status
stringclasses
1 value
repo_name
stringclasses
31 values
repo_url
stringclasses
31 values
issue_id
int64
1
104k
title
stringlengths
4
233
body
stringlengths
0
186k
issue_url
stringlengths
38
56
pull_url
stringlengths
37
54
before_fix_sha
stringlengths
40
40
after_fix_sha
stringlengths
40
40
report_datetime
unknown
language
stringclasses
5 values
commit_datetime
unknown
updated_file
stringlengths
7
188
chunk_content
stringlengths
1
1.03M
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,944
Question Answering over Docs giving cryptic error upon query
After ingesting some markdown files using a slightly modified version of the question-answering over docs example, I ran the qa.py script as it was in the example ``` # qa.py import faiss from langchain import OpenAI, HuggingFaceHub, LLMChain from langchain.chains import VectorDBQAWithSourcesChain import pickle import argparse parser = argparse.ArgumentParser(description='Ask a question to the notion DB.') parser.add_argument('question', type=str, help='The question to ask the notion DB') args = parser.parse_args() # Load the LangChain. index = faiss.read_index("docs.index") with open("faiss_store.pkl", "rb") as f: store = pickle.load(f) store.index = index chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=store) result = chain({"question": args.question}) print(f"Answer: {result['answer']}") ``` Only to get this cryptic error ``` Traceback (most recent call last): File "C:\Users\ahmad\OneDrive\Desktop\Coding\LANGCHAINSSSSSS\notion-qa\qa.py", line 22, in <module> result = chain({"question": args.question}) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 146, in __call__ raise e File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 142, in __call__ outputs = self._call(inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\qa_with_sources\base.py", line 97, in _call answer, _ = self.combine_document_chain.combine_docs(docs, **inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\map_reduce.py", line 150, in combine_docs num_tokens = length_func(result_docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 77, in prompt_length inputs = self._get_inputs(docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 64, in _get_inputs document_info = { File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 65, in <dictcomp> k: base_info[k] for k in self.document_prompt.input_variables KeyError: 'source' ``` Here is the code I used for ingesting | ``` """This is the logic for ingesting Notion data into LangChain.""" from pathlib import Path from langchain.text_splitter import CharacterTextSplitter import faiss from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings import pickle import time from tqdm import tqdm # Here we load in the data in the format that Notion exports it in. folder = list(Path("Notion_DB/").glob("**/*.md")) files = [] sources = [] for myFile in folder: with open(myFile, 'r', encoding='utf-8') as f: print(myFile.name) files.append(f.read()) sources.append(myFile) # Here we split the documents, as needed, into smaller chunks. # We do this due to the context limits of the LLMs. text_splitter = CharacterTextSplitter(chunk_size=800, separator="\n") docs = [] metadatas = [] for i, f in enumerate(files): splits = text_splitter.split_text(f) docs.extend(splits) metadatas.extend([{"source": sources[i]}] * len(splits)) # Add each element in docs into FAISS store, keeping a delay between inserting elements so we don't exceed rate limit store = None for (index, chunk) in tqdm(enumerate(docs)): if index == 0: store = FAISS.from_texts([chunk], OpenAIEmbeddings()) else: time.sleep(1) # wait for a second to not exceed any rate limits store.add_texts([chunk]) # print('finished with index '+index.__str__()) print('Done yayy!') # # Here we create a vector store from the documents and save it to disk. faiss.write_index(store.index, "docs.index") store.index = None with open("faiss_store.pkl", "wb") as f: pickle.dump(store, f) ```
https://github.com/langchain-ai/langchain/issues/2944
https://github.com/langchain-ai/langchain/pull/3026
3453b7457ca60227430d85e6f6f58a2aafae559d
19c85aa9907765c0a2dbe7c46e9d5dd2d6df0f30
"2023-04-15T15:38:36Z"
python
"2023-04-18T03:28:01Z"
langchain/chains/combine_documents/refine.py
"""Combine by mapping first chain over all, then stuffing into final chain.""" inputs = self._construct_initial_inputs(docs, **kwargs) res = self.initial_llm_chain.predict(**inputs) refine_steps = [res] for doc in docs[1:]: base_inputs = self._construct_refine_inputs(doc, res) inputs = {**base_inputs, **kwargs} res = self.refine_llm_chain.predict(**inputs) refine_steps.append(res) return self._construct_result(refine_steps, res) async def acombine_docs( self, docs: List[Document], **kwargs: Any ) -> Tuple[str, dict]: """Combine by mapping first chain over all, then stuffing into final chain.""" inputs = self._construct_initial_inputs(docs, **kwargs) res = await self.initial_llm_chain.apredict(**inputs) refine_steps = [res] for doc in docs[1:]: base_inputs = self._construct_refine_inputs(doc, res) inputs = {**base_inputs, **kwargs} res = await self.refine_llm_chain.apredict(**inputs) refine_steps.append(res) return self._construct_result(refine_steps, res) def _construct_result(self, refine_steps: List[str], res: str) -> Tuple[str, dict]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,944
Question Answering over Docs giving cryptic error upon query
After ingesting some markdown files using a slightly modified version of the question-answering over docs example, I ran the qa.py script as it was in the example ``` # qa.py import faiss from langchain import OpenAI, HuggingFaceHub, LLMChain from langchain.chains import VectorDBQAWithSourcesChain import pickle import argparse parser = argparse.ArgumentParser(description='Ask a question to the notion DB.') parser.add_argument('question', type=str, help='The question to ask the notion DB') args = parser.parse_args() # Load the LangChain. index = faiss.read_index("docs.index") with open("faiss_store.pkl", "rb") as f: store = pickle.load(f) store.index = index chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=store) result = chain({"question": args.question}) print(f"Answer: {result['answer']}") ``` Only to get this cryptic error ``` Traceback (most recent call last): File "C:\Users\ahmad\OneDrive\Desktop\Coding\LANGCHAINSSSSSS\notion-qa\qa.py", line 22, in <module> result = chain({"question": args.question}) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 146, in __call__ raise e File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 142, in __call__ outputs = self._call(inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\qa_with_sources\base.py", line 97, in _call answer, _ = self.combine_document_chain.combine_docs(docs, **inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\map_reduce.py", line 150, in combine_docs num_tokens = length_func(result_docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 77, in prompt_length inputs = self._get_inputs(docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 64, in _get_inputs document_info = { File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 65, in <dictcomp> k: base_info[k] for k in self.document_prompt.input_variables KeyError: 'source' ``` Here is the code I used for ingesting | ``` """This is the logic for ingesting Notion data into LangChain.""" from pathlib import Path from langchain.text_splitter import CharacterTextSplitter import faiss from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings import pickle import time from tqdm import tqdm # Here we load in the data in the format that Notion exports it in. folder = list(Path("Notion_DB/").glob("**/*.md")) files = [] sources = [] for myFile in folder: with open(myFile, 'r', encoding='utf-8') as f: print(myFile.name) files.append(f.read()) sources.append(myFile) # Here we split the documents, as needed, into smaller chunks. # We do this due to the context limits of the LLMs. text_splitter = CharacterTextSplitter(chunk_size=800, separator="\n") docs = [] metadatas = [] for i, f in enumerate(files): splits = text_splitter.split_text(f) docs.extend(splits) metadatas.extend([{"source": sources[i]}] * len(splits)) # Add each element in docs into FAISS store, keeping a delay between inserting elements so we don't exceed rate limit store = None for (index, chunk) in tqdm(enumerate(docs)): if index == 0: store = FAISS.from_texts([chunk], OpenAIEmbeddings()) else: time.sleep(1) # wait for a second to not exceed any rate limits store.add_texts([chunk]) # print('finished with index '+index.__str__()) print('Done yayy!') # # Here we create a vector store from the documents and save it to disk. faiss.write_index(store.index, "docs.index") store.index = None with open("faiss_store.pkl", "wb") as f: pickle.dump(store, f) ```
https://github.com/langchain-ai/langchain/issues/2944
https://github.com/langchain-ai/langchain/pull/3026
3453b7457ca60227430d85e6f6f58a2aafae559d
19c85aa9907765c0a2dbe7c46e9d5dd2d6df0f30
"2023-04-15T15:38:36Z"
python
"2023-04-18T03:28:01Z"
langchain/chains/combine_documents/refine.py
if self.return_intermediate_steps: extra_return_dict = {"intermediate_steps": refine_steps} else: extra_return_dict = {} return res, extra_return_dict def _construct_refine_inputs(self, doc: Document, res: str) -> Dict[str, Any]: base_info = {"page_content": doc.page_content} base_info.update(doc.metadata) document_info = {k: base_info[k] for k in self.document_prompt.input_variables} base_inputs = { self.document_variable_name: self.document_prompt.format(**document_info), self.initial_response_name: res, } return base_inputs def _construct_initial_inputs( self, docs: List[Document], **kwargs: Any ) -> Dict[str, Any]: base_info = {"page_content": docs[0].page_content} base_info.update(docs[0].metadata) document_info = {k: base_info[k] for k in self.document_prompt.input_variables} base_inputs: dict = { self.document_variable_name: self.document_prompt.format(**document_info) } inputs = {**base_inputs, **kwargs} return inputs @property def _chain_type(self) -> str: return "refine_documents_chain"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,944
Question Answering over Docs giving cryptic error upon query
After ingesting some markdown files using a slightly modified version of the question-answering over docs example, I ran the qa.py script as it was in the example ``` # qa.py import faiss from langchain import OpenAI, HuggingFaceHub, LLMChain from langchain.chains import VectorDBQAWithSourcesChain import pickle import argparse parser = argparse.ArgumentParser(description='Ask a question to the notion DB.') parser.add_argument('question', type=str, help='The question to ask the notion DB') args = parser.parse_args() # Load the LangChain. index = faiss.read_index("docs.index") with open("faiss_store.pkl", "rb") as f: store = pickle.load(f) store.index = index chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=store) result = chain({"question": args.question}) print(f"Answer: {result['answer']}") ``` Only to get this cryptic error ``` Traceback (most recent call last): File "C:\Users\ahmad\OneDrive\Desktop\Coding\LANGCHAINSSSSSS\notion-qa\qa.py", line 22, in <module> result = chain({"question": args.question}) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 146, in __call__ raise e File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 142, in __call__ outputs = self._call(inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\qa_with_sources\base.py", line 97, in _call answer, _ = self.combine_document_chain.combine_docs(docs, **inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\map_reduce.py", line 150, in combine_docs num_tokens = length_func(result_docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 77, in prompt_length inputs = self._get_inputs(docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 64, in _get_inputs document_info = { File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 65, in <dictcomp> k: base_info[k] for k in self.document_prompt.input_variables KeyError: 'source' ``` Here is the code I used for ingesting | ``` """This is the logic for ingesting Notion data into LangChain.""" from pathlib import Path from langchain.text_splitter import CharacterTextSplitter import faiss from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings import pickle import time from tqdm import tqdm # Here we load in the data in the format that Notion exports it in. folder = list(Path("Notion_DB/").glob("**/*.md")) files = [] sources = [] for myFile in folder: with open(myFile, 'r', encoding='utf-8') as f: print(myFile.name) files.append(f.read()) sources.append(myFile) # Here we split the documents, as needed, into smaller chunks. # We do this due to the context limits of the LLMs. text_splitter = CharacterTextSplitter(chunk_size=800, separator="\n") docs = [] metadatas = [] for i, f in enumerate(files): splits = text_splitter.split_text(f) docs.extend(splits) metadatas.extend([{"source": sources[i]}] * len(splits)) # Add each element in docs into FAISS store, keeping a delay between inserting elements so we don't exceed rate limit store = None for (index, chunk) in tqdm(enumerate(docs)): if index == 0: store = FAISS.from_texts([chunk], OpenAIEmbeddings()) else: time.sleep(1) # wait for a second to not exceed any rate limits store.add_texts([chunk]) # print('finished with index '+index.__str__()) print('Done yayy!') # # Here we create a vector store from the documents and save it to disk. faiss.write_index(store.index, "docs.index") store.index = None with open("faiss_store.pkl", "wb") as f: pickle.dump(store, f) ```
https://github.com/langchain-ai/langchain/issues/2944
https://github.com/langchain-ai/langchain/pull/3026
3453b7457ca60227430d85e6f6f58a2aafae559d
19c85aa9907765c0a2dbe7c46e9d5dd2d6df0f30
"2023-04-15T15:38:36Z"
python
"2023-04-18T03:28:01Z"
langchain/chains/combine_documents/stuff.py
"""Chain that combines documents by stuffing into context.""" from typing import Any, Dict, List, Optional, Tuple from pydantic import Extra, Field, root_validator from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.llm import LLMChain from langchain.docstore.document import Document from langchain.prompts.base import BasePromptTemplate from langchain.prompts.prompt import PromptTemplate def _get_default_document_prompt() -> PromptTemplate: return PromptTemplate(input_variables=["page_content"], template="{page_content}") class StuffDocumentsChain(BaseCombineDocumentsChain): """Chain that combines documents by stuffing into context.""" llm_chain: LLMChain """LLM wrapper to use after formatting documents.""" document_prompt: BasePromptTemplate = Field( default_factory=_get_default_document_prompt ) """Prompt to use to format each document.""" document_variable_name: str """The variable name in the llm_chain to put the documents in. If only one variable in the llm_chain, this need not be provided.""" class Config:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,944
Question Answering over Docs giving cryptic error upon query
After ingesting some markdown files using a slightly modified version of the question-answering over docs example, I ran the qa.py script as it was in the example ``` # qa.py import faiss from langchain import OpenAI, HuggingFaceHub, LLMChain from langchain.chains import VectorDBQAWithSourcesChain import pickle import argparse parser = argparse.ArgumentParser(description='Ask a question to the notion DB.') parser.add_argument('question', type=str, help='The question to ask the notion DB') args = parser.parse_args() # Load the LangChain. index = faiss.read_index("docs.index") with open("faiss_store.pkl", "rb") as f: store = pickle.load(f) store.index = index chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=store) result = chain({"question": args.question}) print(f"Answer: {result['answer']}") ``` Only to get this cryptic error ``` Traceback (most recent call last): File "C:\Users\ahmad\OneDrive\Desktop\Coding\LANGCHAINSSSSSS\notion-qa\qa.py", line 22, in <module> result = chain({"question": args.question}) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 146, in __call__ raise e File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 142, in __call__ outputs = self._call(inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\qa_with_sources\base.py", line 97, in _call answer, _ = self.combine_document_chain.combine_docs(docs, **inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\map_reduce.py", line 150, in combine_docs num_tokens = length_func(result_docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 77, in prompt_length inputs = self._get_inputs(docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 64, in _get_inputs document_info = { File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 65, in <dictcomp> k: base_info[k] for k in self.document_prompt.input_variables KeyError: 'source' ``` Here is the code I used for ingesting | ``` """This is the logic for ingesting Notion data into LangChain.""" from pathlib import Path from langchain.text_splitter import CharacterTextSplitter import faiss from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings import pickle import time from tqdm import tqdm # Here we load in the data in the format that Notion exports it in. folder = list(Path("Notion_DB/").glob("**/*.md")) files = [] sources = [] for myFile in folder: with open(myFile, 'r', encoding='utf-8') as f: print(myFile.name) files.append(f.read()) sources.append(myFile) # Here we split the documents, as needed, into smaller chunks. # We do this due to the context limits of the LLMs. text_splitter = CharacterTextSplitter(chunk_size=800, separator="\n") docs = [] metadatas = [] for i, f in enumerate(files): splits = text_splitter.split_text(f) docs.extend(splits) metadatas.extend([{"source": sources[i]}] * len(splits)) # Add each element in docs into FAISS store, keeping a delay between inserting elements so we don't exceed rate limit store = None for (index, chunk) in tqdm(enumerate(docs)): if index == 0: store = FAISS.from_texts([chunk], OpenAIEmbeddings()) else: time.sleep(1) # wait for a second to not exceed any rate limits store.add_texts([chunk]) # print('finished with index '+index.__str__()) print('Done yayy!') # # Here we create a vector store from the documents and save it to disk. faiss.write_index(store.index, "docs.index") store.index = None with open("faiss_store.pkl", "wb") as f: pickle.dump(store, f) ```
https://github.com/langchain-ai/langchain/issues/2944
https://github.com/langchain-ai/langchain/pull/3026
3453b7457ca60227430d85e6f6f58a2aafae559d
19c85aa9907765c0a2dbe7c46e9d5dd2d6df0f30
"2023-04-15T15:38:36Z"
python
"2023-04-18T03:28:01Z"
langchain/chains/combine_documents/stuff.py
"""Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def get_default_document_variable_name(cls, values: Dict) -> Dict: """Get default document variable name, if not provided.""" if "document_variable_name" not in values: llm_chain_variables = values["llm_chain"].prompt.input_variables if len(llm_chain_variables) == 1: values["document_variable_name"] = llm_chain_variables[0] else: raise ValueError( "document_variable_name must be provided if there are " "multiple llm_chain_variables" ) else: llm_chain_variables = values["llm_chain"].prompt.input_variables if values["document_variable_name"] not in llm_chain_variables: raise ValueError( f"document_variable_name {values['document_variable_name']} was " f"not found in llm_chain input_variables: {llm_chain_variables}" ) return values def _get_inputs(self, docs: List[Document], **kwargs: Any) -> dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,944
Question Answering over Docs giving cryptic error upon query
After ingesting some markdown files using a slightly modified version of the question-answering over docs example, I ran the qa.py script as it was in the example ``` # qa.py import faiss from langchain import OpenAI, HuggingFaceHub, LLMChain from langchain.chains import VectorDBQAWithSourcesChain import pickle import argparse parser = argparse.ArgumentParser(description='Ask a question to the notion DB.') parser.add_argument('question', type=str, help='The question to ask the notion DB') args = parser.parse_args() # Load the LangChain. index = faiss.read_index("docs.index") with open("faiss_store.pkl", "rb") as f: store = pickle.load(f) store.index = index chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=store) result = chain({"question": args.question}) print(f"Answer: {result['answer']}") ``` Only to get this cryptic error ``` Traceback (most recent call last): File "C:\Users\ahmad\OneDrive\Desktop\Coding\LANGCHAINSSSSSS\notion-qa\qa.py", line 22, in <module> result = chain({"question": args.question}) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 146, in __call__ raise e File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 142, in __call__ outputs = self._call(inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\qa_with_sources\base.py", line 97, in _call answer, _ = self.combine_document_chain.combine_docs(docs, **inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\map_reduce.py", line 150, in combine_docs num_tokens = length_func(result_docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 77, in prompt_length inputs = self._get_inputs(docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 64, in _get_inputs document_info = { File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 65, in <dictcomp> k: base_info[k] for k in self.document_prompt.input_variables KeyError: 'source' ``` Here is the code I used for ingesting | ``` """This is the logic for ingesting Notion data into LangChain.""" from pathlib import Path from langchain.text_splitter import CharacterTextSplitter import faiss from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings import pickle import time from tqdm import tqdm # Here we load in the data in the format that Notion exports it in. folder = list(Path("Notion_DB/").glob("**/*.md")) files = [] sources = [] for myFile in folder: with open(myFile, 'r', encoding='utf-8') as f: print(myFile.name) files.append(f.read()) sources.append(myFile) # Here we split the documents, as needed, into smaller chunks. # We do this due to the context limits of the LLMs. text_splitter = CharacterTextSplitter(chunk_size=800, separator="\n") docs = [] metadatas = [] for i, f in enumerate(files): splits = text_splitter.split_text(f) docs.extend(splits) metadatas.extend([{"source": sources[i]}] * len(splits)) # Add each element in docs into FAISS store, keeping a delay between inserting elements so we don't exceed rate limit store = None for (index, chunk) in tqdm(enumerate(docs)): if index == 0: store = FAISS.from_texts([chunk], OpenAIEmbeddings()) else: time.sleep(1) # wait for a second to not exceed any rate limits store.add_texts([chunk]) # print('finished with index '+index.__str__()) print('Done yayy!') # # Here we create a vector store from the documents and save it to disk. faiss.write_index(store.index, "docs.index") store.index = None with open("faiss_store.pkl", "wb") as f: pickle.dump(store, f) ```
https://github.com/langchain-ai/langchain/issues/2944
https://github.com/langchain-ai/langchain/pull/3026
3453b7457ca60227430d85e6f6f58a2aafae559d
19c85aa9907765c0a2dbe7c46e9d5dd2d6df0f30
"2023-04-15T15:38:36Z"
python
"2023-04-18T03:28:01Z"
langchain/chains/combine_documents/stuff.py
doc_dicts = [] for doc in docs: base_info = {"page_content": doc.page_content} base_info.update(doc.metadata) document_info = { k: base_info[k] for k in self.document_prompt.input_variables } doc_dicts.append(document_info) doc_strings = [self.document_prompt.format(**doc) for doc in doc_dicts] inputs = { k: v for k, v in kwargs.items() if k in self.llm_chain.prompt.input_variables } inputs[self.document_variable_name] = "\n\n".join(doc_strings) return inputs def prompt_length(self, docs: List[Document], **kwargs: Any) -> Optional[int]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,944
