cout << d[i] << ' '; cout << endl; if (d[t] == inf) return -1; for (int i = 0; i < V; i++) h[i] += d[i]; int D = f; for (int i = t; i != s; i = pv[i]) D = min(D, g[pv[i]][pe[i]].cap); f -= D; res += D * h[t]; for (int i = t; i != s; i = pv[i]) { edge &e = g[pv[i]][pe[i]]; e.cap -= D; g[i][e.rev].cap += D; } } return res; } }; int n, m, f; int main() { cin >> n >> m >> f; Network net(n); for (int i = 0; i < m; i++) { int v, u, c, d; cin >> v >> u >> c >> d; net.add_edge(v, u, c, d); } cout << net.min_cost_flow(0, n - 1, f) << endl; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int E = 1e18 + 7; const long long int MOD = 1000000007; class CFlow { private: struct edge { long long int to; long long int cap; long long int rev; long long int cost; }; struct node { long long int cost; long long int flow; long long int number; long long int from; long long int edge; bool operator<(const node &a) const { if (a.cost < this->cost) { return true; } else if (a.cost == this->cost && a.flow > this->flow) { return true; } return false; } }; long long int INF; long long int v; vector<vector<edge>> e; vector<bool> used; void reset_used() { for (int i = 0; i < used.size(); i++) { used[i] = false; } } long long int dfs(long long int where, long long int to, long long int flow) { if (where == to) { return flow; } used[where] = true; for (int i = 0; i < e[where].size(); i++) { edge &E = e[where][i]; if (!used[E.to] && E.cap > 0) { long long int d = dfs(E.to, to, min(flow, E.cap)); if (d > 0) { E.cap -= d; e[E.to][E.rev].cap += d; return d; } } } return 0; } pair<long long int, long long int> dijk(long long int s, long long int t, long long int flow) { priority_queue<node> q; vector<node> V(v, {INF, 0, -1, -1, -1}); q.push({0, flow, s, s}); while (!q.empty()) { node N = q.top(); q.pop(); if (used[N.number]) { continue; } used[N.number] = true; V[N.number] = N; for (int i = 0; i < e[N.number].size(); i++) { edge E = e[N.number][i]; if (used[E.to] || E.cap == 0) { continue; } node n = {N.cost + E.cost, min(N.flow, E.cap), E.to, N.number, i}; q.push(n); } } if (V[t].flow == 0) { return {0, 0}; } long long int w = t; long long int Flow = V[t].flow; long long int cost = V[t].flow * V[t].cost; while (w != s) { long long int t = w; w = V[w].from; edge &E = e[w][V[t].edge]; E.cap -= Flow; e[E.to][E.rev].cap += Flow; } return {Flow, cost}; } public: CFlow(long long int v) : v(v) { e.resize(v); used.resize(v, false); INF = 1e18 + 7; } void add_edge(long long int from, long long int to, long long int cap, long long int cost) { e[from].push_back((edge){to, cap, (long long int)e[to].size(), cost}); e[to].push_back( (edge){from, 0, (long long int)e[from].size() - 1, -1 * cost}); } pair<long long int, long long int> min_cost(long long int s, long long int t, long long int flow) { vector<vector<edge>> ed = e; long long int cost = 0; long long int D = flow; while (1) { reset_used(); pair<long long int, long long int> f = dijk(s, t, flow); flow -= f.first; cost += f.second; if (f.first == 0 || flow == 0) { break; } } e = ed; return {D - flow, cost}; } }; int main() { long long int v, e, f; cin >> v >> e >> f; CFlow first(v); for (int i = 0; i < e; i++) { long long int s, t, cap, cost; cin >> s >> t >> cap >> cost; first.add_edge(s, t, cap, cost); } pair<long long int, long long int> P = first.min_cost(0, v - 1, f); if (P.first != f) { cout << -1 << endl; } else { cout << P.second << endl; } return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") #pragma GCC target("avx") using namespace std; template <typename T1, typename T2> ostream& operator<<(ostream& o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; } template <typename iterator> inline size_t argmin(iterator begin, iterator end) { return distance(begin, min_element(begin, end)); } template <typename iterator> inline size_t argmax(iterator begin, iterator end) { return distance(begin, max_element(begin, end)); } template <typename T> T& maxset(T& to, const T& val) { return to = max(to, val); } template <typename T> T& minset(T& to, const T& val) { return to = min(to, val); } void bye(string s, int code = 0) { cout << s << endl; exit(0); } mt19937_64 randdev(8901016); inline long long int rand_range(long long int l, long long int h) { return uniform_int_distribution<long long int>(l, h)(randdev); } namespace { class MaiScanner { public: template <typename T> void input_integer(T& var) { var = 0; T sign = 1; int cc = getchar_unlocked(); for (; cc < '0' || '9' < cc; cc = getchar_unlocked()) if (cc == '-') sign = -1; for (; '0' <= cc && cc <= '9'; cc = getchar_unlocked()) var = (var << 3) + (var << 1) + cc - '0'; var = var * sign; } inline int c() { return getchar_unlocked(); } inline MaiScanner& operator>>(int& var) { input_integer<int>(var); return *this; } inline MaiScanner& operator>>(long long& var) { input_integer<long long>(var); return *this; } inline MaiScanner& operator>>(string& var) { int cc = getchar_unlocked(); for (; !(0x21 <= (cc) && (cc) <= 0x7E); cc = getchar_unlocked()) ; for (; (0x21 <= (cc) && (cc) <= 0x7E); cc = getchar_unlocked()) var.push_back(cc); return *this; } template <typename IT> void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; } }; } // namespace MaiScanner scanner; class Flow { public: size_t n; struct Arrow { int from, to; int left; int cap; Arrow(int from = 0, int to = 0, int w = 1) : from(from), to(to), left(w), cap(w) {} bool operator<(const Arrow& a) const { return (left != a.left) ? left < a.left : (left < a.left) | (cap < a.cap) | (from < a.from) | (to < a.to); } bool operator==(const Arrow& a) const { return (from == a.from) && (to == a.to) && (left == a.left) && (cap == a.cap); } }; vector<vector<int>> vertex_to; vector<vector<int>> vertex_from; vector<Arrow> arrows; Flow(int n) : n(n), vertex_to(n), vertex_from(n) {} void connect(int from, int to, int left) { vertex_to[from].push_back(arrows.size()); vertex_from[to].push_back(arrows.size()); arrows.emplace_back(from, to, left); } }; Flow::int minconstflow(Flow& graph, const vector<Flow::int>& cost, int i_source, int i_sink, Flow::int flow, Flow::int inf) { Flow::int result = 0; vector<Flow::int> ofs(graph.n); vector<Flow::int> dist(graph.n); vector<int> prev(graph.n); static function<Flow::int(int, Flow::int)> _dfs = [&](int idx, Flow::int f) { if (idx == i_source) return f; for (int ei : graph.vertex_from[idx]) { auto& edge = graph.arrows[ei]; if (dist[edge.to] == dist[edge.from] + cost[ei] + ofs[edge.from] - ofs[edge.to]) { f = _dfs(edge.from, min(f, edge.left)); if (f > 0) { edge.left -= f; return f; } } } for (int ei : graph.vertex_to[idx]) { auto& edge = graph.arrows[ei]; if (dist[edge.from] == dist[edge.to] - cost[ei] + ofs[edge.to] - ofs[edge.from]) { f = _dfs(edge.to, min(f, edge.cap - edge.left)); if (f > 0) { edge.left += f; return f; } } } return 0; }; while (flow > 0) { fill(dist.begin(), dist.end(), inf); fill(prev.begin(), prev.end(), -1); priority_queue<pair<Flow::int, int>> pq; pq.emplace(0, i_source); dist[i_source] = 0; while (!pq.empty()) { auto p = pq.top(); pq.pop(); Flow::int d = -p.first; int idx = p.second; if (dist[idx] < d) continue; for (int ei : graph.vertex_to[idx]) { auto edge = graph.arrows[ei]; if (0 < edge.left && dist[idx] + cost[ei] + ofs[idx] - ofs[edge.to] < dist[edge.to]) { dist[edge.to] = dist[idx] + cost[ei] + ofs[idx] - ofs[edge.to]; prev[edge.to] = ei; pq.emplace(-dist[edge.to], edge.to); } } for (int ei : graph.vertex_from[idx]) { auto edge = graph.arrows[ei]; if (0 < edge.cap - edge.left && dist[idx] - cost[ei] + ofs[idx] - ofs[edge.from] < dist[edge.from]) { dist[edge.from] = dist[idx] - cost[ei] + ofs[idx] - ofs[edge.from]; prev[edge.from] = ei; pq.emplace(-dist[edge.from], edge.from); } } } if (dist[i_sink] == inf) return -1; for (int i = 0; i < graph.n; ++i) ofs[i] += dist[i]; Flow::int z = flow; for (int p = i_sink; p != i_source;) { auto edge = graph.arrows[prev[p]]; if (edge.to == p) minset(z, edge.left), p = edge.from; else minset(z, edge.cap - edge.left), p = edge.to; } for (int p = i_sink; p != i_source;) { auto edge = graph.arrows[prev[p]]; if (edge.to == p) edge.left -= z, p = edge.from; else edge.left += z, p = edge.to; } flow -= z; result += z * ofs[i_sink]; } return result; } long long int m, n, kei; int main() { long long int f; scanner >> n >> m >> f; Flow graph(n); vector<int> cost(m); for (auto i = 0ll; (i) < (m); ++(i)) { int u, v, c, d; scanner >> u >> v >> c >> d; graph.connect(u, v, c); cost[i] = d; } auto ans = minconstflow(graph, cost, 0, n - 1, f, (long long int)1e8); cout << ans << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int N = 110; const int M = 2010; const int inf = 0x3fffffff; struct Edge { int to, cap, cost, next; } es[M]; int S, T; int SIZE = 0; int h[N]; int dist[N], queue[N * N], inq[N]; int vis[N]; void add(int u, int v, int cap, int cost) { int i = SIZE++; es[i].to = v; es[i].cap = cap; es[i].cost = cost; es[i].next = h[u]; h[u] = i; int j = SIZE++; es[j].to = u; es[j].cap = 0; es[j].cost = -cost; es[j].next = h[v]; h[v] = j; } bool sssp(int n) { int front = 0, back = 0; for (int i = 0; i < n; i++) { dist[i] = inf; inq[i] = vis[i] = 0; } queue[back++] = S; dist[S] = 0; while (front < back) { int x = queue[front++]; inq[x] = 0; for (int i = h[x]; i != -1; i = es[i].next) if (es[i].cap > 0) { int y = es[i].to; int new_d = dist[x] + es[i].cost; if (new_d < dist[y]) { dist[y] = new_d; if (!inq[y]) { queue[back++] = y; inq[y] = 1; } } } } return (dist[T] < inf); } int dfs(int x, int flow) { if (x == T) return flow; if (vis[x]) return 0; int ret = 0; for (int i = h[x]; i != -1 && flow > 0; i = es[i].next) { int y = es[i].to; if (dist[y] != dist[x] + es[i].cost) continue; int f = dfs(y, std::min(flow, es[i].cap)); if (f != 0) { es[i].cap -= f; es[i ^ 1].cap += f; ret += f; flow -= f; } } vis[x] = (flow > 0); return ret; } void run() { int n, m, u, v, c, d, flow, cost = 0; scanf("%d%d%d", &n, &m, &flow); memset(h, -1, sizeof(h)); S = 0, T = n - 1; for (int i = 0; i < m; i++) { scanf("%d%d%d%d", &u, &v, &c, &d); add(u, v, c, d); } while (flow > 0 && sssp(n)) { int f = dfs(S, flow); cost += f * dist[T]; flow -= f; } printf("%d\n", cost); } int main() { run(); }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> struct node { int id; int cap; int cost; struct node *next; }; struct node **list; int **flow, *delta, *dist, *prev; int *heap, *heap_index, heapsize; void Insert(int, int, int, int); void downheap(int); void upheap(int); void PQ_init(int); int PQ_remove(void); void PQ_update(int); int Maxflow(int, int, int); int main(void) { int i, v, e, f, s, t, c, d, mincost = 0; scanf("%d %d %d", &v, &e, &f); list = (struct node **)malloc(sizeof(struct node *) * v); flow = (int **)malloc(sizeof(int *) * v); delta = (int *)malloc(sizeof(int) * v); dist = (int *)malloc(sizeof(int) * v); prev = (int *)malloc(sizeof(int) * v); for (i = 0; i < v; i++) { list[i] = NULL; flow[i] = (int *)calloc(v, sizeof(int)); } for (i = 0; i < e; i++) { scanf("%d %d %d %d", &s, &t, &c, &d); Insert(s, t, c, d); } while (f > 0 && Maxflow(0, v - 1, v)) { int n = v - 1; f -= delta[v - 1]; if (f < 0) delta[v - 1] += f; do { flow[prev[n]][n] += delta[v - 1]; flow[n][prev[n]] -= delta[v - 1]; n = prev[n]; } while (n); } if (f <= 0) { for (i = 0; i < v; i++) { struct node *n; for (n = list[i]; n != NULL; n = n->next) { mincost += flow[i][n->id] * n->cost; } } printf("%d\n", mincost); } else printf("-1\n"); for (i = 0; i < v; i++) { free(list[i]); free(flow[i]); } free(list); free(flow); free(delta); free(dist); free(prev); } void Insert(int a, int b, int cap, int cost) { struct node *p = (struct node *)malloc(sizeof(struct node)); p->id = b; p->cap = cap; p->cost = cost; p->next = list[a]; list[a] = p; p = (struct node *)malloc(sizeof(struct node)); p->id = a; p->cap = 0; p->cost = 0; p->next = list[b]; list[b] = p; } void downheap(int k) { int j, v = heap[k]; while (k < heapsize / 2) { j = 2 * k + 1; if (j < heapsize - 1 && dist[heap[j]] > dist[heap[j + 1]]) j++; if (dist[v] <= dist[heap[j]]) break; heap[k] = heap[j]; heap_index[heap[j]] = k; k = j; } heap[k] = v; heap_index[v] = k; } void upheap(int j) { int k, v = heap[j]; while (j > 0) { k = (j + 1) / 2 - 1; if (dist[v] >= dist[heap[k]]) break; heap[j] = heap[k]; heap_index[heap[k]] = j; j = k; } heap[j] = v; heap_index[v] = j; } void PQ_init(int size) { int i; heapsize = size; heap = (int *)malloc(sizeof(int) * size); heap_index = (int *)malloc(sizeof(int) * size); for (i = 0; i < size; i++) { heap[i] = i; heap_index[i] = i; } for (i = heapsize / 2 - 1; i >= 0; i--) downheap(i); } int PQ_remove(void) { int v = heap[0]; heap[0] = heap[heapsize - 1]; heap_index[heap[heapsize - 1]] = 0; heapsize--; downheap(0); return v; } void PQ_update(int v) { upheap(heap_index[v]); } int Maxflow(int s, int t, int size) { struct node *n; int i; for (i = 0; i < size; i++) { delta[i] = INT_MAX; dist[i] = INT_MAX; prev[i] = -1; } dist[s] = 0; PQ_init(size); while (heapsize) { i = PQ_remove(); if (i == t) break; for (n = list[i]; n != NULL; n = n->next) { int v = n->id; if (flow[i][v] < n->cap) { int newlen = dist[i] + n->cost; if (newlen < dist[v]) { dist[v] = newlen; prev[v] = i; delta[v] = ((delta[i]) < (n->cap - flow[i][v]) ? (delta[i]) : (n->cap - flow[i][v])); PQ_update(v); } } } } free(heap); free(heap_index); return dist[t] != INT_MAX; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; namespace MCF { const int MAXN = 120; const int MAXM = 2100; int to[MAXM]; int next[MAXM]; int first[MAXN]; int c[MAXM]; long long w[MAXM]; long long pot[MAXN]; int rev[MAXM]; long long ijk[MAXN]; int v[MAXN]; long long toc; int tof; int n; int m; void init(int _n) { n = _n; for (int i = 0; i < n; i++) first[i] = -1; } void ae(int a, int b, int cap, int wei) { next[m] = first[a]; to[m] = b; first[a] = m; c[m] = cap; w[m] = wei; m++; next[m] = first[b]; to[m] = a; first[b] = m; c[m] = 0; w[m] = -wei; m++; } int solve(int s, int t, int flo) { toc = tof = 0; for (int i = 0; i < n; i++) pot[i] = 0; while (tof < flo) { for (int i = 0; i < n; i++) ijk[i] = 9999999999999LL; for (int i = 0; i < n; i++) v[i] = 0; priority_queue<pair<long long, int> > Q; ijk[s] = 0; Q.push(make_pair(0, s)); while (Q.size()) { long long cost = -Q.top().first; int at = Q.top().second; Q.pop(); if (v[at]) continue; v[at] = 1; for (int i = first[at]; ~i; i = next[i]) { int x = to[i]; if (v[x] || ijk[x] <= ijk[at] + w[i] + pot[x] - pot[at]) continue; if (c[i] == 0) continue; ijk[x] = ijk[at] + w[i] + pot[x] - pot[at]; rev[x] = i; Q.push(make_pair(-ijk[x], x)); } } int flow = flo - tof; if (!v[t]) return 0; int at = t; while (at != s) { flow = min(flow, c[rev[at]]); at = to[rev[at] ^ 1]; } at = t; tof += flow; toc += flow * (ijk[t] + pot[s] - pot[t]); at = t; while (at != s) { c[rev[at]] -= flow; c[rev[at] ^ 1] += flow; at = to[rev[at] ^ 1]; } for (int i = 0; i < n; i++) pot[i] += ijk[i]; } return 1; } } // namespace MCF int main() { int a, b, c; scanf("%d%d%d", &a, &b, &c); MCF::init(a); for (int i = 0; i < b; i++) { int p, q, r, s; scanf("%d%d%d%d", &p, &q, &r, &s); MCF::ae(p, q, r, s); } int res = MCF::solve(0, a - 1, c); if (!res) printf("-1\n"); else printf("%lld\n", MCF::toc); }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> namespace loquat { using vertex_t = size_t; } namespace loquat { namespace edge_param { struct to_ { vertex_t to; explicit to_(vertex_t t = 0) : to(t) {} }; template <typename T> struct weight_ { using weight_type = T; weight_type weight; explicit weight_(const weight_type& w = weight_type()) : weight(w) {} }; template <typename T> using weight = weight_<T>; template <typename T> struct capacity_ { using capacity_type = T; capacity_type capacity; explicit capacity_(const capacity_type& c = capacity_type()) : capacity(c) {} }; template <typename T> using capacity = capacity_<T>; } // namespace edge_param namespace detail { template <typename T, typename... Params> struct edge_param_wrapper : public T, edge_param_wrapper<Params...