task_type
stringclasses 1
value | dataset
stringclasses 1
value | input
stringlengths 11
389
| output
stringlengths 43
461
| situation
stringclasses 1
value | label
stringclasses 1
value | extra
stringclasses 1
value | instruction
stringclasses 1
value |
---|---|---|---|---|---|---|---|
generation | absa-quad | ['They should have called it mascarpone with chocolate chips-good but a far cry from what the name implies .'] | [['NULL', 'food quality', 'negative', 'a far cry']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Service was very prompt but slightly rushed .'] | [['Service', 'service general', 'positive', 'prompt'], ['Service', 'service general', 'positive', 'rushed']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['My boyfriend had Prime Rib it was good .'] | [['Prime Rib', 'food quality', 'positive', 'good']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Consistently good Japanese Tapas .'] | [['Japanese Tapas', 'food quality', 'positive', 'good']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Great food and the prices are very reasonable .'] | [['food', 'food quality', 'positive', 'Great'], ['NULL', 'restaurant prices', 'positive', 'reasonable']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Always busy but fast moving .'] | [['NULL', 'service general', 'positive', 'fast moving']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The place itself is beautiful the bar scene seems to be happening .'] | [['place', 'ambience general', 'positive', 'beautiful']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The service was excellent - friendly and attentive .'] | [['service', 'service general', 'positive', 'excellent'], ['service', 'service general', 'positive', 'friendly'], ['service', 'service general', 'positive', 'attentive']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The waitress , seems to be more concerned of looking good than actually waitressing .'] | [['waitress', 'service general', 'negative', 'more concerned of looking good']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['This is my first time writing a review for a restaurant because the food and service was excellent .'] | [['food', 'food quality', 'positive', 'excellent'], ['service', 'service general', 'positive', 'excellent']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The bagel was huge .'] | [['bagel', 'food style_options', 'positive', 'huge']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['I really like both the scallops and the mahi mahi ( on saffron risotto yum ! ) .'] | [['scallops', 'food quality', 'positive', 'like'], ['mahi mahi ( on saffron risotto', 'food quality', 'positive', 'like']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Service was quick .'] | [['Service', 'service general', 'positive', 'quick']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["it 's a perfect place to have a amazing indian food ."] | [['indian food', 'food quality', 'positive', 'amazing']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['I had their eggs benedict for brunch , which were the worst in my entire life , I tried removing the hollondaise sauce completely that was how failed it was .'] | [['eggs benedict', 'food quality', 'negative', 'worst']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The freshest , best variety , and the fastest delivery .'] | [['NULL', 'food quality', 'positive', 'freshest'], ['NULL', 'food style_options', 'positive', 'best variety'], ['delivery', 'service general', 'positive', 'fastest']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["Too bad the food was n't of the same heritage ."] | [['food', 'food quality', 'negative', 'bad']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Conveniently located too , being right on Bedford ave .'] | [['NULL', 'location general', 'positive', 'Conveniently']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['This is one of my favorite restaurants and it is not to be missed .'] | [['NULL', 'restaurant general', 'positive', 'favorite']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['I would highly recommend it .'] | [['NULL', 'restaurant general', 'positive', 'highly recommend']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Leon is an East Village gem : casual but hip , with well prepared basic French bistro fare , good specials , a warm and lively atmosphere .'] | [['Leon', 'ambience general', 'positive', 'casual'], ['Leon', 'ambience general', 'positive', 'hip'], ['specials', 'food quality', 'positive', 'good'], ['atmosphere', 'ambience general', 'positive', 'warm'], ['atmosphere', 'ambience general', 'positive', 'lively'], ['French bistro fare', 'food quality', 'positive', 'well prepared']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Downtown Dinner 2002 - Prixe fix : Appetizers were ok , waiter gave me poor suggestion ... try the potato stuff kanish best one .'] | [['Appetizers', 'food quality', 'neutral', 'ok'], ['waiter', 'service general', 'negative', 'poor'], ['potato stuff kanish', 'food quality', 'positive', 'try'], ['potato stuff kanish', 'food quality', 'positive', 'best']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["I take all my NYC guests to VT 's ."] | [["VT 's", 'restaurant miscellaneous', 'positive', 'take all my NYC guests']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["The seafood is amazing , there 's a good wine list , and the ever-changing menu always offers some great surprises ."] | [['seafood', 'food quality', 'positive', 'amazing'], ['wine list', 'drinks style_options', 'positive', 'good'], ['menu', 