Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10M - 100M
ArXiv:
License:
Convert dataset to Parquet
#5
by
albertvillanova
HF staff
- opened
- README.md +8 -1
- asnq.py +0 -151
- data/{asnq.zip → train-00000-of-00008.parquet} +2 -2
- data/train-00001-of-00008.parquet +3 -0
- data/train-00002-of-00008.parquet +3 -0
- data/train-00003-of-00008.parquet +3 -0
- data/train-00004-of-00008.parquet +3 -0
- data/train-00005-of-00008.parquet +3 -0
- data/train-00006-of-00008.parquet +3 -0
- data/train-00007-of-00008.parquet +3 -0
- data/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +0 -1
README.md
CHANGED
@@ -42,8 +42,15 @@ dataset_info:
|
|
42 |
- name: validation
|
43 |
num_bytes: 168004403
|
44 |
num_examples: 930062
|
45 |
-
download_size:
|
46 |
dataset_size: 3824869475
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
---
|
48 |
|
49 |
# Dataset Card for "asnq"
|
|
|
42 |
- name: validation
|
43 |
num_bytes: 168004403
|
44 |
num_examples: 930062
|
45 |
+
download_size: 2496835395
|
46 |
dataset_size: 3824869475
|
47 |
+
configs:
|
48 |
+
- config_name: default
|
49 |
+
data_files:
|
50 |
+
- split: train
|
51 |
+
path: data/train-*
|
52 |
+
- split: validation
|
53 |
+
path: data/validation-*
|
54 |
---
|
55 |
|
56 |
# Dataset Card for "asnq"
|
asnq.py
DELETED
@@ -1,151 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""Answer-Sentence Natural Questions (ASNQ)
|
16 |
-
|
17 |
-
ASNQ is a dataset for answer sentence selection derived from Google's
|
18 |
-
Natural Questions (NQ) dataset (Kwiatkowski et al. 2019). It converts
|
19 |
-
NQ's dataset into an AS2 (answer-sentence-selection) format.
|
20 |
-
|
21 |
-
The dataset details can be found in the paper at
|
22 |
-
https://arxiv.org/abs/1911.04118
|
23 |
-
|
24 |
-
The dataset can be downloaded at
|
25 |
-
https://d3t7erp6ge410c.cloudfront.net/tanda-aaai-2020/data/asnq.tar
|
26 |
-
|
27 |
-
"""
|
28 |
-
|
29 |
-
|
30 |
-
import csv
|
31 |
-
import os
|
32 |
-
|
33 |
-
import datasets
|
34 |
-
|
35 |
-
|
36 |
-
_CITATION = """\
|
37 |
-
@article{garg2019tanda,
|
38 |
-
title={TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection},
|
39 |
-
author={Siddhant Garg and Thuy Vu and Alessandro Moschitti},
|
40 |
-
year={2019},
|
41 |
-
eprint={1911.04118},
|
42 |
-
}
|
43 |
-
"""
|
44 |
-
|
45 |
-
_DESCRIPTION = """\
|
46 |
-
ASNQ is a dataset for answer sentence selection derived from
|
47 |
-
Google's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).
|
48 |
-
|
49 |
-
Each example contains a question, candidate sentence, label indicating whether or not
|
50 |
-
the sentence answers the question, and two additional features --
|
51 |
-
sentence_in_long_answer and short_answer_in_sentence indicating whether ot not the
|
52 |
-
candidate sentence is contained in the long_answer and if the short_answer is in the candidate sentence.
|
53 |
-
|
54 |
-
For more details please see
|
55 |
-
https://arxiv.org/pdf/1911.04118.pdf
|
56 |
-
|
57 |
-
and
|
58 |
-
|
59 |
-
https://research.google/pubs/pub47761/
|
60 |
-
"""
|
61 |
-
|
62 |
-
_URL = "data/asnq.zip"
|
63 |
-
|
64 |
-
|
65 |
-
class ASNQ(datasets.GeneratorBasedBuilder):
|
66 |
-
"""ASNQ is a dataset for answer sentence selection derived
|
67 |
-
ASNQ is a dataset for answer sentence selection derived from
|
68 |
-
Google's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).
|
69 |
-
|
70 |
-
The dataset details can be found in the paper:
|
71 |
-
https://arxiv.org/abs/1911.04118
|
72 |
-
"""
|
73 |
-
|
74 |
-
VERSION = datasets.Version("1.0.0")
|
75 |
-
|
76 |
-
def _info(self):
|
77 |
-
|
78 |
-
return datasets.DatasetInfo(
|
79 |
-
# This is the description that will appear on the datasets page.
|
80 |
-
description=_DESCRIPTION,
|
81 |
-
# This defines the different columns of the dataset and their types
|
82 |
-
features=datasets.Features(
|
83 |
-
{
|
84 |
-
"question": datasets.Value("string"),
|
85 |
-
"sentence": datasets.Value("string"),
|
86 |
-
"label": datasets.ClassLabel(names=["neg", "pos"]),
|
87 |
-
"sentence_in_long_answer": datasets.Value("bool"),
|
88 |
-
"short_answer_in_sentence": datasets.Value("bool"),
|
89 |
-
}
|
90 |
-
),
|
91 |
-
# No default supervised_keys
|
92 |
-
supervised_keys=None,
|
93 |
-
# Homepage of the dataset for documentation
|
94 |
-
homepage="https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq",
|
95 |
-
citation=_CITATION,
|
96 |
-
)
|
97 |
-
|
98 |
-
def _split_generators(self, dl_manager):
|
99 |
-
"""Returns SplitGenerators."""