Question Answering over Docs giving cryptic error upon query
After ingesting some markdown files using a slightly modified version of the question-answering over docs example, I ran the qa.py script as it was in the example ``` # qa.py import faiss from langchain import OpenAI, HuggingFaceHub, LLMChain from langchain.chains import VectorDBQAWithSourcesChain import pickle import argparse parser = argparse.ArgumentParser(description='Ask a question to the notion DB.') parser.add_argument('question', type=str, help='The question to ask the notion DB') args = parser.parse_args() # Load the LangChain. index = faiss.read_index("docs.index") with open("faiss_store.pkl", "rb") as f: store = pickle.load(f) store.index = index chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=store) result = chain({"question": args.question}) print(f"Answer: {result['answer']}") ``` Only to get this cryptic error ``` Traceback (most recent call last): File "C:\Users\ahmad\OneDrive\Desktop\Coding\LANGCHAINSSSSSS\notion-qa\qa.py", line 22, in <module> result = chain({"question": args.question}) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 146, in __call__ raise e File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 142, in __call__ outputs = self._call(inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\qa_with_sources\base.py", line 97, in _call answer, _ = self.combine_document_chain.combine_docs(docs, **inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\map_reduce.py", line 150, in combine_docs num_tokens = length_func(result_docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 77, in prompt_length inputs = self._get_inputs(docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 64, in _get_inputs document_info = { File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 65, in <dictcomp> k: base_info[k] for k in self.document_prompt.input_variables KeyError: 'source' ``` Here is the code I used for ingesting | ``` """This is the logic for ingesting Notion data into LangChain.""" from pathlib import Path from langchain.text_splitter import CharacterTextSplitter import faiss from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings import pickle import time from tqdm import tqdm # Here we load in the data in the format that Notion exports it in. folder = list(Path("Notion_DB/").glob("**/*.md")) files = [] sources = [] for myFile in folder: with open(myFile, 'r', encoding='utf-8') as f: print(myFile.name) files.append(f.read()) sources.append(myFile) # Here we split the documents, as needed, into smaller chunks. # We do this due to the context limits of the LLMs. text_splitter = CharacterTextSplitter(chunk_size=800, separator="\n") docs = [] metadatas = [] for i, f in enumerate(files): splits = text_splitter.split_text(f) docs.extend(splits) metadatas.extend([{"source": sources[i]}] * len(splits)) # Add each element in docs into FAISS store, keeping a delay between inserting elements so we don't exceed rate limit store = None for (index, chunk) in tqdm(enumerate(docs)): if index == 0: store = FAISS.from_texts([chunk], OpenAIEmbeddings()) else: time.sleep(1) # wait for a second to not exceed any rate limits store.add_texts([chunk]) # print('finished with index '+index.__str__()) print('Done yayy!') # # Here we create a vector store from the documents and save it to disk. faiss.write_index(store.index, "docs.index") store.index = None with open("faiss_store.pkl", "wb") as f: pickle.dump(store, f) ```
https://github.com/langchain-ai/langchain/issues/2944
https://github.com/langchain-ai/langchain/pull/3026
3453b7457ca60227430d85e6f6f58a2aafae559d
19c85aa9907765c0a2dbe7c46e9d5dd2d6df0f30
"2023-04-15T15:38:36Z"
python
"2023-04-18T03:28:01Z"
langchain/chains/combine_documents/stuff.py
"""Get the prompt length by formatting the prompt.""" inputs = self._get_inputs(docs, **kwargs) prompt = self.llm_chain.prompt.format(**inputs) return self.llm_chain.llm.get_num_tokens(prompt) def combine_docs(self, docs: List[Document], **kwargs: Any) -> Tuple[str, dict]: """Stuff all documents into one prompt and pass to LLM.""" inputs = self._get_inputs(docs, **kwargs) return self.llm_chain.predict(**inputs), {} async def acombine_docs( self, docs: List[Document], **kwargs: Any ) -> Tuple[str, dict]: """Stuff all documents into one prompt and pass to LLM.""" inputs = self._get_inputs(docs, **kwargs) return await self.llm_chain.apredict(**inputs), {} @property def _chain_type(self) -> str: return "stuff_documents_chain"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,944
Question Answering over Docs giving cryptic error upon query
After ingesting some markdown files using a slightly modified version of the question-answering over docs example, I ran the qa.py script as it was in the example ``` # qa.py import faiss from langchain import OpenAI, HuggingFaceHub, LLMChain from langchain.chains import VectorDBQAWithSourcesChain import pickle import argparse parser = argparse.ArgumentParser(description='Ask a question to the notion DB.') parser.add_argument('question', type=str, help='The question to ask the notion DB') args = parser.parse_args() # Load the LangChain. index = faiss.read_index("docs.index") with open("faiss_store.pkl", "rb") as f: store = pickle.load(f) store.index = index chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=store) result = chain({"question": args.question}) print(f"Answer: {result['answer']}") ``` Only to get this cryptic error ``` Traceback (most recent call last): File "C:\Users\ahmad\OneDrive\Desktop\Coding\LANGCHAINSSSSSS\notion-qa\qa.py", line 22, in <module> result = chain({"question": args.question}) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 146, in __call__ raise e File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 142, in __call__ outputs = self._call(inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\qa_with_sources\base.py", line 97, in _call answer, _ = self.combine_document_chain.combine_docs(docs, **inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\map_reduce.py", line 150, in combine_docs num_tokens = length_func(result_docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 77, in prompt_length inputs = self._get_inputs(docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 64, in _get_inputs document_info = { File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 65, in <dictcomp> k: base_info[k] for k in self.document_prompt.input_variables KeyError: 'source' ``` Here is the code I used for ingesting | ``` """This is the logic for ingesting Notion data into LangChain.""" from pathlib import Path from langchain.text_splitter import CharacterTextSplitter import faiss from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings import pickle import time from tqdm import tqdm # Here we load in the data in the format that Notion exports it in. folder = list(Path("Notion_DB/").glob("**/*.md")) files = [] sources = [] for myFile in folder: with open(myFile, 'r', encoding='utf-8') as f: print(myFile.name) files.append(f.read()) sources.append(myFile) # Here we split the documents, as needed, into smaller chunks. # We do this due to the context limits of the LLMs. text_splitter = CharacterTextSplitter(chunk_size=800, separator="\n") docs = [] metadatas = [] for i, f in enumerate(files): splits = text_splitter.split_text(f) docs.extend(splits) metadatas.extend([{"source": sources[i]}] * len(splits)) # Add each element in docs into FAISS store, keeping a delay between inserting elements so we don't exceed rate limit store = None for (index, chunk) in tqdm(enumerate(docs)): if index == 0: store = FAISS.from_texts([chunk], OpenAIEmbeddings()) else: time.sleep(1) # wait for a second to not exceed any rate limits store.add_texts([chunk]) # print('finished with index '+index.__str__()) print('Done yayy!') # # Here we create a vector store from the documents and save it to disk. faiss.write_index(store.index, "docs.index") store.index = None with open("faiss_store.pkl", "wb") as f: pickle.dump(store, f) ```
https://github.com/langchain-ai/langchain/issues/2944
https://github.com/langchain-ai/langchain/pull/3026
3453b7457ca60227430d85e6f6f58a2aafae559d
19c85aa9907765c0a2dbe7c46e9d5dd2d6df0f30
"2023-04-15T15:38:36Z"
python
"2023-04-18T03:28:01Z"
tests/unit_tests/chains/test_combine_documents.py
"""Test functionality related to combining documents.""" from typing import Any, List import pytest from langchain.chains.combine_documents.map_reduce import ( _collapse_docs, _split_list_of_docs, ) from langchain.docstore.document import Document def _fake_docs_len_func(docs: List[Document]) -> int: return len(_fake_combine_docs_func(docs)) def _fake_combine_docs_func(docs: List[Document], **kwargs: Any) -> str: return "".join([d.page_content for d in docs]) def test__split_list_long_single_doc() -> None: """Test splitting of a long single doc.""" docs = [Document(page_content="foo" * 100)] with pytest.raises(ValueError): _split_list_of_docs(docs, _fake_docs_len_func, 100) def test__split_list_long_pair_doc() -> None: """Test splitting of a list with two medium docs.""" docs = [Document(page_content="foo" * 30)] * 2 with pytest.raises(ValueError): _split_list_of_docs(docs, _fake_docs_len_func, 100) def test__split_list_single_doc() -> None: """Test splitting works with just a single doc.""" docs = [Document(page_content="foo")] doc_list = _split_list_of_docs(docs, _fake_docs_len_func, 100) assert doc_list == [docs] def test__split_list_double_doc() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,944
Question Answering over Docs giving cryptic error upon query
After ingesting some markdown files using a slightly modified version of the question-answering over docs example, I ran the qa.py script as it was in the example ``` # qa.py import faiss from langchain import OpenAI, HuggingFaceHub, LLMChain from langchain.chains import VectorDBQAWithSourcesChain import pickle import argparse parser = argparse.ArgumentParser(description='Ask a question to the notion DB.') parser.add_argument('question', type=str, help='The question to ask the notion DB') args = parser.parse_args() # Load the LangChain. index = faiss.read_index("docs.index") with open("faiss_store.pkl", "rb") as f: store = pickle.load(f) store.index = index chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=store) result = chain({"question": args.question}) print(f"Answer: {result['answer']}") ``` Only to get this cryptic error ``` Traceback (most recent call last): File "C:\Users\ahmad\OneDrive\Desktop\Coding\LANGCHAINSSSSSS\notion-qa\qa.py", line 22, in <module> result = chain({"question": args.question}) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 146, in __call__ raise e File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 142, in __call__ outputs = self._call(inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\qa_with_sources\base.py", line 97, in _call answer, _ = self.combine_document_chain.combine_docs(docs, **inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\map_reduce.py", line 150, in combine_docs num_tokens = length_func(result_docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 77, in prompt_length inputs = self._get_inputs(docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 64, in _get_inputs document_info = { File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 65, in <dictcomp> k: base_info[k] for k in self.document_prompt.input_variables KeyError: 'source' ``` Here is the code I used for ingesting | ``` """This is the logic for ingesting Notion data into LangChain.""" from pathlib import Path from langchain.text_splitter import CharacterTextSplitter import faiss from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings import pickle import time from tqdm import tqdm # Here we load in the data in the format that Notion exports it in. folder = list(Path("Notion_DB/").glob("**/*.md")) files = [] sources = [] for myFile in folder: with open(myFile, 'r', encoding='utf-8') as f: print(myFile.name) files.append(f.read()) sources.append(myFile) # Here we split the documents, as needed, into smaller chunks. # We do this due to the context limits of the LLMs. text_splitter = CharacterTextSplitter(chunk_size=800, separator="\n") docs = [] metadatas = [] for i, f in enumerate(files): splits = text_splitter.split_text(f) docs.extend(splits) metadatas.extend([{"source": sources[i]}] * len(splits)) # Add each element in docs into FAISS store, keeping a delay between inserting elements so we don't exceed rate limit store = None for (index, chunk) in tqdm(enumerate(docs)): if index == 0: store = FAISS.from_texts([chunk], OpenAIEmbeddings()) else: time.sleep(1) # wait for a second to not exceed any rate limits store.add_texts([chunk]) # print('finished with index '+index.__str__()) print('Done yayy!') # # Here we create a vector store from the documents and save it to disk. faiss.write_index(store.index, "docs.index") store.index = None with open("faiss_store.pkl", "wb") as f: pickle.dump(store, f) ```
https://github.com/langchain-ai/langchain/issues/2944
https://github.com/langchain-ai/langchain/pull/3026
3453b7457ca60227430d85e6f6f58a2aafae559d
19c85aa9907765c0a2dbe7c46e9d5dd2d6df0f30
"2023-04-15T15:38:36Z"
python
"2023-04-18T03:28:01Z"
tests/unit_tests/chains/test_combine_documents.py
"""Test splitting works with just two docs.""" docs = [Document(page_content="foo"), Document(page_content="bar")] doc_list = _split_list_of_docs(docs, _fake_docs_len_func, 100) assert doc_list == [docs] def test__split_list_works_correctly() -> None: """Test splitting works correctly.""" docs = [ Document(page_content="foo"), Document(page_content="bar"), Document(page_content="baz"), Document(page_content="foo" * 2), Document(page_content="bar"), Document(page_content="baz"), ] doc_list = _split_list_of_docs(docs, _fake_docs_len_func, 10) expected_result = [ [ Document(page_content="foo"), Document(page_content="bar"), Document(page_content="baz"), ], [Document(page_content="foo" * 2), Document(page_content="bar")], [Document(page_content="baz")], ] assert doc_list == expected_result def test__collapse_docs_no_metadata() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,944
Question Answering over Docs giving cryptic error upon query
After ingesting some markdown files using a slightly modified version of the question-answering over docs example, I ran the qa.py script as it was in the example ``` # qa.py import faiss from langchain import OpenAI, HuggingFaceHub, LLMChain from langchain.chains import VectorDBQAWithSourcesChain import pickle import argparse parser = argparse.ArgumentParser(description='Ask a question to the notion DB.') parser.add_argument('question', type=str, help='The question to ask the notion DB') args = parser.parse_args() # Load the LangChain. index = faiss.read_index("docs.index") with open("faiss_store.pkl", "rb") as f: store = pickle.load(f) store.index = index chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=store) result = chain({"question": args.question}) print(f"Answer: {result['answer']}") ``` Only to get this cryptic error ``` Traceback (most recent call last): File "C:\Users\ahmad\OneDrive\Desktop\Coding\LANGCHAINSSSSSS\notion-qa\qa.py", line 22, in <module> result = chain({"question": args.question}) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 146, in __call__ raise e File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 142, in __call__ outputs = self._call(inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\qa_with_sources\base.py", line 97, in _call answer, _ = self.combine_document_chain.combine_docs(docs, **inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\map_reduce.py", line 150, in combine_docs num_tokens = length_func(result_docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 77, in prompt_length inputs = self._get_inputs(docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 64, in _get_inputs document_info = { File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 65, in <dictcomp> k: base_info[k] for k in self.document_prompt.input_variables KeyError: 'source' ``` Here is the code I used for ingesting | ``` """This is the logic for ingesting Notion data into LangChain.""" from pathlib import Path from langchain.text_splitter import CharacterTextSplitter import faiss from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings import pickle import time from tqdm import tqdm # Here we load in the data in the format that Notion exports it in. folder = list(Path("Notion_DB/").glob("**/*.md")) files = [] sources = [] for myFile in folder: with open(myFile, 'r', encoding='utf-8') as f: print(myFile.name) files.append(f.read()) sources.append(myFile) # Here we split the documents, as needed, into smaller chunks. # We do this due to the context limits of the LLMs. text_splitter = CharacterTextSplitter(chunk_size=800, separator="\n") docs = [] metadatas = [] for i, f in enumerate(files): splits = text_splitter.split_text(f) docs.extend(splits) metadatas.extend([{"source": sources[i]}] * len(splits)) # Add each element in docs into FAISS store, keeping a delay between inserting elements so we don't exceed rate limit store = None for (index, chunk) in tqdm(enumerate(docs)): if index == 0: store = FAISS.from_texts([chunk], OpenAIEmbeddings()) else: time.sleep(1) # wait for a second to not exceed any rate limits store.add_texts([chunk]) # print('finished with index '+index.__str__()) print('Done yayy!') # # Here we create a vector store from the documents and save it to disk. faiss.write_index(store.index, "docs.index") store.index = None with open("faiss_store.pkl", "wb") as f: pickle.dump(store, f) ```
https://github.com/langchain-ai/langchain/issues/2944
https://github.com/langchain-ai/langchain/pull/3026
3453b7457ca60227430d85e6f6f58a2aafae559d
19c85aa9907765c0a2dbe7c46e9d5dd2d6df0f30
"2023-04-15T15:38:36Z"
python
"2023-04-18T03:28:01Z"
tests/unit_tests/chains/test_combine_documents.py
"""Test collapse documents functionality when no metadata.""" docs = [ Document(page_content="foo"), Document(page_content="bar"), Document(page_content="baz"), ] output = _collapse_docs(docs, _fake_combine_docs_func) expected_output = Document(page_content="foobarbaz") assert output == expected_output def test__collapse_docs_one_doc() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,944
Question Answering over Docs giving cryptic error upon query
After ingesting some markdown files using a slightly modified version of the question-answering over docs example, I ran the qa.py script as it was in the example ``` # qa.py import faiss from langchain import OpenAI, HuggingFaceHub, LLMChain from langchain.chains import VectorDBQAWithSourcesChain import pickle import argparse parser = argparse.ArgumentParser(description='Ask a question to the notion DB.') parser.add_argument('question', type=str, help='The question to ask the notion DB') args = parser.parse_args() # Load the LangChain. index = faiss.read_index("docs.index") with open("faiss_store.pkl", "rb") as f: store = pickle.load(f) store.index = index chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=store) result = chain({"question": args.question}) print(f"Answer: {result['answer']}") ``` Only to get this cryptic error ``` Traceback (most recent call last): File "C:\Users\ahmad\OneDrive\Desktop\Coding\LANGCHAINSSSSSS\notion-qa\qa.py", line 22, in <module> result = chain({"question": args.question}) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 146, in __call__ raise e File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\base.py", line 142, in __call__ outputs = self._call(inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\qa_with_sources\base.py", line 97, in _call answer, _ = self.combine_document_chain.combine_docs(docs, **inputs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\map_reduce.py", line 150, in combine_docs num_tokens = length_func(result_docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 77, in prompt_length inputs = self._get_inputs(docs, **kwargs) File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 64, in _get_inputs document_info = { File "C:\Users\ahmad\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalCache\local-packages\Python310\site-packages\langchain\chains\combine_documents\stuff.py", line 65, in <dictcomp> k: base_info[k] for k in self.document_prompt.input_variables KeyError: 'source' ``` Here is the code I used for ingesting | ``` """This is the logic for ingesting Notion data into LangChain.""" from pathlib import Path from langchain.text_splitter import CharacterTextSplitter import faiss from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings import pickle import time from tqdm import tqdm # Here we load in the data in the format that Notion exports it in. folder = list(Path("Notion_DB/").glob("**/*.md")) files = [] sources = [] for myFile in folder: with open(myFile, 'r', encoding='utf-8') as f: print(myFile.name) files.append(f.read()) sources.append(myFile) # Here we split the documents, as needed, into smaller chunks. # We do this due to the context limits of the LLMs. text_splitter = CharacterTextSplitter(chunk_size=800, separator="\n") docs = [] metadatas = [] for i, f in enumerate(files): splits = text_splitter.split_text(f) docs.extend(splits) metadatas.extend([{"source": sources[i]}] * len(splits)) # Add each element in docs into FAISS store, keeping a delay between inserting elements so we don't exceed rate limit store = None for (index, chunk) in tqdm(enumerate(docs)): if index == 0: store = FAISS.from_texts([chunk], OpenAIEmbeddings()) else: time.sleep(1) # wait for a second to not exceed any rate limits store.add_texts([chunk]) # print('finished with index '+index.__str__()) print('Done yayy!') # # Here we create a vector store from the documents and save it to disk. faiss.write_index(store.index, "docs.index") store.index = None with open("faiss_store.pkl", "wb") as f: pickle.dump(store, f) ```
https://github.com/langchain-ai/langchain/issues/2944
https://github.com/langchain-ai/langchain/pull/3026
3453b7457ca60227430d85e6f6f58a2aafae559d
19c85aa9907765c0a2dbe7c46e9d5dd2d6df0f30
"2023-04-15T15:38:36Z"
python
"2023-04-18T03:28:01Z"
tests/unit_tests/chains/test_combine_documents.py
"""Test collapse documents functionality when only one document present.""" docs = [Document(page_content="foo")] output = _collapse_docs(docs, _fake_combine_docs_func) assert output == docs[0] docs = [Document(page_content="foo", metadata={"source": "a"})] output = _collapse_docs(docs, _fake_combine_docs_func) assert output == docs[0] def test__collapse_docs_metadata() -> None: """Test collapse documents functionality when metadata exists.""" metadata1 = {"source": "a", "foo": 2, "bar": "1", "extra1": "foo"} metadata2 = {"source": "b", "foo": "3", "bar": 2, "extra2": "bar"} docs = [ Document(page_content="foo", metadata=metadata1), Document(page_content="bar", metadata=metadata2), ] output = _collapse_docs(docs, _fake_combine_docs_func) expected_metadata = { "source": "a, b", "foo": "2, 3", "bar": "1, 2", "extra1": "foo", "extra2": "bar", } expected_output = Document(page_content="foobar", metadata=expected_metadata) assert output == expected_output
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,874
Redundunt piece of code
In Agents -> loading.py on line 40 there is a redundant piece of code. ``` if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") ```
https://github.com/langchain-ai/langchain/issues/2874
https://github.com/langchain-ai/langchain/pull/2934
b40f90ea042b20440cb7c1a9e70a6e4cd4a0089c
ae7ed31386c10cee1683419a4ab45562830bf8eb
"2023-04-14T05:28:42Z"
python
"2023-04-18T04:05:48Z"
langchain/agents/loading.py
