task_type
stringclasses
1 value
dataset
stringclasses
1 value
input
stringlengths
11
389
output
stringlengths
43
461
situation
stringclasses
1 value
label
stringclasses
1 value
extra
stringclasses
1 value
instruction
stringclasses
1 value
generation
absa-quad
['Prices too high for this cramped and unappealing resturant .']
[['resturant', 'restaurant prices', 'negative', 'high'], ['resturant', 'ambience general', 'negative', 'cramped'], ['resturant', 'ambience general', 'negative', 'unappealing']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['A quintessential slice of NYC pizza .']
[['slice of NYC pizza', 'food quality', 'neutral', 'quintessential']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['But the staff was so horrible to us .']
[['staff', 'service general', 'negative', 'horrible']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I picked the Grilled Black Cod as my entree , which I absolutely devoured while someone commented that the Grilled Salmon dish was better .']
[['Grilled Black Cod', 'food quality', 'positive', 'devoured'], ['Grilled Salmon dish', 'food quality', 'positive', 'better']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['LOVE the atmosphere - felt like I was in Paris .']
[['atmosphere', 'ambience general', 'positive', 'LOVE']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["One of us actually liked the expresso - that 's it ."]
[['expresso', 'drinks quality', 'positive', 'liked']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['But , they were too big for the bun .']
[['NULL', 'food style_options', 'negative', 'too big']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The pizza is delicious and the proprietor is one of the nicest in NYC .']
[['pizza', 'food quality', 'positive', 'delicious'], ['proprietor', 'service general', 'positive', 'nicest']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['In the evening , this place attracted a well dressed , with it , NY crowd .']
[['crowd', 'restaurant miscellaneous', 'positive', 'attracted']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Highly recommended .']
[['NULL', 'restaurant general', 'positive', 'Highly recommended']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["In any event , this is a place I 'll be sure to stop by again when I 'm in this part of town ."]
[['place', 'restaurant general', 'positive', 'stop by again']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['For me dishes a little oily , but overall dining experience good .']
[['dishes', 'food quality', 'negative', 'oily'], ['NULL', 'restaurant general', 'positive', 'good']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Wait staff is blantently unappreciative of your business but its the best pie on the UWS !']
[['Wait staff', 'service general', 'negative', 'unappreciative'], ['pie', 'food quality', 'positive', 'best']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["You ca n't go wrong here ."]
[['NULL', 'restaurant general', 'positive', "ca n't go wrong"]]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I thought the restaurant was nice and clean .']
[['restaurant', 'restaurant general', 'positive', 'nice'], ['restaurant', 'ambience general', 'positive', 'clean']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I love this place']
[['place', 'restaurant general', 'positive', 'love']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['We will go back every time we are in the City .']
[['NULL', 'restaurant general', 'positive', 'go back']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Mizu is home to creative and unique rolls not to found anywhere else .']
[['rolls', 'food style_options', 'positive', 'unique']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['To top it all off . . the main reason we came to your restaurant was for the belly dancers and missed the first show as we were not seated yet and the 2nd belly dancer only danced at two tables in the back of the restaurant and never made it around to the other half of the restaurant .']
[['NULL', 'service general', 'negative', 'never made it around']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['But the service is HORRID !']
[['service', 'service general', 'negative', 'HORRID']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I am actually offended to have spent so much money on such a bad experience .']
[['NULL', 'restaurant general', 'negative', 'bad'], ['NULL', 'restaurant prices', 'negative', 'so much money']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["It 's somewhere you can eat and be happy ."]
[['NULL', 'restaurant general', 'positive', 'happy']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["We 've tried before but it always packed and doesn 't take reservations ."]
[['NULL', 'restaurant miscellaneous', 'neutral', 'always packed']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I think that it is absolutely brilliant and well runned business operation .']
[['NULL', 'restaurant general', 'positive', 'brilliant']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Prices are fair across the board for both food and bev .']
[['food', 'food prices', 'positive', 'fair'], ['bev', 'drinks prices', 'positive', 'fair']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['They refuse to seat parties of 3 or more on weekends .']
[['NULL', 'service general', 'negative', 'refuse']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Awesome']
[['NULL', 'restaurant general', 'positive', 'Awesome']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['If you ’ re planning to come here , make sure that your date is someone whom you really like since you ’ ll be ushered to private booths where there will be no people or food watching ( choose the ones on the ground level that have glass ceilings so you may see the stars in the sky ! ) .']