'food style_options', 'positive', 'ever-changing'], ['menu', 'food style_options', 'positive', 'great surprises']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["In any event , this is a place I 'll be sure to stop by again when I 'm in this part of town ."] | [['place', 'restaurant general', 'positive', 'stop by again']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['They have a huge selection of different cream cheeses and all of their salads are great .'] | [['salads', 'food quality', 'positive', 'great'], ['cream cheeses', 'food style_options', 'positive', 'huge'], ['cream cheeses', 'food style_options', 'positive', 'different']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['It looked like shredded cheese partly done - still in strips .'] | [['NULL', 'food quality', 'negative', 'shredded cheese partly done']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['I loved everythig about it-especially the shows and actors .'] | [['shows', 'ambience general', 'positive', 'loved'], ['actors', 'ambience general', 'positive', 'loved']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The staff is no nonsense .'] | [['staff', 'service general', 'positive', 'no nonsense']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['And evaluated on those terms Pastis is simply wonderful .'] | [['Pastis', 'restaurant general', 'positive', 'wonderful']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['We had the lobster sandwich and it was FANTASTIC .'] | [['lobster sandwich', 'food quality', 'positive', 'FANTASTIC']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Beef noodle soup is good as well .'] | [['Beef noodle soup', 'food quality', 'positive', 'good']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The lobster sandwich is $ 24 and although it was good it was not nearly enough to warrant that price .'] | [['lobster sandwich', 'food quality', 'positive', 'good'], ['lobster sandwich', 'food prices', 'negative', 'not nearly enough to warrant that price']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The price is reasonable although the service is poor .'] | [['NULL', 'restaurant prices', 'positive', 'reasonable'], ['service', 'service general', 'negative', 'poor']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['A big disappointment , all around .'] | [['NULL', 'restaurant general', 'negative', 'disappointment']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["however , it 's the service that leaves a bad taste in my mouth ."] | [['service', 'service general', 'negative', 'bad taste']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['However , go for the ambience , and consider the food just a companion for a trip across the world !'] | [['food', 'food quality', 'neutral', 'a companion for a trip across the world ']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["I really loved the different and inovated touch that 's the cheff gives to the food ."] | [['cheff', 'food style_options', 'positive', 'loved'], ['cheff', 'food style_options', 'positive', 'inovated']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Big thumbs up !'] | [['NULL', 'restaurant general', 'positive', 'thumbs up']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['This is one of the best comfort food places in the city .'] | [['NULL', 'restaurant general', 'positive', 'best']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["I 've waited over one hour for food ."] | [['NULL', 'service general', 'negative', 'waited over one hour']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['the pad se ew chicken was delicious , however the pad thai was far too oily .'] | [['pad se ew chicken', 'food quality', 'positive', 'delicious'], ['pad thai', 'food quality', 'negative', 'oily']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The wine list is extensive and can easily hike up an otherwise reasonably priced meal .'] | [['wine list', 'drinks style_options', 'positive', 'extensive'], ['meal', 'food prices', 'positive', 'reasonably priced']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['We were not dissappointed in the least bit by this little gem .'] | [['NULL', 'restaurant general', 'positive', 'not dissappointed in the least bit']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Service was very good - prompt , attentive and non-intrusive .'] | [['Service', 'service general', 'positive', 'good'], ['Service', 'service general', 'positive', 'prompt'], ['Service', 'service general', 'positive', 'attentive'], ['Service', 'service general', 'positive', 'non-intrusive']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["The baked clams octopus we shared as appetizers were the best we 've ever had ! !"] | [['baked clams octopus', 'food quality', 'positive', 'best']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['I expected quite a bit more from such an expensive menu .'] | [['menu', 'food prices', 'negative', 'expensive'], ['menu', 'food quality', 'negative', 'expensive']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Service is not exactly five star , but thats not really a big deal .'] | [['Service', 'service general', 'neutral', 'not exactly five star']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Food is usually very good , though ocasionally I wondered about freshmess of raw vegatables in side orders .'] | [['Food', 'food quality', 'positive', 'good'], ['raw vegatables in side orders', 'food quality', 'negative', 'wondered about freshmess']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['By far the