"""Functionality for loading agents.""" import json from pathlib import Path from typing import Any, Dict, List, Optional, Type, Union import yaml from langchain.agents.agent import BaseSingleActionAgent from langchain.agents.agent_types import AgentType from langchain.agents.chat.base import ChatAgent from langchain.agents.conversational.base import ConversationalAgent from langchain.agents.conversational_chat.base import ConversationalChatAgent from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.react.base import ReActDocstoreAgent from langchain.agents.self_ask_with_search.base import SelfAskWithSearchAgent from langchain.agents.tools import Tool from langchain.chains.loading import load_chain, load_chain_from_config from langchain.llms.base import BaseLLM from langchain.utilities.loading import try_load_from_hub AGENT_TO_CLASS: Dict[AgentType, Type[BaseSingleActionAgent]] = { AgentType.ZERO_SHOT_REACT_DESCRIPTION: ZeroShotAgent, AgentType.REACT_DOCSTORE: ReActDocstoreAgent, AgentType.SELF_ASK_WITH_SEARCH: SelfAskWithSearchAgent, AgentType.CONVERSATIONAL_REACT_DESCRIPTION: ConversationalAgent, AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION: ChatAgent, AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION: ConversationalChatAgent, } URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/agents/" def _load_agent_from_tools(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,874
Redundunt piece of code
In Agents -> loading.py on line 40 there is a redundant piece of code. ``` if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") ```
https://github.com/langchain-ai/langchain/issues/2874
https://github.com/langchain-ai/langchain/pull/2934
b40f90ea042b20440cb7c1a9e70a6e4cd4a0089c
ae7ed31386c10cee1683419a4ab45562830bf8eb
"2023-04-14T05:28:42Z"
python
"2023-04-18T04:05:48Z"
langchain/agents/loading.py
config: dict, llm: BaseLLM, tools: List[Tool], **kwargs: Any ) -> BaseSingleActionAgent: config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") agent_cls = AGENT_TO_CLASS[config_type] combined_config = {**config, **kwargs} return agent_cls.from_llm_and_tools(llm, tools, **combined_config) def load_agent_from_config( config: dict, llm: Optional[BaseLLM] = None, tools: Optional[List[Tool]] = None, **kwargs: Any,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,874
Redundunt piece of code
In Agents -> loading.py on line 40 there is a redundant piece of code. ``` if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") ```
https://github.com/langchain-ai/langchain/issues/2874
https://github.com/langchain-ai/langchain/pull/2934
b40f90ea042b20440cb7c1a9e70a6e4cd4a0089c
ae7ed31386c10cee1683419a4ab45562830bf8eb
"2023-04-14T05:28:42Z"
python
"2023-04-18T04:05:48Z"
langchain/agents/loading.py
) -> BaseSingleActionAgent: """Load agent from Config Dict.""" if "_type" not in config: raise ValueError("Must specify an agent Type in config") load_from_tools = config.pop("load_from_llm_and_tools", False) if load_from_tools: if llm is None: raise ValueError( "If `load_from_llm_and_tools` is set to True, " "then LLM must be provided" ) if tools is None: raise ValueError( "If `load_from_llm_and_tools` is set to True, " "then tools must be provided" ) return _load_agent_from_tools(config, llm, tools, **kwargs) config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") agent_cls = AGENT_TO_CLASS[config_type] if "llm_chain" in config: config["llm_chain"] = load_chain_from_config(config.pop("llm_chain")) elif "llm_chain_path" in config: config["llm_chain"] = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` and `llm_chain_path` should be specified.") combined_config = {**config, **kwargs} return agent_cls(**combined_config) def load_agent(path: Union[str, Path], **kwargs: Any) -> BaseSingleActionAgent:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,874
Redundunt piece of code
In Agents -> loading.py on line 40 there is a redundant piece of code. ``` if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") ```
https://github.com/langchain-ai/langchain/issues/2874
https://github.com/langchain-ai/langchain/pull/2934
b40f90ea042b20440cb7c1a9e70a6e4cd4a0089c
ae7ed31386c10cee1683419a4ab45562830bf8eb
"2023-04-14T05:28:42Z"
python
"2023-04-18T04:05:48Z"
langchain/agents/loading.py
"""Unified method for loading a agent from LangChainHub or local fs.""" if hub_result := try_load_from_hub( path, _load_agent_from_file, "agents", {"json", "yaml"} ): return hub_result else: return _load_agent_from_file(path, **kwargs) def _load_agent_from_file( file: Union[str, Path], **kwargs: Any ) -> BaseSingleActionAgent: """Load agent from file.""" if isinstance(file, str): file_path = Path(file) else: file_path = file if file_path.suffix == ".json": with open(file_path) as f: config = json.load(f) elif file_path.suffix == ".yaml": with open(file_path, "r") as f: config = yaml.safe_load(f) else: raise ValueError("File type must be json or yaml") return load_agent_from_config(config, **kwargs)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,057
Error when parsing code from LLM response ValueError: Could not parse LLM output:
Sometimes the LLM response (generated code) tends to miss the ending ticks "```". Therefore causing the text parsing to fail due to `not enough values to unpack`. Suggest to simply the `_, action, _' to just `action` then with index Error message below ``` > Entering new AgentExecutor chain... Traceback (most recent call last): File "E:\open_source_contrib\langchain-venv\lib\site-packages\langchain\agents\chat\output_parser.py", line 17, in parse _, action, _ = text.split("```") ValueError: not enough values to unpack (expected 3, got 2) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "E:\open_source_contrib\test.py", line 67, in <module> agent_msg = agent.run(prompt_template) File "E:\open_source_contrib\langchain-venv\lib\site-packages\langchain\chains\base.py", line 213, in run return self(args[0])[self.output_keys[0]] File "E:\open_source_contrib\langchain-venv\lib\site-packages\langchain\chains\base.py", line 116, in __call__ raise e File "E:\open_source_contrib\langchain-venv\lib\site-packages\langchain\chains\base.py", line 113, in __call__ outputs = self._call(inputs) File "E:\open_source_contrib\langchain-venv\lib\site-packages\langchain\agents\agent.py", line 792, in _call next_step_output = self._take_next_step( File "E:\open_source_contrib\langchain-venv\lib\site-packages\langchain\agents\agent.py", line 672, in _take_next_step output = self.agent.plan(intermediate_steps, **inputs) File "E:\open_source_contrib\langchain-venv\lib\site-packages\langchain\agents\agent.py", line 385, in plan return self.output_parser.parse(full_output) File "E:\open_source_contrib\langchain-venv\lib\site-packages\langchain\agents\chat\output_parser.py", line 23, in parse raise ValueError(f"Could not parse LLM output: {text}") ValueError: Could not parse LLM output: Question: How do I put the given data into a pandas dataframe and save it into a csv file at the specified path? Thought: I need to use the Python REPL tool to import pandas, create a dataframe with the given data, and then use the to_csv method to save it to the specified file path. Action: ``` { "action": "Python REPL", "action_input": "import pandas as pd\n\n# create dataframe\ndata = {\n 'Quarter': ['Q4-2021', 'Q1-2022', 'Q2-2022', 'Q3-2022', 'Q4-2022'],\n 'EPS attributable to common stockholders, diluted (GAAP)': [1.07, 0.95, 0.76, 0.95, 1.07],\n 'EPS attributable to common stockholders, diluted (non-GAAP)': [1.19, 1.05, 0.85, 1.05, 1.19]\n}\ndf = pd.DataFrame(data)\n\n# save to csv\ndf.to_csv('E:\\\\open_source_contrib\\\\output\\\\agent_output.xlsx', index=False)" } (langchain-venv) PS E:\open_source_contrib> ```
https://github.com/langchain-ai/langchain/issues/3057
https://github.com/langchain-ai/langchain/pull/3058
db968284f8f3964630f119c95cca923f112ad47b
2984ad39645c80411cee5e7f77a3c116b88d008e
"2023-04-18T04:13:20Z"
python
"2023-04-18T04:42:13Z"
langchain/agents/chat/output_parser.py
import json from typing import Union from langchain.agents.agent import AgentOutputParser from langchain.schema import AgentAction, AgentFinish FINAL_ANSWER_ACTION = "Final Answer:" class ChatOutputParser(AgentOutputParser): def parse(self, text: str) -> Union[AgentAction, AgentFinish]: if FINAL_ANSWER_ACTION in text: return AgentFinish( {"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text ) try: _, action, _ = text.split("```") response = json.loads(action.strip()) return AgentAction(response["action"], response["action_input"], text) except Exception: raise ValueError(f"Could not parse LLM output: {text}")
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,157
Missing Observation and Thought prefix in output
The console output when running a tool is missing the "Observation" and "Thought" prefixes. I noticed this when using the SQL Toolkit, but other tools are likely affected. Here is the current INCORRECT output format: ``` > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: ""invoice_items, invoices, tracks, sqlite_sequence, employees, media_types, sqlite_stat1, customers, playlists, playlist_track, albums, genres, artistsThere is a table called "employees" that I can query. Action: schema_sql_db Action Input: "employees" ``` Here is the expected output format: ``` > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: "" Observation: invoice_items, invoices, tracks, sqlite_sequence, employees, media_types, sqlite_stat1, customers, playlists, playlist_track, albums, genres, artists Thought:There is a table called "employees" that I can query. Action: schema_sql_db Action Input: "employees" ``` Note: this appears to only affect the console output. The `agent_scratchpad` is updated correctly with the "Observation" and "Thought" prefixes.
https://github.com/langchain-ai/langchain/issues/3157
https://github.com/langchain-ai/langchain/pull/3158
126d7f11dd17a8ea71a4427951f10cefc862ba3a
0b542661b46d42ee501c6681a4519f2c4e76de23
"2023-04-19T15:15:26Z"
python
"2023-04-19T16:00:10Z"
langchain/tools/base.py
"""Base implementation for tools or skills.""" from abc import ABC, abstractmethod from inspect import signature from typing import Any, Dict, Optional, Sequence, Tuple, Type, Union from pydantic import BaseModel, Extra, Field, validate_arguments, validator from langchain.callbacks import get_callback_manager from langchain.callbacks.base import BaseCallbackManager def _to_args_and_kwargs(run_input: Union[str, Dict]) -> Tuple[Sequence, dict]: if isinstance(run_input, str): return (run_input,), {} else: return [], run_input class BaseTool(ABC, BaseModel): """Interface LangChain tools must implement.""" name: str description: str args_schema: Optional[Type[BaseModel]] = None """Pydantic model class to validate and parse the tool's input arguments.""" return_direct: bool = False verbose: bool = False callback_manager: BaseCallbackManager = Field(default_factory=get_callback_manager) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def args(self) -> dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,157
Missing Observation and Thought prefix in output
The console output when running a tool is missing the "Observation" and "Thought" prefixes. I noticed this when using the SQL Toolkit, but other tools are likely affected. Here is the current INCORRECT output format: ``` > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: ""invoice_items, invoices, tracks, sqlite_sequence, employees, media_types, sqlite_stat1, customers, playlists, playlist_track, albums, genres, artistsThere is a table called "employees" that I can query. Action: schema_sql_db Action Input: "employees" ``` Here is the expected output format: ``` > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: "" Observation: invoice_items, invoices, tracks, sqlite_sequence, employees, media_types, sqlite_stat1, customers, playlists, playlist_track, albums, genres, artists Thought:There is a table called "employees" that I can query. Action: schema_sql_db Action Input: "employees" ``` Note: this appears to only affect the console output. The `agent_scratchpad` is updated correctly with the "Observation" and "Thought" prefixes.
https://github.com/langchain-ai/langchain/issues/3157
https://github.com/langchain-ai/langchain/pull/3158
126d7f11dd17a8ea71a4427951f10cefc862ba3a
0b542661b46d42ee501c6681a4519f2c4e76de23
"2023-04-19T15:15:26Z"
python
"2023-04-19T16:00:10Z"
langchain/tools/base.py
if self.args_schema is not None: return self.args_schema.schema()["properties"] else: inferred_model = validate_arguments(self._run).model schema = inferred_model.schema()["properties"] valid_keys = signature(self._run).parameters return {k: schema[k] for k in valid_keys} def _parse_input( self, tool_input: Union[str, Dict], ) -> None: """Convert tool input to pydantic model.""" input_args = self.args_schema if isinstance(tool_input, str): if input_args is not None: key_ = next(iter(input_args.__fields__.keys())) input_args.validate({key_: tool_input}) else: if input_args is not None: input_args.validate(tool_input) @validator("callback_manager", pre=True, always=True) def set_callback_manager( cls, callback_manager: Optional[BaseCallbackManager] ) -> BaseCallbackManager: """If callback manager is None, set it. This allows users to pass in None as callback manager, which is a nice UX. """ return callback_manager or get_callback_manager() @abstractmethod def _run(self, *args: Any, **kwargs: Any) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,157
Missing Observation and Thought prefix in output
The console output when running a tool is missing the "Observation" and "Thought" prefixes. I noticed this when using the SQL Toolkit, but other tools are likely affected. Here is the current INCORRECT output format: ``` > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: ""invoice_items, invoices, tracks, sqlite_sequence, employees, media_types, sqlite_stat1, customers, playlists, playlist_track, albums, genres, artistsThere is a table called "employees" that I can query. Action: schema_sql_db Action Input: "employees" ``` Here is the expected output format: ``` > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: "" Observation: invoice_items, invoices, tracks, sqlite_sequence, employees, media_types, sqlite_stat1, customers, playlists, playlist_track, albums, genres, artists Thought:There is a table called "employees" that I can query. Action: schema_sql_db Action Input: "employees" ``` Note: this appears to only affect the console output. The `agent_scratchpad` is updated correctly with the "Observation" and "Thought" prefixes.
https://github.com/langchain-ai/langchain/issues/3157
https://github.com/langchain-ai/langchain/pull/3158
126d7f11dd17a8ea71a4427951f10cefc862ba3a
0b542661b46d42ee501c6681a4519f2c4e76de23
"2023-04-19T15:15:26Z"
python
"2023-04-19T16:00:10Z"
langchain/tools/base.py
"""Use the tool.""" @abstractmethod async def _arun(self, *args: Any, **kwargs: Any) -> str: """Use the tool asynchronously.""" def run( self, tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", **kwargs: Any, ) -> str: """Run the tool.""" self._parse_input(tool_input) if not self.verbose and verbose is not None: verbose_ = verbose else: verbose_ = self.verbose self.callback_manager.on_tool_start( {"name": self.name, "description": self.description}, tool_input if isinstance(tool_input, str) else str(tool_input), verbose=verbose_, color=start_color, **kwargs, ) try: args, kwargs = _to_args_and_kwargs(tool_input) observation = self._run(*args, **kwargs)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,157
Missing Observation and Thought prefix in output
The console output when running a tool is missing the "Observation" and "Thought" prefixes. I noticed this when using the SQL Toolkit, but other tools are likely affected. Here is the current INCORRECT output format: ``` > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: ""invoice_items, invoices, tracks, sqlite_sequence, employees, media_types, sqlite_stat1, customers, playlists, playlist_track, albums, genres, artistsThere is a table called "employees" that I can query. Action: schema_sql_db Action Input: "employees" ``` Here is the expected output format: ``` > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: "" Observation: invoice_items, invoices, tracks, sqlite_sequence, employees, media_types, sqlite_stat1, customers, playlists, playlist_track, albums, genres, artists Thought:There is a table called "employees" that I can query. Action: schema_sql_db Action Input: "employees" ``` Note: this appears to only affect the console output. The `agent_scratchpad` is updated correctly with the "Observation" and "Thought" prefixes.
https://github.com/langchain-ai/langchain/issues/3157
https://github.com/langchain-ai/langchain/pull/3158
126d7f11dd17a8ea71a4427951f10cefc862ba3a
0b542661b46d42ee501c6681a4519f2c4e76de23
"2023-04-19T15:15:26Z"
python
"2023-04-19T16:00:10Z"
langchain/tools/base.py
except (Exception, KeyboardInterrupt) as e: self.callback_manager.on_tool_error(e, verbose=verbose_) raise e self.callback_manager.on_tool_end( observation, verbose=verbose_, color=color, name=self.name, **kwargs ) return observation async def arun( self, tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", **kwargs: Any, ) -> str: """Run the tool asynchronously.""" self._parse_input(tool_input) if not self.verbose and verbose is not None: verbose_ = verbose else: verbose_ = self.verbose if self.callback_manager.is_async: await self.callback_manager.on_tool_start( {"name": self.name, "description": self.description}, tool_input if isinstance(tool_input, str) else str(tool_input), verbose=verbose_, color=start_color, **kwargs, ) else:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,157
Missing Observation and Thought prefix in output
The console output when running a tool is missing the "Observation" and "Thought" prefixes. I noticed this when using the SQL Toolkit, but other tools are likely affected. Here is the current INCORRECT output format: ``` > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: ""invoice_items, invoices, tracks, sqlite_sequence, employees, media_types, sqlite_stat1, customers, playlists, playlist_track, albums, genres, artistsThere is a table called "employees" that I can query. Action: schema_sql_db Action Input: "employees" ``` Here is the expected output format: ``` > Entering new AgentExecutor chain... Action: list_tables_sql_db Action Input: "" Observation: invoice_items, invoices, tracks, sqlite_sequence, employees, media_types, sqlite_stat1, customers, playlists, playlist_track, albums, genres, artists Thought:There is a table called "employees" that I can query. Action: schema_sql_db Action Input: "employees" ``` Note: this appears to only affect the console output. The `agent_scratchpad` is updated correctly with the "Observation" and "Thought" prefixes.
https://github.com/langchain-ai/langchain/issues/3157
https://github.com/langchain-ai/langchain/pull/3158
126d7f11dd17a8ea71a4427951f10cefc862ba3a
0b542661b46d42ee501c6681a4519f2c4e76de23
"2023-04-19T15:15:26Z"
python
"2023-04-19T16:00:10Z"
langchain/tools/base.py
self.callback_manager.on_tool_start( {"name": self.name, "description": self.description}, tool_input if isinstance(tool_input, str) else str(tool_input), verbose=verbose_, color=start_color, **kwargs, ) try: args, kwargs = _to_args_and_kwargs(tool_input) observation = await self._arun(*args, **kwargs) except (Exception, KeyboardInterrupt) as e: if self.callback_manager.is_async: await self.callback_manager.on_tool_error(e, verbose=verbose_) else: self.callback_manager.on_tool_error(e, verbose=verbose_) raise e if self.callback_manager.is_async: await self.callback_manager.on_tool_end( observation, verbose=verbose_, color=color, name=self.name, **kwargs ) else: self.callback_manager.on_tool_end( observation, verbose=verbose_, color=color, name=self.name, **kwargs ) return observation def __call__(self, tool_input: str) -> str: """Make tool callable.""" return self.run(tool_input)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,301
Output using llamacpp is garbage
Hi there, Trying to setup a langchain with llamacpp as a first step to use langchain offline: `from langchain.llms import LlamaCpp llm = LlamaCpp(model_path="../llama/models/ggml-vicuna-13b-4bit-rev1.bin") text = "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step." print(llm(text))` The result is: `Plenement that whciation - if a praged and as Work 1 -- but a nice bagingrading per 1, In Homewooded ETenscent is the 0sm toth, ECORO Efph at as an outs! ce, found unprint this a PC, Thom. The RxR-1 dot emD In Not OslKNOT The Home On-a-a-a-aEOEfa-a-aP E. NOT, hotness of-aEF and Life in better-A (resondri Euler, rsa! Home WI Retection and O no-aL25 1 fate to Hosp doubate, p. T, this guiltEisenR-getus WEFI, duro as these disksada Tl.Eis-aRDA* plantly-aRing the Prospecttypen` Running the same question using llama_cpp_python with the same model bin file, the result is (allthough wrong, correctly formatted): `{ "id": "cmpl-d64b69f6-cd50-41e9-8d1c-25b1a5859fac", "object": "text_completion", "created": 1682085552, "model": "./models/ggml-alpaca-7b-native-q4.bin", "choices": [ { "text": "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step. Justin was born in 1985, so he was born in the same year as the Super Bowl victory of the Chicago Bears in 1986. So, the answer is the Chicago Bears!", "index": 0, "logprobs": null, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 32, "completion_tokens": 45, "total_tokens": 77 } }` What could be the issue, encoding/decoding?
https://github.com/langchain-ai/langchain/issues/3301
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-21T14:01:59Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
"""Wrapper around llama.cpp.""" import logging from typing import Any, Dict, List, Optional from pydantic import Field, root_validator from langchain.llms.base import LLM logger = logging.getLogger(__name__) class LlamaCpp(LLM):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,301
Output using llamacpp is garbage
Hi there, Trying to setup a langchain with llamacpp as a first step to use langchain offline: `from langchain.llms import LlamaCpp llm = LlamaCpp(model_path="../llama/models/ggml-vicuna-13b-4bit-rev1.bin") text = "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step." print(llm(text))` The result is: `Plenement that whciation - if a praged and as Work 1 -- but a nice bagingrading per 1, In Homewooded ETenscent is the 0sm toth, ECORO Efph at as an outs! ce, found unprint this a PC, Thom. The RxR-1 dot emD In Not OslKNOT The Home On-a-a-a-aEOEfa-a-aP E. NOT, hotness of-aEF and Life in better-A (resondri Euler, rsa! Home WI Retection and O no-aL25 1 fate to Hosp doubate, p. T, this guiltEisenR-getus WEFI, duro as these disksada Tl.Eis-aRDA* plantly-aRing the Prospecttypen` Running the same question using llama_cpp_python with the same model bin file, the result is (allthough wrong, correctly formatted): `{ "id": "cmpl-d64b69f6-cd50-41e9-8d1c-25b1a5859fac", "object": "text_completion", "created": 1682085552, "model": "./models/ggml-alpaca-7b-native-q4.bin", "choices": [ { "text": "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step. Justin was born in 1985, so he was born in the same year as the Super Bowl victory of the Chicago Bears in 1986. So, the answer is the Chicago Bears!", "index": 0, "logprobs": null, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 32, "completion_tokens": 45, "total_tokens": 77 } }` What could be the issue, encoding/decoding?
https://github.com/langchain-ai/langchain/issues/3301
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-21T14:01:59Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
"""Wrapper around the llama.cpp model. To use, you should have the llama-cpp-python library installed, and provide the path to the Llama model as a named parameter to the constructor. Check out: https://github.com/abetlen/llama-cpp-python Example: .. code-block:: python from langchain.llms import LlamaCppEmbeddings llm = LlamaCppEmbeddings(model_path="/path/to/llama/model") """ client: Any model_path: str """The path to the Llama model file.""" n_ctx: int = Field(512, alias="n_ctx") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(-1, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights."""
