negasibert-mnrl / README.md
damand2061's picture
Add new SentenceTransformer model.
cfa02fe verified
metadata
base_model: indobenchmark/indobert-base-p1
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:12000
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: Awalnya merupakan singkatan dari John's Macintosh Project.
    sentences:
      - >-
        Sebuah formasi yang terdiri dari sekitar 50 petugas Polisi Baltimore
        akhirnya menempatkan diri mereka di antara para perusuh dan milisi,
        memungkinkan Massachusetts ke-6 untuk melanjutkan ke Stasiun Camden.
      - Mengecat luka dapat melindungi dari jamur dan hama.
      - Dulunya merupakan singkatan dari John's Macintosh Project.
  - source_sentence: Boueiz berprofesi sebagai pengacara.
    sentences:
      - Mereka juga gagal mengembangkan Water Cooperation Quotient yang baru.
      - >-
        Pada Pemilu 1970, ia ikut serta dari Partai Persatuan Nasional namun
        dikalahkan.
      - Seorang pengacara berprofesi sebagai Boueiz.
  - source_sentence: Fakultas Studi Oriental memiliki seorang profesor.
    sentences:
      - >-
        Di tempat lain di New Mexico, LAHS terkadang dianggap sebagai sekolah
        untuk orang kaya.
      - >-
        Laporan lain juga menunjukkan kandungannya lebih rendah dari 0,1% di
        Australia.
      - Profesor tersebut merupakan bagian dari Fakultas Studi Oriental.
  - source_sentence: >-
      Hal ini terjadi di sejumlah negara, termasuk Ethiopia, Republik Demokratik
      Kongo, dan Afrika Selatan.
    sentences:
      - >-
        Hal ini diketahui terjadi di Eritrea, Ethiopia, Kongo, Tanzania, Namibia
        dan Afrika Selatan.
      - Gugus amil digantikan oleh gugus pentil.
      - Dan saya beritahu Anda sesuatu, itu tidak adil.
  - source_sentence: Ini adalah wilayah sosial-ekonomi yang lebih rendah.
    sentences:
      - >-
        Ini adalah bengkel perbaikan mobil terbaru yang masih beroperasi di
        kota.
      - >-
        Zelinsky hanya berteori bahwa tidak ada tiga bilangan bulat berurutan
        yang semuanya dapat difaktorkan ulang.
      - Ini adalah wilayah sosial-ekonomi yang lebih tinggi.
model-index:
  - name: SentenceTransformer based on indobenchmark/indobert-base-p1
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: str dev
          type: str-dev
        metrics:
          - type: pearson_cosine
            value: 0.4564569322733096
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.48195228779003385
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.5026090402544289
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.4959933098737397
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.5039005057105697
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.4974503970711054
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.30898798759416635
            name: Pearson Dot
          - type: spearman_dot
            value: 0.2877933490149207
            name: Spearman Dot
          - type: pearson_max
            value: 0.5039005057105697
            name: Pearson Max
          - type: spearman_max
            value: 0.4974503970711054
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: str test
          type: str-test
        metrics:
          - type: pearson_cosine
            value: 0.47784323630714065
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.5031401179671358
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.5002126701994709
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.49583761101885343
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.5003980651640989
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.49610725867890976
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.3399664664461248
            name: Pearson Dot
          - type: spearman_dot
            value: 0.3339252012184323
            name: Spearman Dot
          - type: pearson_max
            value: 0.5003980651640989
            name: Pearson Max
          - type: spearman_max
            value: 0.5031401179671358
            name: Spearman Max

SentenceTransformer based on indobenchmark/indobert-base-p1

This is a sentence-transformers model finetuned from indobenchmark/indobert-base-p1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: indobenchmark/indobert-base-p1
  • Maximum Sequence Length: 32 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("damand2061/negasibert-mnrl")
# Run inference
sentences = [
    'Ini adalah wilayah sosial-ekonomi yang lebih rendah.',
    'Ini adalah wilayah sosial-ekonomi yang lebih tinggi.',
    'Zelinsky hanya berteori bahwa tidak ada tiga bilangan bulat berurutan yang semuanya dapat difaktorkan ulang.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.4565
spearman_cosine 0.482
pearson_manhattan 0.5026
spearman_manhattan 0.496
pearson_euclidean 0.5039
spearman_euclidean 0.4975
pearson_dot 0.309
spearman_dot 0.2878
pearson_max 0.5039
spearman_max 0.4975

Semantic Similarity

Metric Value
pearson_cosine 0.4778
spearman_cosine 0.5031
pearson_manhattan 0.5002
spearman_manhattan 0.4958
pearson_euclidean 0.5004
spearman_euclidean 0.4961
pearson_dot 0.34
spearman_dot 0.3339
pearson_max 0.5004
spearman_max 0.5031

Training Details

Training Dataset

Unnamed Dataset

  • Size: 12,000 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 5 tokens
    • mean: 14.84 tokens
    • max: 32 tokens
    • min: 5 tokens
    • mean: 14.83 tokens
    • max: 32 tokens
  • Samples:
    sentence_0 sentence_1
    Pusat Peringatan Topan Gabungan (JTWC) juga mengeluarkan peringatan dalam kapasitas tidak resmi. Pusat Peringatan Topan Gabungan (JTWC) hanya mengeluarkan peringatan dalam kapasitas yang tidak resmi.
    DNP komersial digunakan sebagai antiseptik dan pestisida bioakumulasi non-selektif. DNP komersial tidak dapat digunakan sebagai antiseptik atau pestisida bioakumulasi non-selektif.
    Kuncian tulang belakang dan kuncian serviks diperbolehkan dan wajib dalam kompetisi jiu-jitsu Brasil IBJJF. Kuncian tulang belakang dan kuncian serviks dilarang dalam kompetisi jiu-jitsu Brasil IBJJF.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • num_train_epochs: 5
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss str-dev_spearman_max str-test_spearman_max
1.0 188 - 0.4906 0.5067
2.0 376 - 0.4941 0.5060
2.6596 500 0.0995 - -
3.0 564 - 0.4935 0.5055
4.0 752 - 0.4959 0.5016
5.0 940 - 0.4975 0.5031

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.44.0
  • PyTorch: 2.4.0
  • Accelerate: 0.33.0
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}