|
100 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
101 |
-
# download and extract URLs
|
102 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
103 |
-
data_dir = os.path.join(dl_dir, "data", "asnq")
|
104 |
-
return [
|
105 |
-
datasets.SplitGenerator(
|
106 |
-
name=datasets.Split.TRAIN,
|
107 |
-
# These kwargs will be passed to _generate_examples
|
108 |
-
gen_kwargs={
|
109 |
-
"filepath": os.path.join(data_dir, "train.tsv"),
|
110 |
-
"split": "train",
|
111 |
-
},
|
112 |
-
),
|
113 |
-
datasets.SplitGenerator(
|
114 |
-
name=datasets.Split.VALIDATION,
|
115 |
-
# These kwargs will be passed to _generate_examples
|
116 |
-
gen_kwargs={
|
117 |
-
"filepath": os.path.join(data_dir, "dev.tsv"),
|
118 |
-
"split": "dev",
|
119 |
-
},
|
120 |
-
),
|
121 |
-
]
|
122 |
-
|
123 |
-
def _generate_examples(self, filepath, split):
|
124 |
-
"""Yields examples.
|
125 |
-
|
126 |
-
Original dataset contains labels '1', '2', '3' and '4', with labels
|
127 |
-
'1', '2' and '3' considered negative (sentence does not answer the question),
|
128 |
-
and label '4' considered positive (sentence does answer the question).
|
129 |
-
We map these labels to two classes, returning the other properties as additional
|
130 |
-
features."""
|
131 |
-
|
132 |
-
# Mapping of dataset's original labels to a tuple of
|
133 |
-
# (label, sentence_in_long_answer, short_answer_in_sentence)
|
134 |
-
label_map = {
|
135 |
-
"1": ("neg", False, False),
|
136 |
-
"2": ("neg", False, True),
|
137 |
-
"3": ("neg", True, False),
|
138 |
-
"4": ("pos", True, True),
|
139 |
-
}
|
140 |
-
with open(filepath, encoding="utf-8") as tsvfile:
|
141 |
-
tsvreader = csv.reader(tsvfile, delimiter="\t")
|
142 |
-
for id_, row in enumerate(tsvreader):
|
143 |
-
question, sentence, orig_label = row
|
144 |
-
label, sentence_in_long_answer, short_answer_in_sentence = label_map[orig_label]
|
145 |
-
yield id_, {
|
146 |
-
"question": question,
|
147 |
-
"sentence": sentence,
|
148 |
-
"label": label,
|
149 |
-
"sentence_in_long_answer": sentence_in_long_answer,
|
150 |
-
"short_answer_in_sentence": short_answer_in_sentence,
|
151 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/{asnq.zip → train-00000-of-00008.parquet}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c51e6cd0278c630e2094d9cdd5502fb3f35e60e260477a969832b8422cf5574e
|
3 |
+
size 299139770
|
data/train-00001-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b74a1689c47410893d8e944a994bd8e610ab173cb9e9255e225d1777b7d0859a
|
3 |
+
size 298212695
|
data/train-00002-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9dd2783190464db93960c13fd8e99e949b52add2bdb4b5a9267e8601cfaef53
|
3 |
+
size 299688447
|
data/train-00003-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7ff76549b7fc5e055419e274a1b28a277ac2742ed15298f47ee287530323407
|
3 |
+
size 299173033
|
data/train-00004-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1baa386b5d338dea200eec4aebf3f553bf5591b059a0efbf587857c8713f3e95
|
3 |
+
size 299751866
|
data/train-00005-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15c4c802114cfd6db510dbcecd5155c58b92758b06c01fd91fe94bfcb411b9cb
|
3 |
+
size 299035267
|
data/train-00006-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce69b66214e21c3330a1836e652742876615e462e59b973fdfd89ee21c38303b
|
3 |
+
size 299086683
|
data/train-00007-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b090f7299765d9101cc87ec2b29b05b13e96acd6e6717c91282b06f0e606e567
|
3 |
+
size 299236601
|
data/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c400a3e7bbd1b1f184bbc3bda3747b3946ccfa29e76c7ce2841613601515fed6
|
3 |
+
size 103511033
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "ASNQ is a dataset for answer sentence selection derived from\nGoogle's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).\n\nEach example contains a question, candidate sentence, label indicating whether or not\nthe sentence answers the question, and two additional features --\nsentence_in_long_answer and short_answer_in_sentence indicating whether ot not the\ncandidate sentence is contained in the long_answer and if the short_answer is in the candidate sentence.\n\nFor more details please see\nhttps://arxiv.org/pdf/1911.04118.pdf\n\nand\n\nhttps://research.google/pubs/pub47761/\n", "citation": "@article{garg2019tanda,\n title={TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection},\n author={Siddhant Garg and Thuy Vu and Alessandro Moschitti},\n year={2019},\n eprint={1911.04118},\n}\n", "homepage": "https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["neg", "pos"], "id": null, "_type": "ClassLabel"}, "sentence_in_long_answer": {"dtype": "bool", "id": null, "_type": "Value"}, "short_answer_in_sentence": {"dtype": "bool", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "asnq", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3656865072, "num_examples": 20377568, "dataset_name": "asnq"}, "validation": {"name": "validation", "num_bytes": 168004403, "num_examples": 930062, "dataset_name": "asnq"}}, "download_checksums": {"data/asnq.zip": {"num_bytes": 1482064429, "checksum": "4d1b3ee889be3d2a090d075a7494cee339f6fcfae6bc16ce5d06ad66874e591c"}}, "download_size": 1482064429, "post_processing_size": null, "dataset_size": 3824869475, "size_in_bytes": 5306933904}}
|
|
|
|