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,301
Output using llamacpp is garbage
Hi there, Trying to setup a langchain with llamacpp as a first step to use langchain offline: `from langchain.llms import LlamaCpp llm = LlamaCpp(model_path="../llama/models/ggml-vicuna-13b-4bit-rev1.bin") text = "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step." print(llm(text))` The result is: `Plenement that whciation - if a praged and as Work 1 -- but a nice bagingrading per 1, In Homewooded ETenscent is the 0sm toth, ECORO Efph at as an outs! ce, found unprint this a PC, Thom. The RxR-1 dot emD In Not OslKNOT The Home On-a-a-a-aEOEfa-a-aP E. NOT, hotness of-aEF and Life in better-A (resondri Euler, rsa! Home WI Retection and O no-aL25 1 fate to Hosp doubate, p. T, this guiltEisenR-getus WEFI, duro as these disksada Tl.Eis-aRDA* plantly-aRing the Prospecttypen` Running the same question using llama_cpp_python with the same model bin file, the result is (allthough wrong, correctly formatted): `{ "id": "cmpl-d64b69f6-cd50-41e9-8d1c-25b1a5859fac", "object": "text_completion", "created": 1682085552, "model": "./models/ggml-alpaca-7b-native-q4.bin", "choices": [ { "text": "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step. Justin was born in 1985, so he was born in the same year as the Super Bowl victory of the Chicago Bears in 1986. So, the answer is the Chicago Bears!", "index": 0, "logprobs": null, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 32, "completion_tokens": 45, "total_tokens": 77 } }` What could be the issue, encoding/decoding?
https://github.com/langchain-ai/langchain/issues/3301
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-21T14:01:59Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" n_threads: Optional[int] = Field(None, alias="n_threads") """Number of threads to use. If None, the number of threads is automatically determined.""" n_batch: Optional[int] = Field(8, alias="n_batch") """Number of tokens to process in parallel. Should be a number between 1 and n_ctx.""" suffix: Optional[str] = Field(None) """A suffix to append to the generated text. If None, no suffix is appended.""" max_tokens: Optional[int] = 256 """The maximum number of tokens to generate.""" temperature: Optional[float] = 0.8 """The temperature to use for sampling.""" top_p: Optional[float] = 0.95 """The top-p value to use for sampling.""" logprobs: Optional[int] = Field(None) """The number of logprobs to return. If None, no logprobs are returned.""" echo: Optional[bool] = False """Whether to echo the prompt.""" stop: Optional[List[str]] = [] """A list of strings to stop generation when encountered.""" repeat_penalty: Optional[float] = 1.1 """The penalty to apply to repeated tokens.""" top_k: Optional[int] = 40 """The top-k value to use for sampling.""" last_n_tokens_size: Optional[int] = 64 """The number of tokens to look back when applying the repeat_penalty.""" @root_validator() def validate_environment(cls, values: Dict) -> Dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,301
Output using llamacpp is garbage
Hi there, Trying to setup a langchain with llamacpp as a first step to use langchain offline: `from langchain.llms import LlamaCpp llm = LlamaCpp(model_path="../llama/models/ggml-vicuna-13b-4bit-rev1.bin") text = "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step." print(llm(text))` The result is: `Plenement that whciation - if a praged and as Work 1 -- but a nice bagingrading per 1, In Homewooded ETenscent is the 0sm toth, ECORO Efph at as an outs! ce, found unprint this a PC, Thom. The RxR-1 dot emD In Not OslKNOT The Home On-a-a-a-aEOEfa-a-aP E. NOT, hotness of-aEF and Life in better-A (resondri Euler, rsa! Home WI Retection and O no-aL25 1 fate to Hosp doubate, p. T, this guiltEisenR-getus WEFI, duro as these disksada Tl.Eis-aRDA* plantly-aRing the Prospecttypen` Running the same question using llama_cpp_python with the same model bin file, the result is (allthough wrong, correctly formatted): `{ "id": "cmpl-d64b69f6-cd50-41e9-8d1c-25b1a5859fac", "object": "text_completion", "created": 1682085552, "model": "./models/ggml-alpaca-7b-native-q4.bin", "choices": [ { "text": "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step. Justin was born in 1985, so he was born in the same year as the Super Bowl victory of the Chicago Bears in 1986. So, the answer is the Chicago Bears!", "index": 0, "logprobs": null, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 32, "completion_tokens": 45, "total_tokens": 77 } }` What could be the issue, encoding/decoding?
https://github.com/langchain-ai/langchain/issues/3301
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-21T14:01:59Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
"""Validate that llama-cpp-python library is installed.""" model_path = values["model_path"] n_ctx = values["n_ctx"] n_parts = values["n_parts"] seed = values["seed"] f16_kv = values["f16_kv"] logits_all = values["logits_all"] vocab_only = values["vocab_only"]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,301
Output using llamacpp is garbage
Hi there, Trying to setup a langchain with llamacpp as a first step to use langchain offline: `from langchain.llms import LlamaCpp llm = LlamaCpp(model_path="../llama/models/ggml-vicuna-13b-4bit-rev1.bin") text = "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step." print(llm(text))` The result is: `Plenement that whciation - if a praged and as Work 1 -- but a nice bagingrading per 1, In Homewooded ETenscent is the 0sm toth, ECORO Efph at as an outs! ce, found unprint this a PC, Thom. The RxR-1 dot emD In Not OslKNOT The Home On-a-a-a-aEOEfa-a-aP E. NOT, hotness of-aEF and Life in better-A (resondri Euler, rsa! Home WI Retection and O no-aL25 1 fate to Hosp doubate, p. T, this guiltEisenR-getus WEFI, duro as these disksada Tl.Eis-aRDA* plantly-aRing the Prospecttypen` Running the same question using llama_cpp_python with the same model bin file, the result is (allthough wrong, correctly formatted): `{ "id": "cmpl-d64b69f6-cd50-41e9-8d1c-25b1a5859fac", "object": "text_completion", "created": 1682085552, "model": "./models/ggml-alpaca-7b-native-q4.bin", "choices": [ { "text": "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step. Justin was born in 1985, so he was born in the same year as the Super Bowl victory of the Chicago Bears in 1986. So, the answer is the Chicago Bears!", "index": 0, "logprobs": null, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 32, "completion_tokens": 45, "total_tokens": 77 } }` What could be the issue, encoding/decoding?
https://github.com/langchain-ai/langchain/issues/3301
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-21T14:01:59Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
use_mlock = values["use_mlock"] n_threads = values["n_threads"] n_batch = values["n_batch"] last_n_tokens_size = values["last_n_tokens_size"] try: from llama_cpp import Llama values["client"] = Llama( model_path=model_path, n_ctx=n_ctx, n_parts=n_parts, seed=seed, f16_kv=f16_kv, logits_all=logits_all, vocab_only=vocab_only, use_mlock=use_mlock, n_threads=n_threads, n_batch=n_batch, last_n_tokens_size=last_n_tokens_size, ) except ImportError: raise ModuleNotFoundError( "Could not import llama-cpp-python library. " "Please install the llama-cpp-python library to " "use this embedding model: pip install llama-cpp-python" ) except Exception: raise NameError(f"Could not load Llama model from path: {model_path}") return values @property def _default_params(self) -> Dict[str, Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,301
Output using llamacpp is garbage
Hi there, Trying to setup a langchain with llamacpp as a first step to use langchain offline: `from langchain.llms import LlamaCpp llm = LlamaCpp(model_path="../llama/models/ggml-vicuna-13b-4bit-rev1.bin") text = "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step." print(llm(text))` The result is: `Plenement that whciation - if a praged and as Work 1 -- but a nice bagingrading per 1, In Homewooded ETenscent is the 0sm toth, ECORO Efph at as an outs! ce, found unprint this a PC, Thom. The RxR-1 dot emD In Not OslKNOT The Home On-a-a-a-aEOEfa-a-aP E. NOT, hotness of-aEF and Life in better-A (resondri Euler, rsa! Home WI Retection and O no-aL25 1 fate to Hosp doubate, p. T, this guiltEisenR-getus WEFI, duro as these disksada Tl.Eis-aRDA* plantly-aRing the Prospecttypen` Running the same question using llama_cpp_python with the same model bin file, the result is (allthough wrong, correctly formatted): `{ "id": "cmpl-d64b69f6-cd50-41e9-8d1c-25b1a5859fac", "object": "text_completion", "created": 1682085552, "model": "./models/ggml-alpaca-7b-native-q4.bin", "choices": [ { "text": "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step. Justin was born in 1985, so he was born in the same year as the Super Bowl victory of the Chicago Bears in 1986. So, the answer is the Chicago Bears!", "index": 0, "logprobs": null, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 32, "completion_tokens": 45, "total_tokens": 77 } }` What could be the issue, encoding/decoding?
https://github.com/langchain-ai/langchain/issues/3301
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-21T14:01:59Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
"""Get the default parameters for calling llama_cpp.""" return { "suffix": self.suffix, "max_tokens": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, "logprobs": self.logprobs, "echo": self.echo, "stop_sequences": self.stop, "repeat_penalty": self.repeat_penalty, "top_k": self.top_k, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model_path": self.model_path}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "llama.cpp" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call the Llama model and return the output. Args: prompt: The prompt to use for generation. stop: A list of strings to stop generation when encountered. Returns:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,301
Output using llamacpp is garbage
Hi there, Trying to setup a langchain with llamacpp as a first step to use langchain offline: `from langchain.llms import LlamaCpp llm = LlamaCpp(model_path="../llama/models/ggml-vicuna-13b-4bit-rev1.bin") text = "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step." print(llm(text))` The result is: `Plenement that whciation - if a praged and as Work 1 -- but a nice bagingrading per 1, In Homewooded ETenscent is the 0sm toth, ECORO Efph at as an outs! ce, found unprint this a PC, Thom. The RxR-1 dot emD In Not OslKNOT The Home On-a-a-a-aEOEfa-a-aP E. NOT, hotness of-aEF and Life in better-A (resondri Euler, rsa! Home WI Retection and O no-aL25 1 fate to Hosp doubate, p. T, this guiltEisenR-getus WEFI, duro as these disksada Tl.Eis-aRDA* plantly-aRing the Prospecttypen` Running the same question using llama_cpp_python with the same model bin file, the result is (allthough wrong, correctly formatted): `{ "id": "cmpl-d64b69f6-cd50-41e9-8d1c-25b1a5859fac", "object": "text_completion", "created": 1682085552, "model": "./models/ggml-alpaca-7b-native-q4.bin", "choices": [ { "text": "Question: What NFL team won the Super Bowl in the year Justin Bieber was born? Answer: Let's think step by step. Justin was born in 1985, so he was born in the same year as the Super Bowl victory of the Chicago Bears in 1986. So, the answer is the Chicago Bears!", "index": 0, "logprobs": null, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 32, "completion_tokens": 45, "total_tokens": 77 } }` What could be the issue, encoding/decoding?
https://github.com/langchain-ai/langchain/issues/3301
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-21T14:01:59Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
The generated text. Example: .. code-block:: python from langchain.llms import LlamaCppEmbeddings llm = LlamaCppEmbeddings(model_path="/path/to/local/llama/model.bin") llm("This is a prompt.") """ params = self._default_params if self.stop and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop: params["stop_sequences"] = self.stop elif stop: params["stop_sequences"] = stop else: params["stop_sequences"] = [] """Call the Llama model and return the output.""" text = self.client( prompt=prompt, max_tokens=params["max_tokens"], temperature=params["temperature"], top_p=params["top_p"], logprobs=params["logprobs"], echo=params["echo"], stop=params["stop_sequences"], repeat_penalty=params["repeat_penalty"], top_k=params["top_k"], ) return text["choices"][0]["text"]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,241
llama.cpp => model runs fine but bad output
Hi, Windows 11 environement Python: 3.10.11 I installed - llama-cpp-python and it works fine and provides output - transformers - pytorch Code run: ``` from langchain.llms import LlamaCpp from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = LlamaCpp(model_path=r"D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin") llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What is the capital of Belgium?" llm_chain.run(question) ``` Output: ``` llama.cpp: loading model from D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin llama_model_load_internal: format = ggjt v1 (latest) llama_model_load_internal: n_vocab = 32000 llama_model_load_internal: n_ctx = 512 llama_model_load_internal: n_embd = 5120 llama_model_load_internal: n_mult = 256 llama_model_load_internal: n_head = 40 llama_model_load_internal: n_layer = 40 llama_model_load_internal: n_rot = 128 llama_model_load_internal: ftype = 4 (mostly Q4_1, some F16) llama_model_load_internal: n_ff = 13824 llama_model_load_internal: n_parts = 1 llama_model_load_internal: model size = 13B llama_model_load_internal: ggml ctx size = 73.73 KB llama_model_load_internal: mem required = 11749.65 MB (+ 3216.00 MB per state) llama_init_from_file: kv self size = 800.00 MB AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | llama_print_timings: load time = 2154.68 ms llama_print_timings: sample time = 75.88 ms / 256 runs ( 0.30 ms per run) llama_print_timings: prompt eval time = 5060.58 ms / 23 tokens ( 220.03 ms per token) llama_print_timings: eval time = 72461.40 ms / 255 runs ( 284.16 ms per run) llama_print_timings: total time = 77664.50 ms ``` But there is no answer to the question.... Am I supposed to Print() something?
https://github.com/langchain-ai/langchain/issues/3241
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-20T20:36:45Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
"""Wrapper around llama.cpp.""" import logging from typing import Any, Dict, List, Optional from pydantic import Field, root_validator from langchain.llms.base import LLM logger = logging.getLogger(__name__) class LlamaCpp(LLM):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,241
llama.cpp => model runs fine but bad output
Hi, Windows 11 environement Python: 3.10.11 I installed - llama-cpp-python and it works fine and provides output - transformers - pytorch Code run: ``` from langchain.llms import LlamaCpp from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = LlamaCpp(model_path=r"D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin") llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What is the capital of Belgium?" llm_chain.run(question) ``` Output: ``` llama.cpp: loading model from D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin llama_model_load_internal: format = ggjt v1 (latest) llama_model_load_internal: n_vocab = 32000 llama_model_load_internal: n_ctx = 512 llama_model_load_internal: n_embd = 5120 llama_model_load_internal: n_mult = 256 llama_model_load_internal: n_head = 40 llama_model_load_internal: n_layer = 40 llama_model_load_internal: n_rot = 128 llama_model_load_internal: ftype = 4 (mostly Q4_1, some F16) llama_model_load_internal: n_ff = 13824 llama_model_load_internal: n_parts = 1 llama_model_load_internal: model size = 13B llama_model_load_internal: ggml ctx size = 73.73 KB llama_model_load_internal: mem required = 11749.65 MB (+ 3216.00 MB per state) llama_init_from_file: kv self size = 800.00 MB AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | llama_print_timings: load time = 2154.68 ms llama_print_timings: sample time = 75.88 ms / 256 runs ( 0.30 ms per run) llama_print_timings: prompt eval time = 5060.58 ms / 23 tokens ( 220.03 ms per token) llama_print_timings: eval time = 72461.40 ms / 255 runs ( 284.16 ms per run) llama_print_timings: total time = 77664.50 ms ``` But there is no answer to the question.... Am I supposed to Print() something?
https://github.com/langchain-ai/langchain/issues/3241
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-20T20:36:45Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
"""Wrapper around the llama.cpp model. To use, you should have the llama-cpp-python library installed, and provide the path to the Llama model as a named parameter to the constructor. Check out: https://github.com/abetlen/llama-cpp-python Example: .. code-block:: python from langchain.llms import LlamaCppEmbeddings llm = LlamaCppEmbeddings(model_path="/path/to/llama/model") """ client: Any model_path: str """The path to the Llama model file.""" n_ctx: int = Field(512, alias="n_ctx") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(-1, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights."""
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,241
llama.cpp => model runs fine but bad output
Hi, Windows 11 environement Python: 3.10.11 I installed - llama-cpp-python and it works fine and provides output - transformers - pytorch Code run: ``` from langchain.llms import LlamaCpp from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = LlamaCpp(model_path=r"D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin") llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What is the capital of Belgium?" llm_chain.run(question) ``` Output: ``` llama.cpp: loading model from D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin llama_model_load_internal: format = ggjt v1 (latest) llama_model_load_internal: n_vocab = 32000 llama_model_load_internal: n_ctx = 512 llama_model_load_internal: n_embd = 5120 llama_model_load_internal: n_mult = 256 llama_model_load_internal: n_head = 40 llama_model_load_internal: n_layer = 40 llama_model_load_internal: n_rot = 128 llama_model_load_internal: ftype = 4 (mostly Q4_1, some F16) llama_model_load_internal: n_ff = 13824 llama_model_load_internal: n_parts = 1 llama_model_load_internal: model size = 13B llama_model_load_internal: ggml ctx size = 73.73 KB llama_model_load_internal: mem required = 11749.65 MB (+ 3216.00 MB per state) llama_init_from_file: kv self size = 800.00 MB AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | llama_print_timings: load time = 2154.68 ms llama_print_timings: sample time = 75.88 ms / 256 runs ( 0.30 ms per run) llama_print_timings: prompt eval time = 5060.58 ms / 23 tokens ( 220.03 ms per token) llama_print_timings: eval time = 72461.40 ms / 255 runs ( 284.16 ms per run) llama_print_timings: total time = 77664.50 ms ``` But there is no answer to the question.... Am I supposed to Print() something?
https://github.com/langchain-ai/langchain/issues/3241
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-20T20:36:45Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" n_threads: Optional[int] = Field(None, alias="n_threads") """Number of threads to use. If None, the number of threads is automatically determined.""" n_batch: Optional[int] = Field(8, alias="n_batch") """Number of tokens to process in parallel. Should be a number between 1 and n_ctx.""" suffix: Optional[str] = Field(None) """A suffix to append to the generated text. If None, no suffix is appended.""" max_tokens: Optional[int] = 256 """The maximum number of tokens to generate.""" temperature: Optional[float] = 0.8 """The temperature to use for sampling.""" top_p: Optional[float] = 0.95 """The top-p value to use for sampling.""" logprobs: Optional[int] = Field(None) """The number of logprobs to return. If None, no logprobs are returned.""" echo: Optional[bool] = False """Whether to echo the prompt.""" stop: Optional[List[str]] = [] """A list of strings to stop generation when encountered.""" repeat_penalty: Optional[float] = 1.1 """The penalty to apply to repeated tokens.""" top_k: Optional[int] = 40 """The top-k value to use for sampling.""" last_n_tokens_size: Optional[int] = 64 """The number of tokens to look back when applying the repeat_penalty.""" @root_validator() def validate_environment(cls, values: Dict) -> Dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,241
llama.cpp => model runs fine but bad output
Hi, Windows 11 environement Python: 3.10.11 I installed - llama-cpp-python and it works fine and provides output - transformers - pytorch Code run: ``` from langchain.llms import LlamaCpp from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = LlamaCpp(model_path=r"D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin") llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What is the capital of Belgium?" llm_chain.run(question) ``` Output: ``` llama.cpp: loading model from D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin llama_model_load_internal: format = ggjt v1 (latest) llama_model_load_internal: n_vocab = 32000 llama_model_load_internal: n_ctx = 512 llama_model_load_internal: n_embd = 5120 llama_model_load_internal: n_mult = 256 llama_model_load_internal: n_head = 40 llama_model_load_internal: n_layer = 40 llama_model_load_internal: n_rot = 128 llama_model_load_internal: ftype = 4 (mostly Q4_1, some F16) llama_model_load_internal: n_ff = 13824 llama_model_load_internal: n_parts = 1 llama_model_load_internal: model size = 13B llama_model_load_internal: ggml ctx size = 73.73 KB llama_model_load_internal: mem required = 11749.65 MB (+ 3216.00 MB per state) llama_init_from_file: kv self size = 800.00 MB AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | llama_print_timings: load time = 2154.68 ms llama_print_timings: sample time = 75.88 ms / 256 runs ( 0.30 ms per run) llama_print_timings: prompt eval time = 5060.58 ms / 23 tokens ( 220.03 ms per token) llama_print_timings: eval time = 72461.40 ms / 255 runs ( 284.16 ms per run) llama_print_timings: total time = 77664.50 ms ``` But there is no answer to the question.... Am I supposed to Print() something?
