_id
stringlengths
2
6
partition
stringclasses
3 values
text
stringlengths
87
6.4k
title
stringclasses
1 value
language
stringclasses
1 value
meta_information
dict
d201
train
def dict_to_querystring(dictionary): """Converts a dict to a querystring suitable to be appended to a URL.""" s = u"" for d in dictionary.keys(): s = unicode.format(u"{0}{1}={2}&", s, d, dictionary[d]) return s[:-1]
PYTHON
{ "dummy_field": "" }
d202
train
def _check_elements_equal(lst): """ Returns true if all of the elements in the list are equal. """ assert isinstance(lst, list), "Input value must be a list." return not lst or lst.count(lst[0]) == len(lst)
PYTHON
{ "dummy_field": "" }
d203
train
def nonull_dict(self): """Like dict, but does not hold any null values. :return: """ return {k: v for k, v in six.iteritems(self.dict) if v and k != '_codes'}
PYTHON
{ "dummy_field": "" }
d204
train
def is_element_present(driver, selector, by=By.CSS_SELECTOR): """ Returns whether the specified element selector is present on the page. @Params driver - the webdriver object (required) selector - the locator that is used (required) by - the method to search for the locator (Default: By.CSS_SELECTOR) @Returns Boolean (is element present) """ try: driver.find_element(by=by, value=selector) return True except Exception: return False
PYTHON
{ "dummy_field": "" }
d205
train
def updateFromKwargs(self, properties, kwargs, collector, **unused): """Primary entry point to turn 'kwargs' into 'properties'""" properties[self.name] = self.getFromKwargs(kwargs)
PYTHON
{ "dummy_field": "" }
d206
train
def is_callable(*p): """ True if all the args are functions and / or subroutines """ import symbols return all(isinstance(x, symbols.FUNCTION) for x in p)
PYTHON
{ "dummy_field": "" }
d207
train
async def disconnect(self): """ Disconnect from target. """ if not self.connected: return self.writer.close() self.reader = None self.writer = None
PYTHON
{ "dummy_field": "" }
d208
train
def is_dataframe(obj): """ Returns True if the given object is a Pandas Data Frame. Parameters ---------- obj: instance The object to test whether or not is a Pandas DataFrame. """ try: # This is the best method of type checking from pandas import DataFrame return isinstance(obj, DataFrame) except ImportError: # Pandas is not a dependency, so this is scary return obj.__class__.__name__ == "DataFrame"
PYTHON
{ "dummy_field": "" }
d209
train
def test(): """Run the unit tests.""" import unittest tests = unittest.TestLoader().discover('tests') unittest.TextTestRunner(verbosity=2).run(tests)
PYTHON
{ "dummy_field": "" }
d210
train
def is_datetime_like(dtype): """Check if a dtype is a subclass of the numpy datetime types """ return (np.issubdtype(dtype, np.datetime64) or np.issubdtype(dtype, np.timedelta64))
PYTHON
{ "dummy_field": "" }
d211
train
def serialize_json_string(self, value): """ Tries to load an encoded json string back into an object :param json_string: :return: """ # Check if the value might be a json string if not isinstance(value, six.string_types): return value # Make sure it starts with a brace if not value.startswith('{') or value.startswith('['): return value # Try to load the string try: return json.loads(value) except: return value
PYTHON
{ "dummy_field": "" }
d212
train
def is_defined(self, objtxt, force_import=False): """Return True if object is defined""" return self.interpreter.is_defined(objtxt, force_import)
PYTHON
{ "dummy_field": "" }
d213
train
def get_hline(): """ gets a horiztonal line """ return Window( width=LayoutDimension.exact(1), height=LayoutDimension.exact(1), content=FillControl('-', token=Token.Line))
PYTHON
{ "dummy_field": "" }
d214
train
def group_exists(groupname): """Check if a group exists""" try: grp.getgrnam(groupname) group_exists = True except KeyError: group_exists = False return group_exists
PYTHON
{ "dummy_field": "" }
d215
train