> { template <typename U, typename... Args> explicit edge_param_wrapper(U&& x, Args&&... args) : T(std::forward<U>(x)), edge_param_wrapper<Params...>(std::forward<Args>(args)...) {} }; template <typename T> struct edge_param_wrapper<T> : public T { template <typename U> explicit edge_param_wrapper(U&& x) : T(std::forward<U>(x)) {} }; } // namespace detail template <typename... Params> struct edge : public detail::edge_param_wrapper<edge_param::to_, Params...> { edge() : detail::edge_param_wrapper<edge_param::to_, Params...>() {} template <typename... Args> explicit edge(Args&&... args) : detail::edge_param_wrapper<edge_param::to_, Params...>( std::forward<Args>(args)...) {} }; } // namespace loquat namespace loquat { template <typename EdgeType> struct has_weight { private: template <typename U> static std::true_type check_type(typename U::weight_type*); template <typename U> static std::false_type check_type(...); template <typename U> static auto check_member(const U& x) -> decltype(x.weight, std::true_type()); static std::false_type check_member(...); public: static const bool value = decltype(check_type<EdgeType>(nullptr))::value && decltype(check_member(std::declval<EdgeType>()))::value; }; template <typename EdgeType> struct has_capacity { private: template <typename U> static std::true_type check_type(typename U::capacity_type*); static std::false_type check_type(...); template <typename U> static auto check_member(const U& x) -> decltype(x.capacity, std::true_type()); static std::false_type check_member(...); public: static const bool value = decltype(check_type<EdgeType>(nullptr))::value && decltype(check_member(std::declval<EdgeType>()))::value; }; } // namespace loquat namespace loquat { template <typename EdgeType> class adjacency_list { public: using edge_type = EdgeType; using edge_list = std::vector<edge_type>; private: std::vector<std::vector<EdgeType>> m_edges; public: adjacency_list() : m_edges() {} explicit adjacency_list(size_t n) : m_edges(n) {} size_t size() const { return m_edges.size(); } const edge_list& operator[](vertex_t u) const { return m_edges[u]; } edge_list& operator[](vertex_t u) { return m_edges[u]; } template <typename... Args> void add_edge(vertex_t from, Args&&... args) { m_edges[from].emplace_back(std::forward<Args>(args)...); } void add_edge(vertex_t from, const edge_type& e) { m_edges[from].emplace_back(e); } }; } // namespace loquat namespace loquat { namespace detail { template <typename EdgeType> auto negate_weight(EdgeType& e) -> typename std::enable_if<has_weight<EdgeType>::value, void>::type { e.weight = -e.weight; } template <typename EdgeType> auto negate_weight(EdgeType&) -> typename std::enable_if<!has_weight<EdgeType>::value, void>::type {} } // namespace detail template <typename EdgeType> struct residual_edge : public EdgeType { using base_type = EdgeType; size_t rev; residual_edge() : base_type(), rev(0) {} template <typename... Args> residual_edge(vertex_t to, size_t rev, Args&&... args) : base_type(to, std::forward<Args>(args)...), rev(rev) {} residual_edge(const base_type& e, size_t rev) : base_type(e), rev(rev) {} }; template <typename EdgeType> adjacency_list<residual_edge<EdgeType>> make_residual( const adjacency_list<EdgeType>& graph) { using edge_type = EdgeType; using residual_type = residual_edge<edge_type>; using capacity_type = typename edge_type::capacity_type; const size_t n = graph.size(); adjacency_list<residual_type> result(n); for (vertex_t u = 0; u < n; ++u) { for (const auto& e : graph[u]) { result.add_edge(u, residual_type(e, 0)); } } for (vertex_t u = 0; u < n; ++u) { const size_t m = graph[u].size(); for (size_t i = 0; i < m; ++i) { auto e = graph[u][i]; const auto v = e.to; e.to = u; e.capacity = capacity_type(); detail::negate_weight(e); result[u][i].rev = result[v].size(); result.add_edge(v, residual_type(e, i)); } } return result; } } // namespace loquat namespace loquat { template <typename EdgeType, typename Predicate> adjacency_list<EdgeType> filter(const adjacency_list<EdgeType>& graph, Predicate pred) { const size_t n = graph.size(); adjacency_list<EdgeType> result(n); for (vertex_t u = 0; u < n; ++u) { for (const auto& e : graph[u]) { if (pred(u, e)) { result.add_edge(u, e); } } } return result; } } // namespace loquat namespace loquat { template <typename T> constexpr inline auto positive_infinity() noexcept -> typename std::enable_if<std::is_integral<T>::value, T>::type { return std::numeric_limits<T>::max(); } template <typename T> constexpr inline auto negative_infinity() noexcept -> typename std::enable_if<std::is_integral<T>::value, T>::type { return std::numeric_limits<T>::min(); } template <typename T> constexpr inline auto is_positive_infinity(T x) noexcept -> typename std::enable_if<std::is_integral<T>::value, bool>::type { return x == std::numeric_limits<T>::max(); } template <typename T> constexpr inline auto is_negative_infinity(T x) noexcept -> typename std::enable_if<std::is_integral<T>::value, bool>::type { return x == std::numeric_limits<T>::min(); } template <typename T> constexpr inline auto positive_infinity() noexcept -> typename std::enable_if<std::is_floating_point<T>::value, T>::type { return std::numeric_limits<T>::infinity(); } template <typename T> constexpr inline auto negative_infinity() noexcept -> typename std::enable_if<std::is_floating_point<T>::value, T>::type { return -std::numeric_limits<T>::infinity(); } template <typename T> inline auto is_positive_infinity(T x) noexcept -> typename std::enable_if<std::is_floating_point<T>::value, bool>::type { return (x > 0) && std::isinf(x); } template <typename T> inline auto is_negative_infinity(T x) noexcept -> typename std::enable_if<std::is_floating_point<T>::value, bool>::type { return (x < 0) && std::isinf(x); } } // namespace loquat namespace loquat { class no_solution_error : public std::runtime_error { public: explicit no_solution_error(const char* what) : std::runtime_error(what) {} explicit no_solution_error(const std::string& what) : std::runtime_error(what) {} }; } // namespace loquat namespace loquat { template <typename EdgeType> std::vector<typename EdgeType::weight_type> sssp_bellman_ford( vertex_t source, const adjacency_list<EdgeType>& graph) { using weight_type = typename EdgeType::weight_type; const auto inf = positive_infinity<weight_type>(); const auto n = graph.size(); std::vector<weight_type> result(n, inf); result[source] = weight_type(); bool finished = false; for (size_t iter = 0; !finished && iter < n; ++iter) { finished = true; for (loquat::vertex_t u = 0; u < n; ++u) { if (loquat::is_positive_infinity(result[u])) { continue; } for (const auto& e : graph[u]) { const auto v = e.to; if (result[u] + e.weight < result[v]) { result[v] = result[u] + e.weight; finished = false; } } } } if (!finished) { throw no_solution_error("graph has a negative cycle"); } return result; } } // namespace loquat namespace loquat { template <typename EdgeType> typename EdgeType::weight_type mincostflow_primal_dual( typename EdgeType::capacity_type flow, vertex_t source, vertex_t sink, adjacency_list<EdgeType>& graph) { using edge_type = EdgeType; using weight_type = typename edge_type::weight_type; const auto inf = positive_infinity<weight_type>(); const auto n = graph.size(); const auto predicate = [](vertex_t, const edge_type& e) -> bool { return e.capacity > 0; }; auto h = sssp_bellman_ford(source, filter(graph, predicate)); std::vector<vertex_t> prev_vertex(n); std::vector<size_t> prev_edge(n); weight_type result = 0; while (flow > 0) { using pair_type = std::pair<weight_type, vertex_t>; std::priority_queue<pair_type, std::vector<pair_type>, std::greater<pair_type>> pq; std::vector<weight_type> d(n, inf); pq.emplace(0, source); d[source] = weight_type(); while (!pq.empty()) { const auto p = pq.top(); pq.pop(); const auto u = p.second; if (d[u] < p.first) { continue; } for (size_t i = 0; i < graph[u].size(); ++i) { const auto& e = graph[u][i]; if (e.capacity <= 0) { continue; } const auto v = e.to; const auto t = d[u] + e.weight + h[u] - h[v]; if (d[v] <= t) { continue; } d[v] = t; prev_vertex[v] = u; prev_edge[v] = i; pq.emplace(t, v); } } if (is_positive_infinity(d[sink])) { throw no_solution_error("there are no enough capacities to flow"); } for (size_t i = 0; i < n; ++i) { h[i] += d[i]; } weight_type f = flow; for (vertex_t v = sink; v != source; v = prev_vertex[v]) { const auto u = prev_vertex[v]; f = std::min(f, graph[u][prev_edge[v]].capacity); } flow -= f; result += f * h[sink]; for (vertex_t v = sink; v != source; v = prev_vertex[v]) { const auto u = prev_vertex[v]; auto& e = graph[u][prev_edge[v]]; e.capacity -= f; graph[v][e.rev].capacity += f; } } return result; } } // namespace loquat using namespace std; using edge = loquat::edge<loquat::edge_param::weight<int>, loquat::edge_param::capacity<int>>; int main() { ios_base::sync_with_stdio(false); int n, m, f; cin >> n >> m >> f; loquat::adjacency_list<edge> g(n); for (int i = 0; i < m; ++i) { int a, b, c, d; cin >> a >> b >> c >> d; g.add_edge(a, b, d, c); } const int source = 0, sink = n - 1; auto residual = loquat::make_residual(g); cout << loquat::mincostflow_primal_dual(f, source, sink, residual) << std::endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int maxn = 105; struct edge { int to, cap, cost, rev; }; int n, m, k; int d[maxn]; int a[maxn]; int p1[maxn]; int p2[maxn]; bool inq[maxn]; vector<edge> G[maxn]; void add_edge(int u, int v, int c, int w) { G[u].push_back(edge{v, c, w, int(G[v].size())}); G[v].push_back(edge{u, 0, -w, int(G[u].size() - 1)}); } int mcmf(int s, int t) { int flow = 0, cost = 0; while (1) { memset(d, 0x3f, sizeof(d)); d[s] = 0; a[s] = max(0, k - flow); int qh = 0, qt = 0, q[maxn]; q[qt++] = s; inq[s] = 1; while (qh < qt) { int u = q[qh++]; inq[u] = 0; for (int i = 0; i < G[u].size(); i++) { edge& e = G[u][i]; if (d[e.to] > d[u] + e.cost && e.cap) { d[e.to] = d[u] + e.cost; a[e.to] = min(a[u], e.cap); p1[e.to] = u; p2[e.to] = i; if (!inq[e.to]) { q[qt++] = e.to; inq[e.to] = 1; } } } } if (d[t] == INF || !a[t]) break; flow += a[t]; cost += a[t] * d[t]; for (int v = t, u = p1[t]; v != s; v = u, u = p1[u]) { int id = p2[v]; G[u][id].cap -= a[t]; id = G[u][id].rev; G[v][id].cap += a[t]; } } if (flow < k) return -1; else return cost; } int main() { cin >> n >> m >> k; for (int i = 0; i < m; i++) { int u, v, c, w; cin >> u >> v >> c >> w; add_edge(u, v, c, w); } cout << mcmf(0, n - 1) << '\n'; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> struct PrimalDual { struct Edge { int to, rev; T cap, cost; Edge() {} Edge(int _to, T _cap, T _cost, int _rev) : to(_to), cap(_cap), cost(_cost), rev(_rev) {} }; const T INF = numeric_limits<T>::max() / 2; int N; vector<vector<Edge> > G; vector<T> h; vector<T> dist; vector<int> prevv, preve; PrimalDual(int n) : N(n), G(n), h(n), dist(n), prevv(n), preve(n) {} void add_edge(int from, int to, T cap, T cost) { G[from].push_back(Edge(to, cap, cost, (T)G[to].size())); G[to].push_back(Edge(from, 0, -cost, (T)G[from].size() - 1)); } T get_min(int s, int t, T f) { T ret = 0; fill(h.begin(), h.end(), 0); while (f > 0) { priority_queue<pair<T, int>, vector<pair<T, int> >, greater<pair<T, int> > > que; for (int i = 0; i < N; i++) dist[i] = INF; dist[s] = 0; que.push(make_pair(0, s)); while (que.size() != 0) { pair<T, int> p = que.top(); que.pop(); int v = p.second; if (dist[v] < p.first) continue; for (int i = 0; i < G[v].size(); i++) { Edge &e = G[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; que.push(make_pair(dist[e.to], e.to)); } } } if (dist[t] == INF) { return -1; } for (int v = 0; v < N; v++) h[v] += dist[v]; T d = f; for (int v = t; v != s; v = prevv[v]) { d = min(d, G[prevv[v]][preve[v]].cap); } f -= d; ret += d * h[t]; for (int v = t; v != s; v = prevv[v]) { Edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } return ret; } }; int main() { int V, E, F; cin >> V >> E >> F; PrimalDual<int> Graph(V); for (int i = 0; i < E; i++) { int ui, vi, ci, di; cin >> ui >> vi >> ci >> di; Graph.add_edge(ui, vi, ci, di); } cout << Graph.get_min(0, V - 1, F) << endl; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; class Edge { public: int from; int to; int flow; Edge(int f, int t, int d) { from = f; to = t; flow = d; } }; class Shortest_path_result { public: int sum_of_cost; vector<int> path; vector<int> distance; vector<int> predecessor; Shortest_path_result() {} }; class Graph { public: int INF; int n; vector<set<int> > vertices_list; vector<map<int, int> > cost_list; vector<map<int, int> > capacity_list; vector<int> potential_list; Graph() {} Graph(int n) { INF = 1e9; this->n = n; vertices_list.insert(vertices_list.begin(), n, set<int>()); cost_list.insert(cost_list.begin(), n, map<int, int>()); capacity_list.insert(capacity_list.begin(), n, map<int, int>()); potential_list = vector<int>(n, 0); } void insert_edge(int b, int e, int cost, int capacity) { vertices_list[b].insert(e); cost_list[b][e] = cost; capacity_list[b][e] = capacity; } void delete_edge(int b, int e) { vertices_list[b].erase(e); cost_list[b].erase(e); capacity_list[b].erase(e); } int degree_of_vertex(int a) { return vertices_list[a].size(); } bool edge_search(int a, int b) { return vertices_list[a].find(b) != vertices_list[a].end(); } bool path_search(int a, int b, set<int> visited = set<int>()) { visited.insert(a); set<int>::iterator itr; for (itr = vertices_list[a].begin(); itr != vertices_list[a].end(); itr++) { if ((*itr) == b) { return true; } if (visited.find(*itr) == visited.end()) { if (path_search(*itr, b, visited)) { return true; } } } return false; } Shortest_path_result solve_dijkstra(int start, int goal) { set<int> visited = set<int>(); vector<int> distance = vector<int>(n, INF); vector<int> predecessor = vector<int>(n); priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > pq; pq.push(pair<int, int>(0, start)); while (!pq.empty()) { pair<int, int> p = pq.top(); pq.pop(); int nv = p.second; if (distance[nv] < p.first) { continue; } distance[nv] = p.first; for (set<int>::iterator itr = vertices_list[nv].begin(); itr != vertices_list[nv].end(); itr++) { int next = (*itr); if (distance[next] > distance[nv] + cost_list[nv][next]) { distance[next] = distance[nv] + cost_list[nv][next]; predecessor[next] = nv; pq.push(pair<int, int>(distance[next], next)); } } } Shortest_path_result result; result.path = vector<int>(); result.path.push_back(goal); while (true) { int now = result.path.back(); int pre = predecessor[now]; result.path.push_back(pre); if (pre == start) { reverse(result.path.begin(), result.path.end()); break; } } result.sum_of_cost = distance[goal]; result.distance = distance; result.predecessor = predecessor; return result; } pair<int, vector<Edge> > solve_mincostflow(int s, int t, int flow_size) { vector<map<int, int> > flow_list = vector<map<int, int> >(n); vector<map<int, int> > origin_cost = cost_list; int