https://github.com/langchain-ai/langchain/issues/3241
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-20T20:36:45Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
"""Validate that llama-cpp-python library is installed.""" model_path = values["model_path"] n_ctx = values["n_ctx"] n_parts = values["n_parts"] seed = values["seed"] f16_kv = values["f16_kv"] logits_all = values["logits_all"] vocab_only = values["vocab_only"]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,241
llama.cpp => model runs fine but bad output
Hi, Windows 11 environement Python: 3.10.11 I installed - llama-cpp-python and it works fine and provides output - transformers - pytorch Code run: ``` from langchain.llms import LlamaCpp from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = LlamaCpp(model_path=r"D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin") llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What is the capital of Belgium?" llm_chain.run(question) ``` Output: ``` llama.cpp: loading model from D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin llama_model_load_internal: format = ggjt v1 (latest) llama_model_load_internal: n_vocab = 32000 llama_model_load_internal: n_ctx = 512 llama_model_load_internal: n_embd = 5120 llama_model_load_internal: n_mult = 256 llama_model_load_internal: n_head = 40 llama_model_load_internal: n_layer = 40 llama_model_load_internal: n_rot = 128 llama_model_load_internal: ftype = 4 (mostly Q4_1, some F16) llama_model_load_internal: n_ff = 13824 llama_model_load_internal: n_parts = 1 llama_model_load_internal: model size = 13B llama_model_load_internal: ggml ctx size = 73.73 KB llama_model_load_internal: mem required = 11749.65 MB (+ 3216.00 MB per state) llama_init_from_file: kv self size = 800.00 MB AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | llama_print_timings: load time = 2154.68 ms llama_print_timings: sample time = 75.88 ms / 256 runs ( 0.30 ms per run) llama_print_timings: prompt eval time = 5060.58 ms / 23 tokens ( 220.03 ms per token) llama_print_timings: eval time = 72461.40 ms / 255 runs ( 284.16 ms per run) llama_print_timings: total time = 77664.50 ms ``` But there is no answer to the question.... Am I supposed to Print() something?
https://github.com/langchain-ai/langchain/issues/3241
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-20T20:36:45Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
use_mlock = values["use_mlock"] n_threads = values["n_threads"] n_batch = values["n_batch"] last_n_tokens_size = values["last_n_tokens_size"] try: from llama_cpp import Llama values["client"] = Llama( model_path=model_path, n_ctx=n_ctx, n_parts=n_parts, seed=seed, f16_kv=f16_kv, logits_all=logits_all, vocab_only=vocab_only, use_mlock=use_mlock, n_threads=n_threads, n_batch=n_batch, last_n_tokens_size=last_n_tokens_size, ) except ImportError: raise ModuleNotFoundError( "Could not import llama-cpp-python library. " "Please install the llama-cpp-python library to " "use this embedding model: pip install llama-cpp-python" ) except Exception: raise NameError(f"Could not load Llama model from path: {model_path}") return values @property def _default_params(self) -> Dict[str, Any]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,241
llama.cpp => model runs fine but bad output
Hi, Windows 11 environement Python: 3.10.11 I installed - llama-cpp-python and it works fine and provides output - transformers - pytorch Code run: ``` from langchain.llms import LlamaCpp from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = LlamaCpp(model_path=r"D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin") llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What is the capital of Belgium?" llm_chain.run(question) ``` Output: ``` llama.cpp: loading model from D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin llama_model_load_internal: format = ggjt v1 (latest) llama_model_load_internal: n_vocab = 32000 llama_model_load_internal: n_ctx = 512 llama_model_load_internal: n_embd = 5120 llama_model_load_internal: n_mult = 256 llama_model_load_internal: n_head = 40 llama_model_load_internal: n_layer = 40 llama_model_load_internal: n_rot = 128 llama_model_load_internal: ftype = 4 (mostly Q4_1, some F16) llama_model_load_internal: n_ff = 13824 llama_model_load_internal: n_parts = 1 llama_model_load_internal: model size = 13B llama_model_load_internal: ggml ctx size = 73.73 KB llama_model_load_internal: mem required = 11749.65 MB (+ 3216.00 MB per state) llama_init_from_file: kv self size = 800.00 MB AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | llama_print_timings: load time = 2154.68 ms llama_print_timings: sample time = 75.88 ms / 256 runs ( 0.30 ms per run) llama_print_timings: prompt eval time = 5060.58 ms / 23 tokens ( 220.03 ms per token) llama_print_timings: eval time = 72461.40 ms / 255 runs ( 284.16 ms per run) llama_print_timings: total time = 77664.50 ms ``` But there is no answer to the question.... Am I supposed to Print() something?
https://github.com/langchain-ai/langchain/issues/3241
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-20T20:36:45Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
"""Get the default parameters for calling llama_cpp.""" return { "suffix": self.suffix, "max_tokens": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, "logprobs": self.logprobs, "echo": self.echo, "stop_sequences": self.stop, "repeat_penalty": self.repeat_penalty, "top_k": self.top_k, } @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return {**{"model_path": self.model_path}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "llama.cpp" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: """Call the Llama model and return the output. Args: prompt: The prompt to use for generation. stop: A list of strings to stop generation when encountered. Returns:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,241
llama.cpp => model runs fine but bad output
Hi, Windows 11 environement Python: 3.10.11 I installed - llama-cpp-python and it works fine and provides output - transformers - pytorch Code run: ``` from langchain.llms import LlamaCpp from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = LlamaCpp(model_path=r"D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin") llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What is the capital of Belgium?" llm_chain.run(question) ``` Output: ``` llama.cpp: loading model from D:\Win10User\Downloads\AI\Model\vicuna-13B-1.1-GPTQ-4bit-128g.GGML.bin llama_model_load_internal: format = ggjt v1 (latest) llama_model_load_internal: n_vocab = 32000 llama_model_load_internal: n_ctx = 512 llama_model_load_internal: n_embd = 5120 llama_model_load_internal: n_mult = 256 llama_model_load_internal: n_head = 40 llama_model_load_internal: n_layer = 40 llama_model_load_internal: n_rot = 128 llama_model_load_internal: ftype = 4 (mostly Q4_1, some F16) llama_model_load_internal: n_ff = 13824 llama_model_load_internal: n_parts = 1 llama_model_load_internal: model size = 13B llama_model_load_internal: ggml ctx size = 73.73 KB llama_model_load_internal: mem required = 11749.65 MB (+ 3216.00 MB per state) llama_init_from_file: kv self size = 800.00 MB AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | llama_print_timings: load time = 2154.68 ms llama_print_timings: sample time = 75.88 ms / 256 runs ( 0.30 ms per run) llama_print_timings: prompt eval time = 5060.58 ms / 23 tokens ( 220.03 ms per token) llama_print_timings: eval time = 72461.40 ms / 255 runs ( 284.16 ms per run) llama_print_timings: total time = 77664.50 ms ``` But there is no answer to the question.... Am I supposed to Print() something?
https://github.com/langchain-ai/langchain/issues/3241
https://github.com/langchain-ai/langchain/pull/3320
3a1bdce3f51e302d468807e980455d676c0f5fd6
77bb6c99f7ee189ce3734c47b27e70dc237bbce7
"2023-04-20T20:36:45Z"
python
"2023-04-23T01:46:55Z"
langchain/llms/llamacpp.py
The generated text. Example: .. code-block:: python from langchain.llms import LlamaCppEmbeddings llm = LlamaCppEmbeddings(model_path="/path/to/local/llama/model.bin") llm("This is a prompt.") """ params = self._default_params if self.stop and stop is not None: raise ValueError("`stop` found in both the input and default params.") elif self.stop: params["stop_sequences"] = self.stop elif stop: params["stop_sequences"] = stop else: params["stop_sequences"] = [] """Call the Llama model and return the output.""" text = self.client( prompt=prompt, max_tokens=params["max_tokens"], temperature=params["temperature"], top_p=params["top_p"], logprobs=params["logprobs"], echo=params["echo"], stop=params["stop_sequences"], repeat_penalty=params["repeat_penalty"], top_k=params["top_k"], ) return text["choices"][0]["text"]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,404
marathon_times.ipynb: mismatched text and code
Text mentions inflation and tuition: Here is the prompt comparing inflation and college tuition. Code is about marathon times: agent.run(["What were the winning boston marathon times for the past 5 years? Generate a table of the names, countries of origin, and times."])
https://github.com/langchain-ai/langchain/issues/3404
https://github.com/langchain-ai/langchain/pull/3408
b4de839ed8a1bea7425a6923b2cd635068b6015a
73bc70b4fa7bb69647d9dbe81943b88ce6ccc180
"2023-04-23T21:06:49Z"
python
"2023-04-24T01:14:11Z"
langchain/tools/ddg_search/__init__.py
"""DuckDuckGo Search API toolkit."""
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,384
ValueError in cosine_similarity when using FAISS index as vector store
Getting the below error ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "...\langchain\vectorstores\faiss.py", line 285, in max_marginal_relevance_search docs = self.max_marginal_relevance_search_by_vector(embedding, k, fetch_k) File "...\langchain\vectorstores\faiss.py", line 248, in max_marginal_relevance_search_by_vector mmr_selected = maximal_marginal_relevance( File "...\langchain\langchain\vectorstores\utils.py", line 19, in maximal_marginal_relevance similarity_to_query = cosine_similarity([query_embedding], embedding_list)[0] File "...\langchain\langchain\math_utils.py", line 16, in cosine_similarity raise ValueError("Number of columns in X and Y must be the same.") ValueError: Number of columns in X and Y must be the same. ``` Code to reproduce this error ``` >>> model_name = "sentence-transformers/all-mpnet-base-v2" >>> model_kwargs = {'device': 'cpu'} >>> from langchain.embeddings import HuggingFaceEmbeddings >>> embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) >>> from langchain.vectorstores import FAISS >>> FAISS_INDEX_PATH = 'faiss_index' >>> db = FAISS.load_local(FAISS_INDEX_PATH, embeddings) >>> query = 'query' >>> results = db.max_marginal_relevance_search(query) ``` While going through the error it seems that in this case `query_embedding` is 1 x model_dimension while embedding_list is no_docs x model dimension vectors. Hence we should probably change the code to `similarity_to_query = cosine_similarity(query_embedding, embedding_list)[0]` i.e. remove the list from the query_embedding. Since this is a common function not sure if this change would affect other embedding classes as well.
https://github.com/langchain-ai/langchain/issues/3384
https://github.com/langchain-ai/langchain/pull/3475
53b14de636080e09e128d829aafa9ea34ac34a94
b2564a63911f8a77272ac9e93e5558384f00155c
"2023-04-23T07:51:56Z"
python
"2023-04-25T02:54:15Z"
langchain/math_utils.py
"""Math utils.""" from typing import List, Union import numpy as np Matrix = Union[List[List[float]], List[np.ndarray], np.ndarray] def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray: """Row-wise cosine similarity between two equal-width matrices.""" if len(X) == 0 or len(Y) == 0: return np.array([]) X = np.array(X) Y = np.array(Y) if X.shape[1] != Y.shape[1]: raise ValueError("Number of columns in X and Y must be the same.") X_norm = np.linalg.norm(X, axis=1) Y_norm = np.linalg.norm(Y, axis=1) similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm) similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0 return similarity
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,384
ValueError in cosine_similarity when using FAISS index as vector store
Getting the below error ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "...\langchain\vectorstores\faiss.py", line 285, in max_marginal_relevance_search docs = self.max_marginal_relevance_search_by_vector(embedding, k, fetch_k) File "...\langchain\vectorstores\faiss.py", line 248, in max_marginal_relevance_search_by_vector mmr_selected = maximal_marginal_relevance( File "...\langchain\langchain\vectorstores\utils.py", line 19, in maximal_marginal_relevance similarity_to_query = cosine_similarity([query_embedding], embedding_list)[0] File "...\langchain\langchain\math_utils.py", line 16, in cosine_similarity raise ValueError("Number of columns in X and Y must be the same.") ValueError: Number of columns in X and Y must be the same. ``` Code to reproduce this error ``` >>> model_name = "sentence-transformers/all-mpnet-base-v2" >>> model_kwargs = {'device': 'cpu'} >>> from langchain.embeddings import HuggingFaceEmbeddings >>> embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) >>> from langchain.vectorstores import FAISS >>> FAISS_INDEX_PATH = 'faiss_index' >>> db = FAISS.load_local(FAISS_INDEX_PATH, embeddings) >>> query = 'query' >>> results = db.max_marginal_relevance_search(query) ``` While going through the error it seems that in this case `query_embedding` is 1 x model_dimension while embedding_list is no_docs x model dimension vectors. Hence we should probably change the code to `similarity_to_query = cosine_similarity(query_embedding, embedding_list)[0]` i.e. remove the list from the query_embedding. Since this is a common function not sure if this change would affect other embedding classes as well.
https://github.com/langchain-ai/langchain/issues/3384
https://github.com/langchain-ai/langchain/pull/3475
53b14de636080e09e128d829aafa9ea34ac34a94
b2564a63911f8a77272ac9e93e5558384f00155c
"2023-04-23T07:51:56Z"
python
"2023-04-25T02:54:15Z"
langchain/vectorstores/utils.py
"""Utility functions for working with vectors and vectorstores.""" from typing import List import numpy as np from langchain.math_utils import cosine_similarity def maximal_marginal_relevance(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,384
ValueError in cosine_similarity when using FAISS index as vector store
Getting the below error ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "...\langchain\vectorstores\faiss.py", line 285, in max_marginal_relevance_search docs = self.max_marginal_relevance_search_by_vector(embedding, k, fetch_k) File "...\langchain\vectorstores\faiss.py", line 248, in max_marginal_relevance_search_by_vector mmr_selected = maximal_marginal_relevance( File "...\langchain\langchain\vectorstores\utils.py", line 19, in maximal_marginal_relevance similarity_to_query = cosine_similarity([query_embedding], embedding_list)[0] File "...\langchain\langchain\math_utils.py", line 16, in cosine_similarity raise ValueError("Number of columns in X and Y must be the same.") ValueError: Number of columns in X and Y must be the same. ``` Code to reproduce this error ``` >>> model_name = "sentence-transformers/all-mpnet-base-v2" >>> model_kwargs = {'device': 'cpu'} >>> from langchain.embeddings import HuggingFaceEmbeddings >>> embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) >>> from langchain.vectorstores import FAISS >>> FAISS_INDEX_PATH = 'faiss_index' >>> db = FAISS.load_local(FAISS_INDEX_PATH, embeddings) >>> query = 'query' >>> results = db.max_marginal_relevance_search(query) ``` While going through the error it seems that in this case `query_embedding` is 1 x model_dimension while embedding_list is no_docs x model dimension vectors. Hence we should probably change the code to `similarity_to_query = cosine_similarity(query_embedding, embedding_list)[0]` i.e. remove the list from the query_embedding. Since this is a common function not sure if this change would affect other embedding classes as well.
https://github.com/langchain-ai/langchain/issues/3384
https://github.com/langchain-ai/langchain/pull/3475
53b14de636080e09e128d829aafa9ea34ac34a94
b2564a63911f8a77272ac9e93e5558384f00155c
"2023-04-23T07:51:56Z"
python
"2023-04-25T02:54:15Z"
langchain/vectorstores/utils.py
query_embedding: np.ndarray, embedding_list: list, lambda_mult: float = 0.5, k: int = 4, ) -> List[int]: """Calculate maximal marginal relevance.""" if min(k, len(embedding_list)) <= 0: return [] similarity_to_query = cosine_similarity([query_embedding], embedding_list)[0] most_similar = int(np.argmax(similarity_to_query)) idxs = [most_similar] selected = np.array([embedding_list[most_similar]]) while len(idxs) < min(k, len(embedding_list)): best_score = -np.inf idx_to_add = -1 similarity_to_selected = cosine_similarity(embedding_list, selected) for i, query_score in enumerate(similarity_to_query): if i in idxs: continue redundant_score = max(similarity_to_selected[i]) equation_score = ( lambda_mult * query_score - (1 - lambda_mult) * redundant_score ) if equation_score > best_score: best_score = equation_score idx_to_add = i idxs.append(idx_to_add) selected = np.append(selected, [embedding_list[idx_to_add]], axis=0) return idxs
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,766
Update poetry lock to allow SQLAlchemy v2
It seems that #1578 adds support for SQLAlchemy v2 but the [poetry lock file](https://github.com/hwchase17/langchain/blob/8685d53adcdd0310e76349ecb4e2b87f980c4673/poetry.lock#L6211) is still at 1.4.46.
https://github.com/langchain-ai/langchain/issues/1766
https://github.com/langchain-ai/langchain/pull/3310
7c2c73af5f15799c9326e99ed15c4a30fd19ad11
b7658059643cd2f8fa58a2132b7d723638445ebc
"2023-03-19T01:48:23Z"
python
"2023-04-25T04:10:56Z"
langchain/sql_database.py
"""SQLAlchemy wrapper around a database.""" from __future__ import annotations import warnings from typing import Any, Iterable, List, Optional from sqlalchemy import MetaData, Table, create_engine, inspect, select, text from sqlalchemy.engine import Engine from sqlalchemy.exc import ProgrammingError, SQLAlchemyError from sqlalchemy.schema import CreateTable def _format_index(index: dict) -> str: return ( f'Name: {index["name"]}, Unique: {index["unique"]},' f' Columns: {str(index["column_names"])}' ) class SQLDatabase: """SQLAlchemy wrapper around a database.""" def __init__( self, engine: Engine, schema: Optional[str] = None, metadata: Optional[MetaData] = None, ignore_tables: Optional[List[str]] = None, include_tables: Optional[List[str]] = None, sample_rows_in_table_info: int = 3, indexes_in_table_info: bool = False, custom_table_info: Optional[dict] = None, view_support: Optional[bool] = False, ): """Create engine from database URI.""" self._engine = engine self._schema = schema
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,766
Update poetry lock to allow SQLAlchemy v2
It seems that #1578 adds support for SQLAlchemy v2 but the [poetry lock file](https://github.com/hwchase17/langchain/blob/8685d53adcdd0310e76349ecb4e2b87f980c4673/poetry.lock#L6211) is still at 1.4.46.
https://github.com/langchain-ai/langchain/issues/1766
https://github.com/langchain-ai/langchain/pull/3310
7c2c73af5f15799c9326e99ed15c4a30fd19ad11
b7658059643cd2f8fa58a2132b7d723638445ebc
"2023-03-19T01:48:23Z"
python
"2023-04-25T04:10:56Z"
langchain/sql_database.py
if include_tables and ignore_tables: raise ValueError("Cannot specify both include_tables and ignore_tables") self._inspector = inspect(self._engine) self._all_tables = set( self._inspector.get_table_names(schema=schema) + (self._inspector.get_view_names(schema=schema) if view_support else []) ) self._include_tables = set(include_tables) if include_tables else set() if self._include_tables: missing_tables = self._include_tables - self._all_tables if missing_tables: raise ValueError( f"include_tables {missing_tables} not found in database" ) self._ignore_tables = set(ignore_tables) if ignore_tables else set() if self._ignore_tables: missing_tables = self._ignore_tables - self._all_tables if missing_tables: raise ValueError( f"ignore_tables {missing_tables} not found in database" ) usable_tables = self.get_usable_table_names() self._usable_tables = set(usable_tables) if usable_tables else self._all_tables if not isinstance(sample_rows_in_table_info, int): raise TypeError("sample_rows_in_table_info must be an integer") self._sample_rows_in_table_info = sample_rows_in_table_info self._indexes_in_table_info = indexes_in_table_info self._custom_table_info = custom_table_info
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,766
Update poetry lock to allow SQLAlchemy v2
It seems that #1578 adds support for SQLAlchemy v2 but the [poetry lock file](https://github.com/hwchase17/langchain/blob/8685d53adcdd0310e76349ecb4e2b87f980c4673/poetry.lock#L6211) is still at 1.4.46.
https://github.com/langchain-ai/langchain/issues/1766
https://github.com/langchain-ai/langchain/pull/3310
7c2c73af5f15799c9326e99ed15c4a30fd19ad11
b7658059643cd2f8fa58a2132b7d723638445ebc
"2023-03-19T01:48:23Z"
python
"2023-04-25T04:10:56Z"
langchain/sql_database.py
if self._custom_table_info: if not isinstance(self._custom_table_info, dict): raise TypeError( "table_info must be a dictionary with table names as keys and the " "desired table info as values" ) intersection = set(self._custom_table_info).intersection(self._all_tables) self._custom_table_info = dict( (table, self._custom_table_info[table]) for table in self._custom_table_info if table in intersection ) self._metadata = metadata or MetaData() self._metadata.reflect( views=view_support, bind=self._engine, only=self._usable_tables, schema=self._schema, ) @classmethod def from_uri( cls, database_uri: str, engine_args: Optional[dict] = None, **kwargs: Any ) -> SQLDatabase: """Construct a SQLAlchemy engine from URI.""" _engine_args = engine_args or {} return cls(create_engine(database_uri, **_engine_args), **kwargs) @property def dialect(self) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,766
Update poetry lock to allow SQLAlchemy v2
It seems that #1578 adds support for SQLAlchemy v2 but the [poetry lock file](https://github.com/hwchase17/langchain/blob/8685d53adcdd0310e76349ecb4e2b87f980c4673/poetry.lock#L6211) is still at 1.4.46.
