id
int64 0
190k
| prompt
stringlengths 21
13.4M
| docstring
stringlengths 1
12k
⌀ |
---|---|---|
100 | import importlib
import re
from absl import app
from absl import flags
import gin
import seqio
import tensorflow.compat.v1 as tf
The provided code snippet includes necessary dependencies for implementing the `sequence_length` function. Write a Python function `def sequence_length(value=512)` to solve the following problem:
Sequence length used when tokenizing. Args: value: an integer or dictionary Returns: a dictionary
Here is the function:
def sequence_length(value=512):
"""Sequence length used when tokenizing.
Args:
value: an integer or dictionary
Returns:
a dictionary
"""
if isinstance(value, int):
return {"inputs": value, "targets": value}
else:
return value | Sequence length used when tokenizing. Args: value: an integer or dictionary Returns: a dictionary |
101 | import importlib
import re
from absl import app
from absl import flags
import gin
import seqio
import tensorflow.compat.v1 as tf
FLAGS = flags.FLAGS
The provided code snippet includes necessary dependencies for implementing the `pretty` function. Write a Python function `def pretty(value)` to solve the following problem:
Optional pretty printing helper for detokenized inputs. Makes any text delimiter regex specified in `--delimiters` bold in textual output. Args: value: string representing the detokenized output Returns: a string with appropriate styling applied
Here is the function:
def pretty(value):
"""Optional pretty printing helper for detokenized inputs.
Makes any text delimiter regex specified in `--delimiters` bold in textual
output.
Args:
value: string representing the detokenized output
Returns:
a string with appropriate styling applied
"""
if not FLAGS.pretty or not FLAGS.detokenize:
return value
combined_matcher = re.compile(f"({'|'.join(FLAGS.delimiters)})")
return combined_matcher.sub(u"\u001b[1m\\1\u001b[0m", value) | Optional pretty printing helper for detokenized inputs. Makes any text delimiter regex specified in `--delimiters` bold in textual output. Args: value: string representing the detokenized output Returns: a string with appropriate styling applied |
102 | import importlib
import re
from absl import app
from absl import flags
import gin
import seqio
import tensorflow.compat.v1 as tf
def import_modules(modules):
for module in modules:
importlib.import_module(module) | null |
103 | import functools
import os
import re
from typing import Any, Callable, Iterable, Mapping, MutableSequence, Optional, Sequence, Tuple, Union
from absl import logging
import gin
import numpy as np
import seqio
import t5.data
import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds
import typing_extensions
_MODEL_FEATURES = [
"inputs", "inputs_position", "inputs_segmentation", "targets",
"targets_position", "targets_segmentation", "targets_subsegmentation"
]
The provided code snippet includes necessary dependencies for implementing the `filter_features` function. Write a Python function `def filter_features(ex)` to solve the following problem:
Filters example features, keeping only valid model features.
Here is the function:
def filter_features(ex):
"""Filters example features, keeping only valid model features."""
return {k: v for k, v in ex.items() if k in _MODEL_FEATURES} | Filters example features, keeping only valid model features. |
104 | import functools
import os
import re
from typing import Any, Callable, Iterable, Mapping, MutableSequence, Optional, Sequence, Tuple, Union
from absl import logging
import gin
import numpy as np
import seqio
import t5.data
import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds
import typing_extensions
def get_step_from_checkpoint_path(checkpoint_path):
"""Returns the global step for the checkpoint at `checkpoint_path`.
**Note**: This function works for checkpoints that are saved in the TF format
only.
Assumes `checkpoint_path` corresponds to a file which contains the substring
model.ckpt-{global_step}
Args:
checkpoint_path: str of path to a checkpoint file.
Returns:
int of the global step corresponding to the checkpoint file.
Raises:
ValueError if checkpoint_path does not correspond to a model checkpoint file
which contains the global_step in its filename.
"""
match = re.match(r".*model\.ckpt\-(\d+).*", checkpoint_path)
if match is None:
raise ValueError("Invalid checkpoint path {}".format(checkpoint_path))
return int(match.group(1))
def get_latest_checkpoint_from_dir(model_dir):
"""Helper function to return the latest checkpoint number from a directory.
Args:
model_dir: str, Directory with checkpoint files.
Returns:
an int, latest checkpoint number.
Raises:
ValueError: if no checkpoints are found.
"""
ckpt = tf.train.latest_checkpoint(model_dir)
if ckpt is None:
raise ValueError("No checkpoints found in model directory: %s" % model_dir)
return int(re.sub(".*ckpt-", "", ckpt))
The provided code snippet includes necessary dependencies for implementing the `get_checkpoints_iterator` function. Write a Python function `def get_checkpoints_iterator(checkpoint_steps, model_dir)` to solve the following problem:
Get checkpoints from model directory. **Note**: This only works for models checkpoints saved using Tensorflow. Args: checkpoint_steps: list, int or str. If checkpoint_step is an int, find the checkpoint with the closest global step and return a singleton list. If checkpoint_step is a list of ints, replace each int with the path to the checkpoint with the closest global step. If checkpoint_step == "all", return the path of every checkpoint in model_dir, starting from the earliest checkpoint. if the checkpoint_steps is None, returns step from the tf.train.checkpoint_iterator for continuous eval. If -1, get the latest checkpoint from the model directory. model_dir: str, model directory. If model_dir is None, then checkpoint_steps must be an integer or list of integers. Returns: a iterator with the checkpoint steps (integers).
Here is the function:
def get_checkpoints_iterator(checkpoint_steps, model_dir):
"""Get checkpoints from model directory.
**Note**: This only works for models checkpoints saved using Tensorflow.
Args:
checkpoint_steps: list, int or str. If checkpoint_step is an int, find the
checkpoint with the closest global step and return a singleton list. If
checkpoint_step is a list of ints, replace each int with the path to the
checkpoint with the closest global step. If checkpoint_step == "all",
return the path of every checkpoint in model_dir, starting from the
earliest checkpoint. if the checkpoint_steps is None, returns step from
the tf.train.checkpoint_iterator for continuous eval. If -1, get the
latest checkpoint from the model directory.
model_dir: str, model directory. If model_dir is None, then checkpoint_steps
must be an integer or list of integers.
Returns:
a iterator with the checkpoint steps (integers).
"""
def _get_closest_checkpoint(target_checkpoint):
"""Returns checkpoint with closest global step to `target_checkpoint`."""
checkpoints = set()
for f in tf.io.gfile.listdir(model_dir):
try:
checkpoints.add(int(get_step_from_checkpoint_path(f)))
except ValueError:
continue
if not checkpoints:
raise ValueError("No checkpoint files found in {}".format(model_dir))
closest = float("inf")
for c in checkpoints:
if abs(target_checkpoint - c) < abs(target_checkpoint - closest):
closest = c
if closest != target_checkpoint:
logging.info(
"Using checkpoint at step %d which is closest to requested step %d",
closest,
target_checkpoint,
)
return closest
if checkpoint_steps is None:
if model_dir is None:
raise ValueError("checkpoint_steps and model_dir both cannot be None.")
def _generate_checkpoints():
for c in tf.train.checkpoints_iterator(model_dir):
yield get_step_from_checkpoint_path(c)
return _generate_checkpoints()
elif checkpoint_steps == "all":
if model_dir is None:
raise ValueError(
"model_dir cannot be None when checkpoint_steps={}".format(
checkpoint_steps))
ckpt_paths = tf.gfile.Glob(os.path.join(model_dir, "model.ckpt*"))
return [get_step_from_checkpoint_path(c) for c in ckpt_paths]
elif isinstance(checkpoint_steps, int):
if model_dir:
if checkpoint_steps == -1:
return [get_latest_checkpoint_from_dir(model_dir)]
else:
return [_get_closest_checkpoint(checkpoint_steps)]
else:
return [checkpoint_steps]
else:
if model_dir:
closests = np.unique(
[_get_closest_checkpoint(c) for c in checkpoint_steps])
return closests
else:
return checkpoint_steps | Get checkpoints from model directory. **Note**: This only works for models checkpoints saved using Tensorflow. Args: checkpoint_steps: list, int or str. If checkpoint_step is an int, find the checkpoint with the closest global step and return a singleton list. If checkpoint_step is a list of ints, replace each int with the path to the checkpoint with the closest global step. If checkpoint_step == "all", return the path of every checkpoint in model_dir, starting from the earliest checkpoint. if the checkpoint_steps is None, returns step from the tf.train.checkpoint_iterator for continuous eval. If -1, get the latest checkpoint from the model directory. model_dir: str, model directory. If model_dir is None, then checkpoint_steps must be an integer or list of integers. Returns: a iterator with the checkpoint steps (integers). |
105 | import functools
import os
import re
from typing import Any, Callable, Iterable, Mapping, MutableSequence, Optional, Sequence, Tuple, Union
from absl import logging
import gin
import numpy as np
import seqio
import t5.data
import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds
import typing_extensions
def write_lines_to_file(lines, filename):
"""Write each line to filename, replacing the file if it exists."""
if tf.io.gfile.exists(filename):
tf.io.gfile.remove(filename)
with tf.io.gfile.GFile(filename, "w") as output_file:
output_file.write("\n".join([str(l) for l in lines]))
def write_targets_and_examples(summary_dir, targets, datasets):
"""Writes plaintext targets and inputs to the summary directory.
Args:
summary_dir: str, directory to store plaintext targets and examples
targets: dict, task_name -> targets for each task.
datasets: dict, task_name -> tf.data.Dataset for each task.
"""
if targets.keys() != datasets.keys():
raise ValueError("Targets and datasets must have the same tasks.")
for task in targets.keys():
targets_filename = os.path.join(
summary_dir,
"{}_targets".format(task),
)
write_lines_to_file(targets[task], targets_filename)
inputs = []
for ex in tfds.as_numpy(datasets[task]):
if "inputs_pretokenized" in ex:
inputs.append(ex["inputs_pretokenized"])
else:
inputs.append(ex["inputs"])
inputs_filename = os.path.join(
summary_dir,
"{}_inputs".format(task))
write_lines_to_file(inputs, inputs_filename)
def get_vocabulary(mixture_or_task_name=None):
"""Return vocabulary from the mixture or task."""
if not mixture_or_task_name:
# Attempt to extract the mixture/task name from the gin config.
try:
mixture_or_task_name = gin.query_parameter("%MIXTURE_NAME")
except ValueError:
logging.warning("Could not extract mixture/task name from gin config.")
if mixture_or_task_name:
provider = t5.data.get_mixture_or_task(mixture_or_task_name)
features = provider.output_features
if "inputs" in features and "targets" in features:
return (features["inputs"].vocabulary, features["targets"].vocabulary)
else:
feature_values = list(features.values())
vocabulary = feature_values[0].vocabulary
for feature in feature_values[1:]:
if feature.vocabulary != vocabulary:
logging.warning("No feature_name was provided to get_vocabulary, but "
"output_features have different vocabularies.")
vocabulary = None
break
if vocabulary:
return vocabulary
logging.warning("Using default vocabulary.")
return t5.data.get_default_vocabulary()
class PredictOrScoreFnCallable(typing_extensions.Protocol):
"""Signature for `predict_or_score_fn` passed to `run_eval`."""
def __call__(
self, checkpoint_step: int, vocabulary: seqio.Vocabulary,
tasks: Sequence[seqio.Task], datasets: Mapping[str, tf.data.Dataset],
sequence_length: Union[None, Mapping[str, int]]
) -> MutableSequence[Union[str, float]]:
...
class DatasetFnCallable(typing_extensions.Protocol):
def __call__(
self,
task: seqio.Task,
sequence_length: Mapping[str, int],
split: str,
) -> tf.data.Dataset:
...
def get_targets_and_examples(
tasks: Sequence[seqio.Task],
dataset_fn: Callable[[seqio.Task], tf.data.Dataset],
sequence_dims: Mapping[str, int],
num_examples: Optional[int] = None,
use_memory_cache: bool = True,
target_field_name: str = "targets"
) -> Tuple[Mapping[str, Any], Mapping[str, tf.data.Dataset], Mapping[str, int]]:
"""Get targets, cached datasets, and maximum sequence lengths per feature.
Args:
tasks: tasks objects to get targets and examples for.
dataset_fn: function, returns the dataset from the task object.
sequence_dims: dict of feature names to their sequence dimension.
num_examples: an optional maximum number of examples to take from the
beginning of each task dataset.
use_memory_cache: whether to use tf.data.Dataset#cache. may cause memory
issues for large datasets.
target_field_name: Field name of the target in the input dataset examples.
Returns:
cached_targets: unpreprocessed targets for each task
cached_task_datasets: cached datasets for each task, with cardinality set
max_sequence_length: maximum sequence lengths for inputs and targets across
all tasks.
"""
# Pre-load in all of the targets once before entering continuous eval loop
cached_targets = {}
cached_task_datasets = {}
max_sequence_length = {k: 0 for k in tasks[0].output_features.keys()}
for task in tasks:
assert max_sequence_length.keys() == task.output_features.keys(), (
"all tasks must have the same features")
for task in tasks:
ds = dataset_fn(task)
if num_examples:
ds = ds.take(num_examples)
if use_memory_cache:
ds = ds.cache()
targets = []
for ex in tfds.as_numpy(ds):
for k in max_sequence_length:
sequence_dim = sequence_dims.get(k, 0)
sequence_length = ex[k].shape[sequence_dim]
max_sequence_length[k] = max(max_sequence_length[k], sequence_length)
# Create list of postprocessed targets
pretokenized_target_field_name = target_field_name + "_pretokenized"
if pretokenized_target_field_name in ex:
target = ex[pretokenized_target_field_name]
else:
target = task.output_features[target_field_name].vocabulary.decode(
list(ex[target_field_name]))
if isinstance(target, bytes):
target = target.decode("utf-8")
targets.append(task.postprocess_fn(target, example=ex, is_target=True))
cached_targets[task.name] = targets
cached_task_datasets[task.name] = ds.apply(
tf.data.experimental.assert_cardinality(len(targets)))
return cached_targets, cached_task_datasets, max_sequence_length
The provided code snippet includes necessary dependencies for implementing the `run_eval` function. Write a Python function `def run_eval( mixture_or_task_name: str, predict_or_score_fn: PredictOrScoreFnCallable, checkpoint_steps: Iterable[int], dataset_fn: DatasetFnCallable, summary_dir: Optional[str] = None, split: Optional[str] = "validation", sequence_length: Optional[Mapping[str, int]] = None, batch_size: Optional[int] = None)` to solve the following problem:
Run evaluation on the given mixture or task. Args: mixture_or_task_name: str, the name of the Mixture or Task to evaluate on. Must be pre-registered in the global `TaskRegistry` or `MixtureRegistry.` predict_or_score_fn: function, This function takes in the sequence length, checkpoint step, tasks to evaluate, an eval_dataset_fn, a dict mapping task names to cached examples, a dict mapping task names to datasets, and returns a list of outputs or a list of scores. checkpoint_steps: an iterator with integers for checkpoint steps to evaluate on. dataset_fn: function, This function takes a task and returns the dataset associated with it. summary_dir: str, path to write TensorBoard events file summaries for eval. If None, use model_dir/eval_{split}. split: str, the mixture/task split to evaluate on. sequence_length: an integer or a dict from feature-key to integer the sequence length to pad or truncate to, e.g. {"inputs": 512, "targets": 128}. If None, sequence length is automatically computed during eval. batch_size: integer, used only to check that expected padding matches the targets. If None, the check is skipped.
Here is the function:
def run_eval(
mixture_or_task_name: str,
predict_or_score_fn: PredictOrScoreFnCallable,
checkpoint_steps: Iterable[int],
dataset_fn: DatasetFnCallable,
summary_dir: Optional[str] = None,
split: Optional[str] = "validation",
sequence_length: Optional[Mapping[str, int]] = None,
batch_size: Optional[int] = None):
"""Run evaluation on the given mixture or task.
Args:
mixture_or_task_name: str, the name of the Mixture or Task to evaluate
on. Must be pre-registered in the global `TaskRegistry` or
`MixtureRegistry.`
predict_or_score_fn: function, This function takes in the sequence length,
checkpoint step, tasks to evaluate, an eval_dataset_fn, a dict mapping
task names to cached examples, a dict mapping task names to datasets,
and returns a list of outputs or a list of scores.
checkpoint_steps: an iterator with integers for checkpoint steps to
evaluate on.
dataset_fn: function, This function takes a task and returns the dataset
associated with it.
summary_dir: str, path to write TensorBoard events file summaries for
eval. If None, use model_dir/eval_{split}.
split: str, the mixture/task split to evaluate on.
sequence_length: an integer or a dict from feature-key to integer
the sequence length to pad or truncate to,
e.g. {"inputs": 512, "targets": 128}.
If None, sequence length is automatically computed during eval.
batch_size: integer, used only to check that expected padding matches the
targets. If None, the check is skipped.