sum_flow_cost = 0; while (flow_size > 0) { Shortest_path_result res; vector<int> path; int min_capa = INF; res = solve_dijkstra(s, t); path = res.path; for (int i = 0; i < n; i++) { potential_list[i] = potential_list[i] - res.distance[i]; } vector<int>::iterator itr = path.begin(); itr++; for (; itr != path.end(); itr++) { if (min_capa > capacity_list[*(itr - 1)][*itr]) { min_capa = capacity_list[*(itr - 1)][*itr]; } } if (min_capa > flow_size) { min_capa = flow_size; } itr = path.begin(); itr++; for (; itr != path.end(); itr++) { if (flow_list[*(itr - 1)].find(*itr) == flow_list[*(itr - 1)].end()) { flow_list[*(itr - 1)][*itr] = min_capa; } else { flow_list[*(itr - 1)][*itr] += min_capa; } } flow_size = flow_size - min_capa; itr = path.begin(); for (itr++; itr != path.end(); itr++) { int capa, cost; int from, to; from = *(itr - 1); to = *itr; capa = capacity_list[from][to]; cost = cost_list[from][to]; delete_edge(from, to); if (capa - min_capa > 0) { insert_edge(from, to, cost, capa - min_capa); } insert_edge(to, from, -1 * cost, min_capa); } for (int b = 0; b > n; b++) { map<int, int>::iterator itr; for (itr = cost_list[b].begin(); itr != cost_list[b].end(); itr++) { (*itr).second = (*itr).second - potential_list[itr->first] + potential_list[b]; } } } for (int i = 0; i < n; i++) { map<int, int>::iterator itr; for (itr = flow_list[i].begin(); itr != flow_list[i].end(); itr++) { sum_flow_cost += origin_cost[i][itr->first] * itr->second; } } cout << sum_flow_cost << endl; return pair<int, vector<Edge> >(); } void print(void) { int i = 0; vector<set<int> >::iterator itr; set<int>::iterator itr_c; for (itr = vertices_list.begin(); itr != vertices_list.end(); itr++) { cout << i << ":"; for (itr_c = (*itr).begin(); itr_c != (*itr).end(); itr_c++) { cout << *itr_c << "(" << capacity_list[i][*itr_c] << ")" << ","; } i++; cout << endl; } } }; int main() { const int inf = 1e9; int v, e, flow; Graph g; cin >> v >> e >> flow; g = Graph(v); int from, to, cost, cap; for (int i = 0; i < e; i++) { cin >> from >> to >> cap >> cost; g.insert_edge(from, to, cost, cap); } g.solve_mincostflow(0, v - 1, flow); return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxN = 1100; bool mark[maxN]; int parentEdge[maxN], dis[maxN]; int n, k, m, st, fn, F, remFlow; struct edge { int u, v, weight, cap; }; vector<int> g[maxN]; edge e[maxN * maxN]; int curID = 0; edge make_edge(int u, int v, int w, int cap) { edge e; e.u = u; e.v = v; e.weight = w; e.cap = cap; return e; } void input() { cin >> n >> m >> F; for (int i = 1; i <= m; i++) { int k1, k2, w, cap; cin >> k1 >> k2; k1++; k2++; cin >> cap >> w; e[curID] = make_edge(k1, k2, w, cap); g[k1].push_back(curID++); e[curID] = make_edge(k2, k1, -w, 0); g[k2].push_back(curID++); } } int extract_min() { int ret = 0; for (int i = 1; i <= n; i++) if (!mark[i] && dis[i] <= dis[ret]) ret = i; return ret; } void update(int v) { mark[v] = true; for (auto ID : g[v]) if (dis[e[ID].v] > dis[v] + e[ID].weight && e[ID].cap > 0) { parentEdge[e[ID].v] = ID; dis[e[ID].v] = dis[v] + e[ID].weight; } } pair<int, int> dijkstra(int v = st) { int pushed = remFlow; int cost = 0; fill(dis, dis + n + 1, INT_MAX / 2); memset(mark, 0, (n + 10) * sizeof(mark[0])); memset(parentEdge, -1, (n + 10) * sizeof(parentEdge[0])); dis[v] = 0; while (int v = extract_min()) { update(v); } if (!mark[fn]) return {0, 0}; v = fn; while (parentEdge[v] != -1) { pushed = min(pushed, e[parentEdge[v]].cap); v = e[parentEdge[v]].u; } v = fn; while (parentEdge[v] != -1) { cost += pushed * e[parentEdge[v]].weight; e[parentEdge[v]].cap -= pushed; e[parentEdge[v] ^ 1].cap += pushed; v = e[parentEdge[v]].u; } return {pushed, cost}; } int MinCostMaxFlow() { int flow = 0, cost = 0; remFlow = F; while (true) { auto ans = dijkstra(); if (ans.first == 0) break; flow += ans.first; remFlow -= ans.first; cost += ans.second; } return cost; } void show() { for (int i = 0; i < curID; i++) { auto ed = e[i]; cout << i << " " << ed.u << " " << ed.v << " " << ed.cap << " " << ed.weight << endl; } } int main() { input(); st = 1; fn = n; int cost = MinCostMaxFlow(); cout << cost << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; class Networkflow { private: struct edgedata { int from, to, capacity, weight; edgedata* dual_p; bool operator<(const edgedata& another) const { return (weight != another.weight ? weight < another.weight : capacity > another.capacity); } }; struct node { int id, d; bool done; edgedata* fromedge_p; list<edgedata> edges; bool operator<(const node& another) const { return !(d != another.d ? d < another.d : id < another.id); } }; vector<node> nodes; int n; int source, sink; edgedata* dummy; public: int result; Networkflow(int size, int s, int t) { n = size; source = s; sink = t; nodes.resize(n); dummy = new edgedata; init(); } void init() { for (int i = 0; i < (int)n; i++) { nodes[i] = {i, 2147483647, false, dummy, {}}; } } void addedge(int s, int t, int c, int w) { nodes[s].edges.push_back({s, t, c, w, dummy}); nodes[t].edges.push_back({t, s, 0, w * (-1), &(nodes[s].edges.back())}); nodes[s].edges.back().dual_p = &(nodes[t].edges.back()); } void maxflow() { for (int i = 0; i < (int)n; i++) nodes[i].edges.sort(); result = 0; vector<pair<int, edgedata*>> stk; int a; int df; while (1) { a = source; for (int i = 0; i < (int)n; i++) nodes[i].done = false; nodes[source].done = true; while (a != sink) { int b = -1; edgedata* p; for (auto itr = nodes[a].edges.begin(); itr != nodes[a].edges.end(); ++itr) { if ((*itr).capacity > 0) { b = (*itr).to; if (nodes[b].done) b = -1; else { p = &(*itr); stk.push_back(make_pair(a, p)); nodes[b].done = true; a = b; break; } } } if (b == -1) { if (stk.empty()) break; a = stk.back().first; stk.pop_back(); } } if (stk.empty()) break; df = 2147483647; for (int i = 0; i < (int)stk.size(); i++) { df = min(df, (*(stk[i].second)).capacity); } while (stk.size()) { (*(stk.back().second)).capacity -= df; (*((*(stk.back().second)).dual_p)).capacity += df; stk.pop_back(); } result += df; } return; } bool mincostflow(int flow) { for (int i = 0; i < (int)n; i++) nodes[i].edges.sort(); result = 0; node a; int df; int sumf = 0; while (1) { for (int i = 0; i < (int)n; i++) { nodes[i].d = 2147483647; nodes[i].done = false; nodes[i].fromedge_p = dummy; } priority_queue<node> pq; nodes[source].d = 0; pq.push(nodes[source]); while (pq.size()) { a = pq.top(); pq.pop(); if (nodes[a.id].done) continue; nodes[a.id].done = true; for (auto itr = nodes[a.id].edges.begin(); itr != nodes[a.id].edges.end(); ++itr) { if ((*itr).capacity == 0) continue; node* b = &nodes[(*itr).to]; if ((*b).done) continue; long long int cand = nodes[a.id].d + ((*itr).weight); if (cand < (*b).d) { (*b).d = cand; (*b).fromedge_p = &(*itr); pq.push(*b); } } } if (!nodes[sink].done) break; df = 2147483647; int focus = sink; while (focus != source) { df = min(df, (*(nodes[focus].fromedge_p)).capacity); focus = (*(nodes[focus].fromedge_p)).from; } df = min(df, flow - sumf); focus = sink; while (focus != source) { (*(nodes[focus].fromedge_p)).capacity -= df; (*((*(nodes[focus].fromedge_p)).dual_p)).capacity += df; focus = (*(nodes[focus].fromedge_p)).from; } sumf += df; result += nodes[sink].d * df; if (sumf == flow) return true; } return false; } }; int main() { int v, e, f; cin >> v >> e >> f; Networkflow networkflow(v, 0, v - 1); for (int i = 0; i < (int)e; i++) { int s, t, c, d; cin >> s >> t >> c >> d; networkflow.addedge(s, t, c, d); } networkflow.mincostflow(f); cout << networkflow.result << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import sys import csv import argparse import time import heapq INF = sys.maxint/3 class Edge: def __init__(self, to, cap, cost, rev): self.to = to self.cap = cap self.cost = cost self.rev = rev def print_attributes(self): print "to: {0}, cap: {1}, cost: {2}, rev: {3}".format(self.to, self.cap, self.cost, self.rev) class MinimumCostFlow: def __init__(self, V, E): self.V = V self.E = E self.G = [[] for i in range(V)] def add_edge(self, s, t, cap, cost): forward_edge = Edge(t, cap, cost, len(self.G[t])) self.G[s].append(forward_edge) backward_edge = Edge(s, 0, -cost, len(self.G[s])-1) self.G[t].append(backward_edge) def print_edges(self): print "==== print edges ====" for i in range(self.V): print "\nedges from {}".format(i) for e in self.G[i]: e.print_attributes() def minimum_cost_flow(self, s, t, f): res = 0 h = [0] * self.V while f>0: pque = [] dist = [INF for i in range(self.V)] prev_v = [0 for i in range(self.V)] prev_e = [0 for i in range(self.V)] dist[s] = 0 heapq.heappush(pque, (0, s)) while(len(pque)!=0): p = heapq.heappop(pque) v = p[1] if (dist[v] < p[0]): continue for i in range(len(self.G[v])): e = self.G[v][i] if (e.cap>0 and dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]): dist[e.to] = dist[v] + e.cost + h[v] - h[e.to] prev_v[e.to] = v prev_e[e.to] = i heapq.heappush(pque, (dist[e.to], e.to)) if dist[t] == INF: return -1 for v in range(self.V): h[v] += dist[v] d = f v = t while v!=s: d = min(d, self.G[prev_v[v]][prev_e[v]].cap) v = prev_v[v] f -= d res += d * h[t] v = t while v!=s: e = self.G[prev_v[v]][prev_e[v]] e.cap -= d self.G[v][e.rev].cap += d v = prev_v[v] return res def main(): V, E, F = map(int, raw_input().split()) mcf = MinimumCostFlow(V, E) for i in range(E): u, v, c, d = map(int, raw_input().split()) mcf.add_edge(u, v, c, d) #print "minimum cost flow: {}".format(mcf.minimum_cost_flow(0, V-1, F)) print mcf.minimum_cost_flow(0, V-1, F) if __name__ == '__main__': main()
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> inline void output(T a, int p) { if (p) cout << fixed << setprecision(p) << a << "\n"; else cout << a << "\n"; } struct node { int cost, pos; }; struct edge { int to, cap, cost, rev; }; bool operator<(const node &a, const node &b) { return a.cost < b.cost; } class MinCostFlow { public: int V; vector<vector<edge>> G; vector<int> h, dist, preV, preE; MinCostFlow(int V) : V(V), G(V), h(V), dist(V), preV(V), preE(V) {} void add_edge(int from, int to, int cap, int cost) { G[from].push_back({to, cap, cost, (int)G[to].size()}); G[to].push_back({from, 0, -cost, (int)G[from].size()}); } int calc(int s, int t, int f) { int ret = 0; h.assign(V, 0); while (f) { dist.assign(V, 2000000007); priority_queue<node> pq; pq.push({0, s}); dist[s] = 0; while (!pq.empty()) { node p = pq.top(); pq.pop(); int d = p.cost; int v = p.pos; if (dist[v] < d) continue; for (int i = (int)(0); i < (int)(G[v].size()); i++) { edge &e = G[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; preV[e.to] = v; preE[e.to] = i; pq.push({dist[e.to], e.to}); } } } if (dist[t] == 2000000007) return -1; for (int v = (int)(0); v < (int)(V); v++) h[v] += dist[v]; int d = f; for (int v = t; v != s; v = preV[v]) { d = min(d, G[preV[v]][preE[v]].cap); } f -= d; ret += d * h[t]; for (int v = t; v != s; v = preV[v]) { edge &e = G[preV[v]][preE[v]]; e.cap -= d; G[v][e.rev].cap += d; } } return ret; } }; int main() { cin.tie(0); ios::sync_with_stdio(0); int V, E, F; cin >> V >> E >> F; MinCostFlow mcf(V); for (int i = (int)(0); i < (int)(E); i++) { int u, v, c, d; cin >> u >> v >> c >> d; mcf.add_edge(u, v, c, d); } output(mcf.calc(0, V - 1, F), 0); return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; class Edge { public: int from; int to; int flow; Edge(int f, int t, int d) { from = f; to = t; flow = d; } }; class Shortest_path_result { public: int sum_of_cost; vector<int> path; vector<int> distance; vector<int> predecessor; Shortest_path_result() {} }; class Graph { public: int INF; int n; vector<set<int> > vertices_list; vector<map<int, int> > cost_list; vector<map<int, int> > capacity_list; vector<int> potential_list; Graph() {} Graph(int n) { INF = 1e9; this->n = n; vertices_list.insert(vertices_list.begin(), n, set<int>()); cost_list.insert(cost_list.begin(), n, map<int, int>()); capacity_list.insert(capacity_list.begin(), n, map<int, int>()); potential_list = vector<int>(n, 0); } void insert_edge(int b, int e, int cost, int capacity) { vertices_list[b].insert(e); cost_list[b][e] = cost; capacity_list[b][e] = capacity; } void delete_edge(int b, int e) { vertices_list[b].erase(e); cost_list[b].erase(e); capacity_list[b].erase(e); } int degree_of_vertex(int a) { return vertices_list[a].size(); } bool edge_search(int a, int b) { return vertices_list[a].find(b) != vertices_list[a].end(); } bool path_search(int a, int b, set<int> visited = set<int>()) { visited.insert(a); set<int>::iterator itr; for (itr = vertices_list[a].begin(); itr != vertices_list[a].end(); itr++) { if ((*itr) == b) { return true; } if (visited.find(*itr) == visited.end()) { if (path_search(*itr, b, visited)) { return true; } } } return false; } Shortest_path_result solve_dijkstra(int start, int goal) { set<int> visited = set<int>(); vector<int> distance = vector<int>(n, INF); vector<int> predecessor = vector<int>(n); priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > pq; pq.push(pair<int, int>(0, start)); while (!pq.empty()) { pair<int, int> p = pq.top(); pq.pop(); int nv = p.second; if (distance[nv] < p.first) { continue; } distance[nv] = p.first; for (set<int>::iterator itr = vertices_list[nv].begin(); itr != vertices_list[nv].end(); itr++) { int next = (*itr); if (distance[next] > distance[nv] + cost_list[nv][next]) { distance[next] = distance[nv] + cost_list[nv][next]; predecessor[next] = nv; pq.push(pair<int, int>(distance[next], next)); } } } Shortest_path_result result; result.path = vector<int>(); result.path.push_back(goal); while (true) { int now = result.path.back(); int pre = predecessor[now]; result.path.push_back(pre); if (pre == start) { reverse(result.path.begin(), result.path.end()); break; } } result.sum_of_cost = distance[goal]; result.distance = distance; result.predecessor = predecessor; return result; } pair<int, vector<Edge> > solve_mincostflow(int s, int t, int flow_size) { vector<map<int, int> > flow_list = vector<map<int, int> >(n); vector<map<int, int> > origin_cost = cost_list; bool feasible_flag = true; int sum_flow_cost = 0; while (flow_size > 0) { Shortest_path_result res; vector<int> path; int min_capa = INF; res = solve_dijkstra(s, t); cout << res.sum_of_cost << endl; if (res.sum_of_cost == INF) { feasible_flag = false; break; } path = res.path; for (int i = 0; i < n; i++) { potential_list[i] = potential_list[i] - res.distance[i]; } vector<int>::iterator itr = path.begin(); itr++; for (; itr != path.end(); itr++) { if (min_capa > capacity_list[*(itr - 1)][*itr]) { min_capa = capacity_list[*(itr - 1)][*itr]; } } if (min_capa > flow_size) { min_capa = flow_size; } itr = path.begin(); itr++; for (; itr != path.end(); itr++) { if (flow_list[*(itr - 1)].find(*itr) == flow_list[*(itr - 1)].end()) { flow_list[*(itr - 1)][*itr] = min_capa; } else { flow_list[*(itr - 1)][*itr] += min_capa; } } flow_size = flow_size - min_capa; itr = path.begin(); for (itr++; itr != path.end(); itr++) { int capa, cost; int from, to; from = *(itr - 1); to = *itr; capa = capacity_list[from][to]; cost = cost_list[from][to]; delete_edge(from, to); if (capa - min_capa > 0) { insert_edge(from, to, cost, capa - min_capa); } insert_edge(to, from, -1 * cost, min_capa); } for (int b = 0; b > n; b++) { map<int, int>::iterator itr; for (itr = cost_list[b].begin(); itr != cost_list[b].end(); itr++) { (*itr).second = (*itr).second - potential_list[itr->first] + potential_list[b]; } } } for (int i = 0; i < n; i++) { map<int, int>::iterator