shreysatapara commited on
Commit
3e01be5
1 Parent(s): fb5e2bd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -21
README.md CHANGED
@@ -36,11 +36,58 @@ config_names:
36
  - Hindi
37
  - Gujarati
38
  size_categories:
 
39
  - 10K<n<100K
40
  ---
41
- # Dataset Card for Dataset Name
42
 
43
- ## Dataset Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  - **Homepage:**
46
  - **Repository:**
@@ -48,17 +95,13 @@ size_categories:
48
  - **Leaderboard:**
49
  - **Point of Contact:**
50
 
51
- ### Dataset Summary
52
 
53
- This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
54
 
55
  ### Supported Tasks and Leaderboards
56
 
57
  [More Information Needed]
58
 
59
- ### Languages
60
 
61
- [More Information Needed]
62
 
63
  ## Dataset Structure
64
 
@@ -66,17 +109,9 @@ This dataset card aims to be a base template for new datasets. It has been gener
66
 
67
  [More Information Needed]
68
 
69
- ### Data Fields
70
-
71
- [More Information Needed]
72
-
73
- ### Data Splits
74
 
75
- [More Information Needed]
76
 
77
- ## Dataset Creation
78
 
79
- ### Curation Rationale
80
 
81
  [More Information Needed]
82
 
@@ -128,10 +163,3 @@ This dataset card aims to be a base template for new datasets. It has been gener
128
 
129
  [More Information Needed]
130
 
131
- ### Citation Information
132
-
133
- [More Information Needed]
134
-
135
- ### Contributions
136
-
137
- [More Information Needed]
 
36
  - Hindi
37
  - Gujarati
38
  size_categories:
39
+ - 1K<n<10K
40
  - 10K<n<100K
41
  ---
42
+ # Dataset Card for "ILSUM-1.0"
43
 
44
+ ### Dataset Summary
45
+
46
+ Automatic text summarization for Indian languages has received surprisingly little attention from the NLP research community. While large scale datasets exist for a number of languages like English, Chinese, French, German, Spanish, etc. no such datasets exist for any Indian languages. Most existing datasets are either not public, or are too small to be useful. Through this shared task we aim to bridge the existing gap by creating reusable corpora for Indian Language Summarization. In the first edition we cover two major indian languages Hindi and Gujarati, which have over 350 million and over 50 million speakers respectively. Apart from this we also include Indian English, a widely regonized dialect which can be substantially different from English spoken elsewhere.
47
+
48
+ The dataset for this task is built using articles and headline pairs from several leading newspapers of the country. We provide ~10,000 news articles for each language. The task is to generate a meaningful fixed length summary, either extractive or abstractive, for each article. While several previous works in other languages use news artciles - headlines pair, the current dataset poses a unique challenge of code-mixing and script mixing. It is very common for news articles to borrow phrases from english, even if the article itself is written in an Indian Language.
49
+
50
+ Examples like these are a common occurence both in the headlines as well as in the articles.
51
+ ~~~
52
+ - "IND vs SA, 5મી T20 તસવીરોમાં: વરસાદે વિલન બની મજા બગાડી" (India vs SA, 5th T20 in pictures: rain spoils the match)
53
+ - "LIC के IPO में पैसा लगाने वालों का टूटा दिल, आई एक और नुकसानदेह खबर" (Investors of LIC IPO left broken hearted, yet another bad news).
54
+ ~~~
55
+ ### Languages
56
+ - Hindi
57
+ - Gujarati
58
+ - English
59
+
60
+ ### Data Fields
61
+ ~~~
62
+ - id: Unique id of each datapoint
63
+ - Article: Entire News article
64
+ - Headline: Headline of News Article
65
+ - Summary: Summary of News Article
66
+ ~~~
67
+
68
+ ### Data Splits
69
+ Data for all three languages is divided into three splits train, validation and test.
70
+
71
+
72
+ ### Citation Information
73
+ If you are using the dataset or the models please cite the following paper
74
+ ~~~
75
+ @article{satapara2022findings,
76
+ title={Findings of the first shared task on indian language summarization (ilsum): Approaches, challenges and the path ahead},
77
+ author={Satapara, Shrey and Modha, Bhavan and Modha, Sandip and Mehta, Parth},
78
+ journal={Working Notes of FIRE},
79
+ pages={9--13},
80
+ year={2022}
81
+ }
82
+ ~~~
83
+
84
+
85
+ ### Contributions
86
+ - Bhavan Modha, University Of Texas at Dallas, USA
87
+ - Shrey Satapara, Indian Institute Of Technology, Hyderabad, India
88
+ - Sandip Modha, LDRP-ITR, Gandhinagar, India
89
+ - Parth Mehta, Parmonic, USA
90
+ <!--## Dataset Description
91
 
92
  - **Homepage:**
93
  - **Repository:**
 
95
  - **Leaderboard:**
96
  - **Point of Contact:**
97
 
 
98
 
 
99
 
100
  ### Supported Tasks and Leaderboards
101
 
102
  [More Information Needed]
103
 
 
104
 
 
105
 
106
  ## Dataset Structure
107
 
 
109
 
110
  [More Information Needed]
111
 
 
 
 
 
 
112
 
 
113
 
 
114
 
 
115
 
116
  [More Information Needed]
117
 
 
163
 
164
  [More Information Needed]
165