"""
vocabulary = get_vocabulary(mixture_or_task_name)
tasks = t5.data.get_subtasks(
t5.data.get_mixture_or_task(mixture_or_task_name))
tasks = seqio.evaluation.get_valid_eval_tasks(tasks, split)
if not tasks:
logging.info(
"All provided tasks have metric_fns=[] or no matching splits; "
"eval is not possible.")
return
summary_writer = None
cached_targets, cached_datasets, max_sequence_length = (
get_targets_and_examples(
tasks=tasks,
dataset_fn=functools.partial(
dataset_fn, split=split, sequence_length=None),
sequence_dims={}))
if summary_dir:
write_targets_and_examples(summary_dir, cached_targets, cached_datasets)
if sequence_length is None:
logging.info("Setting sequence lengths to %s", max_sequence_length)
sequence_length = max_sequence_length
elif (sequence_length["inputs"] < max_sequence_length["inputs"] or
sequence_length["targets"] < max_sequence_length["targets"]):
logging.warning(
"Given sequence lengths are insufficient for some evaluation inputs "
"or targets. These sequences will be truncated to fit, likely "
"leading to sub-optimal results. Consider passing `None` for "
"sequence_length to have them be automatically computed.\n Got: %s, "
"\n Max Lengths:%s", sequence_length, max_sequence_length)
elif (sequence_length["inputs"] > max_sequence_length["inputs"] or
sequence_length["targets"] > max_sequence_length["targets"]):
logging.warning(
"Given sequence lengths are longer than necessary for some "
"evaluation inputs or targets, resulting in wasted computation. "
"Consider passing `None` for sequence_length to have them be "
"automatically computed.\n Got: %s,\n Max Lengths: %s",
sequence_length, max_sequence_length)
for step in checkpoint_steps:
logging.info("Evaluating checkpoint step: %d", step)
outputs = predict_or_score_fn(
checkpoint_step=step,
vocabulary=vocabulary,
tasks=tasks,
datasets=cached_datasets,
sequence_length=sequence_length)
for task in tasks:
# Extract the portion of decodes corresponding to this dataset
dataset = cached_datasets[task.name]
dataset_size = len(cached_targets[task.name])
predictions = [
task.postprocess_fn(d, example=ex)
for d, ex in zip(outputs[:dataset_size], tfds.as_numpy(dataset))
]
if summary_dir:
outputs_filename = os.path.join(
summary_dir,
"{}_{}_outputs".format(task.name, step))
write_lines_to_file(outputs[:dataset_size], outputs_filename)
predictions_filename = os.path.join(
summary_dir,
"{}_{}_predictions".format(task.name, step))
write_lines_to_file(predictions, predictions_filename)
# Remove the used decodes.
del outputs[:dataset_size]
with tf.Graph().as_default():
if summary_dir:
summary_writer = summary_writer or tf.summary.FileWriter(
summary_dir)
for metric_fn in task.metric_fns:
if summary_dir:
summary = tf.Summary()
targets = cached_targets[task.name]
metric_result = metric_fn(targets, predictions)
for metric_name, metric_value in metric_result.items():
tag = "eval/{}/{}".format(task.name, metric_name)
logging.info("%s at step %d: %.3f", tag, step, metric_value)
if summary_dir:
summary.value.add(tag=tag, simple_value=metric_value)
summary_writer.add_summary(summary, step) # pytype: disable=attribute-error
if summary_dir:
summary_writer.flush() # pytype: disable=attribute-error
# Only padding should remain.
if batch_size:
expected_pad = -sum(len(t)
for t in cached_targets.values()) % batch_size
if outputs and len(outputs) != expected_pad:
raise ValueError("{} padded outputs, {} expected.".format(
len(outputs), expected_pad)) | Run evaluation on the given mixture or task. Args: mixture_or_task_name: str, the name of the Mixture or Task to evaluate on. Must be pre-registered in the global `TaskRegistry` or `MixtureRegistry.` predict_or_score_fn: function, This function takes in the sequence length, checkpoint step, tasks to evaluate, an eval_dataset_fn, a dict mapping task names to cached examples, a dict mapping task names to datasets, and returns a list of outputs or a list of scores. checkpoint_steps: an iterator with integers for checkpoint steps to evaluate on. dataset_fn: function, This function takes a task and returns the dataset associated with it. summary_dir: str, path to write TensorBoard events file summaries for eval. If None, use model_dir/eval_{split}. split: str, the mixture/task split to evaluate on. sequence_length: an integer or a dict from feature-key to integer the sequence length to pad or truncate to, e.g. {"inputs": 512, "targets": 128}. If None, sequence length is automatically computed during eval. batch_size: integer, used only to check that expected padding matches the targets. If None, the check is skipped. |
106 | import importlib
import os
import sys
from absl import app
from absl import flags
from absl import logging
import gin
from mesh_tensorflow.transformer import utils
import pkg_resources
import t5
from t5.models import mesh_transformer
from t5.models import mtf_model
import tensorflow.compat.v1 as tf
def main(_):
if FLAGS.module_import:
for module in FLAGS.module_import:
importlib.import_module(module)
if FLAGS.t5_tfds_data_dir:
t5.data.set_tfds_data_dir_override(FLAGS.t5_tfds_data_dir)
# Add search path for gin files stored in package.
assert pkg_resources.resource_filename is not None
gin.add_config_file_search_path(
pkg_resources.resource_filename(__name__, "gin"))
try:
suffix = 0
command_dir = os.path.join(FLAGS.model_dir, "commands")
tf.io.gfile.makedirs(command_dir)
command_filename = os.path.join(command_dir, "command")
while tf.io.gfile.exists(command_filename):
suffix += 1
command_filename = os.path.join(command_dir, "command.{}".format(suffix))
with tf.io.gfile.GFile(command_filename, "w") as f:
f.write(" ".join(sys.argv))
except (tf.errors.PermissionDeniedError, tf.errors.InvalidArgumentError):
logging.info(
"No write access to model directory. Skipping command logging.")
utils.parse_gin_defaults_and_flags(
skip_unknown=(FLAGS.skip_all_gin_unknowns or (
mesh_transformer.DEPRECATED_GIN_REFERENCES +
tuple(FLAGS.additional_deprecated_gin_references))),
finalize_config=False)
# We must overide this binding explicitly since it is set to a deprecated
# function or class in many existing configs.
gin.bind_parameter("run.vocabulary", mesh_transformer.get_vocabulary())
gin.finalize()
# Set cache dir after loading gin to avoid unintentionally overriding it.
t5.data.add_global_cache_dirs(FLAGS.additional_task_cache_dirs)
if FLAGS.use_model_api:
model = mtf_model.MtfModel(
tpu_job_name=FLAGS.tpu_job_name,
tpu=FLAGS.tpu,
gcp_project=FLAGS.gcp_project,
tpu_zone=FLAGS.tpu_zone,
tpu_topology=FLAGS.tpu_topology,
model_parallelism=FLAGS.model_parallelism,
model_dir=FLAGS.model_dir,
batch_size=FLAGS.batch_size,
sequence_length={"inputs": FLAGS.input_sequence_length,
"targets": FLAGS.target_sequence_length}
)
if FLAGS.checkpoint_mode != "specific" and FLAGS.checkpoint_steps:
raise ValueError("checkpoint_mode is set to %s and checkpoint_steps is "
"also set. To use a particular checkpoint, please set "
"checkpoint_mode to 'specific'. For other modes, please "
"ensure that checkpoint_steps is not set."
% FLAGS.checkpoint_mode)
if FLAGS.checkpoint_mode == "latest":
checkpoint_steps = -1
elif FLAGS.checkpoint_mode == "all":
checkpoint_steps = "all"
else:
checkpoint_steps = [int(c) for c in FLAGS.checkpoint_steps]
if FLAGS.mode == "train":
model.train(mixture_or_task_name=FLAGS.mixture_or_task,
steps=FLAGS.train_steps)
elif FLAGS.mode == "eval":
model.eval(mixture_or_task_name=FLAGS.mixture_or_task,
checkpoint_steps=checkpoint_steps,
summary_dir=FLAGS.eval_summary_dir,
split=FLAGS.eval_split)
elif FLAGS.mode == "finetune":
if not (FLAGS.checkpoint_mode == "latest" or
(FLAGS.checkpoint_mode == "specific" and
len(FLAGS.checkpoint_steps) == 1)):
raise ValueError(
"Must specify a single checkpoint for finetuning a model.")
if isinstance(checkpoint_steps, list):
checkpoint_steps = checkpoint_steps[0]
model.finetune(
mixture_or_task_name=FLAGS.mixture_or_task,
steps=FLAGS.train_steps,
pretrained_model_dir=FLAGS.pretrained_model_dir,
checkpoint_steps=checkpoint_steps)
elif FLAGS.mode == "predict":
model.predict(
checkpoint_steps=checkpoint_steps,
input_file=FLAGS.input_file,
output_file=FLAGS.output_file,
beam_size=FLAGS.beam_size,
temperature=FLAGS.temperature,
keep_top_k=FLAGS.keep_top_k,)
elif FLAGS.mode == "score":
model.score(
FLAGS.input_file,
FLAGS.target_file,
scores_file=FLAGS.output_file,
checkpoint_steps=checkpoint_steps)
elif FLAGS.mode in ("export_predict", "export_score"):
if not (FLAGS.checkpoint_mode == "latest" or
(FLAGS.checkpoint_mode == "specific" and
len(FLAGS.checkpoint_steps) == 1)):
raise ValueError(
"Must specify a single checkpoint for exporting a model.")
if isinstance(checkpoint_steps, list):
checkpoint_steps = checkpoint_steps[0]
model.export(
export_dir=FLAGS.export_dir,
checkpoint_step=checkpoint_steps,
beam_size=FLAGS.beam_size,
temperature=FLAGS.temperature,
keep_top_k=FLAGS.keep_top_k,
eval_with_score=(FLAGS.mode == "export_score"))
else:
raise ValueError("--mode flag must be set when using Model API.")
else:
if FLAGS.mode:
raise ValueError("--mode flag should only be set when using Model API.")
if not FLAGS.tpu:
with gin.unlock_config():
gin.bind_parameter("utils.get_variable_dtype.slice_dtype", "float32")
gin.bind_parameter(
"utils.get_variable_dtype.activation_dtype", "float32")
utils.run(
tpu_job_name=FLAGS.tpu_job_name,
tpu=FLAGS.tpu,
gcp_project=FLAGS.gcp_project,
tpu_zone=FLAGS.tpu_zone,
model_dir=FLAGS.model_dir)
def console_entry_point():
tf.disable_v2_behavior()
tf.logging.set_verbosity(tf.logging.INFO)
app.run(main) | null |
107 | import functools
import os
import gin
import gin.tf
import mesh_tensorflow as mtf
from mesh_tensorflow import optimize
from mesh_tensorflow.transformer import dataset as transformer_dataset
from mesh_tensorflow.transformer import learning_rate_schedules
from mesh_tensorflow.transformer import utils as mtf_utils
from t5.models import mesh_transformer
from t5.models import utils
from t5.models.t5_model import T5Model
import tensorflow.compat.v1 as tf
def _parse_operative_config(model_dir):
with gin.unlock_config():
gin.parse_config_file(
os.path.join(model_dir, "operative_config.gin"),
skip_unknown=mesh_transformer.DEPRECATED_GIN_REFERENCES) | null |
108 | import functools
from absl import logging
import gin
import mesh_tensorflow.transformer.dataset as transformer_dataset
import seqio
from t5.models import utils as model_utils
import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds
The provided code snippet includes necessary dependencies for implementing the `mesh_train_dataset_fn` function. Write a Python function `def mesh_train_dataset_fn( mixture_or_task_name, sequence_length, vocabulary=None, dataset_split=tfds.Split.TRAIN, shuffle=True, seed=None, use_cached=False, pack=True)` to solve the following problem:
Returns the tf.data.Dataset for training on a given mixture. This uses the format required for utils.run's `train_dataset_fn` argument in the Mesh TF transformer standalone. Args: mixture_or_task_name: string, an identifier for a Mixture or Task in the appropriate registry. Must be specified via gin. sequence_length: dict mapping feature key to the int length for that feature the max sequence length. vocabulary: unused argument, maintains compatibility with other dataset_fns. dataset_split: string, which split of the dataset to load. In most cases this should be "train". shuffle: Whether or not to shuffle dataset. seed: tf.int64 scalar tf.Tensor (or None). Used for both the global seed and shuffle seed for tf.data use_cached: bool, whether to load the cached version of this dataset. pack: bool, whether to pack the dataset. Returns: A tf.data.Dataset of preprocessed, tokenized, and batched examples.
Here is the function:
def mesh_train_dataset_fn(
mixture_or_task_name,
sequence_length,
vocabulary=None,
dataset_split=tfds.Split.TRAIN,
shuffle=True,
seed=None,
use_cached=False,
pack=True):
"""Returns the tf.data.Dataset for training on a given mixture.
This uses the format required for utils.run's `train_dataset_fn` argument in
the Mesh TF transformer standalone.
Args:
mixture_or_task_name: string, an identifier for a Mixture or Task in the
appropriate registry. Must be specified via gin.
sequence_length: dict mapping feature key to the int length for that feature
the max sequence length.
vocabulary: unused argument, maintains compatibility with other dataset_fns.
dataset_split: string, which split of the dataset to load. In most cases
this should be "train".
shuffle: Whether or not to shuffle dataset.
seed: tf.int64 scalar tf.Tensor (or None). Used for both the global seed and
shuffle seed for tf.data
use_cached: bool, whether to load the cached version of this dataset.
pack: bool, whether to pack the dataset.
Returns:
A tf.data.Dataset of preprocessed, tokenized, and batched examples.
"""
del vocabulary
mixture_or_task = seqio.get_mixture_or_task(mixture_or_task_name)
ds = mixture_or_task.get_dataset(
sequence_length, split=dataset_split, use_cached=use_cached,
shuffle=shuffle, num_epochs=None, seed=seed)
# Select just the output features which are present in the dataset.
feature_keys = tuple(k for k in mixture_or_task.output_features
if k in tf.data.get_output_shapes(ds))
# Filtering feature keys is done in pack_or_pad function. However, when
# packing is turned off, input_features aren't filtered leading to training
# problems due to strings showing up in the input example. Filtering features
# ensures that we don't rely on pack_or_pad to filter features for training.
def _filter_features(ex):
return {k: ex[k] for k in feature_keys}
ds = ds.map(
_filter_features, num_parallel_calls=tf.data.experimental.AUTOTUNE)
eos_keys = set(
k for k, f in mixture_or_task.output_features.items() if f.add_eos)
ds = transformer_dataset.pack_or_pad(
ds, sequence_length, pack=pack,
feature_keys=feature_keys, ensure_eos=eos_keys)
return ds | Returns the tf.data.Dataset for training on a given mixture. This uses the format required for utils.run's `train_dataset_fn` argument in the Mesh TF transformer standalone. Args: mixture_or_task_name: string, an identifier for a Mixture or Task in the appropriate registry. Must be specified via gin. sequence_length: dict mapping feature key to the int length for that feature the max sequence length. vocabulary: unused argument, maintains compatibility with other dataset_fns. dataset_split: string, which split of the dataset to load. In most cases this should be "train". shuffle: Whether or not to shuffle dataset. seed: tf.int64 scalar tf.Tensor (or None). Used for both the global seed and shuffle seed for tf.data use_cached: bool, whether to load the cached version of this dataset. pack: bool, whether to pack the dataset. Returns: A tf.data.Dataset of preprocessed, tokenized, and batched examples. |
109 | import functools
from absl import logging
import gin
import mesh_tensorflow.transformer.dataset as transformer_dataset
import seqio
from t5.models import utils as model_utils
import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds
The provided code snippet includes necessary dependencies for implementing the `mesh_inference_dataset_fn` function. Write a Python function `def mesh_inference_dataset_fn( mixture_or_task_name, sequence_length, dataset_split, shuffle=False, seed=None, vocabulary=None, num_inference_examples=-1, use_cached=False, priming_sequence_length=None)` to solve the following problem:
Returns all tf.data.Datasets for LM inference on a given mixture. For Tasks without inputs (such as language modeling), the first `priming_sequence_length` tokens in the target are used as the "inputs" for inference. Args: mixture_or_task_name: string, an identifier for a Mixture or Task in the appropriate registry. Must be specified via gin. sequence_length: dict mapping feature key to the int length for that feature the max sequence length. If set to None, packing and padding will be disabled. dataset_split: string, which split of the dataset to load. NOTE, this function does NOT receive the split specified in utils.run. It needs to be specified separately. shuffle: Whether or not to shuffle dataset. seed: tf.int64 scalar tf.Tensor (or None). Used as shuffle seed for tf.data. vocabulary: unused argument, maintains compatibility with other dataaset_fns num_inference_examples: maximum number of examples per task to do inference on. If None or less than 0, use all examples. use_cached: bool, whether to load the cached version of this dataset. evals but should not be used for iterative decoding. priming_sequence_length: If the Task only has "targets", select the first this many tokens from each target sequence to use as "inputs". This is useful for decoder-only language models where you would like to use a portion of the targets as a priming sequence for generation. Returns: A list of mesh_tensorflow.transformer.dataset.EvalDataset tuples.
Here is the function:
def mesh_inference_dataset_fn(
mixture_or_task_name,
sequence_length,
dataset_split,
shuffle=False,
seed=None,
vocabulary=None,
num_inference_examples=-1,
use_cached=False,
priming_sequence_length=None):
"""Returns all tf.data.Datasets for LM inference on a given mixture.
For Tasks without inputs (such as language modeling), the first
`priming_sequence_length` tokens in the target are used as the "inputs" for
inference.