[['private booths', 'ambience general', 'positive', 'ushered']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["The food was great and tasty , but the sitting space was too small , I do n't like being cramp in a corner ."]
[['food', 'food quality', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty'], ['sitting space', 'ambience general', 'negative', 'too small']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I have never been so disgusted by both food an service .']
[['food', 'food quality', 'negative', 'disgusted'], ['service', 'service general', 'negative', 'disgusted']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Very affordable and excellent ambient !']
[['ambient', 'ambience general', 'positive', 'excellent'], ['NULL', 'restaurant prices', 'positive', 'affordable']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['To me it exemplifies Soho , cute , artsy , interesting .']
[['NULL', 'ambience general', 'positive', 'cute'], ['NULL', 'ambience general', 'positive', 'artsy'], ['NULL', 'ambience general', 'positive', 'interesting']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I am relatively new to the area and tried Pick a bgel on 2nd and was disappointed with the service and I thought the food was overated and on the pricey side .']
[['service', 'service general', 'negative', 'disappointed'], ['food', 'food prices', 'negative', 'pricey'], ['food', 'food quality', 'negative', 'overated']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["Once you step into Cosette , you 're miraculously in a small , off-the-beaten path Parisian bistro ."]
[['Cosette', 'ambience general', 'positive', 'off-the-beaten']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I was pleasantly suprised .']
[['NULL', 'restaurant general', 'positive', 'pleasantly suprised']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Great Atmosphere']
[['Atmosphere', 'ambience general', 'positive', 'Great']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The rice was poor quality and was cooked so badly it was hard .']
[['rice', 'food quality', 'negative', 'poor quality'], ['rice', 'food quality', 'negative', 'cooked so badly'], ['rice', 'food quality', 'negative', 'hard']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['We will return many times for this oasis in mid-town .']
[['NULL', 'restaurant general', 'positive', 'return']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['For a restaurant with such a good reputation and that is usually so packed , there was no reason for such a lack of intelligent customer service .']
[['restaurant', 'restaurant miscellaneous', 'positive', 'good reputation'], ['customer service', 'service general', 'negative', 'intelligent']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["I 'd highly recommend it for a special occasion -- it provides and intimate setting and nice service ."]
[['setting', 'ambience general', 'positive', 'intimate'], ['service', 'service general', 'positive', 'nice'], ['NULL', 'restaurant miscellaneous', 'positive', 'recommend']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['this is can became on e of the NY Italian Food fare institutions .']
[['NULL', 'restaurant general', 'positive', 'fare institutions']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["I think I 've had some the best meals of my life at minnow ."]
[['meals', 'food quality', 'positive', 'best']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Stepping into Casa La Femme last night was a true experience unlike any other in New York !']
[['Casa La Femme', 'restaurant general', 'positive', 'true']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['There is a lot of variety even for people who eat vegetarian like me .']
[['NULL', 'food style_options', 'positive', 'a lot of variety']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['it was really good pizza .']
[['pizza', 'food quality', 'positive', 'good']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['On a hot day it was fabulous to stop in and enjoy lunch .']
[['NULL', 'restaurant general', 'positive', 'fabulous'], ['NULL', 'restaurant general', 'positive', 'enjoy']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['This is the MOST wonderful restaurant in all of New York City , not just Brooklyn ...']
[['restaurant', 'restaurant general', 'positive', 'wonderful']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['This little place definitely exceeded my expectations and you sure get a lot of food for your money .']
[['food', 'food style_options', 'positive', 'lot'], ['place', 'restaurant general', 'positive', 'exceeded my expectations'], ['food', 'food prices', 'positive', 'lot']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['In summer-eat outside on a terrace ( another great feature of Suan ) ! ! !']
[['terrace', 'ambience general', 'positive', 'great']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The place is a BISTRO which means : simple dishes and wine served efficiently in a bustling atmosphere .']
[['dishes', 'food style_options', 'positive', 'simple'], ['NULL', 'service general', 'positive', 'served efficiently'], ['atmosphere', 'ambience general', 'positive', 'bustling']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I was visiting New York City with a friend and we discovered this really warm and inviting restaurant .']