itr; for (itr = flow_list[i].begin(); itr != flow_list[i].end(); itr++) { sum_flow_cost += origin_cost[i][itr->first] * itr->second; } } if (!feasible_flag) { cout << "-1" << endl; } else { cout << sum_flow_cost << endl; } return pair<int, vector<Edge> >(); } void print(void) { int i = 0; vector<set<int> >::iterator itr; set<int>::iterator itr_c; for (itr = vertices_list.begin(); itr != vertices_list.end(); itr++) { cout << i << ":"; for (itr_c = (*itr).begin(); itr_c != (*itr).end(); itr_c++) { cout << *itr_c << "(" << capacity_list[i][*itr_c] << ")" << ","; } i++; cout << endl; } } }; int main() { const int inf = 1e9; int v, e, flow; Graph g; cin >> v >> e >> flow; g = Graph(v); int from, to, cost, cap; for (int i = 0; i < e; i++) { cin >> from >> to >> cap >> cost; g.insert_edge(from, to, cost, cap); } g.solve_mincostflow(0, v - 1, flow); return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr int INF = 1e9; struct Edge { int to, cap, rev, weight; Edge(int t, int c, int r, int w) : to(t), cap(c), rev(r), weight(w) {} }; using Edges = vector<Edge>; using Graph = vector<Edges>; class Flow { public: Flow(int v) { mGraph.resize(v); mUsed.assign(v, false); mVert = v; } void add_edge(int from, int to, int cap, int weight = 1) { mGraph[from].emplace_back(to, cap, mGraph[to].size(), weight); mGraph[to].emplace_back(from, 0, mGraph[from].size() - 1, weight); } int bipartite_matching(int x, int y) { int start = max(x, y) * 2; int end = max(x, y) * 2 + 1; for (int i = 0; i < x; ++i) add_edge(start, i, 1); for (int i = 0; i < y; ++i) add_edge(i + x, end, 1); return max_flow(start, end); } int dfs(int v, int t, int f) { if (v == t) return f; mUsed[v] = true; for (auto &e : mGraph[v]) { if (!mUsed[e.to] && e.cap > 0) { int d = dfs(e.to, t, min(f, e.cap)); if (d > 0) { e.cap -= d; mGraph[e.to][e.rev].cap += d; return d; } } } return 0; } int max_flow(int s, int t) { int flow = 0; while (true) { mUsed.assign(mVert, false); int f = dfs(s, t, INF); if (f == 0) break; flow += f; } return flow; } int min_cost_flow(int s, int t, int f) { int res = 0; while (f > 0) { vector<int> dst(mVert, INF); vector<int> prevv(mVert); vector<int> preve(mVert); dst[s] = 0; for (int i = 0; i < mVert; ++i) { for (int j = 0; j < mGraph[i].size(); ++j) { auto e = mGraph[i][j]; if (e.cap > 0 && dst[i] != INF && dst[e.to] > dst[i] + e.weight) { dst[e.to] = dst[i] + e.weight; prevv[e.to] = i; preve[e.to] = j; } } } if (dst[t] == INF) return -1; int d = f; for (int i = t; i != s; i = prevv[i]) { d = min(d, mGraph[prevv[i]][preve[i]].cap); } f -= d; res += d * dst[t]; for (int i = t; i != s; i = prevv[i]) { Edge &e = mGraph[prevv[i]][preve[i]]; e.cap += d; mGraph[i][e.rev].cap -= d; } } return res; } private: Graph mGraph; vector<bool> mUsed; int mVert; }; int main() { int V, E, F, u, v, c, d; cin >> V >> E >> F; Flow f(V); for (int i = 0; i < E; ++i) { cin >> u >> v >> c >> d; f.add_edge(u, v, c, d); } cout << f.min_cost_flow(0, V - 1, F) << '\n'; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; class Edge { public: int from; int to; int flow; Edge(int f, int t, int d) { from = f; to = t; flow = d; } }; class Shortest_path_result { public: int sum_of_cost; vector<int> path; vector<int> distance; vector<int> predecessor; Shortest_path_result() {} }; class Graph { public: int INF; int n; vector<set<int> > vertices_list; vector<map<int, int> > cost_list; vector<map<int, int> > capacity_list; vector<int> potential_list; Graph() {} Graph(int n) { INF = 1e9; this->n = n; vertices_list.insert(vertices_list.begin(), n, set<int>()); cost_list.insert(cost_list.begin(), n, map<int, int>()); capacity_list.insert(capacity_list.begin(), n, map<int, int>()); potential_list = vector<int>(n, 0); } void insert_edge(int b, int e, int cost, int capacity) { vertices_list[b].insert(e); cost_list[b][e] = cost; capacity_list[b][e] = capacity; } void delete_edge(int b, int e) { vertices_list[b].erase(e); cost_list[b].erase(e); capacity_list[b].erase(e); } int degree_of_vertex(int a) { return vertices_list[a].size(); } bool edge_search(int a, int b) { return vertices_list[a].find(b) != vertices_list[a].end(); } bool path_search(int a, int b, set<int> visited = set<int>()) { visited.insert(a); set<int>::iterator itr; for (itr = vertices_list[a].begin(); itr != vertices_list[a].end(); itr++) { if ((*itr) == b) { return true; } if (visited.find(*itr) == visited.end()) { if (path_search(*itr, b, visited)) { return true; } } } return false; } Shortest_path_result solve_dijkstra(int start, int goal) { set<int> visited = set<int>(); vector<int> distance = vector<int>(n, INF); vector<int> predecessor = vector<int>(n); priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > pq; pq.push(pair<int, int>(0, start)); while (!pq.empty()) { pair<int, int> p = pq.top(); pq.pop(); int nv = p.second; if (distance[nv] < p.first) { continue; } distance[nv] = p.first; for (set<int>::iterator itr = vertices_list[nv].begin(); itr != vertices_list[nv].end(); itr++) { int next = (*itr); if (distance[next] > distance[nv] + cost_list[nv][next]) { distance[next] = distance[nv] + cost_list[nv][next]; predecessor[next] = nv; pq.push(pair<int, int>(distance[next], next)); } } } Shortest_path_result result; result.path = vector<int>(); result.path.push_back(goal); while (true) { int now = result.path.back(); int pre = predecessor[now]; result.path.push_back(pre); if (pre == start) { reverse(result.path.begin(), result.path.end()); break; } } result.sum_of_cost = distance[goal]; result.distance = distance; result.predecessor = predecessor; return result; } pair<int, vector<Edge> > solve_mincostflow(int s, int t, int flow_size) { vector<map<int, int> > flow_list = vector<map<int, int> >(n); vector<map<int, int> > origin_cost = cost_list; bool feasible_flag = true; int sum_flow_cost = 0; while (flow_size > 0) { Shortest_path_result res; vector<int> path; int min_capa = INF; res = solve_dijkstra(s, t); if (res.sum_of_cost == INF) { feasible_flag = false; break; } path = res.path; for (int i = 0; i < n; i++) { potential_list[i] = potential_list[i] - res.distance[i]; } vector<int>::iterator itr = path.begin(); itr++; for (; itr != path.end(); itr++) { if (min_capa > capacity_list[*(itr - 1)][*itr]) { min_capa = capacity_list[*(itr - 1)][*itr]; } } if (min_capa > flow_size) { min_capa = flow_size; } itr = path.begin(); itr++; for (; itr != path.end(); itr++) { if (flow_list[*(itr - 1)].find(*itr) == flow_list[*(itr - 1)].end()) { flow_list[*(itr - 1)][*itr] = min_capa; } else { flow_list[*(itr - 1)][*itr] += min_capa; } } flow_size = flow_size - min_capa; itr = path.begin(); for (itr++; itr != path.end(); itr++) { int capa, cost; int from, to; from = *(itr - 1); to = *itr; capa = capacity_list[from][to]; cost = cost_list[from][to]; delete_edge(from, to); if (capa - min_capa > 0) { insert_edge(from, to, cost, capa - min_capa); } insert_edge(to, from, -1 * cost, min_capa); } for (int b = 0; b > n; b++) { map<int, int>::iterator itr; for (itr = cost_list[b].begin(); itr != cost_list[b].end(); itr++) { (*itr).second = (*itr).second - potential_list[itr->first] + potential_list[b]; } } } for (int i = 0; i < n; i++) { map<int, int>::iterator itr; for (itr = flow_list[i].begin(); itr != flow_list[i].end(); itr++) { sum_flow_cost += origin_cost[i][itr->first] * itr->second; } } if (!feasible_flag) { cout << "-1" << endl; } else { cout << sum_flow_cost << endl; } return pair<int, vector<Edge> >(); } void print(void) { int i = 0; vector<set<int> >::iterator itr; set<int>::iterator itr_c; for (itr = vertices_list.begin(); itr != vertices_list.end(); itr++) { cout << i << ":"; for (itr_c = (*itr).begin(); itr_c != (*itr).end(); itr_c++) { cout << *itr_c << "(" << capacity_list[i][*itr_c] << ")" << ","; } i++; cout << endl; } } }; int main() { const int inf = 1e9; int v, e, flow; Graph g; cin >> v >> e >> flow; g = Graph(v); int from, to, cost, cap; for (int i = 0; i < e; i++) { cin >> from >> to >> cap >> cost; g.insert_edge(from, to, cost, cap); } g.solve_mincostflow(0, v - 1, flow); return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
class PQueue attr_accessor :node def initialize @node = [] end def insert(num) i = @node.size @node[i] = num down_heap(i) end def extract ret = @node[0] if @node.size > 1 @node[0] = @node.pop() up_heap(0) else @node = [] end return ret end def delete(node) i = @node.index(node) if i == @node.size - 1 @node.pop else @node[i] = @node.pop copy = @node.clone down_heap(i) if copy == @node up_heap(i) end end end def modify(old, new) delete(old) insert(new) end def up_heap(i) h = @node.size largest = i l = 2 * i + 1 largest = l if l < h && @node[l] > @node[largest] r = 2 * i + 2 largest = r if r < h && @node[r] > @node[largest] while largest != i @node[i], @node[largest] = @node[largest], @node[i] i = largest l = 2 * i + 1 largest = l if l < h && @node[l] > @node[largest] r = 2 * i + 2 largest = r if r < h && @node[r] > @node[largest] end end def down_heap(i) p = (i+1)/2-1 while i > 0 && @node[p] < @node[i] @node[i], @node[p] = @node[p], @node[i] i = p p = (i+1)/2-1 end end end INF = 1.0 / 0.0 class Node attr_accessor :i, :c, :prev, :d, :pot, :ans def initialize(i) @i = i @c = {} @ans = {} @prev = nil @d = INF @pot = 0 end def <(other) if self.d > other.d return true else return false end end def >(other) if self.d < other.d return true else return false end end end nv, ne, f = gets.split.map(&:to_i) g = Array.new(nv){|i| Node.new(i)} ne.times{|i| u, v, c, d = gets.split.map(&:to_i) g[u].c[v] = [c, d] g[u].ans[v] = [0,d] } loop do nv.times{|i| g[i].d = INF g[i].prev = nil } g[0].d = 0 q = PQueue.new nv.times{|i| q.insert(g[i]) } while q.node.size > 0 u = q.extract u.c.each{|v, val| alt = u.d + val[1] if g[v].d > alt q.delete(g[v]) g[v].d = alt g[v].prev = u.i q.insert(g[v]) end } end # p g max = f c = nv-1 path = [c] while c != 0 p = g[c].prev if p == nil puts "-1" exit end path.unshift(p) max = g[p].c[c][0] if max > g[p].c[c][0] c = p end # p path # p max if max < f then #make potential path.each{|i| g[i].pot -= g[i].d } (path.size-1).times{|i| u = path[i] v = path[i+1] g[u].ans[v][0] += max } # p g f -= max else (path.size-1).times{|i| u = path[i] v = path[i+1] g[u].ans[v][0] += f } break end #make sub-network (path.size-1).times{|i| u = path[i] v = path[i+1] g[v].c[u] ||= [0, -g[u].c[v][1]] g[v].c[u][0] += max g[u].c[v][0] -= max if g[u].c[v][0] == 0 g[u].c.delete(v) end } #make modified sub-network g.size.times{|i| g[i].c.each{|j, val| # p "#{g[i].c[j][1]} #{g[i].pot} #{g[j].pot}" g[i].c[j][1] -= g[i].pot - g[j].pot } } # g.size.times{|i| # p g[i] # } end sum = 0 nv.times{|i| g[i].ans.each{|k,v| sum += v[0]*v[1] } } puts sum
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #define pb push_back using namespace std; const int INF=0x3f3f3f3f; const int maxn=105; const int maxq=1005; struct edge{int to,cap,cost,rev;}; int n,m,k; int d[maxn]; int a[maxn]; int p1[maxn]; int p2[maxn]; bool inq[maxn]; vector<edge>G[maxn]; void add_edge(int u,int v,int c,int w) { G[u].pb(edge{v,c,w,int(G[v].size())}); G[v].pb(edge{u,0,-w,int(G[u].size()-1)}); } int mcmf(int s,int t) { int flow=0 , cost=0; while (1) { memset(d,0x3f,sizeof(d)); d[s]=0; a[s]=max(0,k-flow); int qh=0,qt=0,q[maxq]; q[qt++]=s; inq[s]=1; while (qh<qt) { int u=q[qh++]; inq[u]=0; for (int i=0;i<G[u].size();i++) { edge e=G[u][i]; if (d[e.to]>d[u]+e.cost && e.cap) { d[e.to]=d[u]+e.cost; a[e.to]=min(a[u],e.cap); p1[e.to]=u; p2[e.to]=i; if (!inq[e.to]) { q[qt++]=e.to; inq[e.to]=1; } } } } if (d[t]==INF || !a[t]) break; flow+=a[t]; cost+=a[t]*d[t]; for (int u=t;u!=s;) { edge e=G[p1[u]][p2[u]]; G[p1[u]][p2[u]].cap-=d; G[e.to][e.rev].cap+=d; } } if (flow<k) return -1; else return cost; } int main() { cin>>n>>m>>k; for (int i=0;i<m;i++) { int u,v,c,w; cin>>u>>v>>c>>w; add_edge(u,v,c,w); } cout<<mcmf(0,n-1)<<'\n'; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using i64 = int64_t; const int INF = 1LL << 29; struct edge { int to, cap, rev, cost; edge(int a, int b, int c, int d) : to(a), cap(b), rev(c), cost(d) {} }; int V, E, F; vector<edge> graph[100]; int min_cost_flow(int s, int g, int f) { vector<int> min_dist(V, INF); vector<int> prev_v(V, -1), prev_e(V, -1); int ans = 0; while (f > 0) { fill(begin(min_dist), end(min_dist), INF); min_dist[s] = 0; bool updated = true; while (updated) { updated = false; for (int v = 0; v < V; ++v) { if (min_dist[v] == INF) continue; for (int j = 0; j < graph[v].size(); ++j) { edge& e = graph[v][j]; if (e.cap > 0 && min_dist[v] + e.cost < min_dist[e.to]) { updated = true; min_dist[e.to] = min_dist[v] + e.cost; prev_v[e.to] = v; prev_e[e.to] = j; } } } } if (min_dist[g] == INF) { return -1; } int ff = INF; for (int t = g; t != s; t = prev_v[t]) { ff = min(ff, graph[prev_v[t]][prev_e[t]].cap); } ans += ff * min_dist[g]; for (int t = g; t != s; t = prev_v[t]) { edge& e = graph[prev_v[t]][prev_e[t]]; e.cap -= ff; graph[t][e.rev].cap += ff; } f -= ff; } return ans; } int main() { cin >> V >> E >> F; for (int j = 0; j < E; ++j) { int u, v, c, d; cin >> u >> v >> c >> d; graph[u].emplace_back(v, c, (int)graph[v].size(), d); graph[v].emplace_back(u, 0, (int)graph[u].size() - 1, -d); } cout << min_cost_flow(0, V - 1, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
''' import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import csv import argparse import time ''' import sys import heapq INF = sys.maxint/3 class Edge: def __init__(self, to, cap, cost, rev): self.to = to self.cap = cap self.cost = cost self.rev = rev def print_attributes(self): print "to: {0}, cap: {1}, cost: {2}, rev: {3}".format(self.to, self.cap, self.cost, self.rev) class MinimumCostFlow: def __init__(self, V, E): self.V = V self.E = E self.G = [[] for i in range(V)] def add_edge(self, s, t, cap, cost): forward_edge = Edge(t, cap, cost, len(self.G[t])) self.G[s].append(forward_edge) backward_edge = Edge(s, 0, -cost, len(self.G[s])-1) self.G[t].append(backward_edge) def print_edges(self): print "==== print edges ====" for i in range(self.V): print "\nedges from {}".format(i) for e in self.G[i]: e.print_attributes() def minimum_cost_flow(self, s, t, f): res = 0 h = [0] * self.V while f>0: pque = [] dist = [INF for i in range(self.V)] prev_v = [0 for i in range(self.V)] prev_e = [0 for i in range(self.V)] dist[s] = 0 heapq.heappush(pque, (0, s)) while(len(pque)!=0): p = heapq.heappop(pque) v = p[1] if (dist[v] < p[0]): continue for i in range(len(self.G[v])): e = self.G[v][i] if (e.cap>0 and dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]): dist[e.to] = dist[v] + e.cost + h[v] - h[e.to] prev_v[e.to] = v prev_e[e.to] = i heapq.heappush(pque, (dist[e.to], e.to)) if dist[t] == INF: return -1 for v in range(self.V): h[v] += dist[v] d = f v = t while v!=s: d = min(d, self.G[prev_v[v]][prev_e[v]].cap) v = prev_v[v] f -= d res += d * h[t] v = t while v!=s: e = self.G[prev_v[v]][prev_e[v]] e.cap -= d self.G[v][e.rev].cap += d v = prev_v[v] return res def main(): V, E, F = map(int, raw_input().split()) mcf = MinimumCostFlow(V, E) for i in range(E): u, v, c, d = map(int, raw_input().split()) mcf.add_edge(u, v, c, d) #print "minimum cost flow: {}".format(mcf.minimum_cost_flow(0, V-1, F)) print mcf.minimum_cost_flow(0, V-1, F) if __name__ == '__main__': main()