def sync(self, recursive=False): """ Syncs the information from this item to the tree and view. """ self.syncTree(recursive=recursive) self.syncView(recursive=recursive)
PYTHON
{ "dummy_field": "" }
d216
train
def is_same_shape(self, other_im, check_channels=False): """ Checks if two images have the same height and width (and optionally channels). Parameters ---------- other_im : :obj:`Image` image to compare check_channels : bool whether or not to check equality of the channels Returns ------- bool True if the images are the same shape, False otherwise """ if self.height == other_im.height and self.width == other_im.width: if check_channels and self.channels != other_im.channels: return False return True return False
PYTHON
{ "dummy_field": "" }
d217
train
def get_distance_between_two_points(self, one, two): """Returns the distance between two XYPoints.""" dx = one.x - two.x dy = one.y - two.y return math.sqrt(dx * dx + dy * dy)
PYTHON
{ "dummy_field": "" }
d218
train
def is_same_shape(self, other_im, check_channels=False): """ Checks if two images have the same height and width (and optionally channels). Parameters ---------- other_im : :obj:`Image` image to compare check_channels : bool whether or not to check equality of the channels Returns ------- bool True if the images are the same shape, False otherwise """ if self.height == other_im.height and self.width == other_im.width: if check_channels and self.channels != other_im.channels: return False return True return False
PYTHON
{ "dummy_field": "" }
d219
train
def post_process(self): """ Apply last 2D transforms""" self.image.putdata(self.pixels) self.image = self.image.transpose(Image.ROTATE_90)
PYTHON
{ "dummy_field": "" }
d220
train
def _not_none(items): """Whether the item is a placeholder or contains a placeholder.""" if not isinstance(items, (tuple, list)): items = (items,) return all(item is not _none for item in items)
PYTHON
{ "dummy_field": "" }
d221
train
def delete_all_from_db(): """Clear the database. Used for testing and debugging. """ # The models.CASCADE property is set on all ForeignKey fields, so tables can # be deleted in any order without breaking constraints. for model in django.apps.apps.get_models(): model.objects.all().delete()
PYTHON
{ "dummy_field": "" }
d222
train
def is_complex(dtype): """Returns whether this is a complex floating point type.""" dtype = tf.as_dtype(dtype) if hasattr(dtype, 'is_complex'): return dtype.is_complex return np.issubdtype(np.dtype(dtype), np.complex)
PYTHON
{ "dummy_field": "" }
d223
train
def delete(build_folder): """Delete build directory and all its contents. """ if _meta_.del_build in ["on", "ON"] and os.path.exists(build_folder): shutil.rmtree(build_folder)
PYTHON
{ "dummy_field": "" }
d224
train
def _stdin_ready_posix(): """Return True if there's something to read on stdin (posix version).""" infds, outfds, erfds = select.select([sys.stdin],[],[],0) return bool(infds)
PYTHON
{ "dummy_field": "" }
d225
train
def json_response(data, status=200): """Return a JsonResponse. Make sure you have django installed first.""" from django.http import JsonResponse return JsonResponse(data=data, status=status, safe=isinstance(data, dict))
PYTHON
{ "dummy_field": "" }
d226
train
def _is_path(s): """Return whether an object is a path.""" if isinstance(s, string_types): try: return op.exists(s) except (OSError, ValueError): return False else: return False
PYTHON
{ "dummy_field": "" }
d227
train
def see_doc(obj_with_doc): """Copy docstring from existing object to the decorated callable.""" def decorator(fn): fn.__doc__ = obj_with_doc.__doc__ return fn return decorator
PYTHON
{ "dummy_field": "" }
d228
train
def isToneCal(self): """Whether the currently selected calibration stimulus type is the calibration curve :returns: boolean -- if the current combo box selection is calibration curve """ return self.ui.calTypeCmbbx.currentIndex() == self.ui.calTypeCmbbx.count() -1
PYTHON
{ "dummy_field": "" }