Args:
mixture_or_task_name: string, an identifier for a Mixture or Task in the
appropriate registry. Must be specified via gin.
sequence_length: dict mapping feature key to the int length for that feature
the max sequence length. If set to None, packing and padding will be
disabled.
dataset_split: string, which split of the dataset to load. NOTE, this
function does NOT receive the split specified in utils.run. It needs to be
specified separately.
shuffle: Whether or not to shuffle dataset.
seed: tf.int64 scalar tf.Tensor (or None). Used as shuffle seed for tf.data.
vocabulary: unused argument, maintains compatibility with other dataaset_fns
num_inference_examples: maximum number of examples per task to do inference
on. If None or less than 0, use all examples.
use_cached: bool, whether to load the cached version of this dataset.
evals but should not be used for iterative decoding.
priming_sequence_length: If the Task only has "targets", select the first
this many tokens from each target sequence to use as "inputs". This is
useful for decoder-only language models where you would like to use a
portion of the targets as a priming sequence for generation.
Returns:
A list of mesh_tensorflow.transformer.dataset.EvalDataset tuples.
"""
del vocabulary
mixture_or_task = seqio.get_mixture_or_task(mixture_or_task_name)
def _split_targets_for_primed_inference(ex):
ex["inputs"] = ex["targets"][:priming_sequence_length]
ex["targets"] = ex["targets"][priming_sequence_length:]
ex["inputs"] = tf.pad(
ex["inputs"],
[[0, priming_sequence_length - tf.shape(ex["inputs"])[0]]], "CONSTANT")
ex["inputs"] = tf.reshape(ex["inputs"], shape=(priming_sequence_length,))
return ex
def _prepare_for_unprimed_inference(ex):
ex["inputs"] = tf.constant([], dtype=tf.int64)
return ex
def _get_dataset_for_single_task(task, sequence_length):
"""Get a tensorflow.data.Dataset for the provided task."""
ds = task.get_dataset(
sequence_length, split=dataset_split, use_cached=use_cached,
shuffle=shuffle, seed=seed)
if "inputs" not in ds.element_spec:
if not priming_sequence_length or priming_sequence_length <= 0:
logging.warning("Priming sequence length not specified so priming "
"with the empty string.")
ds = ds.map(_prepare_for_unprimed_inference)
else:
logging.info("Using the first %d tokens of each target as input.",
priming_sequence_length)
ds = ds.map(_split_targets_for_primed_inference)
elif priming_sequence_length is not None:
raise ValueError(
"Setting a priming sequence length only makes sense for decoder-only "
"Tasks, which have `targets` but no `inputs`.")
eos_keys = set(
k for k, f in mixture_or_task.output_features.items() if f.add_eos)
logging.info(
"Padding '%s' with sequence lengths: %s", task.name, sequence_length)
ds = transformer_dataset.pack_or_pad(
ds,
sequence_length,
pack=False,
feature_keys=tuple(task.output_features),
ensure_eos=eos_keys)
if num_inference_examples is not None and num_inference_examples >= 0:
ds = ds.take(num_inference_examples)
return ds
outputs = []
for task in seqio.get_subtasks(mixture_or_task):
if dataset_split not in task.splits:
logging.info("Task %s has no '%s' split, skipping inference.",
task.name, dataset_split)
continue
outputs.append(
transformer_dataset.EvalDataset(
task.name,
functools.partial(
_get_dataset_for_single_task,
task=task,
sequence_length=sequence_length),
task.postprocess_fn,
task.metric_fns,
)
)
if not outputs:
logging.warning("No %s data found for %s.",
dataset_split, mixture_or_task_name)
return outputs | Returns all tf.data.Datasets for LM inference on a given mixture. For Tasks without inputs (such as language modeling), the first `priming_sequence_length` tokens in the target are used as the "inputs" for inference. Args: mixture_or_task_name: string, an identifier for a Mixture or Task in the appropriate registry. Must be specified via gin. sequence_length: dict mapping feature key to the int length for that feature the max sequence length. If set to None, packing and padding will be disabled. dataset_split: string, which split of the dataset to load. NOTE, this function does NOT receive the split specified in utils.run. It needs to be specified separately. shuffle: Whether or not to shuffle dataset. seed: tf.int64 scalar tf.Tensor (or None). Used as shuffle seed for tf.data. vocabulary: unused argument, maintains compatibility with other dataaset_fns num_inference_examples: maximum number of examples per task to do inference on. If None or less than 0, use all examples. use_cached: bool, whether to load the cached version of this dataset. evals but should not be used for iterative decoding. priming_sequence_length: If the Task only has "targets", select the first this many tokens from each target sequence to use as "inputs". This is useful for decoder-only language models where you would like to use a portion of the targets as a priming sequence for generation. Returns: A list of mesh_tensorflow.transformer.dataset.EvalDataset tuples. |
110 | import functools
from absl import logging
import gin
import mesh_tensorflow.transformer.dataset as transformer_dataset
import seqio
from t5.models import utils as model_utils
import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds
The provided code snippet includes necessary dependencies for implementing the `mesh_eval_dataset_fn` function. Write a Python function `def mesh_eval_dataset_fn( mixture_or_task_name, sequence_length, dataset_split, vocabulary=None, num_eval_examples=-1, use_cached=False, pack=False, shuffle_eval_examples=False, seed=None)` to solve the following problem:
Returns all tf.data.Datasets for evaluation on a given mixture. This uses the format required for utils.run's `eval_dataset_fn` argument in the Mesh TF transformer standalone. Args: mixture_or_task_name: string, an identifier for a Mixture or Task in the appropriate registry. Must be specified via gin. sequence_length: dict mapping feature key to the int length for that feature the max sequence length. If set to None, packing and padding will be disabled. dataset_split: string, which split of the dataset to load. vocabulary: unused argument, maintains compatibility with other dataaset_fns num_eval_examples: maximum number of examples per task to use for continuous eval. If None or less than 0, use all examples. use_cached: bool, whether to load the cached version of this dataset. pack: a boolean, whether to pack examples. This is useful for perplexity evals but should not be used for iterative decoding. shuffle_eval_examples: boolean, whether to shuffle eval examples, applied only when num_eval_examples is not None. Intended to be able to eval on a different eval slice at every iteration. seed: tf.int64 scalar tf.Tensor (or None). Used for both the global seed and shuffle seed for tf.data Returns: A list of mesh_tensorflow.transformer.dataset.EvalDataset tuples.
Here is the function:
def mesh_eval_dataset_fn(
mixture_or_task_name,
sequence_length,
dataset_split,
vocabulary=None,
num_eval_examples=-1,
use_cached=False,
pack=False,
shuffle_eval_examples=False,
seed=None):
"""Returns all tf.data.Datasets for evaluation on a given mixture.
This uses the format required for utils.run's `eval_dataset_fn` argument in
the Mesh TF transformer standalone.
Args:
mixture_or_task_name: string, an identifier for a Mixture or Task in the
appropriate registry. Must be specified via gin.
sequence_length: dict mapping feature key to the int length for that feature
the max sequence length. If set to None, packing and padding will be
disabled.
dataset_split: string, which split of the dataset to load.
vocabulary: unused argument, maintains compatibility with other dataaset_fns
num_eval_examples: maximum number of examples per task to use for continuous
eval. If None or less than 0, use all examples.
use_cached: bool, whether to load the cached version of this dataset.
pack: a boolean, whether to pack examples. This is useful for perplexity
evals but should not be used for iterative decoding.
shuffle_eval_examples: boolean, whether to shuffle eval examples, applied
only when num_eval_examples is not None. Intended to be able to eval on a
different eval slice at every iteration.
seed: tf.int64 scalar tf.Tensor (or None). Used for both the global seed and
shuffle seed for tf.data
Returns:
A list of mesh_tensorflow.transformer.dataset.EvalDataset tuples.
"""
del vocabulary
mixture_or_task = seqio.get_mixture_or_task(mixture_or_task_name)
def _get_dataset_for_single_task(task, sequence_length):
"""Get a tensorflow.data.Dataset for the provided task."""
if shuffle_eval_examples and seed is None:
logging.warning(("shuffle_seed_examples is true but no seed was ",
"provided. Using a random seed."))
ds = task.get_dataset(
sequence_length, split=dataset_split,
use_cached=use_cached, shuffle=shuffle_eval_examples, seed=seed,
)
eos_keys = set(
k for k, f in mixture_or_task.output_features.items() if f.add_eos)
if sequence_length is None:
logging.info(
"Skipping packing/padding for '%s' since sequence length is None.",
task.name)
else:
logging.info(
"%sing '%s' with sequence lengths: %s",
"Pack" if pack else "Padd", task.name, sequence_length)
ds = transformer_dataset.pack_or_pad(
ds,
sequence_length,
pack=pack,
feature_keys=tuple(task.output_features),
ensure_eos=eos_keys)
if num_eval_examples is not None and num_eval_examples >= 0:
ds = ds.take(num_eval_examples)
return ds
outputs = []
for task in seqio.get_subtasks(mixture_or_task):
if dataset_split not in task.splits:
logging.info(
"Task %s has no '%s' split, skipping eval.", task.name, dataset_split
)
continue
outputs.append(
transformer_dataset.EvalDataset(
task.name,
functools.partial(
_get_dataset_for_single_task,
task=task,
sequence_length=sequence_length),
task.postprocess_fn,
task.metric_fns,
)
)
if not outputs:
logging.warning("No %s data found for %s.",
dataset_split, mixture_or_task_name)
return outputs | Returns all tf.data.Datasets for evaluation on a given mixture. This uses the format required for utils.run's `eval_dataset_fn` argument in the Mesh TF transformer standalone. Args: mixture_or_task_name: string, an identifier for a Mixture or Task in the appropriate registry. Must be specified via gin. sequence_length: dict mapping feature key to the int length for that feature the max sequence length. If set to None, packing and padding will be disabled. dataset_split: string, which split of the dataset to load. vocabulary: unused argument, maintains compatibility with other dataaset_fns num_eval_examples: maximum number of examples per task to use for continuous eval. If None or less than 0, use all examples. use_cached: bool, whether to load the cached version of this dataset. pack: a boolean, whether to pack examples. This is useful for perplexity evals but should not be used for iterative decoding. shuffle_eval_examples: boolean, whether to shuffle eval examples, applied only when num_eval_examples is not None. Intended to be able to eval on a different eval slice at every iteration. seed: tf.int64 scalar tf.Tensor (or None). Used for both the global seed and shuffle seed for tf.data Returns: A list of mesh_tensorflow.transformer.dataset.EvalDataset tuples. |
111 | import functools
from absl import logging
import gin
import mesh_tensorflow.transformer.dataset as transformer_dataset
import seqio
from t5.models import utils as model_utils
import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds
The provided code snippet includes necessary dependencies for implementing the `tsv_dataset_fn` function. Write a Python function `def tsv_dataset_fn( filename, sequence_length, dataset_split, vocabulary, shuffle_buffer_size=10000)` to solve the following problem:
r"""Returns a dataset based on a TSV file formatted as `<input>\t<target>`.
Here is the function:
def tsv_dataset_fn(
filename,
sequence_length,
dataset_split,
vocabulary,
shuffle_buffer_size=10000):
r"""Returns a dataset based on a TSV file formatted as `<input>\t<target>`."""
# Currently `tf.gfile.glob` is broken on GCS, so we only read a file or
# list of files.
return transformer_dataset.packed_parallel_tsv_dataset(
dataset=tf.data.TextLineDataset(filename).shuffle(shuffle_buffer_size),
sequence_length=sequence_length,
vocabulary=vocabulary,
dataset_split=dataset_split,
append_eos=True,
eos_id=1) | r"""Returns a dataset based on a TSV file formatted as `<input>\t<target>`. |
112 | import functools
from absl import logging
import gin
import mesh_tensorflow.transformer.dataset as transformer_dataset
import seqio
from t5.models import utils as model_utils
import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds
The provided code snippet includes necessary dependencies for implementing the `get_vocabulary` function. Write a Python function `def get_vocabulary(mixture_or_task_name=None)` to solve the following problem:
Get the appropriate value for the utils.run.vocabulary argument. Args: mixture_or_task_name: string, an identifier for a Mixture or Task in the appropriate registry. Must be specified via gin. Returns: Either a single seqio.vocabularies.Vocabulary or a tuple of seqio.vocabularies.Vocabulary for inputs and targets.
Here is the function:
def get_vocabulary(mixture_or_task_name=None):
"""Get the appropriate value for the utils.run.vocabulary argument.
Args:
mixture_or_task_name: string, an identifier for a Mixture or Task in the
appropriate registry. Must be specified via gin.
Returns:
Either a single seqio.vocabularies.Vocabulary or a tuple of
seqio.vocabularies.Vocabulary for inputs and targets.
"""
return model_utils.get_vocabulary(mixture_or_task_name) | Get the appropriate value for the utils.run.vocabulary argument. Args: mixture_or_task_name: string, an identifier for a Mixture or Task in the appropriate registry. Must be specified via gin. Returns: Either a single seqio.vocabularies.Vocabulary or a tuple of seqio.vocabularies.Vocabulary for inputs and targets. |
113 | import functools
import itertools
import os
import re
import time
from absl import logging
import mesh_tensorflow.transformer.dataset as transformer_dataset
import seqio
import t5.data
from t5.models import utils
from t5.models.t5_model import T5Model
import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds
import torch
import torch.utils.tensorboard
The provided code snippet includes necessary dependencies for implementing the `tokens_to_batches` function. Write a Python function `def tokens_to_batches(dataset, sequence_length, batch_size, output_features, mixture_or_task=None)` to solve the following problem:
Convert a dataset of token sequences to batches of padded/masked examples. Args: dataset: tf.data.Dataset containing examples with token sequences. sequence_length: dict of int, a dict mapping feature name to length. batch_size: int, the number of padded sequences in each batch. output_features: list of str, features to include in the dataset. mixture_or_task: a Task or Mixture object, used to correctly specify eos if provided. If none, eos is always added at the end of the sequence. Returns: A generator that produces batches of numpy examples.
Here is the function:
def tokens_to_batches(dataset,
sequence_length,
batch_size,
output_features,
mixture_or_task=None):
"""Convert a dataset of token sequences to batches of padded/masked examples.
Args:
dataset: tf.data.Dataset containing examples with token sequences.
sequence_length: dict of int, a dict mapping feature name to length.
batch_size: int, the number of padded sequences in each batch.
output_features: list of str, features to include in the dataset.
mixture_or_task: a Task or Mixture object, used to correctly specify eos if
provided. If none, eos is always added at the end of the sequence.
Returns:
A generator that produces batches of numpy examples.
"""
if mixture_or_task:
eos_keys = set(
k for k, f in mixture_or_task.output_features.items() if f.add_eos)
else:
eos_keys = True
dataset = transformer_dataset.pack_or_pad(
dataset,
sequence_length,
pack=False,
feature_keys=output_features,
ensure_eos=eos_keys,
)
def _map_fn(ex):
for key in output_features:
tensor = ex[key]
mask = tf.cast(tf.greater(tensor, 0), tensor.dtype)
ex[key + "_mask"] = mask
return ex
dataset = dataset.map(
_map_fn,
num_parallel_calls=tf.data.experimental.AUTOTUNE,
)
dataset = dataset.batch(batch_size, drop_remainder=False)
return tfds.as_numpy(dataset) | Convert a dataset of token sequences to batches of padded/masked examples. Args: dataset: tf.data.Dataset containing examples with token sequences. sequence_length: dict of int, a dict mapping feature name to length. batch_size: int, the number of padded sequences in each batch. output_features: list of str, features to include in the dataset. mixture_or_task: a Task or Mixture object, used to correctly specify eos if provided. If none, eos is always added at the end of the sequence. Returns: A generator that produces batches of numpy examples. |
114 | import functools
import itertools
import os
import re
import time
from absl import logging
import mesh_tensorflow.transformer.dataset as transformer_dataset
import seqio
import t5.data
from t5.models import utils
from t5.models.t5_model import T5Model
import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds
import torch
import torch.utils.tensorboard
The provided code snippet includes necessary dependencies for implementing the `_get_dataset` function. Write a Python function `def _get_dataset(mixture_or_task_or_name, sequence_length, split, shuffle=True)` to solve the following problem:
Get a tf.data.Dataset for a given Task or Mixture. Args: mixture_or_task_or_name: Task or Mixture or str, the name of the Mixture or Task to train on or the Tasks or Mixture object itself. Must be pre-registered in the global `t5.data.TaskRegistry` or `t5.data.MixtureRegistry.` sequence_length: dict of int, a dict mapping feature name to length. split: str or `tensorflow_datasets.Split`, the data split to load. shuffle: boolean, whether to shuffle the dataset. Returns: A generator that produces batches of numpy examples.
Here is the function:
def _get_dataset(mixture_or_task_or_name,
sequence_length,
split,
shuffle=True):
"""Get a tf.data.Dataset for a given Task or Mixture.
Args:
mixture_or_task_or_name: Task or Mixture or str, the name of the Mixture or
Task to train on or the Tasks or Mixture object itself.
Must be pre-registered in the global `t5.data.TaskRegistry` or
`t5.data.MixtureRegistry.`
sequence_length: dict of int, a dict mapping feature name to length.
split: str or `tensorflow_datasets.Split`, the data split to load.
shuffle: boolean, whether to shuffle the dataset.
Returns:
A generator that produces batches of numpy examples.