best salad I have had in a fast food restaurant .'] | [['salad', 'food quality', 'positive', 'best']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The food is prepared quickly and efficiently .'] | [['NULL', 'service general', 'positive', 'quickly'], ['NULL', 'service general', 'positive', 'efficiently']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['We ended our great experience by having Gulab Jamun ( dessert ) recommended by the waiter .'] | [['Gulab Jamun ( dessert )', 'food quality', 'positive', 'great']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Wine list selection is good and wine-by-the-glass was generously filled to the top .'] | [['Wine list selection', 'drinks style_options', 'positive', 'good'], ['wine-by-the-glass', 'drinks style_options', 'positive', 'generously filled']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Good food .'] | [['food', 'food quality', 'positive', 'Good']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The tuna and wasabe potatoes are excellent .'] | [['tuna', 'food quality', 'positive', 'excellent'], ['wasabe potatoes', 'food quality', 'positive', 'excellent']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['This place is worth an one-hour drive .'] | [['place', 'restaurant general', 'positive', 'worth']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['I recieved prompt service with a smile .'] | [['service', 'service general', 'positive', 'prompt']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["they were dry and disgusting , i did n't even finish my first piece ."] | [['NULL', 'food quality', 'negative', 'dry'], ['NULL', 'food quality', 'negative', 'disgusting']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["its a little out of the way if you do n't live in the neighborhood , but definitely worth the trip from wherever you are ."] | [['NULL', 'location general', 'negative', 'a little out of the way'], ['NULL', 'restaurant general', 'positive', 'worth']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Rude service , medicore food ... there are tons of restaurants in NY ... stay away from this one'] | [['service', 'service general', 'negative', 'Rude'], ['food', 'food quality', 'neutral', 'medicore'], ['NULL', 'restaurant general', 'negative', 'stay away']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["It is set far from the small street it 's on , and there is no traffic noise ."] | [['NULL', 'location general', 'positive', 'no traffic noise']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['I look forward to eating here again'] | [['NULL', 'restaurant general', 'positive', 'look forward']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['I loved it and would HIGHLY RECOMMEND .'] | [['NULL', 'restaurant general', 'positive', 'loved'], ['NULL', 'restaurant general', 'positive', 'HIGHLY RECOMMEND']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['even the wine by the glass was good .'] | [['wine by the glass', 'drinks quality', 'positive', 'good']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Ess-A-Bagel ( either by Sty-town or midtown ) is by far the best bagel in NY .'] | [['bagel', 'food quality', 'positive', 'best']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The sangria was pretty tasty and good on a hot muggy day .'] | [['sangria', 'drinks quality', 'positive', 'tasty'], ['sangria', 'drinks quality', 'positive', 'good']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["Authentic Taiwanese food that 's cheap ... what more could you ask for ?"] | [['Taiwanese food', 'food quality', 'positive', 'Authentic'], ['Taiwanese food', 'food prices', 'positive', 'cheap']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The in-house lady DJ on Saturday nights has outrageously good taste in music , and moreover , takes requests .'] | [['in-house lady DJ', 'ambience general', 'positive', 'good taste']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["It 's great to go for a quick lunch either alone or with a friend ."] | [['NULL', 'restaurant miscellaneous', 'positive', 'great']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Priced at upper intermediate range .'] | [['NULL', 'restaurant prices', 'negative', 'upper intermediate']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The dining room is quietly elegant with no music to shout over -- how refreshing !'] | [['dining room', 'ambience general', 'positive', 'elegant'], ['dining room', 'ambience general', 'positive', 'refreshing']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['This is a wonderful place on all stand points especially value ofr money .'] | [['place', 'restaurant prices', 'positive', 'wonderful'], ['place', 'restaurant general', 'positive', 'wonderful']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Go there to relax and feel like your somewhere else .'] | [['NULL', 'ambience general', 'positive', 'relax']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["This was my frist time at Cafe St. Bart 's and I must say how delicious the food and the service was ."] | [['food', 'food quality', 'positive', 'delicious']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Food was very good as well , considering that we tried the budget selection ( though I wish the pork belly that I ordered was roasted a bit longer , so that fat was more of a melt-in-your-mouth experience ) .'] | [['Food', 'food quality', 'positive', 'good'], ['pork belly', 'food quality', 'negative', 'roasted a bit longer']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The wine the service