[['restaurant', 'ambience general', 'positive', 'inviting']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The dinner was ok , nothing I would have again .']
[['dinner', 'food quality', 'negative', 'ok']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['My friend from Milan and myself were pleasantly surprised when we arrived and everyone spoke italian .']
[['NULL', 'restaurant miscellaneous', 'positive', 'pleasantly surprised']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['We asked for sides which the waiter than admitted that he forgot to put in that part of our order .']
[['waiter', 'service general', 'negative', 'forgot']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Also , because it is so thin , it gets cold very quickly and its not that filling .']
[['NULL', 'food quality', 'negative', 'gets cold very quickly'], ['NULL', 'food style_options', 'negative', 'not that filling']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The shrimp scampi was excellent and the antipasti were plentiful .']
[['shrimp scampi', 'food quality', 'positive', 'excellent'], ['antipasti', 'food style_options', 'positive', 'plentiful']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The chicken pot pie is exceptional , the cheeseburger huge and delictable , and the service professional wan warm .']
[['chicken pot pie', 'food quality', 'positive', 'exceptional'], ['cheeseburger', 'food style_options', 'positive', 'huge'], ['cheeseburger', 'food quality', 'positive', 'delictable'], ['service', 'service general', 'positive', 'professional'], ['service', 'service general', 'positive', 'warm']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Some Pineapple covered in a glaze of some kind and some pear tart thing Not impressive at all .']
[['NULL', 'food style_options', 'negative', 'covered in a glaze of some kin'], ['NULL', 'food quality', 'negative', 'Not impressive']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Save yourself the time and trouble and skip this one !']
[['NULL', 'restaurant general', 'negative', 'skip']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The food was authentic .']
[['food', 'food quality', 'positive', 'authentic']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['It was pretty inexpensive too .']
[['NULL', 'restaurant prices', 'positive', 'inexpensive']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['We thought the dessert would be better , Wrong !']
[['dessert', 'food quality', 'negative', 'Wrong']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The sushi is amazing ! ! !']
[['sushi', 'food quality', 'positive', 'amazing']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Service was good and food is wonderful .']
[['Service', 'service general', 'positive', 'good'], ['food', 'food quality', 'positive', 'wonderful']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['You must try the shrimp appetizers .']
[['shrimp appetizers', 'food quality', 'positive', 'try']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["My husband said he could 've eaten several more , the portion was fine for me he even exclaimed that the french fries were the best he has had ."]
[['NULL', 'food style_options', 'negative', 'eaten several more'], ['portion', 'food style_options', 'positive', 'fine'], ['french fries', 'food quality', 'positive', 'best']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['for 7 years they have put out the most tasty , most delicious food and kept it that way ...']
[['food', 'food quality', 'positive', 'tasty']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The mussels were fantastic and so was the dessert ... definitely going to be back very soon .']
[['mussels', 'food quality', 'positive', 'fantastic'], ['dessert', 'food quality', 'positive', 'fantastic'], ['NULL', 'restaurant general', 'positive', 'going to be back']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Slightly above average wines start at $ 70+ with only one selection listed at $ 30+ .']
[['wines', 'drinks quality', 'negative', 'above average'], ['wines', 'drinks prices', 'negative', 'above average']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['There was no tap beer that evening , which was a disappointment .']
[['beer', 'drinks style_options', 'negative', 'disappointment']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['This has got to be one of the most overrated restaurants in Brooklyn .']
[['NULL', 'restaurant general', 'negative', 'overrated']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Hats off to the chef .']
[['chef', 'food quality', 'positive', 'Hats off']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Love Al Di La']
[['Al Di La', 'restaurant general', 'positive', 'Love']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Yes , the place is classy and beautiful , but they most certainly target the uber whealthy Not the common joe that wants to go all out every once in a while .']
[['place', 'ambience general', 'positive', 'classy'], ['place', 'ambience general', 'positive', 'beautiful'], ['place', 'restaurant prices', 'negative', 'target the uber whealthy']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["The baked clams octopus we shared as appetizers were the best we 've ever had ! !"]
[['baked clams octopus', 'food quality', 'positive', 'best']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The floor was wet , the trash can filled with hand towels n all over the floor , no soap , and no hand towels left .']