"""
if isinstance(mixture_or_task_or_name, str):
task = seqio.get_mixture_or_task(mixture_or_task_or_name)
else:
task = mixture_or_task_or_name
return task.get_dataset(sequence_length, split, shuffle=shuffle) | Get a tf.data.Dataset for a given Task or Mixture. Args: mixture_or_task_or_name: Task or Mixture or str, the name of the Mixture or Task to train on or the Tasks or Mixture object itself. Must be pre-registered in the global `t5.data.TaskRegistry` or `t5.data.MixtureRegistry.` sequence_length: dict of int, a dict mapping feature name to length. split: str or `tensorflow_datasets.Split`, the data split to load. shuffle: boolean, whether to shuffle the dataset. Returns: A generator that produces batches of numpy examples. |
115 | import argparse, os, shutil, time
import cv2
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, ToTensor, Resize
from torchvision.transforms.functional import to_pil_image
from threading import Thread, Lock
from tqdm import tqdm
from PIL import Image
from dataset import VideoDataset
from model import MattingBase, MattingRefine
def cv2_frame_to_cuda(frame):
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return ToTensor()(Image.fromarray(frame)).unsqueeze_(0).cuda() | null |
116 | import argparse
import kornia
import torch
import os
import random
from torch import nn
from torch import distributed as dist
from torch import multiprocessing as mp
from torch.nn import functional as F
from torch.cuda.amp import autocast, GradScaler
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, Subset
from torch.optim import Adam
from torchvision.utils import make_grid
from tqdm import tqdm
from torchvision import transforms as T
from PIL import Image
from data_path import DATA_PATH
from dataset import ImagesDataset, ZipDataset, VideoDataset, SampleDataset
from dataset import augmentation as A
from model import MattingRefine
from model.utils import load_matched_state_dict
args = parser.parse_args()
distributed_num_gpus = torch.cuda.device_count()
assert args.batch_size % distributed_num_gpus == 0
def compute_loss(pred_pha_lg, pred_fgr_lg, pred_pha_sm, pred_fgr_sm, pred_err_sm, true_pha_lg, true_fgr_lg):
def random_crop(*imgs):
def valid(model, dataloader, writer, step):
DATA_PATH = {
'videomatte240k': {
'train': {
'fgr': 'PATH_TO_IMAGES_DIR',
'pha': 'PATH_TO_IMAGES_DIR'
},
'valid': {
'fgr': 'PATH_TO_IMAGES_DIR',
'pha': 'PATH_TO_IMAGES_DIR'
}
},
'photomatte13k': {
'train': {
'fgr': 'PATH_TO_IMAGES_DIR',
'pha': 'PATH_TO_IMAGES_DIR'
},
'valid': {
'fgr': 'PATH_TO_IMAGES_DIR',
'pha': 'PATH_TO_IMAGES_DIR'
}
},
'distinction': {
'train': {
'fgr': 'PATH_TO_IMAGES_DIR',
'pha': 'PATH_TO_IMAGES_DIR',
},
'valid': {
'fgr': 'PATH_TO_IMAGES_DIR',
'pha': 'PATH_TO_IMAGES_DIR'
},
},
'adobe': {
'train': {
'fgr': 'PATH_TO_IMAGES_DIR',
'pha': 'PATH_TO_IMAGES_DIR',
},
'valid': {
'fgr': 'PATH_TO_IMAGES_DIR',
'pha': 'PATH_TO_IMAGES_DIR'
},
},
'backgrounds': {
'train': 'PATH_TO_IMAGES_DIR',
'valid': 'PATH_TO_IMAGES_DIR'
},
}
def load_matched_state_dict(model, state_dict, print_stats=True):
def train_worker(rank, addr, port):
# Distributed Setup
os.environ['MASTER_ADDR'] = addr
os.environ['MASTER_PORT'] = port
dist.init_process_group("nccl", rank=rank, world_size=distributed_num_gpus)
# Training DataLoader
dataset_train = ZipDataset([
ZipDataset([
ImagesDataset(DATA_PATH[args.dataset_name]['train']['pha'], mode='L'),
ImagesDataset(DATA_PATH[args.dataset_name]['train']['fgr'], mode='RGB'),
], transforms=A.PairCompose([
A.PairRandomAffineAndResize((2048, 2048), degrees=(-5, 5), translate=(0.1, 0.1), scale=(0.3, 1), shear=(-5, 5)),
A.PairRandomHorizontalFlip(),
A.PairRandomBoxBlur(0.1, 5),
A.PairRandomSharpen(0.1),
A.PairApplyOnlyAtIndices([1], T.ColorJitter(0.15, 0.15, 0.15, 0.05)),
A.PairApply(T.ToTensor())
]), assert_equal_length=True),
ImagesDataset(DATA_PATH['backgrounds']['train'], mode='RGB', transforms=T.Compose([
A.RandomAffineAndResize((2048, 2048), degrees=(-5, 5), translate=(0.1, 0.1), scale=(1, 2), shear=(-5, 5)),
T.RandomHorizontalFlip(),
A.RandomBoxBlur(0.1, 5),
A.RandomSharpen(0.1),
T.ColorJitter(0.15, 0.15, 0.15, 0.05),
T.ToTensor()
])),
])
dataset_train_len_per_gpu_worker = int(len(dataset_train) / distributed_num_gpus)
dataset_train = Subset(dataset_train, range(rank * dataset_train_len_per_gpu_worker, (rank + 1) * dataset_train_len_per_gpu_worker))
dataloader_train = DataLoader(dataset_train,
shuffle=True,
pin_memory=True,
drop_last=True,
batch_size=args.batch_size // distributed_num_gpus,
num_workers=args.num_workers // distributed_num_gpus)
# Validation DataLoader
if rank == 0:
dataset_valid = ZipDataset([
ZipDataset([
ImagesDataset(DATA_PATH[args.dataset_name]['valid']['pha'], mode='L'),
ImagesDataset(DATA_PATH[args.dataset_name]['valid']['fgr'], mode='RGB')
], transforms=A.PairCompose([
A.PairRandomAffineAndResize((2048, 2048), degrees=(-5, 5), translate=(0.1, 0.1), scale=(0.3, 1), shear=(-5, 5)),
A.PairApply(T.ToTensor())
]), assert_equal_length=True),
ImagesDataset(DATA_PATH['backgrounds']['valid'], mode='RGB', transforms=T.Compose([
A.RandomAffineAndResize((2048, 2048), degrees=(-5, 5), translate=(0.1, 0.1), scale=(1, 1.2), shear=(-5, 5)),
T.ToTensor()
])),
])
dataset_valid = SampleDataset(dataset_valid, 50)
dataloader_valid = DataLoader(dataset_valid,
pin_memory=True,
drop_last=True,
batch_size=args.batch_size // distributed_num_gpus,
num_workers=args.num_workers // distributed_num_gpus)
# Model
model = MattingRefine(args.model_backbone,
args.model_backbone_scale,
args.model_refine_mode,
args.model_refine_sample_pixels,
args.model_refine_thresholding,
args.model_refine_kernel_size).to(rank)
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model_distributed = nn.parallel.DistributedDataParallel(model, device_ids=[rank])
if args.model_last_checkpoint is not None:
load_matched_state_dict(model, torch.load(args.model_last_checkpoint))
optimizer = Adam([
{'params': model.backbone.parameters(), 'lr': 5e-5},
{'params': model.aspp.parameters(), 'lr': 5e-5},
{'params': model.decoder.parameters(), 'lr': 1e-4},
{'params': model.refiner.parameters(), 'lr': 3e-4},
])
scaler = GradScaler()
# Logging and checkpoints
if rank == 0:
if not os.path.exists(f'checkpoint/{args.model_name}'):
os.makedirs(f'checkpoint/{args.model_name}')
writer = SummaryWriter(f'log/{args.model_name}')
# Run loop
for epoch in range(args.epoch_start, args.epoch_end):
for i, ((true_pha, true_fgr), true_bgr) in enumerate(tqdm(dataloader_train)):
step = epoch * len(dataloader_train) + i
true_pha = true_pha.to(rank, non_blocking=True)
true_fgr = true_fgr.to(rank, non_blocking=True)
true_bgr = true_bgr.to(rank, non_blocking=True)
true_pha, true_fgr, true_bgr = random_crop(true_pha, true_fgr, true_bgr)
true_src = true_bgr.clone()
# Augment with shadow
aug_shadow_idx = torch.rand(len(true_src)) < 0.3
if aug_shadow_idx.any():
aug_shadow = true_pha[aug_shadow_idx].mul(0.3 * random.random())
aug_shadow = T.RandomAffine(degrees=(-5, 5), translate=(0.2, 0.2), scale=(0.5, 1.5), shear=(-5, 5))(aug_shadow)
aug_shadow = kornia.filters.box_blur(aug_shadow, (random.choice(range(20, 40)),) * 2)
true_src[aug_shadow_idx] = true_src[aug_shadow_idx].sub_(aug_shadow).clamp_(0, 1)
del aug_shadow
del aug_shadow_idx
# Composite foreground onto source
true_src = true_fgr * true_pha + true_src * (1 - true_pha)
# Augment with noise
aug_noise_idx = torch.rand(len(true_src)) < 0.4
if aug_noise_idx.any():
true_src[aug_noise_idx] = true_src[aug_noise_idx].add_(torch.randn_like(true_src[aug_noise_idx]).mul_(0.03 * random.random())).clamp_(0, 1)
true_bgr[aug_noise_idx] = true_bgr[aug_noise_idx].add_(torch.randn_like(true_bgr[aug_noise_idx]).mul_(0.03 * random.random())).clamp_(0, 1)
del aug_noise_idx
# Augment background with jitter
aug_jitter_idx = torch.rand(len(true_src)) < 0.8
if aug_jitter_idx.any():
true_bgr[aug_jitter_idx] = kornia.augmentation.ColorJitter(0.18, 0.18, 0.18, 0.1)(true_bgr[aug_jitter_idx])
del aug_jitter_idx
# Augment background with affine
aug_affine_idx = torch.rand(len(true_bgr)) < 0.3
if aug_affine_idx.any():
true_bgr[aug_affine_idx] = T.RandomAffine(degrees=(-1, 1), translate=(0.01, 0.01))(true_bgr[aug_affine_idx])
del aug_affine_idx
with autocast():
pred_pha, pred_fgr, pred_pha_sm, pred_fgr_sm, pred_err_sm, _ = model_distributed(true_src, true_bgr)
loss = compute_loss(pred_pha, pred_fgr, pred_pha_sm, pred_fgr_sm, pred_err_sm, true_pha, true_fgr)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if rank == 0:
if (i + 1) % args.log_train_loss_interval == 0:
writer.add_scalar('loss', loss, step)
if (i + 1) % args.log_train_images_interval == 0:
writer.add_image('train_pred_pha', make_grid(pred_pha, nrow=5), step)
writer.add_image('train_pred_fgr', make_grid(pred_fgr, nrow=5), step)
writer.add_image('train_pred_com', make_grid(pred_fgr * pred_pha, nrow=5), step)
writer.add_image('train_pred_err', make_grid(pred_err_sm, nrow=5), step)
writer.add_image('train_true_src', make_grid(true_src, nrow=5), step)
del true_pha, true_fgr, true_src, true_bgr
del pred_pha, pred_fgr, pred_pha_sm, pred_fgr_sm, pred_err_sm
if (i + 1) % args.log_valid_interval == 0:
valid(model, dataloader_valid, writer, step)
if (step + 1) % args.checkpoint_interval == 0:
torch.save(model.state_dict(), f'checkpoint/{args.model_name}/epoch-{epoch}-iter-{step}.pth')
if rank == 0:
torch.save(model.state_dict(), f'checkpoint/{args.model_name}/epoch-{epoch}.pth')
# Clean up
dist.destroy_process_group() | null |
117 | import argparse
import torch
import os
import shutil
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms as T
from torchvision.transforms.functional import to_pil_image
from threading import Thread
from tqdm import tqdm
from dataset import ImagesDataset, ZipDataset
from dataset import augmentation as A
from model import MattingBase, MattingRefine
from inference_utils import HomographicAlignment
def writer(img, path):
img = to_pil_image(img[0].cpu())
img.save(path) | null |
118 | import os
import re
from setuptools import setup
from setuptools import find_packages
with open("README.md", "r") as fh:
long_description = fh.read()
with open("requirements.txt", encoding="utf8") as f:
requirements = f.readlines()
def find_version(*filepath):
here = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(here, *filepath)) as fp:
version_match = re.search(
r"^__version__ = ['\"]([^'\"]*)['\"]", fp.read(), re.M
)
if version_match:
return version_match.group(1)
raise RuntimeError("Unable to find version string.") | null |
119 | import warnings
import os
import numpy as np
from gradient_free_optimizers import (
HillClimbingOptimizer,
StochasticHillClimbingOptimizer,
RepulsingHillClimbingOptimizer,
SimulatedAnnealingOptimizer,
DownhillSimplexOptimizer,
RandomSearchOptimizer,
GridSearchOptimizer,
RandomRestartHillClimbingOptimizer,
PowellsMethod,
PatternSearch,
LipschitzOptimizer,
DirectAlgorithm,
RandomAnnealingOptimizer,
ParallelTemperingOptimizer,
ParticleSwarmOptimizer,
SpiralOptimization,
EvolutionStrategyOptimizer,
BayesianOptimizer,
TreeStructuredParzenEstimators,
ForestOptimizer,
)
from surfaces.test_functions import SphereFunction, AckleyFunction
from search_path_gif import search_path_gif
def warn(*args, **kwargs):
pass | null |
120 | import warnings
import os
import gc
import glob
import numpy as np
import pandas as pd
from tqdm import tqdm
import matplotlib as mpl
import matplotlib.pyplot as plt
from gradient_free_optimizers.optimizers.core_optimizer.converter import Converter
def warn(*args, **kwargs):
pass | null |
121 | import warnings
import os
import gc
import glob
import numpy as np
import pandas as pd
from tqdm import tqdm
import matplotlib as mpl
import matplotlib.pyplot as plt
from gradient_free_optimizers.optimizers.core_optimizer.converter import Converter
def plot_search_paths(
path,
optimizer,
opt_para,
n_iter_max,
objective_function,
search_space,
initialize,
random_state,
title,
):
if opt_para == {}:
show_opt_para = False
else:
show_opt_para = True
opt = optimizer(
search_space, initialize=initialize, random_state=random_state, **opt_para
)
opt.search(
objective_function,
n_iter=n_iter_max,
# memory=False,
verbosity=False,
)
conv = Converter(search_space)
for n_iter in tqdm(range(1, n_iter_max + 1)):
def objective_function_np(args):
params = {}
for i, para_name in enumerate(search_space):
params[para_name] = args[i]
return objective_function(params)
plt.figure(figsize=(7, 7))
plt.set_cmap("jet_r")
# jet_r
x_all, y_all = search_space["x0"], search_space["x1"]
xi, yi = np.meshgrid(x_all, y_all)
zi = objective_function_np((xi, yi))
zi = np.rot90(zi, k=1)
plt.imshow(
zi,
alpha=0.15,
# interpolation="antialiased",
# vmin=z.min(),
# vmax=z.max(),
# origin="lower",
extent=[x_all.min(), x_all.max(), y_all.min(), y_all.max()],
)
for n, opt_ in enumerate(opt.optimizers):
n_optimizers = len(opt.optimizers)
n_iter_tmp = int(n_iter / n_optimizers)
n_iter_mod = n_iter % n_optimizers
if n_iter_mod > n:
n_iter_tmp += 1
if n_iter_tmp == 0:
continue
pos_list = np.array(opt_.pos_new_list)
score_list = np.array(opt_.score_new_list)
# print("\n pos_list \n", pos_list, "\n")
# print("\n score_list \n", score_list, "\n")
if len(pos_list) == 0:
continue
values_list = conv.positions2values(pos_list)
values_list = np.array(values_list)
plt.plot(
values_list[:n_iter_tmp, 0],
values_list[:n_iter_tmp, 1],
linestyle="--",
marker=",",
color="black",
alpha=0.33,
label=n,
linewidth=0.5,
)
plt.scatter(
values_list[:n_iter_tmp, 0],
values_list[:n_iter_tmp, 1],
c=score_list[:n_iter_tmp],
marker="H",
s=15,
vmin=np.amin(score_list[:n_iter_tmp]),
vmax=np.amax(score_list[:n_iter_tmp]),
label=n,
edgecolors="black",
linewidth=0.3,
)
plt.xlabel("x")
plt.ylabel("y")
nth_iteration = "\n\nnth Iteration: " + str(n_iter)
opt_para_name = ""
opt_para_value = "\n\n"
if show_opt_para:
opt_para_name += "\n Parameter:"
for para_name, para_value in opt_para.items():
opt_para_name += "\n " + " " + para_name + ": "
opt_para_value += "\n " + str(para_value) + " "
if title == True:
title_name = opt.name + "\n" + opt_para_name
plt.title(title_name, loc="left")
plt.title(opt_para_value, loc="center")
elif isinstance(title, str):
plt.title(title, loc="left")
plt.title(nth_iteration, loc="right", fontsize=8)
# plt.xlim((-101, 201))
# plt.ylim((-101, 201))
clb = plt.colorbar()
clb.set_label("score", labelpad=-50, y=1.03, rotation=0)
# plt.legend(loc="upper left", bbox_to_anchor=(-0.10, 1.2))
# plt.axis("off")
if show_opt_para:
plt.subplots_adjust(top=0.75)
plt.tight_layout()
# plt.margins(0, 0)
plt.savefig(
path + "/_plots/" + opt._name_ + "_" + "{0:0=3d}".format(n_iter) + ".jpg",
dpi=150,
pad_inches=0,
# bbox_inches="tight",
)
plt.ioff()
