File size: 4,775 Bytes
f76ef22
 
 
a5d9306
 
 
a4578c3
d3543c8
 
 
 
a4578c3
d3543c8
a4578c3
d3543c8
a4578c3
bcd506d
d3543c8
 
 
a4578c3
d3543c8
a4578c3
d3543c8
a4578c3
bcd506d
 
 
a4578c3
bcd506d
a4578c3
bcd506d
a4578c3
b94620d
 
 
 
fb5e2bd
3e01be5
fb5e2bd
 
3e01be5
fb5e2bd
3e01be5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e115cee
9b8f31f
e115cee
 
 
 
 
 
6489db4
3e01be5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb5e2bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---
task_categories:
- summarization
language:
- hi
- gu
- en
configs:
- config_name: Hindi
  data_files:
  - split: train
    path: Hindi/train.csv
  - split: test
    path: Hindi/test.csv
  - split: validation
    path: Hindi/val.csv
  default: true
- config_name: Gujarati
  data_files:
  - split: train
    path: Gujarati/train.csv
  - split: test
    path: Gujarati/test.csv
  - split: validation
    path: Gujarati/val.csv
- config_name: English
  data_files:
  - split: train
    path: English/train.csv
  - split: test
    path: English/test.csv
  - split: validation
    path: English/val.csv
config_names:
- English
- Hindi
- Gujarati
size_categories:
- 1K<n<10K
- 10K<n<100K
---
# Dataset Card for "ILSUM-1.0"

### Dataset Summary

Automatic text summarization for Indian languages has received surprisingly little attention from the NLP research community. While large scale datasets exist for a number of languages like English, Chinese, French, German, Spanish, etc. no such datasets exist for any Indian languages. Most existing datasets are either not public, or are too small to be useful. Through this shared task we aim to bridge the existing gap by creating reusable corpora for Indian Language Summarization. In the first edition we cover two major indian languages Hindi and Gujarati, which have over 350 million and over 50 million speakers respectively. Apart from this we also include Indian English, a widely regonized dialect which can be substantially different from English spoken elsewhere.

The dataset for this task is built using articles and headline pairs from several leading newspapers of the country. We provide ~10,000 news articles for each language. The task is to generate a meaningful fixed length summary, either extractive or abstractive, for each article. While several previous works in other languages use news artciles - headlines pair, the current dataset poses a unique challenge of code-mixing and script mixing. It is very common for news articles to borrow phrases from english, even if the article itself is written in an Indian Language.

Examples like these are a common occurence both in the headlines as well as in the articles.
~~~
- "IND vs SA, 5મી T20 તસવીરોમાં: વરસાદે વિલન બની મજા બગાડી" (India vs SA, 5th T20 in pictures: rain spoils the match)
- "LIC के IPO में पैसा लगाने वालों का टूटा दिल, आई एक और नुकसानदेह खबर" (Investors of LIC IPO left broken hearted, yet another bad news).
~~~
### Languages
- Hindi
- Gujarati
- English

### Data Fields
~~~
- id: Unique id of each datapoint
- Article: Entire News article
- Headline: Headline of News Article
- Summary: Summary of News Article
~~~

### Data Splits
Data for all three languages is divided into three splits train, validation and test.

### Load dataset using hf-dataset class
```python
from datasets import load_dataset

dataset = load_dataset("ILSUM/ILSUM-1.0", "Hindi")
# you can use any of the following config names as a second argument:
# "English", "Hindi", "Gujarati"

```

### Citation Information
If you are using the dataset or the models please cite the following paper
~~~
@article{satapara2022findings,
  title={Findings of the first shared task on indian language summarization (ilsum): Approaches, challenges and the path ahead},
  author={Satapara, Shrey and Modha, Bhavan and Modha, Sandip and Mehta, Parth},
  journal={Working Notes of FIRE},
  pages={9--13},
  year={2022}
}
~~~


### Contributions
- Bhavan Modha, University Of Texas at Dallas, USA
- Shrey Satapara, Indian Institute Of Technology, Hyderabad, India
- Sandip Modha, LDRP-ITR, Gandhinagar, India
- Parth Mehta, Parmonic, USA
<!--## Dataset Description

- **Homepage:** 
- **Repository:** 
- **Paper:** 
- **Leaderboard:** 
- **Point of Contact:** 



### Supported Tasks and Leaderboards

[More Information Needed]



## Dataset Structure

### Data Instances

[More Information Needed]





[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]