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T, typename U> struct min_cost_flow_graph { struct edge { int from, to; T cap, f; U cost; }; vector<edge> edges; vector<vector<int>> g; int n, st, fin; T required_flow, flow; U cost; min_cost_flow_graph(int n, int st, int fin, T required_flow) : n(n), st(st), fin(fin), required_flow(required_flow) { assert(0 <= st && st < n && 0 <= fin && fin < n && st != fin); g.resize(n); flow = 0; cost = 0; } void clear_graph() { for (const edge &e : edges) { e.f = 0; } flow = 0; cost = 0; } void add(int from, int to, T cap = 1, T rev_cap = 0, U cost = 1) { assert(0 <= from && from < n && 0 <= to && to < n); g[from].emplace_back(edges.size()); edges.push_back({from, to, cap, 0, cost}); g[to].emplace_back(edges.size()); edges.push_back({to, from, rev_cap, 0, -cost}); } U min_cost_flow() { while (flow < required_flow) { T dist[n]; fill(dist, dist + n, numeric_limits<T>::max()); dist[st] = 0; int prevv[n], preve[n]; for (bool update = true; update;) { update = false; for (int id = 0; id < edges.size(); id++) { edge &e = edges[id]; if (0 < e.cap - e.f && dist[e.from] + e.cost < dist[e.to]) { dist[e.to] = dist[e.from] + e.cost; prevv[e.to] = e.from; preve[e.to] = id; update = true; } } } if (dist[fin] == numeric_limits<T>::max()) { return -1; } T d = numeric_limits<U>::max(); for (int v = fin; v != st; v = prevv[v]) { d = min(d, edges[preve[v]].cap - edges[preve[v]].f); } flow += d; cost += d * dist[fin]; for (int v = fin; v != st; v = prevv[v]) { edges[preve[v]].f += d; edges[preve[v] ^ 1].f -= d; } } return cost; } }; int main() { int n, m, f; cin >> n >> m >> f; min_cost_flow_graph<int64_t, int64_t> g(n, 0, n - 1, f); for (int i = 0; i < m; i++) { int64_t from, to, cap, cost; cin >> from >> to >> cap >> cost; g.add(from, to, cap, 0, cost); } cout << g.min_cost_flow() << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { int a, b; scanf("%d%d", &a, &b); printf("d\n", a + b); }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from heapq import heappop, heappush def trace(source, edge_trace): v = source for i in edge_trace: e = edges[v][i] yield e v = e[1] def min_cost_flow(source, sink, required_flow): res = 0 while required_flow: dist = [-1] * n queue = [(0, source, tuple())] edge_trace = None while queue: total_cost, v, edge_memo = heappop(queue) dist[v] = total_cost if v == sink: edge_trace = edge_memo break for i, (remain, target, cost, _) in enumerate(edges[v]): if remain and dist[target] == -1: heappush(queue, (total_cost + cost, target, edge_memo + (i,))) if dist[sink] == -1: return -1 aug = min(e[0] for e in trace(source, edge_trace)) required_flow -= aug res += aug * dist[sink] for e in trace(source, edge_trace): remain, target, cost, idx = e e[0] -= aug edges[target][idx][0] += aug return res n, m, f = map(int, input().split()) edges = [[] for _ in range(n)] for _ in range(m): s, t, c, d = map(int, input().split()) es, et = edges[s], edges[t] ls, lt = len(es), len(et) es.append([c, t, d, lt]) et.append([0, s, d, ls]) print(min_cost_flow(0, n - 1, f))
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.awt.geom.Point2D; import java.io.*; import java.math.BigInteger; import java.util.*; public class Main { Scanner sc = new Scanner(System.in); public static void main(String[] args){ new Main(); } public Main(){ // new A().doIt(); new GRL_6().doIt(); } class GRL_6{ void doIt(){ int n = sc.nextInt(); int e = sc.nextInt(); int max = sc.nextInt(); MCF m = new MCF(n); for(int i = 0;i < e;i++){ int from = sc.nextInt(); int to = sc.nextInt(); int cap = sc.nextInt(); int cost = sc.nextInt(); m.addEdge(from, to, cap, cost); m.addEdge(to, from, cap, cost); } System.out.println(m.minCostFlow(0, n-1, max)); } class MCF{ int INF=1<<24; ArrayList<ArrayList<Edge>> G; class Edge { int to, cap, cost; int rev; public Edge(int to, int cap, int cost, int rev) { this.to = to;this.cap = cap;this.cost = cost; this.rev = rev; } } MCF(int v){ G= new ArrayList<ArrayList<Edge>>(); for(int i=0;i<v;i++){ G.add(new ArrayList<Edge>()); } } private void addEdge(int from, int to, int cap, int cost){ G.get(from).add(new Edge(to, cap, cost, G.get(to).size())); G.get(to).add(new Edge(from, 0, -cost, G.get(from).size() - 1)); } private int minCostFlow(int s, int t, int f) { int V = G.size(); int [] dist = new int[V], prevv = new int[V], preve = new int[V]; int res=0; while(f > 0){ Arrays.fill(dist, INF); dist[s] = 0; boolean update = true; while(update) { update = false; for(int v = 0; v < V; v++){ if(dist[v] == INF) continue; for(int i = 0 ; i < G.get(v).size(); i++){ Edge e = G.get(v).get(i); if(e.cap > 0 && dist[e.to]> dist[v] + e.cost ){ dist[e.to] = dist[v] + e.cost; prevv[e.to] = v; preve[e.to] = i; update = true; } } } } if(dist[t] == INF) return -1; int d= f; for(int v=t;v!= s; v = prevv[v]){ d= Math.min(d, G.get(prevv[v]).get(preve[v]).cap); } f -= d; res += d * dist[t]; for(int v = t; v!= s; v = prevv[v]){ Edge e =G.get(prevv[v]).get(preve[v]); e.cap -= d; G.get(v).get(e.rev).cap += d; } } return res; } } } class A{ BigInteger sum[] = new BigInteger[501]; BigInteger bit[] = new BigInteger[501]; void doIt(){ sum[1] = new BigInteger("1"); bit[1] = new BigInteger("1"); for(int i = 2;i < 501;i++){ bit[i] = bit[i-1].multiply(new BigInteger("2")); sum[i] = sum[i-1].add(bit[i]); } while(true){ String str = sc.next(); if(str.equals("0"))break; BigInteger num = new BigInteger(str); int length = num.toString(2).length() + 1; ArrayList<Par> array = new ArrayList<Par>(); array.add(new Par(bit[length],1,length-1)); System.out.println(bit[length - 1]+" "+sum[length - 1]); System.out.println(array.get(0).num+" "+array.get(0).cnt+" "+array.get(0).length); } } class Par{ BigInteger num; int cnt,length; public Par(BigInteger num,int cnt,int length){ this.num = num; this.cnt = cnt; this.length = length; } } } }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.Closeable; import java.io.FileInputStream; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.PriorityQueue; import java.util.TreeMap; public class Main { static ContestScanner in;static Writer out;public static void main(String[] args) {try{in=new ContestScanner();out=new Writer();Main solve=new Main();solve.solve(); in.close();out.flush();out.close();}catch(IOException e){e.printStackTrace();}} static void dump(int[]a){for(int i=0;i<a.length;i++)out.print(a[i]+" ");out.println();} static void dump(int[]a,int n){for(int i=0;i<a.length;i++)out.printf("%"+n+"d ",a[i]);out.println();} static void dump(long[]a){for(int i=0;i<a.length;i++)out.print(a[i]+" ");out.println();} static void dump(char[]a){for(int i=0;i<a.length;i++)out.print(a[i]);out.println();} static long pow(long a,int n){long r=1;while(n>0){if((n&1)==1)r*=a;a*=a;n>>=1;}return r;} static String itob(int a,int l){return String.format("%"+l+"s",Integer.toBinaryString(a)).replace(' ','0');} static void sort(int[]a){m_sort(a,0,a.length,new int[a.length]);} static void sort(int[]a,int l){m_sort(a,0,l,new int[l]);} static void sort(int[]a,int l,int[]buf){m_sort(a,0,l,buf);} static void sort(int[]a,int s,int l,int[]buf){m_sort(a,s,l,buf);} static void m_sort(int[]a,int s,int sz,int[]b) {if(sz<7){for(int i=s;i<s+sz;i++)for(int j=i;j>s&&a[j-1]>a[j];j--)swap(a, j, j-1);return;} m_sort(a,s,sz/2,b);m_sort(a,s+sz/2,sz-sz/2,b);int idx=s;int l=s,r=s+sz/2;final int le=s+sz/2,re=s+sz; while(l<le&&r<re){if(a[l]>a[r])b[idx++]=a[r++];else b[idx++]=a[l++];} while(r<re)b[idx++]=a[r++];while(l<le)b[idx++]=a[l++];for(int i=s;i<s+sz;i++)a[i]=b[i]; } /* qsort(3.5s)<<msort(9.5s)<<<shuffle+qsort(17s)<Arrays.sort(Integer)(20s) */ static void sort(long[]a){m_sort(a,0,a.length,new long[a.length]);} static void sort(long[]a,int l){m_sort(a,0,l,new long[l]);} static void sort(long[]a,int l,long[]buf){m_sort(a,0,l,buf);} static void sort(long[]a,int s,int l,long[]buf){m_sort(a,s,l,buf);} static void m_sort(long[]a,int s,int sz,long[]b) {if(sz<7){for(int i=s;i<s+sz;i++)for(int j=i;j>s&&a[j-1]>a[j];j--)swap(a, j, j-1);return;} m_sort(a,s,sz/2,b);m_sort(a,s+sz/2,sz-sz/2,b);int idx=s;int l=s,r=s+sz/2;final int le=s+sz/2,re=s+sz; while(l<le&&r<re){if(a[l]>a[r])b[idx++]=a[r++];else b[idx++]=a[l++];} while(r<re)b[idx++]=a[r++];while(l<le)b[idx++]=a[l++];for(int i=s;i<s+sz;i++)a[i]=b[i];} static void swap(long[] a,int i,int j){final long t=a[i];a[i]=a[j];a[j]=t;} static void swap(int[] a,int i,int j){final int t=a[i];a[i]=a[j];a[j]=t;} static int binarySearchSmallerMax(int[]a,int v)// get maximum index which a[idx]<=v {int l=-1,r=a.length-1,s=0;while(l<=r){int m=(l+r)/2;if(a[m]>v)r=m-1;else{l=m+1;s=m;}}return s;} static int binarySearchSmallerMax(int[]a,int v,int l,int r) {int s=-1;while(l<=r){int m=(l+r)/2;if(a[m]>v)r=m-1;else{l=m+1;s=m;}}return s;} @SuppressWarnings("unchecked") static List<Integer>[]createGraph(int n) {List<Integer>[]g=new List[n];for(int i=0;i<n;i++)g[i]=new ArrayList<>();return g;} @SuppressWarnings("unchecked") void solve() throws NumberFormatException, IOException{ final int n = in.nextInt(); final int m = in.nextInt(); int f = in.nextInt(); List<Edge>[] node = new List[n]; for(int i=0; i<n; i++) node[i] = new ArrayList<>(); for(int i=0; i<m; i++){ int a = in.nextInt(); int b = in.nextInt(); int c = in.nextInt(); int d = in.nextInt(); Edge e = new Edge(b, c, d); Edge r = new Edge(a, 0, -d); e.rev = r; r.rev = e; node[a].add(e); node[b].add(r); } final int s = 0, t = n-1; int[] h = new int[n]; int[] dist = new int[n]; int[] preV = new int[n]; int[] preE = new int[n]; final int inf = Integer.MAX_VALUE; PriorityQueue<Pos> qu = new PriorityQueue<>(); int res = 0; int flow = 0; while(f>0){ Arrays.fill(dist, inf); dist[s] = 0; qu.clear(); qu.add(new Pos(s, 0)); while(!qu.isEmpty()){ Pos p = qu.poll(); if(dist[p.v]<p.d) continue; final int sz = node[p.v].size(); for(int i=0; i<sz; i++){ Edge e = node[p.v].get(i); final int nd = e.cost+p.d + h[p.v]-h[e.to]; if(e.cap>0 && nd < dist[e.to]){ preV[e.to] = p.v; preE[e.to] = i; dist[e.to] = nd; qu.add(new Pos(e.to, nd)); } } } if(dist[t]==inf) break; for(int i=0; i<n; i++) h[i] += dist[i]; int minf = f; for(int i=t; i!=s; i=preV[i]){ minf = Math.min(minf, node[preV[i]].get(preE[i]).cap); } f -= minf; flow += minf; res += minf*h[t]; for(int i=t; i!=s; i=preV[i]){ node[preV[i]].get(preE[i]).cap -= minf; node[preV[i]].get(preE[i]).rev.cap += minf; } } if(flow==0) res = -1; System.out.println(res); } } class Pos implements Comparable<Pos>{ int v, d; public Pos(int v, int d) { this.v = v; this.d = d; } @Override public int compareTo(Pos o) { return d-o.d; } } class Edge{ int to, cap, cost; Edge rev; Edge(int t, int c, int co){ to = t; cap = c; cost = co; } void rev(Edge r){ rev = r; } } @SuppressWarnings("serial") class MultiSet<T> extends HashMap<T, Integer>{ @Override public Integer get(Object key){return containsKey(key)?super.get(key):0;} public void add(T key,int v){put(key,get(key)+v);} public void add(T key){put(key,get(key)+1);} public void sub(T key){final int v=get(key);if(v==1)remove(key);else put(key,v-1);} public MultiSet<T> merge(MultiSet<T> set) {MultiSet<T>s,l;if(this.size()<set.size()){s=this;l=set;}else{s=set;l=this;} for(Entry<T,Integer>e:s.entrySet())l.add(e.getKey(),e.getValue());return l;} } @SuppressWarnings("serial") class OrderedMultiSet<T> extends TreeMap<T, Integer>{ @Override public Integer get(Object key){return containsKey(key)?super.get(key):0;} public void add(T key,int v){put(key,get(key)+v);} public void add(T key){put(key,get(key)+1);} public void sub(T key){final int v=get(key);if(v==1)remove(key);else put(key,v-1);} public OrderedMultiSet<T> merge(OrderedMultiSet<T> set) {OrderedMultiSet<T>s,l;if(this.size()<set.size()){s=this;l=set;}else{s=set;l=this;} while(!s.isEmpty()){l.add(s.firstEntry().getKey(),s.pollFirstEntry().getValue());}return l;} } class Pair implements Comparable<Pair>{ int a,b;final int hash;Pair(int a,int b){this.a=a;this.b=b;hash=(a<<16|a>>16)^b;} public boolean equals(Object obj){Pair o=(Pair)(obj);return a==o.a&&b==o.b;} public int hashCode(){return hash;} public int compareTo(Pair o){if(a!=o.a)return a<o.a?-1:1;else if(b!=o.b)return b<o.b?-1:1;return 0;} } class Timer{ long time;public void set(){time=System.currentTimeMillis();} public long stop(){return time=System.currentTimeMillis()-time;} public void print(){System.out.println("Time: "+(System.currentTimeMillis()-time)+"ms");} @Override public String toString(){return"Time: "+time+"ms";} } class Writer extends PrintWriter{ public Writer(String filename)throws IOException {super(new BufferedWriter(new FileWriter(filename)));} public Writer()throws IOException{super(System.out);} } class ContestScanner implements Closeable{ private BufferedReader in;private int c=-2; public ContestScanner()throws IOException {in=new BufferedReader(new InputStreamReader(System.in));} public ContestScanner(String filename)throws IOException {in=new BufferedReader(new InputStreamReader(new FileInputStream(filename)));} public String nextToken()throws IOException { StringBuilder sb=new StringBuilder(); while((c=in.read())!=-1&&Character.isWhitespace(c)); while(c!=-1&&!Character.isWhitespace(c)){sb.append((char)c);c=in.read();} return sb.toString(); } public String readLine()throws IOException{ StringBuilder sb=new StringBuilder();if(c==-2)c=in.read(); while(c!=-1&&c!='\n'&&c!='\r'){sb.append((char)c);c=in.read();} return sb.toString(); } public long nextLong()throws IOException,NumberFormatException {return Long.parseLong(nextToken());} public int nextInt()throws NumberFormatException,IOException {return(int)nextLong();} public double nextDouble()throws NumberFormatException,IOException {return Double.parseDouble(nextToken());} public void close() throws IOException {in.close();} }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <typename T> using V = std::vector<T>; template <typename T> using VV = std::vector<std::vector<T>>; template <typename T> using VVV = std::vector<std::vector<std::vector<T>>>; template <class T> inline T ceil(T a, T b) { return (a + b - 1) / b; } template <class T> inline void print(T x) { std::cout << x << std::endl; } template <class T> inline bool inside(T y, T x, T H, T W) { return 0 <= y and y < H and 0 <= x and x < W; } inline double distance(double y1, double x1, double y2, double x2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); } const int INF = 1L << 30; const double EPS = 1e-9; const std::string YES = "YES", Yes = "Yes", NO = "NO", No = "No"; const std::vector<int> dy = {0, 1, 0, -1}, dx = {1, 0, -1, 0}; using namespace std; class PrimalDual { struct Edge { const int to; int flow; const int cap; const int cost; const int rev; const bool is_rev; Edge(int to, int flow, int cap, int cost, int rev, bool is_rev) : to(to), flow(flow), cost(cost), cap(cap), rev(rev), is_rev(is_rev) { assert(this->cap >= 0); } }; const unsigned long V; vector<vector<Edge>> graph; vector<int> h; vector<int> dist; vector<int> prevv, preve; public: PrimalDual(unsigned long num_of_node) : V(num_of_node) { graph.resize(V); h.resize(V, 0); dist.resize(V); prevv.resize(V); preve.resize(V); } void add_edge(int from, int to, int cap, int cost) { graph[from].emplace_back(Edge(to, 0, cap, cost, graph[to].size(), false)); graph[to].emplace_back( Edge(from, cap, cap, -cost, graph[from].size() - 1, true)); } int min_cost_flow(int s, int t, int f) { int res = 0; while (f > 0) { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> que; fill(dist.begin(), dist.end(), INT_MAX); dist[s] = 0; que.push(make_pair(0, s)); while (not que.empty()) { pair<int, int> p = que.top(); que.pop(); int v = p.second; if (dist[v] < p.first) { continue; } for (int i = 0; i < graph[v].size(); ++i) { Edge &e = graph[v][i]; if (e.cap - e.flow > 0 and dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; que.push(make_pair(dist[e.to], e.to)); } } } if (dist[t] == INT_MAX) { return -1; } for (int v = 0; v < V; v++) { h[v] += dist[v]; } int d = f; for (int v = t; v != s; v = prevv[v]) { int rest = graph[prevv[v]][preve[v]].cap - graph[prevv[v]][preve[v]].flow; d = min(d, rest); } f -= d; res += d * h[t]; for (int v = t; v != s; v = prevv[v]) { Edge &e = graph[prevv[v]][preve[v]]; e.flow += d; graph[v][e.rev].flow -= d; } } return res; } int min_cost_flow_bellmanford(int s, int t, int f) { int res = 0; while (f > 0) { fill(dist.begin(), dist.end(), INT_MAX); dist[s] = 0; bool update = true; while (update) { update = false; for (int v = 0; v < V; v++) { if (dist[v] == INT_MAX) continue; for (int i = 0; i < graph[v].size(); i++) { Edge &e = graph[v][i]; int rest = e.cap - e.flow; if (rest > 0 and dist[e.to] > dist[v] + e.cost) { dist[e.to] = dist[v] + e.cost; prevv[e.to] = v; preve[e.to] = i; update = true; } } } } if (dist[t] == INF) { return -1; } int d = f; for (int v = t; v != s; v = prevv[v]) { int rest = graph[prevv[v]][preve[v]].cap - graph[prevv[v]][preve[v]].flow; d = min(d, rest); } f -= d; res += d * dist[t]; for (int v = t; v != s; v = prevv[v]) { Edge &e = graph[prevv[v]][preve[v]]; e.flow += d; graph[v][e.rev].flow -= d; } } return res; } }; int main() { ios::sync_with_stdio(0); cin.tie(0); int V, E, F; cin >> V >> E >> F; PrimalDual pd(V); for (int i = 0; i < E; i++) { int u, v, c, d; cin >> u >> v >> c >> d; pd.add_edge(u, v, c, d); } cout << pd.min_cost_flow_bellmanford(0, V - 1, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long ll; #define P pair<ll,ll> #define FOR(I,A,B) for(ll I = (A); I < (B); ++I) #define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin()) //ai>=v x is sorted #define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin()) //ai>v x is sorted #define NUM(x,v) (POSU(x,v)-POSL(x,v)) //x is sorted #define SORT(x) (sort(x.begin(),x.end())) // 0 2 2 3 4 5 8 9 #define REV(x) (reverse(x.begin(),x.end())) //reverse #define TO(x,t,f) ((x)?