# Clear the current axes.
plt.cla()
# Clear the current figure.
plt.clf()
# Closes all the figure windows.
plt.close("all")
gc.collect()
def search_path_gif(
path,
optimizer,
opt_para,
name,
n_iter,
objective_function,
search_space,
initialize,
random_state=0,
title=True,
):
path = os.path.join(os.getcwd(), path)
print("\n\nname", name)
plots_dir = path + "/_plots/"
print("plots_dir", plots_dir)
os.makedirs(plots_dir, exist_ok=True)
plot_search_paths(
path=path,
optimizer=optimizer,
opt_para=opt_para,
n_iter_max=n_iter,
objective_function=objective_function,
search_space=search_space,
initialize=initialize,
random_state=random_state,
title=title,
)
### ffmpeg
framerate = str(n_iter / 10)
# framerate = str(10)
_framerate = " -framerate " + framerate + " "
_opt_ = optimizer(search_space)
_input = " -i " + path + "/_plots/" + str(_opt_._name_) + "_" + "%03d.jpg "
_scale = " -vf scale=1200:-1:flags=lanczos "
_output = os.path.join(path, name)
ffmpeg_command = (
"ffmpeg -hide_banner -loglevel error -y"
+ _framerate
+ _input
+ _scale
+ _output
)
print("\n -----> ffmpeg_command \n", ffmpeg_command, "\n")
print("create " + name)
os.system(ffmpeg_command)
### remove _plots
rm_files = glob.glob(path + "/_plots/*.jpg")
for f in rm_files:
os.remove(f)
os.rmdir(plots_dir) | null |
122 | import numpy as np
from gradient_free_optimizers import HillClimbingOptimizer
def convex_function(pos_new):
score = -(pos_new["x1"] * pos_new["x1"] + pos_new["x2"] * pos_new["x2"])
return score | null |
123 | import numpy as np
from gradient_free_optimizers import GridSearchOptimizer
def convex_function(pos_new):
score = -(pos_new["x1"] * pos_new["x1"] + pos_new["x2"] * pos_new["x2"])
return score | null |
124 | import numpy as np
from gradient_free_optimizers import RandomSearchOptimizer
def ackley_function(pos_new):
x = pos_new["x1"]
y = pos_new["x2"]
a1 = -20 * np.exp(-0.2 * np.sqrt(0.5 * (x * x + y * y)))
a2 = -np.exp(0.5 * (np.cos(2 * np.pi * x) + np.cos(2 * np.pi * y)))
score = a1 + a2 + 20
return -score | null |
125 | import numpy as np
from gradient_free_optimizers import RandomSearchOptimizer
def convex_function(pos_new):
score = -(pos_new["x1"] * pos_new["x1"] + pos_new["x2"] * pos_new["x2"])
return score | null |
126 | import numpy as np
from gradient_free_optimizers import RandomSearchOptimizer
def constraint_1(para):
# only values in 'x1' higher than -5 are valid
return para["x1"] > -5 | null |
127 | from keras.models import Sequential
from keras.layers import (
Dense,
Conv2D,
MaxPooling2D,
Flatten,
Dropout,
Activation,
)
from keras.datasets import cifar10
from keras.utils import to_categorical
from gradient_free_optimizers import BayesianOptimizer
import numpy as np
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)
X_train = X_train[0:1000]
y_train = y_train[0:1000]
X_test = X_test[0:1000]
y_test = y_test[0:1000]
def cnn(para):
nn = Sequential()
nn.add(
Conv2D(
para["filter.0"],
(3, 3),
padding="same",
input_shape=X_train.shape[1:],
)
)
nn.add(Activation("relu"))
nn.add(Conv2D(para["filter.0"], (3, 3)))
nn.add(Activation("relu"))
nn.add(MaxPooling2D(pool_size=(2, 2)))
nn.add(Dropout(0.25))
nn.add(Conv2D(para["filter.0"], (3, 3), padding="same"))
nn.add(Activation("relu"))
nn.add(Conv2D(para["filter.0"], (3, 3)))
nn.add(Activation("relu"))
nn.add(MaxPooling2D(pool_size=(2, 2)))
nn.add(Dropout(0.25))
nn.add(Flatten())
nn.add(Dense(para["dense.0"]))
nn.add(Activation("relu"))
nn.add(Dropout(0.5))
nn.add(Dense(10))
nn.add(Activation("softmax"))
nn.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
nn.fit(X_train, y_train, epochs=5, batch_size=256)
_, score = nn.evaluate(x=X_test, y=y_test)
return score | null |
128 | import numpy as np
import matplotlib.pyplot as plt
from gradient_free_optimizers import HillClimbingOptimizer
def gaussian_function(x, A, B, C):
return A * np.exp(-(x-B)**2/(2*C**2))
x_range = np.arange(min_x, max_x, step_x)
y_gauss_hist = plt.hist(gauss_np1, density=True, bins=bins)[0]
def fit_gaussian(para):
A, B, C = para["A"], para["B"], para["C"]
y_gauss_func = gaussian_function(x_range, A, B, C)
# compare results of function and hist samples
diff = np.subtract(y_gauss_func, y_gauss_hist)
# we want to minimize the difference
score = - np.abs(diff).sum()
return score | null |
129 | import numpy as np
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import load_wine
from gradient_free_optimizers import HillClimbingOptimizer
X, y = data.data, data.target
def model(para):
gbc = GradientBoostingClassifier(
n_estimators=para["n_estimators"],
max_depth=para["max_depth"],
min_samples_split=para["min_samples_split"],
min_samples_leaf=para["min_samples_leaf"],
)
scores = cross_val_score(gbc, X, y, cv=3)
return scores.mean() | null |
130 | import numpy as np
from gradient_free_optimizers import LipschitzOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
131 | import numpy as np
from gradient_free_optimizers import EvolutionStrategyOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
132 | import numpy as np
from gradient_free_optimizers import SimulatedAnnealingOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
133 | import numpy as np
from gradient_free_optimizers import GridSearchOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
134 | import numpy as np
from gradient_free_optimizers import PatternSearch
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
135 | import numpy as np
from gradient_free_optimizers import PowellsMethod
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
136 | import numpy as np
from gradient_free_optimizers import SpiralOptimization
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
137 | import numpy as np
from gradient_free_optimizers import HillClimbingOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
138 | import numpy as np
from gradient_free_optimizers import DownhillSimplexOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
139 | import numpy as np
from gradient_free_optimizers import ParallelTemperingOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
140 | import numpy as np
from gradient_free_optimizers import StochasticHillClimbingOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
141 | import numpy as np
from gradient_free_optimizers import BayesianOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
142 | import numpy as np
from gradient_free_optimizers import DirectAlgorithm
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
143 | import numpy as np
from gradient_free_optimizers import RepulsingHillClimbingOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
144 | import numpy as np
from gradient_free_optimizers import TreeStructuredParzenEstimators
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
145 | import numpy as np
from gradient_free_optimizers import ParticleSwarmOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
146 | import numpy as np
from gradient_free_optimizers import RandomSearchOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
147 | import numpy as np
from gradient_free_optimizers import RandomRestartHillClimbingOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
148 | import numpy as np
from gradient_free_optimizers import RandomAnnealingOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
149 | import numpy as np
from gradient_free_optimizers import ForestOptimizer
def sphere_function(para):
x = para["x"]
y = para["y"]
return -(x * x + y * y) | null |
150 | import numpy as np
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_wine
from gradient_free_optimizers import HillClimbingOptimizer
X, y = data.data, data.target
def model(para):
gbc = DecisionTreeClassifier(
min_samples_split=para["min_samples_split"],
min_samples_leaf=para["min_samples_leaf"],
)
scores = cross_val_score(gbc, X, y, cv=5)
return scores.mean() | null |
151 | import random
import numpy as np
The provided code snippet includes necessary dependencies for implementing the `set_random_seed` function. Write a Python function `def set_random_seed(nth_process, random_state)` to solve the following problem:
Sets the random seed separately for each thread (to avoid getting the same results in each thread)
Here is the function:
def set_random_seed(nth_process, random_state):
"""
Sets the random seed separately for each thread
(to avoid getting the same results in each thread)
"""
if nth_process is None:
nth_process = 0
if random_state is None:
random_state = np.random.randint(0, high=2**31 - 2, dtype=np.int64).item()
random.seed(random_state + nth_process)
np.random.seed(random_state + nth_process)
return random_state + nth_process | Sets the random seed separately for each thread (to avoid getting the same results in each thread) |
152 | import random
import numpy as np
def move_random(ss_positions):
position = []
for search_space_pos in ss_positions:
pos_ = random.choice(search_space_pos)
position.append(pos_)
return np.array(position) | null |
153 | import numpy as np
from scipy.stats import norm
from ..smb_opt.smbo import SMBO
from ..smb_opt.surrogate_models import EnsembleRegressor
from ..smb_opt.acquisition_function import ExpectedImprovement
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.svm import SVR
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.neural_network import MLPRegressor
def normalize(array):
num = array - array.min()
den = array.max() - array.min()
if den == 0:
return np.random.random_sample(array.shape)
else:
return ((num / den) + 0) / 1 | null |
154 | import random
import numpy as np
from ..local_opt import HillClimbingOptimizer
def max_list_idx(list_):
max_item = max(list_)
max_item_idx = [i for i, j in enumerate(list_) if j == max_item]
return max_item_idx[-1:][0] | null |
155 | import numpy as np
from collections import OrderedDict
from ..local_opt import HillClimbingOptimizer
def sort_list_idx(list_):
list_np = np.array(list_)
idx_sorted = list(list_np.argsort()[::-1])
return idx_sorted | null |
156 | import numpy as np
from ..local_opt import HillClimbingOptimizer
def roation(n_dim, vector):
if n_dim == 1:
return -1 # not sure about that
I = np.identity(n_dim - 1)
R = np.pad(I, ((1, 0), (0, 1)), constant_values=(0, 0))
R[0, n_dim - 1] = -1
return np.matmul(R, vector) | null |
157 | import numpy as np
from .base_population_optimizer import BasePopulationOptimizer
from ._spiral import Spiral
def centeroid(array_list):
centeroid = []
for idx in range(array_list[0].shape[0]):
center_dim_pos = []
for array in array_list:
center_dim_pos.append(array[idx])
center_dim_mean = np.array(center_dim_pos).mean()
centeroid.append(center_dim_mean)
return centeroid | null |
158 | import math
import numpy as np
from ..core_optimizer import CoreOptimizer
def split(positions_l, population):
div_int = math.ceil(len(positions_l) / population)
dist_init_positions = []
for nth_indiv in range(population):
indiv_pos = []
for nth_indiv_pos in range(div_int):
idx = nth_indiv + nth_indiv_pos * population
if idx < len(positions_l):
indiv_pos.append(positions_l[idx])
dist_init_positions.append(indiv_pos)
return dist_init_positions | null |
159 | import numpy as np
from sklearn.linear_model import BayesianRidge
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import Matern, WhiteKernel, RBF
from sklearn.ensemble import ExtraTreesRegressor as _ExtraTreesRegressor_
from sklearn.ensemble import RandomForestRegressor as _RandomForestRegressor_
from sklearn.ensemble import (
GradientBoostingRegressor as _GradientBoostingRegressor_,
)
The provided code snippet includes necessary dependencies for implementing the `_return_std` function. Write a Python function `def _return_std(X, trees, predictions, min_variance)` to solve the following problem:
used from: https://github.com/scikit-optimize/scikit-optimize/blob/master/skopt/learning/forest.py
Here is the function:
def _return_std(X, trees, predictions, min_variance):
"""
used from:
https://github.com/scikit-optimize/scikit-optimize/blob/master/skopt/learning/forest.py
"""
variance = np.zeros(len(X))
trees = list(trees)
for tree in trees:
if isinstance(tree, np.ndarray):
tree = tree[0]
var_tree = tree.tree_.impurity[tree.apply(X)]
var_tree[var_tree < min_variance] = min_variance
mean_tree = tree.predict(X)
variance += var_tree ** 2 + mean_tree ** 2
variance /= len(trees)
variance -= predictions ** 2.0
variance[variance < 0.0] = 0.0
std = variance ** 0.5
return std | used from: https://github.com/scikit-optimize/scikit-optimize/blob/master/skopt/learning/forest.py |
160 | import numpy as np
from scipy.stats import norm
def normalize(array):
num = array - array.min()
den = array.max() - array.min()
if den == 0:
return np.random.random_sample(array.shape)
else:
return ((num / den) + 0) / 1 | null |
161 | import numpy as np
from scipy.stats import norm
from .smbo import SMBO
from .surrogate_models import (
GPR_linear,
GPR,
)
from .acquisition_function import ExpectedImprovement
def normalize(array):
num = array - array.min()
den = array.max() - array.min()
if den == 0:
return np.random.random_sample(array.shape)
else:
return ((num / den) + 0) / 1 | null |
162 | import numpy as np
from scipy.stats import norm
from .smbo import SMBO
from .surrogate_models import (
RandomForestRegressor,
ExtraTreesRegressor,
GradientBoostingRegressor,
)
from .acquisition_function import ExpectedImprovement
def normalize(array):
num = array - array.min()
den = array.max() - array.min()
if den == 0:
return np.random.random_sample(array.shape)
else:
return ((num / den) + 0) / 1 | null |
163 | import random
import numpy as np
from .hill_climbing_optimizer import HillClimbingOptimizer
def sort_list_idx(list_):
list_np = np.array(list_)
idx_sorted = list(list_np.argsort()[::-1])
return idx_sorted | null |
164 | import random
import numpy as np
from .hill_climbing_optimizer import HillClimbingOptimizer
def centeroid(array_list):
centeroid = []
for idx in range(array_list[0].shape[0]):
center_dim_pos = []
for array in array_list:
center_dim_pos.append(array[idx])
center_dim_mean = np.array(center_dim_pos).mean()
centeroid.append(center_dim_mean)
return centeroid | null |
165 | import numpy as np
from ..base_optimizer import BaseOptimizer
from numpy.random import normal, laplace, logistic, gumbel
def max_list_idx(list_):
max_item = max(list_)
max_item_idx = [i for i, j in enumerate(list_) if j == max_item]
return max_item_idx[-1:][0] | null |
166 | import numpy as np
def _print_times(eval_time, iter_time, n_iter):
opt_time = iter_time - eval_time
iterPerSec = n_iter / iter_time
print(
indent,
"Evaluation time :",
eval_time,
"sec",
indent,
"[{} %]".format(round(eval_time / iter_time * 100, 2)),
)
print(
indent,
"Optimization time :",
opt_time,
"sec",
indent,
"[{} %]".format(round(opt_time / iter_time * 100, 2)),
)
if iterPerSec >= 1:
print(
indent,
"Iteration time :",
iter_time,
"sec",
indent,
"[{} iter/sec]".format(round(iterPerSec, 2)),
)
else:
secPerIter = iter_time / n_iter
print(
indent,
"Iteration time :",
iter_time,
"sec",
indent,
"[{} sec/iter]".format(round(secPerIter, 2)),
)
print(" ")
def _print_results(objective_function, score_best, para_best, random_seed):
print("\nResults: '{}'".format(objective_function.__name__), " ")
if para_best is None:
print(indent, "Best score:", score_best, " ")
print(indent, "Best parameter:", para_best, " ")
else:
para_names = list(para_best.keys())
para_names_align = align_para_names(para_names)
print(indent, "Best score:", score_best, " ")
print(indent, "Best parameter:")
for para_key in para_best.keys():
added_spaces = para_names_align[para_key]
print(
indent,
indent,
"'{}'".format(para_key),
"{}:".format(added_spaces),
para_best[para_key],
" ",
)
print(" ")
print(indent, "Random seed:", random_seed, " ")
print(" ")
def print_info(
verbosity,
objective_function,
score_best,
para_best,
eval_times,
iter_times,
n_iter,
random_seed,
):
eval_time = np.array(eval_times).sum()
iter_time = np.array(iter_times).sum()
if "print_results" in verbosity:
_print_results(objective_function, score_best, para_best, random_seed)
if "print_times" in verbosity:
_print_times(eval_time, iter_time, n_iter) | null |
167 | import time
import numpy as np
def time_exceeded(start_time, max_time):
run_time = time.time() - start_time
return max_time and run_time > max_time | null |
168 | import time
import numpy as np
def score_exceeded(score_best, max_score):
return max_score and score_best >= max_score | null |
169 | import time
import numpy as np
def no_change(score_new_list, early_stopping):
if "n_iter_no_change" not in early_stopping:
print(
"Warning n_iter_no_change-parameter must be set in order for early stopping to work"
)
return False
n_iter_no_change = early_stopping["n_iter_no_change"]
if len(score_new_list) <= n_iter_no_change:
return False
scores_np = np.array(score_new_list)
max_score = max(score_new_list)
max_index = np.argmax(scores_np)
length_pos = len(score_new_list)
diff = length_pos - max_index
if diff > n_iter_no_change:
return True
first_n = length_pos - n_iter_no_change
scores_first_n = score_new_list[:first_n]
max_first_n = max(scores_first_n)
if "tol_abs" in early_stopping and early_stopping["tol_abs"] is not None:
tol_abs = early_stopping["tol_abs"]
if abs(max_first_n - max_score) < tol_abs:
return True
if "tol_rel" in early_stopping and early_stopping["tol_rel"] is not None:
tol_rel = early_stopping["tol_rel"]
percent_imp = ((max_score - max_first_n) / abs(max_first_n)) * 100
if percent_imp < tol_rel:
return True | null |
170 | import traceback
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List
from readmeai.config.settings import ConfigLoader
from readmeai.core.logger import Logger
_logger = Logger(__name__)
class QuickStart:
"""Information about using, running, and testing a repository."""
install_command: str
run_command: str
test_command: str
prerequisites: str
language_counts: Dict[str, int]
language_key: str
language_name: str = None
def count_languages(
summaries: List[str], config_loader: ConfigLoader
) -> Dict[str, int]:
"""
Counts the occurrences of each language in the summaries.