was very good too .'] | [['wine', 'drinks quality', 'positive', 'good'], ['service', 'service general', 'positive', 'good']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["It 's cuz it 's so good you need to taste it ! ! !"] | [['NULL', 'food quality', 'positive', 'good']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["Open late ( well as late as I ever got there and I 'm a night person )"] | [['NULL', 'restaurant miscellaneous', 'positive', 'well']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The only problem is that the manager is a complete incompetent .'] | [['manager', 'service general', 'negative', 'incompetent']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Mine was a little burnt but still delicious with goat cheese and panchetta ( raddichio was kind of bitter though ) .'] | [['raddichio', 'food quality', 'negative', 'bitter'], ['NULL', 'food quality', 'positive', 'delicious']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The service is awful .'] | [['service', 'service general', 'negative', 'awful']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['This place has the the correct ambience and an excellent staff to make you feel like a guest and a friend at the same time .'] | [['ambience', 'ambience general', 'positive', 'correct'], ['staff', 'service general', 'positive', 'excellent']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Service is not what one would expect from a joint in this price category .'] | [['Service', 'service general', 'negative', 'not what one would expect']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Calling the place Hampton Chutney Co. does warn you that these folks offer more style than substance , but in this unattractive room with unhelpful clerks there was a dearth of the former too .'] | [['place', 'restaurant general', 'negative', 'unattractive'], ['room', 'ambience general', 'negative', 'unattractive'], ['clerks', 'service general', 'negative', 'unhelpful']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Probably would not go again ...'] | [['NULL', 'restaurant general', 'negative', 'not go again']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['My friend devoured her chicken and mashed potatos .'] | [['chicken and mashed potatos', 'food quality', 'positive', 'devoured']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['It melted in my little mouth and the perfect consistency-not too fishy , creamy , and slightly buttery .'] | [['NULL', 'food quality', 'positive', 'perfect consistency'], ['NULL', 'food quality', 'positive', 'not too fishy'], ['NULL', 'food quality', 'positive', 'creamy'], ['NULL', 'food quality', 'positive', 'buttery']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['We were then shooed inside .'] | [['NULL', 'service general', 'negative', 'shooed']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Although we were looking for regular lettuce and some walnuts the salads we got were great .'] | [['salads', 'food quality', 'positive', 'great']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Great bagels made the old-fashioned way .'] | [['bagels', 'food quality', 'positive', 'Great'], ['bagels', 'food style_options', 'positive', 'Great']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["It 's boring on the inside , and our sushi was pretty below average ... the tuna was soggy and the other rolls had no flavor ."] | [['NULL', 'ambience general', 'negative', 'boring'], ['sushi', 'food quality', 'negative', 'below average'], ['tuna', 'food quality', 'negative', 'soggy'], ['rolls', 'food quality', 'negative', 'no flavor']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['We were seated outside and the waiter spilled red wine and hot tea on myself and my date .'] | [['waiter', 'service general', 'negative', 'spilled']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Delivery is fast too .'] | [['Delivery', 'service general', 'positive', 'fast']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['My friend got the mushroom pizza which tasted better .'] | [['mushroom pizza', 'food quality', 'positive', 'better']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Go to Volare for 1st class service and terrific food .'] | [['service', 'service general', 'positive', '1st class'], ['food', 'food quality', 'positive', 'terrific']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['I found the food to be outstanding , particulary the salmon dish I had .'] | [['food', 'food quality', 'positive', 'outstanding'], ['salmon dish', 'food quality', 'positive', 'outstanding']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['The outdoor atmosphere of sitting on the sidewalk watching the world go by 50 feet away on 6th avenue on a cool evening was wonderful .'] | [['outdoor atmosphere', 'location general', 'positive', 'wonderful']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['My friend from Milan and myself were pleasantly surprised when we arrived and everyone spoke italian .'] | [['NULL', 'restaurant miscellaneous', 'positive', 'pleasantly surprised']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ["If you 've ever been along the river in Weehawken you have an idea of the top of view the chart house has to offer ."] | [['view', 'location general', 'positive', 'the top of view the chart house has to offer']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |
||
generation | absa-quad | ['Try the sea bass .'] | [['sea bass', 'food quality', 'positive', 'Try']] | none | Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]' |