(t):(f)) #define CLR(mat) memset(mat, 0, sizeof(mat)) #define FILV(x,a) fill(x.begin(),x.end(),a) #define FILA(ar,N,a) fill(ar,ar+N,a) #define NEXTP(x) next_permutation(x.begin(),x.end()) ll gcd(ll a,ll b){if(a<b)swap(a,b);if(a%b==0)return b;else return gcd(b,a%b);} ll lcm(ll a,ll b){ll c=gcd(a,b);return ((a/c)*(b/c)*c);}//saisyo kobaisu #define pb push_back #define pri(aa) cout<<(aa)<<endl #define mp(x,y) make_pair(x,y) #define fi first #define se second const ll INF=1e9+7; const ll N = 300003; struct edge{int to,cap,cost,rev;}; struct MinimumCostflow{//ant book p.200 int V; vector<vector<edge> > G; vector<int> prevv,preve,dist; void initsize(int nv){ G.resize(nv); preve.resize(nv); prevv.resize(nv); dist.resize(nv); V=nv; } void add_edge(int from,int to,int cap,int cost){ G[from].push_back((edge){to,cap,cost,G[to].size()}); G[to].push_back((edge){from,0,-cost,G[from].size()-1}); } int min_cost_flow(int s,int t,int f){ int res = 0; while(f>0){ fill(dist.begin(),dist.end(),INT_MAX); dist[s] = 0; bool update=true; while(update){ update = false; for(int v=0;v<V;v++){ if(dist[v]==INT_MAX)continue; for(int i=0;i<G[v].size();i++){ edge &e = G[v][i]; if(e.cap>0&&dist[e.to]>dist[v]+e.cost){ dist[e.to] = dist[v]+e.cost; prevv[e.to]=v; preve[e.to]=i; update = true; } } } } } if(dist[t]==INT_MAX)return -1; int d=f; for(int v=t;v!=s;v=prevv[v]){ d = min(d,G[prevv[v]][preve[v]].cap); } f -=d; res += d*dist[t]; for(int v=t;v!=s;v=prevv[v]){ edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } return res; } }; int main(){ ios::sync_with_stdio(false); cin.tie(0); MinimumCostflow mf; int v,e,f; cin>>v>>e>>f; mf.initsize(v); FOR(i,0,e){ ll x,y,c,d;cin>>x>>y>>c>>d; mf.add_edge(x,y,c,d); } cout<<mf.min_cost_flow(0,v-1,f)<<endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.Closeable; import java.io.FileInputStream; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.PriorityQueue; import java.util.TreeMap; public class Main { static ContestScanner in;static Writer out;public static void main(String[] args) {try{in=new ContestScanner();out=new Writer();Main solve=new Main();solve.solve(); in.close();out.flush();out.close();}catch(IOException e){e.printStackTrace();}} static void dump(int[]a){for(int i=0;i<a.length;i++)out.print(a[i]+" ");out.println();} static void dump(int[]a,int n){for(int i=0;i<a.length;i++)out.printf("%"+n+"d ",a[i]);out.println();} static void dump(long[]a){for(int i=0;i<a.length;i++)out.print(a[i]+" ");out.println();} static void dump(char[]a){for(int i=0;i<a.length;i++)out.print(a[i]);out.println();} static long pow(long a,int n){long r=1;while(n>0){if((n&1)==1)r*=a;a*=a;n>>=1;}return r;} static String itob(int a,int l){return String.format("%"+l+"s",Integer.toBinaryString(a)).replace(' ','0');} static void sort(int[]a){m_sort(a,0,a.length,new int[a.length]);} static void sort(int[]a,int l){m_sort(a,0,l,new int[l]);} static void sort(int[]a,int l,int[]buf){m_sort(a,0,l,buf);} static void sort(int[]a,int s,int l,int[]buf){m_sort(a,s,l,buf);} static void m_sort(int[]a,int s,int sz,int[]b) {if(sz<7){for(int i=s;i<s+sz;i++)for(int j=i;j>s&&a[j-1]>a[j];j--)swap(a, j, j-1);return;} m_sort(a,s,sz/2,b);m_sort(a,s+sz/2,sz-sz/2,b);int idx=s;int l=s,r=s+sz/2;final int le=s+sz/2,re=s+sz; while(l<le&&r<re){if(a[l]>a[r])b[idx++]=a[r++];else b[idx++]=a[l++];} while(r<re)b[idx++]=a[r++];while(l<le)b[idx++]=a[l++];for(int i=s;i<s+sz;i++)a[i]=b[i]; } /* qsort(3.5s)<<msort(9.5s)<<<shuffle+qsort(17s)<Arrays.sort(Integer)(20s) */ static void sort(long[]a){m_sort(a,0,a.length,new long[a.length]);} static void sort(long[]a,int l){m_sort(a,0,l,new long[l]);} static void sort(long[]a,int l,long[]buf){m_sort(a,0,l,buf);} static void sort(long[]a,int s,int l,long[]buf){m_sort(a,s,l,buf);} static void m_sort(long[]a,int s,int sz,long[]b) {if(sz<7){for(int i=s;i<s+sz;i++)for(int j=i;j>s&&a[j-1]>a[j];j--)swap(a, j, j-1);return;} m_sort(a,s,sz/2,b);m_sort(a,s+sz/2,sz-sz/2,b);int idx=s;int l=s,r=s+sz/2;final int le=s+sz/2,re=s+sz; while(l<le&&r<re){if(a[l]>a[r])b[idx++]=a[r++];else b[idx++]=a[l++];} while(r<re)b[idx++]=a[r++];while(l<le)b[idx++]=a[l++];for(int i=s;i<s+sz;i++)a[i]=b[i];} static void swap(long[] a,int i,int j){final long t=a[i];a[i]=a[j];a[j]=t;} static void swap(int[] a,int i,int j){final int t=a[i];a[i]=a[j];a[j]=t;} static int binarySearchSmallerMax(int[]a,int v)// get maximum index which a[idx]<=v {int l=-1,r=a.length-1,s=0;while(l<=r){int m=(l+r)/2;if(a[m]>v)r=m-1;else{l=m+1;s=m;}}return s;} static int binarySearchSmallerMax(int[]a,int v,int l,int r) {int s=-1;while(l<=r){int m=(l+r)/2;if(a[m]>v)r=m-1;else{l=m+1;s=m;}}return s;} @SuppressWarnings("unchecked") static List<Integer>[]createGraph(int n) {List<Integer>[]g=new List[n];for(int i=0;i<n;i++)g[i]=new ArrayList<>();return g;} @SuppressWarnings("unchecked") void solve() throws NumberFormatException, IOException{ final int n = in.nextInt(); final int m = in.nextInt(); int f = in.nextInt(); List<Edge>[] node = new List[n]; for(int i=0; i<n; i++) node[i] = new ArrayList<>(); for(int i=0; i<m; i++){ int a = in.nextInt(); int b = in.nextInt(); int c = in.nextInt(); int d = in.nextInt(); Edge e = new Edge(b, c, d); Edge r = new Edge(a, 0, -d); e.rev = r; r.rev = e; node[a].add(e); node[b].add(r); } final int s = 0, t = n-1; int[] h = new int[n]; int[] dist = new int[n]; int[] preV = new int[n]; int[] preE = new int[n]; final int inf = Integer.MAX_VALUE; PriorityQueue<Pos> qu = new PriorityQueue<>(); int res = 0; while(f>0){ Arrays.fill(dist, inf); dist[s] = 0; qu.clear(); qu.add(new Pos(s, 0)); while(!qu.isEmpty()){ Pos p = qu.poll(); if(dist[p.v]<p.d) continue; final int sz = node[p.v].size(); for(int i=0; i<sz; i++){ Edge e = node[p.v].get(i); final int nd = e.cost+p.d + h[p.v]-h[e.to]; if(e.cap>0 && nd < dist[e.to]){ preV[e.to] = p.v; preE[e.to] = i; dist[e.to] = nd; qu.add(new Pos(e.to, nd)); } } } if(dist[t]==inf) break; for(int i=0; i<n; i++) h[i] += dist[i]; int minf = f; for(int i=t; i!=s; i=preV[i]){ minf = Math.min(minf, node[preV[i]].get(preE[i]).cap); } f -= minf; res += minf*h[t]; for(int i=t; i!=s; i=preV[i]){ node[preV[i]].get(preE[i]).cap -= minf; node[preV[i]].get(preE[i]).rev.cap += minf; } } System.out.println(res); } } class Pos implements Comparable<Pos>{ int v, d; public Pos(int v, int d) { this.v = v; this.d = d; } @Override public int compareTo(Pos o) { return d-o.d; } } class Edge{ int to, cap, cost; Edge rev; Edge(int t, int c, int co){ to = t; cap = c; cost = co; } void rev(Edge r){ rev = r; } } @SuppressWarnings("serial") class MultiSet<T> extends HashMap<T, Integer>{ @Override public Integer get(Object key){return containsKey(key)?super.get(key):0;} public void add(T key,int v){put(key,get(key)+v);} public void add(T key){put(key,get(key)+1);} public void sub(T key){final int v=get(key);if(v==1)remove(key);else put(key,v-1);} public MultiSet<T> merge(MultiSet<T> set) {MultiSet<T>s,l;if(this.size()<set.size()){s=this;l=set;}else{s=set;l=this;} for(Entry<T,Integer>e:s.entrySet())l.add(e.getKey(),e.getValue());return l;} } @SuppressWarnings("serial") class OrderedMultiSet<T> extends TreeMap<T, Integer>{ @Override public Integer get(Object key){return containsKey(key)?super.get(key):0;} public void add(T key,int v){put(key,get(key)+v);} public void add(T key){put(key,get(key)+1);} public void sub(T key){final int v=get(key);if(v==1)remove(key);else put(key,v-1);} public OrderedMultiSet<T> merge(OrderedMultiSet<T> set) {OrderedMultiSet<T>s,l;if(this.size()<set.size()){s=this;l=set;}else{s=set;l=this;} while(!s.isEmpty()){l.add(s.firstEntry().getKey(),s.pollFirstEntry().getValue());}return l;} } class Pair implements Comparable<Pair>{ int a,b;final int hash;Pair(int a,int b){this.a=a;this.b=b;hash=(a<<16|a>>16)^b;} public boolean equals(Object obj){Pair o=(Pair)(obj);return a==o.a&&b==o.b;} public int hashCode(){return hash;} public int compareTo(Pair o){if(a!=o.a)return a<o.a?-1:1;else if(b!=o.b)return b<o.b?-1:1;return 0;} } class Timer{ long time;public void set(){time=System.currentTimeMillis();} public long stop(){return time=System.currentTimeMillis()-time;} public void print(){System.out.println("Time: "+(System.currentTimeMillis()-time)+"ms");} @Override public String toString(){return"Time: "+time+"ms";} } class Writer extends PrintWriter{ public Writer(String filename)throws IOException {super(new BufferedWriter(new FileWriter(filename)));} public Writer()throws IOException{super(System.out);} } class ContestScanner implements Closeable{ private BufferedReader in;private int c=-2; public ContestScanner()throws IOException {in=new BufferedReader(new InputStreamReader(System.in));} public ContestScanner(String filename)throws IOException {in=new BufferedReader(new InputStreamReader(new FileInputStream(filename)));} public String nextToken()throws IOException { StringBuilder sb=new StringBuilder(); while((c=in.read())!=-1&&Character.isWhitespace(c)); while(c!=-1&&!Character.isWhitespace(c)){sb.append((char)c);c=in.read();} return sb.toString(); } public String readLine()throws IOException{ StringBuilder sb=new StringBuilder();if(c==-2)c=in.read(); while(c!=-1&&c!='\n'&&c!='\r'){sb.append((char)c);c=in.read();} return sb.toString(); } public long nextLong()throws IOException,NumberFormatException {return Long.parseLong(nextToken());} public int nextInt()throws NumberFormatException,IOException {return(int)nextLong();} public double nextDouble()throws NumberFormatException,IOException {return Double.parseDouble(nextToken());} public void close() throws IOException {in.close();} }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int v, e; vector<pair<int, int> > adj[110], revadj[110]; int capacity[1010], cost[1010], flowingthrough[1010], dis[110], pre[110], preedge[110], endofedge[1010]; void bellmanford() { fill_n(dis, v, 1e9); dis[0] = 0; for (int f = 0; f < v; f++) { for (int i = 0; i < v; i++) { for (auto e : adj[i]) { if (flowingthrough[e.second] != capacity[e.second]) { if (dis[e.first] > dis[i] + cost[e.second]) { dis[e.first] = dis[i] + cost[e.second]; pre[e.first] = i; preedge[e.first] = e.second; } } } for (auto e : revadj[i]) { if (flowingthrough[e.second]) { if (dis[e.first] > dis[i] - cost[e.second]) { dis[e.first] = dis[i] - cost[e.second]; pre[e.first] = i; preedge[e.first] = e.second; } } } } } } pair<int, int> mincostmaxflow() { int ans = 0; int totalcost = 0; while (1) { bellmanford(); if (dis[v - 1] == 1e9) break; ans++; int a = v - 1; while (a) { int e = preedge[a]; if (endofedge[e] == a) capacity[e]--, totalcost += cost[e]; else capacity[e]++, totalcost -= cost[e]; a = pre[a]; } } return {ans, totalcost}; } int f; int main() { scanf("%d%d%d", &v, &e, &f); for (int i = 0; i < e; i++) { int a, b; scanf("%d%d%d%d", &a, &b, &capacity[i], &cost[i]); assert(a != b); endofedge[i] = b; adj[a].emplace_back(b, i); revadj[b].emplace_back(a, i); } adj[v - 1].emplace_back(v, e); cost[e] = 0; endofedge[e] = v; capacity[e] = f; v++; auto ans = mincostmaxflow(); if (ans.first != f) printf("-1\n"); else printf("%d\n", ans.second); }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using Int = int64_t; using UInt = uint64_t; using C = std::complex<double>; template <typename T> using RQ = std::priority_queue<T, std::vector<T>, std::greater<T>>; int main() { Int v, e, f; std::cin >> v >> e >> f; std::vector<Int> ss(e + 1), ts(e + 1), cs(e + 1), fs(e + 1), bs(e + 1); for (Int i = (Int)(1); i < (Int)(e + 1); ++i) { Int a, b, c, d; std::cin >> a >> b >> c >> d; ss[i] = a, ts[i] = b, cs[i] = d, fs[i] = 0, bs[i] = c; } std::vector<std::vector<Int>> es(v); for (Int i = (Int)(1); i < (Int)(e + 1); ++i) { Int s = ss[i], t = ts[i]; es[s].emplace_back(i); es[t].emplace_back(-i); } Int res = 0; Int source = 0, sink = v - 1; while (f > 0) { RQ<std::pair<Int, Int>> q; q.emplace(0, source); std::vector<Int> ps(v, -1), xs(v, -1), ys(v), hs(v); xs[source] = 0; ys[source] = f; while (not q.empty()) { Int d, s; std::tie(d, s) = q.top(); q.pop(); if (not(d == xs[s])) continue; ; for (Int i : es[s]) { Int k = std::abs(i); Int t = i > 0 ? ts[k] : ss[k]; Int tf = i > 0 ? bs[k] : fs[k]; if (not(tf > 0)) continue; ; Int nd = d + cs[k] + hs[s] - hs[t]; if (not(xs[t] == -1 or xs[t] > nd)) continue; ; assert(cs[k] != 0); xs[t] = nd; ps[t] = i; ys[t] = std::min(ys[s], tf); q.emplace(nd, t); } } Int tf = ys[sink]; if (false) fprintf(stderr, "tf = %ld\n", tf); f -= tf; if (f > 0 and tf == 0) { res = -1; break; } for (Int i = 0; i < (Int)(v); ++i) hs[i] += xs[i]; for (Int i = sink, k = ps[i]; i != source; i = k > 0 ? ss[k] : ts[k], k = ps[i]) { Int ak = std::abs(k); if (false) fprintf(stderr, "i=%ld, k=%ld\n", i, k); if (k > 0) { res += tf * cs[ak]; fs[ak] += tf; bs[ak] -= tf; } else { res -= tf * cs[ak]; fs[ak] -= tf; bs[ak] += tf; } } if (f == 0) break; for (Int i = (Int)(1); i < (Int)(e + 1); ++i) { if (false) fprintf(stderr, "%ld -> %ld : cost=%ld : ->=%ld : <-=%ld\n", ss[i], ts[i], cs[i], fs[i], bs[i]); } } printf("%ld\n", res); }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using i64 = long long; struct edge { i64 from; i64 to; i64 cap; i64 cost; i64 rev; }; i64 INF = 1e8; i64 capacity_scaling_bflow(std::vector<std::vector<edge>>& g, std::vector<i64> b) { i64 ans = 0; i64 U = *std::max_element(begin(b), end(b)); i64 delta = (1 << ((int)(std::log2(U)) + 1)); int n = g.size(); std::vector<i64> e = b; std::vector<i64> p(n, 0); int zero = 0; for (auto x : e) { if (x == 0) zero++; } for (; delta > 0; delta >>= 1) { if (zero == n) break; for (int s = 0; s < n; s++) { if (!