d229
train
def hmsToDeg(h, m, s): """Convert RA hours, minutes, seconds into an angle in degrees.""" return h * degPerHMSHour + m * degPerHMSMin + s * degPerHMSSec
PYTHON
{ "dummy_field": "" }
d230
train
def is_date(thing): """Checks if the given thing represents a date :param thing: The object to check if it is a date :type thing: arbitrary object :returns: True if we have a date object :rtype: bool """ # known date types date_types = (datetime.datetime, datetime.date, DateTime) return isinstance(thing, date_types)
PYTHON
{ "dummy_field": "" }
d231
train
def prepare(doc): """Sets the caption_found and plot_found variables to False.""" doc.caption_found = False doc.plot_found = False doc.listings_counter = 0
PYTHON
{ "dummy_field": "" }
d232
train
def validate(key): """Check that the key is a string or bytestring. That's the only valid type of key. """ if not isinstance(key, (str, bytes)): raise KeyError('Key must be of type str or bytes, found type {}'.format(type(key)))
PYTHON
{ "dummy_field": "" }
d233
train
def _normal_prompt(self): """ Flushes the prompt before requesting the input :return: The command line """ sys.stdout.write(self.__get_ps1()) sys.stdout.flush() return safe_input()
PYTHON
{ "dummy_field": "" }
d234
train
def maxDepth(self, currentDepth=0): """Compute the depth of the longest branch of the tree""" if not any((self.left, self.right)): return currentDepth result = 0 for child in (self.left, self.right): if child: result = max(result, child.maxDepth(currentDepth + 1)) return result
PYTHON
{ "dummy_field": "" }
d235
train
def from_rectangle(box): """ Create a vector randomly within the given rectangle. """ x = box.left + box.width * random.uniform(0, 1) y = box.bottom + box.height * random.uniform(0, 1) return Vector(x, y)
PYTHON
{ "dummy_field": "" }
d236
train
def launched(): """Test whether the current python environment is the correct lore env. :return: :any:`True` if the environment is launched :rtype: bool """ if not PREFIX: return False return os.path.realpath(sys.prefix) == os.path.realpath(PREFIX)
PYTHON
{ "dummy_field": "" }
d237
train
def hline(self, x, y, width, color): """Draw a horizontal line up to a given length.""" self.rect(x, y, width, 1, color, fill=True)
PYTHON
{ "dummy_field": "" }
d238
train
def is_sequence(obj): """Check if `obj` is a sequence, but not a string or bytes.""" return isinstance(obj, Sequence) and not ( isinstance(obj, str) or BinaryClass.is_valid_type(obj))
PYTHON
{ "dummy_field": "" }
d239
train
def isnamedtuple(obj): """Heuristic check if an object is a namedtuple.""" return isinstance(obj, tuple) \ and hasattr(obj, "_fields") \ and hasattr(obj, "_asdict") \ and callable(obj._asdict)
PYTHON
{ "dummy_field": "" }
d240
train
def starts_with_prefix_in_list(text, prefixes): """ Return True if the given string starts with one of the prefixes in the given list, otherwise return False. Arguments: text (str): Text to check for prefixes. prefixes (list): List of prefixes to check for. Returns: bool: True if the given text starts with any of the given prefixes, otherwise False. """ for prefix in prefixes: if text.startswith(prefix): return True return False
PYTHON
{ "dummy_field": "" }
d241
train
def print_yaml(o): """Pretty print an object as YAML.""" print(yaml.dump(o, default_flow_style=False, indent=4, encoding='utf-8'))
PYTHON
{ "dummy_field": "" }
d242
train
def issuperset(self, other): """Report whether this RangeSet contains another set.""" self._binary_sanity_check(other) return set.issuperset(self, other)
PYTHON
{ "dummy_field": "" }
d243
train
def deserialize_ndarray_npy(d): """ Deserializes a JSONified :obj:`numpy.ndarray` that was created using numpy's :obj:`save` function. Args: d (:obj:`dict`): A dictionary representation of an :obj:`ndarray` object, created using :obj:`numpy.save`. Returns: An :obj:`ndarray` object. """ with io.BytesIO() as f: f.write(json.loads(d['npy']).encode('latin-1')) f.seek(0) return np.load(f)
