Datasets:

Modalities:
Tabular
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
Files changed (1) hide show
  1. README.md +9 -53
README.md CHANGED
@@ -23,66 +23,22 @@ dataset_info:
23
  license: other
24
  language:
25
  - en
26
- pretty_name: movielens-user-ratings
27
  size_categories:
28
  - 100K<n<1M
 
 
 
 
29
  ---
 
30
 
31
- # Movielens-user-ratings
32
- This dataset contains a set of movie ratings from the MovieLens website, a movie recommendation service.
33
 
34
- ## Overview
35
- MovieLens data sets were collected by the GroupLens Research Project at the University of Minnesota.
36
- The GroupLens Research has collected and made available rating data sets from the [MovieLens website](https://movielens.org).
37
- MovieLens 100K movie ratings contain 100,000 ratings(1-5)from 943 users on 1682 movies. Released 1998.
38
-
39
- ## Dataset Details
40
- The dataset from Kaggle is named [MovieLens100](https://www.kaggle.com/datasets/abhikjha/movielens-100k).
41
- Contains different CSV files for Movies, Ratings, Links, and Tags. We used only the file "ratings.csv" in **movielens-user-ratings dataset**.
42
-
43
- - Dataset Name: movielens-user-ratings
44
- - Language: English
45
- - Total Size: 100,836 demonstrations
46
-
47
- **Citation:**
48
- ```latex
49
- @article{10.1145/2827872,
50
- author = {Harper, F. Maxwell and Konstan, Joseph A.},
51
- title = {The MovieLens Datasets: History and Context},
52
- year = {2015},
53
- issue_date = {January 2016},
54
- publisher = {Association for Computing Machinery},
55
- address = {New York, NY, USA},
56
- volume = {5},
57
- number = {4},
58
- issn = {2160-6455},
59
- url = {https://doi.org/10.1145/2827872},
60
- doi = {10.1145/2827872},
61
- journal = {ACM Trans. Interact. Intell. Syst.},
62
- month = dec,
63
- articleno = {19},
64
- numpages = {19},
65
- keywords = {Datasets, recommendations, ratings, MovieLens}
66
- }
67
- ```
68
- ## Contents
69
-
70
- The dataset consists of a data frame with the following columns:
71
-
72
- - **userId:** a unique identifier of the user who made the rating.
73
- - **movieId:** a unique identifier of the rated movie.
74
- - **rating:** the score of the rating on a five-star scale.
75
- - **timestamp:** the timestamp of the ratings.
76
-
77
- ## How to use
78
 
79
  ```python
80
  from datasets import load_dataset
81
 
82
- dataset = load_dataset("AiresPucrs/movielens-user-ratings", split='train')
83
-
84
  ```
85
-
86
- ## License
87
-
88
- This dataset is licensed under the USAGE LICENSE - [Other](https://files.grouplens.org/datasets/movielens/ml-100k-README.txt).
 
23
  license: other
24
  language:
25
  - en
26
+ pretty_name: MovieLens User Ratings
27
  size_categories:
28
  - 100K<n<1M
29
+ task_categories:
30
+ - text-classification
31
+ tags:
32
+ - movies
33
  ---
34
+ # MovieLens User Ratings (Teeny-Tiny Castle)
35
 
36
+ This dataset is part of the tutorial tied to the [Teeny-Tiny Castle](https://github.com/Nkluge-correa/TeenyTinyCastle), an open-source repository containing educational tools for AI Ethics and Safety research.
 
37
 
38
+ ## How to Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  ```python
41
  from datasets import load_dataset
42
 
43
+ dataset = load_dataset("AiresPucrs/movielens-user-ratings", split = 'train')
 
44
  ```