(e[s] >= delta)) continue; std::vector<std::size_t> pv(n, -1); std::vector<std::size_t> pe(n, -1); std::vector<i64> dist(n, 1e18); using P = std::pair<i64, i64>; std::priority_queue<P, std::vector<P>, std::greater<P>> que; dist[s] = 0; que.push({dist[s], s}); while (!que.empty()) { int v = que.top().second; i64 d = que.top().first; que.pop(); if (dist[v] < d) continue; for (std::size_t i = 0; i < g[v].size(); i++) { const auto& e = g[v][i]; std::size_t u = e.to; i64 ccc = e.cost + p[v] - p[u]; if (e.cap == 0) ccc = INF; assert(ccc >= 0); if (dist[u] > dist[v] + ccc) { dist[u] = dist[v] + ccc; pv[u] = v; pe[u] = i; que.push({dist[u], u}); } } } for (int i = 0; i < n; i++) { p[i] += dist[i] - dist[s]; } int t = 0; for (; t < n; t++) { if (!(e[s] >= delta)) break; if (e[t] <= -delta && pv[t] != -1) { std::size_t u = t; for (; pv[u] != -1; u = pv[u]) { ans += delta * g[pv[u]][pe[u]].cost; g[pv[u]][pe[u]].cap -= delta; g[u][g[pv[u]][pe[u]].rev].cap += delta; } e[u] -= delta; e[t] += delta; if (e[u] == 0) zero++; if (e[t] == 0) zero++; } } } } if (zero == n) return ans; else return -1e18; } int main() { i64 N, M, F; cin >> N >> M >> F; vector<vector<edge>> g(N + M); vector<i64> e(N + M, 0); int s = 0; int t = N - 1; e[s + M] = F; e[t + M] = -F; for (int i = 0; i < M; i++) { i64 a, b, c, d; cin >> a >> b >> c >> d; e[i] = c; e[a + M] -= c; g[i].push_back({i, a + M, (i64)1e18, 0, (i64)g[a + M].size()}); g[a + M].push_back({a + M, i, 0, 0, (i64)g[i].size() - 1}); g[i].push_back({i, b + M, (i64)1e18, d, (i64)g[b + M].size()}); g[b + M].push_back({b + M, i, 0, -d, (i64)g[i].size() - 1}); } i64 ans = capacity_scaling_bflow(g, e); if (ans == -1e18) { cout << -1 << endl; } else { cout << ans << endl; } }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> struct node { int id; int cap; int cost; struct node *next; }; struct node **list; int **flow, *dist, *prev, *preve, *h; int *heap, *heap_index, heapsize; void Insert(int, int, int, int); void downheap(int); void upheap(int); void PQ_init(int); int PQ_remove(void); void PQ_update(int); int Maxflow(int, int, int); int main(void) { int i, v, e, f, s, t, c, d, mincost = 0; scanf("%d %d %d", &v, &e, &f); list = (struct node **)malloc(sizeof(struct node *) * v); flow = (int **)malloc(sizeof(int *) * v); dist = (int *)malloc(sizeof(int) * v); prev = (int *)malloc(sizeof(int) * v); preve = (int *)malloc(sizeof(int) * v); h = (int *)calloc(v, sizeof(int)); for (i = 0; i < v; i++) { list[i] = NULL; flow[i] = (int *)calloc(v, sizeof(int)); } for (i = 0; i < e; i++) { scanf("%d %d %d %d", &s, &t, &c, &d); Insert(s, t, c, d); } while (f > 0 && Maxflow(0, v - 1, v)) { int n, delta = f; for (n = v - 1; n != 0; n = prev[n]) { delta = ((delta) < (preve[n] - flow[prev[n]][n]) ? (delta) : (preve[n] - flow[prev[n]][n])); } f -= delta; for (n = v - 1; n != 0; n = prev[n]) { flow[prev[n]][n] += delta; flow[n][prev[n]] -= delta; } for (i = 0; i < v; i++) h[i] += dist[i]; } if (f == 0) { for (i = 0; i < v; i++) { struct node *n; for (n = list[i]; n != NULL; n = n->next) { if (n->cap > 0) mincost += flow[i][n->id] * n->cost; } } printf("%d\n", mincost); } else printf("-1\n"); for (i = 0; i < v; i++) { free(list[i]); free(flow[i]); } free(list); free(flow); free(dist); free(prev); free(preve); free(h); } void Insert(int a, int b, int cap, int cost) { struct node *p = (struct node *)malloc(sizeof(struct node)); p->id = b; p->cap = cap; p->cost = cost; p->next = list[a]; list[a] = p; p = (struct node *)malloc(sizeof(struct node)); p->id = a; p->cap = 0; p->cost = -cost; p->next = list[b]; list[b] = p; } void downheap(int k) { int j, v = heap[k]; while (k < heapsize / 2) { j = 2 * k + 1; if (j < heapsize - 1 && dist[heap[j]] > dist[heap[j + 1]]) j++; if (dist[v] <= dist[heap[j]]) break; heap[k] = heap[j]; heap_index[heap[j]] = k; k = j; } heap[k] = v; heap_index[v] = k; } void upheap(int j) { int k, v = heap[j]; while (j > 0) { k = (j + 1) / 2 - 1; if (dist[v] >= dist[heap[k]]) break; heap[j] = heap[k]; heap_index[heap[k]] = j; j = k; } heap[j] = v; heap_index[v] = j; } void PQ_init(int size) { int i; heapsize = size; heap = (int *)malloc(sizeof(int) * size); heap_index = (int *)malloc(sizeof(int) * size); for (i = 0; i < size; i++) { heap[i] = i; heap_index[i] = i; } for (i = heapsize / 2 - 1; i >= 0; i--) downheap(i); } int PQ_remove(void) { int v = heap[0]; heap[0] = heap[heapsize - 1]; heap_index[heap[heapsize - 1]] = 0; heapsize--; downheap(0); return v; } void PQ_update(int v) { upheap(heap_index[v]); } int Maxflow(int s, int t, int size) { struct node *n; int i; for (i = 0; i < size; i++) { dist[i] = INT_MAX; prev[i] = -1; preve[i] = -1; } dist[s] = 0; PQ_init(size); while (heapsize) { i = PQ_remove(); for (n = list[i]; n != NULL; n = n->next) { int v = n->id; if (flow[i][v] < n->cap) { int newlen = dist[i] + n->cost + h[i] - h[v]; if (newlen < dist[v]) { dist[v] = newlen; prev[v] = i; preve[v] = n->cap; PQ_update(v); } } } } free(heap); free(heap_index); return dist[t] != INT_MAX; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using Weight = long long; static const Weight INF = 1LL << 57; template <class T> using gp_queue = priority_queue<T, deque<T>, less<T>>; struct Arc { size_t src, dst; Weight capacity, cost, flow; size_t rev; Arc() {} Arc(size_t src, size_t dst, Weight capacity, Weight cost = 0) : src(src), dst(dst), capacity(capacity), cost(cost), flow(0), rev(-1) {} Weight residue() const { return capacity - flow; } }; bool operator<(const Arc &e, const Arc &f) { if (e.cost != f.cost) { return e.cost > f.cost; } else if (e.capacity != f.capacity) { return e.capacity > f.capacity; } else { return e.src != f.src ? e.src < f.src : e.dst < f.dst; } } using Arcs = vector<Arc>; using Node = vector<Arc>; using FlowNetwork = vector<Node>; void connect(FlowNetwork &g, size_t s, size_t d, Weight c = 1, Weight k = 0) { g[s].push_back(Arc(s, d, c, k)); g[d].push_back(Arc(d, s, 0, -k)); g[s].back().rev = g[d].size() - 1; g[d].back().rev = g[s].size() - 1; } void join(FlowNetwork &g, size_t s, size_t d, Weight c = 1, Weight k = 0) { g[s].push_back(Arc(s, d, c, k)); g[d].push_back(Arc(d, s, c, k)); g[s].back().rev = g[d].size() - 1; g[d].back().rev = g[s].size() - 1; } pair<Weight, Weight> mincost_flow(FlowNetwork &g, size_t s, size_t t, Weight F = INF) { size_t V = g.size(); vector<Arc *> prev(V, NULL); pair<Weight, Weight> total; while (F > total.second) { vector<Weight> d(V, INF); d[s] = 0; for (bool updated = true; updated;) { updated = false; for (size_t v = 0; v < V; ++v) { if (d[v] == INF) continue; for (Arc &e : g[v]) { if (e.capacity <= 0) continue; if (d[e.dst] > d[e.src] + e.cost) { d[e.dst] = d[e.src] + e.cost; prev[e.dst] = &e; updated = true; } } } } if (d[t] == INF) break; Weight f = F - total.second; for (Arc *e = prev[t]; e != NULL; e = prev[e->src]) f = min(f, e->capacity); total.second += f; total.first += f * d[t]; for (Arc *e = prev[t]; e != NULL; e = prev[e->src]) { e->capacity -= f; g[e->dst][e->rev].capacity += f; } } return total; } int main() { size_t V, E; Weight F; scanf("%zu %zu %lld", &V, &E, &F); FlowNetwork g(V); for (size_t i = 0; i < E; ++i) { size_t u, v; Weight c, d; scanf("%zu %zu %lld %lld", &u, &v, &c, &d); connect(g, u, v, c, d); } printf("%lld\n", mincost_flow(g, 0, V - 1, F).first); return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from collections import defaultdict v_num, e_num, flow = (int(n) for n in input().split(" ")) edges = defaultdict(list) for _ in range(e_num): s1, t1, cap, cost = (int(n) for n in input().split(" ")) edges[s1].append([t1, cap, cost, len(edges[t1])]) edges[t1].append([s1, cap, cost, len(edges[s1]) - 1]) answer = 0 before_vertice = [float("inf") for n in range(v_num)] before_edge = [float("inf") for n in range(v_num)] sink = v_num - 1 while True: distance = [float("inf") for n in range(v_num)] distance[0] = 0 updated = 1 while updated: updated = 0 for v in range(v_num): if distance[v] == float("inf"): continue for i, (target, cap, cost, trace_i) in enumerate(edges[v]): if cap > 0 and distance[target] > distance[v] + cost: distance[target] = distance[v] + cost before_vertice[target] = v before_edge[target] = i updated = 1 if distance[sink] == float("inf"): print(-1) break decreased = flow trace_i = sink while trace_i != 0: decreased = min(decreased, edges[before_vertice[trace_i]][before_edge[trace_i]][1]) trace_i = before_vertice[trace_i] flow -= decreased trace_i = sink while trace_i != 0: this_edge = edges[before_vertice[trace_i]][before_edge[trace_i]] this_edge[1] -= decreased answer += this_edge[2] * decreased edges[trace_i][this_edge[3]][1] += decreased trace_i = before_vertice[trace_i] if flow <= 0: print(answer) break
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int E = 1e18 + 7; const long long int MOD = 1000000007; class CFlow { private: struct edge { long long int to; long long int cap; long long int rev; long long int cost; }; struct node { long long int cost; long long int flow; long long int number; long long int from; long long int edge; bool operator<(const node &a) const { if (a.cost < this->cost) { return true; } else if (a.cost == this->cost && a.flow > this->flow) { return true; } return false; } }; long long int INF; long long int v; vector<vector<edge>> e; public: CFlow(long long int v) : v(v) { e.resize(v); INF = 1e18 + 7; } void add_edge(long long int from, long long int to, long long int cap, long long int cost) { e[from].push_back((edge){to, cap, (long long int)e[to].size(), cost}); e[to].push_back( (edge){from, 0, (long long int)e[from].size() - 1, -1 * cost}); } pair<long long int, long long int> min_cost(long long int s, long long int t, long long int flow) { vector<vector<edge>> ed = e; long long int cost = 0; long long int D = flow; vector<long long int> h(v, 0); while (flow > 0) { priority_queue<node> q; vector<node> V(v, {INF, 0, -1, -1, -1}); V[s] = {0, flow, s, s, -1}; q.push({0, flow, s, s, -1}); while (!q.empty()) { node N = q.top(); q.pop(); long long int w = N.number; if (V[w].cost < N.cost) { continue; } for (int i = 0; i < e[w].size(); i++) { edge &E = e[w][i]; if (E.cap > 0 && V[E.to].cost > V[w].cost + E.cost + h[w] - h[E.to]) { V[E.to] = {V[w].cost + E.cost + h[w] - h[E.to], min(N.flow, E.cap), E.to, w, i}; q.push(V[E.to]); } } } if (V[t].flow == 0) { break; } for (int i = 0; i < v; i++) { h[i] += V[i].cost; } flow -= V[t].flow; cost += V[t].cost * V[t].flow; long long int w = t; while (w != s) { long long int t = w; w = V[w].from; edge &E = e[w][V[t].edge]; E.cap -= V[t].flow; e[t][E.rev].cap += V[t].flow; } if (flow == 0) { break; } } e = ed; return {D - flow, cost}; } }; int main() { long long int v, e, f; cin >> v >> e >> f; CFlow first(v); for (int i = 0; i < e; i++) { long long int s, t, cap, cost; cin >> s >> t >> cap >> cost; first.add_edge(s, t, cap, cost); } pair<long long int, long long int> P = first.min_cost(0, v - 1, f); if (P.first != f) { cout << -1 << endl; } else { cout << P.second << endl; } return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct edge { int to, cap, cost, rev; }; int V; vector<edge> G[100]; vector<int> h(100); int dist[100]; int prevv[100], preve[100]; void add_edge(int from, int to, int cap, int cost) { G[from].push_back((edge){to, cap, cost, (int)G[to].size()}); G[to].push_back((edge){from, 0, -cost, (int)G[from].size() - 1}); } int shortest_path(int s, vector<int> &d) { int v = d.size(); for (long long i = 0; i < (long long)(d.size()); i++) d[i] = (1e9 + 1); d[s] = 0; for (long long loop = 0; loop < (long long)(v); loop++) { bool update = false; for (long long i = 0; i < (long long)(100); i++) { for (auto e : G[i]) { if (d[i] != (1e9 + 1) && d[e.to] > d[i] + e.cost) { d[e.to] = d[i] + e.cost; update = true; } } } if (!update) break; if (loop == v - 1) return true; } return false; } int min_cost_flow(int s, int t, int f) { int res = 0; for (long long i = 0; i < (long long)(h.size()); i++) h[i] = 0; shortest_path(s, h); int times = 0; while (f > 0) { if (times == 0) shortest_path(s, h); else { priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > que; fill(dist, dist + V, (1e9 + 1)); dist[s] = 0; que.push(pair<int, int>(0, s)); while (!que.empty()) { pair<int, int> p = que.top(); que.pop(); int v = p.second; if (dist[v] < p.first) continue; for (int i = 0; i < G[v].size(); i++) { edge &e = G[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; que.push(pair<int, int>(dist[e.to], e.to)); } } } } times++; if (dist[t] == (1e9 + 1)) return -1; for (int v = 0; v < V; v++) h[v] += dist[v]; int d = f; for (int v = t; v != s; v = prevv[v]) { d = min(d, G[prevv[v]][preve[v]].cap); } f -= d; res += d * h[t]; for (int v = t; v != s; v = prevv[v]) { edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } return res; } int main() { int e, f; cin >> V >> e >> f; for (long long i = 0; i < (long long)(e); i++) { int u, v, c, d; cin >> u >> v >> c >> d; add_edge(u, v, c, d); } cout << min_cost_flow(0, V - 1, f) << endl; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); } template <int NV, class V> struct MinCostFlow { struct edge { int to, capacity; V cost; int reve; edge(int a, int b, V c, int d) { to = a; capacity = b; cost = c; reve = d; } }; vector<edge> E[NV]; int prev_v[NV], prev_e[NV]; V dist[NV]; void add_edge(int x, int y, int cap, V cost) { E[x].push_back(edge(y, cap, cost, (int)E[y].size())); E[y].push_back(edge(x, 0, -cost, (int)E[x].size() - 1)); } V mincost(int from, int to, int flow) { V res = 0; int i, v; for (int i = 0; i < NV; i++) prev_v[i] = 0; for (int i = 0; i < NV; i++) prev_e[i] = 0; while (flow > 0) { fill(dist, dist + NV, numeric_limits<V>::max() / 2); dist[from] = 0; priority_queue<pair<int, int> > Q; Q.push(make_pair(0, from)); while (Q.size()) { int d = -Q.top().first, cur = Q.top().second; Q.pop(); if (dist[cur] != d) continue; if (d == numeric_limits<V>::max() / 2) break; for (int i = 0; i < E[cur].size(); i++) { edge &e = E[cur][i]; if (e.capacity > 0 && dist[e.to] > d + e.cost) { dist[e.to] = d + e.cost; prev_v[e.to] = cur; prev_e[e.to] = i; Q.push(make_pair(-dist[e.to], e.to)); } } } if (dist[to] == numeric_limits<V>::max() / 2) return -1; int lc = flow; for (v = to; v != from; v = prev_v[v]) lc = min(lc, E[prev_v[v]][prev_e[v]].capacity); flow -= lc; res += lc * dist[to]; for (v = to; v != from; v = prev_v[v]) { edge &e = E[prev_v[v]][prev_e[v]]; e.capacity -= lc; E[v][e.reve].capacity += lc; } } return res; } }; int V, E, F; void _main() { cin >> V >> E >> F; MinCostFlow<101, int> mcf; for (int i = 0; i < E; i++) { int a, b, c, d; cin >> a >> b >> c >> d; mcf.add_edge(a, b, c, d); } int ans = mcf.mincost(0, V - 1, F); if (ans == 0) ans = -1; cout << ans << endl; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int INF = 2000000000; struct edge { int to, cap, cost, rev; edge(int t, int ca, int co, int re) { to = t; cap = ca; cost = co; rev = re; } }; vector<edge> G[40]; int prv[40], pre[40], d[40]; int v, e, flow; void addedge(int from, int to, int cap, int cost) { G[from].push_back(edge(to, cap, cost, G[to].size())); G[to].push_back(edge(from, 0, -cost, G[from].size() - 1)); } int minimumcost(int s, int t, int f) { int res = 0; while (f > 0) { fill(d, d + v, INF); d[s] = 0; bool ud = true; while (ud) { ud = false; for (int i = 0; i < v; i++) { if (d[i] == INF) continue; for (int j = 0; j < G[i].size(); j++) { edge &e = G[i][j]; if (e.cap > 0 && d[e.to] > d[i] + e.cost) { d[e.to] = d[i] + e.cost; prv[e.to] = i; pre[e.to] = j; ud = true; } } } } if (d[t] == INF) return -1; int dis = f; for (int w = t; w != s; w = prv[w]) { dis = min(dis, G[prv[w]][pre[w]].cap); } f -= dis; for (int w = t; w != s; w = prv[w]) { G[prv[w]][pre[w]].cap -= dis; G[w][G[prv[w]][pre[w]].rev].cap += dis; } res += dis * d[t]; } return res; } int main() { cin >> v >> e >> flow; for (int i = 0; i < e; i++) { int s, t, c, d; cin >> s >> t >> c >> d; addedge(s, t, c, d); } cout << minimumcost(0, v - 1, flow) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct edge { int to, cap, cost, rev; }; int V; vector<edge> G[10000]; int h[10000]; int dist[10000]; int prevv[10000], preve[10000]; void init_edge() { for (int i = 0; i < V; i++) G[i].clear(); } void add_edge(int from, int to, int cap, int cost) { G[from].push_back((edge){to, cap, cost, (int)G[to].size()}); G[to].push_back((edge){from, 0, -cost, (int)G[from].size() - 1}); } int min_cost_flow(int s, int t, int f) { int res = 0; fill(h, h + V, 0); while (f > 0) { priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > que; fill(dist, dist + V, 1000000001); dist[s] = 0; que.push(pair<int, int>(0, s)); while (!que.empty()) { pair<int, int> p = que.top(); que.pop(); int v = p.second; if (dist[v] < p.first) continue; for (int i = 0; i < (int)G[v].size(); i++) { edge &e = G[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; que.push(pair<int, int>(dist[e.to], e.to)); } } } if (dist[t] == 1000000001) return -1; for (int v = 0; v < V; v++) h[v] += dist[v]; int d = f; for (int v = t; v != s; v = prevv[v]) { d = min(d, G[prevv[v]][preve[v]].cap); f -= d; res += d * h[t]; for (int v = t; v != s; v = prevv[v]) { edge &e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } return res; } } int main() { int E, F, a, b, c, d; cin >> V >> E >> F; while (E--) { cin >> a >> b >> c >> d; add_edge(a, b, c, d); } cout << min_cost_flow(0, V - 1, F) << endl; return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> struct node { int id; int cap; int cost; struct node *next; }; struct node **list; int **flow, *dist, *prev, *preve, *h; int *heap, *heap_index, heapsize; void Insert(int, int, int, int); void downheap(int); void upheap(int); void PQ_init(int); int PQ_remove(void); void PQ_update(int); int Maxflow(int, int, int); int main(void) { int i, v, e, f, s, t, c, d, mincost = 0; scanf("%d %d %d", &v, &e, &f); list = (struct node **)malloc(sizeof(struct node *) * v); flow = (int **)malloc(sizeof(int *) * v); dist = (int *)malloc(sizeof(int) * v); prev = (int *)malloc(sizeof(int) * v); preve = (int *)malloc(sizeof(int) * v); h = (int *)calloc(v, sizeof(int)); for (i = 0; i < v; i++) { list[i] = NULL; flow[i] = (int *)calloc(v, sizeof(int)); } for (i = 0; i < e; i++) { scanf("%d %d %d %d", &s, &t, &c, &d); Insert(s, t, c, d); } while (f > 0 && Maxflow(0, v - 1, v)) { int n, delta = f; for (n = v - 1; n != 0; n = prev[n]) { delta = ((delta) < (preve[n] - flow[prev[n]][n]) ? (delta) : (preve[n] - flow[prev[n]][n])); } f -= delta; for (n = v - 1; n != 0; n = prev[n]) { flow[prev[n]][n] += delta; flow[n][prev[n]] -= delta; } for (i = 0; i < v; i++) h[i] += dist[i]; } if (f == 0) { for (i = 0; i < v; i++) { struct node *n; for (n = list[i]; n != NULL; n = n->next) { mincost += flow[i][n->id] * n->cost; } } printf("%d\n", mincost); } else printf("-1\n"); for (i = 0; i < v; i++) { free(list[i]); free(flow[i]); } free(list); free(flow); free(dist); free(prev); free(preve); free(h); } void Insert(int a, int b, int cap, int cost) { struct node *p = (struct node *)malloc(sizeof(struct node)); p->id = b; p->cap = cap; p->cost = cost; p->next = list[a]; list[a] = p; p = (struct node *)malloc(sizeof(struct node)); p->id = a; p->cap = 0; p->cost = -cost; p->next = list[b]; list[b] = p; } void downheap(int k) { int j, v = heap[k]; while (k < heapsize / 2) { j = 2 * k + 1; if (j < heapsize - 1 && dist[heap[j]] > dist[heap[j + 1]]) j++; if (dist[v] <= dist[heap[j]]) break; heap[k] = heap[j]; heap_index[heap[j]] = k; k = j; } heap[k] = v; heap_index[v] = k; } void upheap(int j) { int k, v = heap[j]; while (j > 0) { k = (j + 1) / 2 - 1; if (dist[v] >= dist[heap[k]]) break; heap[j] = heap[k]; heap_index[heap[k]] = j; j = k; } heap[j] = v; heap_index[v] = j; } void PQ_init(int size) { int i; heapsize = size; heap = (int *)malloc(sizeof(int) * size); heap_index = (int *)malloc(sizeof(int) * size); for (i = 0; i < size; i++) { heap[i] = i; heap_index[i] = i; } for (i = heapsize / 2 - 1; i >= 0; i--) downheap(i); } int PQ_remove(void) { int v = heap[0]; heap[0] = heap[heapsize - 1]; heap_index[heap[heapsize - 1]] = 0; heapsize--; downheap(0); return v; } void PQ_update(int v) { upheap(heap_index[v]); } int Maxflow(int s, int t, int size) { struct node *n; int i; for (i = 0; i < size; i++) { dist[i] = INT_MAX; prev[i] = -1; preve[i] = -1; } dist[s] = 0; PQ_init(size); while (heapsize) { i = PQ_remove(); if (dist[i] == INT_MAX) break; for (n = list[i]; n != NULL; n = n->next) { int v = n->id; if (flow[i][v] < n->cap) { int newlen = dist[i] + n->cost + h[i] - h[v]; if (newlen < dist[v]) { dist[v] = newlen; prev[v] = i; preve[v] = n->cap; PQ_update(v); } } } } free(heap); free(heap_index); return dist[t] != INT_MAX; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> inline void output(T a, int p) { if (p) cout << fixed << setprecision(p) << a << "\n"; else cout << a << "\n"; } struct node { int cost, pos; }; struct edge { int to, cap, cost, rev; }; bool operator<(const node &a, const node &b) { return a.cost > b.cost; } class MinCostFlow { public: int V; vector<vector<edge>> G; vector<int> h, dist, preV, preE; MinCostFlow(int V) : V(V), G(V), h(V), dist(V), preV(V), preE(V) {} void add_edge(int from, int to, int cap, int cost) { G[from].push_back({to, cap, cost, (int)G[to].size()}); G[to].push_back({from, 0, -cost, (int)G[from].size()}); } int calc(int s, int t, int f) { int ret = 0; h.assign(V, 0); while (f > 0) { dist.assign(V, 2000000007); priority_queue<node> pq; pq.push({0, s}); dist[s] = 0; while (!pq.empty()) { node p = pq.top(); pq.pop(); int d = p.cost; int v = p.pos; if (dist[v] < d) continue; for (int i = (int)(0); i < (int)(G[v].size()); i++) { edge &e = G[v][i]; if (e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; preV[e.to] = v; preE[e.to] = i; pq.push({dist[e.to], e.to}); } } } if (dist[t] == 2000000007) return -1; for (int v = (int)(0); v < (int)(V); v++) h[v] += dist[v]; int d = f; for (int v = t; v != s; v = preV[v]) { d = min(d, G[preV[v]][preE[v]].cap); } f -= d; ret += d * h[t]; for (int v = t; v != s; v = preV[v]) { edge &e = G[preV[v]][preE[v]]; e.cap -= d; G[v][e.rev].cap += d; } } return ret; } }; int main() { cin.tie(0); ios::sync_with_stdio(0); int V, E, F; cin >> V >> E >> F; MinCostFlow mcf(V); for (int i = (int)(0); i < (int)(E); i++) { int u, v, c, d; cin >> u >> v >> c >> d; mcf.add_edge(u, v, c, d); } output(mcf.calc(0, V - 1, F), 0); return 0; }
p02377 Minimum Cost Flow
Examples Input 4 5 2 0 1 2 1 0 2 1 2 1 2 1 1 1 3 1 3 2 3 2 1 Output 6 Input Output
{ "input": [ "4 5 2\n0 1 2 1\n0 2 1 2\n1 2 1 1\n1 3 1 3\n2 3 2 1", "" ], "output": [ "6", "" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.Closeable; import java.io.FileInputStream; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.PriorityQueue; import java.util.TreeMap; public class Main { static ContestScanner in;static Writer out;public static void main(String[] args) {try{in=new ContestScanner();out=new Writer();Main solve=new Main();solve.solve(); in.close();out.flush();out.close();}catch(IOException e){e.printStackTrace();}} static void dump(int[]a){for(int i=0;i<a.length;i++)out.print(a[i]+" ");out.println();} static void dump(int[]a,int n){for(int i=0;i<a.length;i++)out.printf("%"+n+"d ",a[i]);out.println();} static void dump(long[]a){for(int i=0;i<a.length;i++)out.print(a[i]+" ");out.println();} static void dump(char[]a){for(int i=0;i<a.length;i++)out.print(a[i]);out.println();} static long pow(long a,int n){long r=1;while(n>0){if((n&1)==1)r*=a;a*=a;n>>=1;}return r;} static String itob(int a,int l){return String.format("%"+l+"s",Integer.toBinaryString(a)).replace(' ','0');} static void sort(int[]a){m_sort(a,0,a.length,new int[a.length]);} static void sort(int[]a,int l){m_sort(a,0,l,new int[l]);} static void sort(int[]a,int l,int[]buf){m_sort(a,0,l,buf);} static void sort(int[]a,int s,int l,int[]buf){m_sort(a,s,l,buf);} static void m_sort(int[]a,int s,int sz,int[]b) {if(sz<7){for(int i=s;i<s+sz;i++)for(int j=i;j>s&&a[j-1]>a[j];j--)swap(a, j, j-1);return;} m_sort(a,s,sz/2,b);m_sort(a,s+sz/2,sz-sz/2,b);int idx=s;int l=s,r=s+sz/2;final int le=s+sz/2,re=s+sz; while(l<le&&r<re){if(a[l]>a[r])b[idx++]=a[r++];else b[idx++]=a[l++];} while(r<re)b[idx++]=a[r++];while(l<le)b[idx++]=a[l++];for(int i=s;i<s+sz;i++)a[i]=b[i]; } /* qsort(3.5s)<<msort(9.5s)<<<shuffle+qsort(17s)<Arrays.sort(Integer)(20s) */ static void sort(long[]a){m_sort(a,0,a.length,new long[a.length]);} static void sort(long[]a,int l){m_sort(a,0,l,new long[l]);} static void sort(long[]a,int l,long[]buf){m_sort(a,0,l,buf);} static void sort(long[]a,int s,int l,long[]buf){m_sort(a,s,l,buf);} static void m_sort(long[]a,int s,int sz,long[]b) {if(sz<7){for(int i=s;i<s+sz;i++)for(int j=i;j>s&&a[j-1]>a[j];j--)swap(a, j, j-1);return;} m_sort(a,s,sz/2,b);m_sort(a,s+sz/2,sz-sz/2,b);int idx=s;int l=s,r=s+sz/2;final int le=s+sz/2,re=s+sz; while(l<le&&r<re){if(a[l]>a[r])b[idx++]=a[r++];else b[idx++]=a[l++];} while(r<re)b[idx++]=a[r++];while(l<le)b[idx++]=a[l++];for(int i=s;i<s+sz;i++)a[i]=b[i];} static void swap(long[] a,int i,int j){final long t=a[i];a[i]=a[j];a[j]=t;} static void swap(int[] a,int i,int j){final int t=a[i];a[i]=a[j];a[j]=t;} static int binarySearchSmallerMax(int[]a,int v)// get maximum index which a[idx]<=v {int l=-1,r=a.length-1,s=0;while(l<=r){int m=(l+r)/2;if(a[m]>v)r=m-1;else{l=m+1;s=m;}}return s;} static int binarySearchSmallerMax(int[]a,int v,int l,int r) {int s=-1;while(l<=r){int m=(l+r)/2;if(a[m]>v)r=m-1;else{l=m+1;s=m;}}return s;} @SuppressWarnings("unchecked") static List<Integer>[]createGraph(int n) {List<Integer>[]g=new List[n];for(int i=0;i<n;i++)g[i]=new ArrayList<>();return g;} @SuppressWarnings("unchecked") void solve() throws NumberFormatException, IOException{ final int n = in.nextInt(); final int m = in.nextInt(); int f = in.nextInt(); MinCostFlow mf = new MinCostFlow(n, f); for(int i=0; i<m; i++){ int from = in.nextInt(); int to = in.nextInt(); int cap = in.nextInt(); int cost = in.nextInt(); mf.edge(from, to, cap, cost); } int res = mf.flow(0, n-1); if(mf.f>0) res = -1; System.out.println(res); } } class MinCostFlow{ final int n; int f; List<Edge>[] node; public MinCostFlow(int n, int f) { this.n = n; this.f = f; node = new List[n]; for(int i=0; i<n; i++) node[i] = new ArrayList<>(); } void edge(int from, int to, int cap, int cost){ Edge e = new Edge(to, cap, cost); Edge r = new Edge(from, 0, -cost); e.rev = r; r.rev = e; node[from].add(e); node[to].add(r); } int flow(int s, int t){ int[] h = new int[n]; int[] dist = new int[n]; int[] preV = new int[n]; int[] preE = new int[n]; final int inf = Integer.MAX_VALUE; PriorityQueue<Pos> qu = new PriorityQueue<>(); int res = 0; while(f>0){ Arrays.fill(dist, inf); dist[s] = 0; qu.clear(); qu.add(new Pos(s, 0)); while(!qu.isEmpty()){ Pos p = qu.poll(); if(dist[p.v]<p.d) continue; final int sz = node[p.v].size(); for(int i=0; i<sz; i++){ Edge e = node[p.v].get(i); final int nd = e.cost+p.d + h[p.v]-h[e.to]; if(e.cap>0 && nd < dist[e.to]){ preV[e.to] = p.v; preE[e.to] = i; dist[e.to] = nd; qu.add(new Pos(e.to, nd)); } } } if(dist[t]==inf) break; for(int i=0; i<n; i++) h[i] += dist[i]; int minf = f; for(int i=t; i!=s; i=preV[i]){ minf = Math.min(minf, node[preV[i]].get(preE[i]).cap); } f -= minf; res += minf*h[t]; for(int i=t; i!=s; i=preV[i]){ node[preV[i]].get(preE[i]).cap -= minf; node[preV[i]].get(preE[i]).rev.cap += minf; } } return res; } } class Pos implements Comparable<Pos>{ int v, d; public Pos(int v, int d) { this.v = v; this.d = d; } @Override public int compareTo(Pos o) { return d-o.d; } } class Edge{ int to, cap, cost; Edge rev; Edge(int t, int c, int co){ to = t; cap = c; cost = co; } void rev(Edge r){ rev = r; } } @SuppressWarnings("serial") class MultiSet<T> extends HashMap<T, Integer>{ @Override public Integer get(Object key){return containsKey(key)?super.get(key):0;} public void add(T key,int v){put(key,get(key)+v);} public void add(T key){put(key,get(key)+1);} public void sub(T key){final int v=get(key);if(v==1)remove(key);else put(key,v-1);} public MultiSet<T> merge(MultiSet<T> set) {MultiSet<T>s,l;if(this.size()<set.size()){s=this;l=set;}else{s=set;l=this;} for(Entry<T,Integer>e:s.entrySet())l.add(e.getKey(),e.getValue());return l;} } @SuppressWarnings("serial") class OrderedMultiSet<T> extends TreeMap<T, Integer>{ @Override public Integer get(Object key){return containsKey(key)?super.get(key):0;} public void add(T key,int v){put(key,get(key)+v);} public void add(T key){put(key,get(key)+1);} public void sub(T key){final int v=get(key);if(v==1)remove(key);else put(key,v-1);} public OrderedMultiSet<T> merge(OrderedMultiSet<T> set) {OrderedMultiSet<T>s,l;if(this.size()<set.size()){s=this;l=set;}else{s=set;l=this;} while(!s.isEmpty()){l.add(s.firstEntry().getKey(),s.pollFirstEntry().getValue());}return l;} } class Pair implements Comparable<Pair>{ int a,b;final int hash;Pair(int a,int b){this.a=a;this.b=b;hash=(a<<16|a>>16)^b;} public boolean equals(Object obj){Pair o=(Pair)(obj);return a==o.a&&b==o.b;} public int hashCode(){return hash;} public int compareTo(Pair o){if(a!=o.a)return a<o.a?-1:1;else if(b!=o.b)return b<o.b?-1:1;return 0;} } class Timer{ long time;public void set(){time=System.currentTimeMillis();} public long stop(){return time=System.currentTimeMillis()-time;} public void print(){System.out.println("Time: "+(System.currentTimeMillis()-time)+"ms");} @Override public String toString(){return"Time: "+time+"ms";} } class Writer extends PrintWriter{ public Writer(String filename)throws IOException {super(new BufferedWriter(new FileWriter(filename)));} public Writer()throws IOException{super(System.out);} } class ContestScanner implements Closeable{ private BufferedReader in;private int c=-2; public ContestScanner()throws IOException {in=new BufferedReader(new InputStreamReader(System.in));} public ContestScanner(String filename)throws IOException {in=new BufferedReader(new InputStreamReader(new FileInputStream(filename)));} public String nextToken()throws IOException { StringBuilder sb=new StringBuilder(); while((c=in.read())!=-1&&Character.isWhitespace(c)); while(c!=-1&&!Character.isWhitespace(c)){sb.append((char)c);c=in.read();} return sb.toString(); } public String readLine()throws IOException{ StringBuilder sb=new StringBuilder();if(c==-2)c=in.read(); while(c!=-1&&c!='\n'&&c!='\r'){sb.append((char)c);c=in.read();} return sb.toString(); } public long nextLong()throws IOException,NumberFormatException {return Long.parseLong(nextToken());} public int nextInt()throws NumberFormatException,IOException {return(int)nextLong();} public double nextDouble()throws NumberFormatException,IOException {return Double.parseDouble(nextToken());} public void close() throws IOException {in.close();} }