PYTHON
{ "dummy_field": "" }
d244
train
def check(text): """Check the text.""" err = "misc.currency" msg = u"Incorrect use of symbols in {}." symbols = [ "\$[\d]* ?(?:dollars|usd|us dollars)" ] return existence_check(text, symbols, err, msg)
PYTHON
{ "dummy_field": "" }
d245
train
def listlike(obj): """Is an object iterable like a list (and not a string)?""" return hasattr(obj, "__iter__") \ and not issubclass(type(obj), str)\ and not issubclass(type(obj), unicode)
PYTHON
{ "dummy_field": "" }
d246
train
def _map_table_name(self, model_names): """ Pre foregin_keys potrbejeme pre z nazvu tabulky zistit class, tak si to namapujme """ for model in model_names: if isinstance(model, tuple): model = model[0] try: model_cls = getattr(self.models, model) self.table_to_class[class_mapper(model_cls).tables[0].name] = model except AttributeError: pass
PYTHON
{ "dummy_field": "" }
d247
train
def service_available(service_name): """Determine whether a system service is available""" try: subprocess.check_output( ['service', service_name, 'status'], stderr=subprocess.STDOUT).decode('UTF-8') except subprocess.CalledProcessError as e: return b'unrecognized service' not in e.output else: return True
PYTHON
{ "dummy_field": "" }
d248
train
def keys(self): """Return a list of all keys in the dictionary. Returns: list of str: [key1,key2,...,keyN] """ all_keys = [k.decode('utf-8') for k,v in self.rdb.hgetall(self.session_hash).items()] return all_keys
PYTHON
{ "dummy_field": "" }
d249
train
def _valid_other_type(x, types): """ Do all elements of x have a type from types? """ return all(any(isinstance(el, t) for t in types) for el in np.ravel(x))
PYTHON
{ "dummy_field": "" }
d250
train
def escape_tex(value): """ Make text tex safe """ newval = value for pattern, replacement in LATEX_SUBS: newval = pattern.sub(replacement, newval) return newval
PYTHON
{ "dummy_field": "" }
d251
train
def _pip_exists(self): """Returns True if pip exists inside the virtual environment. Can be used as a naive way to verify that the environment is installed.""" return os.path.isfile(os.path.join(self.path, 'bin', 'pip'))
PYTHON
{ "dummy_field": "" }
d252
train
def update_index(index): """Re-index every document in a named index.""" logger.info("Updating search index: '%s'", index) client = get_client() responses = [] for model in get_index_models(index): logger.info("Updating search index model: '%s'", model.search_doc_type) objects = model.objects.get_search_queryset(index).iterator() actions = bulk_actions(objects, index=index, action="index") response = helpers.bulk(client, actions, chunk_size=get_setting("chunk_size")) responses.append(response) return responses
PYTHON
{ "dummy_field": "" }
d253
train
def is_datetime_like(dtype): """Check if a dtype is a subclass of the numpy datetime types """ return (np.issubdtype(dtype, np.datetime64) or np.issubdtype(dtype, np.timedelta64))
PYTHON
{ "dummy_field": "" }
d254
train
def hidden_cursor(self): """Return a context manager that hides the cursor while inside it and makes it visible on leaving.""" self.stream.write(self.hide_cursor) try: yield finally: self.stream.write(self.normal_cursor)
PYTHON
{ "dummy_field": "" }
d255
train
def service_available(service_name): """Determine whether a system service is available""" try: subprocess.check_output( ['service', service_name, 'status'], stderr=subprocess.STDOUT).decode('UTF-8') except subprocess.CalledProcessError as e: return b'unrecognized service' not in e.output else: return True
PYTHON
{ "dummy_field": "" }
d256
train
def copy(doc, dest, src): """Copy element from sequence, member from mapping. :param doc: the document base :param dest: the destination :type dest: Pointer :param src: the source :type src: Pointer :return: the new object """ return Target(doc).copy(dest, src).document
PYTHON
{ "dummy_field": "" }
d257
train
