vit-finetune-scrap / README.md
d071696's picture
🍻 cheers
c4d10a3 verified
|
raw
history blame
2.04 kB
metadata
base_model: d071696/vit-finetune-scrap
tags:
  - image-classification
  - image-feature-extraction
  - image-to-text
  - generated_from_trainer
datasets:
  - arrow
metrics:
  - accuracy
model-index:
  - name: vit-finetune-scrap
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: d071696/scraps1
          type: arrow
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.954983922829582

vit-finetune-scrap

This model is a fine-tuned version of d071696/vit-finetune-scrap on the d071696/scraps1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1588
  • Accuracy: 0.9550

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1672 0.64 100 0.2250 0.9486
0.1277 1.28 200 0.2467 0.9373
0.0253 1.92 300 0.1588 0.9550
0.0224 2.56 400 0.1691 0.9534
0.0321 3.21 500 0.1751 0.9566
0.0112 3.85 600 0.1805 0.9550

Framework versions

  • Transformers 4.39.0
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2