https://github.com/langchain-ai/langchain/issues/1766
https://github.com/langchain-ai/langchain/pull/3310
7c2c73af5f15799c9326e99ed15c4a30fd19ad11
b7658059643cd2f8fa58a2132b7d723638445ebc
"2023-03-19T01:48:23Z"
python
"2023-04-25T04:10:56Z"
langchain/sql_database.py
"""Return string representation of dialect to use.""" return self._engine.dialect.name def get_usable_table_names(self) -> Iterable[str]: """Get names of tables available.""" if self._include_tables: return self._include_tables return self._all_tables - self._ignore_tables def get_table_names(self) -> Iterable[str]: """Get names of tables available.""" warnings.warn( "This method is deprecated - please use `get_usable_table_names`." ) return self.get_usable_table_names() @property def table_info(self) -> str: """Information about all tables in the database.""" return self.get_table_info() def get_table_info(self, table_names: Optional[List[str]] = None) -> str: """Get information about specified tables. Follows best practices as specified in: Rajkumar et al, 2022 (https://arxiv.org/abs/2204.00498) If `sample_rows_in_table_info`, the specified number of sample rows will be appended to each table description. This can increase performance as demonstrated in the paper. """ all_table_names = self.get_usable_table_names() if table_names is not None: missing_tables = set(table_names).difference(all_table_names) if missing_tables: raise ValueError(f"table_names {missing_tables} not found in database")
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,766
Update poetry lock to allow SQLAlchemy v2
It seems that #1578 adds support for SQLAlchemy v2 but the [poetry lock file](https://github.com/hwchase17/langchain/blob/8685d53adcdd0310e76349ecb4e2b87f980c4673/poetry.lock#L6211) is still at 1.4.46.
https://github.com/langchain-ai/langchain/issues/1766
https://github.com/langchain-ai/langchain/pull/3310
7c2c73af5f15799c9326e99ed15c4a30fd19ad11
b7658059643cd2f8fa58a2132b7d723638445ebc
"2023-03-19T01:48:23Z"
python
"2023-04-25T04:10:56Z"
langchain/sql_database.py
all_table_names = table_names meta_tables = [ tbl for tbl in self._metadata.sorted_tables if tbl.name in set(all_table_names) and not (self.dialect == "sqlite" and tbl.name.startswith("sqlite_")) ] tables = [] for table in meta_tables: if self._custom_table_info and table.name in self._custom_table_info: tables.append(self._custom_table_info[table.name]) continue create_table = str(CreateTable(table).compile(self._engine)) table_info = f"{create_table.rstrip()}" has_extra_info = ( self._indexes_in_table_info or self._sample_rows_in_table_info ) if has_extra_info: table_info += "\n\n/*" if self._indexes_in_table_info: table_info += f"\n{self._get_table_indexes(table)}\n" if self._sample_rows_in_table_info: table_info += f"\n{self._get_sample_rows(table)}\n" if has_extra_info: table_info += "*/" tables.append(table_info) final_str = "\n\n".join(tables) return final_str def _get_table_indexes(self, table: Table) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,766
Update poetry lock to allow SQLAlchemy v2
It seems that #1578 adds support for SQLAlchemy v2 but the [poetry lock file](https://github.com/hwchase17/langchain/blob/8685d53adcdd0310e76349ecb4e2b87f980c4673/poetry.lock#L6211) is still at 1.4.46.
https://github.com/langchain-ai/langchain/issues/1766
https://github.com/langchain-ai/langchain/pull/3310
7c2c73af5f15799c9326e99ed15c4a30fd19ad11
b7658059643cd2f8fa58a2132b7d723638445ebc
"2023-03-19T01:48:23Z"
python
"2023-04-25T04:10:56Z"
langchain/sql_database.py
indexes = self._inspector.get_indexes(table.name) indexes_formatted = "\n".join(map(_format_index, indexes)) return f"Table Indexes:\n{indexes_formatted}" def _get_sample_rows(self, table: Table) -> str: command = select([table]).limit(self._sample_rows_in_table_info) columns_str = "\t".join([col.name for col in table.columns]) try: with self._engine.connect() as connection: sample_rows = connection.execute(command) sample_rows = list( map(lambda ls: [str(i)[:100] for i in ls], sample_rows) ) sample_rows_str = "\n".join(["\t".join(row) for row in sample_rows]) except ProgrammingError: sample_rows_str = "" return ( f"{self._sample_rows_in_table_info} rows from {table.name} table:\n" f"{columns_str}\n" f"{sample_rows_str}" ) def run(self, command: str, fetch: str = "all") -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,766
Update poetry lock to allow SQLAlchemy v2
It seems that #1578 adds support for SQLAlchemy v2 but the [poetry lock file](https://github.com/hwchase17/langchain/blob/8685d53adcdd0310e76349ecb4e2b87f980c4673/poetry.lock#L6211) is still at 1.4.46.
https://github.com/langchain-ai/langchain/issues/1766
https://github.com/langchain-ai/langchain/pull/3310
7c2c73af5f15799c9326e99ed15c4a30fd19ad11
b7658059643cd2f8fa58a2132b7d723638445ebc
"2023-03-19T01:48:23Z"
python
"2023-04-25T04:10:56Z"
langchain/sql_database.py
"""Execute a SQL command and return a string representing the results. If the statement returns rows, a string of the results is returned. If the statement returns no rows, an empty string is returned. """ with self._engine.begin() as connection: if self._schema is not None: connection.exec_driver_sql(f"SET search_path TO {self._schema}") cursor = connection.execute(text(command)) if cursor.returns_rows: if fetch == "all": result = cursor.fetchall() elif fetch == "one": result = cursor.fetchone()[0] else: raise ValueError("Fetch parameter must be either 'one' or 'all'") return str(result) return "" def get_table_info_no_throw(self, table_names: Optional[List[str]] = None) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
1,766
Update poetry lock to allow SQLAlchemy v2
It seems that #1578 adds support for SQLAlchemy v2 but the [poetry lock file](https://github.com/hwchase17/langchain/blob/8685d53adcdd0310e76349ecb4e2b87f980c4673/poetry.lock#L6211) is still at 1.4.46.
https://github.com/langchain-ai/langchain/issues/1766
https://github.com/langchain-ai/langchain/pull/3310
7c2c73af5f15799c9326e99ed15c4a30fd19ad11
b7658059643cd2f8fa58a2132b7d723638445ebc
"2023-03-19T01:48:23Z"
python
"2023-04-25T04:10:56Z"
langchain/sql_database.py
"""Get information about specified tables. Follows best practices as specified in: Rajkumar et al, 2022 (https://arxiv.org/abs/2204.00498) If `sample_rows_in_table_info`, the specified number of sample rows will be appended to each table description. This can increase performance as demonstrated in the paper. """ try: return self.get_table_info(table_names) except ValueError as e: """Format the error message""" return f"Error: {e}" def run_no_throw(self, command: str, fetch: str = "all") -> str: """Execute a SQL command and return a string representing the results. If the statement returns rows, a string of the results is returned. If the statement returns no rows, an empty string is returned. If the statement throws an error, the error message is returned. """ try: return self.run(command, fetch) except SQLAlchemyError as e: """Format the error message""" return f"Error: {e}"
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
langchain/vectorstores/weaviate.py
"""Wrapper around weaviate vector database.""" from __future__ import annotations from typing import Any, Dict, Iterable, List, Optional, Type from uuid import uuid4 import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance def _default_schema(index_name: str) -> Dict: return { "class": index_name, "properties": [ { "name": "text", "dataType": ["text"], } ], } def _create_weaviate_client(**kwargs: Any) -> Any:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
langchain/vectorstores/weaviate.py
client = kwargs.get("client") if client is not None: return client weaviate_url = get_from_dict_or_env(kwargs, "weaviate_url", "WEAVIATE_URL") weaviate_api_key = get_from_dict_or_env( kwargs, "weaviate_api_key", "WEAVIATE_API_KEY", None ) try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip instal weaviate-client`" ) auth = ( weaviate.auth.AuthApiKey(api_key=weaviate_api_key) if weaviate_api_key is not None else None ) client = weaviate.Client(weaviate_url, auth_client_secret=auth) return client class Weaviate(VectorStore): """Wrapper around Weaviate vector database. To use, you should have the ``weaviate-client`` python package installed. Example: .. code-block:: python import weaviate from langchain.vectorstores import Weaviate client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
langchain/vectorstores/weaviate.py
weaviate = Weaviate(client, index_name, text_key) """ def __init__( self, client: Any, index_name: str, text_key: str, embedding: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._embedding = embedding self._text_key = text_key self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) def add_texts(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
langchain/vectorstores/weaviate.py
self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) batch.add_data_object( data_object=data_properties, class_name=self._index_name, uuid=_id ) ids.append(_id) return ids def similarity_search(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
langchain/vectorstores/weaviate.py
self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ content: Dict[str, Any] = {"concepts": [query]} if kwargs.get("search_distance"): content["certainty"] = kwargs.get("search_distance") query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) result = query_obj.with_near_text(content).with_limit(k).do() if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs def similarity_search_by_vector(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
langchain/vectorstores/weaviate.py
self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Look up similar documents by embedding vector in Weaviate.""" vector = {"vector": embedding} query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) result = query_obj.with_near_vector(vector).with_limit(k).do() if "errors" in result: raise ValueError(f"Error during query: {result['errors']}") docs = [] for res in result["data"]["Get"][self._index_name]: text = res.pop(self._text_key) docs.append(Document(page_content=text, metadata=res)) return docs def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4.
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
langchain/vectorstores/weaviate.py
fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding is not None: embedding = self._embedding.embed_query(query) else: raise ValueError( "max_marginal_relevance_search requires a suitable Embeddings object" ) return self.max_marginal_relevance_search_by_vector( embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, **kwargs ) def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to.
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
langchain/vectorstores/weaviate.py
k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ vector = {"vector": embedding} query_obj = self._client.query.get(self._index_name, self._query_attrs) if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter")) results = ( query_obj.with_additional("vector") .with_near_vector(vector) .with_limit(fetch_k) .do() ) payload = results["data"]["Get"][self._index_name] embeddings = [result["_additional"]["vector"] for result in payload] mmr_selected = maximal_marginal_relevance( np.array(embedding), embeddings, k=k, lambda_mult=lambda_mult ) docs = [] for idx in mmr_selected: text = payload[idx].pop(self._text_key) payload[idx].pop("_additional") meta = payload[idx] docs.append(Document(page_content=text, metadata=meta))
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
langchain/vectorstores/weaviate.py
return docs @classmethod def from_texts( cls: Type[Weaviate], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> Weaviate: """Construct Weaviate wrapper from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in the Weaviate instance. 3. Adds the documents to the newly created Weaviate index. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain.vectorstores.weaviate import Weaviate from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() weaviate = Weaviate.from_texts( texts, embeddings, weaviate_url="http://localhost:8080" ) """ client = _create_weaviate_client(**kwargs) from weaviate.util import get_valid_uuid index_name = kwargs.get("index_name", f"LangChain_{uuid4().hex}") embeddings = embedding.embed_documents(texts) if embedding else None
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
langchain/vectorstores/weaviate.py
text_key = "text" schema = _default_schema(index_name) attributes = list(metadatas[0].keys()) if metadatas else None if not client.schema.contains(schema): client.schema.create_class(schema) with client.batch as batch: for i, text in enumerate(texts): data_properties = { text_key: text, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) params = { "uuid": _id, "data_object": data_properties, "class_name": index_name, } if embeddings is not None: params["vector"] = embeddings[i] batch.add_data_object(**params) batch.flush() return cls(client, index_name, text_key, embedding, attributes)
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
tests/integration_tests/vectorstores/test_weaviate.py
"""Test Weaviate functionality.""" import logging import os from typing import Generator, Union import pytest from weaviate import Client from langchain.docstore.document import Document from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores.weaviate import Weaviate logging.basicConfig(level=logging.DEBUG) """ cd tests/integration_tests/vectorstores/docker-compose docker compose -f weaviate.yml up """ class TestWeaviate: @classmethod def setup_class(cls) -> None: if not os.getenv("OPENAI_API_KEY"): raise ValueError("OPENAI_API_KEY environment variable is not set") @pytest.fixture(scope="class", autouse=True) def weaviate_url(self) -> Union[str, Generator[str, None, None]]: """Return the weaviate url.""" url = "http://localhost:8080" yield url client = Client(url) client.schema.delete_all() @pytest.mark.vcr(ignore_localhost=True) def test_similarity_search_without_metadata(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
tests/integration_tests/vectorstores/test_weaviate.py
self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and search without metadata.""" texts = ["foo", "bar", "baz"] docsearch = Weaviate.from_texts( texts, embedding_openai, weaviate_url=weaviate_url, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] @pytest.mark.vcr(ignore_localhost=True) def test_similarity_search_with_metadata( self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and search with metadata.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Weaviate.from_texts( texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": 0})] @pytest.mark.vcr(ignore_localhost=True) def test_similarity_search_with_metadata_and_filter(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
tests/integration_tests/vectorstores/test_weaviate.py
self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and search with metadata.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Weaviate.from_texts( texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url ) output = docsearch.similarity_search( "foo", k=2, where_filter={"path": ["page"], "operator": "Equal", "valueNumber": 0}, ) assert output == [Document(page_content="foo", metadata={"page": 0})] @pytest.mark.vcr(ignore_localhost=True) def test_max_marginal_relevance_search( self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and MRR search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Weaviate.from_texts( texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url ) standard_ranking = docsearch.similarity_search("foo", k=2) output = docsearch.max_marginal_relevance_search( "foo", k=2, fetch_k=3, lambda_mult=1.0 ) assert output == standard_ranking
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
tests/integration_tests/vectorstores/test_weaviate.py
output = docsearch.max_marginal_relevance_search( "foo", k=2, fetch_k=3, lambda_mult=0.0 ) assert output == [ Document(page_content="foo", metadata={"page": 0}), Document(page_content="bar", metadata={"page": 1}), ] @pytest.mark.vcr(ignore_localhost=True) def test_max_marginal_relevance_search_by_vector( self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and MRR search by vector.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Weaviate.from_texts( texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url ) foo_embedding = embedding_openai.embed_query("foo") standard_ranking = docsearch.similarity_search("foo", k=2) output = docsearch.max_marginal_relevance_search_by_vector( foo_embedding, k=2, fetch_k=3, lambda_mult=1.0 ) assert output == standard_ranking output = docsearch.max_marginal_relevance_search_by_vector( foo_embedding, k=2, fetch_k=3, lambda_mult=0.0 ) assert output == [
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
2,695
Allow Weaviate initialization with alternative embedding implementation
I would like to provide an 'embeddings' parameter for the initialization of the Weaviate vector store, as I do not want to start the Weaviate server with the OpenAI key in order to make use of embeddings through the Azure OpenAI Service. The addition of the embeddings parameter affects the __init__ method, as shown in the code snippet above. To accommodate this change, you'll also need to modify the add_texts method. ```python def __init__( self, client: Any, index_name: str, text_key: str, embedding_function: Optional[Embeddings] = None, attributes: Optional[List[str]] = None, ): """Initialize with Weaviate client.""" try: import weaviate except ImportError: raise ValueError( "Could not import weaviate python package. " "Please install it with `pip install weaviate-client`." ) if not isinstance(client, weaviate.Client): raise ValueError( f"client should be an instance of weaviate.Client, got {type(client)}" ) self._client = client self._index_name = index_name self._text_key = text_key self._embedding_function = embedding_function self._query_attrs = [self._text_key] if attributes is not None: self._query_attrs.extend(attributes) ``` To check if the embeddings parameter was provided during initialization and perform the necessary actions, you can modify the add_texts method in the following way: ```python def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Upload texts with metadata (properties) to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(texts): data_properties = { self._text_key: doc, } if metadatas is not None: for key in metadatas[i].keys(): data_properties[key] = metadatas[i][key] _id = get_valid_uuid(uuid4()) if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(doc)) batch.add_data_object(data_properties, self._index_name, _id, vector=embeddings[0]) else: batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids ```
https://github.com/langchain-ai/langchain/issues/2695
https://github.com/langchain-ai/langchain/pull/3608
615812581ea3175b3ae9ec59036008d013052396
440c98e24bf3f18c132694309872592ef550e1bc
"2023-04-11T05:19:00Z"
python
"2023-04-27T04:45:03Z"
tests/integration_tests/vectorstores/test_weaviate.py
Document(page_content="foo", metadata={"page": 0}), Document(page_content="bar", metadata={"page": 1}), ] @pytest.mark.vcr(ignore_localhost=True) def test_max_marginal_relevance_search_with_filter( self, weaviate_url: str, embedding_openai: OpenAIEmbeddings ) -> None: """Test end to end construction and MRR search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = Weaviate.from_texts( texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url ) where_filter = {"path": ["page"], "operator": "Equal", "valueNumber": 0} standard_ranking = docsearch.similarity_search( "foo", k=2, where_filter=where_filter ) output = docsearch.max_marginal_relevance_search( "foo", k=2, fetch_k=3, lambda_mult=1.0, where_filter=where_filter ) assert output == standard_ranking output = docsearch.max_marginal_relevance_search( "foo", k=2, fetch_k=3, lambda_mult=0.0, where_filter=where_filter ) assert output == [ Document(page_content="foo", metadata={"page": 0}), ]
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,664
import error when importing `from langchain import OpenAI` on 0.0.151
got the following error when running today: ``` File "venv/lib/python3.11/site-packages/langchain/__init__.py", line 6, in <module> from langchain.agents import MRKLChain, ReActChain, SelfAskWithSearchChain File "venv/lib/python3.11/site-packages/langchain/agents/__init__.py", line 2, in <module> from langchain.agents.agent import ( File "venv/lib/python3.11/site-packages/langchain/agents/agent.py", line 17, in <module> from langchain.chains.base import Chain File "venv/lib/python3.11/site-packages/langchain/chains/__init__.py", line 2, in <module> from langchain.chains.api.base import APIChain File "venv/lib/python3.11/site-packages/langchain/chains/api/base.py", line 8, in <module> from langchain.chains.api.prompt import API_RESPONSE_PROMPT, API_URL_PROMPT File "venv/lib/python3.11/site-packages/langchain/chains/api/prompt.py", line 2, in <module> from langchain.prompts.prompt import PromptTemplate File "venv/lib/python3.11/site-packages/langchain/prompts/__init__.py", line 14, in <module> from langchain.prompts.loading import load_prompt File "venv/lib/python3.11/site-packages/langchain/prompts/loading.py", line 14, in <module> from langchain.utilities.loading import try_load_from_hub File "venv/lib/python3.11/site-packages/langchain/utilities/__init__.py", line 5, in <module> from langchain.utilities.bash import BashProcess File "venv/lib/python3.11/site-packages/langchain/utilities/bash.py", line 7, in <module> import pexpect ModuleNotFoundError: No module named 'pexpect' ``` does this need to be added to project dependencies?
https://github.com/langchain-ai/langchain/issues/3664
https://github.com/langchain-ai/langchain/pull/3667
708787dddb2fa3cdb2d1dabefa00c01ffec572f6
1b5721c999c9fc310cefec383666f43c80ec9620
"2023-04-27T16:24:30Z"
python
"2023-04-27T18:39:01Z"
langchain/utilities/bash.py
"""Wrapper around subprocess to run commands.""" import re import subprocess from typing import List, Union from uuid import uuid4 import pexpect class BashProcess:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,664
import error when importing `from langchain import OpenAI` on 0.0.151
got the following error when running today: ``` File "venv/lib/python3.11/site-packages/langchain/__init__.py", line 6, in <module> from langchain.agents import MRKLChain, ReActChain, SelfAskWithSearchChain File "venv/lib/python3.11/site-packages/langchain/agents/__init__.py", line 2, in <module> from langchain.agents.agent import ( File "venv/lib/python3.11/site-packages/langchain/agents/agent.py", line 17, in <module> from langchain.chains.base import Chain File "venv/lib/python3.11/site-packages/langchain/chains/__init__.py", line 2, in <module> from langchain.chains.api.base import APIChain File "venv/lib/python3.11/site-packages/langchain/chains/api/base.py", line 8, in <module> from langchain.chains.api.prompt import API_RESPONSE_PROMPT, API_URL_PROMPT File "venv/lib/python3.11/site-packages/langchain/chains/api/prompt.py", line 2, in <module> from langchain.prompts.prompt import PromptTemplate File "venv/lib/python3.11/site-packages/langchain/prompts/__init__.py", line 14, in <module> from langchain.prompts.loading import load_prompt File "venv/lib/python3.11/site-packages/langchain/prompts/loading.py", line 14, in <module> from langchain.utilities.loading import try_load_from_hub File "venv/lib/python3.11/site-packages/langchain/utilities/__init__.py", line 5, in <module> from langchain.utilities.bash import BashProcess File "venv/lib/python3.11/site-packages/langchain/utilities/bash.py", line 7, in <module> import pexpect ModuleNotFoundError: No module named 'pexpect' ``` does this need to be added to project dependencies?