def is_string(val): """Determines whether the passed value is a string, safe for 2/3.""" try: basestring except NameError: return isinstance(val, str) return isinstance(val, basestring)
PYTHON
{ "dummy_field": "" }
d258
train
def read_from_file(file_path, encoding="utf-8"): """ Read helper method :type file_path: str|unicode :type encoding: str|unicode :rtype: str|unicode """ with codecs.open(file_path, "r", encoding) as f: return f.read()
PYTHON
{ "dummy_field": "" }
d259
train
def _stdin_ready_posix(): """Return True if there's something to read on stdin (posix version).""" infds, outfds, erfds = select.select([sys.stdin],[],[],0) return bool(infds)
PYTHON
{ "dummy_field": "" }
d260
train
def _is_root(): """Checks if the user is rooted.""" import os import ctypes try: return os.geteuid() == 0 except AttributeError: return ctypes.windll.shell32.IsUserAnAdmin() != 0 return False
PYTHON
{ "dummy_field": "" }
d261
train
def _valid_other_type(x, types): """ Do all elements of x have a type from types? """ return all(any(isinstance(el, t) for t in types) for el in np.ravel(x))
PYTHON
{ "dummy_field": "" }
d262
train
def describe_enum_value(enum_value): """Build descriptor for Enum instance. Args: enum_value: Enum value to provide descriptor for. Returns: Initialized EnumValueDescriptor instance describing the Enum instance. """ enum_value_descriptor = EnumValueDescriptor() enum_value_descriptor.name = six.text_type(enum_value.name) enum_value_descriptor.number = enum_value.number return enum_value_descriptor
PYTHON
{ "dummy_field": "" }
d263
train
def user_in_all_groups(user, groups): """Returns True if the given user is in all given groups""" return user_is_superuser(user) or all(user_in_group(user, group) for group in groups)
PYTHON
{ "dummy_field": "" }
d264
train
def items(self): """Return a list of the (name, value) pairs of the enum. These are returned in the order they were defined in the .proto file. """ return [(value_descriptor.name, value_descriptor.number) for value_descriptor in self._enum_type.values]
PYTHON
{ "dummy_field": "" }
d265
train
def n_choose_k(n, k): """ get the number of quartets as n-choose-k. This is used in equal splits to decide whether a split should be exhaustively sampled or randomly sampled. Edges near tips can be exhaustive while highly nested edges probably have too many quartets """ return int(reduce(MUL, (Fraction(n-i, i+1) for i in range(k)), 1))
PYTHON
{ "dummy_field": "" }
d266
train
def items(cls): """ All values for this enum :return: list of tuples """ return [ cls.PRECIPITATION, cls.WIND, cls.TEMPERATURE, cls.PRESSURE ]
PYTHON
{ "dummy_field": "" }
d267
train
def revnet_164_cifar(): """Tiny hparams suitable for CIFAR/etc.""" hparams = revnet_cifar_base() hparams.bottleneck = True hparams.num_channels = [16, 32, 64] hparams.num_layers_per_block = [8, 8, 8] return hparams
PYTHON
{ "dummy_field": "" }
d268
train
def items(cls): """ All values for this enum :return: list of tuples """ return [ cls.PRECIPITATION, cls.WIND, cls.TEMPERATURE, cls.PRESSURE ]
PYTHON
{ "dummy_field": "" }
d269
train
def mtf_image_transformer_cifar_mp_4x(): """Data parallel CIFAR parameters.""" hparams = mtf_image_transformer_base_cifar() hparams.mesh_shape = "model:4;batch:8" hparams.layout = "batch:batch;d_ff:model;heads:model" hparams.batch_size = 32 hparams.num_heads = 8 hparams.d_ff = 8192 return hparams
PYTHON
{ "dummy_field": "" }
d270
train
def image_set_aspect(aspect=1.0, axes="gca"): """ sets the aspect ratio of the current zoom level of the imshow image """ if axes is "gca": axes = _pylab.gca() e = axes.get_images()[0].get_extent() axes.set_aspect(abs((e[1]-e[0])/(e[3]-e[2]))/aspect)
PYTHON
{ "dummy_field": "" }
d271
train
def Flush(self): """Flush all items from cache.""" while self._age: node = self._age.PopLeft() self.KillObject(node.data) self._hash = dict()
PYTHON
{ "dummy_field": "" }
d272
train