[['NULL', 'ambience general', 'negative', 'no hand towels left']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['If we were to move from the upper east side , we would genuinely miss this restaurant .']
[['restaurant', 'restaurant general', 'positive', 'miss']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Pizza - the only pizza in NYC that should not have additional toppings - the crust tastes like the best , freshly baked bread !']
[['crust', 'food quality', 'positive', 'best'], ['pizza', 'food quality', 'positive', 'should not have additional toppings']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Best Italian food I ever had ( and being Italian , that means alot ) .']
[['Italian food', 'food quality', 'positive', 'Best']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I LOOOVE their eggplant pizza , as well as their pastas !']
[['eggplant pizza', 'food quality', 'positive', 'LOOOVE'], ['pastas', 'food quality', 'positive', 'LOOOVE']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Who has room for Cheesesticks with the best pizza in NYC !']
[['pizza', 'food quality', 'positive', 'best']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The characters really make for an enjoyable experience .']
[['characters', 'ambience general', 'positive', 'enjoyable']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['It looked like shredded cheese partly done - still in strips .']
[['NULL', 'food quality', 'negative', 'shredded cheese partly done']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["Over the years the host , Vittorio , and his crew , have always treated me as family -- although with all the business this not-so-little gem does , it amazing he 's even able to remember a consistent but not-so-frequent visitor ."]
[['host', 'service general', 'positive', 'amazing'], ['crew', 'service general', 'positive', 'treated me as family']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The quantity is also very good , you will come out satisfied .']
[['quantity', 'food style_options', 'positive', 'good'], ['quantity', 'food style_options', 'positive', 'satisfied']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Went there with my wife and we had to wait for a table even though you could see there many that were empty with not reservation sigh on them .']
[['NULL', 'service general', 'negative', 'wait']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['On the way out , we heard of other guests complaining about similar issues .']
[['NULL', 'service general', 'negative', 'complaining']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['This is one of the best comfort food places in the city .']
[['NULL', 'restaurant general', 'positive', 'best']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['We were ushered to the bar to wait momentarily and upon arrival were so excited .']
[['NULL', 'restaurant general', 'positive', 'excited']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Service was quick .']
[['Service', 'service general', 'positive', 'quick']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["its a little out of the way if you do n't live in the neighborhood , but definitely worth the trip from wherever you are ."]
[['NULL', 'location general', 'negative', 'a little out of the way'], ['NULL', 'restaurant general', 'positive', 'worth']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['A coworker and I tried Pacifico after work a few Fridays and loved it .']
[['Pacifico', 'restaurant general', 'positive', 'loved']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The waitress was not attentive at all .']
[['waitress', 'service general', 'negative', 'not attentive']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["If you do n't mind pre-sliced low quality fish , unfriendly staff and a sushi chef that looks like he is miserable then this is your place ."]
[['fish', 'food quality', 'negative', 'low quality'], ['staff', 'service general', 'negative', 'unfriendly'], ['sushi chef', 'restaurant miscellaneous', 'negative', 'miserable']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Furthermore , the rice had no seasoning , so the sushi was bland and disgusting .']
[['rice', 'food quality', 'negative', 'no seasoning'], ['sushi', 'food quality', 'negative', 'bland'], ['sushi', 'food quality', 'negative', 'disgusting']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The first time I went , and was completely taken by the live jazz band and atmosphere , I ordered the Lobster Cobb Salad .']
[['live jazz band', 'ambience general', 'positive', 'taken'], ['atmosphere', 'ambience general', 'positive', 'taken']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I had their eggs benedict for brunch , which were the worst in my entire life , I tried removing the hollondaise sauce completely that was how failed it was .']
[['eggs benedict', 'food quality', 'negative', 'worst']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Kind of a small place but I guess if they are not too busy might be able to fit a group or kids .']
[['place', 'restaurant miscellaneous', 'neutral', 'small']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['My Girlfriend and I stumbled onto this hopping place the other night and had a great time !']
[['place', 'restaurant general', 'positive', 'hopping'], ['place', 'restaurant general', 'positive', 'great time']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["The hot dogs are top notch , and they 're Slamwich is amazing !"]
[['hot dogs', 'food quality', 'positive', 'top notch'], ['Slamwich', 'food quality', 'positive', 'amazing']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'