https://github.com/langchain-ai/langchain/issues/3664
https://github.com/langchain-ai/langchain/pull/3667
708787dddb2fa3cdb2d1dabefa00c01ffec572f6
1b5721c999c9fc310cefec383666f43c80ec9620
"2023-04-27T16:24:30Z"
python
"2023-04-27T18:39:01Z"
langchain/utilities/bash.py
"""Executes bash commands and returns the output.""" def __init__( self, strip_newlines: bool = False, return_err_output: bool = False, persistent: bool = False, ): """Initialize with stripping newlines.""" self.strip_newlines = strip_newlines self.return_err_output = return_err_output self.prompt = "" self.process = None if persistent: self.prompt = str(uuid4()) self.process = self._initialize_persistent_process(self.prompt) @staticmethod def _initialize_persistent_process(prompt: str) -> pexpect.spawn: process = pexpect.spawn( "env", ["-i", "bash", "--norc", "--noprofile"], encoding="utf-8" ) process.sendline("PS1=" + prompt) process.expect_exact(prompt, timeout=10) return process def run(self, commands: Union[str, List[str]]) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,664
import error when importing `from langchain import OpenAI` on 0.0.151
got the following error when running today: ``` File "venv/lib/python3.11/site-packages/langchain/__init__.py", line 6, in <module> from langchain.agents import MRKLChain, ReActChain, SelfAskWithSearchChain File "venv/lib/python3.11/site-packages/langchain/agents/__init__.py", line 2, in <module> from langchain.agents.agent import ( File "venv/lib/python3.11/site-packages/langchain/agents/agent.py", line 17, in <module> from langchain.chains.base import Chain File "venv/lib/python3.11/site-packages/langchain/chains/__init__.py", line 2, in <module> from langchain.chains.api.base import APIChain File "venv/lib/python3.11/site-packages/langchain/chains/api/base.py", line 8, in <module> from langchain.chains.api.prompt import API_RESPONSE_PROMPT, API_URL_PROMPT File "venv/lib/python3.11/site-packages/langchain/chains/api/prompt.py", line 2, in <module> from langchain.prompts.prompt import PromptTemplate File "venv/lib/python3.11/site-packages/langchain/prompts/__init__.py", line 14, in <module> from langchain.prompts.loading import load_prompt File "venv/lib/python3.11/site-packages/langchain/prompts/loading.py", line 14, in <module> from langchain.utilities.loading import try_load_from_hub File "venv/lib/python3.11/site-packages/langchain/utilities/__init__.py", line 5, in <module> from langchain.utilities.bash import BashProcess File "venv/lib/python3.11/site-packages/langchain/utilities/bash.py", line 7, in <module> import pexpect ModuleNotFoundError: No module named 'pexpect' ``` does this need to be added to project dependencies?
https://github.com/langchain-ai/langchain/issues/3664
https://github.com/langchain-ai/langchain/pull/3667
708787dddb2fa3cdb2d1dabefa00c01ffec572f6
1b5721c999c9fc310cefec383666f43c80ec9620
"2023-04-27T16:24:30Z"
python
"2023-04-27T18:39:01Z"
langchain/utilities/bash.py
"""Run commands and return final output.""" if isinstance(commands, str): commands = [commands] commands = ";".join(commands) if self.process is not None: return self._run_persistent( commands, ) else: return self._run(commands) def _run(self, command: str) -> str: """Run commands and return final output.""" try: output = subprocess.run( command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ).stdout.decode() except subprocess.CalledProcessError as error: if self.return_err_output: return error.stdout.decode() return str(error) if self.strip_newlines: output = output.strip() return output def process_output(self, output: str, command: str) -> str:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,664
import error when importing `from langchain import OpenAI` on 0.0.151
got the following error when running today: ``` File "venv/lib/python3.11/site-packages/langchain/__init__.py", line 6, in <module> from langchain.agents import MRKLChain, ReActChain, SelfAskWithSearchChain File "venv/lib/python3.11/site-packages/langchain/agents/__init__.py", line 2, in <module> from langchain.agents.agent import ( File "venv/lib/python3.11/site-packages/langchain/agents/agent.py", line 17, in <module> from langchain.chains.base import Chain File "venv/lib/python3.11/site-packages/langchain/chains/__init__.py", line 2, in <module> from langchain.chains.api.base import APIChain File "venv/lib/python3.11/site-packages/langchain/chains/api/base.py", line 8, in <module> from langchain.chains.api.prompt import API_RESPONSE_PROMPT, API_URL_PROMPT File "venv/lib/python3.11/site-packages/langchain/chains/api/prompt.py", line 2, in <module> from langchain.prompts.prompt import PromptTemplate File "venv/lib/python3.11/site-packages/langchain/prompts/__init__.py", line 14, in <module> from langchain.prompts.loading import load_prompt File "venv/lib/python3.11/site-packages/langchain/prompts/loading.py", line 14, in <module> from langchain.utilities.loading import try_load_from_hub File "venv/lib/python3.11/site-packages/langchain/utilities/__init__.py", line 5, in <module> from langchain.utilities.bash import BashProcess File "venv/lib/python3.11/site-packages/langchain/utilities/bash.py", line 7, in <module> import pexpect ModuleNotFoundError: No module named 'pexpect' ``` does this need to be added to project dependencies?
https://github.com/langchain-ai/langchain/issues/3664
https://github.com/langchain-ai/langchain/pull/3667
708787dddb2fa3cdb2d1dabefa00c01ffec572f6
1b5721c999c9fc310cefec383666f43c80ec9620
"2023-04-27T16:24:30Z"
python
"2023-04-27T18:39:01Z"
langchain/utilities/bash.py
pattern = re.escape(command) + r"\s*\n" output = re.sub(pattern, "", output, count=1) return output.strip() def _run_persistent(self, command: str) -> str: """Run commands and return final output.""" if self.process is None: raise ValueError("Process not initialized") self.process.sendline(command) self.process.expect(self.prompt, timeout=10) self.process.sendline("") try: self.process.expect([self.prompt, pexpect.EOF], timeout=10) except pexpect.TIMEOUT: return f"Timeout error while executing command {command}" if self.process.after == pexpect.EOF: return f"Exited with error status: {self.process.exitstatus}" output = self.process.before output = self.process_output(output, command) if self.strip_newlines: return output.strip() return output
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
"""Wrapper around ChromaDB embeddings platform.""" from __future__ import annotations import logging import uuid from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import xor_args from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: import chromadb import chromadb.config logger = logging.getLogger(__name__) def _results_to_docs(results: Any) -> List[Document]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
return [doc for doc, _ in _results_to_docs_and_scores(results)] def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]: return [ (Document(page_content=result[0], metadata=result[1] or {}), result[2]) for result in zip( results["documents"][0], results["metadatas"][0], results["distances"][0], ) ] class Chroma(VectorStore): """Wrapper around ChromaDB embeddings platform. To use, you should have the ``chromadb`` python package installed. Example: .. code-block:: python from langchain.vectorstores import Chroma from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Chroma("langchain_store", embeddings.embed_query) """ _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain" def __init__(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
self, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, embedding_function: Optional[Embeddings] = None, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, collection_metadata: Optional[Dict] = None, client: Optional[chromadb.Client] = None, ) -> None: """Initialize with Chroma client.""" try: import chromadb
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
import chromadb.config except ImportError: raise ValueError( "Could not import chromadb python package. " "Please install it with `pip install chromadb`." ) if client is not None: self._client = client else: if client_settings: self._client_settings = client_settings else: self._client_settings = chromadb.config.Settings() if persist_directory is not None: self._client_settings = chromadb.config.Settings( chroma_db_impl="duckdb+parquet", persist_directory=persist_directory, ) self._client = chromadb.Client(self._client_settings) self._embedding_function = embedding_function self._persist_directory = persist_directory self._collection = self._client.get_or_create_collection( name=collection_name, embedding_function=self._embedding_function.embed_documents if self._embedding_function is not None else None, metadata=collection_metadata, ) @xor_args(("query_texts", "query_embeddings")) def __query_collection(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: """Query the chroma collection.""" for i in range(n_results, 0, -1): try: return self._collection.query( query_texts=query_texts, query_embeddings=query_embeddings, n_results=i, where=where, ) except chromadb.errors.NotEnoughElementsException: logger.error( f"Chroma collection {self._collection.name} " f"contains fewer than {i} elements." ) raise chromadb.errors.NotEnoughElementsException( f"No documents found for Chroma collection {self._collection.name}" ) def add_texts(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added texts. """ if ids is None: ids = [str(uuid.uuid1()) for _ in texts] embeddings = None if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(texts)) self._collection.add( metadatas=metadatas, embeddings=embeddings, documents=texts, ids=ids ) return ids def similarity_search(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
self, query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with Chroma. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Document]: List of documents most similar to the query text. """ docs_and_scores = self.similarity_search_with_score(query, k, filter=filter) return [doc for doc, _ in docs_and_scores] def similarity_search_by_vector(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query vector. """ results = self.__query_collection( query_embeddings=embedding, n_results=k, where=filter ) return _results_to_docs(results) def similarity_search_with_score(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
self, query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search with Chroma with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text with distance in float. """ if self._embedding_function is None: results = self.__query_collection( query_texts=[query], n_results=k, where=filter ) else: query_embedding = self._embedding_function.embed_query(query) results = self.__query_collection(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
query_embeddings=[query_embedding], n_results=k, where=filter ) return _results_to_docs_and_scores(results) def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) mmr_selected = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), results["embeddings"][0], k=k, lambda_mult=lambda_mult, ) candidates = _results_to_docs(results) selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected] return selected_results def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
to maximum diversity and 1 to minimum diversity. Defaults to 0.5. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding_function is None: raise ValueError( "For MMR search, you must specify an embedding function on" "creation." ) embedding = self._embedding_function.embed_query(query) docs = self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, lambda_mul=lambda_mult, filter=filter ) return docs def delete_collection(self) -> None: """Delete the collection.""" self._client.delete_collection(self._collection.name) def persist(self) -> None: """Persist the collection. This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed. """ if self._persist_directory is None: raise ValueError( "You must specify a persist_directory on" "creation to persist the collection." ) self._client.persist() def update_document(self, document_id: str, document: Document) -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
"""Update a document in the collection. Args: document_id (str): ID of the document to update. document (Document): Document to update. """ text = document.page_content metadata = document.metadata self._collection.update_document(document_id, text, metadata) @classmethod def from_texts( cls: Type[Chroma], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a raw documents.
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: texts (List[str]): List of texts to add to the collection. collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. ids (Optional[List[str]]): List of document IDs. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings Returns: Chroma: Chroma vectorstore. """ chroma_collection = cls( collection_name=collection_name, embedding_function=embedding, persist_directory=persist_directory, client_settings=client_settings, client=client, ) chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids) return chroma_collection @classmethod def from_documents( cls: Type[Chroma], documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None,
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
langchain/vectorstores/chroma.py
client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a list of documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. ids (Optional[List[str]]): List of document IDs. Defaults to None. documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings Returns: Chroma: Chroma vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, persist_directory=persist_directory, client_settings=client_settings, client=client, )
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
tests/integration_tests/vectorstores/test_chroma.py
"""Test Chroma functionality.""" import pytest from langchain.docstore.document import Document from langchain.vectorstores import Chroma from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings def test_chroma() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
tests/integration_tests/vectorstores/test_chroma.py
"""Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings() ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] @pytest.mark.asyncio async def test_chroma_async() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings() ) output = await docsearch.asimilarity_search("foo", k=1) assert output == [Document(page_content="foo")] def test_chroma_with_metadatas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={"page": "0"})] def test_chroma_with_metadatas_with_scores() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
tests/integration_tests/vectorstores/test_chroma.py
"""Test end to end construction and scored search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search_with_score("foo", k=1) assert output == [(Document(page_content="foo", metadata={"page": "0"}), 0.0)] def test_chroma_search_filter() -> None: """Test end to end construction and search with metadata filtering.""" texts = ["far", "bar", "baz"] metadatas = [{"first_letter": "{}".format(text[0])} for text in texts] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search("far", k=1, filter={"first_letter": "f"}) assert output == [Document(page_content="far", metadata={"first_letter": "f"})] output = docsearch.similarity_search("far", k=1, filter={"first_letter": "b"}) assert output == [Document(page_content="bar", metadata={"first_letter": "b"})] def test_chroma_search_filter_with_scores() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
tests/integration_tests/vectorstores/test_chroma.py
"""Test end to end construction and scored search with metadata filtering.""" texts = ["far", "bar", "baz"] metadatas = [{"first_letter": "{}".format(text[0])} for text in texts] docsearch = Chroma.from_texts( collection_name="test_collection", texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, ) output = docsearch.similarity_search_with_score( "far", k=1, filter={"first_letter": "f"} ) assert output == [ (Document(page_content="far", metadata={"first_letter": "f"}), 0.0) ] output = docsearch.similarity_search_with_score( "far", k=1, filter={"first_letter": "b"} ) assert output == [ (Document(page_content="bar", metadata={"first_letter": "b"}), 1.0) ] def test_chroma_with_persistence() -> None:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,628
Chroma.py max_marginal_relevance_search_by_vector method currently broken
Using MMR with Chroma currently does not work because the max_marginal_relevance_search_by_vector method calls self.__query_collection with the parameter "include:", but "include" is not an accepted parameter for __query_collection. This appears to be a regression introduced with #3372 Excerpt from max_marginal_relevance_search_by_vector method: ``` results = self.__query_collection( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ``` __query_collection does not accept include: ``` def __query_collection( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, ) -> List[Document]: ``` This results in an unexpected keyword error. The short term fix is to use self._collection.query instead of self.__query_collection in max_marginal_relevance_search_by_vector, although that loses the protection when the user requests more records than exist in the store. ``` results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) ```
https://github.com/langchain-ai/langchain/issues/3628
https://github.com/langchain-ai/langchain/pull/3897
3e1cb31f63b5c7147939feca7f8095377f64e145
245131097557b73774197b01e326206fa2a1b83a
"2023-04-27T00:21:42Z"
python
"2023-05-01T17:47:15Z"
tests/integration_tests/vectorstores/test_chroma.py
"""Test end to end construction and search, with persistence.""" chroma_persist_dir = "./tests/persist_dir" collection_name = "test_collection" texts = ["foo", "bar", "baz"] docsearch = Chroma.from_texts( collection_name=collection_name, texts=texts, embedding=FakeEmbeddings(), persist_directory=chroma_persist_dir, ) output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo")] docsearch.persist() docsearch = Chroma( collection_name=collection_name, embedding_function=FakeEmbeddings(), persist_directory=chroma_persist_dir, ) output = docsearch.similarity_search("foo", k=1) docsearch.delete_collection()
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,988
LangChain openAI callback doesn't allow finetuned models
Hi all! I have an [application](https://github.com/ur-whitelab/BO-LIFT) based on langchain. A few months ago, I used it with fine-tuned (FT) models. We added a token usage counter later, and I haven't tried fine-tuned models again since then. Recently we have been interested in using (FT) models again, but the callback to expose the token usage isn't accepting the model. Minimal code to reproduce the error: ``` from langchain.llms import OpenAI from langchain.callbacks import get_openai_callback llm = OpenAI( model_name=FT_MODEL, temperature=0.7, n=5, max_tokens=64, ) with get_openai_callback() as cb: completion_response = llm.generate(["QUERY"]) token_usage = cb.total_tokens ``` It works fine if the model name is a basic openAI model. For instance, ```model_name="text-davinci-003"``` But when I try to use one of my FT models, I get this error: ``` Error in on_llm_end callback: Unknown model: FT_MODEL. Please provide a valid OpenAI model name.Known models are: gpt-4, gpt-4-0314, gpt-4-completion, gpt-4-0314-completion, gpt-4-32k, gpt-4-32k-0314, gpt-4-32k-completion, gpt-4-32k-0314-completion, gpt-3.5-turbo, gpt-3.5-turbo-0301, text-ada-001, ada, text-babbage-001, babbage, text-curie-001, curie, text-davinci-003, text-davinci-002, code-davinci-002 ``` It works if I remove the callback and avoid token counting, but it'd be nice to have any suggestions on how to make it work. Is there a workaround for that? Any help is welcome! Thanks!
https://github.com/langchain-ai/langchain/issues/3988
https://github.com/langchain-ai/langchain/pull/4009
aa383559999b3d6a781c62ed7f8589fef8892879
f08a76250fe8995fb3f05bf785677070922d4b0d
"2023-05-02T18:00:22Z"
python
"2023-05-02T23:19:57Z"
langchain/callbacks/openai_info.py
"""Callback Handler that prints to std out.""" from typing import Any, Dict, List, Optional, Union from langchain.callbacks.base import BaseCallbackHandler from langchain.schema import AgentAction, AgentFinish, LLMResult def get_openai_model_cost_per_1k_tokens( model_name: str, is_completion: bool = False ) -> float: model_cost_mapping = { "gpt-4": 0.03, "gpt-4-0314": 0.03, "gpt-4-completion": 0.06, "gpt-4-0314-completion": 0.06, "gpt-4-32k": 0.06, "gpt-4-32k-0314": 0.06, "gpt-4-32k-completion": 0.12, "gpt-4-32k-0314-completion": 0.12, "gpt-3.5-turbo": 0.002, "gpt-3.5-turbo-0301": 0.002, "text-ada-001": 0.0004, "ada": 0.0004, "text-babbage-001": 0.0005, "babbage": 0.0005, "text-curie-001": 0.002, "curie": 0.002, "text-davinci-003": 0.02, "text-davinci-002": 0.02, "code-davinci-002": 0.02, } cost = model_cost_mapping.get(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,988
LangChain openAI callback doesn't allow finetuned models
Hi all! I have an [application](https://github.com/ur-whitelab/BO-LIFT) based on langchain. A few months ago, I used it with fine-tuned (FT) models. We added a token usage counter later, and I haven't tried fine-tuned models again since then. Recently we have been interested in using (FT) models again, but the callback to expose the token usage isn't accepting the model. Minimal code to reproduce the error: ``` from langchain.llms import OpenAI from langchain.callbacks import get_openai_callback llm = OpenAI( model_name=FT_MODEL, temperature=0.7, n=5, max_tokens=64, ) with get_openai_callback() as cb: completion_response = llm.generate(["QUERY"]) token_usage = cb.total_tokens ``` It works fine if the model name is a basic openAI model. For instance, ```model_name="text-davinci-003"``` But when I try to use one of my FT models, I get this error: ``` Error in on_llm_end callback: Unknown model: FT_MODEL. Please provide a valid OpenAI model name.Known models are: gpt-4, gpt-4-0314, gpt-4-completion, gpt-4-0314-completion, gpt-4-32k, gpt-4-32k-0314, gpt-4-32k-completion, gpt-4-32k-0314-completion, gpt-3.5-turbo, gpt-3.5-turbo-0301, text-ada-001, ada, text-babbage-001, babbage, text-curie-001, curie, text-davinci-003, text-davinci-002, code-davinci-002 ``` It works if I remove the callback and avoid token counting, but it'd be nice to have any suggestions on how to make it work. Is there a workaround for that? Any help is welcome! Thanks!
https://github.com/langchain-ai/langchain/issues/3988
https://github.com/langchain-ai/langchain/pull/4009
aa383559999b3d6a781c62ed7f8589fef8892879
f08a76250fe8995fb3f05bf785677070922d4b0d
"2023-05-02T18:00:22Z"
python
"2023-05-02T23:19:57Z"
langchain/callbacks/openai_info.py
model_name.lower() + ("-completion" if is_completion and model_name.startswith("gpt-4") else ""), None, ) if cost is None: raise ValueError( f"Unknown model: {model_name}. Please provide a valid OpenAI model name." "Known models are: " + ", ".join(model_cost_mapping.keys()) ) return cost class OpenAICallbackHandler(BaseCallbackHandler): """Callback Handler that tracks OpenAI info.""" total_tokens: int = 0 prompt_tokens: int = 0 completion_tokens: int = 0 successful_requests: int = 0 total_cost: float = 0.0 def __repr__(self) -> str: return ( f"Tokens Used: {self.total_tokens}\n" f"\tPrompt Tokens: {self.prompt_tokens}\n" f"\tCompletion Tokens: {self.completion_tokens}\n" f"Successful Requests: {self.successful_requests}\n" f"Total Cost (USD): ${self.total_cost}" ) @property def always_verbose(self) -> bool: """Whether to call verbose callbacks even if verbose is False.""" return True def on_llm_start(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,988
LangChain openAI callback doesn't allow finetuned models
Hi all! I have an [application](https://github.com/ur-whitelab/BO-LIFT) based on langchain. A few months ago, I used it with fine-tuned (FT) models. We added a token usage counter later, and I haven't tried fine-tuned models again since then. Recently we have been interested in using (FT) models again, but the callback to expose the token usage isn't accepting the model. Minimal code to reproduce the error: ``` from langchain.llms import OpenAI from langchain.callbacks import get_openai_callback llm = OpenAI( model_name=FT_MODEL, temperature=0.7, n=5, max_tokens=64, ) with get_openai_callback() as cb: completion_response = llm.generate(["QUERY"]) token_usage = cb.total_tokens ``` It works fine if the model name is a basic openAI model. For instance, ```model_name="text-davinci-003"``` But when I try to use one of my FT models, I get this error: ``` Error in on_llm_end callback: Unknown model: FT_MODEL. Please provide a valid OpenAI model name.Known models are: gpt-4, gpt-4-0314, gpt-4-completion, gpt-4-0314-completion, gpt-4-32k, gpt-4-32k-0314, gpt-4-32k-completion, gpt-4-32k-0314-completion, gpt-3.5-turbo, gpt-3.5-turbo-0301, text-ada-001, ada, text-babbage-001, babbage, text-curie-001, curie, text-davinci-003, text-davinci-002, code-davinci-002 ``` It works if I remove the callback and avoid token counting, but it'd be nice to have any suggestions on how to make it work. Is there a workaround for that? Any help is welcome! Thanks!