def _propagate_mean(mean, linop, dist): """Propagate a mean through linear Gaussian transformation.""" return linop.matmul(mean) + dist.mean()[..., tf.newaxis]
PYTHON
{ "dummy_field": "" }
d273
train
def invalidate_cache(cpu, address, size): """ remove decoded instruction from instruction cache """ cache = cpu.instruction_cache for offset in range(size): if address + offset in cache: del cache[address + offset]
PYTHON
{ "dummy_field": "" }
d274
train
def convertToBool(): """ Convert a byte value to boolean (0 or 1) if the global flag strictBool is True """ if not OPTIONS.strictBool.value: return [] REQUIRES.add('strictbool.asm') result = [] result.append('pop af') result.append('call __NORMALIZE_BOOLEAN') result.append('push af') return result
PYTHON
{ "dummy_field": "" }
d275
train
def normalize(x, min_value, max_value): """Normalize value between min and max values. It also clips the values, so that you cannot have values higher or lower than 0 - 1.""" x = (x - min_value) / (max_value - min_value) return clip(x, 0, 1)
PYTHON
{ "dummy_field": "" }
d276
train
def prepare_for_reraise(error, exc_info=None): """Prepares the exception for re-raising with reraise method. This method attaches type and traceback info to the error object so that reraise can properly reraise it using this info. """ if not hasattr(error, "_type_"): if exc_info is None: exc_info = sys.exc_info() error._type_ = exc_info[0] error._traceback = exc_info[2] return error
PYTHON
{ "dummy_field": "" }
d277
train
def close_all_but_this(self): """Close all files but the current one""" self.close_all_right() for i in range(0, self.get_stack_count()-1 ): self.close_file(0)
PYTHON
{ "dummy_field": "" }
d278
train
def eval_in_system_namespace(self, exec_str): """ Get Callable for specified string (for GUI-based editing) """ ns = self.cmd_namespace try: return eval(exec_str, ns) except Exception as e: self.logger.warning('Could not execute %s, gave error %s', exec_str, e) return None
PYTHON
{ "dummy_field": "" }
d279
train
def _close_socket(self): """Shutdown and close the Socket. :return: """ try: self.socket.shutdown(socket.SHUT_RDWR) except (OSError, socket.error): pass self.socket.close()
PYTHON
{ "dummy_field": "" }
d280
train
def exec_function(ast, globals_map): """Execute a python code object in the given environment. Args: globals_map: Dictionary to use as the globals context. Returns: locals_map: Dictionary of locals from the environment after execution. """ locals_map = globals_map exec ast in globals_map, locals_map return locals_map
PYTHON
{ "dummy_field": "" }
d281
train
def cleanup(self, app): """Close all connections.""" if hasattr(self.database.obj, 'close_all'): self.database.close_all()
PYTHON
{ "dummy_field": "" }
d282
train
def get_unicode_str(obj): """Makes sure obj is a unicode string.""" if isinstance(obj, six.text_type): return obj if isinstance(obj, six.binary_type): return obj.decode("utf-8", errors="ignore") return six.text_type(obj)
PYTHON
{ "dummy_field": "" }
d283
train
def close_all_but_this(self): """Close all files but the current one""" self.close_all_right() for i in range(0, self.get_stack_count()-1 ): self.close_file(0)
PYTHON
{ "dummy_field": "" }
d284
train
def exp_fit_fun(x, a, tau, c): """Function used to fit the exponential decay.""" # pylint: disable=invalid-name return a * np.exp(-x / tau) + c
PYTHON
{ "dummy_field": "" }
d285
train
def _findNearest(arr, value): """ Finds the value in arr that value is closest to """ arr = np.array(arr) # find nearest value in array idx = (abs(arr-value)).argmin() return arr[idx]
PYTHON
{ "dummy_field": "" }
d286
train
def gauss_pdf(x, mu, sigma): """Normalized Gaussian""" return 1 / np.sqrt(2 * np.pi) / sigma * np.exp(-(x - mu) ** 2 / 2. / sigma ** 2)
PYTHON
{ "dummy_field": "" }
d287
train
def remove_examples_all(): """remove arduino/examples/all directory. :rtype: None """ d = examples_all_dir() if d.exists(): log.debug('remove %s', d) d.rmtree() else: log.debug('nothing to remove: %s', d)