"""
parser_files = config_loader.parsers.get("parsers")
language_counts = {}
for file_path, _ in summaries:
language = Path(file_path).suffix[1:]
if str(file_path) in [
dependency_file for dependency_file in parser_files
]:
continue
if language and language not in config_loader.blacklist:
language_counts[language] = language_counts.get(language, 0) + 1
return language_counts
def get_top_language_setup(
language_counts: Dict[str, int], config_loader: ConfigLoader
) -> QuickStart:
"""
Determines the top language and retrieves its setup commands.
"""
if not language_counts:
return None
languages = config_loader.languages.get("language_names")
commands = config_loader.commands.get("quickstart_guide")
language_key = get_top_language(language_counts)
language_name = languages.get(language_key, languages.get("default"))
quickstart_commands = commands.get(language_name, commands.get("default"))
prerequisites = f"**{language_name}**: `version x.y.z`"
return QuickStart(
*quickstart_commands,
prerequisites,
language_counts,
language_key,
language_name,
)
The provided code snippet includes necessary dependencies for implementing the `get_setup_data` function. Write a Python function `def get_setup_data( config_loader: ConfigLoader, summaries: List[str] ) -> QuickStart` to solve the following problem:
Generates the 'Quick Start' section of the README file.
Here is the function:
def get_setup_data(
config_loader: ConfigLoader, summaries: List[str]
) -> QuickStart:
"""
Generates the 'Quick Start' section of the README file.
"""
default_setup = QuickStart("", "", "", {}, "", "")
try:
language_counts = count_languages(summaries, config_loader)
setup = (
get_top_language_setup(language_counts, config_loader)
or default_setup
)
except Exception as exc:
_logger.debug(f"Exception: {exc}\n{traceback.format_exc()}")
setup = default_setup
_logger.info(f"Quickstart information: {setup}")
return setup | Generates the 'Quick Start' section of the README file. |
171 | import re
from typing import List
EMOJI_PATTERN = re.compile(
pattern="["
"\U0001f600-\U0001f64f" # emoticons
"\U0001f300-\U0001f5ff" # symbols & pictographs
"\U0001f680-\U0001f6ff" # transport & map symbols
"\U0001f700-\U0001f77f" # alchemical symbols
"\U0001f780-\U0001f7ff" # Geometric Shapes Extended
"\U0001f800-\U0001f8ff" # Supplemental Arrows-C
"\U0001f900-\U0001f9ff" # Supplemental Symbols and Pictographs
"\U0001fa00-\U0001fa6f" # Chess Symbols
"\U0001fa70-\U0001faff" # Symbols and Pictographs Extended-A
"\U00002702-\U000027b0" # Dingbats
"\U000024c2-\U0001f251" # flags (iOS)
"]+",
flags=re.UNICODE,
)
The provided code snippet includes necessary dependencies for implementing the `remove_emojis` function. Write a Python function `def remove_emojis(md_content: List[str]) -> List[str]` to solve the following problem:
Removes emojis from the content list.
Here is the function:
def remove_emojis(md_content: List[str]) -> List[str]:
"""Removes emojis from the content list."""
modified_content = []
for section in md_content:
lines = section.split("\n")
for index, line in enumerate(lines):
if (
line.startswith("#")
or "Table of Contents" in section
or "Quick Links" in section
):
lines[index] = EMOJI_PATTERN.sub("", line)
modified_content.append("\n".join(lines))
return modified_content | Removes emojis from the content list. |
172 | import re
from typing import List
The provided code snippet includes necessary dependencies for implementing the `split_markdown_headings` function. Write a Python function `def split_markdown_headings(markdown_text: str) -> dict` to solve the following problem:
Splits a markdown document by level 2 headings into separate sections.
Here is the function:
def split_markdown_headings(markdown_text: str) -> dict:
"""
Splits a markdown document by level 2 headings into separate sections.
"""
sections = re.split(r"(?m)^## ", markdown_text)
split_sections = {}
for section in sections:
if section.strip():
heading = section.split("\n", 1)[0].strip()
file_name = heading.lower().replace(" ", "_") + ".md"
content = "## " + section if split_sections else section
content = content.rstrip("\n")
split_sections[file_name] = content
return split_sections | Splits a markdown document by level 2 headings into separate sections. |
173 | import re
from typing import List
The provided code snippet includes necessary dependencies for implementing the `update_heading_names` function. Write a Python function `def update_heading_names(md_contents: dict) -> dict` to solve the following problem:
Updates dict keys by removing leading emojis, underscores, and spaces.
Here is the function:
def update_heading_names(md_contents: dict) -> dict:
"""
Updates dict keys by removing leading emojis, underscores, and spaces.
"""
updated_md_headings = {}
for key in md_contents:
new_key = re.sub(r"^[^\w]+", "", key).lstrip("_")
if re.match(r"^<.*>.md$", new_key):
new_key = "header.md"
updated_md_headings[new_key] = md_contents[key]
return updated_md_headings | Updates dict keys by removing leading emojis, underscores, and spaces. |
174 | from pathlib import Path
from typing import List, Tuple
from readmeai.services.git import fetch_git_file_url
def is_valid_tuple_summary(summary: Tuple[str, str]) -> bool:
"""Checks if a summary is a valid tuple format."""
return isinstance(summary, tuple) and len(summary) == 2
The provided code snippet includes necessary dependencies for implementing the `format_code_summaries` function. Write a Python function `def format_code_summaries( placeholder: str, code_summaries: Tuple[str, str] ) -> List[Tuple[str, str]]` to solve the following problem:
Converts the given code summaries into a formatted list.
Here is the function:
def format_code_summaries(
placeholder: str, code_summaries: Tuple[str, str]
) -> List[Tuple[str, str]]:
"""Converts the given code summaries into a formatted list."""
formatted_summaries = []
for summary in code_summaries:
if is_valid_tuple_summary(summary):
module, summary_text = summary
else:
module, summary_text = summary, placeholder
formatted_summaries.append((module, summary_text))
return formatted_summaries | Converts the given code summaries into a formatted list. |
175 | from pathlib import Path
from typing import List, Tuple
from readmeai.services.git import fetch_git_file_url
def construct_markdown_table(
data: List[Tuple[str, str]], repo_url: str, full_name: str
) -> str:
"""Builds a Markdown table from the provided data."""
headers = ["File", "Summary"]
table_rows = [headers, ["---", "---"]]
for module, summary in data:
file_name = str(Path(module).name)
if "invalid" in full_name.lower():
return file_name
host_url = fetch_git_file_url(module, full_name, repo_url)
md_format_host_url = f"[{file_name}]({host_url})"
table_rows.append([md_format_host_url, summary])
return format_as_markdown_table(table_rows)
def group_summaries_by_folder(summaries: List[Tuple[str, str]]) -> dict:
"""Groups code summaries by their sub-directory."""
folder_map = {}
for module, summary in summaries:
folder_name = extract_folder_name(module)
folder_map.setdefault(folder_name, []).append((module, summary))
return folder_map
The provided code snippet includes necessary dependencies for implementing the `generate_markdown_tables` function. Write a Python function `def generate_markdown_tables( table_widget: str, summaries: List[Tuple[str, str]], project_name: str, repository_url: str, ) -> str` to solve the following problem:
Produces Markdown tables for each project sub-directory.
Here is the function:
def generate_markdown_tables(
table_widget: str,
summaries: List[Tuple[str, str]],
project_name: str,
repository_url: str,
) -> str:
"""Produces Markdown tables for each project sub-directory."""
summaries_by_folder = group_summaries_by_folder(summaries)
markdown_tables = []
for folder, entries in summaries_by_folder.items():
table_in_markdown = construct_markdown_table(
entries, repository_url, project_name
)
table_wrapper = table_widget.format(folder, table_in_markdown)
markdown_tables.append(table_wrapper)
return "\n".join(markdown_tables) | Produces Markdown tables for each project sub-directory. |
176 | from typing import Tuple
from readmeai.cli.options import BadgeOptions
from readmeai.config.settings import ConfigLoader
from readmeai.services.git import GitHost
from readmeai.utils.file_handler import FileHandler
from readmeai.utils.file_resources import get_resource_path
_package = "readmeai.generators"
_submodule = "assets"
class FileHandler:
"""File I/O factory class to read and write files."""
def __init__(self):
"""Initialize the file handler."""
self.file_actions: Dict[str, Dict[str, Callable[[str], Any]]] = {
"json": {"read": self.read_json, "write": self.write_json},
"md": {"read": self.read_markdown, "write": self.write_markdown},
"toml": {"read": self.read_toml, "write": self.write_toml},
"txt": {"read": self.read_text, "write": self.write_text},
"yaml": {"read": self.read_yaml, "write": self.write_yaml},
}
self.cache = {}
self.read_json = functools.lru_cache(maxsize=100)(self.read_json)
self.read_toml = functools.lru_cache(maxsize=100)(self.read_toml)
def read(self, file_path: Union[str, Path]) -> Any:
"""Read the content of a file."""
if file_path in self.cache:
return self.cache[file_path]
try:
file_extension = str(file_path).rsplit(".", maxsplit=1)[-1]
reader = self.get_action(file_extension, "read")
content = reader(file_path)
self.cache[file_path] = content
return content
except Exception as exc:
raise FileReadError(exc, file_path) from exc
def write(self, file_path: Union[str, Path], content: Any) -> None:
"""Write the content to a file."""
try:
file_extension = str(file_path).rsplit(".", maxsplit=1)[-1]
writer = self.get_action(file_extension, "write")
writer(file_path, content)
except Exception as exc:
raise FileWriteError(exc, file_path) from exc
def get_action(
self, file_extension: str, action_type: str
) -> Callable[[str], Any]:
"""Get method for the passed file extension and I/O operation."""
file_actions = self.file_actions.get(file_extension)
if not file_actions:
raise ValueError(f"Unsupported file type: {file_extension}")
action = file_actions.get(action_type)
if not action:
raise ValueError(f"Unsupported action type: {action_type}")
return action
def read_json(file_path: Union[str, Path]) -> Dict[str, Any]:
"""Read the content of a JSON file."""
with open(file_path, encoding="utf-8") as file:
return json.load(file)
def read_markdown(file_path: Union[str, Path]) -> str:
"""Read the content of a Markdown file."""
with open(file_path, encoding="utf-8") as file:
return file.read()
def read_toml(file_path: Union[str, Path]) -> Dict[str, Any]:
"""Read the content of a TOML file."""
if sys.version_info < (3, 11):
with open(file_path, encoding="utf-8") as file:
data = toml.load(file)
else:
with open(file_path, "rb") as file:
data = toml.load(file)
return {key.lower(): value for key, value in data.items()}
def read_text(file_path: Union[str, Path]) -> str:
"""Read the content of a TXT file."""
with open(file_path, encoding="utf-8") as file:
return file.read()
def read_yaml(file_path: Union[str, Path]) -> Dict[str, Any]:
"""Read the content of a YAML file."""
with open(file_path, encoding="utf-8") as file:
return yaml.safe_load(file)
def write_json(
file_path: Union[str, Path], content: Dict[str, Any]
) -> None:
"""Write the content to a JSON file."""
with open(file_path, "w", encoding="utf-8") as file:
json.dump(content, file, indent=4)
def write_markdown(file_path: Union[str, Path], content: str) -> None:
"""Write the content to a Markdown file."""
with open(file_path, "w", encoding="utf-8") as file:
file.write(content)
def write_toml(
file_path: Union[str, Path], content: Dict[str, Any]
) -> None:
"""Write the content to a TOML file."""
with open(file_path, "w", encoding="utf-8") as file:
toml.dump(content, file)
def write_text(file_path: Union[str, Path], content: str) -> None:
"""Write the content to a TXT file."""
with open(file_path, "w", encoding="utf-8") as file:
file.write(content)
def write_yaml(
file_path: Union[str, Path], content: Dict[str, Any]
) -> None:
"""Write the content to a YAML file."""
with open(file_path, "w", encoding="utf-8") as file:
yaml.safe_dump(content, file)
def get_resource_path(
file_path: str,
package: str = "readmeai.config",
sub_module: str = "settings",
) -> Path:
"""Retrieves the path to a resource file within the package.
This function attempts to first use `importlib.resources` for preferred
access to resources within the package. It falls back to `pkg_resources`
for compatibility with older environments.
Parameters
----------
file_path
The path to the resource file relative to the package's submodule.
package, optional
The package name containing the resource file.
- default: "readmeai.config"
submodule, optional
The submodule within the package where the resource is located.
- default: "settings"
Returns
-------
The absolute path to the resource file.
Raises
------
FileReadError
FileReadError: If the resource file cannot be found or accessed.
"""
resource_path = None
try:
resource_path = resources.files(package).joinpath(
sub_module, file_path
)
except TypeError: # pragma: no cover
try:
import pkg_resources
submodule = sub_module.replace(".", "/")
resource_path = Path(
pkg_resources.resource_filename(
"readmeai", f"{submodule}/{file_path}"
)
).resolve()
except Exception as exc: # pragma: no cover
raise FileReadError(
"Error loading resource file using pkg_resources",
str(resource_path),
) from exc
if not resource_path.exists():
raise FileReadError("Resource file not found", str(resource_path))
return resource_path
The provided code snippet includes necessary dependencies for implementing the `skill_icons` function. Write a Python function `def skill_icons(conf: ConfigLoader, dependencies: list) -> str` to solve the following problem:
Generates badges for the README using skill icons, from the repository - https://github.com/tandpfun/skill-icons.
Here is the function:
def skill_icons(conf: ConfigLoader, dependencies: list) -> str:
"""
Generates badges for the README using skill icons, from the
repository - https://github.com/tandpfun/skill-icons.
"""
dependencies.extend(["md"])
icons_path = get_resource_path(
conf.files.skill_icons, _package, _submodule
)
icons_dict = FileHandler().read(icons_path)
skill_icons = [
icon for icon in icons_dict["icons"]["names"] if icon in dependencies
]
skill_icons = ",".join(skill_icons)
skill_icons = icons_dict["url"]["base_url"] + skill_icons
if conf.md.badge_style == "skills-light":
skill_icons = f"{skill_icons}&theme=light"
conf.md.skill_icons = conf.md.skill_icons.format(skill_icons)
return conf.md.badge_icons.format(
alignment=conf.md.alignment, badge_icons=conf.md.skill_icons
) | Generates badges for the README using skill icons, from the repository - https://github.com/tandpfun/skill-icons. |
177 | from typing import Dict, Type
from readmeai.core.parsers import BaseFileParser
from readmeai.parsers.configuration.docker import (
DockerComposeParser,
DockerfileParser,
)
from readmeai.parsers.configuration.properties import PropertiesParser
from readmeai.parsers.language.cpp import (
CMakeParser,
ConfigureAcParser,
MakefileAmParser,
)
from readmeai.parsers.language.go import GoModParser
from readmeai.parsers.language.python import (
RequirementsParser,
TomlParser,
YamlParser,
)
from readmeai.parsers.language.rust import CargoTomlParser
from readmeai.parsers.language.swift import SwiftPackageParser
from readmeai.parsers.package.gradle import (
BuildGradleKtsParser,
BuildGradleParser,
)
from readmeai.parsers.package.maven import MavenParser
from readmeai.parsers.package.npm import PackageJsonParser
from readmeai.parsers.package.yarn import YarnLockParser
PARSER_REGISTRY = {
# Configuration
".properties": PropertiesParser,
# Language/Framework
# Python
"Pipfile": TomlParser(),
"pyproject.toml": TomlParser(),
"requirements.in": RequirementsParser(),
"requirements.txt": RequirementsParser(),
"requirements-dev.txt": RequirementsParser(),
"requirements-test.txt": RequirementsParser(),
"requirements-prod.txt": RequirementsParser(),
"dev-requirements.txt": RequirementsParser(),
"environment.yml": YamlParser(),
"environment.yaml": YamlParser(),
# "setup.py": setup_py_parser,
# "setup.cfg": setup_cfg_parser,
# C/C++
"cmakeLists.txt": CMakeParser(),
"configure.ac": ConfigureAcParser(),
"Makefile.am": MakefileAmParser(),
# JavaScript/Node.js
"package.json": PackageJsonParser(),
"yarn.lock": YarnLockParser(),
# Kotlin and Kotlin DSL
"build.gradle": BuildGradleParser(),
"build.gradle.kts": BuildGradleKtsParser(),
# Go
"go.mod": GoModParser(),
# Java
"pom.xml": MavenParser(),
# Rust
"cargo.toml": CargoTomlParser(),
# Swift
"Package.swift": SwiftPackageParser(),
"Dockerfile": DockerfileParser(),
"docker-compose.yaml": DockerComposeParser(),
# Package Managers
# Monitoring and Logging
}
class BaseFileParser(ABC):
"""Abstract base class for dependency file parsers."""
def __init__(self) -> None:
"""Initializes the handler with given configuration."""
self._logger = Logger(__name__)
def parse(self, content: str) -> List[str]:
"""Parses content of dependency file and returns list of dependencies."""