https://github.com/langchain-ai/langchain/issues/3988
https://github.com/langchain-ai/langchain/pull/4009
aa383559999b3d6a781c62ed7f8589fef8892879
f08a76250fe8995fb3f05bf785677070922d4b0d
"2023-05-02T18:00:22Z"
python
"2023-05-02T23:19:57Z"
langchain/callbacks/openai_info.py
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Print out the prompts.""" pass def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Print out the token.""" pass def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Collect token usage.""" if response.llm_output is not None: self.successful_requests += 1 if "token_usage" in response.llm_output: token_usage = response.llm_output["token_usage"] if "model_name" in response.llm_output: completion_cost = get_openai_model_cost_per_1k_tokens( response.llm_output["model_name"], is_completion=True ) * (token_usage.get("completion_tokens", 0) / 1000) prompt_cost = get_openai_model_cost_per_1k_tokens( response.llm_output["model_name"] ) * (token_usage.get("prompt_tokens", 0) / 1000) self.total_cost += prompt_cost + completion_cost if "total_tokens" in token_usage: self.total_tokens += token_usage["total_tokens"] if "prompt_tokens" in token_usage: self.prompt_tokens += token_usage["prompt_tokens"] if "completion_tokens" in token_usage: self.completion_tokens += token_usage["completion_tokens"] def on_llm_error(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,988
LangChain openAI callback doesn't allow finetuned models
Hi all! I have an [application](https://github.com/ur-whitelab/BO-LIFT) based on langchain. A few months ago, I used it with fine-tuned (FT) models. We added a token usage counter later, and I haven't tried fine-tuned models again since then. Recently we have been interested in using (FT) models again, but the callback to expose the token usage isn't accepting the model. Minimal code to reproduce the error: ``` from langchain.llms import OpenAI from langchain.callbacks import get_openai_callback llm = OpenAI( model_name=FT_MODEL, temperature=0.7, n=5, max_tokens=64, ) with get_openai_callback() as cb: completion_response = llm.generate(["QUERY"]) token_usage = cb.total_tokens ``` It works fine if the model name is a basic openAI model. For instance, ```model_name="text-davinci-003"``` But when I try to use one of my FT models, I get this error: ``` Error in on_llm_end callback: Unknown model: FT_MODEL. Please provide a valid OpenAI model name.Known models are: gpt-4, gpt-4-0314, gpt-4-completion, gpt-4-0314-completion, gpt-4-32k, gpt-4-32k-0314, gpt-4-32k-completion, gpt-4-32k-0314-completion, gpt-3.5-turbo, gpt-3.5-turbo-0301, text-ada-001, ada, text-babbage-001, babbage, text-curie-001, curie, text-davinci-003, text-davinci-002, code-davinci-002 ``` It works if I remove the callback and avoid token counting, but it'd be nice to have any suggestions on how to make it work. Is there a workaround for that? Any help is welcome! Thanks!
https://github.com/langchain-ai/langchain/issues/3988
https://github.com/langchain-ai/langchain/pull/4009
aa383559999b3d6a781c62ed7f8589fef8892879
f08a76250fe8995fb3f05bf785677070922d4b0d
"2023-05-02T18:00:22Z"
python
"2023-05-02T23:19:57Z"
langchain/callbacks/openai_info.py
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: """Do nothing.""" pass def on_chain_start( self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain.""" pass def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain.""" pass def on_chain_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: """Do nothing.""" pass def on_tool_start( self, serialized: Dict[str, Any], input_str: str, **kwargs: Any, ) -> None: """Print out the log in specified color.""" pass def on_tool_end(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
3,988
LangChain openAI callback doesn't allow finetuned models
Hi all! I have an [application](https://github.com/ur-whitelab/BO-LIFT) based on langchain. A few months ago, I used it with fine-tuned (FT) models. We added a token usage counter later, and I haven't tried fine-tuned models again since then. Recently we have been interested in using (FT) models again, but the callback to expose the token usage isn't accepting the model. Minimal code to reproduce the error: ``` from langchain.llms import OpenAI from langchain.callbacks import get_openai_callback llm = OpenAI( model_name=FT_MODEL, temperature=0.7, n=5, max_tokens=64, ) with get_openai_callback() as cb: completion_response = llm.generate(["QUERY"]) token_usage = cb.total_tokens ``` It works fine if the model name is a basic openAI model. For instance, ```model_name="text-davinci-003"``` But when I try to use one of my FT models, I get this error: ``` Error in on_llm_end callback: Unknown model: FT_MODEL. Please provide a valid OpenAI model name.Known models are: gpt-4, gpt-4-0314, gpt-4-completion, gpt-4-0314-completion, gpt-4-32k, gpt-4-32k-0314, gpt-4-32k-completion, gpt-4-32k-0314-completion, gpt-3.5-turbo, gpt-3.5-turbo-0301, text-ada-001, ada, text-babbage-001, babbage, text-curie-001, curie, text-davinci-003, text-davinci-002, code-davinci-002 ``` It works if I remove the callback and avoid token counting, but it'd be nice to have any suggestions on how to make it work. Is there a workaround for that? Any help is welcome! Thanks!
https://github.com/langchain-ai/langchain/issues/3988
https://github.com/langchain-ai/langchain/pull/4009
aa383559999b3d6a781c62ed7f8589fef8892879
f08a76250fe8995fb3f05bf785677070922d4b0d
"2023-05-02T18:00:22Z"
python
"2023-05-02T23:19:57Z"
langchain/callbacks/openai_info.py
self, output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """If not the final action, print out observation.""" pass def on_tool_error( self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any ) -> None: """Do nothing.""" pass def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run on agent action.""" pass def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: """Run on agent end.""" pass def __copy__(self) -> "OpenAICallbackHandler": """Return a copy of the callback handler.""" return self def __deepcopy__(self, memo: Any) -> "OpenAICallbackHandler": """Return a deep copy of the callback handler.""" return self
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,053
Tools with partials (Partial functions not yet supported in tools)
We commonly used this pattern to create tools: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=partial(foo, "bar"), name = "foo", description="foobar" ) ``` which as of 0.0.148 (I think) gives a pydantic error "Partial functions not yet supported in tools." We must use instead this format: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=lambda y: foo(x="bar",y=y), name = "foo", description="foobar" ) ``` It would be nice to again support partials.
https://github.com/langchain-ai/langchain/issues/4053
https://github.com/langchain-ai/langchain/pull/4058
7e967aa4d581bec8b29e9ea44267505b0bad18b9
afa9d1292b0a152e36d338dde7b02f0b93bd37d9
"2023-05-03T17:28:46Z"
python
"2023-05-03T20:16:41Z"
langchain/tools/base.py
"""Base implementation for tools or skills.""" from __future__ import annotations import warnings from abc import ABC, abstractmethod from functools import partial from inspect import signature from typing import Any, Awaitable, Callable, Dict, Optional, Tuple, Type, Union from pydantic import ( BaseModel, Extra, Field, create_model, root_validator, validate_arguments, validator, ) from pydantic.main import ModelMetaclass from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForToolRun, CallbackManager, CallbackManagerForToolRun, Callbacks, ) class SchemaAnnotationError(TypeError): """Raised when 'args_schema' is missing or has an incorrect type annotation.""" class ToolMetaclass(ModelMetaclass):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,053
Tools with partials (Partial functions not yet supported in tools)
We commonly used this pattern to create tools: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=partial(foo, "bar"), name = "foo", description="foobar" ) ``` which as of 0.0.148 (I think) gives a pydantic error "Partial functions not yet supported in tools." We must use instead this format: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=lambda y: foo(x="bar",y=y), name = "foo", description="foobar" ) ``` It would be nice to again support partials.
https://github.com/langchain-ai/langchain/issues/4053
https://github.com/langchain-ai/langchain/pull/4058
7e967aa4d581bec8b29e9ea44267505b0bad18b9
afa9d1292b0a152e36d338dde7b02f0b93bd37d9
"2023-05-03T17:28:46Z"
python
"2023-05-03T20:16:41Z"
langchain/tools/base.py
"""Metaclass for BaseTool to ensure the provided args_schema doesn't silently ignored.""" def __new__( cls: Type[ToolMetaclass], name: str, bases: Tuple[Type, ...], dct: dict ) -> ToolMetaclass: """Create the definition of the new tool class.""" schema_type: Optional[Type[BaseModel]] = dct.get("args_schema") if schema_type is not None: schema_annotations = dct.get("__annotations__", {}) args_schema_type = schema_annotations.get("args_schema", None) if args_schema_type is None or args_schema_type == BaseModel: typehint_mandate = """ class ChildTool(BaseTool): ... args_schema: Type[BaseModel] = SchemaClass ...""" raise SchemaAnnotationError( f"Tool definition for {name} must include valid type annotations" f" for argument 'args_schema' to behave as expected.\n" f"Expected annotation of 'Type[BaseModel]'" f" but got '{args_schema_type}'.\n" f"Expected class looks like:\n" f"{typehint_mandate}" ) return super().__new__(cls, name, bases, dct) def _create_subset_model(
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,053
Tools with partials (Partial functions not yet supported in tools)
We commonly used this pattern to create tools: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=partial(foo, "bar"), name = "foo", description="foobar" ) ``` which as of 0.0.148 (I think) gives a pydantic error "Partial functions not yet supported in tools." We must use instead this format: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=lambda y: foo(x="bar",y=y), name = "foo", description="foobar" ) ``` It would be nice to again support partials.
https://github.com/langchain-ai/langchain/issues/4053
https://github.com/langchain-ai/langchain/pull/4058
7e967aa4d581bec8b29e9ea44267505b0bad18b9
afa9d1292b0a152e36d338dde7b02f0b93bd37d9
"2023-05-03T17:28:46Z"
python
"2023-05-03T20:16:41Z"
langchain/tools/base.py
name: str, model: BaseModel, field_names: list ) -> Type[BaseModel]: """Create a pydantic model with only a subset of model's fields.""" fields = { field_name: ( model.__fields__[field_name].type_, model.__fields__[field_name].default, ) for field_name in field_names if field_name in model.__fields__ } return create_model(name, **fields) def get_filtered_args( inferred_model: Type[BaseModel], func: Callable, ) -> dict: """Get the arguments from a function's signature.""" schema = inferred_model.schema()["properties"] valid_keys = signature(func).parameters return {k: schema[k] for k in valid_keys if k != "run_manager"} class _SchemaConfig:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,053
Tools with partials (Partial functions not yet supported in tools)
We commonly used this pattern to create tools: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=partial(foo, "bar"), name = "foo", description="foobar" ) ``` which as of 0.0.148 (I think) gives a pydantic error "Partial functions not yet supported in tools." We must use instead this format: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=lambda y: foo(x="bar",y=y), name = "foo", description="foobar" ) ``` It would be nice to again support partials.
https://github.com/langchain-ai/langchain/issues/4053
https://github.com/langchain-ai/langchain/pull/4058
7e967aa4d581bec8b29e9ea44267505b0bad18b9
afa9d1292b0a152e36d338dde7b02f0b93bd37d9
"2023-05-03T17:28:46Z"
python
"2023-05-03T20:16:41Z"
langchain/tools/base.py
"""Configuration for the pydantic model.""" extra = Extra.forbid arbitrary_types_allowed = True def create_schema_from_function( model_name: str, func: Callable, ) -> Type[BaseModel]: """Create a pydantic schema from a function's signature.""" validated = validate_arguments(func, config=_SchemaConfig) inferred_model = validated.model if "run_manager" in inferred_model.__fields__: del inferred_model.__fields__["run_manager"] filtered_args = get_filtered_args(inferred_model, func) return _create_subset_model( f"{model_name}Schema", inferred_model, list(filtered_args) ) class BaseTool(ABC, BaseModel, metaclass=ToolMetaclass):
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,053
Tools with partials (Partial functions not yet supported in tools)
We commonly used this pattern to create tools: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=partial(foo, "bar"), name = "foo", description="foobar" ) ``` which as of 0.0.148 (I think) gives a pydantic error "Partial functions not yet supported in tools." We must use instead this format: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=lambda y: foo(x="bar",y=y), name = "foo", description="foobar" ) ``` It would be nice to again support partials.
https://github.com/langchain-ai/langchain/issues/4053
https://github.com/langchain-ai/langchain/pull/4058
7e967aa4d581bec8b29e9ea44267505b0bad18b9
afa9d1292b0a152e36d338dde7b02f0b93bd37d9
"2023-05-03T17:28:46Z"
python
"2023-05-03T20:16:41Z"
langchain/tools/base.py
"""Interface LangChain tools must implement.""" name: str """The unique name of the tool that clearly communicates its purpose.""" description: str """Used to tell the model how/when/why to use the tool. You can provide few-shot examples as a part of the description. """ args_schema: Optional[Type[BaseModel]] = None """Pydantic model class to validate and parse the tool's input arguments.""" return_direct: bool = False """Whether to return the tool's output directly. Setting this to True means that after the tool is called, the AgentExecutor will stop looping. """ verbose: bool = False """Whether to log the tool's progress.""" callbacks: Callbacks = None """Callbacks to be called during tool execution.""" callback_manager: Optional[BaseCallbackManager] = None """Deprecated. Please use callbacks instead.""" class Config:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,053
Tools with partials (Partial functions not yet supported in tools)
We commonly used this pattern to create tools: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=partial(foo, "bar"), name = "foo", description="foobar" ) ``` which as of 0.0.148 (I think) gives a pydantic error "Partial functions not yet supported in tools." We must use instead this format: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=lambda y: foo(x="bar",y=y), name = "foo", description="foobar" ) ``` It would be nice to again support partials.
https://github.com/langchain-ai/langchain/issues/4053
https://github.com/langchain-ai/langchain/pull/4058
7e967aa4d581bec8b29e9ea44267505b0bad18b9
afa9d1292b0a152e36d338dde7b02f0b93bd37d9
"2023-05-03T17:28:46Z"
python
"2023-05-03T20:16:41Z"
langchain/tools/base.py
"""Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def is_single_input(self) -> bool: """Whether the tool only accepts a single input.""" return len(self.args) == 1 @property def args(self) -> dict: if self.args_schema is not None: return self.args_schema.schema()["properties"] else: schema = create_schema_from_function(self.name, self._run) return schema.schema()["properties"] def _parse_input( self, tool_input: Union[str, Dict], ) -> None: """Convert tool input to pydantic model.""" input_args = self.args_schema if isinstance(tool_input, str): if input_args is not None: key_ = next(iter(input_args.__fields__.keys())) input_args.validate({key_: tool_input}) else: if input_args is not None: input_args.validate(tool_input) @root_validator() def raise_deprecation(cls, values: Dict) -> Dict:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,053
Tools with partials (Partial functions not yet supported in tools)
We commonly used this pattern to create tools: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=partial(foo, "bar"), name = "foo", description="foobar" ) ``` which as of 0.0.148 (I think) gives a pydantic error "Partial functions not yet supported in tools." We must use instead this format: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=lambda y: foo(x="bar",y=y), name = "foo", description="foobar" ) ``` It would be nice to again support partials.
https://github.com/langchain-ai/langchain/issues/4053
https://github.com/langchain-ai/langchain/pull/4058
7e967aa4d581bec8b29e9ea44267505b0bad18b9
afa9d1292b0a152e36d338dde7b02f0b93bd37d9
"2023-05-03T17:28:46Z"
python
"2023-05-03T20:16:41Z"
langchain/tools/base.py
"""Raise deprecation warning if callback_manager is used.""" if values.get("callback_manager") is not None: warnings.warn( "callback_manager is deprecated. Please use callbacks instead.", DeprecationWarning, ) values["callbacks"] = values.pop("callback_manager", None) return values @abstractmethod def _run( self, *args: Any, **kwargs: Any, ) -> Any: """Use the tool. Add run_manager: Optional[CallbackManagerForToolRun] = None to child implementations to enable tracing, """ @abstractmethod async def _arun( self, *args: Any, **kwargs: Any, ) -> Any: """Use the tool asynchronously. Add run_manager: Optional[AsyncCallbackManagerForToolRun] = None to child implementations to enable tracing, """ def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,053
Tools with partials (Partial functions not yet supported in tools)
We commonly used this pattern to create tools: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=partial(foo, "bar"), name = "foo", description="foobar" ) ``` which as of 0.0.148 (I think) gives a pydantic error "Partial functions not yet supported in tools." We must use instead this format: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=lambda y: foo(x="bar",y=y), name = "foo", description="foobar" ) ``` It would be nice to again support partials.
https://github.com/langchain-ai/langchain/issues/4053
https://github.com/langchain-ai/langchain/pull/4058
7e967aa4d581bec8b29e9ea44267505b0bad18b9
afa9d1292b0a152e36d338dde7b02f0b93bd37d9
"2023-05-03T17:28:46Z"
python
"2023-05-03T20:16:41Z"
langchain/tools/base.py
if isinstance(tool_input, str): return (tool_input,), {} else: return (), tool_input def run( self, tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", callbacks: Callbacks = None, **kwargs: Any, ) -> Any: """Run the tool.""" self._parse_input(tool_input) if not self.verbose and verbose is not None: verbose_ = verbose else: verbose_ = self.verbose callback_manager = CallbackManager.configure( callbacks, self.callbacks, verbose=verbose_ ) new_arg_supported = signature(self._run).parameters.get("run_manager") run_manager = callback_manager.on_tool_start( {"name": self.name, "description": self.description},
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,053
Tools with partials (Partial functions not yet supported in tools)
We commonly used this pattern to create tools: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=partial(foo, "bar"), name = "foo", description="foobar" ) ``` which as of 0.0.148 (I think) gives a pydantic error "Partial functions not yet supported in tools." We must use instead this format: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=lambda y: foo(x="bar",y=y), name = "foo", description="foobar" ) ``` It would be nice to again support partials.
https://github.com/langchain-ai/langchain/issues/4053
https://github.com/langchain-ai/langchain/pull/4058
7e967aa4d581bec8b29e9ea44267505b0bad18b9
afa9d1292b0a152e36d338dde7b02f0b93bd37d9
"2023-05-03T17:28:46Z"
python
"2023-05-03T20:16:41Z"
langchain/tools/base.py
tool_input if isinstance(tool_input, str) else str(tool_input), color=start_color, **kwargs, ) try: tool_args, tool_kwargs = self._to_args_and_kwargs(tool_input) observation = ( self._run(*tool_args, run_manager=run_manager, **tool_kwargs) if new_arg_supported else self._run(*tool_args, **tool_kwargs) ) except (Exception, KeyboardInterrupt) as e: run_manager.on_tool_error(e) raise e run_manager.on_tool_end(str(observation), color=color, name=self.name, **kwargs) return observation async def arun( self, tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", callbacks: Callbacks = None, **kwargs: Any, ) -> Any: """Run the tool asynchronously.""" self._parse_input(tool_input) if not self.verbose and verbose is not None: verbose_ = verbose else:
closed
langchain-ai/langchain
https://github.com/langchain-ai/langchain
4,053
Tools with partials (Partial functions not yet supported in tools)
We commonly used this pattern to create tools: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=partial(foo, "bar"), name = "foo", description="foobar" ) ``` which as of 0.0.148 (I think) gives a pydantic error "Partial functions not yet supported in tools." We must use instead this format: ```py from langchain.tools import Tool from functools import partial def foo(x, y): return y Tool.from_function( func=lambda y: foo(x="bar",y=y), name = "foo", description="foobar" ) ``` It would be nice to again support partials.
https://github.com/langchain-ai/langchain/issues/4053
https://github.com/langchain-ai/langchain/pull/4058
7e967aa4d581bec8b29e9ea44267505b0bad18b9
afa9d1292b0a152e36d338dde7b02f0b93bd37d9
"2023-05-03T17:28:46Z"
python
"2023-05-03T20:16:41Z"
langchain/tools/base.py
verbose_ = self.verbose callback_manager = AsyncCallbackManager.configure( callbacks, self.callbacks, verbose=verbose_ ) new_arg_supported = signature(self._arun).parameters.get("run_manager") run_manager = await callback_manager.on_tool_start( {"name": self.name, "description": self.description}, tool_input if isinstance(tool_input, str) else str(tool_input), color=start_color, **kwargs, ) try: tool_args, tool_kwargs = self._to_args_and_kwargs(tool_input) observation = ( await self._arun(*tool_args, run_manager=run_manager, **tool_kwargs) if new_arg_supported else await self._arun(*tool_args, **tool_kwargs) ) except (Exception, KeyboardInterrupt) as e: await run_manager.on_tool_error(e) raise e await run_manager.on_tool_end( str(observation), color=color, name=self.name, **kwargs ) return observation def __call__(self, tool_input: str, callbacks: Callbacks = None) -> str: """Make tool callable.""" return self.run(tool_input, callbacks=callbacks) class Tool(BaseTool):