PYTHON
{ "dummy_field": "" }
d288
train
def resources(self): """Retrieve contents of each page of PDF""" return [self.pdf.getPage(i) for i in range(self.pdf.getNumPages())]
PYTHON
{ "dummy_field": "" }
d289
train
def cli_command_quit(self, msg): """\ kills the child and exits """ if self.state == State.RUNNING and self.sprocess and self.sprocess.proc: self.sprocess.proc.kill() else: sys.exit(0)
PYTHON
{ "dummy_field": "" }
d290
train
def dot(self, w): """Return the dotproduct between self and another vector.""" return sum([x * y for x, y in zip(self, w)])
PYTHON
{ "dummy_field": "" }
d291
train
def printc(cls, txt, color=colors.red): """Print in color.""" print(cls.color_txt(txt, color))
PYTHON
{ "dummy_field": "" }
d292
train
def need_update(a, b): """ Check if file a is newer than file b and decide whether or not to update file b. Can generalize to two lists. """ a = listify(a) b = listify(b) return any((not op.exists(x)) for x in b) or \ all((os.stat(x).st_size == 0 for x in b)) or \ any(is_newer_file(x, y) for x in a for y in b)
PYTHON
{ "dummy_field": "" }
d293
train
def lengths( self ): """ The cell lengths. Args: None Returns: (np.array(a,b,c)): The cell lengths. """ return( np.array( [ math.sqrt( sum( row**2 ) ) for row in self.matrix ] ) )
PYTHON
{ "dummy_field": "" }
d294
train
def random_str(size=10): """ create random string of selected size :param size: int, length of the string :return: the string """ return ''.join(random.choice(string.ascii_lowercase) for _ in range(size))
PYTHON
{ "dummy_field": "" }
d295
train
def get_table_columns(dbconn, tablename): """ Return a list of tuples specifying the column name and type """ cur = dbconn.cursor() cur.execute("PRAGMA table_info('%s');" % tablename) info = cur.fetchall() cols = [(i[1], i[2]) for i in info] return cols
PYTHON
{ "dummy_field": "" }
d296
train
def remove_duplicates(lst): """ Emulate what a Python ``set()`` does, but keeping the element's order. """ dset = set() return [l for l in lst if l not in dset and not dset.add(l)]
PYTHON
{ "dummy_field": "" }
d297
train
def _on_select(self, *args): """ Function bound to event of selection in the Combobox, calls callback if callable :param args: Tkinter event """ if callable(self.__callback): self.__callback(self.selection)
PYTHON
{ "dummy_field": "" }
d298
train
def fft_spectrum(frames, fft_points=512): """This function computes the one-dimensional n-point discrete Fourier Transform (DFT) of a real-valued array by means of an efficient algorithm called the Fast Fourier Transform (FFT). Please refer to https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfft.html for further details. Args: frames (array): The frame array in which each row is a frame. fft_points (int): The length of FFT. If fft_length is greater than frame_len, the frames will be zero-padded. Returns: array: The fft spectrum. If frames is an num_frames x sample_per_frame matrix, output will be num_frames x FFT_LENGTH. """ SPECTRUM_VECTOR = np.fft.rfft(frames, n=fft_points, axis=-1, norm=None) return np.absolute(SPECTRUM_VECTOR)
PYTHON
{ "dummy_field": "" }
d299
train
def isetdiff_flags(list1, list2): """ move to util_iter """ set2 = set(list2) return (item not in set2 for item in list1)
PYTHON
{ "dummy_field": "" }
d300
train
def guess_file_type(kind, filepath=None, youtube_id=None, web_url=None, encoding=None): """ guess_file_class: determines what file the content is Args: filepath (str): filepath of file to check Returns: string indicating file's class """ if youtube_id: return FileTypes.YOUTUBE_VIDEO_FILE elif web_url: return FileTypes.WEB_VIDEO_FILE elif encoding: return FileTypes.BASE64_FILE else: ext = os.path.splitext(filepath)[1][1:].lower() if kind in FILE_TYPE_MAPPING and ext in FILE_TYPE_MAPPING[kind]: return FILE_TYPE_MAPPING[kind][ext] return None
PYTHON
{ "dummy_field": "" }