...
def log_error(self, message: str):
"""Logs error message when parsing fails."""
self._logger.error(f"Error parsing dependency file {message}")
def handle_parsing_error(self, error: Exception) -> List[str]:
"""Standardized error handling for parsing exceptions."""
self.log_error(str(error))
return []
The provided code snippet includes necessary dependencies for implementing the `parser_handler` function. Write a Python function `def parser_handler() -> Dict[str, BaseFileParser]` to solve the following problem:
Returns a dictionary of callable file parser methods.
Here is the function:
def parser_handler() -> Dict[str, BaseFileParser]:
"""Returns a dictionary of callable file parser methods."""
return PARSER_REGISTRY | Returns a dictionary of callable file parser methods. |
178 | import asyncio
import tempfile
import traceback
from pathlib import Path
from typing import Optional
from readmeai._exceptions import ReadmeGeneratorError
from readmeai.cli.options import ImageOptions, ModelOptions
from readmeai.config.settings import ConfigLoader, GitSettings
from readmeai.core.logger import Logger
from readmeai.core.preprocess import preprocessor
from readmeai.core.utils import get_environment
from readmeai.generators.builder import MarkdownBuilder
from readmeai.models.dalle import DalleHandler
from readmeai.models.factory import ModelFactory
from readmeai.services.git import clone_repository
from readmeai.utils.file_handler import FileHandler
_logger = Logger(__name__)
async def readme_generator(conf: ConfigLoader, output_file: Path) -> None:
"""Orchestrates the README.md file generation process."""
with tempfile.TemporaryDirectory() as temp_dir:
await clone_repository(conf.config.git.repository, temp_dir)
(
dependencies,
raw_files,
) = preprocessor(conf, temp_dir)
_logger.info(f"Total files analyzed: {len(raw_files)}")
_logger.info(f"Dependencies found: {dependencies}")
async with ModelFactory.model_handler(conf).use_api() as llm:
responses = await llm.batch_request(dependencies, raw_files)
(
summaries,
features,
overview,
slogan,
) = responses
conf.config.md.features = conf.config.md.features.format(features)
conf.config.md.overview = conf.config.md.overview.format(overview)
conf.config.md.slogan = slogan
if (
conf.config.md.image == ImageOptions.LLM.value
and conf.config.llm.api != ModelOptions.OFFLINE.value
):
conf.config.md.width = "60%"
dalle = DalleHandler(conf)
image_url = dalle.run()
conf.config.md.image = dalle.download(image_url)
elif (
conf.config.md.image == ImageOptions.LLM.value
and conf.config.llm.api == ModelOptions.OFFLINE.value
):
conf.config.md.image = ImageOptions.BLUE.value
readme_md = MarkdownBuilder(
conf, dependencies, summaries, temp_dir
).build()
FileHandler().write(output_file, readme_md)
_logger.info("README generation process completed successfully!")
_logger.info(f"README.md file saved to: {output_file}")
_logger.info("Share it @ github.com/eli64s/readme-ai/discussions")
class ReadmeGeneratorError(ReadmeAIError):
"""Exceptions related to readme generation."""
def __init__(self, traceback, *args):
self.traceback = traceback
super().__init__(f"Error generating readme: {traceback}", *args)
def get_environment(llm_api: str = "", llm_model: str = "") -> tuple:
"""Set LLM environment variables based on the specified LLM service."""
default_models = {
llms.OPENAI.name: "gpt-3.5-turbo",
llms.OLLAMA.name: "mistral",
llms.GEMINI.name: "gemini-pro",
}
env_keys = {
llms.OPENAI.name: SecretKey.OPENAI_API_KEY.value,
llms.OLLAMA.name: SecretKey.OLLAMA_HOST.value,
llms.GEMINI.name: SecretKey.GOOGLE_API_KEY.value,
}
if llm_api and llm_api not in env_keys:
if llm_api == llms.OFFLINE.name:
return _set_offline("\n\n\t\t\t\tOffline mode enabled by user")
_logger.warning("Invalid LLM service provided to CLI.")
return _set_offline(
"\n\n\t\t...No LLM API settings found in environment..."
)
# If OPENAI_API_KEY does not exist in env when --api OPENAI is set
if (
llm_api == llms.OPENAI.name
and SecretKey.OPENAI_API_KEY.value not in os.environ
):
return _set_offline(
"OPENAI_API_KEY not found in environment. Switching to offline mode."
)
# If GOOGLE_API_KEY does not exist in env when --api gemini is set
if (
llm_api == llms.GEMINI.name
and SecretKey.GOOGLE_API_KEY.value not in os.environ
):
return _set_offline(
"GOOGLE_API_KEY not found in environment. Switching to offline mode."
)
# If no specific API is provided or the provided API is valid
for api_name, env_key in env_keys.items():
if llm_api == api_name or (not llm_api and env_key in os.environ):
model = llm_model if llm_model else default_models[api_name]
_logger.info(f"{api_name} settings FOUND in environment!")
return api_name, model
# If no environment variables are found or OFFLINE is explicitly set
if llm_api == llms.OFFLINE.name:
return _set_offline("Offline mode enabled by user via CLI.")
return _set_offline(
"\n\n\t\t...No LLM API settings found in environment..."
)
The provided code snippet includes necessary dependencies for implementing the `readme_agent` function. Write a Python function `def readme_agent( alignment: Optional[str], api: Optional[str], badge_color: Optional[str], badge_style: Optional[str], base_url: Optional[str], context_window: Optional[int], emojis: Optional[bool], image: Optional[str], # language: Optional[str], model: Optional[str], output_file: Optional[str], rate_limit: Optional[int], repository: str, temperature: Optional[float], # template: Optional[str], tree_depth: Optional[int], top_p: Optional[float], ) -> None` to solve the following problem:
Configures and runs the README file generator agent.
Here is the function:
def readme_agent(
alignment: Optional[str],
api: Optional[str],
badge_color: Optional[str],
badge_style: Optional[str],
base_url: Optional[str],
context_window: Optional[int],
emojis: Optional[bool],
image: Optional[str],
# language: Optional[str],
model: Optional[str],
output_file: Optional[str],
rate_limit: Optional[int],
repository: str,
temperature: Optional[float],
# template: Optional[str],
tree_depth: Optional[int],
top_p: Optional[float],
) -> None:
"""Configures and runs the README file generator agent."""
try:
conf = ConfigLoader()
api, model = get_environment(api, model)
conf.config.api.rate_limit = rate_limit
conf.config.llm = conf.config.llm.copy(
update={
"api": api,
"base_url": base_url,
"context_window": context_window,
"model": model,
"temperature": temperature,
"top_p": top_p,
}
)
conf.config.md = conf.config.md.copy(
update={
"alignment": alignment,
"badge_color": badge_color,
"badge_style": badge_style,
"emojis": emojis,
"image": image,
"tree_depth": tree_depth,
}
)
conf.config.git = GitSettings(repository=repository)
_logger.info(f"Repository validated: {conf.config.git}")
_logger.info(f"LLM API settings: {conf.config.llm}")
asyncio.run(readme_generator(conf, output_file))
except Exception as exc:
raise ReadmeGeneratorError(exc, traceback.format_exc()) from exc | Configures and runs the README file generator agent. |
179 | from __future__ import annotations
from enum import Enum
from typing import Optional
import click
class ImageOptions(str, Enum):
"""
Enum for CLI options for README file header images.
"""
# Custom image options
CUSTOM = "custom"
LLM = "llm"
# Default image options
BLACK = "https://img.icons8.com/external-tal-revivo-regular-tal-revivo/96/external-readme-is-a-easy-to-build-a-developer-hub-that-adapts-to-the-user-logo-regular-tal-revivo.png"
BLUE = "https://raw.githubusercontent.com/PKief/vscode-material-icon-theme/ec559a9f6bfd399b82bb44393651661b08aaf7ba/icons/folder-markdown-open.svg"
CLOUD = "https://cdn-icons-png.flaticon.com/512/6295/6295417.png"
GRADIENT = "https://img.icons8.com/?size=512&id=55494&format=png"
GREY = "https://img.icons8.com/external-tal-revivo-filled-tal-revivo/96/external-markdown-a-lightweight-markup-language-with-plain-text-formatting-syntax-logo-filled-tal-revivo.png"
PURPLE = "https://img.icons8.com/external-tal-revivo-duo-tal-revivo/100/external-markdown-a-lightweight-markup-language-with-plain-text-formatting-syntax-logo-duo-tal-revivo.png"
The provided code snippet includes necessary dependencies for implementing the `prompt_for_image` function. Write a Python function `def prompt_for_image( context: Optional[click.Context], parameter: Optional[click.Parameter], value: Optional[str], ) -> str` to solve the following problem:
Prompt the user for a custom image URL.
Here is the function:
def prompt_for_image(
context: Optional[click.Context],
parameter: Optional[click.Parameter],
value: Optional[str],
) -> str:
"""Prompt the user for a custom image URL."""
if value == ImageOptions.CUSTOM.name:
return click.prompt("Provide an image file path or URL")
elif value == ImageOptions.LLM.name:
return ImageOptions.LLM.value
elif value in ImageOptions.__members__:
return ImageOptions[value].value
else:
raise click.BadParameter(f"Invalid image provided: {value}") | Prompt the user for a custom image URL. |
180 | import os
import platform
import shutil
from enum import Enum
from pathlib import Path
from typing import Optional
import git
from readmeai._exceptions import GitCloneError
from readmeai.core.logger import Logger
The provided code snippet includes necessary dependencies for implementing the `find_git_executable` function. Write a Python function `def find_git_executable() -> Optional[Path]` to solve the following problem:
Find the path to the git executable, if available.
Here is the function:
def find_git_executable() -> Optional[Path]:
"""Find the path to the git executable, if available."""
try:
git_exec_path = os.environ.get("GIT_PYTHON_GIT_EXECUTABLE")
if git_exec_path:
return Path(git_exec_path)
# For Windows, set default location of git executable.
if platform.system() == "Windows":
default_windows_path = Path("C:\\Program Files\\Git\\cmd\\git.EXE")
if default_windows_path.exists():
return default_windows_path
# For other OS, set executable path from PATH environment variable.
paths = os.environ["PATH"].split(os.pathsep)
for path in paths:
git_path = Path(path) / "git"
if git_path.exists():
return git_path
return None
except Exception as exc:
raise ValueError("Error finding Git executable") from exc | Find the path to the git executable, if available. |
181 | import os
import platform
import shutil
from enum import Enum
from pathlib import Path
from typing import Optional
import git
from readmeai._exceptions import GitCloneError
from readmeai.core.logger import Logger
The provided code snippet includes necessary dependencies for implementing the `validate_file_permissions` function. Write a Python function `def validate_file_permissions(temp_dir: Path) -> None` to solve the following problem:
Validates file permissions of the cloned repository.
Here is the function:
def validate_file_permissions(temp_dir: Path) -> None:
"""Validates file permissions of the cloned repository."""
try:
if platform.system() != "Windows":
permissions = temp_dir.stat().st_mode & 0o777
if permissions != 0o700:
raise SystemExit(
f"Invalid file permissions for {temp_dir}.\n"
f"Expected 0o700, but found {oct(permissions)}."
)
except Exception as exc:
raise ValueError(
f"Error validating file permissions: {str(exc)}"
) from exc | Validates file permissions of the cloned repository. |
182 | import os
import platform
import shutil
from enum import Enum
from pathlib import Path
from typing import Optional
import git
from readmeai._exceptions import GitCloneError
from readmeai.core.logger import Logger
The provided code snippet includes necessary dependencies for implementing the `validate_git_executable` function. Write a Python function `def validate_git_executable(git_exec_path: str) -> None` to solve the following problem:
Validate the path to the git executable.
Here is the function:
def validate_git_executable(git_exec_path: str) -> None:
"""Validate the path to the git executable."""
try:
if not git_exec_path or not Path(git_exec_path).exists():
raise ValueError(f"Git executable not found at {git_exec_path}")
except Exception as exc:
raise ValueError("Error validating Git executable path") from exc | Validate the path to the git executable. |
183 | from dataclasses import dataclass
from typing import Any, Dict, List, Optional
import aiohttp
from readmeai.core.logger import Logger
from readmeai.services.git import fetch_git_api_url
_logger = Logger(__name__)
class RepositoryMetadata:
"""Dataclass to store GitHub repository metadata."""
name: str
full_name: str
owner: str
owner_url: Optional[str]
description: Optional[str]
# Repository statistics
stars_count: int
forks_count: int
watchers_count: int
open_issues_count: int
# Repository details
default_branch: str
created_at: str
updated_at: str
pushed_at: str
size_kb: int
# Repository URLs
clone_url_http: str
clone_url_ssh: str
contributors_url: Optional[str]
languages_url: str
issues_url: Optional[str]
# Programming languages and topics
language: Optional[str]
languages: List[str]
topics: List[str]
# Additional repository settings
has_wiki: bool
has_issues: bool
has_projects: bool
is_private: bool
homepage_url: Optional[str]
# License information
license_name: Optional[str]
license_url: Optional[str]
def _parse_repository_metadata(repo_data: dict) -> RepositoryMetadata:
"""Converts raw repository data from GitHub API into dataclass."""
languages = repo_data.get("languages", {})
license_info = repo_data.get("license", {}) or {}
owner_info = repo_data.get("owner", {}) or {}
return RepositoryMetadata(
name=repo_data.get("name", ""),
full_name=repo_data.get("full_name", ""),
owner=owner_info.get("login", ""),
owner_url=owner_info.get("html_url", ""),
description=repo_data.get("description", ""),
stars_count=repo_data.get("stargazers_count", 0),
forks_count=repo_data.get("forks_count", 0),
watchers_count=repo_data.get("watchers_count", 0),
open_issues_count=repo_data.get("open_issues_count", 0),
default_branch=repo_data.get("default_branch", ""),
created_at=repo_data.get("created_at", ""),
updated_at=repo_data.get("updated_at", ""),
pushed_at=repo_data.get("pushed_at", ""),
size_kb=repo_data.get("size", 0),
clone_url_http=repo_data.get("clone_url", ""),
clone_url_ssh=repo_data.get("ssh_url", ""),
contributors_url=repo_data.get("contributors_url"),
languages_url=repo_data.get("languages_url", ""),
issues_url=repo_data.get("issues_url"),
language=repo_data.get("language", ""),
languages=list(languages.keys()) if languages else [],
topics=repo_data.get("topics", []),
has_wiki=repo_data.get("has_wiki", False),
has_issues=repo_data.get("has_issues", False),
has_projects=repo_data.get("has_projects", False),
is_private=repo_data.get("private", False),
homepage_url=repo_data.get("homepage", ""),
license_name=license_info.get("name", ""),
license_url=license_info.get("url", ""),
)
async def _fetch_repository_metadata(
session: aiohttp.ClientSession, url: str, **kwargs
) -> Dict[str, Any]:
"""Fetches repository metadata from the git host provider."""
async with session.get(url, **kwargs) as response:
response.raise_for_status()
if response.status != 200:
raise aiohttp.ClientResponseError(
request_info=response.request_info,
history=response.history,
status=response.status,
)
return await response.json()
async def fetch_git_api_url(repo_url: str) -> str:
"""Parses the repository URL and returns the API URL."""
try:
parts = repo_url.rstrip("/").split("/")
repo_name = f"{parts[-2]}/{parts[-1]}"
for service in GitHost:
if service in repo_url:
api_url = f"{service.api_url}{repo_name}"
_logger.info(f"{service.name.upper()} API URL: {api_url}")
return api_url
raise ValueError("Unsupported Git service.")
except (IndexError, ValueError) as exc:
raise ValueError(f"Invalid repository URL: {repo_url}") from exc
The provided code snippet includes necessary dependencies for implementing the `fetch_git_repository_metadata` function. Write a Python function `async def fetch_git_repository_metadata( session: aiohttp.ClientSession, repository: str ) -> Optional[RepositoryMetadata]` to solve the following problem:
Retrieves GitHub repository metadata and returns a dataclass.
Here is the function:
async def fetch_git_repository_metadata(
session: aiohttp.ClientSession, repository: str
) -> Optional[RepositoryMetadata]:
"""Retrieves GitHub repository metadata and returns a dataclass."""
api_url = await fetch_git_api_url(repository)
if not api_url:
return None
try:
metadata = await _fetch_repository_metadata(session, api_url)
return _parse_repository_metadata(metadata) if metadata else None
except aiohttp.ClientError as exc:
_logger.error(
f"Client error while fetching repository metadata: {exc}"
)
return None | Retrieves GitHub repository metadata and returns a dataclass. |
184 | from typing import Dict, List, Union
import readmeai.config.settings as Settings
from readmeai.core.logger import Logger
_logger = Logger(__name__)
def get_prompt_template(prompts: dict, prompt_type: str) -> str:
"""Retrieves the template for the given prompt type."""
prompt_templates = {
"features": prompts["prompts"]["features"],
"overview": prompts["prompts"]["overview"],
"slogan": prompts["prompts"]["slogan"],
}
return prompt_templates.get(prompt_type, "")
def inject_prompt_context(template: str, context: dict) -> str:
"""Formats the template with the provided context."""
try:
return template.format(*[context[key] for key in context])
except KeyError as exc:
_logger.error(f"Missing context for prompt key: {exc}")
return ""
The provided code snippet includes necessary dependencies for implementing the `get_prompt_context` function. Write a Python function `def get_prompt_context(prompts: dict, prompt_type: str, context: dict) -> str` to solve the following problem:
Generates a prompt for the LLM API.
Here is the function:
def get_prompt_context(prompts: dict, prompt_type: str, context: dict) -> str:
"""Generates a prompt for the LLM API."""
prompt_template = get_prompt_template(prompts, prompt_type)
if not prompt_template:
_logger.error(f"Prompt type '{prompt_type}' not found.")
return ""
return inject_prompt_context(prompt_template, context) | Generates a prompt for the LLM API. |
185 | from typing import Dict, List, Union
import readmeai.config.settings as Settings
from readmeai.core.logger import Logger
The provided code snippet includes necessary dependencies for implementing the `set_additional_contexts` function. Write a Python function `async def set_additional_contexts( config: Settings, dependencies: List[str], file_summaries: List[str], ) -> List[dict]` to solve the following problem:
Generates additional prompts (features, overview, slogan) for LLM.
Here is the function:
async def set_additional_contexts(
config: Settings,
dependencies: List[str],
file_summaries: List[str],
) -> List[dict]:
"""Generates additional prompts (features, overview, slogan) for LLM."""
return [
{"type": prompt_type, "context": context}
for prompt_type, context in [
(
"features",
{
"repo": config.git.repository,
"dependencies": dependencies,
"file_summary": file_summaries,
},
),
(
"overview",
{
"name": config.git.name,
"file_summary": file_summaries,
},
),
(
"slogan",
{
"name": config.git.name,
"repo": config.git.repository,
"file_summary": file_summaries,
},
),
]
] | Generates additional prompts (features, overview, slogan) for LLM. |
186 | from typing import Dict, List, Union
import readmeai.config.settings as Settings
from readmeai.core.logger import Logger
The provided code snippet includes necessary dependencies for implementing the `set_summary_context` function. Write a Python function `async def set_summary_context( config: Settings, dependencies: List[str], file_summaries: List[str], ) -> List[Dict[str, Union[str, dict]]]` to solve the following problem:
Generates the summary prompts to be used by the LLM API.
Here is the function:
async def set_summary_context(
config: Settings,
dependencies: List[str],
file_summaries: List[str],
) -> List[Dict[str, Union[str, dict]]]:
"""Generates the summary prompts to be used by the LLM API."""
return [
{"type": prompt_type, "context": context}
for prompt_type, context in [
(
"file_summary",
{
"tree": config.md.tree,
"dependencies": dependencies,
"file_summary": file_summaries,
},
),
]
] | Generates the summary prompts to be used by the LLM API. |
187 | from tiktoken import get_encoding
from readmeai.config.settings import Settings
from readmeai.core.logger import Logger
_logger = Logger(__name__)
def count_tokens(text: str, encoder: str) -> int:
"""Return the number of tokens in a text string."""
try:
encoding = _set_encoding_cache(encoder)
token_count = len(encoding.encode(text, disallowed_special=()))
except (UnicodeEncodeError, ValueError) as exc:
_logger.error(
f"Error counting tokens for '{text}' with {encoder}: {exc}"
)
token_count = 0
return token_count
def truncate_tokens(encoder: str, text: str, max_count: int) -> str:
"""Truncate a text string to a maximum number of tokens."""
if not text:
return text
try:
encoder = _set_encoding_cache(encoder)
token_count = len(encoder.encode(text))
if token_count <= max_count:
return text
char_total = len(text)
chars_per_token = char_total / token_count
truncated_total = int(chars_per_token * max_count)
return text[:truncated_total]
except Exception as exc:
_logger.error(f"Error truncating tokens for '{text}': {exc}")
return text
The provided code snippet includes necessary dependencies for implementing the `token_handler` function. Write a Python function `async def token_handler( config: Settings, index: str, prompt: str, tokens: int ) -> str` to solve the following problem:
Handle token count for the prompt.
Here is the function:
async def token_handler(
config: Settings, index: str, prompt: str, tokens: int
) -> str:
"""Handle token count for the prompt."""
encoder = config.llm.encoder
max_count = config.llm.context_window
token_count = count_tokens(prompt, encoder)
if token_count > max_count:
_logger.debug(
f"Truncating '{index}' prompt: {token_count} > {max_count} tokens!"
)
prompt = truncate_tokens(encoder, prompt, tokens)
return prompt | Handle token count for the prompt. |
188 | from tiktoken import get_encoding
from readmeai.config.settings import Settings
from readmeai.core.logger import Logger
The provided code snippet includes necessary dependencies for implementing the `update_max_tokens` function. Write a Python function `def update_max_tokens( max_tokens: int, prompt: str, target: str = "Hello!" ) -> int` to solve the following problem:
Adjust the maximum number of tokens based on the specific prompt.
Here is the function:
def update_max_tokens(
max_tokens: int, prompt: str, target: str = "Hello!"
) -> int:
"""Adjust the maximum number of tokens based on the specific prompt."""
is_valid_prompt = prompt.strip().startswith(target.strip())
return max_tokens if is_valid_prompt else max_tokens // 2 | Adjust the maximum number of tokens based on the specific prompt. |
189 | import re
def clean_text(text: str) -> str:
"""Format and clean generated text from the LLM."""
# Dynamically remove all text before and including the first colon if any exist
text = re.sub(r"^[^:]*:\s*", "", text)
# Remove any text before and including "**:"
text = re.sub(r"\*\*:\s*", "", text, flags=re.DOTALL)
# Remove single and double quotes that are missing their closing counterpart
text = re.sub(r"['\"](.*?)$", r"\1", text)
text = re.sub(r"^(.*?)['\"]", r"\1", text)
# Remove specific pattern and rephrase
text = re.sub(
r"\*\*Code Summary:\*\*\s*(.*?)\s*provides functions to",
r"Provides functions to",
text,
flags=re.DOTALL,
)
# Remove single and double quotes around any text
text = re.sub(r"(?<!\w)['\"](.*?)['\"](?!\w)", r"\1", text)
# Remove newlines and tabs
text = text.replace("\n", "").replace("\t", "")
# Remove non-letter characters from the beginning of the string
text = re.sub(r"^[^a-zA-Z]*", "", text)
# Remove extra white space around punctuation except for '('
text = re.sub(r"\s*([)'.!,?;:])(?!\.\s*\w)", r"\1", text)
# Remove extra white space before opening parentheses
text = re.sub(r"(\()\s*", r"\1", text)
# Replace multiple consecutive spaces with a single space
text = re.sub(r" +", " ", text)
# Remove extra white space around hyphens
text = re.sub(r"\s*-\s*", "-", text)
# Specifically target and remove trailing special characters like asterisks
text = re.sub(r"\*+$", "", text)
text = text.strip()
# Ensure the first letter is capitalized if it's alphabetic
if text and not text[0].isupper() and text[0].isalpha():
text = text[0].upper() + text[1:]
return text
def format_md_table(text: str) -> str:
"""
Pattern to match a Markdown table. Looks for a
header row with at least two columns, followed by
a separator row, and then one or more data rows.
This version is designed to be more robust in removing
text around the markdown table.
"""
pattern = (
r"(?:.*\n)*(\|.*\|.*\n\|[-: ]+\|[-: ]+\|.*\n(?:\|.*\|.*\n)*)(?:.*\n)*"
)
match = re.search(pattern, text, re.DOTALL)
return match.group(1).strip() if match else ""
The provided code snippet includes necessary dependencies for implementing the `clean_response` function. Write a Python function `def clean_response(prompt_type: str, response_text: str) -> str` to solve the following problem:
Post-processes the response from the LLM.
Here is the function:
def clean_response(prompt_type: str, response_text: str) -> str:
"""Post-processes the response from the LLM."""
if prompt_type == "features":
return format_md_table(response_text)
elif prompt_type != "features":
return clean_text(response_text)
else:
return response_text | Post-processes the response from the LLM. |
190 | import re
The provided code snippet includes necessary dependencies for implementing the `fix_md_table_rows` function. Write a Python function `def fix_md_table_rows(md_table: str) -> str` to solve the following problem:
Format a Markdown table with feature and description columns.
Here is the function:
def fix_md_table_rows(md_table: str) -> str:
"""Format a Markdown table with feature and description columns."""
lines = md_table.split("||")
formatted_md_table = (
"| Feature | Description |\n|---------|-------------|\n"
)
for line in lines[2:]:
clean_line = line.strip("|")
parts = clean_line.split("|")
if len(parts) >= 3:
feature = parts[1].strip()
description = parts[2].strip()
formatted_row = f"| {feature} | {description} |\n"
formatted_md_table += formatted_row
return formatted_md_table | Format a Markdown table with feature and description columns. |
191 | import nox
def install(session, groups, root=True):
"""Install the package in the current session."""
if root:
groups = ["main", *groups]
session.run_always(
"poetry",
"install",
"--no-root",
"--sync",
f"--only={','.join(groups)}",
external=True,
)
if root:
session.install(".")
The provided code snippet includes necessary dependencies for implementing the `tests` function. Write a Python function `def tests(session)` to solve the following problem:
Run the test suite across Python versions
Here is the function:
def tests(session):
"""Run the test suite across Python versions"""
session.install(".")
session.install(".[test]")
session.run(
"pytest",
"-vv",
"-n auto",
"--asyncio-mode=auto",
"--cov=./",
"--cov-branch",
"--cov-report=xml",
"--cov-report=term-missing",
) | Run the test suite across Python versions |
192 | from typing import List, Optional
from fastapi import APIRouter, Body
from .. import application
from ..route import EncodingAPIRoute
The provided code snippet includes necessary dependencies for implementing the `summary` function. Write a Python function `def summary(text: str, minlength: Optional[int] = None, maxlength: Optional[int] = None)` to solve the following problem:
Runs a summarization model against a block of text. Args: text: text to summarize minlength: minimum length for summary maxlength: maximum length for summary Returns: summary text
Here is the function:
def summary(text: str, minlength: Optional[int] = None, maxlength: Optional[int] = None):
"""
Runs a summarization model against a block of text.
Args:
text: text to summarize
minlength: minimum length for summary
maxlength: maximum length for summary
Returns:
summary text
"""
return application.get().pipeline("summary", (text, minlength, maxlength)) | Runs a summarization model against a block of text. Args: text: text to summarize minlength: minimum length for summary maxlength: maximum length for summary Returns: summary text |
193 | from typing import List, Optional
from fastapi import APIRouter, Body
from .. import application
from ..route import EncodingAPIRoute
The provided code snippet includes necessary dependencies for implementing the `batchsummary` function. Write a Python function `def batchsummary(texts: List[str] = Body(...), minlength: Optional[int] = Body(default=None), maxlength: Optional[int] = Body(default=None))` to solve the following problem:
Runs a summarization model against a block of text. Args: texts: list of text to summarize minlength: minimum length for summary maxlength: maximum length for summary Returns: list of summary text
Here is the function:
def batchsummary(texts: List[str] = Body(...), minlength: Optional[int] = Body(default=None), maxlength: Optional[int] = Body(default=None)):
"""
Runs a summarization model against a block of text.
Args:
texts: list of text to summarize
minlength: minimum length for summary
maxlength: maximum length for summary
Returns:
list of summary text
"""
return application.get().pipeline("summary", (texts, minlength, maxlength)) | Runs a summarization model against a block of text. Args: texts: list of text to summarize minlength: minimum length for summary maxlength: maximum length for summary Returns: list of summary text |
194 | from typing import List
from fastapi import APIRouter, Body
from .. import application
from ..route import EncodingAPIRoute
The provided code snippet includes necessary dependencies for implementing the `tabular` function. Write a Python function `def tabular(file: str)` to solve the following problem:
Splits tabular data into rows and columns. Args: file: file to process Returns: list of (id, text, tag) elements
Here is the function:
def tabular(file: str):
"""
Splits tabular data into rows and columns.
Args:
file: file to process
Returns:
list of (id, text, tag) elements
"""
return application.get().pipeline("tabular", (file,)) | Splits tabular data into rows and columns. Args: file: file to process Returns: list of (id, text, tag) elements |
195 | from typing import List
from fastapi import APIRouter, Body
from .. import application
from ..route import EncodingAPIRoute
The provided code snippet includes necessary dependencies for implementing the `batchtabular` function. Write a Python function `def batchtabular(files: List[str] = Body(...))` to solve the following problem:
Splits tabular data into rows and columns. Args: files: list of files to process Returns: list of (id, text, tag) elements
Here is the function:
def batchtabular(files: List[str] = Body(...)):
"""
Splits tabular data into rows and columns.
Args:
files: list of files to process
Returns:
list of (id, text, tag) elements
"""
return application.get().pipeline("tabular", (files,)) | Splits tabular data into rows and columns. Args: files: list of files to process Returns: list of (id, text, tag) elements |
196 | from typing import List, Optional
from fastapi import APIRouter, Body
from .. import application
from ..route import EncodingAPIRoute
The provided code snippet includes necessary dependencies for implementing the `translate` function. Write a Python function `def translate(text: str, target: Optional[str] = "en", source: Optional[str] = None)` to solve the following problem:
Translates text from source language into target language. Args: text: text to translate target: target language code, defaults to "en" source: source language code, detects language if not provided Returns: translated text
Here is the function:
def translate(text: str, target: Optional[str] = "en", source: Optional[str] = None):
"""
Translates text from source language into target language.
Args:
text: text to translate
target: target language code, defaults to "en"
source: source language code, detects language if not provided
Returns:
translated text
"""
return application.get().pipeline("translation", (text, target, source)) | Translates text from source language into target language. Args: text: text to translate target: target language code, defaults to "en" source: source language code, detects language if not provided Returns: translated text |
197 | from typing import List, Optional
from fastapi import APIRouter, Body
from .. import application
from ..route import EncodingAPIRoute
The provided code snippet includes necessary dependencies for implementing the `batchtranslate` function. Write a Python function `def batchtranslate(texts: List[str] = Body(...), target: Optional[str] = Body(default="en"), source: Optional[str] = Body(default=None))` to solve the following problem:
Translates text from source language into target language. Args: texts: list of text to translate target: target language code, defaults to "en" source: source language code, detects language if not provided Returns: list of translated text
Here is the function:
def batchtranslate(texts: List[str] = Body(...), target: Optional[str] = Body(default="en"), source: Optional[str] = Body(default=None)):
"""
Translates text from source language into target language.
Args:
texts: list of text to translate
target: target language code, defaults to "en"
source: source language code, detects language if not provided
Returns:
list of translated text
"""
return application.get().pipeline("translation", (texts, target, source)) | Translates text from source language into target language. Args: texts: list of text to translate target: target language code, defaults to "en" source: source language code, detects language if not provided Returns: list of translated text |
198 | from typing import List, Optional
from fastapi import APIRouter, Body
from .. import application
from ..route import EncodingAPIRoute
The provided code snippet includes necessary dependencies for implementing the `extract` function. Write a Python function `def extract(queue: List[dict] = Body(...), texts: Optional[List[str]] = Body(default=None))` to solve the following problem:
Extracts answers to input questions. Args: queue: list of {name: value, query: value, question: value, snippet: value} texts: optional list of text Returns: list of {name: value, answer: value}
Here is the function:
def extract(queue: List[dict] = Body(...), texts: Optional[List[str]] = Body(default=None)):
"""
Extracts answers to input questions.
Args:
queue: list of {name: value, query: value, question: value, snippet: value}
texts: optional list of text
Returns:
list of {name: value, answer: value}
"""
return application.get().extract(queue, texts) | Extracts answers to input questions. Args: queue: list of {name: value, query: value, question: value, snippet: value} texts: optional list of text Returns: list of {name: value, answer: value} |
199 | from typing import List
from fastapi import APIRouter, Body
from .. import application
from ..route import EncodingAPIRoute
def label(text: str = Body(...), labels: List[str] = Body(...)):
"""
Applies a zero shot classifier to text using a list of labels. Returns a list of
{id: value, score: value} sorted by highest score, where id is the index in labels.
Args:
text: input text
labels: list of labels
Returns:
list of {id: value, score: value} per text element
"""
return application.get().label(text, labels)
The provided code snippet includes necessary dependencies for implementing the `batchlabel` function. Write a Python function `def batchlabel(texts: List[str] = Body(...), labels: List[str] = Body(...))` to solve the following problem:
Applies a zero shot classifier to list of text using a list of labels. Returns a list of {id: value, score: value} sorted by highest score, where id is the index in labels per text element. Args: texts: list of text labels: list of labels Returns: list of {id: value score: value} per text element
Here is the function:
def batchlabel(texts: List[str] = Body(...), labels: List[str] = Body(...)):
"""
Applies a zero shot classifier to list of text using a list of labels. Returns a list of
{id: value, score: value} sorted by highest score, where id is the index in labels per
text element.
Args:
texts: list of text
labels: list of labels
Returns:
list of {id: value score: value} per text element
"""
return application.get().label(texts, labels) | Applies a zero shot classifier to list of text using a list of labels. Returns a list of {id: value, score: value} sorted by highest score, where id is the index in labels per text element. Args: texts: list of text labels: list of labels Returns: list of {id: value score: value} per text element |